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Abstract 

 

Temperate saltmarshes serve as important stores of blue carbon and climatic regulators, however 

little is currently known about the contemporary carbon storage capacities of UK saltmarshes. This 

study quantifies the carbon storage capacity of the saltmarshes in the Ribble estuary and analyses 

the influence of elevation, gradient and watercourse proximity on carbon distribution. The study 

specifically focusses on carbon stored within the ‘active section’ which is comprised of the above-

ground biomass and surface organic layer, defined as the ‘active layer’ in this research. Overall, the 

findings indicate that 1.26 x 107 kg and 12.9 x 107 kg (3.s.f) of carbon is stored within the above-

ground biomass and active layer sediment respectively, although carbon is unevenly distributed 

between the sub-environments that comprise the saltmarshes of the Ribble. Whilst elevation, 

gradient and watercourse proximity are recognised to exert an interconnected influence on sub-

environment and carbon distribution, only gradient and watercourse proximity were found to be 

statistically significant. In all sub-environments watercourse proximity exhibits a standardised 

influence between 50.1% and 72.0% greater than gradient. The overall distribution findings rebuke 

the simple elevation ramp model of distribution and support the theory that saltmarsh sub-

environment and carbon distribution is controlled by a multitude of interconnected 

ecogeomorphological factors. The study also highlights the overall active section carbon storage 

capacity of the Ribble saltmarshes could decrease by 23.8%, 30.7% or 30.9% of the 2012 capacity by 

2100 under the respective RCP 2.6, 4.5 and 8.5 (50th percentile) sea level rise scenarios. There is also 

the potential for greater degradation and carbon loss to occur as result of sea level rise driven 

headward expansion of creeks given the significant influences of watercourse proximity and gradient 

on sub-environment distribution. Therefore, it is important future shoreline management policies 

are adapted to limit future degradation in order to allow the saltmarshes of the Ribble to continue to 

act as an important store of blue carbon. 
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Chapter 1 – Introduction 

 

1.1 - Background and Motivation 

Saltmarshes are key environments for carbon storage and play an important role in carbon cycling 

and climatic regulation (McLeod et al. 2011; Beaumont et al. 2014). However, the distribution and 

quantity of carbon throughout a saltmarsh environment is highly dependent on site-specific 

geomorphological and ecological characteristics which are spatially and temporally variable (Cacador 

et al. 2004; D’Alpaos, 2011; Kelleway et al. 2016).  

Accelerated sea level rise (SLR) during the 21st century is predicted to substantially influence 

saltmarsh evolution, resulting in spatial migration and adjustment (Allen and Pye, 1992; Morris et al. 

2002; Horton et al. 2018). Although the consequences of this adjustment are marsh specific, it is 

widely thought that SLR could result in progressive submergence and loss of saltmarshes and the 

ecosystem services they provide (e.g. Reed, 1995; Horton et al. 2018) if they do not vertically accrete 

at the same rate as sea level rises (Craft et al. 2009; Spencer et al. 2010). The consequences of SLR 

driven loss and degradation on saltmarsh carbon storage go beyond the regional setting however, as 

the loss of efficient saltmarsh carbon sinks would influence atmospheric carbon concentrations and 

consequently global climatic change (Craft et al. 2009; Pendleton et al. 2012). 

To improve the understanding of the role that saltmarshes play in the global carbon cycle, it is 

important that current saltmarsh carbon stores are accurately quantified. With a greater 

understanding of the current storage, it is subsequently possible to calculate potential SLR catalysed 

saltmarsh carbon loss. Despite this importance, little attention has previously been directed towards 

accurately quantifying the carbon storage potential of UK saltmarshes (e.g. Andrews et al. 2008). 

This study seeks to address this issue by assessing the carbon stored within the saltmarshes of the 

Ribble Estuary, UK. The findings could be used to accurately predict the influence of SLR on the 

carbon storage capacity of the saltmarshes of the Ribble and therefore aid the assessment of their 

contribution to future atmospheric carbon levels and climatic change. 
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1.2 - Approach and Focus 

This study seeks to determine the carbon storage of the saltmarshes of the Ribble Estuary and assess 

carbon spatial distribution using a combination of remote sensing and fieldwork techniques. Central 

to the analysis is the remote assessment and determination of different geomorphological and 

ecological sub-environments which collectively comprise the saltmarshes of the Ribble Estuary. 

Following the assessment of the areal coverage the study also seeks to analyse the influence of 

elevation, gradient and watercourse proximity on the spatial distribution of the individual sub-

environments with the view to determining the key controls on sub-environment zonation. As the 

ecological and geomorphological characteristics of each sub-environment determine carbon storage 

capacity (Garcia et al. 1993; Cacador et al. 2004; Zhou et al. 2007), the respective influences of 

elevation, gradient and watercourse proximity on the spatial distribution of carbon storage is 

subsequently assessed. 

Due to the different geomorphological and ecological characteristics of sub-environments, the study 

employs standardised laboratory and fieldwork techniques to assess carbon storage (see Section 

4.3). The purpose of this assessment is to quantify the carbon stored within the ‘active section’ of 

sub-environments, which is defined as the section of the sub-environment that is directly connected 

to surface processes and is most likely to be influenced by external change in the form of SLR (see 

section 3.3.2).  

The study subsequently seeks to combine the findings of the remote spatial analysis and active 

section carbon assessment to quantify active section carbon storage of different sub-environments 

and determine the spatial distribution of carbon throughout the saltmarshes of the Ribble Estuary. 

The influence of SLR on active section carbon storage under different future SLR scenarios is also 

assessed. 
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1.3 - Aims and Objectives 

Aim: 

• To quantify and determine the spatial distribution of carbon stored within the active 

sections of the sub-environments that comprise the saltmarshes of the Ribble estuary. 

 

This aim will be achieved through the following objectives:   

• To determine the spatial distribution of the sub-environments that comprise the saltmarshes 

of the Ribble estuary through a remote and field assessment of sub-environment 

distribution – Sections 5.1 and 6.2. 

• To determine the influence of elevation, gradient and watercourse proximity on the spatial 

distribution of the sub-environments that comprise the saltmarshes of the Ribble estuary – 

Sections 5.1 and 6.2 

• To determine the active sections of the saltmarsh sub-environments following an 

assessment of ecological and geomorphological characteristics – Sections 5.2 and 6.3. 

• To quantify the total carbon stored within the active sections of all saltmarsh sub-

environments in order to assess the spatial and temporal variability of carbon storage at 

present and under different future sea level rise scenarios – Sections 5.3, 6.3 and 6.4. 
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Chapter 2 – Location 

2.1 – Setting and Background 

The Ribble estuary is a macrotidal tidal estuary in North West England that divides the counties of 

Merseyside to the south and Lancashire to the north. The estuary is approximately 16 km in length 

from its head 7 km west of Preston to the mouth in Liverpool Bay, where the width of the estuary 

reaches a maximum of 6.1 km. Extensive mudflats and saltmarshes currently characterise the basin, 

rendering it a suitable habit for an array of wildlife and the wetland environment also provides key 

ecosystem services (See Section 3.1) such as storm surge defence for the town of Lytham St. Annes 

(Halcrow, 2013).  

The temperate saltmarshes of the estuary also serve as a climatic regulator, acting as a significant 

sink for key greenhouse gases (Olsen et al. 2011; Ford et al. 2012). However, no attempts to assess 

the spatial distribution and overall carbon storage capacity of the saltmarsh environments have 

been published at present. For the purposes of this study, the saltmarshes of the Ribble were 

divided into the four individual marshes (A-D) shown in Figure 2.1. This division was made purely to 

prevent any confusion with regards to the spatial focus of the study during the field and remote 

sensing analyses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2.1. Location of the saltmarshes of the Ribble estuary as 

defined in this study.  
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2.2 - Geomorphological and Ecological Characteristics 

The geology of the Ribble estuary is characterised by Pleistocene glacial drift and Holocene 

sediments which are underlain by Triassic Mercia Mudstone (Van der Wal and Pye, 2002). The Ribble 

is largely characteristic of the estuaries in North West England which have progressively evolved 

since their formation after glacial retreat approximately 17,000 ka BP (Clark et al. 2012). The 

influence of a flood-dominated tidal regime currently results in a net import of sediment into the 

estuary which when combined with fluvial deposition creates suitable conditions for estuarine 

saltmarshes, which cover approximately 20 km2 of the 120 km2 intertidal hectares of the estuary 

(Ford et al. 2012; Halcrow, 2013). The key species found in the environment are characteristic of 

those found within UK saltmarshes including: Elymus Repens and Festuca Rubra in the higher marsh, 

while Spartina Anglica and Salicornia Spp. are more prominent in the lower marsh (Ford et al. 2012). 

The Ribble has experienced significant human modification over the past few hundred years which 

has influenced ecogeomorphological evolution (see Figure 2.2). Most prominently, channelisation of 

the lower course and dredging of the main channel for navigational purposes have served to confine 

channel flow largely to the North bank creating greater flood-dominant conditions on either side 

(Johnson, 1985; Van der Wal and Pye, 2003). Combined with embanking and reclamation on both 

North and South banks, the consequence of the anthropogenic modifications has been to enhance 

the natural tendency for the estuary to import sediment from the adjoining nearshore and coastal 

areas (Halcrow, 2013). This enhanced net accumulation has led to progressive saltmarsh expansion 

on the South bank at Crossens in particular, resulting in considerable variability in saltmarsh age and 

ecogeomorphological characteristics (Van der Wal et al. 2002). 
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Figure 2.2. Geomorphological evolution of Ribble estuary from 1737 to 1967. 

(Williams and Webb, 1848; Port of Preston Authority, 1904; UK Hydrographic 

Office 1951 and 1994 in Van der Wal and Pye, 2002) 
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2.3 - Carbon Storage 

At present there are two published examples of research that concerns the influence of human 

saltmarsh modification and the subsequent effects on carbon stocks and cycling in the estuary. The 

study of Olsen et al. (2011) demonstrated that long-term grazing by cattle in the Ribble had led to 

changes in the: structure and composition of the saltmarsh plant community, abiotic conditions of 

the sediment as well as soil microbial biomass and respiration. This was found to have subsequently 

increased microbial immobilisation of carbon and slowed carbon cycling, ultimately affecting the 

duration of carbon storage within the marsh sediment.  

The research of Ford et al. (2012) also highlighted links between grazing intensity, vegetation 

characteristics and carbon storage throughout the Ribble saltmarshes. The overall conclusion was 

that grazing resulted in lower above-ground carbon storage in the living biomass but contrastingly 

corresponded with higher sub-surface organic sediment carbon stocks. Whilst the inverse 

relationship between above-ground biomass carbon storage and grazing intensity was attributed 

purely to livestock biomass consumption, Ford et al. (2012) reasoned the increased sub-surface 

carbon was a product of cattle trampling and compaction that resulted in the creation of an anoxic 

environment in grazed areas. Consequently, decomposition rates were reduced in grazed areas 

resulting in comparatively greater sub-surface carbon stocks, compared to the well-aerated, free-

draining sediment of the un-grazed marsh. 

Whilst these findings are not of direct use to this study, they do indicate variability in carbon storage 

within the above-ground living biomass and sub-surface organic sediments. Ford et al. (2012) also 

highlighted the localised variability in the spatial distribution of species such as Elymus repens and 

Juncus gerardii which characterise different marsh sub-environments with variable carbon storage 

capacities, exhibiting the heterogeneity of the saltmarsh environment as a whole. Overall, both 

studies indicated that a multitude of factors including environmental change could potentially 

influence the sustainability of the substantial carbon stocks of the Ribble saltmarshes. 

 

2.4 - Future Change 

According to current projections, the Ribble estuary is likely to evolve geomorphologically and 

ecologically as a result of the influence of climatic change in the 21st century (Halcrow, 2010a, 2010b 

& 2013). The influence of progressive SLR as well as the changing nature of Irish Sea storm surges 

are described by the Halcrow Consultancy (2013) as the most likely factors to catalyse this evolution, 
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although the long-term impacts on saltmarsh characteristics of these influences are surrounded by 

considerable uncertainty. 

Due to the constrictions on marsh migration imposed by man-made structures, there is the potential 

that SLR driven saltmarsh loss and degradation will occur in the Ribble, should the current coastal 

management policy remain unchanged (Holden, 2008; Halcrow, 2013). The most recent projections 

named the 2018 United Kingdom Climate Projections (UKCP 18) which take into account localised 

(25 km2) variability in glacial isostatic adjustment and include a regional thermosteric model, 

highlight that a relative SLR of between 0.31 m (representative concentration pathway (RCP) 2.6 – 

50th percentile) and 0.63 m (RCP 8.5 – 50th percentile) could occur by 2100 (Church et al. 2013; 

Palmer et al. 2018). There is also the potential for a sea level rise of 2.01 m by 2100 (H++ high 

scenario 1 - Pfeffer et al. 2008), although unlike the UKCP 18 estimates, these projections are not 

specific to the Ribble estuary (Pfeffer et al. 2008) (see Appendix Section A for all projections). 

However, even under the lowest UKCP 18 scenario, the predicted rate of SLR in the region will most 

likely be greater than between 1900-2000 (see Figure 2.3). Therefore, predicting how the 

saltmarshes of the Ribble will respond to this enhanced SLR can only be achieved through a 

modelling-based approach which encompasses the temporal and spatial uncertainties of SLR 

projections (e.g. Horton et al. 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3. Annual mean high-water values at the Port of Liverpool from 1768 to 1999. The curve 

shown is a linear trend which highlights the nodal variation in tidal cycles and the progressive SLR 

(Woodworth, 1999). 
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Although uncertainty surrounds future marsh response modelling, even under the lowest plausible 

scenario SLR could result in a reduction in saltmarsh area by 2100 (Halcrow, 2013) (see Section 3.4). 

The most recent research concerning SLR in the Ribble conducted by Halcrow Consultancy (2010a), 

considers how SLR will influence the balance between sediment supply and relative SLR (Reed et al. 

1995). The findings highlighted that there is no evidence that sediment supply will significantly 

increase or diminish over the next 100 years, and so the quantity of available sediment should 

remain relatively consistent in the estuary. Moreover, subsequent modelling of the impacts of SLR 

within the coastal cell indicates that there is a potential for increased flood dominance and sediment 

transport into the estuary (Halcrow, 2013). However, it is acknowledged that the influence of this 

potential increase in sediment delivery on accretion will depend on localised hydrological and 

geomorphological processes, and therefore it cannot be assumed that sediment delivery will 

universally increase as sea level rises (see Section 3.4) (Halcrow, 2013) 

The ecological and geomorphological impact of future SLR is further complicated by the influence of 

relative SLR on tidal dynamics and range in the Ribble which could lead to a comparative 20% 

increase in mean sea level in the inner Ribble should the regional sea level rise by 0.5m (Halcrow 

2010b). Whilst this could increase the potential for submergence and possible carbon loss, the 

influence of relative SLR could increase flood dominance in the estuary resulting in net accretion 

(Halcrow, 2013). In summary, there is evidence to suggest the saltmarshes of the Ribble could either: 

accrete, submerge or remain in equilibrium as a result of relative SLR, although contemporary 

research published by Horton et al. (2018) suggests there is >80% positive tendency of marsh 

submergence, degradation and retreat in Liverpool Bay by as early as 2020 under the RCP 8.5 

scenario. Given this range of tenable scenarios and the likelihood of saltmarsh submergence and 

degradation in the region, it is important to predict the potential carbon losses under different 

submergence scenarios.  
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Chapter 3 – Research Rationale and Literature Review 

 

3.1 - The Value and Characteristics of Saltmarshes 

3.1.1 - The Importance of Saltmarshes 

Saltmarshes are highly diverse environments that provide a range of benefits from coastal flood 

defence to ‘blue carbon’ storage which are collectively termed ecosystem services (Constanza et al. 

1997; Barbier et al. 2011; D'Alpaos et al. 2019). Whilst ecosystem services such as flood defence and 

wetland habitat provision are clear regional benefits, saltmarshes are also globally significant as they 

are highly efficient long-term carbon stores that play a key role in climatic regulation (Chmura et al. 

2003; Mcleod et al. 2011; Johnson et al. 2016). Unlike other environments which serve as efficient 

carbon stores, the abundance of sulphate in saltmarsh sediments also hinders the production of CH4 

making them negligible sources of methane and potential carbon sinks (Magenheimer et al. 1996; 

Beaumont et al. 2014; Otani and Endo, 2019).  

However, there is a strong potential that temperate saltmarshes and their carbon stores will become 

increasingly vulnerable to submergence resulting from SLR in the 21st century (e.g. Cahoon et al. 

2006; Craft et al. 2009; Horton et al. 2018). This could lead to saltmarshes transforming into carbon 

sinks and contributing towards an increase in global atmospheric carbon concentrations and 

therefore the exacerbation of global warming (e.g. DeLaune and White 2012; Hopkinson et al. 2012; 

Crosby et al. 2016). Therefore, it is essential to improve the understanding of carbon storage 

dynamics within saltmarsh environments so well-informed predictions concerning the contribution 

of saltmarsh carbon to future climate change can be made. 

3.1.2 - Saltmarsh Characteristics and Dynamics 

The temperate maritime climate of North West Europe creates conditions that are highly suitable for 

saltmarsh development which has resulted in saltmarshes becoming prominent geomorphological 

coastal features (Maddock, 2008; Foster et al. 2013). These marshes have two key geomorphological 

characteristics: 

1) A convex, planar, or concave vegetated platform high in the tidal frame that is regularly 

flooded by the tide (Allen, 2000). This surface typically rises progressively with distance from 

the marsh edge and hosts a range of halophytes with differing salinity tolerances (Suchrow 

and Jensen, 2010; Belliard et al. 2017). 

2) A dendritic network of tidal channels that dissect the marsh surface which are generally 

unconnected and diminish as they progress inland toward the interior of the marsh from the 
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seaward edge (Townend et al. 2011; Kim et al. 2013). However, it is also possible that these 

creek networks may connect with fluvial inflows creating brackish channels that transport 

sediment and nutrients from both tidal and fluvial environments (Alber, 2002; Colon-Rivera 

et al. 2012). 

 

As a result of their geomorphological characteristics, vegetation colonisation patterns are dictated 

by a combination of salinity induced stress and species competition which results in spatial 

variability in species land cover and carbon storage (Cacador et al. 2004; Silvestri et al. 2005 Owers 

et al. 2018) (see Section 3.2). 

In estuarine saltmarshes the sediment is often comprised of coarser silts and sands than is found in 

back-barrier and fringing saltmarshes as the majority of sediment is sourced from marine deposits in 

areas of high energy around the estuary mouth (Dalyrymple and Choi, 2007; De Groot et al. 2011). 

Moreover, distinctive coarse-grained horizons marking previous storm surges are often present 

within the saltmarsh stratigraphy (e.g. Tsompanoglou et al. 2011; Swindles et al. 2018). The extent 

of deposition from either fluvial or tidal sources is often substantially influenced by the geological 

setting and human modification of the estuarine environment (e.g. Allen and Pye, 1992; Adam, 

2002; Gedan et al. 2009). The effect of such geological or manmade structures on accretional and 

erosional trends can dictate ecogeomorphological evolution and transform the morphology of an 

estuary (Pethick, 1992; French, 2006; Freiss et al. 2012) 

3.1.3 - Carbon Storage in UK Saltmarshes 

Active saltmarshes are widely distributed throughout the UK covering an estimated 656 km2 

(Boorman et al. 2003). Therefore UK saltmarshes are significant contributors to global carbon 

storage and their evolution has the potential to impact upon future climatic change (Beaumont et al. 

2014). 

Although SLR remains a key influence on saltmarsh evolution in UK marshes, their 

ecogeomorphological characteristics have been fundamentally altered due to previous human 

estuarine modification (Allen, 1997; Allen and Pye, 2002; Gedan et al. 2009). This combined human 

and ecogeomorphological variability contributes to spatial and temporal variability in carbon storage 

within and between UK saltmarshes (Boorman et al. 2003; Olsen et al. 2011). To understand why 

this variability exists it is important to consider the factors that influence the ecogeomorphological 

characteristics of a saltmarsh. 

