
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

STATIC VERIFICATION OF DATA RACES IN
OPENMP

Kátya Thaı́s Martins da Silva

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

STATIC VERIFICATION OF DATA RACES IN
OPENMP

Kátya Thaı́s Martins da Silva

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

Dissertação orientada pelo Prof. Doutor Dimitris Mostrous

2014

Agradecimentos

Quero agradecer ao meu orientador Dr. Alastair Donaldson e ao meu co-orientador
Dr. Jeroen Ketema, ambos da Imperial College of London, por aceitarem que trabalhasse
com eles na minha tese e a todo o grupo Multicore por me ter acolhido e ajudado quando
necessitei. Não posso deixar de agradecer também ao meu orientador da Faculdade de
Ciências Dr. Dimitris Monstrous, que me ajudou sempre que necessitei e que foi essencial
para a minha deslocação para Londres. Muito obrigada sem vocês nada disto teria sido
possı́vel.

Também quero agradecer à minha famı́lia por toda a forca e motivação que me deram.
Aos meus pais, Maria e José da Silva, por todo o carinho, força e motivação nestes meses
tao intensos de trabalho; a minha irmã, Patrı́cia que sempre me motivou e animou quando
estava mais desanimada e ao meu irmão, Theo que apesar de pequeno esteve sempre ao
meu lado quando precisei de uma gargalhada. Obrigada por tudo.

Por último, e não menos importante, quero agradecer ao meu namorado, Fábio, que
apesar de estar longe sempre me deu muita força mesmo nos momentos em que estava
mais stressada e rabugenta; e também quero agradecer aos meus colegas por estes anos
todos de faculdade e a duas colegas em especial por me darem muita força quando precisei
neste ultimo ano. Obrigada a todos.

Muito obrigada a todos que me acompanharam e me deram força nesta etapa da minha
vida.

iii

Á minha famı́lia.

Resumo

Com o uso de linguagens paralelas nascem alguns problemas como data race , uma
argura para os programadores durante o seu trabalho. Data race são quando dois ou mais
threads em um único processo acedem a mesma posição de memória ao mesmo tempo,
sendo que um ou mais acessos são para a escrita/leitura, sem sincronização adequada.

A nossa ferramenta (SVDR: Static Verification of Data race in OpenMP) foi desenvol-
vida com o propósito de verificar a ausência de data races em OpenMP (uma linguagem
de programação paralela). Empregamos a verificação estática com intenção de encon-
trar data races sem necessariamente executar o programa, possibilitando dessa forma ao
utilizador, encontrar o problema antes de receber o resultado do mesmo. Para melhor
compreensão de como funciona a ferramenta, é pertinente apresentar de forma concisa,
as linguagens de programação aqui abordadas: OpenMP e Boogie.

OpenMP (Aberto Multi-Processing) 2.1 é um API usado na programação (C, Fortran,
C++) em multiprocessadores com memória partilhada em multiplataformas e funciona
em quase todos Sistemas operativos e arquitecturas.

Boogie [2, 17] é uma linguagem de verificação intermédia, projectada como uma ca-
mada sobre a qual é possı́vel construir outros verificadores para outras lı́nguaguens.

Uma vez aclaradas as definições, é mais fácil contextualizar e compreender como a
ferramenta funciona.

Como já foi referido previamente, o objectivo da ferramenta é traduzir código OpenMP
em código Boogie com o propósito de verificar se existe ou não data race no ficheiro
de entrada. Assim sendo, é possı́vel aferir que existem duas etapas para o processo de
verificação: a primeira é a tradução de OpenMP em Boogie, e a segunda é a verificação
de data race no ficheiro de entrada - que é do tipo bpl, ou seja, código Boogie.

A primeira fase não é tratado pela ferramenta, de modo que é necessária uma tradução
manual do código OpenMP para o código Boogie.

A segunda fase é a ferramenta que foi implementada, SVDR. O SVDR funciona da
seguinte forma: recebe como entrada um ficheiro bpl (um OpenMP traduzido em código
Boogie) e retorna como resultado um ficheiro bpl com o algoritmo necessário para verifi-
car se há ou não um data race no ficheiro de entrada.

O algoritmo criado é baseado no uso de nao determinismo, invariantes e assertions.
Este funciona do seguinte modo, para verificar a existência de data race num ciclo While,

vii

o que se faz é guardar numa variável global, que designamos de current off, o valor actual
do ı́ndice do array (independentemente de se tratar de uma leitura ou uma escrita, o pro-
cesso é o mesmo), e atribuir a outra variável global, que denominamos de current,o valor
de true. Após guardados os referidos valores, o que se faz a seguir, é a incrementação
do ciclo, atribuı́mos os valores do current e do current off a duas novas variáveis globais
previous e previous off. Estas atribuições são feitas para evitar que se aceda duas vezes
seguidas a mesma posição, porque isso poderia conduzir a data race.

Tanto as atribuições de current como de previous, são feitas dentro de if não deter-
minı́sticos. Não determinismo é por definição “Uma propriedade da computação na qual
pode ter um ou mais resultados”, mas neste caso especifico significa que não é possı́vel
saber se entra ou não no if. A razão para o seu uso, é apenas a não necessidade, neste caso,
de se guardar todos os valores do currrent, e mudar todos os valores do previous (até por-
que se tivermos em consideração todas as possibilidade de execução do programa, haverá
sempre uma para cada tarefa).

Depois de guardados os valores é necessário validá-los de alguma forma, até porque
senão, seriam apenas if num programa, ou seja, não teriam nenhum efeito especifico. A
modo utilizado para verificar, é empregando assercoes, ou seja, criamos um assert na qual
se afirma que caso o previous seja verdadeiro, então o previous off será sempre diferente
do ı́ndex actual do vector. Caso isto seja verdade, ou seja, caso se ocorra no programa a
veracidade dessa afirmação, então não existem data race, caso contrário, existem. Mas
para que esse assert seja sempre verdade, durante o programa, é indispensável a criação de
uma invariant para suportar a sua veracidade. No nosso caso, as invariantes são testadas
usando Houdini 2.2. São criadas bases de invariantes pela ferramenta, que posteriormente
ao realizar-se a verificação do ficheiro com o algoritmo no Verificador Boogie, adiciona
um atributo relativo ao Houdini. Por fim, para saber se existe ou não data race no código,
utilizamos o Verificador Boogie para atestar o programa com o algoritmo.

Como conclusão, o que se pode dizer é que a ferramenta apresentou resultados bas-
tante satisfatórios, e que em todos os exemplos apresentados e testados, o efeito foi o
esperado. Apesar de algumas limitações, a ferramenta cumpre com o que foi descrito
anteriormente Verifica estaticamente a existência de data race na linguagem OpenMP.

Palavras-chave: Boogie, Data race, OpenMP, Paralelismo, Verificaçao

viii

Abstract

Increasingly, programmers use multi-core processors to develop code with multiple
threads, i.e, parallel programs. There are some tools that support parallelism such as
Intel Parallel Lint 2.4.1 or Intel Thread checker 2.4.2 and some parallel programming
languages such as OpenMP 2.1.

With the use of parallel languages emerged some problems such as data races that
no programmer likes to come across when working. Data races are when two or more
threads in a single process access the same memory location concurrently and one or more
of the accesses are for writing without proper synchronization.

Our tool (SVDR: Static Verification of Data race in OpenMP) was developed with the
intention to verify data race freedom in OpenMP (a parallel programming language). We
used static verification because we wanted to try to find data races without running the
program because that way the user discovers the problem before getting results from the
program.

The SVDR tool works as follows: it receives as input a bpl file (a file with the translated
OpenMP code into Boogie code), then the tool performs executes the algorithm on the
input, and gives as output the execution, i.e, the Boogie code with the algorithm necessary
to verify if there is or not a data race.

Next the output of the SVDR is going to be used as input in the Boogie Verifier that
will determine whether or not there exists a data race in the input. If there is a data race
then the verifier will give an error, otherwise the verifier will verifies the code without any
problem.

After several tests it was possible for us to verify that the tool works correctly in all
tests that we ran. The examples that we ran were with nested loops, but just one of them
was parallel, and also with simple loops, with reads and writes, and all of the examples
were verified as expected by the Boogie Verifier.

The tool is useful to help the user to verify is exists any data race problem in code so
that they can solve the problem if it exists.

Keywords: Boogie, Data races, OpenMP, Parallelism, Verification

ix

Contents

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Document Structure . 2

2 Related Work 4
2.1 OpenMP . 4

2.1.1 What is OpenMP? . 4
2.1.2 Features of OpenMP [10, 22, 29, 23] 4
2.1.3 Data Races . 9

2.2 Boogie . 12
2.2.1 What is Boogie? . 12
2.2.2 Boogie Syntax . 13

2.3 Program Analysis . 19
2.3.1 Static Analysis . 19
2.3.2 Dynamic Analysis . 20
2.3.3 Static Analysis versus Dynamic Analysis [11] 20

2.4 Tools - Dynamic and Static Analysis for OpenMP 20
2.4.1 Intel Parallel Lint . 20
2.4.2 Intel Thread checker . 21

2.5 Houdini . 21
2.5.1 How it works? . 21

3 Analysis 24
3.1 Translations of OpenMP code into Boogie code 24

3.1.1 Examples . 33

4 Implementation 48
4.1 How it works . 48
4.2 Methods . 52

xi

4.3 Invariant Generation . 54
4.4 Limitations and Problems . 58

4.4.1 Limitations . 58
4.4.2 Problems . 58

5 Tests 60
5.1 How to execute the Tests? . 60
5.2 Tool Tests . 62
5.3 Verification Test . 64

5.3.1 Verification Tests using loopUnroll 64
5.3.2 Tests with invariants . 65

6 Results 66
6.1 SVDR Tool . 66
6.2 Example . 66

7 Conclusion 71
7.1 Knowledge acquired . 71
7.2 Future Work . 72

bibliography 75

xii

List of Figures

2.1 Data race example . 12
2.2 Result with Houdini . 23

4.1 While and If Example . 49
4.2 Structured Statement of Fig:4.1 . 50
4.3 Class Diagram . 53
4.4 Boogie Verification . 57

5.1 How to run the first phase . 60
5.2 How to run the second phase . 61
5.3 Run loopUnroll . 64
5.4 Run the code with invariant . 65

6.1 Example Test 1 . 67
6.2 Verification of the Test 1 . 70

xiii

Chapter 1

Introduction

1.1 Motivation

Increasingly, programmers use multi-core processors to develop code with multiple
threads, i.e. parallel programs. There are some tools that support parallelism like Intel
Parallel Lint 2.4.1 or Intel Thread checker 2.4.2 and some parallel programming language
like OpenMP [23].

The problem with parallelism is that often accesses (read and/or write) simultaneously
can lead to errors and bugs that no programmer likes to face. This bugs normally are data
races, a very a sensitive issue that concerns the programmer.

To understand better what a data race is we give a brief definition that a data race is
when two or more threads in a single process access the same memory location concur-
rently and one or more of the accesses are for writing without proper synchronization and
they can lead to non-determinism. More details on data races present in Chapter 2.1.3.

The main reason that data races are such a big problem its because we can not always
figure out why or where they occurred. Our tool tries to help the user by doing a static
verification of the absence of data races in OpenMP.

The purpose of the tool is to transform the OpenMP code into Boogie and check/detect
the races in OpenMP. Before explaining how the tool works it is important to give a short
definition of what OpenMP 2.1.

OpenMP (Open Multi-Processing) 2.1 is an API used for programming (C, Fortran,
C++) multi-processors with shared memory at multi-platforms on almost all Operating
Systems and processor architectures.

Boogie [2] [17] is an intermediate verification language, designed as a layer on which
it is possible build other verifiers for other languages.

Now that the definitions of OpenMP and Boogie are a bit clear we are going to explain
in general how does the tool works and what it does.

The aim of the tool is to translate OpenMP code into Boogie code and verify if there
exists data races, so we can divide our tool in two parts: first one is the translations of

1

Chapter 1. Introduction 2

OpenMP into Boogie and the second one is the verification of the absence of data races in
the Boogie code, i.e., the input file. The first part was not handled by the tool, so the way to
translate Boogie code from OpenMP is manually. In principle, this could be automated via
the construction of a class that analyze the OpenMP language and translate it to Boogie.
The second part is the tool that we implemented. The tool receives as input Boogie code
and transforms it into code with the capacity to detect data races when checked by the
Boogie Verifier. To make the tool work we use invariants and to test them we decided
to use Houdini [2.2]. We explain in more detail how we used Houdini and Invariants in
Chapters 2 and 5.