 



 

12 
 

3.2 – Saltmarsh Species Distribution and Surface Dynamics 

3.2.1 – Controls of Species Distribution 

UK saltmarshes are highly diverse environments that contain multiple sub-environments or zones 

that are defined by the presence of specific species with different salinity tolerances (Boorman et al. 

2003; Foster et al. 2013). This species zonation has been hypothesised to be controlled by salinity 

exposure which is determined by the variability of elevation and hydroperiod throughout the marsh 

(e.g. Williams et al. 1994; Plater and Rahman, 2014). According to this ‘ramp’ theory of zonation, a 

distinct halophyte species zonation is produced in accordance with the relative elevation of different 

tidal levels (see Figure 3.1) (Flowers and Colmer, 2008). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. illustrates that the lower marsh sub-environment is usually characterised by inter-tidal 

species with high salinity tolerances such as Spartina Anglica which can withstand the physical stress 

imposed by frequent saline inundation (Silvestri et al. 2005). In contrast, the less frequently 

inundated higher marsh, is colonised by less tolerant halophytes such as Festuca Rubra which are 

able to outcompete lower and middle marsh species such as Atriplex Portulacoides as salinity stress 

no longer dictates species variability (Pennings et al. 2005; Colmer and Flowers, 2008).  

The result of this stress and competition-induced species zonation is a theoretical spatial variability 

in the carbon capacity of differing saltmarsh sub-environments (e.g. Cacador et al. 2004; Zhou et al. 

 

Figure 3.1 Theoretical variation of species distribution on a typical temperate saltmarsh on the 

‘tidal ramp’. Modified from Williams et al. 1994. 
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2007). This is controlled by the organic production of the zone-specific species and the rate and 

nature of sediment deposition (Teal, 1962; Bai et al. 2016). As living biomass carbon stock is 

estimated to be 47% of total dry biomass (Peh et al. 2017), species type and abundance has a direct 

effect on the carbon storage content of a marsh (Garcia et al. 1993; Cacador et al. 2004). The 

variability of species type also has a significant impact on sub-surface carbon storage potential which 

is discussed in section 3.4. 

 

3.2.2 - Internal Influences on Ecology and Geomorphology 

Although differences in saltmarsh vegetation between the lower and high marsh are commonly 

observed in estuarine saltmarshes, creek structures and inflow streams also produce spatial 

ecogeomorphological variability (Pennings & Callaway 1992; Brewer et al. 1997; Kim et al. 2012). The 

result is highly variable species diversity and distribution which is specific to the individual marsh 

creating a unique ‘mosaic’ pattern (Adam et al. 1990; Boorman et al. 2003) (See Figure 3.2). 

 

 

 

 

 

 

 

 

 

The ability of both creeks and inflow streams to act as internal sediment transport channels also 

means the watercourses act as veins of nutrient supply, leading to the establishment of specific 

species types on both creek benches and levees (French, 1993; Kearney and Fagherazzi, 2016). The 

influence of creek inflows significantly affects the ‘mosaic’ species distribution as creeks permit 

saline tidal water and thus tolerant halophytes to penetrate the upper marsh zones, creating specific 

sub-environment patterns around dendritic creek systems (Reed et al. 1985; Kim et al. 2013). This 

colonisation pattern alters both the accretional and erosional trends throughout the saltmarsh (e.g. 

 

  

Figure 3.2. Spatial variation of saltmarsh species in the Venice lagoon (Belluco et al. 2006). 
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van Eerdt, 1985; Boorman et al. 1998; Moller, 2006). Halophytes within the creek system and on the 

seaward edge of the marsh stabilise sediment and reduce erosion by dissipating wind-blown waves 

and reducing flow velocity (Van der Wal and Pye, 2004). This creates a lower energy environment 

favourable to deposition of both halophyte seeds and nutrients allowing distinctive creek 

communities to become established (Boorman et al. 2003; Moffett et al. 2012). Consequently, the 

rate of sediment interception increases due to the frictional effect of vegetation which results in 

enhanced levels of deposition, raising creek banks and forming characteristic creek benches and 

levees (Moller, 2006; Kim et al. 2016). 

This relationship between vegetation, energy dissipation and sediment interception is dependent on 

the unique environment and the exact species present however. Although an increase in the 

Manning’s coefficient of roughness ‘n’ of a surface increases energy dissipation and thus deposition 

rates, the rigidity of plant stems is also a key control on wave energy dissipation (Boorman et al. 

1998; Moller et al. 2014). This cumulative effect of vegetation interception on accretion rates over 

annual tidal cycles can result in a large variability in sediment organic and carbon content of 

different sub-environments (Pethick, 1981; Turner et al. 2002). 

Whilst creek benches enable landward encroachment of highly tolerant halophytes such as Suaeda 

maritima which favours the silt-sand sediment typical of creek margins (Cooper, 1982; Adam, 1990), 

seldom inundated, fertile creek levees permit seaward encroachment of higher marsh species (Kim 

et al. 2016). This creates distinct sub-habitats that are distinguishable in high-resolution satellite 

images (Hladik and Alber, 2014; Collin et al. 2018). The outcome is a high spatial variability in carbon 

stored within the predominant surface species throughout the marsh, whilst biomass abundance 

and carbon storage also varies spatially and temporally with meteorological change and tidal 

variability (Pennings and Callaway, 1992; Santilan et al. 2013). 

Salt pans are also key features of saltmarsh landscapes that influence and are influenced by 

vegetation distribution (Pennings et al. 2005; Escapa et al. 2015). These features can be 

characterised into two categories: primary pans which are roughly circular, flat bottomed pools; and 

channel pans, which are longer sinuous, sometimes branching pools (Pethick et al. 1974; Goudie, 

2013). Pans often develop irregularly in depressions throughout the marsh where ground saturation 

in the depression often results in exposed sediment becoming surrounded by vegetation creating an 

ill-defined embryo pan (Pestrong, 1965; Escapa et al. 2015). As a marsh matures and creek/inflow 

levees rise progressively as a result of net accretion, these waterbodies cease to receive a regular 

supply of water resulting in stagnation. Consequently, the waterbodies are only replenished during 

spring tides and during periods of high fluvial inflow so transform into isolated waterlogged brackish 

pans, creating poor conditions for plant growth. In periods of high evaporation during neap tides in 



 

15 
 

the summer the water becomes highly saline creating conditions that can only be withstood by the 

most tolerant of halophytes (Bertness et al. 1992; Shen et al. 2018). The presence of salt pans 

further contributes to the irregularity of the saltmarsh mosaic (Griffin et al. 2011; Kulawardhana et 

al. 2014) of vegetation and carbon distribution throughout a marsh. 

 

3.2.3 - External Influences on Ecology and Geomorphology 

It is acknowledged that a range of influences from livestock to channelisation can impact upon 

saltmarsh vegetation distribution and carbon storage (e.g. Olsen, 2011; Needles et al. 2015). Grazing 

wildfowl have been found to influence the mosaic pattern of species in saltmarshes, especially 

where farming or hunting is restricted or forbidden (Ankney, 1996; Pimental et al. 2014). A 

combination of the grubbing of roots and rhizomes of salt-marsh species leads to species loss 

creating spatial variability of biomass within a sub-environment (McLaren and Jefferies, 2004; Yu and 

Chmura, 2009). The use of the highly productive upper marsh over centuries for livestock grazing has 

also substantially influenced saltmarsh geomorphology and species composition (Allen and Pye, 

1992; Davidson et al. 2017). According to Bos et al. (2002) the ecological and geomorphological 

response to livestock grazing is largely species-specific as their study on Wadden Sea marshes found 

whilst grazing negatively influenced Atriplex portulacoides and Elymus athericus in contrast 

Puccinellia maritima and Festuca rubra became more abundant. However, the influence of grazing 

livestock is environment specific as they are restricted by creek location and slope, whilst the highly 

tolerant halophytes found of the less accessible lower marsh are often not directly affected (Nolte, 

2014).  

Grazing also influences the carbon storage potential of the surface sediment changes due the 

influence on microbial biomass and soil respiration rates (Olsen et al. 2011). However, the influence 

of grazing on carbon storage and sequestration is not uniform. The study of Ford et al. (2012) on the 

Ribble saltmarshes found carbon dioxide efflux was on average 87 mg m-2 h-1 greater in un-grazed 

marsh than the grazed marsh (mean of 333 mg m−2 h−1) throughout the year. Over a 100-year period 

the Global Warming Potential (GWP), calculated from mean yearly chamber fluxes for CH4 and CO2, 

did not differ significantly with grazing treatment and carbon efflux was instead positively correlated 

with the water table depth, sediment temperature and species type. Moreover, the research of 

Elschot et al. (2015) also suggested that compaction as a result of livestock grazing on mature 

marshes resulted in the creation of anoxic conditions in the marsh surface strata which reduced 

microbial organic decomposition and consequently minimised saltmarsh carbon loss rates. 
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Direct human environmental modification has also been shown to play a key part in determining 

ecogeomorphological evolution, substantially altering saltmarsh ecological and geomorphological 

processes (Allen and Pye, 2002; Atkins et al. 2016). Attempts to control and contain saltmarsh 

environments through diking and dredging of the lower course and main estuarine channels have 

been exhibited to significantly alter tidal symmetry which consequently affects erosional and 

accretional trends (e.g. Browne, 2017; Schepers et al. 2018). Channelisation and land reclamation 

considerably influence the tidal cycle and with consequent effects on the distribution of nutrients 

and species colonisation patterns (Moore et al. 2009; Muller-Navarra et al. 2016). According to 

Andrews et al. (2000) land reclamation was responsible for a >99% reduction in saltmarsh area and 

carbon storage capacity in the Humber Estuary when compared to the paleo-estuary 3-2 cal. ka BP 

(see Figure 3.3). On a larger scale Connor et al. (2001) stated that if all previously reclaimed areas in 

Canada were to revert to saltmarsh, the 2.4 - 3.6 x 1011 g C yr -1 likely to be sequestered would be 

equivalent to 4-6% of Canada's targeted reduction of 1990-level emissions under the Kyoto Protocol. 

In summary, a combination of external influences have substantially influenced the ecology and 

geomorphology of UK saltmarshes, serving to alter the current and past carbon storage potential of 

living biomass and sub-surface sediments. Therefore, it is important to consider these influences 

when analysing spatial and temporal change in carbon storage in a unique saltmarsh environment. 
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Figure 3.3. Reduction in saltmarsh area in the Humber Estuary between 3-2 cal. ka 

BP (a) and present (b). Although low and high saltmarsh areas were present in 2000 

at the landward fringes of the intertidal zone they are too small to be identified at 

this scale (Andrews et al. 2000). 
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3.3 – Sub-Surface Dynamics 

3.3.1 - Storage Potential 

Although the living biomass acts as a significant store and influences the rate of carbon burial and 

removal, the carbon stored within the living vegetation often represents a low proportion of the 

total carbon stored within the environment (Rabbenhorst et al. 1995; Livesley and Andrusiak, 2012). 

Whilst the disparity been carbon density stored within the sediments and above-ground living 

biomass is dependent on the geomorphological history of a saltmarsh (Bridgham et al. 2006), in 

many saltmarshes significant accretion of organic-rich sediments over time results in sub-surface 

carbon totals exceeding carbon stored in the living biomass (Zedler, 2000; Adam, 2002; Baustian et 

al. 2012). However, it is also possible underlying minerogenic layers perhaps representing previous 

sand-dominated beach/estuarine environments, can possess lower carbon storage capacities than 

the living above-ground vegetation (Adam, 1990; Wigand et al. 2015). 

The periodic sediment and mineral deposition that stimulates a high rate of organic productivity at 

the surface (Kelleway et al. 2016) results in the formation of organic and carbon-rich sediment strata 

compared to the majority of terrestrial environments (Chmura, 2013). Sediment oxygenation is also 

generally far lower than in terrestrial environments as sediments remain semi-saturated, primarily 

because their topography is rarely conducive to rapid drainage but also due to the low sediment 

hydraulic conductivity (Adam, 1990; Xin et al. 2017). The retention of saline water from the flood 

tide and fresh water from fluvial courses results in the saturation of the surface organic-rich 

sediments which serves to inhibit oxygen delivery creating an anoxic environment (Colmer et al. 

2013). Therefore, decomposition rates are reduced and carbon is retained and gradually integrated 

into successive layers, rendering saltmarsh environments highly efficient carbon stores (Kelleway et 

al. 2016).  

However, the overall carbon storage and density throughout the marsh is highly variable (e.g. 

Cacador et al. 2004; Zhou et al. 2007). Whilst the lower marshes and creek bench areas are 

inundated most frequently, the middle and high marsh environments are also significant carbon 

sinks as the majority of the transported sediment and organic matter is retained after flooding 

compared to the lower marsh (Dankers et al. 1984; Bouchard et al. 2003; Li et al. 2010). As a 

consequence of this, limited nutrient loss and periodic replenishment, the middle-higher marsh is 

often the most productive and most densely vegetated (Nixon, 1980; Roner et al. 2016). However, 

the presence of creeks and other waterbodies results in the extension of more tolerant halophytes 

into the higher-middle marsh as the hydroperiod increases around the low-lying areas within the 

dendritic networks defined as ‘creek benches’ (see Figure 3.1) (French and Stoddart, 1992). The 
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result of this is a highly localised spatial variability in both species distribution and carbon storage 

around creek environments that form the saltmarsh ‘mosaic’ (Mudd et al. 2009; Couto et al. 2013). 

3.3.2 - The Active and Fossil Layers 

To accurately assess the carbon stores which could be potentially affected by external influences it is 

key that a consistent distinction is drawn between the sections of the marsh that directly respond to 

external processes and those which are not influenced or affected to a lesser extent. When an 

external influence such as SLR or anthropogenic modification prompts geomorphological evolution, 

the directly connected ‘active’ section may regress or transgresses over the ‘fossil’ layer depending 

on the geomorphological response (Allen, 1990) (see Figure 3.4). This has clear implications on 

saltmarsh carbon storage capacity as carbon storage change should largely result from active section 

response, whereas the carbon stored within the fossil layer should theoretically remain largely 

undisturbed (Fagherazzi et al. 2012; Theurkauf et al. 2015). In the context of this study the ‘active 

section’ is defined as the section of the marsh most likely to respond to the forcings of external 

processes which drive geomorphological and ecological evolution. It is comprised of the above-

ground living biomass and the active surface layer. The depth of the active layer varies between 

saltmarsh sub-environments as it is defined by sediment OCD. Specifically, the maximal depth is 

marked by the depth at which an exponential decrease in sediment OCD occurs which usually 

coincides with the depth at which undecomposed organic material is found in the sediment. This 

indicates the depth that a clear ecogeomorphological connection between the above-ground 

biomass and sediment persists to (Mishra et al. 2009; Bai et al. 2016). In this study the mean active 

layer depth ranges between 6 – 39 cm between the different sub-environments (see Sections 4.3.1.2 

and 4.3.2.2 for methodology). 

In contrast, the fossil layers represent a previous environment which may have had different 

sedimentological and organic characteristics. This layer is not directly ecogeomorphologically 

connected to the surface environment so is therefore not as likely to immediately respond to the 

forcings of external processes (Rahman and Plater, 2014). Whilst it is acknowledged that processes 

as broad as marine transgression or as localised as bioturbation have the potential to alter the 

ecogeomorphological characteristics and therefore carbon storage capacity of sub-surface horizons 

(Allen, 1990; Kostka et al. 2002; Hughes et al. 2009), taking the approach that the active section only 

comprises the above-ground living biomass and the directly connected active surface layer ensures 

that study does not assume any unproven ecogeomorphological connections between sub-surface 

horizons.  
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Although it is likely carbon content and density would commonly be higher within surface strata 

(Cacador et al. 2004; Bai et al. 2016), in an environment that has rapidly transformed from an 

intertidal beach to a saltmarsh, discontinuities in the stratigraphy can occur in the form of narrow 

coarse-grained sediment deposits which are potentially indicative of past high energy events (Roman 

and Daiber, 1989; Elhers et al. 1993; Leonardi et al. 2017). Therefore, it is key that the 

correspondence between sediment carbon content and sediment consistency is assessed 

throughout the entire core to distinguish between the active section and fossil layers (Leatherman, 

1985; Beeftink and Rozema, 1993; Goman et al. 2008) (see Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Conceptual model of the active section and fossil layers within a theoretical 

saltmarsh environment (a) and their response to SLR (b). The difference indicated by the 

arrow is the lateral distance of active layer theoretically lost as a result of SLR. 
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3.3.3 - Sequestration Potential 

Whilst the active section has significant carbon storage potential (Siikmaki et al. 2013; Beaumont et 

al. 2014), saltmarshes are also recognised as key environments of carbon sequestration (Callaway, 

2012; Burden et al. 2013). The high rate of atmospheric carbon uptake is a result of their high 

biological productivity and their partially anoxic nature, rendering many saltmarshes carbon sinks 

(McLeod et al. 2011). However, the uncertainties surrounding the calculation of carbon 

sequestration throughout an entire marsh are greater than the uncertainties concerning current 

carbon storage (Howe et al. 2009). Such uncertainties are further exacerbated when predicting 

future change in sequestration rates as the ecological responses of different species to regional 

meteorological change must also be additionally factored into calculations along with other 

climatically dependent variables (Scavia et al. 2002; Craft et al. 2009). Therefore, research assessing 

how carbon storage may change under different SLR scenarios is subject to considerably less 

uncertainty than a study that incorporates both storage and sequestration (e.g. Cacador et al. 2004; 

Zhou et al. 2007; Burden et al. 2013), hence the emphasis on carbon storage in this research. 

3.4 - Sea Level Rise and Marsh Evolution 

The influence of SLR on temperate saltmarshes is a topic that has been extensively analysed over the 

past 30 years, however, there are varying predictions of saltmarsh response to SLR ranging from 

submergence to equilibrium and expansion (e.g. Park et al. 1989; Allen, 1995; Cahoon et al. 2006). 

This highlights how saltmarsh response is both environment and scenario dependent (Reed, 1995; 

Donnelly and Bertness, 2001; Temmerman et al. 2016). As is exhibited in the following section, the 

evidence which suggests saltmarshes will accrete as a response to SLR is heavily outweighed by the 

volume of research pointing to the increasing vulnerability of saltmarshes to submergence and 

degradation as sea level continues to rise (e.g. Morris et al. 2002; Horton et al. 2018). 

3.4.1 - Predicting Geomorphological and Ecological Response 

The response of a saltmarsh to SLR is ultimately determined by the balance between sedimentation 

and SLR which dictates whether a coastal marsh accretes, remains in equilibrium or submerges 

(Reed et al. 1995; Morris et al. 2002). However, the mechanisms controlling sedimentation in marsh 

environments are dictated by the relationships between the key controlling factors: hydroperiod, 

sediment deposition and vegetative growth (see Figure 3.5). There is also variability in response 

within the marsh itself as different sub-environments, comprised of various halophytes, respond in a 

non-uniform manner which can lead to localised responses and vulnerability to SLR (Van Wijnen and 

Bakker, 2001; Feagin et al. 2010). 



 

22 
 

   

 

3.4.2 - Submergence 

According to key conceptual models, when sea level rises at a greater rate than a marsh vertically 

accretes, the hydroperiod will increase, leading to an increase in the elevation that certain tidal 

heights reach (Fitzgerald et al. 2008; Day et al. 2011). This results in the inundation of previously 

submerged areas to a greater depth depending on the individual marsh gradient, topography and 

the rate of localised SLR (Fagherazzi et al. 2012; Cahoon, 2015).  