To make sure that the tool was working properly, we did some tests as described in
Chapter 5 and we showed some of the results of these tests. That way it is easy to visualize
what the tool does and how it behaves.

Although the tool does what it is supposed to do, like some other tool it has some
limitations that need to be considered for it to work the best way possible.

We tried to build a tool that was efficient and good enough to handle solid examples,
and that fulfills its purpose in the most advantageous manner for the user.

The rest of the report explains in detail what we have done and how we built the static
verifier of Data races in OpenMP (SVDR).

1.2 Contributions

The main contributions of this work are:

• Static verification of the absence of data races in a specific programming language;

• Use of a sequential language to achieve Race detection for a parallel language;

• Algorithm for data race detection on a sequential language;

1.3 Document Structure

This report is divided into seven chapters.

• Chapter 1 presents a vision of work that includes the introduction / motivation,
objectives and structure of the document.

• Chapter 2 is dedicated to the related work where we describe OpenMP [23], Boogie
[17], Static and Dynamic Analysis and Houdini. In the two first approaches we
discuss the respective definitions, the programming syntax, some examples and
some definitions and examples of data race (this relate to the OpenMP [23] topic).

Chapter 1. Introduction 3

• Chapter 3 is about the translation of OpenMP into Boogie. We explain how we
translate from simple OpenMP code into Boogie code with the purpose of finding
data races and we provide some examples of that type of translation.

• Chapter 4 is the Implementation chapter. In this one we explain how we imple-
mented the tool and what limitations has.

• Chapter 5 this is the Test chapter. We show how we tested the tool and how it is
supposed to be used.

• Chapter 6 is dedicated to the tool results. We show some input and output results
using the tool.

• Chapter 7 is the Conclusion and Discussion chapter where we discuss what was
the purpose of this work and what can be done in the Future.

Chapter 2

Related Work

2.1 OpenMP

2.1.1 What is OpenMP?

OpenMP (Open Multi-Processing) [10, 23, 29, 30] is an API used for programming
(C, Fortran, C++) multi-processors with shared memory at multi-platforms on almost all
Operating Systems and processor architectures. It is a simple, portable, scalable tool for
developing parallel applications for platforms from simple PCs to supercomputers.

OpenMP is a multi-threaded application that starts with a single thread (the master
thread). As the program runs and when the master thread finds some parallel block, it
creates several threads. These threads will execute blocks of code in parallel. When the
parallel block ends the threads join the master thread which continues until the program
ends.

It is usual that each thread runs independently in each parallel region. Using OpenMP
it’s possible to achieve data parallelism (simultaneous execution of multiple cores that
have the same function using a data set) and task parallelism (simultaneous execution of
multiple cores that have different functions using the same or different data set).

The threads are distributed according to the processors and the performance of the
machine among other factors. The OpenMP functions are all in the header file (“omp.h”
in C / C++).

2.1.2 Features of OpenMP [10, 22, 29, 23]

The following structure is based on Wikipedia [28].

• Data sharing attribute clauses

– shared: All the threads in a team have access to the variables in the variable-
list, i.e, all variables in that list are shared by the threads.

4

Chapter 2. Related Work 5

1 #pragma omp parallel for shared(variable-list))
2 block of code
3

– private: The variables in the variable-list are private to each thread, meaning
that each thread have a copy of the variables in the list.

1 #pragma omp parallel for private(variable-list))
2 block of code
3

• Synchronization clauses

– critical: A thread waits at the beginning of the critical region until no other
thread is running in that critical region with the same name, i.e, only one
thread at a time can execute the block of code.

The name is optional and is used to identify the critical region.

1 #pragma omp critical [(name)]
2 block of code
3

– atomic: A specific memory location is updated atomically (no other thread
can access the location during the execution of the event). It is used to update
the memory (write, or read-modify-write) of the variables and counters.

1 #pragma omp atomic
2 expression statement
3

– barrier: Each thread waits until all the other threads have reached the barrier,
where all of the threads synchronize. After the barrier each thread executes
the statement in parallel.

1 #pragma omp barrier
2

Chapter 2. Related Work 6

• Scheduling clauses

– schedule (type, chunk): The scheduling algorithm for the loop can be con-
trolled. The most important types of scheduling are:

∗ static: each thread decides what piece/chunk of the loop they will process.

1 #pragma omp for schedule(static)
2 block of code
3

∗ dynamic: there is no order in which the threads are assigned to the differ-
ent items of the loop.

1 #pragma omp for schedule(dynamic)
2 block of code
3

• Reduction

– reduction(operator | intrinsic : list): Each thread has a local copy of the vari-
able, but the values of local copies will be reduced on a global variable.

• Others

– omp for: divides loop iterations between the threads.

1 #pragma omp for
2 for-loop block of code
3

– sections: defines which sections of code will run in parallel.

– master: code block will be executed by the thread master only.

1 #pragma omp master
2 block of code
3

Chapter 2. Related Work 7

Examples

• This is a simple Hello World [10, 22] piece of code with threads. It has been
adapted from the tutorial [29]. The result will be the string and the number of the
thread. The barrier directive causes threads encountering the barrier to wait until all
the other threads in the same team (process) have encountered the barrier. In this
case we use the barrier so that the last print will appear always last and not in the
middle of the other prints. In this piece of code the private keyword specifies that
th id is private (each thread has their own copy of it) which ensures that the last line
is printed only once [20].

1

2 int main (int argc, char *argv[]) {
3 int th_id, nthreads;
4 #pragma omp parallel private(th_id){
5

6 // this gives the unique ID of a thread
7 th_id = omp_get_thread_num();
8 printf("Hello World from thread %d\n", th_id);
9 #pragma omp barrier

10 if (th_id == 0) {
11 nthreads = omp_get_num_threads();
12 printf("There are %d threads\n",nthreads);
13 }
14 }
15 return 0;
16 }

• This example shows simple for loops containing print statements. It has been
adapted from the tutorial [29]. It uses schedule static [22, 29] because each thread
independently decides which chunk of the loop they will process, and dynamic
means there is no predictable order in which the loop items are assigned to different
threads [20].

In this example the output result for the static will be the “0,1,2,3,4,5,6,7,8,9.” and
for the dynamic will be in a random order, depending on the order of the threads.

Chapter 2. Related Work 8

1 #pragma omp for schedule(static)
2 int n;
3 for(n=0; n<10; n++)
4 printf(" %d", n);
5 printf(".\n")
6

7

8 #pragma omp for schedule(dynamic)
9 int n;

10 for(n=0; n<10; n++)
11 printf(" %d", n);
12 printf(".\n");

• This example shows a simple loop where b is incremented with a. It is specified
that a is private (each thread has its own copy of it) and that b is shared (each thread
accesses the same variable). In this case the atomic [22, 29] variable (only one
thread may access it simultaneously), would negate the advantages of parallelism
[20].

1 int main(int argc, char *argv[]) {
2 int a, b=0;
3 #pragma omp parallel for private(a) shared(b)
4 for(a=0; a<50; ++a)
5 #pragma omp atomic
6 b += a;
7 return b;
8 }

• This example shows a simple parallel loop which stores some values in an array.
Parallel [22, 29] for is used to divide loop iterations between the spawned threads
[20].

1

2 int main(int argc, char *argv[]) {
3 int i, a[10];
4 #pragma omp parallel for
5 for (i = 0; i < 10; i++)
6 a[i] = 3 * i;
7 return i ;
8 }

Chapter 2. Related Work 9

2.1.3 Data Races
What is a Data Race?

A data race [1] is when two or more threads in a single process access the same
memory location concurrently and one or more of the accesses is for writing without
proper synchronization (no lock controls the accesses to the memory).

When the conditions described above are satisfied and the order of accesses is non-
deterministic, the result may be different each time the program is run.

It is important to have in mind this table of when a data race occurs:

Data race?
Read Read No
Read Write Yes
Write Read Yes
Write Write Yes

Why data races are bad?

“Even though most data races are harmless, the harmful ones are at the heart of some
of the worst concurrency bugs. Alas, spotting just the harmful data races in programs is
like finding a needle in a haystack: 76% - 90% of the true data races reported by state-
of-the- art race detectors turn out to be harmless.” This paragraph is taken from [15] and
it is a small demonstration of the danger of the data races and how bad they can be to a
program.

The simplest way to create a race condition [1, 18] is to write to a shared variable in
a parallel region. In this case, the final value of the variable depends on the order of the
writes. In a parallel execution we cannot guarantee that this is always the last iteration (as
in sequential execution).

Another cause of race conditions [10, 15] is the loop carried data dependency in par-
allel loop, which is the example of OpenMP where the loops are parallel. Usually this
occurs when an array is indexed improperly. For example, if we have an array “a” and a
loop counter “x” the value of “a[x]” is different in every loop iteration.

Example of a Data Race

• This is a simple example of the result of a matrix multiplication, in which we mul-
tiply two matrices and get a new one.

The structure of the code was adapted from [10], has been optimized and the part
that create the matrix was changed.

Chapter 2. Related Work 10

1 Matrix Multiplication
2

3 #include <omp.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6

7 int main (int argc, char *argv[]){
8 int i, j, k;
9 double sum;

10 double a[5][5], /* matrix A to be multiplied */
11 b[5][5], /* matrix B to be multiplied */
12 c[5][5]; /* result matrix C */
13 /*** Spawn a parallel region explicitly scoping all

variables ***/
14

15 #pragma omp parallel shared(a,b,c) private(i,j,k,sum)
16 {
17 printf("Initializing matrices...\n");
18 /*** Initialize matrices ***/
19 #pragma omp for schedule (static)
20 for (i=0; i<5; i++)
21 for (j=0; j<5; j++)
22 a[i][j]= 1;
23

24 #pragma omp for schedule (static)
25 for (i=0; i<3; i++)
26 for (j=0; j<3; j++)
27 b[i][j]= 2;
28

29 #pragma omp for schedule (static)
30 for (i=0; i<5; i++)
31 for (j=0; j<5; j++)
32 c[i][j]= 0;
33

34 #pragma omp for
35 for (i=0; i<5; i++) {
36 for(j=0; j<5; j++) {
37 for (k=0; k<5; k++) {
38 sum =sum+ a[i][k] * b[k][j];
39 }
40 c[i][j] = sum;
41 sum=0;
42 }
43 }
44 } /*** End of parallel region ***/

Chapter 2. Related Work 11

45 /*** Print results ***/
46 printf("***\n");
47 printf("Result Matrix:\n");
48 for (i=0; i<5; i++)
49 {
50 for (j=0; j<5; j++)
51 printf("%6.2f ", c[i][j]);
52 printf("\n");
53 }
54 printf("***\n");
55 printf ("Done.\n");
56 }

A data dependency exists if the same element of an array is written on one loop iteration
and read on another. In the example before (Matrix Multiplication) if we change line
15 in the code to #pragma ompallel shared(a,b,c) private(i,j,k) what would happen is
a data race because the variable sum is not in private (the values of the result matrix will
be different like in the figure 2.1).

The motive that sum needs to be private it is because each thread will have a local
copy of sum and use it as a temporary variable.

Chapter 2. Related Work 12

Result Matrix:
6.00 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
10.0 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
**
Done.
**
Result Matrix:
6.00 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
6.00 6.00 6.00 0.00 0.00
**
Done.

Figure 2.1: Data race example

2.2 Boogie

2.2.1 What is Boogie?

Boogie [2, 17] is an intermediate verification language, designed as a layer on which
we can build other verifiers for other languages. There are several verifiers that were
built on this basis such as VDC and the HAVOC verifier for C, and verifiers for Dafny,
Chalice, Spec# [19] and GPUVerify [3].

The previous version of the language was called BoogiePL [6] and now is known as
Boogie (version 2).

The tool has the same name as the language (Boogie). It accepts programs written in
the language as input, optionally deducts some invariants of the program and generates
verification conditions that are passed to an SMT solver which by default is Z3.