As a consequence of the increased height and duration of inundation, halophytes at certain 

elevation intervals on the saltmarsh experience a progressive increase in exposure to sodium 

chloride (Donnelly and Bertness, 2001; Morris et al. 2002). Moreover, prolonged periods of 

saturation of the top surface strata may prevent adequate nitrogen uptake by plants and induce 

sulphide toxicity in Spartina species which often dominate the lower section of UK marshes such as 

the Ribble (Gray et al. 1991; Boorman et al. 2003; Halcrow et al. 2013).  Consequently, formerly 

colonised areas at low elevations gradually submerge and become uninhabitable for even highly 

tolerant halophytes such as Spartina anglica and Salicornia europaea (French, 1993; Cahoon et al. 

2006). However, there would theoretically be no net marsh or carbon storage loss if the entire 

saltmarsh was able to progressively migrate landward and re-establish itself at higher elevations. In 

reality however, either geological structures or dikes often prevent uniform migration leading to the 

process of ‘coastal squeeze’ and a rate of saltmarsh loss which is approximately proportional to the 

Figure 3.5. The interaction of sea-level rise, hydroperiod, depositional processes and vegetation 

on saltmarsh accretional response to SLR (Reed et al. 1995). 
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rate of relative SLR (Doody, 2004). This occurs as the most biologically-productive species of the 

middle-higher marsh such as Festuca Rubra and Phragmites Australis are unable to migrate to areas 

of higher elevation and are therefore lost along with the ecosystem services they provide (Warren 

and Niering, 1993; Boorman, 2003; Feagin et al. 2010). 

Submergence can also prompt internal dissection and headward extension of the creeks instigating 

widespread degradation particularly in the middle-upper marsh where saltmarsh adjustment is often 

constrained by geological or man-made structures (Van der Wal and Pye, 2004; Hughes et al. 2009). 

This initial decolonisation and degradation leaves the formerly protected anoxic active organic layers 

vulnerable to erosion leading to a carbon storage loss in the former lower marsh and creek 

sediments as the marsh regresses (Theuerkauf et al. 2015). As a result of this, a strong positive 

feedback cycle is formed (Long et al. 2006), where the marsh continues to degrade as local RSL rises 

(Delaune et al. 1994; Watson et al. 2017). Consequently, saltmarsh plant communities may be 

irreversibly damaged, leading to a potential transition to a mudflat environment as the area is 

gradually submerged and becomes unsuitable for halophyte colonisation (French, 1993; Roman, 

2012; Crosby et al. 2016). 

Although marsh vulnerability to submergence is scenario and locality dependent (Simas et al. 2001; 

Cahoon et al. 2006), the coupling of estimated probabilities of marsh retreat with projections of 

future relative SLR suggests that UK tidal marshes are highly vulnerable to degradation in the 21st 

century (Nicholls et al. 2007; Spencer et al. 2016). If the highest plausible SLR predicted in the IPCC 

RCP 8.5 scenario occurs, by 2100 it is estimated that there will be a >80% probability of saltmarsh 

retreat in Britain (Horton et al. 2018), which would substantially impact on the national saltmarsh 

carbon storage. 

3.4.3 - Equilibrium and Accretion 

In contrast to the submergence theory, select conceptual models and predictions suggest vertical 

accretion on temperate saltmarshes will match or even exceed SLR (e.g. Stralberg et al. 2011; 

Rodgers et al. 2012). Kirwan et al. (2016) argue that catastrophic predictions of marsh loss in 

response to future SLR are difficult to defend on the basis of observed marsh responses to historical 

SLR. According to Kirwan et al. (2016), saltmarshes across Europe and North America kept pace with 

a progressively increasing rate of SLR of >2m over the past 4,000 years ago, highlighting high 

saltmarsh resilience and adaptability (Kemp et al. 2013). It has also been reasoned that incidents of 

marsh loss within the past 500 years have been largely a result of anthropogenic alteration of tidal 

estuaries which has severely restricted sediment supply and vertical accretion, as opposed to the 

sole effect of SLR (Mudd, 2011; Schuerch et al. 2018). 
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Morris et al. (2002) and Kirwan and Gutenspergen (2012) also highlighted that the productivity of 

several marsh plant species tends to increase with relative SLR due to the enhanced level of nutrient 

deposition which fertilises the environment. The secondary effects of this increased organic 

production theoretically include the further enhancement of soil structure and the formation of a 

denser vegetational canopy which encourages deposition and reduces erosion leading to potential 

marsh growth and expansion (Langely et al. 2009; Temmerman, 2012). 

3.4.4 - Influence of Relative Sea Level Change 

In areas where isostatic uplift exceeds SLR, accretion is likely to reduce as the hydroperiod decreases 

in correspondence with the rate of relative SLR fall (Ward et al. 2016). The result is that sodium 

chloride exposure reduces along with tidal nutrient deposition and delivery to saltmarsh species. 

Consequently, there is a gradual replacement of tolerant halophytes such as Puccinellia maritima 

and Sailicornia europea with higher-mid marsh types such as Agrostis stolonifera, Festuca rubra and 

dicotyledonous plants as the species distribution becomes gradually less dictated by saline stress 

(Pennings et al. 2005; Barnett et al. 2015).  

However, as the North-west of England is estimated to be subsiding at a constant rate of c. 0.21 mm 

yr-1 (Dawson et al. 2001; Shennan and Horton, 2002; Shennan et al. 2018) and local sea level is 

projected to rise by approx. 3.5 mm yr-1, even under the low RCP 2.6 SLR scenario it is highly unlikely 

that local RSL fall would occur (Palmer et al. 2018). Therefore, as the expansion of saltmarshes over 

tidal flats is unlikely except when relative sea level is falling or gradually rising, the majority of 

contemporary geomorphological observations suggest that marsh retreat in North West England 

will be more likely than marsh expansion (e.g. Wolters et al. 2005; Nicholls et al. 2007; Horton et 

al. 2018). 
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3.5 - Summary 

This review highlights the global importance of saltmarshes as carbon stores and climatic regulators 

as well as the issues surrounding their future sustainability. The influence of a combination of 

intrinsic and extrinsic variables has been exhibited to result in unique ecogeomorphological 

development of estuarine saltmarsh environments, producing variability in the carbon distribution 

and storage capacity both between and within saltmarsh environments. Most prominently, the 

impact of SLR will instigate geomorphological change and potentially the degradation of UK 

saltmarshes. This will most likely lead to degradation and reduce their ability to act as carbon stores. 

In order to model and quantify this potential loss it is firstly key to independently assess the 

variability in carbon storage within the active section of a saltmarsh. In order to address this, an 

accurate analysis of carbon storage variability within an individual saltmarsh is required. Suitable 

methods to achieve this are discussed in Chapter 4 (Methodology).  
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Chapter 4 - Methodology 

4.1 Introduction 

This study combines a series of methods to quantify and assess the distribution of the carbon stored 

within the saltmarshes of the Ribble estuary. The approach combines remote sensing analysis with a 

field and laboratory assessment drawing upon a range of techniques which are described and 

explained in this chapter. The relationships between the processes and their connection to the 

overall project aims are summarised in Figure 4.1. 

4.2 Spatial Analysis 

4.2.1 - Elevation Analysis 

To determine the spatial variability in elevation over the saltmarshes of the Ribble estuary a digital 

elevation model (DEM) for the area was rendered utilising Lidar (light detection and ranging) point 

cloud data. This is a surveying method that measures the distance to a target by illuminating the 

target with pulsed laser light and measuring the reflected pulses with a sensor (ESRI, 2018a). 

Measurements of the differences in laser return times are used to produce 3D point cloud data 

which can subsequently be converted into 2.5D digital elevation models of the surface (Pack et al. 

2012). 

The Lidar data used in this study was sourced from an Environment Agency 2012 survey from EDINA 

Digimap which was the highest resolution (0.25 m) survey with the most extensive spatial coverage. 

However, two separate distorted areas on marshes C and D collectively comprising 4.1% of the total 

marsh area were identified and excluded from the analysis. Whilst, the topography of the Ribble will 

have evolved over the 8 years since the Lidar survey and the commencement of this study, recent 

assessments of the Ribble suggest that significant geomorphological and ecological evolution during 

this period has not been observed and is highly unlikely (Halcrow et al. 2013). Therefore, the DEM 

utilised is likely to most accurately represent the current spatial variability in elevation over the 

saltmarshes of the Ribble, enabling the determination of subtle changes in elevation and gradient. 

Moreover, although data of this quality and resolution has been available in select UK locations, 

relevant published studies in the locality have only utilised manual levelling techniques to identify 

variability in elevation (Gray et al. 1979; Marks and Truscott, 1985). Whilst levelling is accurate, it 

does not provide a comprehensive assessment of the spatial variability in elevation across an entire 

saltmarsh, hence the use of Lidar makes this study the most comprehensive assessment of the 

influence of: elevation, gradient and creek distance on the spatial distribution of vegetation in the 

marsh environment to date.  
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Troels-Smith – Sediment 

Classification  



 

28 
 

In order to produce the DEMs of the Ribble estuary the point cloud data had to be firstly converted 

from the compressed LAZ format into uncompressed LAS format using the program laszip.exe so 

that it was compatible with the GIS software ArcMap (Isenburg, 2018). The LAS dataset was then 

converted into a DEM in a raster format with a cell size of 0.25 m using the ‘LAS Dataset to Raster’ 

tool to interpolate the data. Although the spatial variance in elevation could be observed due to the 

high resolution of the data, a slope model of an identical resolution was also created on ArcMap to 

exhibit spatial variability in gradient. 

 

4.2.2 - Landcover Classification 

The decision was taken to use high spatial resolution imagery (0.25 m) with three spectral bands (R-

G-B) over imagery with a lower spatial resolution (e.g. 10 m) but more spectral bands (e.g. Sentinel-2 

satellite imagery) (Digimap, 2018; ESA, 2018). This was because the high spatial resolution of the 

aerial imagery allowed differentiation between details on small scales (0.25 m). This was essential to 

the study, despite the reduced ability to differentiate between very subtle differences in reflectance 

values (colour) (Rocchini, 2007). Individual 1 km2 tiles were amalgamated using the ‘Mosaic’ tool on 

ArcMap allowing a uniform landcover classification to be carried out so the areal extent of the 

different species/landcover types that comprised the saltmarsh could be identified. 

The image classification process involved the classification of multi-band raster imagery into a single-

band raster with categories that indicated different types of land cover. Due to the use of 3-band 

aerial imagery and the high similarity in reflectance values among saltmarsh landcover types, it was 

decided after experimentation that a ‘supervised’ maximum likelihood (ML) classification was more 

appropriate than the alternative ‘unsupervised’ classification as a means to identify spatial variability 

in landcover. The ‘supervised’ classification method required the mosaiced image to be classified 

using spectral signatures representing reflectance values that were obtained from training samples. 

The training samples consisted of manually digitised polygons comprised of pixels with a range of 

reflectance values (ESRI, 2018). Overall eight different landcover types were classified using this 

technique as this enabled the ecologically and geomorphologically distinct sub-environments to be 

determined. The ‘supervised’ classification of each sub-environment was automatically determined 

by the best fit of the spectral distribution to the values of each class. 
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Although Goodwin et al. (2018) demonstrated an unsupervised classification using Topographical 

Identification Platforms (TIPs) could potentially be used to distinguish between saltmarsh sub-

environments at different elevations, a supervised classification was selected because the majority 

of the researched published during the time of the remote analysis highlighted supervised analyses 

were more accurate in wetland environments (Thomson et al. 1998; Shalaby & Tateishi, 2007; 

Martin et al. 2014). On the completion of the ML classification a landcover raster was produced with 

discrete categories and specific identification values for each determined landcover types. These 

landcover categories were initially given non-species-specific names such as ‘Light green creek 

terrace vegetation’ as the exact species that comprised various sub-environments, termed ‘zones’, 

would be later determined after ground-truthing. The area of each landcover type within the marsh 

was then initially determined by multiplying the number of pixels representing areal cover by their 

area of 0.0625 m2 (0.25 x 0.25 m). 

 

Figure 4.2. The different stages of supervised and 

unsupervised classification processes (ESRI, 2018b). 
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4.2.2.1 - Uncertainty Analyses  

Although previous research exhibited that supervised ML classifications in wetlands environments 

have a high accuracy (>80%), the accuracy of classifications can vary between different 

environments (Ozesmi and Bauer, 2002; Zhang et al. 2011; Gosselin et al. 2014). Therefore, it was 

important to undertake an assessment of the accuracy/uncertainty of the ML classifications for each 

sub-environment and Ribble saltmarshes as a whole. Consequently, two uncertainty analyses were 

undertaken both remotely and in the field to verify the accuracy of the supervised classification and 

assess the uncertainty surrounding the landcover areal assessment. 

4.2.2.1.1 - Remote Uncertainty Analysis 

The remote uncertainty analysis was performed using ArcGIS using 2003 reference points which 

were randomly distributed throughout each sub-environment and the Ribble marshes as a whole. 

Each reference point was given an identification value for the sub-environment they represented 

and a stratified sampling method was employed so the number of points was approximately 

proportional to area covered by the sub-environment in each saltmarsh with a sampling point 

representing an area of 0.0145 km2. Reference points were then converted to a raster TIF format 

(format of the aerial imagery) before the ‘Combine’ tool was used to identify the correspondence 

between the identification values of reference pixels and the identification values of the discrete 

categories for each classified landcover type. 

Subsequently a quantitative assessment of the ML performance was undertaken using a confusion 

matrix. This enabled the determination of the classification accuracy for each landcover type and the 

overall accuracy, A: 

𝐴 =
 𝛴 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝛴 𝐴𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
 

A confusion matrix was produced to enable the classes erroneous reference points had fallen into to 

be identified and establish trends in errors between discrete classes. It also enabled the calculation 

of the Kappa coefficient (k) which describes the proportion of correctly classified validation sites 

after random agreements are removed (Rosenfield & Fitzpatrick-Lins, 1986) (see section 5.1.1 – 

Areal Quantification). This analysis was undertaken over the entire saltmarsh and on each of the four 

pre-defined marshes in order to establish whether any differences in landcover accuracy 

classification existed at different spatial scales. 

k was determined as follows: 

k = 
𝑃𝑟(𝑎) – (𝑃𝑟(𝑒)

1 − 𝑃𝑟(𝑒)
 

(1) 

(2) 
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Where – 

Pr(a) = Observed agreement rate = 
 𝛴 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝛴 𝐴𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
 

Pr(e) =  Hypothetical probability of = 
1

𝑁2
∑ 𝑛𝑘1𝑛𝑘2 …𝑘  

                                                                 chance agreement                     

Where –  

N = Number of land cover classifications 

nki  = Number of times i predicted category k 

          

4.2.2.1.2 - Field Uncertainty Analysis 

The second uncertainty analysis was the ground-truthing process where the variability in landcover 

was analysed in the field at pre-determined points evenly distributed throughout each marsh. Each 

site was determined to a vertical and lateral position of ~5 m due to uncertainties surrounding the 

handheld GPS measurements. As with the remote analysis the number of reference points were 

proportional to the area of the sub-environment, although due to practical constraints there were 

51 manual observations compared to 2003 remote observations. Once the reference sites were 

reached using GPS, photos and physical samples of each site were taken before the Stace (1997) 

vegetation classification was used to identify the species. This also enabled the species present in 

certain sub-environments to be classified (see Table 4.1).  

 

 

 

 

 

 

 

 

 

Subsequently the correspondence between the ML classification and ground observations was 

determined by comparing the consistency of the appearance of certain species throughout all 

saltmarsh environments. The overall accuracy of ML classification following ground-truthing was 

Pre-Fieldwork Classification 
Post-Fieldwork 
Classification - 
Species Zone 

Present Species 

Dark Green Higher Marsh 
Vegetation 

A 
Agrostis stolonifera, Atriplex portulacoides, 

Juncus gerardii, Armeria maritima 

Very light green vegetation B 
Festuca rubra, Elymus repens, Triglochin 

maritima, Tripolium pannonicum 
Mid-Green Lower Terrace 

Vegetation 
C 

Atriplex portulacoides, Puccinellia maritima, 
Cochlearia officinalis, Sueda martima 

Light Green Higher Terrace 
Vegetation 

D 
Puccinellia maritima, Agropyron pungens, 

Elymus repens 

Orange-Brown Vegetation E 
Spartina Anglica, Salicornia spp, Sagina 

maritima 

Unrecognised F Eleocharis uniglumis, Juncus gerardii 

 

Table 4.1. Comprising species of the six predominately vegetated sub-environments. 

(3) 

(4) 



 

32 
 

then calculated and erroneous trends between certain sub-environment/landcover types were 

identified (see Section 5.1 – Spatial Analysis of Landcover). A comparison between both remote and 

ground-based uncertainty analyses was then undertaken as exhibited in Section 5.1. 

 

4.2.3 - Variables Influencing Sub-environment Distribution 

As a high-resolution DEM had been produced and an accurate landcover classification had been 

undertaken it was possible to undertake a quantitative analysis of the key factors that influenced the 

spatial distribution of sub-environments and therefore carbon storage in the Ribble (see Section 

4.2). 

4.2.3.1 - Elevation and Gradient 

Using the ‘Extract by Mask’ function in ArcMap it was first possible to determine how elevation and 

gradient affected species spatial variability and distribution. This enabled the collection of data 

regarding both elevation and gradient for every pixel categorised by the ML classification to be in a 

certain sub-environment/landcover category. This data was subsequently exported into .txt format 

so that it could be read by R-studio. Utilising the C++ programming language, the elevation, gradient 

and watercourse proximity of the different sub-environments was quantitatively assessed and 

compared. Specifically, this involved the comparison and assessment of histograms and associated 

kernel density distributions concerning the elevation and gradient distributions of each species. This 

enabled a quantitative assessment of the elevation and gradient of each certain sub-environment 

throughout each marsh and the environment as a whole (see Section 5.2 – Influence of Elevation 

and 5.3 – Influence of Gradient).  

Although the kernel density and violin plots highlighted the different influences of the three key 

controls on the different marsh sub-environments these results did not reveal the relative influence 

of each key influence on sub-environment and consequently carbon distribution. Therefore, a 

multiple regression analysis was undertaken using SPSS primarily to produce beta coefficients 

(standardised and unstandardised) which are measures of how strongly each of the key controls 

(independent) influence sub-environment distribution (dependent). Specifically, this analysis 

enabled the determination of the t statistic and p value as well as unstandardised beta coefficient 

produced by regression analysis which represented the amount of change in a dependent variable 

due to a change of X units of the independent variable. This gave a quantitative indicator of the 

influence when compared with the raw data (i.e. elevation (mOD) or gradient (°)). Alternatively, the 

standardised beta values produced by the analysis were presented as units of standard deviation 
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(i.e. a beta value of 5 means indicates a change of one standard deviation in the independent 

variable will produce a change of 5 standard deviations in the dependent variable) permitting a 

direct quantitative comparison of the influence of the three key controls on the spatial distribution 

of the different sub-environments. 

4.2.3.2 - Watercourses 

To identify the influence of creek systems the ‘Hydrology’ toolkit in ArcMap was used. This firstly 

involved using the ‘Fill’ function to ensure that all erroneous artificial sinks and peaks in the 0.25 m 

resolution DEM were removed. A raster dataset indicating flow direction at 45° intervals (D8 flow 

direction) was then produced to determine the location of cells of water accumulation (see Figure 

4.3). This enabled the location of fluvial inflows and creeks to be identified.  

 

 

 

 

 

 

 

The subsequent flow accumulation raster was then modified from a ‘stretched’ ramp display view to 

a ‘classified’ format to enable one to distinguish between discrete arbitrary values of flow 

accumulation. After experimenting with the arbitrary flow accumulation value, it was decided that 

the value of 3500 was to be universally used as this value enabled all major creek systems and fluvial 

inflows visible in the digital imagery to be distinguished throughout the saltmarshes. This meant that 

all cells defined as watercourses had a minimal catchment area of 219 m2 (i.e. a minimum of 3500 

cells with an individual area of 0.625 m2). Using the ‘reclassify’ and ‘raster to polyline’ functions it 

was then possible to create shapefiles identifying the cells of water accumulation representing the 

watercourses. Following this an identical process using the ‘Euclidean Distance’ and ‘Extract by 

Mask’ functions was performed along with a statistical analysis in R-studio which was identical to 

those performed for elevation and gradient. This allowed a quantitative assessment of the control of 

watercourses on species distribution (see Section 5.4 – Influence of watercourses). The multiple 

regression analysis mentioned in 4.2.3.1 was repeated for watercourse proximity. 

 

 
Figure 4.3. Diagramatical representation of the flow direction model and the 

resultant flow accumulation raster (ArcGIS, 2018). 
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4.2.3.3 - Summary 

In summary, the GIS, R and SPSS-based analyses enabled a comprehensive assessment of the spatial 

variability of sub-environments based on their landcover type, whilst also permitting a quantitative 

assessment of the influence of: elevation, gradient and watercourse proximity on the spatial 

distribution of sub-environments. However, as the overall total carbon stored in a sub-environment 

and throughout the saltmarsh was a product of the areal coverage, active layer depth and active 

layer organic carbon density (OCD) it was important that the latter was accurately quantified and the 

uncertainty around OCD was determined (see Section 4.3). The OCD calculations were subsequently 

incorporated with the uncertainty assessments concerning area, depth and volume to determine 

projections for total carbon storage at present (Section 4.4) and under different future sea level rise 

scenarios (Section 4.5). 

 

4.3 - Field and Laboratory Analysis 

The field assessment undertaken on the saltmarshes of the Ribble was performed with the primary 

aim of accurately quantifying the carbon storage of the above-ground biomass and active layer 

sediment in the different sub-environments. This enabled the spatial assessment of both the 

contemporary distribution of carbon and organic production in the form of the above-ground 

biomass, but also the sampling of carbon in the active layer sediments enabled an assessment of 

how carbon storage had changed in the sediment record in differing sub-environments. By 

combining the two assessments the aim was to determine the overall carbon storage of the active 

section.  

As the principal purpose of the study was to assess the spatial distribution of sub-environments and 

carbon throughout the Ribble estuary, the primary requirement was to select an approved 

technique that would enable a standardised assessment of carbon stock in wetland and saltmarsh 

environments. Following a review of the potentially applicable methodologies it was decided the 

standardised procedures outlined in the Toolkit for Ecosystem Service Site-based Assessment 

(TESSA) (Peh et al. 2017) were most appropriate for the analysis. This was because the TESSA details 

methods for site-based sampling of both above-ground living biomass as well as sub-surface biomass 

and sediments which comprise the active section and fossil layer(s) in marsh/wetland environments 

(see Figure 3.4 for conceptual model). Unlike the majority of toolkits such as the Coastal and marine 

ecosystem services valuation system devised by Luisetti et al (2011) or the Saltmarsh Carbon Stock 

Predictor (Skov et al. 2016) the TESSA methodology had been adapted for use at a localised, in-field 

levels. It also enabled a quantifiable, replicable, credible and affordable assessment to be 
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undertaken, which is essential for any ecosystem service assessment (Bagstad et al. 2013). Overall 

the TESSA field methodology enabled the analysis to be undertaken most efficiently without the 

requirement for specialist ecosystem services assessment training which was not possible given 

temporal and financial restraints. Moreover, the TESSA also featured a specific laboratory 

methodology designed to ensure an accurate standardised assessment of the organic carbon density 

of the above-ground biomass and sub-surface sediments. 

Sampling was undertaken in all sub-environments identified in the previous ML classification to 

determine how biomass/carbon mass varied both within and between differing sub-environments. 

Overall sampling was undertaken at 39 different sites and the number of sites in each sub-

environment approximately represented the proportion of the area it covered on each marsh (ML 

area) although access and time restrictions meant that this was not possible on every marsh (see 

Appendix Section C for locations). The rationale behind this sampling strategy was a product of fact 

that the geomorphological, ecological and carbon characteristics of sub-environments that covered 

larger areas were more likely to exhibit greater inter-site variability than those which covered 

comparably small areas such as Species Zone F (e.g. Zhou et al. 2007; Tong et al. 2010). 

All field sampling was conducted over two 5-day periods between 5th February and March 10th 2018 

in order to minimise any temporal disparity in biological production, and therefore variability in 

carbon content (particularly above-ground biomass) throughout the saltmarsh. Sampling at this time 

also gave an insight into the annual temporal variability of sediment organic carbon and the 

influence of organic production over the summer of 2017. Sampling later in the year was not only 

impractical due to the temporal constraints of the project, but the low rates of productivity and 

decomposition over the winter months meant that in theory there would have been very little 

difference in the organic carbon density of active layer between the chosen period and the early 

summer (Zhao et al. 2016). 

 

 

4.3.1 - Field Assessments 

4.3.1.1 - Above Ground  

In order to ensure all samples were taken as close as possible to the locations which had been pre-

specified following the remote classification, a handheld GPS with a positional accuracy of ~5 m was 

utilised. At each site the predominant species within a 0.5 x 0.5 m quadrat (see Figure 4.4) were 

identified according to a universal classification developed by Stace (1997). Following this, care was 
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taken to remove all vegetation that was rooted within the 0.25 m2 quadrat, ensuring vegetation was 

removed from as close to the stem base as possible. This material was then placed within a sealable 

plastic bag(s) and then placed in a domestic fridge at a temperature of 4-5°C to limit the decay of 

organic matter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1.2 - Sub-surface 

The sub-surface assessment consisted of the extraction of sediment and underground biomass from 

each sampling site. This was achieved using a manually operated gouge corer with a cavity diameter 

of 2.4 cm used to take samples in the centre of each sampling quadrat as this was deemed to best 

represent the geomorphology of the specific sub-environment. Sediment samples were taken until it 

was no longer physically possible to core any deeper which was commonly a result of an inability to 

penetrate sediment layers that were comprised of either fine-medium grained sediment. For this 

reason, the gouge was selected over the Russian corer, as the high level of saturation of the 

saltmarsh sediment made penetration with only manual force very difficult or impossible. Due to the 

locations of certain sites in sites of special scientific interest (SSSI) only manually operated cores 

were used to ensure sampling was as standardised as possible.  

Following the extraction of sediment from the marsh, the stratigraphy of each core was logged 

enabling differing horizons to be distinguished based on their observed physical properties. For this 

 
Figure 4.4. ‘N Site A’ on Marsh D after above-ground and subsurface 

sediment sampling. 
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stage a comprehensive classification for sediments from organic-rich temperate lakes and wetlands 

designed by Troels-Smith (1955) was undertaken at every site (see Figure 4.5). This enabled the 

assessment of the: composition, degree of humification and physical properties of sediment which 

varied with depth (see Figure 4.6). This formed a part of the identification of the organic active 

section from the fossil layer (see Section 3.3.2).  

 

 

 

 

 

 

 

 

 

Subsequently, 5 samples with a volume ≥1 cm3 were taken at evenly distributed intervals throughout 

all cores which varied in length from 0.29 m to 1.98 m. Samples were taken following the removal of 

Exposed Sediment from the surface of the sediment core to avoid sampling contaminated sediment. 

The purpose of this was so that the carbon change with depth within horizons could be later 

analysed under laboratory conditions (4.3.2.2). This process was an important part of the 

identification of the base of the active layer as organic carbon density (OCD) is a key indicator of 

sediment characteristics (e.g. Bradley and Morris, 1990; Cao et al. 2015) and therefore the division 

between the base of the active and fossil layers. Due to the heterogeneous nature of sub-

environments the depth of division both between and within sub-environments was unique. Using 

the guidance of recent research (Bai et al. 2016; Skov et al. 2016) concerning the exponential 

decrease in OCD with depth below the active layer and the sedimentological findings it was decided 

the active layer sediment was classified as that having a mean OCD (see Section 4.3.2.2) >15% than 

the overall sub-surface sediment and possess undecomposed organic material.  The boundary of 

15% was set in order to distinguish between active and fossil layers in the more homogenous 

sediment in sub-environments defined as Brackish Waterbodies, however the mean active layer 

content was on average 43.4% greater than that of all the sub-surface sediment due to the 

exponential decrease in OCD between sub-surface fossil layers and clearly distinguishable organic-

rich surface layers. This criterion produced a mean active layer depth ranging between 12.6 cm 

Lithology Key 

As = Clay (<0.002mm) 
Ag = Silt (0.002 – 0.06mm) 
Ga = Coarse sand (0.6 – 2mm) 
Ca = Calcareous shell  
Sh = Humified organics beyond identification 
Th = Roots, stems and rhizomes of herbaceous plants 
Dh = Fragments of stems and leaves of herbaceous plants >2mm 
Lf = Mineral and/or organic iron oxide 
 

Approximate Composition –  

4 = 100%     3 = 75%     2 = 50%     1 = 25%     + = 12.5% (Trace) 

Figure 4.5. Sediment consistency component of thee Troels-Smith 

classification sediment procedure. 
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(Species Zone A) and 23.3 cm (Exposed Sediment), a depth similar (10 cm) to that used in recent 

research assessing contemporary saltmarsh carbon stocks (Ford et al. 2019). 

Five samples with a volume ≥1 cm3 were also taken at equal depth intervals throughout the active 

layer, although for short active layers (<5 cm3 in volume) the maximum volume was sampled. The 

purpose of this was to determine the variability of OCD content throughout the active layer in order 

to later assess if there was any link between sub-environment type and OCD variability (see section 

5.2.2.3).   
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Figure 4.6. Test stratigraphy from Marsh B. The active layer 

(light blue) is clearly distinguishable due to its higher organic 

content, light brown colour and clear connection to the above-

ground vegetation. Alternatively, the fossil layers (red) show no 

clear connection to the above-ground vegetation and have a 

lower organic content.  

 

Active 

Layer 

Fossil 

Layer 1 

Fossil 

Layer 2 

Fossil 

Layer 3 



 

40 
 

 

  

Location of exact site for 

quadrat – Remote GPS 

Removal of all above-

ground biomass – Secateurs 

Insertion of corer into sub-surface 

sediment at centre of quadrat – 

Gouge Augur 

Identification and classification of physical 

properties of all horizons (including surface active 

layer) – Troels-Smith Sediment Classification 

Collection of 5 sediment samples of volume ≥1 cm3 

from equal intervals throughout each horizon 

Storage of all samples at a 

temperature of 4-5°C – 

Fridge 

Temporary storage of above-

ground biomass – Sealed container 

Identification of 

species present for 

ground truthing (see 

section 4.1.2.1.2) 

Coordinates for field site identified 

based on sub-environment 

distribution - ArcMap 

Figure 4.7. Summary of field protocol and key equipment used. 

Sub-

surface 

sediment 

Above-

ground 

biomass 

Site 

Location 

Immediate 

post-fieldwork 
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4.3.2 - Laboratory Carbon and Biomass Assessment 

The following section outlines the methods used in the laboratory carbon and biomass assessment. 

A legend for the acronyms used in all equations is shown in Figure 4.8. 

 

 

 

 

 

 

 

 

 

4.3.2.1 - Above Ground 

The first part of the analysis concerning the above-ground biomass which employed TESSA methods 

involved washing the samples in warm (c. 40°C) deionised water to remove all sediment that could 

considerably influence the sample mass (Truss, 2011). 

A steel sample tray(s) was then weighed to a precision of ±5 x 10-5 g using standard laboratory 

protocol (National Lacustrine Core Facility, 2013). The above-ground wet mass (AGWM) was 

obtained by subtracting the combined mass of the above-ground wet mass and tray by the tray mass 

(TM): 

AGWM = AGWMT – TM 

The sample and tray was then placed in a laboratory oven at a temperature of 105°C for 48 hours 

and the sample was periodically rearranged to permit aeration. The sample was then left to cool 

until it reached room temperature (20°C) before the mass of the dry sample and tray was obtained. 

Once the above-ground dry mass (AGDM) had been obtained this value was multiplied by 0.47 in 

accordance with TESSA and IPCC guidance to obtain the total sample above ground carbon mass 

(AGCM) (Peh et al. 2017). The dry mass was multiplied by this value because it is estimated by the 

IPCC Guidelines for National Greenhouse Gas Inventories that approximately 47% of the above-

ground biomass of temperate coastal wetland vegetation is comprised of carbon (Eggleston et al. 

2006). 

(5) 

Laboratory Acronyms 

AGWM – Above-ground wet mass (g) 

AGWMT – Above-ground wet mass and tray (g) 

AM – Ashed mass (g) 

AGDM – Above-ground dry mass (g) 

AGCM – Above-ground carbon mass (g) 

BD – Bulk density (g cm-3) 

BGDM – Below-ground dry mass (g) 

 

 
Figure 4.8. Acronyms for laboratory carbon and biomass assessment methodology. 

DM – Dry mass (g) 

OCC – Organic carbon content (%) 

OCD – Organic carbon density (g m-3) 

OCCS – Organic carbon content per 

stratum (g) 

OMC – Organic matter content (%) 

TM – Tray mass (g) 

WV – Wet volume (cm3) 
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AGCM = AGDM x 0.47 

 

4.3.2.2 - Sub-surface 

The first stage of the sub-surface laboratory analysis required weighing individual crucibles on a 

calibrated balance in order to determine the mass of each to a precision of ±5 x 10-5 g. Subsequently, 

the samples with a wet volume (WV) of 1 cm3 were added to each crucible before the difference 

between the two was determined. All samples and crucibles were then placed in a laboratory oven 

at a temperature of 105°C for 48 hours (Peh et al. 2017).  

After this period the samples were removed from the oven and left to cool in a desiccator in 

accordance with standard laboratory protocol (National Lacustrine Core Facility, 2013) until they 

reached room temperature (~20°C). Following this, the dry mass (BGDM) of the sample and crucible 

was obtained before dry mass of the sample was determined by subtracting the combined mass by 

that of the specific crucible. 

Following this the bulk density (BD) was calculated: 

 

BD = 
𝐵𝐺𝐷𝑀  

𝑊𝑉 
 

 

After the dry mass had been determined the samples were placed in a laboratory oven at 440°C for 

24 hours to determine their organic matter content as according to TESSA guidelines (Peh et al. 

2017). Subsequently, the ashed mass (AM) of the sample was determined using the identical 

procedure for determining below-ground dry mass (BGDM). The mass (g) of the organic matter 

content (OMC) of the sample was then determined: 

 

OMC = BGDM – AM 

OMC = ((BGDM-AM)/DM) x 100 

 

The organic carbon content (OCC) was then calculated using the TESSA estimate that carbon 

comprises 57.1% of all sediment organic matter: 

 

OCC = OMC / 1.75 

 

 

(6) 

(7) 

(8) 

(9) 

(10) 
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The organic carbon density (OCD) for each strata was subsequently calculated:  

OCD = BD x OCC 

 

The results of the 5 OCD samples taken from each stratum were then averaged (mean) to give an 

overall mean OCD for each layer and the mean organic carbon content for each strata (OCCS) was 

then determined: 

 

Sampled horizon volume = Observed horizon depth  

                                                   x corer area 

OCCS (g) = Sampled horizon volume x OCD 

 

4.4 - Determining Overall Carbon Storage 

The total sub-surface and above-ground carbon storage for a sub-environment was then determined 

by combining the field and laboratory results concerning depth and carbon content with the area 

assessment results from the maximum likelihood classification (ML Area). 

 

 

 

 

 

 

 

 

 

The above surface carbon stock (ASTCS) was determined as so: 

Above Surface Multiplication Factor (ASMF) =  
𝑀𝐿 𝐴𝑟𝑒𝑎

 𝑄𝑢𝑎𝑑𝑟𝑎𝑡 𝐴𝑟𝑒𝑎 
                                                                                               

ASTCS = 
𝐴𝑆𝑀𝐹 𝑥 𝐴𝐺𝐶𝑀

1000
 

Subsequently the sub-surface carbon storage (SSCS) of an individual horizon was calculated as 

follows: 

(11) 

(12) 

(13) 

(14) 

(15) 

Overall Carbon Storage Acronyms 

 

 

 

SSVMF – Sub-surface volume 

multiplication factor 

OCCS – Organic carbon content per 

stratum (g) 

SSTCS – Sub-surface total carbon stored 

(kg) 

TCS – Total carbon stored in an individual 

sub-environment (kg) 

 

 

ASMF – Above surface multiplication factor 

ASTCS – Above surface total carbon store (kg) 

AGCM – Above-ground carbon mass (g) 

ML Area – Maximum likelihood classification 

area (m2) 

SSCS – Sub-surface carbon storage (g) 

 

 Figure 4.9. Acronyms for overall carbon storage assessment. 



 

44 
 

Total sub-environment = Observed Horizon depth   

                                                   horizon volume                        x ML Area 

Sub-surface Volume =  
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑏−𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 

𝑆𝑎𝑚𝑝𝑙𝑒𝑑 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
                           

SSCS = OCCS x SSVMF 

This value was subsequently summed with the SSCS values of other horizons to give an estimate of 

the sub-surface total carbon stored (SSTCS) within a specific sub-environment: 

SSTCS = 
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑆𝐶𝑆

1000
 

The total carbon stored in individual sub-environments (TCS) could then be calculated: 

TCS = ASTCS + SSTCS  

The values were presented as kg x 10-3 (1.d.p) to accurately exhibit carbon storage within results 

tables. In-text references to carbon are presented to 3.s.f as this level of significance was sufficient 

to compare the variability in carbon storage. The estimated overall carbon storage for each 

saltmarsh could then be determined by summing TCS values for the 8 differing sub-environments. 

Likewise, the spatial distribution of carbon stocks throughout the saltmarsh and the influences of 

key landscape features on distribution were also subsequently assessed by combining the sub-

environment spatial distribution analyses with the appropriate carbon storage assessments (see 

Section 5.3). Specifically, the distribution analysis involved determining the controls of elevation, 

gradient and watercourse proximity on carbon content. This enabled an assessment of both the 

precision and comparative influence of each of the three variables on carbon distribution 

throughout each of the four defined marshes and the sub-environment as a whole. As is exhibited in 

Section 5.3 the uncertainties surrounding carbon stock assessments for each of the eight sub-

environments and Ribble saltmarshes as a whole are accounted for. The uncertainties consider the 

areal coverage and depth of sub-environments as well as those surrounding organic carbon density. 

For each sub-environment the variability in area coverage according to the remote and manual areal 

uncertainty assessments was taken into account and the depth uncertainty of the active layer is 

calculated so to determine a range of plausible volume projections. The uncertainty surrounding 

organic carbon density in the active layer of each sub-environment which was determined following 

LOI tests is subsequently incorporated with the potential volume predictions to produce a range of 

potential carbon projections for each sub-environment. 

           Multiplication Factor  
           (SSVMF) 

(16) 

(17) 

(18) 

(19) 

(20) 
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4.5 – The Influence of Sea Level Rise on Marsh Evolution 

The process of estimating the change in the area, volume and active section carbon content of the 

different sub-environments that comprise the saltmarshes featured in Section 6.3 applied the 

primary model of coastal squeeze (Doody, 2004; Wolters et al. 2005) (see Section 3.4.1). This model 

assumed saltmarsh submergence and degradation will occur as a result of sea level rise due to the 

key control of elevation on sub-environment distribution and the restrictions on landward regression 

which are present in the Ribble (see Figure 6.11). The research of Horton et al. (2018) supports this 

theory as it is predicted saltmarsh loss is likely to occur as there is >80% positive tendency of marsh 

retreat in Liverpool Bay by as early as 2020 under the most extreme RCP 8.5 scenario. Therefore, the 

assumption that the saltmarsh sub-environments and their carbon content is highly vulnerable to 

submergence and loss as a result of future SLR is supported by current research.  