Boogie’s Architecture

The following section in based on the paper “Boogie: A modular reusable verifier for
object-oriented programs” [2], and explains Boogie’s Architecture.

1. Design-Time Feedback

Boogie (along with the Spec# compiler) together with Microsoft Visual Studio
[17] are integrated to provide feedback at design time in the form of red underlines
that give emphasis not only to pre-condition violations but also to syntax errors.

Chapter 2. Related Work 13

2. Distinct Proof Obligation Generation and Verification Phases.

The Boogie [2, 17] pipeline has intermediate representations based on Boogie,
adapted to express proof obligations and assumptions in the language. Boogie plays
a key role in the separation of generation of proof obligations of semantic encoding
of the source program and proofs of such obligations. This separation has been
instrumental in the simultaneous development of the verification methodology and
object-oriented program verification technology core.

3. Abstract Interpretation and Verification Condition Generation.

Boogie [2, 17] uses abstract interpretation to perform loop-invariant inference and
to generate verification conditions that are passed to an automatic theorem prover.
This combination allows Boogie to utilize both the precision of verification condi-
tion generation (that is necessarily lost in an abstraction) and the inductive invariant
inference of abstract interpretation (that simply cannot be obtained with a concrete
model).

2.2.2 Boogie Syntax

This section gives a brief overview of the basics features of Boogie 2 and is base on
the manual/tutorial [17].

Boogie Declarations [2, 6, 17]

• Type declarations correspond to type constructors:

– type X; Declares a type that represents something.

• Symbolic constants correspond to symbolic constants:

– cons x: X; Says that x is a fixed value of type X.

• Function declarations induce mathematical functions:

– fuction func(X) return (int); Declares a function that returns the result
of func that uses a variable of type X.

• Axiom declarations used to assume functions and properties of constants.

– axiom func(x)==y; says that func returns y for x.

• Global variable declarations:

– var y: X; introduces a variable y that holds an element of type X.

Chapter 2. Related Work 14

• A procedure declaration has pre- and post-conditions that specify a set of condi-
tions about what the procedure does. The modifies is to declare that the global
variable z can be modified during the execution of the procedure.

1 procedure Y(n:X);
2 modifies z;
3 ensures z==n;

• Implementation declaration: gives a set of execution trace of the body of the code.
The implementation is correct if the set is a subset of the procedure.

1 implementation Y(n:X){
2 z:=n;
3 }

Boogie Statements [2, 6, 17]

• Assume statement:

– assume E; Given an expression, E, that should hold, the checker will accept
without verification that E is true. If the expression E is not true the program
ends without giving any error message to the user. The result of the assume
statement E is Boolean.

• Assert statement:

– assert E; Given an expression, E, that should hold, the checker will try to
prove that it is true. The result of the assert statement is Boolean.

Comparing the assume with the assert we can conclude that the assert will
always warn about an error in the logic of the program, but the assume is simply
considered to hold by the verifier.

• Goto statement:

– goto A,B,C; transfers control flow to one of the labels. The choice of label is
arbitrary. The list of labels (has to be of minimum length 2) in the goto must
be in the programming code.

• Break statement:

– break ; transfers control flow to the point immediately following the end of
the code.

Chapter 2. Related Work 15

• If statement:

– there are two kinds of if statement: the boolean one and the non-deterministic
one.

• While statement:

– Boogie supports normal while loops and loop invariants as well.

• Call statement:

– call P(); calls another procedure in this code.

Examples

In the following section we show some Boogie [17] examples.

• This example demonstrates how assert and assume work. In this first piece of
code it happens to be the case that the values of x and y are equal, so the assume
is true and no errors occur.

1 procedure F() returns (r: int)
2 {
3 var x:int;
4 var y:int;
5 assume(x==y);
6 x:=4;
7 y:=4;
8 if(x==y+1) {
9 assert(false);

10 }
11 }

• In the second example the values x and y are different so the assume is not true.
What one would expect would be a error, because the if condition is true and
assert false is always false. In this case what happens is that the assume affect
the control flow of the program, making the conditions of the if false that way it
never enter the body of the if.

Chapter 2. Related Work 16

1 procedure F() returns (r: int)
2 {
3 var x:int;
4 var y:int;
5

6 x:=5;
7 y:=4;
8 assume(x==y);
9 if(x==y+1)

10 {
11 assert(false);
12 }
13 }

• Example of an axiom. The axiom declares that the constant will not be greater than
10. It is useful because as explained in the definition 2.2.2, the axiom assigns a
property to a constant that will always be true.

1 const Z: int;
2 axiom 10>=Z;
3 procedure F() returns (r: int)
4 {
5 var n:int;
6 n:=0;
7 while(n<Z){
8

9 n:=n+1;
10 r:=n+5;
11 }
12 }

• Example of how modifies work (see procedure declaration: 2.2.2).

1 /*** Example of modifies ***/
2 var a,b:int;
3 procedure F(n: int) returns (r: int)
4 modifies a,b;
5 {
6 b:=0;
7 if (10 < n) {
8 r := n - 10;

Chapter 2. Related Work 17

9 b:=b+3;
10 }
11 else {
12 a:=a+1;
13 }
14 }

1 /*** This will give an error because b has been modified
but not declared in modifies. ***/

2

3 var a,b:int;
4 procedure F(n: int) returns (r: int)
5 modifies a;
6 {
7 b:=0;
8 if (10 < n) {
9 r := n - 10;

10 b:=b+3;
11 }
12 else {
13 a:=a+1;
14 }
15 }

1 /*** This does not give an error because the variable a was
not changed, i.e, it does not matter what variables are
added to the modifies (these variables must have been
declared in the procedure) because the program will not
complain if they are not changed in the procedure. ***/

2 var a,b:int;
3 procedure F(n: int) returns (r: int)
4 modifies a,b;
5 {
6 b:=0;
7 if (10 < n) {
8 r := n - 10;
9 b:=b+3;

10 }
11

12 }

Chapter 2. Related Work 18

• This is a simple Boogie example of a while and if rewritten using goto and
assume. The best way to understand this transformation is to think of the control
flow graph. In this example the goto function works like an if and the assume
works like the if condition.

1 /*** while and if ***/
2 procedure F() returns (){
3 var n:int;
4 n:=0;
5 while(n<10){
6 if(n==5){
7 }
8 n:=n+1;
9 }

10 }

1 /*** goto and assume ***/
2 procedure F() returns (){
3 var n:int;
4 n:=0;
5 goto Start;
6

7 Start:
8 goto A,exit;
9

10 A:
11 assume n<10;
12 goto B,C;
13

14 B:
15 assume n==5;
16 goto exit;
17

18 C:
19 assume n!=5;
20 n:=n+1;
21 goto A, exit;
22

23 exit:
24

25

26 }

Chapter 2. Related Work 19

• This example calculates the sum of two values. In Boogie there is no for loop so
we use while (it has the same pattern as the C while).

1

2 /***Boogie program ***/
3 procedure F() returns (sum:int){
4

5 var y,x:int;
6 y:=0;
7 x:=0;
8 while(y<25){
9 while(x<80){

10 sum:=x+y;
11 x:=x+1;
12 }
13 y:=y+1;
14 }
15 }

• This example is just a while and an if.

1

2 /***Boogie program ***/
3 procedure F() returns (r: int){
4 var n:int;
5 n:=0;
6 while(n<10){
7 if(n<5){
8 r:=3*n;
9 }

10 n:=n+1;
11 }
12 }

2.3 Program Analysis

2.3.1 Static Analysis

Static analysis [26] [27] is a type of analysis of software (testing and evaluation of
software) that examines the code without running the software. It is widely used in type
systems in programming languages and security-critical software systems.

Chapter 2. Related Work 20

2.3.2 Dynamic Analysis

Dynamic analysis is the opposite of static analysis, i.e, it is testing and evaluation a
software during run time.

2.3.3 Static Analysis versus Dynamic Analysis [11]

Dynamic [2.3.2] and static [2.3.1] analysis [11] are very useful in the detection of soft-
ware problems that cause memory and threading errors. The two approaches complement
each other because by themselves they can not find all the errors.

The major advantage of dynamic analysis [2.3.2] is to reveal vulnerabilities or prob-
lems too complex to be unravelled by static analysis. Despite its goal being debugging,
dynamic analysis can also play a role in ensuring safety.

The main advantage of static analysis [2.3.1] is to examine the values of all variables
and paths of the execution, even those that were not invoked during execution. Static
analysis can reveal errors that may not manifest for a long period of time. This aspect is
very important in software security.

2.4 Tools - Dynamic and Static Analysis for OpenMP

2.4.1 Intel Parallel Lint

Intel Parallel Lint is part of Intel Parallel Composer [12] that aims to detect problems
in OpenMP through static analysis of source code. The results of Parallel Lint [13] are
demonstrated, additionally, in the output of the compiler.

Parallel Lint processes the source file individually producing a pseudo object module
(that way it avoids destroying the real object modules).

The results in Parallel Lint are produced in the linking step allowing it to find errors in
procedures and file boundaries. This means that this tool must be invoke with the compiler
and not in the linker directly.

Parallel lint and OpenMP.

The tool detects the following problems related to OpenMP:

• Creation of dynamically nested parallel regions;

• Improper use of variables;

• improper use of threadprivate variables.

Even if it complies with all specifications, the OpenMP program is not always correct.
In such cases the Parallel Lint helps diagnose the following:

Chapter 2. Related Work 21

• Some types of deadlock;

• Some data races on loop iterations;

• Some side effects when synchronization is not appropriate.

2.4.2 Intel Thread checker

Intel Thread Checker is a tool with the purpose of observing the execution of a pro-
gram, giving to the user the information about possible places where a problem can occur.

The problems that can occur are mostly related with the use of threads. An example
of such problems is the incorrect use of the threading and synchronization API because
the behavior can be correct in one instance and incorrect in general.

Another problem can be the lack of synchronization and this problem leads to data
races in most of the cases.

This tool helps the users detect where the problems are so that they can solve them
easily.

2.5 Houdini

Houdini [9], [16] is a simple, but scalable tool, that validates annotations that satisfy
requirements of a specific program. It receives as input a set of annotations and returns as
output a consistent subset of the input.

It is configurable to allow the user to enter invariants) using a simple pattern (i.e the
arguments are not null); it is scalable and it is transparent since users can inspect the set
of annotations that were derived.

2.5.1 How it works?

The input and candidate invariants are provided to Houdini [8]. After analyzing the
invariants given as input, Houdini will result in a proper subset of invariants, that is, will
give as output invariant satisfying the program.

The worst case in Houdini is when the output set is empty, i.e, none of the input
candidate invariants is satisfied the program; and the best case is when all of the input
candidate invariants are satisfied by the program, i.e, all the candidates are invariants of
the program.

Example

This is just a simple example to demonstrate how Houdini works. In this case we
add some true and false invariants by hand to see what would happen when we run with
Houdini.

Chapter 2. Related Work 22

As it is possible to verify in the code below, eight invariants were inserted in the code
which will be validated by Houdini. Each invariant is of the type bx ==> expr, and each
bx is a constant with a special attribute: the {:existential true} that tells Boogie that this
invariants must be treated in a special way, i.e, these invariants are used by Houdini for
validation.

In Figure 2.2 it is possible to see that the invariants that are not true in the program
have been eliminated one by one and the the program will be verified normally with the
remaining invariants.

1 procedure foo() {
2

3 var i, j : int;
4

5 i := 0;
6 j := 2;
7

8 while(i < 100)
9 invariant b1 ==> i <= 100;

10 invariant b2 ==> i >= 0;
11 invariant b3 ==> j <= 100;
12 invariant b4 ==> j >= 0;
13 invariant b5 ==> j >= 2;
14 invariant b6 ==> j <= 202;
15 invariant b7 ==> j == 2*i;
16 invariant b8 ==> j == 2*i + 2;
17 {
18 i := i + 1;
19 j := j + 2;
20 }
21

22 assert j == 2*i + 2;
23

24 }
25

26 const {:existential true} b1 : bool;
27 const {:existential true} b2 : bool;
28 const {:existential true} b3: bool;
29 const {:existential true} b4: bool;
30 const {:existential true} b5: bool;
31 const {:existential true} b6: bool;
32 const {:existential true} b7: bool;
33 const {:existential true} b8: bool;

Chapter 2. Related Work 23

Figure 2.2: Result with Houdini

Chapter 3

Analysis

3.1 Translations of OpenMP code into Boogie code

In Chapter 2 we defined what OpenMP (section 2.1) and Boogie (section 2.2) are,
showed some examples of Boogie. For any questions questions that may arise regarding
to the syntax, simply check the sections: OpenMP (section 2.1.2) and Boogie (section
2.2.2).