The calculations of saltmarsh sub-environment and carbon loss accounted for the present gradient 

of the Ribble saltmarshes and different plausible sea level rise scenarios at decadal intervals. Whilst 

the calculations would have ideally taken into account the evolution in accretion, as only very limited 

and spatially constrained Environment Agency data concerning accretion is currently available and 

future predictions of accretional change with sea level rise are highly generalised (Halcrow 2010b; 

Halcrow, 2013), it was not possible to estimate how accretion would change on a localised scale. The 

calculations assume the interdependent higher marsh sub-environments with the least tolerant 

halophytes found at the highest mean elevations: Species Zones A, B, D and F will be collectively 

converted to Exposed Sediment first. Then it is assumed the middle-lower sub-environments 

comprised of the most tolerant halophytes: Species Zone C, Species Zone E and Brackish 

Waterbodies are subsequently converted in progressive order. As explained in Section 2.4 the SLR 

projections incorporated into the predictions were sourced from UKCP 18 models which take into 

account localised (25 km2) variability in SLR in the Ribble estuary and the north-east of Liverpool Bay. 

Saltmarsh and carbon storage loss under the extreme SLR scenarios predicted by Pfeffer et al (2008) 

were also considered. 
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Chapter 5 – Results 

 

The results presented in this section concern the overall spatial distribution of sub-environments and 

carbon storage in the Ribble estuary. The contributing research concerning the spatial assessment of 

landcover and the carbon storage analysis for each of the four separate saltmarshes can be found in 

Sections B and C of the appendices respectively. 

Section 5.1 presents how the spatial distributions of the eight sub-environments varied throughout 

the saltmarshes of the Ribble and there is a specific focus on the influences of Elevation (5.1.2), 

Gradient (5.1.3) and Watercourse proximity (5.1.4) on sub-environment distribution. Section 5.1.5 

addresses the key controls on sub-environment distribution in a multiple regression analysis. 

Section 5.2 exhibits the results sourced from the fieldwork and laboratory assessments highlighting 

how carbon density varied throughout the above-ground biomass, sub-surface sediment and active 

organic surface layers of the different sub-environments. 

Section 5.3 combines the findings of 5.1 and 5.2 in order to highlight the spatial variability and 

distribution of active section carbon content (above-ground biomass and active layer) throughout 

the saltmarshes of the Ribble. Each of the eight sub-environments are individually analysed and 

uncertainties surrounding both the spatial and geomorphological analyses are considered in order to 

exhibit the plausible variability in active section carbon distribution. 

  



 

47 
 

5.1 – Spatial Analysis of Land Cover  

Introduction 

The following section exhibits the results concerning the spatial distribution and areal coverage of 

the eight sub-environments which comprise the saltmarshes of the Ribble (see Appendix B for 

individual marsh analysis). 

 

5.1.1 – Areal Quantification 

Although the spatial distribution of species is unique on each individual marsh, an initial overview 

highlights consistent trends in sub-environment distribution which shape the saltmarsh mosaic. The 

less saline tolerant Species Zones A and B which comprise 25.2% of the overall area, are 

predominantly found in the higher marsh environment, although the more saline tolerant species of 

Zone A can be found at the landward end of tidal creek systems represented by dendritic branches 

of exposed sediment (see Fiugre 5.1). Alternatively, the less tolerant Festuca rubra and Triglochin 

maritima species of Species Zone B are often clustered near fluvial inflows and almost exclusively 

found in the higher marsh. The distribution of Species Zone C and D appears to correspond with the 

location of the main creeks, although the relationship between such species and creek distance is 

quantitatively assessed in Section 5.1.3. Areas of the highly tolerant halophytes that comprise 

Species Zone E also appear to be found at close proximity to the major estuarine channel and low 

elevation (see Section 5.1.2) which is particularly prominent on Marshes A and B. In contrast the 

20755 m2 area of wetland reed plants which define Species Zone F are exclusively concentrated in a 

highly sheltered high marsh area in the south-west of Marsh C away from all major creek systems. 

The spatial distribution of brackish waterbodies over 8.1% of the total area is not as clearly defined 

as for the majority of the predominantly vegetated environments, although there is correspondence 

with the location of Species Zone A and Brackish areas in the higher marsh. Exposed Sediment, 

which comprises 9.36 km2 of the total area, is found throughout the marsh in creeks and partially 

channel saltpans, although the majority of the area classified as exposed sediment is found at low 

elevations (see Section 5.1.2) near the main tidal channels in areas unsuitable for colonisation. 
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Table 5.1. Overall area and percentage composition of each sub-environment 

determined following the original land cover classification (see Figure 5.1). 

Land cover Type Area (km²) % of Overall Area 

Brackish waterbodies 1.77 8.1 
Exposed sediment 9.36 42.6 

Shadows 0.11 0.5 
Species Zone A 2.11 9.6 
Species Zone B 3.42 15.6 
Species Zone C 3.81 17.3 
Species Zone D 0.92 4.2 
Species Zone E 0.46 2.1 
Species Zone F 0.02 0.1 

Overall 21.99  

 

Figure 5.1. Sub-environment distribution throughout the saltmarshes of the 

Ribble estuary. 
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Remote Uncertainty Analysis 

The remote landcover uncertainty analyses had an overall accuracy of 89.4% (uncertainty 10.6%) 

and a kappa value of 86.7%. Regarding classification accuracy, Species Zones D and Exposed 

Sediment are surrounded by the least uncertainty of the respective vegetated and non-vegetated 

environments (see Table 5.2). There are also consistent trends in confusion between land cover 

classification anomalies between specific sub-environments which are exhibited in Table 5.3. The 

most notable confusion exists between: Species Zone A and C, Species Zones B and D as well as 

Species Zone E and Exposed Sediment. Confusion also exists between Brackish Waterbodies and 

Exposed Sediment which constitutes 68.4% of anomalous classifications for the latter, although 

when reversed Brackish Waterbodies only contributes 40% of anomalous results for Exposed 

Sediment due to the influence of Species Zone E.  

There is <0.15% deviation in overall accuracy classification between Marshes B, C and D, although 

the accuracy classification of Marsh A is notably lower at 87.4% (see Table 5.4) primarily due to the 

influence of Brackish Waterbodies (83.3%), Species Zone E (85%) and Species Zone A (85.2%) (see 

Figure 5.2 and Appendix Section B1). Figure 5.2 illustrates deviations in accuracy between marshes 

are dependent on the exact sub-environment type. For example, the accuracy value of Brackish 

Waterbodies on Marsh C is 7.1% higher than the accuracy value for the sub-environment on Marsh 

B, whilst the accuracy value for shadows on Marsh D is 5% below the overall mean for the sub-

environment. Alternatively, values for Exposed Sediment and Species Zone B are more precisely 

grouped with a maximal inter-marsh range of 3.2% and 2.9% respectively. 

The kappa coefficient (k) for the overall environment indicates 2.7% of the accurately classified 

results could have occurred by chance. Whilst a 2.7% chance in sub-environment land cover would 

considerably alter carbon storage in the ‘active section’ over an area of 0.59 km2, overall the 

classification was of a similarly high accuracy to other saltmarsh and wetland supervised landcover 

classifications (Singh et al. 2014; Pande-Chhetri et al. 2018). 

Land Cover Type 
No Reference 
Points 

Correctly 
Classified Accuracy (%) 

Uncertainty 
(%) 

Brackish Waterbodies 151 132 87.4 12.6 

Exposed Sediment 560 504 90.0 10.0 

Shadows 122 118 96.7 3.4 

Species Zone A 229 204 89.1 10.9 

Species Zone B 260 233 89.6 10.4 

Species Zone C 254 219 86.2 13.8 

Species Zone D 232 212 91.4 8.6 

Species Zone E 165 143 86.7 13.3 

Species Zone F 30 26 86.7 13.3 

Sum 2003 1791 89.4 10.6 

   Kappa Coefficient 86.7 13.3 

 

Table 5.2. Summary of the remote uncertainty analysis over all marshes (by sub-

environment type). 

 

Table 5.22. Summary of the remote uncertainty analysis over all marshes (by sub-

environment type). 
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Land cover Type 
Brackish 
Waterbodies 

Exposed 
Sediment Shadows 

Species 
Zone A 

Species 
Zone B 

Species 
Zone C 

Species 
Zone D 

Species 
Zone E 

Species 
Zone F 

Column 
Total 

% of 
Overall 

Brackish 
Waterbodies 132 13 0 0 0 0 0 3 3 151 8.2 

Exposed Sediment 16 504 0 0 0 0 5 35 0 560 27.1 

Shadows 4 0 118 0 0 0 0 0 0 122 6.2 

Species Zone A 1 0 0 204 0 24 0 0 0 229 10.8 

Species Zone B 0 0 0 3 233 7 17 0 0 260 13.0 

Species Zone C 0 5 1 29 0 219 0 0 0 254 12.2 

Species Zone D 0 0 4 0 16 0 212 0 0 232 12.5 

Species Zone E 4 16 0 0 0 0 2 143 0 165 8.4 

Species Zone F 4 0 0 0 0 0 0 0 26 30 1.5 

Row Total 157 538 123 236 249 250 236 181 29 
Overall 
Sum 2003 

% of Overall Sum 8.6 26.0 6.2 10.9 12.7 12.2 12.6 9.4 1.5 A 89.4 

          k 87.6 

 

  Marsh A Marsh B Marsh C Marsh D Overall 

Area (km2) 0.35 3.28 16.79 1.58 21.99 

No Test samples 230 365 1092 316 2003 

No corresponding samples 201 327 980 283 1791 

No of contradicting samples 29 38 112 33 212 

Average Correspondence Value 87.4 89.6 89.7 89.6 89.4 

Kappa Value 85.3 87.7 87.8 87.4 87.6 

 

Table 5.3. Confusion matrix exhibiting the accuracy of the ML classification indicated by the remote uncertainty analysis. The average correspondence value (A) 

indicates the overall accuracy of the procedure whilst the Kappa coefficent (k) likewise represents the overall accuracy but also takes into account the possibility of the 

agreement occurring by chance. Accuractely classified results in this ML assessment appear in the corresponding row and column for each sub-environment (i.e. 

individually outlined values), whilst anomalous values appear in columns which represent differing species to that of the row. 

Table 5.4. Summary of the remote uncertainty analysis for each marsh. 
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Figure 5.2. Variability in remote sub-environment remote accuracy classification on the four different marshes and overall (mean value). 
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Manual Uncertainty Analysis 

The manual uncertainty classification had an overall accuracy of 92.2% all four marshes. The field-

based uncertainty analyses highlighted the greatest uncertainties surround Species Zone B which 

was the only sub-environment to have an uncertainty >15% (see Table 5.5). With regards to 

anomalies, confusion existed between Species Zone B and D as well as Brackish Waterbodies and 

Species Zone F (see Table 5.6). Four of seven sampled sub-environments had an accuracy 

classification of 100%, although Species Zone F (areal coverage <0.1%) was not classified as it was 

not recognised before the analysis. On a marsh specific level, the classification accuracy on Marsh B 

was the closest to the overall accuracy value (92.2%) at 91.7%. The Marsh A classification was 100% 

accurate, whilst the lowest accuracy classification occurred on Marsh D (85.7%).  

 

 

 

 

 

 

 

 

Land cover Type 
No Reference 

Points 
Correctly 
Classified 

Accuracy (%) 
Uncertainty 

(%) 

Brackish Waterbodies 7 6 85.7 14.3 

Exposed Sediment 11 11 100.0 0 

Species Zone A 8 7 87.5 12.5 

Species Zone B 5 4 80.0 20 

Species Zone C 10 10 100.0 0 

Species Zone D 5 5 100.0 0 

Species Zone E 5 5 100.0 0 

Overall 51 47 92.2 7.8 

 

Table 5.5. Summary of the manual, field-based uncertainty analysis for all species over all 

marshes. Species Zone F is absent as it was not identified before the analysis. 
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Land cover Type 
Brackish 
Waterbodies 

Exposed 
Sediment 

Species 
Zone A 

Species 
Zone B 

Species 
Zone C 

Species 
Zone D 

Species 
Zone E 

Species 
Zone F 

Column 
Total 

% of 
Overall 

Brackish Waterbodies 6 0 0 0 0 0 0 1 7 14.9 

Exposed Sediment 0 11 0 0 0 0 0 0 11 23.4 

Dark Green Higher Marsh Vegetation  0 0 7 1 0 0 0 0 8 17 

Very light green vegetation 0 0 0 4 0 1 0 0 5 8.5 

Mid-Green Lower Terrace Vegetation 0 0 0 0 10 0 0 0 10 21.3 

Light Green Higher Terrace Vegetation 0 0 0 0 0 5 0 0 5 12.8 

Orange-Brown Vegetation 0 0 0 0 0 0 5 0 5 10.6 

Dark Brown Vegetation 0 0 0 0 0 0 0 0 0 0 

Row Total 6 11 7 5 10 6 5 2 
Overall 
Sum 51 

% of Overall Sum 10.6 23.4 17.0 10.6 21.3 10.6 10.6 4.3 A 0.92 

         k 0.90 

 

  Marsh A Marsh B Marsh C Marsh D Overall 

No Ground Truthing Sites 13 12 19 7 51 

No corresponding sites 13 11 17 6 47 

No of contradicting Sites 0 1 2 1 4 

Correspondence Rate 100.0 91.7 89.5 85.7 92.2 

 

Table 5.6. Confusion matrix exhibiting the accuracy of the ML classification indicated by the manual uncertainty analysis. The average correspondence 

value (A) indicates the overall accuracy of the procedure whilst the Kappa coefficent (k) likewise represents the overall accuracy but also takes into 

account the possibility of the agreement occurring by chance. Accuractely classified results in this appear in the corresponding row and column for each 

sub-environment (i.e. individually outlined values), whilst anomalous values appear in columns which represent differing species to that of the row. 

Table 5.7. Summary of the manual, field-based uncertainty analysis for all marshes and overall.  
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Comparison of Uncertainty Analyses 

Overall the remote land cover classification was 2.8% less than the manual classification. The sub-

environments Brackish Waterbodies and Species Zone A exhibited the lowest disparity in accuracy 

between classifications at 1.0% and 1.3% respectively, whilst the greatest disparity concerns Species 

Zone C (13.8%). The remote accuracy was higher than the manual for the Brackish Waterbodies, 

Species Zone A and Species Zone B, whilst the manual classification was higher in the four other 

comparable sub-environments (see Table 5.8). 

 

 

 

 

 

 

 

 

 

Summary - 

Overall the range in sub-environment classification accuracy of the remote ML classification of 5.2% 

(excluding shadows) is comparably low compared to the range of manual assessment of 20%. The 

remote assessment indicated that the greatest uncertainty (13.3%) surrounded Species Zones E and 

F which would could theoretically differ in areal cover by 61180 m2 and 2763 m2. However, as the 

remote confusion matrix indicated that 35/46 of these anomalies for Exposed Sediment were 

classified as Species Zone E, so in theory, the area of Species Zone E could increase by 13.3% of the 

original areal projection, replacing previous unvegetated areas and increasing biomass coverage 

throughout the lower marsh with geomorphological implications (see Section 3.2.2). The remote 

assessment indicated that 13/19 anomalies for Brackish Waterbodies (uncertainty = 12.6%) were 

classified as Exposed Sediment, so it is also plausible 1.1% of the total area of Brackish Waterbodies 

could alternatively be covered by the latter. However as the differences above-ground biomass 

density (see Section 5.2.2.1) between Brackish Waterbodies and Exposed Sediment are comparably 

minor in contrast to Exposed Sediment and Species Zone E, the ecogeomorhological effects of this 

sub-environment change are reduced. 

 Remote   
Land cover Type ML Accuracy (%) Manual Accuracy (%) Δ 

Brackish Waterbodies 87.4 85.7 1.7 

Exposed Sediment 90.0 100 -10.0 

Shadows 96.7 N/A N/A 

Species Zone A 89.1 87.5 1.6 

Species Zone B 89.6 80 9.6 

Species Zone C 86.2 100 -13.8 

Species Zone D 91.4 100.0 -8.6 

Species Zone E 86.7 100 -13.3 

Species Zone F 86.7 N/A N/A 

Overall 89.4 92.2 -2.8 

  Average Disparity -5.1 

 

Table 5.8. Comparison of the overall accuracy of both analyses. 
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Of the predominantly vegetated environments, Species Zone C exhibits the greatest areal disparity 

between original and ML remote land cover of 0.55 km2. Whilst this would change the vegetation 

and biomass dynamics of the lower-middle marsh and creeks in particular, 82.9% of the anomalous 

remote values for Species Zone C are classified as Species Zone A which also contains Atriplex 

portulacoides. Likewise, 96% of the anomalous classifications for Species Zone A are classified as 

Species Zone C by the remote assessment (See Table 5.3) which is likely to be due to similar spectral 

values (see Section 6.2). 

Whilst a similar confusion relationship also connects Species Zones B and D, the high remote 

accuracy classification (90.6%) of Species Zone D combined with a small original area coverage (4.2% 

of the overall marsh) means the overall area covered by Species Zone B would only change by 0.4%. 

However, despite a similar classification accuracy (89.4%), as Species Zone B covers 15.6% (3.42 km2) 

of the marsh the total area covered by the sub-environment could differ by up to 1.7% of the 

original areal projection.

Of the sub-environments which are not indicated by the manual assessment to have 100% accuracy, 

the largest disparities between the original land cover area concern Species Zones A and B which 

could potentially change in areal cover by 1.2% and 3.5% respectively. However, whilst the 

anomalous relationship between Species Zone B and D confers with the remote findings, the most 

frequent anomalous class for Dark Green Higher Marsh Vegetation (Species Zone A) was Species 

Zone B as oppose to Species Zone C in the manual assessment. The accuracy of the manual 

classification (85.7%) for Brackish Waterbodies was similar to the remote analysis (86.7%) so the 

greatest possible change in areal cover only differs by 0.1% of the original areal projection between 

the two classifications. However, the sole anomaly surrounding the manual assessment of Brackish 

Waterbodies could indicate that Species Zone F covers a greater area, and therefore offers a more 

substantial contribution to saltmarsh carbon storage. 

In summary both the ML remote and manual analyses highlight that the original classification was 

≥80% accurate for all sub-environments. Despite this level of accuracy, there is the potential that a  

different spatial distribution of sub-environments exists throughout the Ribble saltmarshes. This 

could directly change the above-ground biomass and also considerably alter ecological and 

geomorphological processes which influence sub-surface carbon storage. The result of areal 

uncertainty surrounding carbon storage is examined in Section 5.3 and the impacts are considered in 

the discussion (Section 6.3). 
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Figure 5.3. Summary of the overall land cover area assessments, highlighting 

variability in projected areas according to the original ML classification and the 

remote uncertainty assessment over all marshes. 
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Figure 5.4. Summary of the overall land cover area assessments, highlighting 

variability in projected areas according to the original ML classification and the 

manual uncertainty assessment over all marshes. 
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Land cover Type Area (km²) 
% of Overall 

Area 

Overall 
Remote 

Accuracy 
(%) 

Area - Remote 
Accuracy (km²) 

% of Overall 
Area 

Overall 
Manual 

Accuracy 
(%) 

Area - Manual 
Accuracy (km²) 

% of Overall 
Area 

Brackish Waterbodies 1.77 8.1 86.7 1.54 7.0 85.7 1.52 6.9 
Exposed Sediment 9.36 42.6 89.0 8.33 37.9 100.0 9.36 42.6 

Shadows 0.11 0.5 96.6 0.11 0.5 N/A 0.11 0.5 
Species Zone A 2.11 9.6 86.2 1.81 8.3 87.5 1.84 8.4 
Species Zone B 3.42 15.6 89.4 3.06 13.9 80.0 2.74 12.5 
Species Zone C 3.81 17.3 85.6 3.26 14.8 100.0 3.81 17.3 
Species Zone D 0.92 4.2 90.6 0.83 3.8 100.0 0.92 4.2 
Species Zone E 0.46 2.1 86.7 0.40 1.8 100.0 0.46 2.1 
Species Zone F 0.02 0.1 86.7 0.02 0.1 N/A 0.02 0.1 

 

Table 5.9. Summary of the land cover area assessments. Both remote and manual uncertainty figures represent the minimal area 

covered by each sub-environment and utilise overall accuracy figures for all marshes. 
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5.1.2 - Influence of Elevation on Sub-environment Distribution 

Introduction 

The following results concern the elevation distribution of the sub-environments that comprise the 

saltmarshes of the Ribble estuary. The findings of this analysis are later combined with the sub-

environment carbon assessment in Section 5.2 to highlight how carbon stocks vary with elevation 

(see section 5.3.3.2). All elevations in metres concern height in metres above ordnance datum 

(mOD). For reference, an elevation (mOD) to tidal datum conversion table for the three nearest 

gauges is displayed in Table 5.10. 