This section is about the technical part of the problem, the translation of OpenMP
programs into Boogie with the purpose of finding data races and we are going to show
the translation step by step.

The first thing to do is to declare an empty procedure, given that these examples of
OpenMP are based on C so the way we do it is equal to declaring a function in C:

1 void main() {
2

3 }

We translate the above to a procedure in Boogie:

1 procedure main() returns (){
2 }
3

After this step, we have to fill the contents of the procedure. Let us start with the OpenMP
variable declarations:

1 void main() {
2 int i;
3 int j;
4 int sum[20];
5 }

24

Chapter 3. Analysis 25

. It is important to note that there is no array type in Boogie.
For this reason we replace arrays by maps. The difference between the two is that

maps do not have size limit and, hence, cannot overflow.

1 procedure main() returns (){
2

3 var i:int;
4 var j:int;
5 var sum: [int] int; //initialization of a map in Boogie
6 }

Finally, we consider an OpenMP program with a loop :

1 void main() {
2 int i;
3 int j;
4 int sum[20];
5 j=0;
6

7 for(i=0;i<10;i++){
8 sum[i]=j;
9 j++;

10 }
11 }

And translate into Boogie
It is important to note that there is no for loop in Boogie so we use a while loop

instead.

1 procedure main() returns (){
2 var i:int;
3 var j:int;
4 var sum: [int] int;
5 j:=0;
6 i:=0;
7

8 while(i<10){
9 sum[i]:=j;

10 j:=j+1;
11 i:=i+1;
12 }
13 }

Chapter 3. Analysis 26

The next step is to add parallelism to OpenMP, and translate that parallelism into
Boogie somehow, since Boogie is a sequential language.

Before we give the details of the translation, it is important to explain how this trans-
lation is made and why it is made this way.

1 //OpenMP code
2 void main() {
3 int i;
4 int j;
5 int sum[20];
6 j=0;
7

8 #pragma parallel for
9 for(i=0;i<10;i++){

10 sum[i]=j;
11 j++;
12 }
13 }

To get started it is necessary to realize that Boogie is a tool and language that computes
sequentially and not in parallel as OpenMP. Being sequential, there is no reason to fear
for data races, but in OpenMP it can happen. We have to somehow reflect this in Boogie.

It is important to keep in mind that data races occur on array elements and, hence, we
need to track which accesses have occurred. Moreover as it is different loop iterations
that are executed by different threads, we need to see if the accesses from different loop
iterations are to the same array element.

The idea is to save locations which were accessed in the previous iterations and ac-
cesses that occur in the current iteration. This way it is possible to detect: that a past
iteration accesses the same array elements as the present iteration (data race).

To save this information, we introduce two groups of variables prev and cur. Intu-
itively the prev group will help track the accesses from the previous iterations and the cur
group will help track the accesses from the current iteration. Both of the groups consist of
a boolean (prev write sum and cur write sum variable) and an int (prev off write sum
and cur off write sum) in this specific case (in other examples the sum will be substituted
by the name of the specifics arrays). We use the int to save current and previous off-
sets and the boolean to indicate if there exists a current and a previous one. In the
case prev write sum is false, the value in prev off write sum is meaningless, otherwise
the value is significant. The same goes for the cur write sum, i.e., it can be concluded
that the boolean variables are the most important in these groups.

Now that the variables are explained we will add them to the Boogie code:

Chapter 3. Analysis 27

1

2 //added variables related to the previous and the current
3 var prev_write_sum: bool;
4 var prev_off_write_sum: int;
5 var cur_write_sum: bool;
6 var cur_off_write_sum: int;
7

8 procedure main() returns ()
9 modifies prev_write_sum;

10 modifies prev_off_write_sum;
11 modifies cur_write_sum;
12 modifies cur_off_write_sum;
13 {
14 var i:int;
15 var j:int;
16 var sum: [int] int;
17

18 i:=0;
19 j:=0;
20

21 //initialize the prev_write_sum to false.
22 prev_write_sum:=false;
23

24 while(i<10){
25 sum[i]:=j;
26 j:=j+1;
27 i:=i+1;
28 }
29 }

We note that the variable prev write sum is initialized to false because at the begin-
ning of the program there has not occurred any previous access. We now need to know
when to update the variables. To do that we use an if condition, not the common one, but
a non-deterministic one. Before we explain the rest of the idea it is important to explain
what a non-deterministic if is. According to the definition in [7] non-determinism is
“A property of a computation which may have more than one result”, and in this specific
case it means that there is no way to know if we go in the if or not. The reason that a
non-deterministic if is used in this case is because there in no need to save all the current
values and change the previous ones and because when considering all possible program
executions one will track every possible assignment. The non-deterministic if are used
in this way:

Chapter 3. Analysis 28

1 var prev_write_sum: bool;
2 var prev_off_write_sum: int;
3 var cur_write_sum: bool;
4 var cur_off_write_sum: int;
5

6 procedure main() returns ()
7 modifies prev_write_sum;
8 modifies prev_off_write_sum;
9 modifies cur_write_sum;

10 modifies cur_off_write_sum;
11 {
12 var i:int;
13 var j:int;
14 var sum: [int] int;
15

16 i:=0;
17 j:=0;
18 prev_write_sum:=false;
19

20 while(i<10){
21 cur_write_sum:=false;
22 sum[i]:=j;
23

24 //add the non-determinism if
25 if(*){
26 cur_write_sum:=true;
27 cur_off_write_sum:=i;
28 }
29 j:=j+1;
30 i:=i+1;
31

32 //add the non-determinism if
33 if(*){
34 prev_off_write_sum:=cur_off_write_sum;
35 prev_write_sum:=cur_write_sum;
36 }
37 }
38 }

The variable cur is initialized to false at the beginning of the iteration because for each
iteration it needs to be false again, since we use cur to track the accesses from the
current iteration only.

In each if the current or the previous variable is modified. In the first one, we set
the value of cur write sum to true and save the position at which the array is accessed

Chapter 3. Analysis 29

in cur off write sum, and in the second one we just set the previous variables equal to
the current variable, because at the end of the loop what was current will not be in the
next iteration. Before the non-deterministic if we add an assertion. The reason why we
introduce an assertion, is because we have to determine when the prev write sum is true
then the prev off write sum needs to be different from the current, if it is not then it means
we are accessing the same position in the array as in a previous iteration and hence have
a data race. And since we use an assertion it is necessary to add an invariant to validate
the assertion. This is what the translation looks in the end.

1 var prev_write_sum: bool;
2 var prev_off_write_sum: int;
3 var cur_write_sum: bool;
4 var cur_off_write_sum: int;
5

6 procedure main() returns ()
7 modifies prev_write_sum;
8 modifies prev_off_write_sum;
9 modifies cur_write_sum;

10 modifies cur_off_write_sum;
11 {
12 var i:int;
13 var j:int;
14 var sum: [int] int;
15

16 i:=0;
17 j:=0;
18 prev_write_sum:=false;
19

20 while(i<10)
21 //add the invariant
22 invariant(prev_write_sum==>prev_off_write_sum<i);
23 {
24 //Initialization of cur_off to false
25 cur_write_sum:=false;
26

27 sum[i]:=j;
28 //add the assertion
29 assert(prev_write_sum==>prev_off_write_sum!=i);
30

31 //add the non-determinism if
32 if(*){
33 cur_write_sum:=true;
34 cur_off_write_sum:=i;
35 }
36 j:=j+1;
37 i:=i+1;

Chapter 3. Analysis 30

38

39 //add the non-determinism if
40 if(*){
41 prev_off_write_sum:=cur_off_write_sum;
42 prev_write_sum:=cur_write_sum;
43 }
44 }

It is possible to optimize the translation by creating multiple procedures, we will use
these in later examples. We create procedures for the non-deterministic ifs and for
the assert. For the main procedure we analyze the auxiliary ones and it is necessary
to insert {:inline 1} into each auxiliary procedure. This attribute will force Boogie to
analyze the code of the other procedures, something he would not do naturally. This way
the code is much more readable and easier to understand.

1 var prev_write_sum: bool;
2 var prev_off_write_sum: int;
3 var cur_write_sum: bool;
4 var cur_off_write_sum: int;
5

6 procedure main() returns ()
7 requires prev_off_write_sum >=0 && prev_off_write_sum<10;
8 requires cur_off_write_sum >=0 && cur_off_write_sum<10;
9 modifies prev_write_sum;

10 modifies prev_off_write_sum;
11 modifies cur_write_sum;
12 modifies cur_off_write_sum;
13 {
14 var i:int;
15 var j:int;
16 var sum: [int] int;
17

18 i:=0;
19 j:=0;
20 prev_write_sum:=false;
21

22 while(i<10)
23 //add the invariant
24 invariant(prev_write_sum==>prev_off_write_sum<i);
25 {
26 //Initialization of cur_off_write_sum to false
27 cur_write_sum:=false;
28 sum[i]:=j;
29

30 //add the assertion

Chapter 3. Analysis 31

31 call Checker_Write_sum(i);
32

33 //call the procedure of the non-determinist if
34 //for the current
35 call Log_Write_sum(i);
36

37 j:=j+1;
38 i:=i+1;
39

40 //call the procedure of the non-determinist if
41 //for the previous
42 call Update_Prev_Write_sum();
43

44 }
45 }
46

47 procedure {:inline 1} Checker_Write_sum(i:int)
48 {
49 assert(prev_write_sum==>prev_off_write_sum!=i);
50 }
51

52 procedure {:inline 1} Log_Write_sum(i:int)
53 modifies cur_write_sum;
54 modifies cur_off_write_sum;
55 {
56 if(*){
57 cur_write_sum:=true;
58 cur_off_write_sum:=i;
59 }
60 }
61

62 procedure {:inline 1} Update_Prev_Write_sum()
63 modifies prev_off_write_sum;
64 modifies prev_write_sum;
65 modifies cur_off_write_sum;
66 modifies cur_write_sum;
67 {
68 if(*){
69 prev_off_write_sum:=cur_off_write_sum;
70 prev_write_sum:=cur_write_sum;
71 }
72 }

After analysing and doing a few translations it is clear that exists a procedure for all
parallel for-loops (as is possible to observe in the examples) and here it is:

Chapter 3. Analysis 32

1 //OpenMP pseudo-code
2 main(){
3 #pragma parallel for
4 for loop{
5 read;
6 write;
7 }
8 }

1 //Boogie pseudo-code
2 main(){
3 create variables(boolean prev and cur/
4 int prev_off and cur-off)
5 prev_write_sum:=false;
6 prev_read_sum:=false;
7

8 while(e)
9

10 invariant(...);{
11 cur_write_sum:=false;
12 cur_read_sum:=false;
13

14 write;
15 call Checker_Write_sum(e);
16 call Log_Write_sum(e);
17

18 read;
19 call Checker_Read_sum(e);
20 call Log_Read_sum(e);
21

22 increment the loop counter;
23

24 call Update_Prev_Write_sum();
25 call Update_Prev_Read_sum();
26 }
27 }

Chapter 3. Analysis 33

The table below show us the translation used in the project, meaning that this is the
translation of simple Boogie code into Boogie code with the procedure explain previously.

Stmt Translate(Stmt)
x:=e; x:=e;
x:=A[e]; x:=A[e];

call Checker Write A(e);
call Log Write A(e);

A[e]:=x; A[e]:=x;
call Checker Read A(e);
call Log Read A(e);

Parallel prev read A:=false;
while(e){ prev write A:=false;

S; while(e){
} cur read A:=false;

cur write A:=false;
translate(S);
}
call Update Prev Read A();
call Update Prev Write A();

while(e){; while(e){
S; translate(e);
} }
if(s){ if(s){;

S; translate(S);
} }
else{ else{

F; translate(F);
} }

It is important to mention that for each reading and/or writing is necessary to write the
non-deterministic if condition, the assert and the invariant.

3.1.1 Examples

In the following examples it is possible to observe the transformation of simple pro-
grams (with and without data races) of OpenMP 2.1 code into Boogie 2.2.

It is important to recall that the procedures used in the first two examples occur in
section 3.1.

Error Example: This example is similar to the one explained above, a simple write to
an array, but with an error (the index of the array is always the same).

Chapter 3. Analysis 34

1 //OpenMP code
2 void main(int argc, char *argv[]) {
3 int sum[100];
4 int x = foo();
5 #pragma omp parallel for
6 for(i=0; i<10; i++){
7 sum[0]=x;
8 }
9 }

In this example we applied the procedure explained in the beginning of Section 3.1. We
translate the OpenMP code into Boogie code and then we add the procedures referring
to the non-deterministic if (lines 39 and 43). Each if is done in the same way as the
ones explained above. In this case the position that we save in cur off write sum (line
31) is 0 because that is the position accessed in the array. After we insert the if we add
the procedure of the assert (line 36) and the invariant (line 15). Both of them are
done using the same structure as the one explained in the beginning of Section 3.1.

1

2 //Boogie Code
3 var prev_write_sum: bool;
4 var prev_off_write_sum: int;
5 var cur_write_sum: bool;
6 var cur_off_write_sum: int;
7

8 procedure main() returns ()
9

10 requires prev_off_write_sum >=0 && prev_off_write_sum<10;
11 requires cur_off_write_sum >=0 && cur_off_write_sum<10;
12 modifies prev_write_sum;
13 modifies prev_off_write_sum;
14 modifies cur_write_sum;
15 modifies cur_off_write_sum;
16 {
17 var i:int;
18 var j:int;
19 var sum: [int] int;
20

21 i:=0;
22 prev_write_sum:=false;
23

24 while(i<10)
25 //add the invariant
26 invariant(prev_write_sum==>prev_off_write_sum==0);

Chapter 3. Analysis 35

27 {
28

29 //Initialization of cur_write_sum to false
30 cur_write_sum:=false;
31 call x:=foo();
32 sum[0]:=x;
33

34 //add the assertion
35 call Checker_Write_sum(0);
36

37 //add the non-deterministic if
38 call Log_Write_sum(0);
39 i:=i+1;
40

41 //add the non-deterministic if
42 call Update_Prev_Write_sum();
43

44 }
45 }

In this example the Boogie verifier will fail in the assert because prev off write sum
will always be the same value (in this case zero), as it possible to observe in the output:

input(19,6): Error BP5001: This assertion might not hold
Execution trace:

input(11,6): anon0
input(14,3): anon5 LoopHead
input(17,9): anon5 LoopBody

Boogie program verifier finished with 0 verified, 1 error

Read Example: This example is a simple addition of some array values to a variable k,
basically what it does is read some specific position in the array and add the value from
that position to the variable k. In this case, no data race occurs, because as it is shown in
table 2.1.3 of Section 2.1.3, just reads do not cause data races.

The way the translation is performed is equal to the one explained in the beginning of
Section 3.1, but in this case the assertion can never fail because there are no writes but
only reads, so is not necessary to put the invariant (line 24) and assert (line 29 and
37) in code.

After all that has been described, it is simple for the reader to note that in this example
we also applied the procedure from 3.1 but in a more covert way (the assert is different
from the procedure example in Section 3.1).

Chapter 3. Analysis 36

1 //openmp program
2 void main(int argc, char *argv[]) {
3 int sum[11];
4 int y;
5 int i;
6 int x=0;
7

8

9 #pragma omp parallel for
10 for(i=0; i<10; i++){
11 x+=sum[i];
12 x+=sum[i+1];
13 }
14 }

1 //boogie program
2

3 var cur_read_sum:bool;
4 var prev_read_sum:bool;
5 var cur_off_read_sum:int;
6 var prev_off_read_sum:int;
7

8 procedure main() returns (r: int)
9

10 modifies prev_read_sum;
11 modifies cur_read_sum;
12 modifies prev_off_read_sum;
13 modifies cur_off_read_sum;
14 {
15 var i:int;
16 var x:int;
17 var sum:[int] int;
18 prev_read_sum:=false;
19 i:=0;
20 x:=0;
21 while(i<10)
22 invariant true;
23 {
24 cur_read_sum:=false;
25

26 x:=x+sum[i];
27 call Checker_Read_sum(i);
28

29 //call the procedure of non-deterministic if related

Chapter 3. Analysis 37

30 //with the current
31 call Log_Read_sum(i);
32

33 x:=x+sum[1+i];
34

35 call Checker_Read_sum(i+1);
36

37 //call the procedure of non-deterministic if related
38 //with the current
39 call Log_Read_sum(i+1);
40

41 i:=i+1;
42

43 //call the procedure of non-determinism if related
44 //with the previous
45 call Update_Prev_Read_sum();
46 }
47 }
48

49 procedure {:inline 1} Checker_Read_sum(i:int)
50 {
51 assert(true);
52 }
53

54 procedure {:inline 1} Log_Read_sum(i:int)
55 modifies cur_read_sum;
56 modifies cur_off_read_sum;
57 {
58 if(*){
59 cur_read_sum:=true;
60 cur_off_read_sum:=i;
61 }
62 }
63

64 procedure {:inline 1} Update_Prev_Read_sum()
65 modifies prev_off_read_sum;
66 modifies prev_read_sum;
67 modifies cur_off_read_sum;
68 modifies cur_read_sum;
69 {
70 if(*){
71 prev_off_read_sum:=cur_off_read_sum;
72 prev_read_sum:=cur_read_sum;
73 }
74 }

Chapter 3. Analysis 38

Reads-Write Example: This is an example with two reads and a single write. In cases
like this one it is necessary to create a set with previous and current for both reading
and for writing, because a write followed by a read may cause data races, but a read
followed by another read cannot. We call these prev off read sum, prev off write sum,
prev read sum, prev write sum, cur off read sum, cur off write sum and cur read sum
and cur write sum (lines 2-9).

In the case when we have reading and writing it is necessary to pay attention and
prevent reading and writing to the same position, because a read and a write cause a data
race. For that, what is done is the assert in reading is related with the writing (line
46 and line 50), and not with the previous read because two reads in a row do not cause
a data race. The same happens in writing, but in this case the assert (lines 56-57) is
related with the reading and the writing, because both two writes in a row or a read and a
write, can cause data races.

Although it is becoming more complicated to see the procedure explained above, it is
once again applied in this example but with a double dose, because a read and write must
be treated differently.

It is important to remember that the prev read sum (line 27) and the prev write sum
(line 28) are initialized outside the loop and the cur read sum (line 40) and cur write sum
(line 41) inside the loop. This happens because we only need to save the previous ones
and because they are going to change depending on the current ones.

The current needs to be reset because at the beginning of each iteration there is no
current yet and we cannot assure that the program will enter in the non-deterministic if
that will update the value and the state of the currents (line 46, 52 and 59).

In this specific case Boogie will verify the program because the reads will never have
the same offsets. If one of the assertions would not hold then Boogie would not
verify the program and who’d give an error message.

1 //OpenMP program
2 void main(int argc, char *argv[]) {
3 int sum[30];
4 int x;
5 int k=0;
6 int j=0;
7 i=0;
8 #pragma omp parallel for
9 for(i=0; i<10; i++){

10 k=sum[x+10];
11 j=sum[x];
12 sum[x]=k+j;
13 }
14 }

Chapter 3. Analysis 39

1 //Boogie program
2 var cur_read_sum:bool;
3 var prev_read_sum:bool;
4 var cur_off_read_sum:int;
5 var prev_off_read_sum:int;
6 var cur_write_sum:bool;
7 var prev_write_sum:bool;
8 var cur_off_write_sum:int;
9 var prev_off_write_sum:int;

10

11 procedure F() returns (r: int)
12

13 modifies cur_read_sum;
14 modifies prev_read_sum;
15 modifies cur_off_read_sum;
16 modifies prev_off_read_sum;
17 modifies cur_write_sum;
18 modifies prev_write_sum;
19 modifies cur_off_write_sum;
20 modifies prev_off_write_sum;
21 {
22 var i:int;
23 var x:int;
24 var y:int;
25 var sum:[int] int;
26

27 prev_read_sum:=false;
28 prev_write_sum:=false;
29 i:=0;
30 x:=0;
31 y:=0;
32

33 while(i<10)
34 invariant(prev_write_sum==>prev_off_write_sum <i);
35 invariant(prev_read_sum==>prev_off_read_sum<i ||
36 prev_off_read_sum >= 10);
37 {
38 cur_read_sum:=false;
39 cur_write_sum:=false;
40 x:=sum[i+10];
41

42 call Checker_Write_sum(i+10);
43

44 call Log_Read_sum(i+10);
45

Chapter 3. Analysis 40

46 y:=sum[i];
47

48 call Checker_Write_sum(i);
49

50 call Log_Read_sum(i);
51

52 sum[i]:=x+y;
53

54 call Checker_Write_sum(i);
55 call Checker_Read_sum(i);
56

57 call Log_Write_sum(i);
58

59 i:=i+1;
60

61 call Update_Prev_Read_sum();
62 call Update_Prev_Write_sum();
63

64 }
65 }

Reads-Write with an error example: This example is similar to the one above, what
differs is Checker_Read_sum(i+1) (line 33) that will not hold because the value
that is stored in the prev off read sum is i+2 (line 25). As explained above in Section 3.1
the if are non deterministic so there is the possibility of the i+1 (line 30) and i+2 (line
25) being equal which will cause the assert to fail.

The code below shows only the differences with the previous code.

1 //OpenMP code
2 int main(int argc, char *argv[]) {
3 int sum[20];
4 int y;
5 int x;
6 int k=0;
7 int j=0;
8

9 #pragma omp parallel for
10 for(x=0; x<10; x++){
11 j=sum[0];
12 k=sum[x+2];
13 sum[x+1]=j+k;}
14 }

Chapter 3. Analysis 41

1 //Boogie Program
2

3 while(i<10)
4 invariant(prev_write_sum ==>prev_off_write_sum<i+1);
5 invariant(prev_read_sum ==>prev_off_read_sum <i+1 ||
6 prev_off_read_sum >=2);
7 {
8 cur_read_sum:=false;
9 cur_write_sum:=false;

10 x:=sum[0];
11

12 //call the assert procedure for the write
13 call Checker_Write_sum(0);
14

15 // read non-deterministic if
16 call Log_Read_sum(0);
17

18 y:=sum[i+2];
19

20 //call the assert procedure for the write
21 call Checker_Write_sum(i+2);
22

23 // read non-deterministic if
24 call Log_Read_sum(i+2);
25

26 sum[i+1]:=x+y;
27

28 //call the assert procedure for the write
29 call Checker_Write_sum(i+1);
30

31 //call the assert procedure for the read
32 call Checker_Read_sum(i+1);
33

34 // write non-deterministic if
35 call Log_Write_sum(i+1);
36

37 i:=i+1;
38

39 // read non-deterministic if
40 call Update_Prev_Read_sum();
41

42 //write non-deterministic if
43 call Update_Prev_Write_sum();
44 }

Chapter 3. Analysis 42

Two whiles with one parallel for example: This example has two whiles with a parallel
for in the inner-most while (line 25). This is just a write in the array so we will

need just one block of variables prev write sum, cur write sum, prev off write sum and
cur off write sum (lines 3-6). The tricky part is the invariant (lines 22-24 and 26-28)
that is a bit different because of the position that we access in the array (line 30) is a
combination of variables so it is necessary to use division and modulo. The procedure
is easy to discover, because although this example has two whiles, only one of them is
parallel so we just apply the pattern to the inner most while (lines 25-39).

In general it is just as if there was only one while because the first will not need
much attention from the programmer, and that is why it becomes a simpler example to
translate than the previous two.