 

 

 

 

 

Overall Sub-Environment Elevation Variability 

Overall the majority (63.1%) of the area covered by the eight sub-environments is found between 

4.2 - 4.6 m with a mean elevation of 4.23 m, however when non-vegetated sub-environments are 

removed the overall mean elevation increases by 0.17 m. Most vegetated sub-environments are 

concentrated within an elevation range of 4.4 – 4.6 m whilst only 6% of are found below 4 m and 

0.2% above 5 m. Of the four marshes, Marsh C exhibits the largest elevation range, with areas in 

close proximity to creeks being the main areas of localised elevation and species variability (see 

Appendix B3). Whilst the creek channels are largely defined as either Exposed Sediment or Brackish 

Waterbodies, the raised terraces either side of the creek are predominantly occupied by Species 

Zone D.  

Species Zone A was consistently found in the higher to middle marsh almost exclusively (98.2%) 

between 4.2 – 4.8 m, exhibiting the 2nd highest degree of spatial clustering behind Species Zone C 

(see Figure 5.5). The disparity in maximal peak elevation value between Species Zone A and Brackish 

Waterbodies on Figure 5.5 is also exhibited in Figure 5.7 which highlights the inverse relationship 

concerning proportional landcover between Exposed Sediment and all predominantly vegetated 

sub-environments. The ANOVA analysis also indicates the high degree of variance between Exposed 

Sediment compared to all other sub-environments (see Table 5.13). 

 Tidal Datum Elevation (mOD) 

Gauge Location MLWS MLWN MSL MHWN MHWS HAT 

Formby -3.93 -2.03 0.22 2.37 4.07 4.97 

Southport nd nd nd 2.2 4.1 5.1 

Preston -0.8 -0.8 nd 2.4 4.4 5.4 

 

Table 5.10. Elevation (mOD to tidal datum conversion table for three nearest tidal gauges. 

(Source = Halcrow et al. 2013) 
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The less saline tolerant species such as Festuca rubra that comprise Species Zone B have a mean 

elevation value 0.25 m higher than all sub-environments. This sub-environment largely occupies the 

back marsh but is predominantly absent from the raised terraces of creeks, except in the south-west 

of Marsh C where it is found on the banks of the northward-flowing fluvial inflow where salinity is 

likely to be low (see Figure 5.10). The areal distribution of this sub-environment in the higher marsh 

is also shown by Figures 5.7 and 5.9 which exhibit that Species Zone B covers 21.2% of the saltmarsh 

area between 4.6-4.8 m which rises to a maximum of 39.4% at 6.4-6.6m. However the total 

proportion of the saltmarsh area found at the aforementioned elevation intervals is only 9.1% and 

0.0026%. 

The influence of salinity and halophyte composition perhaps explains why the mean values for 

Species Zone A and C, which are comprised of more tolerant halophytes (both contain Atriplex 

portulacoides), are 0.08 m and 0.04 m lower than the overall average. However, the significant T-

value of 78.8 highlights a high degree of variance between each sub-environment when compared to 

the elevation variation within Species Zone A and C. 

The major exception to the overall trend of clustering of the different sub-environments between 

4.2 – 4.8 m is exhibited by Species Zone E as 47.2% of this sub-environment is found at elevations 

below 4.2 m. This is largely to be expected given the high saline tolerances of Spartina Anglica and 

Salicornia spp, which would explain why the sub-environment reaches the maximal overall land 

cover % value of 4.3% between 4.0-4.2 m. Alternatively, Species Zone F was confined to high 

elevations and a comparatively narrow elevation range as 98% of the area covered between by this 

species is between 4.4 m – 5.0 m. 

The near-symmetrical rising and falling limbs of Exposed Sediment on Figure 5.5 exhibit an 

approximately even elevation distribution around the mode. The sub-environment also had the 

largest overall range spanning 7.02 m. Exposed Sediment becomes increasingly abundant as sub-

environment diversity rapidly decreases below 3.8 m and above 5.0 m as shown in Figure 5.6 and 5.7 

as the area occupied by common saltmarsh halophytes rapidly decreases outside the elevation range 

of MHWS and HAT. Although this partially conforms with the ramp theory of elevation, hydroperiod 

and zonation (e.g. Williams et al. 1994; Bao-Shan et al. 2011), the fact that a disproportionally high 

(95.6%) of predominantly vegetated sub-environments are found between MHWS (4.1 mOD) and 

HAT (5.1 mOD) is the first initial suggestion that vegetation distribution is not solely determined by 

elevation. 
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 Figure 5.5. Comparative kernel density plot highlighting the variation in elevation of all sub-

environments over all marshes. 
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 Figure 5.6. Variability in elevation distribution between all sub-environments over all marshes. The violin and box plots for the respective sub-environments are as follows: 

Species Zone A (a), Species Zone B (b), Species Zone C (c), Species Zone D (d), Species Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h). 
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Figure 5.6. Variability in elevation distribution between all sub-environments over all marshes. The violin and box plots for the respective sub-environments are as follows: 

Species Zone A (a), Species Zone B (b), Species Zone C (c), Species Zone D (d), Species Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h). 
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Table 5.11. Variability in elevation (mOD) distribution between all sub-environments over all marshes.  

Land cover Type Min Mode Mean Max St Dev. 

Species Zone A -0.44 4.55 4.56 6.24 0.15 
Species Zone B -0.10 4.52 4.48 6.48 0.34 
Species Zone C -0.53 4.42 4.38 6.45 0.35 
Species Zone D -0.31 4.55 4.52 5.96 0.20 
Species Zone E 0.31 4.56 4.03 6.41 0.63 
Species Zone F 4.40 4.52 4.70 5.15 0.16 

Brackish Waterbodies 0.24 4.31 4.24 6.19 0.28 
Exposed Sediment -0.55 4.37 4.05 6.47 0.59 
All Environments -0.55 4.39 4.23 6.48 0.50 
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Figure 5.7. Variability of sub-environment areal coverage with elevation. Error bars indicate the RMSE of 15 cm 

associated with the Lidar data. See Figure 5.8 for further detail. 
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Figure 5.8. Variability in the elevation across the overall saltmarsh environment (%). Error bars indicate the RMSE of 15 cm associated with the Lidar data. 
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Figure 5.9. Variability of sub-environment areal coverage with elevation. Error bars indicate the RMSE of 15 cm associated with the Lidar 

data.  
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  Species Zone A  Species Zone B Species Zone C  Species Zone D Species Zone E Species Zone F 
Brackish 
Waterbodies 

Exposed 
Sediment 

Species Zone A    383.6 78.8 1458.0 101.8 3.6 463.3 470.8 

Species Zone B 383.6   0.3 22.4 44.4 0.5 109.3 13.5 

Species Zone C  78.8 0.3   3802.0 315.1 278.1 349.8 15.1 

Species Zone D 1458.0 22.4 3802.0   154.5 386.7 1577.0 477.9 

Species Zone E 101.8 44.4 315.1 154.5   197.4 948.6 1152.0 

Species Zone F 3.6 0.5 278.1 386.7 197.4   632.3 5.0 

Brackish Waterbodies 463.3 109.3 349.8 1577.0 948.6 632.3   28.4 

Exposed Sediment 470.8 13.5 15.1 477.9 1152.0 5.0 28.4   

 

  Species Zone A  Species Zone B Species Zone C  Species Zone D Species Zone E Species Zone F 
Brackish 
Waterbodies 

Exposed 
Sediment 

Species Zone A    <2e-16 <2e-16 <2e-16 <2e-16 0.06 <2e-16 <2e-16 

Species Zone B <2e-16   0.58 2.25e-6 2.66e-11 0.50 <2e-16 2.35e-4 

Species Zone C  <2e-16 0.58   <2e-16 <2e-16 <2e-16 <2e-16 1.01e-4 

Species Zone D <2e-16 2.25e-6 <2e-16   <2e-16 <2e-16 <2e-16 <2e-16 

Species Zone E <2e-16 2.66e-11 <2e-16 <2e-16   <2e-16 <2e-16 <2e-16 

Species Zone F 0.06 0.50 <2e-16 <2e-16 <2e-16   <2e-16 0.03 

Brackish Waterbodies <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16   9.83e-08 

Exposed Sediment <2e-16 2.35e-4 0.01 <2e-16 <2e-16 0.03 9.83e-8   

 

Table 5.12. F values produced during the ANOVA analyses for all land cover types. The values indicate the variance of the mean 

elevation values for two respective land cover types divided by mean of the variances within each respective land cover type. 

Significant values are highlighted in bold. 

Table 5.13. Probability (p) values accompanying each of the respective F values. The values indicate the probability of producing the respective F value result, 

given that the null hypothesis (F≈1) is true. Statistically insignificant values with an alpha level ≥0.05 (hence reporting to 2.d.p) are indicated in red. 
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Figure 5.10. Spatial variability in elevation above ordnance datum over all marshes (see Figure 

5.6. for land cover distribution). 
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Figure 5.11. Sub-environment distribution throughout the saltmarshes of the Ribble estuary. 
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5.1.3 - Influence of Gradient on Sub-environment Distribution 

Introduction 

The variability of gradient throughout a saltmarsh is a key factor that influences environmental 

evolution (Huckle et al. 2000; Goodwin et al. 2018). Gradient determines the extent of waterlogging 

and marsh drainage efficiency, whilst it also dictates the rate of submergence with SLR (Byers and 

Chmura, 2014; Passeri et al. 2015). 

The purpose of the analysis is to determine the variability of gradient throughout the marsh 

producing findings that can be combined with the carbon stock assessment to determine the extent 

to which gradient influences active section carbon stock distribution (see Section 5.3.3). The analysis 

begins with a review of the variability of gradient throughout the Ribble before the gradient 

distributions of individual sub-environments are assessed. 

Overall Sub-environment Gradient Variability 

The majority (76%) of the Ribble saltmarshes occupy areas with a gradient of <2° despite an overall 

range of 56.7°. Although the kernel density plots indicates differences in distribution (Figure 5.12), 

all sub-environments are predominantly found on areas of marsh with a gradient between 0.3 and 

0.7° as would be expected in a saltmarsh environment (e.g. Jones et al. 2008; Hladik et al. 2014).  

Overall, Species Zone A had the most dissimilar distribution compared to the saltmarsh as a whole, 

with an average gradient 0.8° lower than the overall mean. Species Zone A also had the most precise 

gradient density distribution (max= 0.72), whilst Species Zone E exhibited the lowest distribution 

density (max= 0.33) and greatest IQR indicating a wide gradient distribution (see Figure 5.13(e)). This 

is also apparent from Figure 5.14 and 5.16 which highlights that Species Zone E occupies a consistent 

portion of the total surface area when compared to other sub-environments. 

Species Zones B and C exhibited highly similar gradient density distributions with near-symmetrical 

rising and falling limbs (see Figure 5.12) indicating a similar incline and decline in the proportion of 

the area of each sub-environment occupied either side of the modal values. The proportion of the 

total area covered by Species Zone B and C is 17.0% and 16.1% at 2°, however areal coverage at 

gradients greater than 36° differ markedly as the creek terrace Species Zone C covers 37.2% of the 

marsh at 52° whilst Species Zone B becomes increasingly less prominent at gradients greater than 

26° (21.0%) (Figure 5.14). Regarding significant elevation variation with other sub-environments 

Species Zone B, exhibits statistically significant relationships with all sub-environments expect 

Species Zone F. Of the two statistically significant relationships exhibited by Species Zone F, the sub-

environment exhibits the least variance with Species Zone E (T-value = 4.9) and Species Zone A (T-
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value = 18.9), the latter of which also contains Atriplex portulacoides. Alternatively, Species Zone D 

was on average found in areas with a mean gradient 0.3° steeper than that of B and C with 70.5% of 

Species Zone D being found on land below a gradient 2°. In comparison 74.8% and 75.3% of the area 

respectively occupied by Species Zones B and C was found below 2°. Moreover, unlike Species Zones 

B and C the overall areal coverage of Species Zone D remained relatively constant between 0-30° 

(Figure 5.14 and 5.16) ranging between 5.3% to 4.7%. 

Despite covering only 20775 m² (0.1%) of the overall environment, Species Zone F exhibited the 2nd 

least precise density distribution, reaching a maximal gradient density of 0.42 at 0.7°. The isolated 

sub-environment exhibited the smallest gradient range of 10.7° and the lowest SD of 1.4° (Table 

5.14). In contrast to Species Zone F areas classified as Exposed Sediment possessed the largest 

overall range of 55.8° and comprised 47.9% of the area with a gradient of ≥10°. This gravitation of 

areas of Exposed Sediment to areas of steep gradient predominantly surrounding creeks is visually 

exhibited on marshes B and C (see Figures 5.17 and 5.18), and by Figure 5.14 which shows Exposed 

Sediment constitutes more than its overall area coverage value (42.6%) when the gradient is >4°.  

Brackish Waterbodies had a distinct gradient density distribution when compared to other sub-

environments as it was the only sub-environment to decrease in area between 0.1° to 0.3°. Of the 

significant gradient relationships between Brackish Waterbodies and other sub-environments, the 

lowest variance was displayed between Species Zone C (9.5), a sub-environment associated with 

creeks. The proportional area covered by Brackish Waterbodies is greatest at 40° (10.1% overall 

coverage), although the areal coverage of 8.9% at 0° potentially reflects the fact that the sub-

environment is a relatively broad class which encompasses both creeks and salt pans. 
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 Figure 5.12. Variability in the density of distribution of gradient over all marshes. 

Gradient – All Sub-environments 
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Figure 5.13. Variability in gradient distribution between all sub-environments over all marshes. The violin and box plots for the respective sub-environments are as follows: 

Species Zone A (a), Species Zone B (b), Species Zone C (c), Species Zone D (d), Species Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h). 

 

31250                 62500                93750                                                          12500                25000                 37500                                               62500           125000           187500          250000                                                          31250                        62500                                              

31250                             62500 



 

73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    

(e) 

 

(f) 

 

(g) 

 

(h) 

 

                 Area (m2)                                                                                                     Area (m2)                                                                                                          Area (m2)                                                                                                            Area (m2) 

 

 

 

                  

 

 

Figure 5.13. Variability in gradient distribution between all sub-environments over all marshes. The violin and box plots for the respective sub-environments are as follows: 

Species Zone A (a), Species Zone B (b), Species Zone C (c), Species Zone D (d), Species Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h). 
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Sub-Environment Min Mode Mean Max St Dev. 

Species Zone A 0.0 0.5 1.5 50.7 2.5 
Species Zone B 0.0 0.5 2.4 44.1 4.4 
Species Zone C 0.0 0.6 2.4 52.2 4.2 
Species Zone D 0.0 0.7 2.7 49.2 4.4 
Species Zone E 0.0 0.8 2.5 48.7 3.0 
Species Zone F 0.0 0.7 1.7 40.7 1.4 

Brackish Waterbodies 0.0 0.4 1.9 48.8 4.0 
Exposed Sediment 0.0 0.5 2.4 52.8 4.2 
All Environments 0.0 0.5 2.3 52.8 4.3 

 

Table 5.14. The variability in gradient distribution between all sub-environments over all marshes.  
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Figure 5.14. Variability of sub-environment areal coverage with gradient. See Figure 5.15 for further details. 
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Figure 5.15. Variability in the gradient across the overall saltmarsh environment (%). 
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Figure 5.16. Variability of sub-environment areal coverage with gradient. 
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Species 
Zone A  

Species 
Zone B 

Species 
Zone C  

Species 
Zone D 

Species 
Zone E 

Species 
Zone F 

Brackish 
Waterbodies 

Exposed 
Sediment 

Species Zone A    586.7 4.9 89.1 114.6 18.4 1.0 70.5 

Species Zone B 586.7   378.0 783.3 2147.0 2.8 103.6 125.5 

Species Zone C  4.9 378.0   291.0 0.3 3.2 9.5 2.4 

Species Zone D 89.1 783.3 291.0   100.3 0.8 447.3 0.2 

Species Zone E 114.6 2147.0 0.3 100.3   4.9 733.8 49.3 

Species Zone F 18.4 2.8 3.2 0.8 4.9   1.8 2.5 

Brackish 
Waterbodies 1.0 103.6 9.5 447.3 733.8 1.8   75.7 

Exposed 
Sediment 70.5 125.5 2.4 0.2 49.3 2.5 75.7   

 

  
Species 
Zone A  

Species 
Zone B 

Species 
Zone C  

Species 
Zone D 

Species 
Zone E 

Species 
Zone F 

Brackish 
Waterbodies 

Exposed 
Sediment 

Species Zone A    <2e-16 0.03 <2e-16 <2e-16 1.78E-5 0.31 <2e-16 

Species Zone B <2e-16   <2e-16 <2e-16 <2e-16 0.09 <2e-16 <2e-16 

Species Zone C  0.03 <2e-16   <2e-16 0.57 0.07 2.09e-3 0.12 

Species Zone D <2e-16 <2e-16 <2e-16   <2e-16 0.38 <2e-16 0.62 

Species Zone E <2e-16 <2e-16 0.57 <2e-16   0.03 <2e-16 2.17e-12 

Species Zone F 1.78E-05 0.09 0.07 0.38 0.03   0.18 0.11 

Brackish 
Waterbodies 0.31 <2e-16 2.09e-3 <2e-16 <2e-16 0.18   <2e-16 

Exposed 
Sediment <2e-16 <2e-16 0.12 0.62 2.17e-12 0.11 <2e-16   

 

Table 5.15. F values produced during the ANOVA analyses for all land cover types. The values indicate the variance of the mean 

gradient values for two respective land cover types divided by mean of the variances within each respective land cover type. 

Significant values are highlighted in bold. 

Table 5.16. Probability (p) values accompanying each of the respective F values. The values indicate the probability of 

producing the respective F value result, given that the null hypothesis (F≈1) is true. Statistically insignificant values with an 

alpha level ≥0.05 (hence display to 2.d.p) are indicated in red. 
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Figure 5.17. Spatial variability in gradient over all marshes. 
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Figure 5.18. Sub-environment distribution throughout the saltmarshes of the Ribble estuary. 
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5.1.4 - Influence of Watercourses on Sub-environment Distribution 

Introduction 

This section independently assesses the influence of watercourses on the spatial distribution of sub-

environments throughout the Ribble saltmarshes. The analyses review the spatial distribution of 

sub-environments relative to watercourses defined as fluvial inflows and tidal creeks. As Brackish 

Waterbodies predominantly comprise areas designated at watercourses they are largely excluded 

from the written analysis. 

Overall Variability Between Sub-environments 

Overall 54.4% of predominantly vegetated environments (i.e. Species Zones A – F) are found <20 m 

from a watercourse whilst 84.3% of predominantly vegetated environments are within <40 m of a 

watercourse. Of the predominantly vegetated environments, Species Zone D is on found at the 

closest mean proximity to a watercourse at a distance of 20.4 m. However, the total area of Species 

Zone C < 10 m from a watercourse covers an area 1.00 km2 greater than Species Zone D. Species 

Zone C also exhibits the most precise distribution of any vegetated sub-environment around the 

modal value of 4.7 m (see Figure 5.19) and is most prominent in terms of the proportion of marsh 

area occupied (17.9%) at a distance of 11 m from watercourses (Figure 5.21). Although the ANOVA 

analysis indicates the majority of the sub-environments exhibit statistically significant watercourse 

proximity relationships the fact the smallest significant T-values equal 8.7 (Species Zone A and F) and 

34.0 (Species Zone A and Brackish Waterbodies) indicates the uniqueness of the watercourse 

proximity distribution of each sub-environment. 