1 //OpenMP program
2 void main(int argc, char *argv[]) {
3 int sum[100];
4 int y;
5 int x;
6 int j=4;
7

8 for(y=0; y<4; y++){
9 #pragma omp parallel for

10 for(x=0; x<4; x++)
11 {
12 sum[y+x*j]=x+y;
13 }
14 }
15 }

1 //Boogie Program
2

3 var cur_write_sum:bool;
4 var prev_write_sum:bool;
5 var cur_off_write_sum:int;
6 var prev_off_write_sum:int;
7

8 procedure main() returns ()
9

10 modifies prev_write_sum;
11 modifies cur_write_sum;
12 modifies prev_off_write_sum;
13 modifies cur_off_write_sum;
14 {
15 var y,x,j:int;
16 var sum:[int]int;

Chapter 3. Analysis 43

17 j:=4;
18 prev_write_sum:=false;
19 y:=0;
20 x:=0;
21 while(y<4)
22 invariant(prev_write_sum==>
23 prev_off_write_sum div j < x);
24 invariant(prev_write_sum==>
25 prev_off_write_sum mod j < y);
26 {
27 while(x<4)
28 invariant(prev_write_sum==>
29 prev_off_write_sum div j < x);
30 invariant(prev_write_sum==>
31 prev_off_write_sum mod j <= y);
32 {
33 cur_write_sum:=false;
34 sum[y+x*j]:=x+y;
35 //assert
36 call Checker_Write_sum(y+x*j);
37

38 //current non-deterministic if
39 call Log_Write_sum(y+x*j);
40

41 //previous non-deterministic if
42 call Update_Write_sum();
43 x:=x+1;
44 }
45 y:=y+1;
46 }
47 }

Two parallel While nested loops example: In this example we present two nested
while loops and each while loop (line 30 and line 38) is parallel. The main idea is
similar to the previous one but in this case we have to duplicate the procedure.

In the case where there are several parallel loops there is a need to differentiate loops.
In this specific example there are only two nested loops, and we call it the inner and the
outer. Each loop has 4 variables associated with it (prev, cur, prev_off and

cur_off) (lines 2-9) with the inner and outer suffixes. The invariants (lines 31-24
and lines 39-42) and the assert (lines 48-49) are similar to the previous example, we
just duplicate them because now we have inner and outer variables.

To sum up, when adding a loop in the examples, as well when adding a read and/or

Chapter 3. Analysis 44

write, we also need to apply the procedure explained in the beginning of the Chapter 3.

1 //OpenMP code
2

3 void main(int argc, char *argv[]) {
4 int sum[100];
5 int y;
6 int x;
7 int j=4;
8

9 #pragma omp parallel for
10 for(y=0; y<4; y++){
11 #pragma omp parallel for
12 for(x=0; x<4; x++){
13 sum[y+x*j]=x+y;
14 }
15 }
16 }

1 //Boogie Program
2 var cur_inner:bool;
3 var prev_inner:bool;
4 var cur_off_inner:int;
5 var prev_off_inner:int;
6 var cur_outer:bool;
7 var prev_outer:bool;
8 var cur_off_outer:int;
9 var prev_off_outer:int;

10

11 procedure main() returns (sum:[int]int)
12 modifies cur_inner;
13 modifies prev_inner;
14 modifies cur_outer;
15 modifies prev_outer;
16 modifies cur_off_inner;
17 modifies prev_off_inner;
18 modifies prev_off_outer;
19 modifies cur_off_outer;
20 {
21

22 var y,x,j:int;
23 j:=4;
24 y:=0;
25 x:=0;
26

27 prev_inner:=false;

Chapter 3. Analysis 45

28 prev_outer:=false;
29

30 while(y<4)
31 invariant(prev_inner==>(prev_off_inner div j)<x);
32 invariant(prev_inner==>(prev_off_inner mod j)<y);
33 invariant(prev_outer==>(prev_off_outer mod j)<y);
34 invariant(prev_outer==>(prev_off_outer div j)<x);
35 {
36 cur_outer:=false;
37 prev_inner:=false;
38 while(x<4)
39 invariant(prev_inner==>(prev_off_inner div j)<x);
40 invariant(prev_inner==>(prev_off_inner mod j)<=y);
41 invariant(prev_outer==>(prev_off_outer mod j)<=y);
42 invariant(prev_outer==>(prev_off_outer div j)<x);
43 {
44 cur_inner:=false;
45 sum[y+x*j]:=x+y;
46

47 //assert for the inner and then outer loop
48 call Checker_inner(y+x*j);
49 call Checker_outer(y+x*j);
50

51 //current non-deterministic if for the inner loop
52 call Log_Current_inner(y+x*j);
53

54 x:=x+1;
55

56 //previous non-deterministic if for the inner loop
57 call Log_Previous_inner ();
58 }
59

60 //current non-deterministic if for the outer loop
61 call Log_Current_outer(prev_off_inner,prev_inner);
62

63 y:=y+1;
64

65 //previous non-deterministic if for the outer loop
66 call Log_Previous_outer ();
67 }
68 }
69

70 //assert for the inner loop
71 procedure {:inline 1} Checker_inner(i:int)
72 modifies prev_inner;
73 modifies prev_off_inner;

Chapter 3. Analysis 46

74 {
75 assert(prev_inner==>prev_off_inner!=i);
76 }
77

78 //assert for the outer loop
79 procedure {:inline 1} Checker_outer(i:int)
80 modifies prev_outer;
81 modifies prev_off_outer;
82 {
83 assert(prev_outer==>prev_off_outer!=i);
84 }
85

86 //current non-deterministic if for the inner loop
87 procedure {:inline 1} Log_Current_inner(i:int)
88 modifies cur_inner;
89 modifies cur_off_inner;
90 {
91

92 if(*){
93 cur_inner:=true;
94 cur_off_inner:=i;
95 }
96 }
97

98 //current non-deterministic if for the outer loop
99 procedure {:inline 1} Log_Current_outer(i:int, prev:bool)

100 modifies cur_outer;
101 modifies cur_off_outer;
102 {
103

104 if(*){
105 cur_outer:=prev;
106 cur_off_outer:=i;
107 }
108

109 }
110

111 //previous non-deterministic if for the inner loop
112 procedure {:inline 1} Log_Previous_inner()
113 modifies prev_off_inner;
114 modifies prev_inner;
115 modifies cur_off_inner;
116 modifies cur_inner;
117 {
118

119 if(*){

Chapter 3. Analysis 47

120 prev_off_inner:=cur_off_inner;
121 prev_inner:=cur_inner;
122 }
123 }
124

125 //previous non-deterministic if for the outer loop
126 procedure {:inline 1} Log_Previous_outer()
127 modifies prev_off_outer;
128 modifies prev_outer;
129 modifies cur_off_outer;
130 modifies cur_outer;
131 {
132

133 if(*){
134 prev_off_outer:=cur_off_outer;
135 prev_outer:=cur_outer;
136 }
137 }

Chapter 4

Implementation

As already mentioned previously the tool is divided into two parts: one is the trans-
lation of OpenMP to Boogie (which was not implemented, we only did it manually) and
the other part is the transformation of the Boogie code into an extended Boogie code that
checks if exist data races or not (this part is the tool that will be explained in this chapter).

In this chapter we will explain how the tool was implemented (we will explain what
each method does), the structure used in the code, the implementation restrictions and
how we obtain the invariant.

4.1 How it works

The implemented tool aims to translate simple Boogie derived from OpenMP code
into Boogie code such that is possible to verify whether data races exist or not.

The Boogie code input is just a translation of OpenMP to Boogie (this translation is
made by hand) and the output is that translate Boogie code with the procedure that the
tool applies to the code to check for data races.

As you would expect the tool has some limitations and problems that will be discussed
in the Limitations and Problems (Section 4.4.2).

After explaining how and what the tool does (4.2), it is important to explain the struc-
ture used for the construction of this tool.

First, the tool was built based on the Boogie code (the source code) that uses the
Structured statements code representation. It was on this basis that we decided to use
the same type of representation of code that will be explained below (using the following
examples).

Figure 4.1 is a simple while and if code example. In order to understand how the
structure works we will use as a basis the example of Figure 4.1. As it is possible to
observe, the example has some letters associated with each line of code. To know what
these letters represent we will give a brief explanation of how a Structured Statement
works (Figure 4.2).

48

Chapter 4. Implementation 49

b1
c1−− > x:=4;
c2−− > y:=A[x];

g1−− > if(x>100)

b2

c3−− > y:=2;
c4−− > x:=x+1;

g2−− > while(x>0)

c5−− >
x:=x-1;

b3
c6−− > x:=2*x;

g3−− > if(x<3)
c7−− > x:=x+1;

b4
c8−− > x:=x-1;

Figure 4.1: While and If Example

An Implementation that has Structured Statement contains BigBlocks (one BigBlock
and a list of BigBlocks) which are blocks of code that contains Commands (we can see in
Figures 4.1 and 4.2 the BigBlocks).

The Commands can be of SimpleCommands type and CompondCommand type. The
SimpleCommands are simple commands, such as arrays reads/writes, initialization of
variables and assigning values to the same, increment and decrement of variables, basi-
cally it is everything except the commands that use the program language reverse words.
Commands with the reversed words, like while,if,goto,invariant, etc., are called
CompondCommands.

In the CompondCommands we have while,if,goto,invariant, etc., and each of
these commands can be SimpleCommands and CompondCommands. An example of this
commands is the WhileCmd, which is shown in the Figures 4.1 and 4.2, these command
has a Guard that is an expression and Body which is a BigBlock. Another example is the
IfCmd that has a Guard which is again an expression, a ElseCmd that is a BigBlock and a
ThenCmd which is also a BigBlock.

Now that we explained how it works, it is important to give a brief explanation about
the Figures 4.1 and 4.2.

In this particular example (Figures 4.1 and 4.2) we have five BigBlocks (represented
by b1-b5) that are SimpleCmds, IfCmds and WhileCmds. The SimpleCmds are represented
by c1-c8 being a total of 8 in this example; the Guard of the WhileCmd and IfCmd are
represented in the example by g1-g3.

Chapter 4. Implementation 50

Implementation
...
StructuredStmts: StmList
BigBlocks: List<BigBlock> = b1

SimpleCmds: List<Cmd>=c1, c2
CompondCmd: StructuredCmd = s1; IfCmd
IfCmd
Guard: Expr=g1
ThenBlocks: StmList ... List<BigBlock>= b2, b3, b4
ElseBlocks=null
b2
SimpleCmds=c3, c4
CompondCmd(ec) is WhileCmd
WhileCmd
Guard = g2
Body=b5
b5

c5

null

b3

c5

Guard=g3
ThenCmd

null

b4

c8

null

Figure 4.2: Structured Statement of Fig:4.1

Chapter 4. Implementation 51

In summary, it was based on this code Structure that the data race checker was imple-
mented (Chapter 4.2).

Chapter 4. Implementation 52

4.2 Methods

The SVDR has five classes: Program that is the main class, Add is the class that has
all the add methods, Read Write has all the methods related to reads and writes and the
finally class Auxiliar has the the remaining classes.

Thirteen principal methods were added to the classes explained above : Principal,
nameMethods, addUpdate, addLog, initializeVariable, addChecker, AddMethod, Read Methods,
Update rw, Write Methods, isParallel, Update Previous, addInvariant.

Figure 4.3 shows the relation between the classes and methods.

The Principal is the method where other methods are called, where the global vari-
ables are created and initialized and where the output is print to the screen.

The nameMethods saves the name of the arrays present in the code (just the parallel
ones), then we use these names in the creation of methods (checker, log, update) and
variables (current and previous). It has as argument an Implementation, which in this
case will be the Implementation of the input file of the program.

The addUpdate creates the method that updates the previous variable in a non-deterministic
way. As arguments it takes: a List of Declaration that is used to add the update method to
the output; a string with the name of the method; and four global variables (prev, prev off,
cur, cur off).

The addChecker creates the method that generates the assertion. As arguments this
method has a List of Declaration that is used to add the assertion into the output, the name
of the method and two global variables (prev and prev off).

The addLog creates the method that initialize and update the current values. As ar-
guments this method has a List of Declaration that is used to add the assertion into the
output, the name of the method and two global variables (prev and prev off).

The AddMethods inserts the call of the methods in the right position in the code.
Basically what it does is analyze the code that is given as input, and place the calls to the
methods in the right positions.

The initializeVariables is a method that initialize the current variables in the right
position in the code.

The isParallel is a method that returns true if the the While is parallel and false oth-
erwise. The way that it checks if is parallel or not is buy checking the invariant with the
{:parallelLoop} attribute. That attribute is add in the input code buy the user to identify
that the specific While is parallel.