This distribution of Species Zone F contrasts with Species Zone C as the maximal kernel distribution 

density is lowest of all sub-environments at 0.016 (see Figure 5.19). The distributional trend of 

Species Zone F is notably different from all other sub-environments (see Figure 5.19) with a mean 

distance value 2x greater than all other sub-environments except Species Zone E, which possess the 

2nd least precise distribution. Although the IQR of Species Zone E is 2nd largest totalling 27.8 m 

(Figure 5.20(e)), the sub-environment possess the joint lowest standard deviation from the mean 

(equal with Species Zone A). 

Exposed Sediment exhibited the most precise distribution of 0.043 of all sub-environments and the 

low mode value of 2.3 m indicated a predominance at close proximity to creeks. Despite possessing 

the 2nd lowest modal value the sub-environment has a mean watercourse proximity value of 24.2 m 

which is largely a result of the disproportionally high predominance (i.e. a greater value than the 

overall percentage cover of 42.6%) in areas more than 94 m from a watercourse (Figure 5.21).  
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Brackish Waterbodies has the lowest mode (1.7 m) and mean (19.3 m) of any sub-environment. 

However the in terms of overall saltmarsh areal coverage the sub-environment is most prominent 

118 m from watercourses covering 9.21% of the marsh which perhaps indicates the presence of 

isolated saltpans. The sub-environment possesses a statistically significant watercourse proximity 

relationship with all sub-environments and the variation in distribution is most similar to Species 

Zone A (T-value = 34.0) and Exposed Sediment (T-value = 38.8). 

The distribution of Species Zone A and B at close proximity to watercourses in terms of proportion is 

comparable with 33.5% and 33.0% of each respective sub-environment being found within 10 m of a 

watercourse, although the mean of Species Zone B is 3.0 m greater. The area covered in terms of the 

overall proportion of the saltmarsh increases to a maximum of 14.3% at 92 m (Species Zone A) and 

25.1% at 78 m (Species Zone B). The ANOVA analysis highlights the ecological diverse sub-

environments Species Zone B exhibits a statistically insignificant relationship with Species Zone A, 

whilst Species Zone A also exhibits an insignificant relationship with Exposed Sediment. Of the 

significant relationships, the variation of Species Zone A and F is most similar although the T-value of 

8.7 highlights the distributions are unique.  

As indicated in previous research, watercourse proximity had a significant influence on the 

distribution of all sub-environments and the extent of this influence is quantitatively assessed in 

Section 5.1.5. Plausible explanations for any similarities and/or discrepancies concerning the 

influence of watercourse proximity as well as elevation and gradient on sub-environment spatial 

distribution are subsequently discussed in Section 6.2. 

 Figure 5.19. Comparitive kernel density plot exhibiting the variability in the distance of each sub-

environment zone from watercourses over all marshes. Any negative values shown are a function of 

the kernel density distirbution smoothing display on R and do not indicate negative distances. 
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Figure 5.20. Variability in distance from watercourse between all sub-environments over all marshes. The violin and box plots for the respective sub-environments are as 

follows: Species Zone A (a), Species Zone B (b), Species Zone C (c), Species Zone D (d), Species Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h). 
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Figure 5.20. Variability in distance from watercourse between all sub-environments over all marshes. The violin and box plots for the respective sub-environments are as 

follows: Species Zone A (a), Species Zone B (b), Species Zone C (c), Species Zone D (d), Species Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h). 
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Table 5.17. Variability in the proximity of all sub-environment zones from watercourses over all marshes. 

Sub-Environment Min Mode Mean Max St Dev. 

Species Zone A 0.0 7.9 23.3 230.9 19.2 
Species Zone B 0.0 5.0 26.3 247.1 21.6 
Species Zone C 0.0 4.7 21.8 265.8 23.2 
Species Zone D 0.0 5.2 20.4 213.3 20.1 
Species Zone E 0.0 22.7 29.5 236.5 19.2 
Species Zone F 0.0 61.0 52.8 99.6 24.7 

Brackish Waterbodies 0.0 1.7 19.3 263.8 20.3 
Exposed Sediment 0.0 2.3 24.2 267.4 21.2 
All Environments 0.0 2.4 21.4 267.4 20.5 

 



 

85 
 

   

 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

La
n

d
 c

o
ve

r 
co

ve
ra

ge
 (

%
)

Distance to Watercourse (m)

Species Zone A

Species Zone B

Species Zone C

Species Zone D

Species Zone E

Species Zone F

Brackish Waterbodies

Exposed Sediment

Figure 5.21. Variability of sub-environment areal coverage with watercourse proximity. Error bars indicate the RMSE of 15 cm associated 

with the Lidar data. See Figure 5.22 for further detail.. 
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Figure 5.22. Variability in watercourse proxmity across the overall saltmarsh environment (%). 
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Figure 5.23. Variability of sub-environment areal coverage with watercourse proximity. Error bars indicate the RMSE of 15 

cm associated with the Lidar data. 
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Species 
Zone A  

Species 
Zone B 

Species 
Zone C  

Species 
Zone D 

Species 
Zone E 

Species 
Zone F 

Brackish 
Waterbodies 

Exposed 
Sediment 

Species Zone A    2.1 34.1 1562.0 85.7 8.7 34.0 0.1 

Species Zone B 2.1   887.8 133.3 332.1 25.2 118.8 512.0 

Species Zone C  34.1 887.8   972.4 1228.0 107.8 291.6 3397.0 

Species Zone D 1562.0 133.3 972.4   1768.0 68.9 89.7 104.8 

Species Zone E 85.7 332.1 1228.0 1768.0   69.2 180.6 124.3 

Species Zone F 8.7 25.2 107.8 68.9 69.2   255.2 281.2 

Brackish 
Waterbodies 34.0 118.8 291.6 89.7 180.6 255.2   38.8 

Exposed 
Sediment 0.1 512.0 3397.0 104.8 124.3 281.2 38.8   

 

  
Species 
Zone A  

Species 
Zone B 

Species 
Zone C  

Species 
Zone D 

Species 
Zone E 

Species 
Zone F 

Brackish 
Waterbodies 

Exposed 
Sediment 

Species Zone A    0.15 5.29e-9 <2e-16 <2e-16 3.27e-3 5.64e-9 0.8 

Species Zone B 0.15   <2e-16 <2e-16 <2e-16 5.23e-7 <2e-16 <2e-16 

Species Zone C  5.2e-9 <2e-16   <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 

Species Zone D <2e-16 <2e-16 <2e-16   <2e-16 <2e-16 <2e-16 <2e-16 

Species Zone E <2e-16 <2e-16 <2e-16 <2e-16   <2e-16 <2e-16 <2e-16 

Species Zone F 3.3e-3 5.2e-07 <2e-16 <2e-16 <2e-16   <2e-16 <2e-16 

Brackish 
Waterbodies 5.64e-9 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16   4.83e-10 

Exposed 
Sediment 0.8 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 4.8e-10   

 

Table 5.18. F values produced during the ANOVA analyses for all land cover types. The values indicate the variance of the mean 

elevation values for two respective land cover types divided by mean of the variances within each respective land cover type. 

Significant values are highlighted in bold. 

Table 5.19. Probability (p) values accompanying each of the respective F values. The values indicate the probability of producing the 

respective F value result, given that the null hypothesis (F≈1) is true. Statistically insignificant values with an alpha level ≥0.05 

(hence reporting to 2.d.p) are indicated in red. 
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Figure 5.24. Raster model exhibiting the proximity of differing areas of all marshes to 

watercourses. 
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Figure 5.25. Sub-environment distribution throughout the saltmarshes of the Ribble estuary. 
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5.1.5 – Key Controls on Sub-environment Area – Multiple Regression Analysis 

Introduction  

Whilst the analyses undertaken in Section 5.1.2 – 5.1.4 highlight clear differences in sub-

environment coverage and the respective influences of elevation, gradient and watercourse 

proximity, the observations and statistics do not fully reveal the contribution of each influence on 

sub-environment areal distribution. 

Therefore, a multiple regression analysis was undertaken primarily to produce beta predictor 

coefficients (standardised and unstandardised) which are measures of how strongly each of the key 

controls (independent) influence sub-environment areal cover and distribution (dependent). 

Specifically, this analysis enabled the determination of the T statistic and p value, as well as 

unstandardised beta coefficient produced by regression analysis. The unstandardised beta value 

represented the amount of change in a dependent variable due to a change of one unit of the 

independent variable, which gave an idea of influence in terms of raw data. Alternatively, the 

standardised beta values produced by the analysis were as units of standard deviation (i.e. a beta 

value of 5 indicates that a change of one standard deviation in the independent variable will produce 

a change of 5 standard deviations in the dependent variable). This allowed for direct comparison of 

the influence of key controls on the spatial distribution on the different sub-environments. 

 

Elevation 

The predictor standardised beta values in Table 5.20 highlighted that Species Zone E and Species 

Zone F areal cover was the most proportionally influenced by the changes in elevation as the values 

of 0.263 and 0.25 were the greatest recorded in any sub-environment. Brackish Waterbodies (0.178) 

and Species Zone A (0.197) were alternatively predicted to be least influenced by elevation, whilst 

the sub-environment T statistic exhibited an expected strong positive correlation (R2 = 0.99) with 

standardised beta. The unstandardised beta findings indicated that Exposed Sediment exhibited the 

greatest overall change in areal coverage per metre of elevation (0.072 km2) with Species Zone C 

having the 2nd highest value (0.034 km2) which was a product of surface area cover as both sub-

environments possessed standardised beta values of 0.215 and 0.197 respectively. Species Zone E 

and F possessed the lowest unstandardised beta values despite the high standardised values which 

was a result of the respective areal coverage of 2.1% and 0.1% (original projection) of the overall 

saltmarsh area. 
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However, the p values for elevation are universally above the alpha value of 0.05 indicating there is a 

reasonable likelihood this relationship could have occurred by chance. Therefore, although the beta 

values show elevation influences sub-environment areal coverage, the relationships are statistically 

insignificant. 

 

 

 

 

 

 

 

 

Gradient 

The regression analysis for gradient exhibited the influence of gradient was predicted to have the 

greatest standardised negative influence on the area of Species Zone E and F with respective 

standardised beta values of -0.496 and -0.448. The areal coverage of Species Zone A and Brackish 

Waterbodies was predicted to be the least influenced by gradient change with a beta value of -

0.384. The T statistics highlighted Species Zone E and F both exhibited the greatest difference in 

negative variation between gradient and area compared to variation within them, whilst Species 

Zone A (-2.078) and Brackish Waterbodies (-2.082) exhibited the least. The areal coverage of Species 

Zone C and Exposed Sediment was modelled to be equally influenced by gradient change 

(standardised beta = -0.409), although the negative variation differed with respective T values of -

2.239 and -2.243. The unstandardised results indicated the sub-environments Species Zone B and 

Exposed Sediment decreased by the greatest net area per increase in degree of gradient whilst the 

predicted beta values indicated gradient had a very similar standardised influence of areal coverage 

of Exposed Sediment Species Zones B and C (0.001 disparity). In all sub-environments the p values 

were below the alpha value of 0.05 indicated that the relationships are statistically significant.  

 

 

 

 

Sub-environment Unstandardised Beta (km2) Standardised Beta T  p 

Species Zone A 0.021 0.197 1.174 0.249 

Species Zone B 0.032 0.211 1.257 0.217 

Species Zone C 0.034 0.197 1.173 0.249 

Species Zone D 0.009 0.212 1.267 0.214 

Species Zone E 0.003 0.263 1.592 0.121 

Species Zone F 1.298E-04 0.25 1.506 0.141 

Brackish Waterbodies 0.014 0.178 1.056 0.298 

Exposed Sediment 0.072 0.215 1.284 0.208 

 

Table 5.20. Multiple regression parameters and the significance of predictor variables 

concerning elevation and sub-environment area (km2). 
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Watercourse Proximity 

The standardised beta values for watercourse proximity exhibited that watercourse proximity had 

the greatest negative influence on the area covered by Species Zones E and F areal cover. The 

respective values of -0.757 (Species Zone E) and -0.729 (Species Zone F) indicated the two sub-

environments exhibited the greatest standardised decrease in area per metre increase in distance 

from a watercourse. The model exhibited Exposed Sediment (-0.614) and Brackish Waterbodies (-

0.627) areal cover was alternatively the least influenced by watercourse proximity. The T-value 

varied accordingly with standardised beta (R2 = 0.99) with Species Zone E and F showing the greatest 

degree of variance between watercourse proximity and area compared to variation within each 

variable. The unstandardised values exhibited the sub-environments associated with creek sediment 

and terrace vegetation Exposed Sediment (-0.0065) and Species Zone C (-0.0025) showed the 

greatest degree in area per m from a watercourse. The p values ≤0.001 indicated that there was a 

very low probability that any of the relationships between watercourse proximity and areal coverage 

occurred by chance.  

 

 

 

 

 

 

 

 

Sub-environment Unstandardised Beta (km2) Standardised Beta T  p 

Species Zone A -0.008 -0.384 -2.078 0.048 
Species Zone B -0.014 -0.41 -2.247 0.034 
Species Zone C -0.013 -0.409 -2.239 0.034 
Species Zone D -0.003 -0.429 -2.37 0.026 
Species Zone E -0.002 -0.496 -2.856 0.009 
Species Zone F -7.979E-05 -0.448 -2.5 0.019 
Brackish Waterbodies -0.007 -0.384 -2.082 0.048 
Exposed Sediment -0.035 -0.409 -2.243 0.034 

 

Sub-environment Unstandardised Beta (km2) Standardised Beta T p 

Species Zone A -0.0014 -0.661 -4.404 <0.001 
Species Zone B -0.0025 -0.679 -4.628 <0.001 
Species Zone C -0.0025 -0.635 -4.108 <0.001 
Species Zone D -0.0006 -0.649 -4.266 <0.001 
Species Zone E -0.0003 -0.757 -5.792 <0.001 
Species Zone F -1.04E-5 -0.729 -5.325 <0.001 
Brackish Waterbodies -0.0013 -0.627 -3.923 0.001 
Exposed Sediment -0.0065 -0.614 -3.889 0.001 

 

Table 5.21. Multiple regression parameters and the significance of predictor variables 

concerning gradient and sub-environment area. 

Table 5.22. Multiple regression parameters and the significance of predictor variables 

concerning watercourse proximity and sub-environment area. 
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Overview 

The multiple regression analysis indicated that whilst it plausible all three factors influence sub-

environment distribution, gradient and watercourse proximity are the only statistically significant 

influences (alpha level = 0.05). The influence of elevation cannot be deemed significant due to the p 

value range of 0.121 - 0.298 and the standardised beta values also indicate that elevation universally 

has the smallest influence on the distribution of each of the eight sub-environments. Of the 

significant influences, watercourse proximity had the largest standardised influence on sub-

environment distribution for all eight sub-environments, with Species Zones E and F being most 

proportionally influenced as the areal coverage decreased by the greatest standardised values. The 

standardised areal coverage of Species Zones E and F were also most influenced by gradient 

although this influence was reduced by 0.261 and 0.281 standard deviations respectively when 

compared to the influence of watercourse proximity. The influence of watercourse proximity and 

gradient on specific sub-environments did not follow the same order as Exposed Sediment had the 

lowest standardised value (-0.614) for watercourse proximity whilst Species Zone A and Brackish 

Watebodies (-0.384) were the least influenced by gradient. This suggests there is not a direct 

correspondence between the influence of watercourse proximity and gradient on the distribution 

and areal coverage specific sub-environments. This highlights that the influence of the two 

significant factors on sub-environments is highly complex, especially when one considers the 

relationship between creek banks and increased gradient. The ensuing discussion (see Section 6.2) 

will consider the significant influences of both gradient and watercourse proximity on sub-

environment distribution. 
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5.2 – Geomorphological Analysis and Carbon Quantification  

5.2.1 Introduction 

The following section exhibits the results concerning the observed carbon content the saltmarshes 

of the Ribble estuary. The results concerning the carbon density of above-ground biomass and sub-

surface sediments are considered independently, whilst the relationship between depth, bulk 

density (BD) and organic carbon density (OCD) of active layer sediment (sub-surface part of the 

active section) is also reviewed. Results of the independent assessments of all four marshes can be 

found in Appendix C. 

5.2.2.1 - Above-ground Biomass 

Over the four saltmarshes, the two predominantly non-vegetated environments possessed the 

lowest above-ground carbon mass with averages values of 0.33 kg/m2 (Brackish Waterbodies) and 

0.12 kg/m2 (Exposed Sediment). Alternatively, Species Zones B and C on average had the highest 

respective overall above-ground biomass carbon content with 1.19 kg/m2 and 0.97 kg/m2. Species 

Zone C also had the highest degree of standard deviation in kg/m2 from the mean, whilst Exposed 

Sediment exhibited the highest standard deviation as a percentage of the mean. Excluding Species 

Zone F (one sample), the other predominantly non-vegetated sites Brackish Waterbodies has the 

lowest degree of standard deviation as well as the lowest range of 0.04 kg/m2 over the three sites. 

Species Zone D had the 2nd lowest standard deviation in terms of percentage of the mean although 

the overall range was 0.03 kg/m2 higher than that of Exposed Sediment (2nd lowest).  

 

 

 

 

 

 

 

 

 

 

 

Sub-environment Type Minimum Median Mean Max St. Dev St. Dev (%) 

Species Zone A 0.46 1.00 0.94 1.30 0.33 35.0 

Species Zone B 0.78 1.27 1.19 1.51 0.30 25.0 

Species Zone C 0.18 1.02 0.97 1.40 0.43 44.7 

Species Zone D 0.69 0.73 0.79 1.02 0.13 17.0 

Species Zone E 0.35 0.72 0.78 1.32 0.40 52.1 

Species Zone F 0.60 0.60 0.60 0.60 0.00 0.0 

Brackish Waterbodies 0.31 0.32 0.33 0.35 0.02 6.9 

Exposed Sediment 0.00 0.10 0.12 0.30 0.13 108.3 

All Sample Sites 0.00 0.78 0.74 1.51 0.46 61.3 

 

Table 5.23. Statistical summary of carbon mass (kg/m2) stored within the above-ground 

biomass in the different sub-environments incorporating data from all sampling sites. 

Although above-ground biomass and carbon mass was determined to ±5 x 10-5 g, values are 

reported to 2.d.p of a kg/m2 for ease of interpretation and to differences in carbon storage to 

be easily discerned. 



 

95 
 

5.2.2.2 - Sub-Surface 

The overall findings indicate a general correspondence between core consistency, OCD and BD. 

Although, an exception does exist on Marsh A at ‘E Site A’, on a site-specific level (see Appendix 

Section C1), the proportion of organic matter within a horizon decreases with depth, whilst OCD and 

BD respectively exponentially decrease and increase with depth (Figure 5.26(a & b)). Although the 

overall range for both OCD and BD within a core depends on the site, on average the basal horizons 

possess an OCD 43.4% lower than the active layer whilst mean basal BD values are 22.3% greater. 

The probability of the relationship between OCD and BD in all active horizons over the whole marsh 

is statistically significant (p= <0.001), however when viewed as a whole only 64% of the variation 

between OCD and BD can be explained by a linear model which highlights the site-specific nature of 

the correspondence. 

Samples from sub-environments classed as Exposed Sediment exhibited the lowest OCDs and 

highest BDs, although Brackish Waterbodies had the highest mean sub-surface OCD of 3.27 kg m-3. 

The OCD and BD of the sub-surface horizons of predominantly vegetated sub-environment is largely 

site-specific (see Table 5.24), with the sub-environments Species Zones B and E containing the 

highest mean OCD of 2.82 kg m-3 and 2.68 kg m-3, whilst Species Zones F and C contained the lowest 

mean OCD of 2.44 kg m-3  and 2.63 kg m-3. Standard deviation (%) did not appear to correspond with 

OCD as Species Zone B and Exposed Sediment exhibited the 1st and 2nd highest OCD standard 

deviation of 27.2% and 17.2%. 