The Read Methods is a method that create the read Call methods and put them in the
right position in the output.

The Write Methods is a method that create the write Call methods and put them in
the right position in the input code.

The Update rw is a method that create the read/write update Call methods.

Chapter 4. Implementation 53

Figure 4.3: Class Diagram

Chapter 4. Implementation 54

The Update Previous puts the Update methods in the right position in the output
code.

The addInvariant is a method that creates the different invariants and associates them
with Boolean constants. We do it that way so that Houdini can analyse them and delete
those that do not apply to the input file.

4.3 Invariant Generation

The Invariants were the last thing that we took care of in the implementation of the
tool.

We decide to used Houdini (Section 2.5) so that it was possible to eliminate the false
invariants leaving the true ones to be used by the Boogie Verifier. We create a method
that add the invariants in the input and creates the Booleans that are associated with them.
This Boolean are the ones that return false or true as Houdini checks whether they hold
or not.

It is important to explain that the invariants, in this case, are generated in the code.
When the first translations were carried out (Chapter 2.2) it was possible to notice that in
some of the translations the invariants was following the same procedure. These proce-
dures are the ones used to create the invariants in our tool.

Despite working for the tested cases, these invariants are not valid in all examples.

The best that can happen is that all the invariants are true which is great, and the worst
case is when none of the invariants hold, with means that it is not possible to verify the
program.

To illustrate what was been explained we are going to show an example of the tool
working with invariants and the result of that in the Boogie Verifier.

In the example below we can check that 9 invariants are created, because the first loop
is the parallel loop so any invariant associated with this loop has to be replicated in the
other loops for the program to pass the Boogie Verifier.

1

2 //Boogie program verifier version 2.2.30705.1126, Copyright
(c) 2003-2014, Microsoft.

3 var prev_read_sum: bool;
4

5 var cur_read_sum: bool;
6

7 var prev_off_read_sum: int;
8

9 var cur_off_read_sum: int;
10

11 procedure main() returns (r: int);

Chapter 4. Implementation 55

12 modifies prev_off_read_sum, prev_read_sum,
cur_off_read_sum, cur_read_sum;

13

14

15

16 implementation main() returns (r: int)
17 {
18 var i: int;
19 var x: int;
20 var y: int;
21 var b: int;
22 var sum: [int]int;
23

24 i := 0;
25 prev_read_sum := false;
26 x := 0;
27 y := 0;
28 b := 4;
29 while (y < 4)
30 invariant b0 ==> prev_read_sum ==> prev_off_read_sum

< i + y * b;
31 invariant b1 ==> prev_read_sum ==> prev_off_read_sum

div b < y ;
32 invariant b2 ==> prev_read_sum ==> prev_off_read_sum

mod b < i ;
33 invariant b3 ==> prev_read_sum ==> prev_off_read_sum

mod b <= i ;
34 invariant b4 ==> (prev_read_sum ==> prev_off_read_sum

< i + y * b) || prev_off_read_sum >= 0;
35 {
36 while (i < 4)
37 invariant {:parallelLoop} true;
38 invariant b5 ==> prev_read_sum ==>

prev_off_read_sum < i + y * b;
39 invariant b6 ==> prev_read_sum ==>

prev_off_read_sum div b < y ;
40 invariant b7 ==> prev_read_sum ==>

prev_off_read_sum mod b < i ;
41 invariant b8 ==> prev_read_sum ==>

prev_off_read_sum mod b <= i ;
42 invariant b9 ==> (prev_read_sum ==>

prev_off_read_sum < i + y * b) || prev_off_read_sum >=
0;

43 {
44 cur_read_sum := false;
45 x := sum[i + y * b];

Chapter 4. Implementation 56

46 call Checker_Read_sum(i + y * b);
47 call Log_Read_sum(i + y * b);
48 i := i + 1;
49 call Update_Prev_Read_sum();
50 }
51

52 y := y + 1;
53 }
54 }
55

56 const {:existential true} b0: bool;
57

58 const {:existential true} b1: bool;
59

60 const {:existential true} b2: bool;
61

62 const {:existential true} b3: bool;
63

64 const {:existential true} b4: bool;
65

66 const {:existential true} b5: bool;
67

68 const {:existential true} b6: bool;
69

70 const {:existential true} b7: bool;
71

72 const {:existential true} b8: bool;
73

74 const {:existential true} b9: bool;

As it is possible to check in Figure 4.4 all the created invariants and the program is
verified by Boogie, which means that there are no data races in this program. Some of
there invariants will be eliminated by Houdini because they are not valid.

Chapter 4. Implementation 57

Figure 4.4: Boogie Verification

Chapter 4. Implementation 58

4.4 Limitations and Problems

In this section we are going to show and explain the limitations and problems of our
tool, and explain how we could solve some of these limitations and problems.

4.4.1 Limitations

During the entire implementation process of the tool we have come across situations
where we would have to treat them or to assume that it would not be accepted by the tool,
therefore the tool has some limitations.

We start with a simple one which is the fact that we do not allow two or more parallel
nested loops. If the user enters an input with two or more parallel nested loops they
will receive a error message as output saying that “This operation is not possible.” The
reason we did not take care of parallel nested loops was the fact that is complex and is
not something that occurs in a lot of examples.

Another limitation on the input is the fact that it is not acceptable to have a complex
expression with an array element (Example: x: = x + sum [y];), so in order to use a
complex expression as mention above we must decompose as follows k: = sum [y]; x: =
x + k;.

This limitation can be easily fixed by creating a method that translated this x: = x +
sum [y]; into k: = sum [y]; x: = x + k;.

The last limitation is related to the invariants. Despite being generated on the tool the
procedure of them is written by us which means these exist some examples in which none
of that invariant will be useful in the verification of the input which means that this input
may no have data race but still will not be accepted by our tool.

These are the most glaring limitations that must be taken into account when using the
tool for the result to be as smooth and satisfactory as possible.

4.4.2 Problems

One problem that has emerged during the tests of the code, was the use of the unique
flag in constants in Boogie.

The flag unique states that each constant is different, i.e., there are not two equal
constants. This flag is very useful when we want to create constants such as days of the
week or months of the year because these values will always be different from each other.

Despite being very useful this flag is not much referred in the manual, although when
we create a constant in Boogie it is set by default to true, so it is assumed that all constants
are different from each other.

In our case what happened was that our constants are Boolean, so there are two possi-
ble values, true or false. When we create more than two constants what will happen is the
equivalent of using an assume false, i.e., everything is possible, which is what happened

Chapter 4. Implementation 59

with our code leading to all the tests failing to detect the errors and then all inputs were
verified, even the ones that were wrong.

Fortunately the error was detected and corrected in time otherwise it would be a mis-
take with plenty of negative repercussions.

Chapter 5

Tests

In this chapter, we will focus on different types of tests used to evaluate the tool and
what they contributed to find problems and errors.

5.1 How to execute the Tests?

The tests are executed in two different phases: the first phase is just running the pro-
gram with a test so that the procedure provided by the tool is added to the input, i.e, the
first test is using the developed tool. The second test is to run the Boogie verifier using
the result of the first test to see if there really exists or not a data race (if the result gives
an error then the input has a data race, otherwise the input does not have a data race).

To run the first test phase, as shown in Figure 5.1, one must first download the package
containing the executable, then open the command line. At the prompt we need to choose
the directory where the executable is (using the cd command - change directory) and then
just run the executable with the test (as seen in the last row of Figure 5.1).

Now, to run the second phase of the tests, as shown in Figure 5.2, it is necessary to
have installed the Boogie Verifier (it is available for download in the Microsoft web page).
After that we need to open the command line, choose the directory that has the Boogie

Figure 5.1: How to run the first phase

60

Chapter 5. Tests 61

Figure 5.2: How to run the second phase

executable and runs using the output of the first phase of testing. If the result gives an
error then we have a data race, otherwise there is no data race in the file.

Chapter 5. Tests 62

5.2 Tool Tests

The first phase of the tests is the one that confirms if the tool does what it is supposed
to do.

The tests used were the same as those shown in Chapter 3. We decided to do it that
way because it was easy to compare if everything was alright.

We tested all the examples in Chapter 3 and here is some example of the result of a
test using the tool:

1 var prev_write_sum: bool;
2

3 var cur_write_sum: bool;
4

5 var prev_off_write_sum: int;
6

7 var cur_off_write_sum: int;
8

9 procedure main();
10 modifies prev_off_write_sum, prev_write_sum,

cur_off_write_sum, cur_write_sum;
11 implementation main()
12 {
13 var i: int;
14 var j: int;
15 var sum: [int]int;
16

17 prev_write_sum := false;
18 i := 0;
19 j := 0;
20 while (i < 10)
21 invariant {:parallelLoop} true;
22 {
23 cur_write_sum:=false;
24 sum[0] := j;
25 call Checker_Write_sum(0);
26 call Log_Write_sum(0);
27 j := j + 1;
28 i := i + 1;
29 call Update_Write_sum();
30 }
31 }
32

33

34

35 procedure {:inline 1} Checker_Write_sum(i: int);
36

Chapter 5. Tests 63

37

38

39 implementation {:inline 1} Checker_Write_sum(i: int)
40 {
41 bigblock:
42 assert prev_write_sum ==> prev_off_write_sum != i;
43 }
44

45

46

47 procedure {:inline 1} Log_Write_sum(i: int);
48 modifies cur_write_sum, cur_off_write_sum;
49

50

51

52 implementation {:inline 1} Log_Write_sum(i: int)
53 {
54 bigblock:
55 if (*)
56 {
57 bigblock1:
58 cur_write_sum := true;
59 cur_off_write_sum := i;
60 }
61 }
62

63

64

65 procedure {:inline 1} Update_Prev_Write_sum();
66 modifies cur_write_sum, cur_off_write_sum, prev_write_sum

, prev_off_write_sum;
67

68

69

70

71 implementation {:inline 1} Update_Prev_Write_sum()
72 {
73 bigblock:
74 if (*)
75 {
76 bigblock1:
77 prev_write_sum := cur_write_sum;
78 prev_off_write_sum := cur_off_write_sum;
79 }
80 }

Chapter 5. Tests 64

Figure 5.3: Run loopUnroll

If we compare the example above with the one in Chapter 3 (example 1 in Section
3.1.1), it is possible to realize that the tool gives the same result as the example, which
means that it is correct. The only difference between the two examples is the invariant
parallelLoop true;. We have to introduce this invariant to identify which while loop was
parallel.

5.3 Verification Test

The following tests were executed to verify if the output produced by the tool passes
the Boogie verifier or not (in some cases it will not pass because a real data race exists).

5.3.1 Verification Tests using loopUnroll

The tests that we did using the loopUnroll where done in a stage of the project were
the invariant was not implemented. Its main objective was to verify if the code input
would have data races or not. Basically what the loopUnroll does is to unroll the body of
the loop X times and by doing that we can verify if the output is correct or not and if the
Boogie verifier checks if the output verifies or not.

To test using the loopUnroll we need to follow the same procedures as in Figure 5.2,
i.e., to have installed the Boogie Verifier (it is available for download in the Microsoft web
page), then open the command line, choose the directory that has the Boogie executable
and run it using the output of the first phase of testing and add loopUnroll: X as an
attribute (X is the number of times that we want it to execute); see Figure 5.3.

Chapter 5. Tests 65

Figure 5.4: Run the code with invariant

5.3.2 Tests with invariants

An important part in the project are the generated invariants and for this reason they
have been extensively tested and have prove to be very accurate.

Invariants introduced by hand

At one point of the project, in order to test whether the rest of the implementation is
correct it was necessary to introduce invariants. Since that had not yet been deal with in
the code, what was done was enter them manually in the input of the Boogie Verifier.

That way it was possible to detect errors in auxiliary classes, the positions of the
variables, etc.

Later in the project we implemented the invariants automatically, as explained below.

Invariant method

To test the invariants it was necessary to add some attributes to the method used in
Figure 5.2, as can be seen in Figure 5.4.

Basically the process is the same, run the executable Boogie with the input file, and
in this case it is necessary to add one more attribute (contractInfer) that is used for the
Houdini check of the invariant, then we can add two more attributes (trace and printAs-
signment) just to print the steps of the evaluation of Houdini on the screen.

After Houdini establish if the invariants are correct for the example, Boogie Verifier
checks if the input holds or not.

Chapter 6

Results

In this chapter we are going to show an example, to explain how we did the imple-
mentation of the SVDR tool and how long it that to compile.

6.1 SVDR Tool

To implement the SVDR tool we used Visual Studio 2013 on a 64-bit computer with
4 gigabytes of memory and a disk of 500 gigabytes. The operating system was Windows
8 and to run the examples we used the command line of Windows 8. At the begging the
tool was test in a different operating system, Ubuntu 12.10, and it worked just fine.

This tool can be run in a 32 and 64-bit computer with both Ubuntu and Windows.ns

Concerning the time we have to wait for the tool to show the result we do not have to
worry about that much because the tool is almost simultaneous.

When we use Boogie Verifier we can check on the command line how long it took
the program to present the results. This time increases with the number of invariants but
that increase is not so significant. When we have several nested loops and therefore many
invariants the time increases significantly and can take some time to show the result in the
command line.

Despite this, the tool works properly and without noticeable delay for all the tests that
we demonstrated in the report, i.e., itnsalways gives the expected result.

6.2 Example

The example is a very simple example of two reads. As explained two consecutive
reads do not cause data races so we already now that this example does no have any
problem.

Figure 6.1 shows the input used in the tool and below (in the code) is showed the
output of the tool.

66

Chapter 6. Results 67

Figure 6.1: Example Test 1

As it is possible to observe in the result produce by the tool several invariants were
created. Beyond the invariants, the auxiliary methods relating to the Checker, Log and
Update Previous were created correctly and the call were introduced where it was sup-
posed to.

The Boogie Verifier checks the output of the tool and the result is in Figure 6.2. As
expected the output was verified and the invariant that was not true was removed by
Houdini.

After running the input (Figure 6.1) the tool was possible to verify that this specific
input is data race free.

Chapter 6. Results 68

1

2 //Boogie program verifier version 2.2.30705.1126, Copyright
(c) 2003-2014, //Microsoft.

3 var prev_read_sum: bool;
4

5 var cur_read_sum: bool;
6

7 var prev_off_read_sum: int;
8

9 var cur_off_read_sum: int;
10

11 procedure main() returns (r: int);
12 modifies prev_off_read_sum, prev_read_sum,

cur_off_read_sum, cur_read_sum;
13

14 implementation main() returns (r: int)
15 {
16 var i: int;
17 var x: int;
18 var a: int;
19 var b: int;
20 var sum: [int]int;
21

22 i := 0;
23 prev_read_sum := false;
24 x := 0;
25 a := 0;
26 b := 0;
27 while (i < 10)
28 invariant {:parallelLoop} true;
29 invariant b0 ==> prev_read_sum ==>
30 prev_off_read_sum < i;
31 invariant b1 ==> prev_read_sum ==>
32 prev_off_read_sum div 1 < 1;
33 invariant b2 ==> prev_read_sum ==>
34 prev_off_read_sum mod 1 < 1;
35 invariant b3 ==> prev_read_sum ==>
36 prev_off_read_sum mod 1 <= 1;
37 invariant b4 ==> (prev_read_sum ==>
38 prev_off_read_sum < i|| prev_off_read_sum >= 0)

;
39 {
40 cur_read_sum := false;
41 a := sum[i];
42 call Checker_Read_sum(i);

Chapter 6. Results 69

43 call Log_Read_sum(i);
44 x := x + a;
45 b := sum[i];
46 call Checker_Read_sum(i);
47 call Log_Read_sum(i);
48 x := x + b;
49 i := i + 1;
50 call Update_Prev_Read_sum();
51 }
52 }
53 const {:existential true} b0: bool;
54

55 const {:existential true} b1: bool;
56

57 const {:existential true} b2: bool;
58

59 const {:existential true} b3: bool;
60

61 const {:existential true} b4: bool;

Chapter 6. Results 70

Figure 6.2: Verification of the Test 1

Chapter 7

Conclusion

The purpose of this work was to implement a tool that would be able to perform Static
Verification of Data Race (SVDR) in a programming language, in this case OpenMP. This
project went through two phases: the first was the translation of OpenMP into Boogie and
the second was static verification of the Boogie translation.

Our tool, SVDR, implements the second phase: the static verification of data race
in the translated Boogie code. The tool receives as input a Boogie file and applied the
procedure to that file, and then return the file with the procedure as output. Then the file
will be verified by the Boogie Verifier and returns positive if there is not a data race in the
code.

SVDR was implemented in Visual Studio 2013 and at the beginning it was developed
directly in Boogie source code. After many tests were performed using the tool, that the
tool works properly and the results were quite positive.

Since the main objectives of the project were completed successfully we can say that
this opens the door for future longer-term projects on verification of multi-core programs.

7.1 Knowledge acquired

During this period in which I elaborated my thesis I acquired a lots of new knowledge.
At the beginning of the thesis I had to study papers on GPUVerify, OpenMP and Boogie
to better understand the tools and languages.

GPUVerify is one of the most important project of the working group in which I was
inserted and was quite useful reading and researching about it because there is a part of
the project that does a similar translation and verification as my tool.

OpenMP and Boogie were the languages and tools that I used in my project so before
I started working with then I read a lot of papers [3], [4], [5]. It was quite a long process,
to start the real project but it was worth it.

Other knowledge that I gained was about the Linux terminal. That was useful in the
beginning of the project.

71

Chapter 7. Conclusion 72

To implement the project I had to use a C#, programming language that had never
used, and also had to understand the source code of Boogie.

In summary, all year I acquired a lot of new knowledge that will be quite useful in the
future.

7.2 Future Work

There are some limitations in our tools, which were explained in detail in Chapter 4,
which could easily be resolved in future work.

One would be the translation of OpenMP into Boogie which is currently performed by
hand. In practical and theoretical terms it would not be very difficult to create a tool that
automatically performs this translation, which would be quite advantageous for the user.
ns Another issue, is that the tools produces a limited number of invariants, which may
not be enough for complex program, but this can be resolved in the future. Furthermore,
in future work we could extend the project to allow the use of goto for example and we
could also take care of x:= x + sum [y], by creating a new method in the SVDR tool.

Something very important to make the tool better would be to add nested parallel
loops (see Chapter 4) because it is a limitation of the tool difficult to accomplish.

Finally, in a long term project it would be possible to analyze programs written in
different programming languages and apply the same algorithm to verify the absence of
data races.

Bibliography

[1] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A theory of data
race detection. In Proceedings of the 2006 Workshop on Parallel and Distributed
Systems: Testing and Debugging, PADTAD ’06, pages 69–78, 2006.

[2] Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rustanm.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In Formal
Methods for Components and Objects: 4th International Symposium, FMCO 2005,
volume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer, 2006.

[3] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.
Gpuverify: A verifier for gpu kernels. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pages 113–132, New York, NY, USA, 2012. ACM.

[4] Nathan Chong, Alastair F. Donaldson, Paul H.J. Kelly, Jeroen Ketema, and Shaz
Qadeer. Barrier invariants: A shared state abstraction for the analysis of data-
dependent gpu kernels. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA ’13, pages 605–622, New York, NY, USA, 2013. ACM.

[5] Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. In-
terleaving and lock-step semantics for analysis and verification of gpu kernels. In
Proceedings of the 22Nd European Conference on Programming Languages and
Systems, ESOP’13, pages 270–289, Berlin, Heidelberg, 2013. Springer-Verlag.

[6] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Microsoft Corporation, 2005.

[7] Dictionary.com. Nondeterminism, 2014. http://dictionary.reference.com/
browse/nondeterminism.

[8] Software Reliability Alastair Donaldson. Loop Invariant Generation Using Houdini,
2014. http://www.doc.ic.ac.uk/ afd/teaching/SoftwareReliability/.

73

Bibliography 74

[9] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
esc/java, 2000.

[10] High Performance Computing. OpenMP tutorial, 2013. https://computing.llnl.gov/
tutorials/openMP/.

[11] Intel. Dynamic Analysis vs. Static Analysis, 2014. http://software.intel.com/sites/
products/documentation/doclib/iss/2013/inspector/lin/ug docs/GUID-E901AB30-
1590-4706-94B1-9CD4736D8D2D.htm.

[12] Intel. Intel Parallel Studio, 2014. https://software.intel.com/enus/intelparallelstudio-
xe.

[13] Intel. Parallel Lint Overview, 2014. http://software.intel.com/sites/ product-
s/documentation/ studio/composer/enus/2011Update/compiler c/bldaps cls /com-
mon/bldaps svover.htm.

[14] Intel. Problem Detection and Analysis with Parallel Lint,
2014. http://software.intel.com/sites/products/documentation/
studio/composer/enus/2011Update/compiler c/bldaps cls/ com-
mon/bldaps svparallellint.htm#bldaps svparallellint.

[15] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data race bugs:
Telling the difference with portend. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, pages 185–198, 2012.

[16] Shuvendu K. Lahiri and Julien Vanegue. Explain Houdini: Making Houdini Infer-
ence Transparent. In Proceedings of the 12th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, VMCAI’11, pages 309–323,
Berlin, Heidelberg, 2011. Springer-Verlag.

[17] K. Rustan M. Leino. This is Boogie 2. 2008. Informal document.

[18] Yuan Lin. Static nonconcurrency analysis of openmp programs. In Proceedings
of the 2005 and 2006 International Conference on OpenMP Shared Memory Paral-
lel Programming, IWOMP’05/IWOMP’06, pages 36–50, Berlin, Heidelberg, 2008.
Springer-Verlag.

[19] Microsoft Research. Spec#, 2013. http://research.microsoft.com/enus /project-
s/specsharp/.

[20] Microsoft Research. Rise4fun : Boogie, 2014. http://rise4fun.com/Boogie/.

Bibliography 75

[21] Microsoft Developer Network. OpenMP in Visual C++, 2014.
http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx.

[22] University of Porto: Parallel and Distributed Programming. Introducao ao OpenMP,
2014. http://www.dcc.fc.up.pt/ fds/aulas/PPD/0708/intro openmp-1x2.pdf.

[23] OpenMP Architecture Review Board. The OpenMP API specification for parallel
programming, 2014. http://openmp.org/wp/about-openmp/.

[24] Charles Severance and Kevin Dowd. Understanding Parallelism - Loop-Carried
Dependencies, 2014. http://cnx.org/content/m32782/latest/.

[25] Ian Sommerville. Software Engineering. Addison-Wesley; 9 edition, 2010.

[26] Techopedia. Static verification, 2014. www.techopedia.com/definition/13696/static-
verification.

[27] Veracode. Static analysis, 2014. http://www.veracode.com/products/ static-analysis-
sast/static-analysis-tool.

[28] Wikipedia. OpenMP, 2014. http://en.wikipedia.org/wiki/OpenMP.

[29] Joel Yliluoma. Guide into OpenMP: Easy multithreading programming for C++,
2013. http://bisqwit.iki.fi/story/howto/openmp/.

[30] Fang Yu, Shun-Ching Yang, Farn Wang, Guan-Cheng Chen, and Che-Chang Chan.
Symbolic consistency checking of OpenMp parallel programs. In Proceedings of the
13th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
Tools and Theory for Embedded Systems, LCTES ’12, pages 139–148, New York,
NY, USA, 2012. ACM.

	List of Figures
	Introduction
	Motivation
	Contributions
	Document Structure

	Related Work
	OpenMP
	What is OpenMP?
	Features of OpenMP openmtutorail,openmpPorto,GuideOpenMP,OpenMPWebsite
	Data Races

	Boogie
	What is Boogie?
	Boogie Syntax

	Program Analysis
	Static Analysis
	Dynamic Analysis
	Static Analysis versus Dynamic Analysis staticdynamic

	Tools - Dynamic and Static Analysis for OpenMP
	Intel Parallel Lint
	Intel Thread checker

	Houdini
	How it works?

	Analysis
	Translations of OpenMP code into Boogie code
	Examples

	Implementation
	How it works
	Methods
	Invariant Generation
	Limitations and Problems
	Limitations
	Problems

	Tests
	How to execute the Tests?
	Tool Tests
	Verification Test
	Verification Tests using loopUnroll
	Tests with invariants

	Results
	SVDR Tool
	Example

	Conclusion
	Knowledge acquired
	Future Work

	bibliography