OCD exhibited an exponential decrease with depth (Figure 5.26(a)) which is commonly exhibited in 

saltmarsh sediments due to the substantial decrease in organic productivity with depth below the 

active surface layer (Mishra et al. 2009; Bai et al. 2016). The negative linear correlation between 

OCD and BD (Figure 5.26(c)) also complied with prior research indicating high carbon contents in the 

surface organic silts compared with the reduced OCD at greater depths in coarser silts and fine-

medium grained sands with a higher BD (Elgin, 2012; Santini et al. 2019). BD exhibited an 

exponential increase with depth (Figure 5.26(b)) suggesting a coarsening of grain size in the fossil 

layers with a lower OCD. 

 

 

 

 



 

96 
 

 

 

y = 1.7008x-0.381

R² = 0.6538

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

O
rg

an
ic

 C
ar

b
o

n
 (

kg
/m

3
)

Depth (m)

 

y = 1933.2x0.1061

R² = 0.5696

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
lk

 D
es

n
it

y 
(k

g/
m

3
)

Depth (m)

 

y = -0.0037x + 9.0738
R² = 0.6402

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200O
rg

an
ic

 C
ar

b
o

n
 D

en
si

ty
 (

kg
/m

3
)

Bulk Density (kg/m3)

Figure 5.26. Correspondance between the depth, organic carbon density and bulk density 

throughout all sub-surface horizons. 

a  

b

a  

c  

Sub-environment Type Minimum Median Mean Max St. Dev St. Dev (%) 

Species Zone A 1.99 2.70 2.66 3.04 0.34 12.66 
Species Zone B 2.27 2.48 2.82 3.69 0.77 27.2 
Species Zone C 2.42 2.53 2.63 3.03 0.23 8.7 
Species Zone D 2.19 2.74 2.66 2.96 0.28 10.4 
Species Zone E 2.43 2.68 2.68 2.92 0.20 7.5 
Species Zone F 2.44 2.44 2.44 2.44 0.00 0.0 
Brackish Waterbodies 3.19 3.29 3.27 3.33 0.07 2.2 
Exposed Sediment 1.65 2.19 2.16 2.61 0.37 17.2 
All Sample Sites 1.65 2.60 2.62 3.69 0.42 15.9 

 

Table 5.24. Statistical summary of carbon mass (kg m-3) stored within the sub-surface sediments in 

the different sub-environments. Although sub-surface carbon mass was determined to ±5 x 10-5 g, 

values are reported to 2.d.p of a kg m-3 for ease of interpretation and to allow one to easily 

discern differences in carbon storage. 
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5.2.2.3 - Active Layer Characteristics 

In order to determine the active layer OCD and BD samples from all sub-environments were 

collectively analysed along with the assistance of field observations to identify the variability in 

active layer depth in each layer. The criteria that an active layer must have an OCD >15% than the 

overall sub-surface sediment and contain undecomposed organic matter produced a mean active 

layer depth ranging between 12.6 cm (Species Zone A) and 23.3 cm (Exposed Sediment). However, 

the exponential decrease in OCD which is observed between active and fossil layers (Mishra et al. 

2009; Bai et al. 2016) resulted in a mean active layer content which was on average 43.4% greater 

than that of all the sub-surface sediment. 

When OCD and BD values for all active layers are considered, the SD from the overall mean was 18% 

and 9.8% for OCD (average = 3.8 kg m-3) and BD (average = 1578 kg m-3) respectively, which 

highlights the variability in active layer sediment characteristics. However, the probability of a 

relationship between OCD and BD across all active horizons occurring by chance is negligible (p = 

≤0.001) which suggests OCD and BD variation is mainly site-specific. The carbon density was on 

average highest in Species Zone E (4.26 kg m-3) and Species Zone C (4.12 kg m-3) and lowest in sub-

environments classified as Exposed Sediment (3.09 kg m-3). Although Species Zone A has the greatest 

overall range of 1.84 kg m-3 the standard deviation as a percentage of the mean was greatest in 

Species Zones F (23.9%) and D (19.3%). Alternatively, Brackish Waterbodies exhibits the lowest 

standard deviation both in terms kg m-3 and percentage, suggesting little variability in active layer 

carbon density in the sub-environment. 

OCD decreased with depth within the active layer itself but only 12.6% of the variation could be 

explained by an exponential model (Figure 5.27(a)), whilst only 13.4% of the increase in BD with 

depth could be explained (Figure 5.27(b)). Variability between the OCD and BD of active layer 

samples was also high as indicated by the R2 value of 0.191 (Figure 5.27(c)). The contrast in the OCD, 

BD and depth relationship between all sub-surface samples (Figure 5.26) and the active layer 

samples plausibly suggests the depth boundary between active and fossil layers accurately divide the 

two layers as no exponential decrease in OCD with depth was exhibited in the active layer. 

Moreover, the BD of the active layer samples was consistently lower than the BD of sediments at 

lower depths (see Figure 5.26(b)). This highlights the active layer samples are indicative of 

uncompacted organic-rich silts which commonly comprise the active surface layers and are directly 

influenced by ecogeomorphological processes (Bartholdy, 2012; Bai et al. 2016) 
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a  

Sub-environment 
Type 

Mean 
Depth (m) 

> Sub-
surface (%) Min Median Mean Max St. Dev 

St. Dev 
(%) 

Species Zone A 0.126 47.3 2.48 4.19 3.91 4.32 0.65 16.6 
Species Zone B 0.127 39.7 3.17 4.11 3.93 4.24 0.40 10.3 
Species Zone C 0.136 56.8 3.77 4.17 4.12 4.33 0.22 5.4 
Species Zone D 0.14 34.1 2.41 3.65 3.56 4.16 0.69 19.3 
Species Zone E 0.163 58.9 4.07 4.25 4.26 4.45 0.19 4.5 
Species Zone F 0.15 42.9 2.89 3.48 3.48 4.07 0.83 23.9 
Brackish Waterbodies 0.15 17.7 3.75 3.75 3.85 4.06 0.18 4.7 
Exposed Sediment 0.233 43.3 2.24 3.12 3.09 3.70 0.48 15.5 
All Sample Sites 0.153 43.5 2.24 3.98 3.75 4.45 0.59 15.6 

 

Table 5.25. Statistical summary of carbon density (kg m-3) of active layer sediments in the differing sub-

environments. Although active layer carbon mass was determined to ±5 x 10-5 g, values are reported to 2.d.p 

of a kg m-3 for ease of interpretation and to allow one to easily discern differences in carbon storage. 
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Figure 5.27. Correspondance between the depth, organic carbon density and bulk density 

in all active layer horizons.  
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5.2.2.4 – Above-ground Biomass and Active Layer Carbon 

The findings concerning the correspondence between carbon stored within the above-ground 

biomass and active layer highlighted a degree of correlation between both variables across the 

entire saltmarsh (see Figure 5.28). When sub-environments are considered on an individual basis 

Species Zone E exhibited the largest discrepancy from this trend of positive correlation with the 

highest average active layer carbon density of 4.26 kg/m2 despite an average above-surface carbon 

mass of 0.78 kg/m2. Alternatively, Exposed Sediment possessed the lowest carbon density in both 

cases, whilst Brackish Waterbodies exhibited the greatest degree of deviation from the linear trend.  

Overall 44% of the variation between the two variables can be explained by a statistically significant 

(T-test p value = <0.001) linear model which suggests a positive correlation between above-ground 

vegetation and active layer carbon content. This suggests that the above-ground carbon storage and 

biomass influence the mean active layer carbon storage potential, although the low R2 value and 

uncertainty in organic carbon density (see Figure 5.28) indicate other factors have a more prominent 

influence on carbon storage (see Section 6.2). 
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Figure 5.28. Correspondance between the mean carbon mass per unit area in both the above-

ground biomass and active layer in each sub-environment. Error bars indicate the standard 

deviation surrounding each respective mean value. 
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5.3 – Overall Carbon Content of Sub-environments  

5.3.1 – Introduction 

This section combines the results from sections 5.1 and 5.2 in order to determine the overall carbon 

contents of the above-ground biomass and active layer which comprise the active section. The 

distribution of carbon within both the above-ground biomass and active layer sediments of all sub-

environments and the uncertainty surrounding these calculations is also exhibited. 

 

5.3.2 – Variability in Carbon Content 

5.3.2.1 - Above-ground Biomass 

The carbon stored within the above-ground biomass in different saltmarsh sub-environments and 

the uncertainty surrounding the projections according to the remote (blue) and manual (orange) 

landcover analyses is highlighted in Figure 5.29(a-d) and Table 5.26. The projections indicate the 

highest total above-ground carbon mass is held within Species Zone B which is primarily a result of 

the sub-environment having the highest average carbon density (1.19 kg/m2) whilst covering the 3rd 

greatest area (3.06 km2) according to the original assessment. Although Species Zone C covers 0.2 

km2 more than Species Zone B, the lower mean carbon mass (0.97 kg) means the sub-environment a 

carbon mass 3.57 x 105 kg lower than that of Species Zone B according to the original projection. 

However, the areal uncertainty projections suggest it is plausible that Species Zone B and C could 

have a total above-ground carbon mass of 3.63 x 105 kg and 4.24 x 105 kg if the lowest (Species Zone 

B) and highest (Species Zone C)  remote land cover uncertainty projections were assumed for the 

respective sub-environments. Moreover, as the OCD standard deviation for Species Zone C (44.7%) 

was greater than in Species Zone B (25%), it is plausible that the carbon mass of the former could be 

higher than that of Species Zone B even assuming the original areal projections. 

Of all predominantly vegetated environments the highest degree of standard deviation relative to 

the mean of 52.1% is observed in Species Zone E (Table 5.27), which according to the minimal and 

maximal carbon projection assuming the remote area could have a projected overall carbon mass as 

high as 6.93 x 105 kg or as low as 1.41 x 105 kg. However, when only areal projections are considered 

(mean OCD) Species Zone E has a standard deviation of 10.8% from the mean (Table 5.26). 

The net disparity between projections is lowest (2520 kg) for Species Zone F due to the low overall 

projection of carbon mass and the lack of standard deviation in OCD (Table 5.28). In contrast, the 

carbon mass of Species Zone A could differ by 2280 kg and the maximal projection for Species Zone 

A (3110 kg) is 56.7% greater than the projection which assumes mean OCD and the original remote 
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area coverage. Therefore if the OCD or areal coverage of Species Zone A was at the upper limit of 

uncertainty and Species Zone C at the lower, it is plausible that Species Zone A could contain a 

greater mass of carbon (see Tables 5.27 and 5.28).  

As the manual areal classification of Species Zone D was 100% accurate and the remote assessment 

had an accuracy of 90%, the standard deviation surrounding the areal projections is comparably low 

at 6.6% or 4.82 x 104 kg. Moreover the low uncertainty in OCD projection results in a low standard 

deviation surrounding the projections that assume original areal cover and consider OCD variability 

of 1.24 x 105 kg or 17.0%, 

Brackish Waterbodies had the lowest standard deviation concerning carbon mass both in terms of 

mass and as percentage of the average of 0.33 kg/m2 producing the lowest standard deviation of 

6.9% when OCD variability was considered (excluding Species Zone F) (Table 5.27). Alternatively, 

Exposed Sediment had the largest standard deviation of carbon mass which produced a standard 

deviation of 108.3% when OCD variability was considered. Despite the coverage of Exposed 

Sediment over 42.6% of the overall marsh area the original projection indicates that Exposed 

Sediment will account for 9.2% of the total above-ground carbon due to the low mean OCD of 3.09 

kg m-3. However, the remote uncertainty analysis highlighted the overall carbon mass of the sub-

environment could hypothetically vary between 0 and 3.11x 106 kg. 
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Figure 5.29(a). Disparity in overall above-ground biomass carbon projections for sub-environments: Species Zone A, B and C assuming mean 

OCD. Error bars represent the maximal uncertainty surrounding the remote (blue) and manual (orange) analyses. 
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Figure 5.29(b). Disparity in overall above-ground biomass carbon projections for sub-environments: Species Zones D and E as well Brackish 

Waterbodies and Exposed Sediment assuming mean OCD. Error bars represent the maximal uncertainty surrounding the remote (blue) and manual 

(orange) analyses. 
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Figure 5.29(c). Disparity in overall above-ground biomass carbon 

projections assuming mean OCD  for the sub-environments Species Zone 

F. 
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Figure 5.29(d). Disparity in overall above-ground biomass carbon 

projections assuming mean OCD for all sub-environments. 
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    Overall Mass (kg x 10-3)        

St. Dev (%) 

Sub-environment Type Mean (kg) 
Original 
Remote 

Remote Lower 
Bound Area 

Remote Upper 
Bound Area 

Manual Lower 
Bound Area 

Manual Upper 
Bound Area 

Mean St. Dev 

Species Zone A 0.94 1986.7 1712.7 2260.7 1738.4 2474.8 2034.7 331.1 16.3 

Species Zone B 1.19 4063.4 3632.2 4494.6 3250.7 5221.1 4132.4 766.3 18.5 

Species Zone C 0.97 3706.9 3172.7 4241.1 3706.9 3706.9 3706.9 377.7 10.2 

Species Zone D 0.79 728.4 660.2 796.6 728.4 728.4 728.4 48.2 6.6 

Species Zone E 0.78 360.4 312.5 408.3 360.4 408.3 370.0 40.1 10.8 

Species Zone F 0.60 12.4 11.1 13.6 12.4 12.4 12.4 0.9 7.1 

Brackish Waterbodies 0.33 582.9 505.4 660.4 499.6 666.2 582.9 80.5 13.8 

Exposed Sediment 0.12 1163.6 1035.8 1291.3 1163.6 1163.6 1163.6 90.3 7.8 

All Environments  12604.7 11042.6 14166.7 11460.4 14381.6 12731.2 1522.1 12.0 

 

Table 5.26. Disparity in overall above-ground biomass carbon projections for all sub-environments considering the 

different sub-environment areal uncertainities (1.d.p). 

 Projected Carbon Storage (kg x 10-3) 

Sub-environment Type Min Median Mean Max St. Dev St. Dev (%) 

Species Zone A 966.8 2102.9 1986.7 2735.4 694.9 35.0 
Species Zone B 2669.2 4362.8 4063.4 5165.2 1015.5 25.0 
Species Zone C 681.8 3882.5 3706.9 5342.4 1656.7 44.7 
Species Zone D 635.3 673.6 728.4 936.6 123.9 17.0 
Species Zone E 162.3 333.9 360.4 611.4 187.8 52.1 
Species Zone F 12.4 12.4 12.4 12.4 0.0 0.0 
Brackish Waterbodies 553.4 566.6 582.9 628.7 40.2 6.9 
Exposed Sediment 0.0 969.3 1163.6 2799.0 1260.4 108.3 

All Environments 5681.2 12904.0 12604.7 18231.1 4979.3 39.5 

 

Table 5.27. Above-ground biomass carbon (kg x 10-3) statistics for all sub-

environments considering the variability in OCD assuming the sub-environment 

coverage projected in the original areal remote classification (1.d.p). 

 Projected Carbon Storage (kg x10-3) 

Sub-environment Type Minimum Max 

Species Zone A 833.4 3112.7 
Species Zone B 2135.3 6198.3 
Species Zone C 583.5 6112.2 
Species Zone D 575.9 1024.3 
Species Zone E 140.7 692.7 
Species Zone F 11.1 13.6 
Brackish Waterbodies 474.4 718.6 
Exposed Sediment 0.0 3106.4 

All Environments 4754.3 20978.7 

 

Table 5.28. Above-ground biomass carbon (kg x 10-3) 

projections assuming the minimal and maximal 

possible areal and OCD projections (1.d.p). 
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5.3.2.2 - Active Layer Sediment 

Volume 

In order to determine the overall carbon content of the sediment within the active layer the volume 

of each active layer and the uncertainty surrounding these calculations was determined and 

uncertainties influencing these projections were accounted for (see Table 5.29). The original, remote 

and manual areal projections (see Table 5.8 for uncertainty) for each sub-environment are 

incorporated as well as the mean, lower and higher bounds (standard deviation) for depth so the 

potential variability in volume is considered. 

 

 

 

 

 

 

 

 

 

 

 

Exposed Sediment has the greatest variability in volume both in terms of the overall value and 

proportion which was principally a result of the larger areal coverage and variability in depth (see 

Table 5.30 and Figure 5.30(e)). Likewise, Species Zone E (Figure 5.30(c) exhibited a high overall range 

between projections with maximal and minimal values of 1.11 x 105 m3 and 3.41 x 104 m3 between 

RUBA x UBD and RLBA x LBD projections, whilst the overall degree of standard deviation (%) of 

volume between all sub-environments was the 2nd highest 37.2% of OA x AD. 

Although the difference in volume occupied by Species Zones B and C is as low as 4.09 x 104 m3 for 

the RLBA x LBD projection, this increases to 2.00 x 105 m3 in the MLBA x UBD projection. This 

similarity between RLBA x LBD is a result of the similar average depths (0.13 m – Species Zone B, 

0.14 m – Species Zone C) of active layers and standard deviation of depth which is 0.027 m (Species 

Zone B) and 0.028 m (Species Zone C) combined with only a 3.4% difference in remote areal 

Key Description 

OA x AD Original Average x Average Depth 

OA x UBD Original Area x Upper Bound Depth 

OA x LBD Original Area x Lower Bound Depth 

RLBA x AD Remote Area Lower Bound x Average Depth 

RUBA x AD Remote Area Upper Bound x Average Depth 

MLBA x AD Manual Area Lower Bound x Average Depth 

MUBA x AD Manual Area Lower Bound x Average Depth 

RLBA x UBD Remote Area Lower Bound x Upper Bound Depth 

RLBA x LBD Remote Area Lower Bound x Lower Bound Depth 

RUBA x UBD Remote Area Upper Bound x Upper Bound Depth 

RUBA x LBD Remote Area Upper Bound x Lower Bound Depth 

MLBA x UBD Manual Area Lower Bound x Upper Bound Depth 

MLBA x LBD Manual Area Lower Bound x Lower Bound Depth 

MUBA x UBD Manual Area Upper Bound x Upper Bound Depth 

MUBA x LBD Manual Area Upper Bound x Lower Bound Depth 

 

Table 5.29. Key for volume projection uncertainty analysis. 
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uncertainty. However, the 20% areal uncertainty difference in the manual analysis consequently 

results in a comparatively large disparity in volume between Species Zones B and C indicated by the 

MLBA x UBD assessment. 

The volume occupied by Species Zone A and Brackish Waterbodies is also similar according to 

several projections with the closest projection being MLBA x AD with a disparity of 1.77 x 104 m3 (see 

Figure 5.30(a)). Whilst the volume covered by Brackish Waterbodies is predicted to higher than that 

covered by Species Zone A in 10 of the 15 projections, the projections: OA x UBD, RLBA X UBD, RUBA 

x UBD, MLBA x UBD and MUBA x UBD, predict a greater volume of the marsh will be occupied by 

Species Zone A. This is primarily a result of standard deviation of depth for Species Zone A is 0.042 m 

compared to 0.12 m for Brackish Waterbodies which offsets the similarity in area coverage. 

The volume of Species Zone D ranges from 8.27 x 104 m3 (RLBA x LBD) to 1.81 x 105 m3 (RUBA x UBD), 

whilst the standard deviation between all results is 25.3% of OA x AD. As there was no disparity 

between the OA and manual readings as the manual land cover accuracy was 100%, RLBA x LBD was 

lowest volume projection despite high remote accuracy of 90.6%. The standard deviation in depth of 

0.041 m (29% of the mean) was therefore the most influential variable when determining volume for 

Species Zone D complying with the trend found in all sub-environments with the exception of 

Brackish Waterbodies. Overall, the volume analysis highlights that the volume of all sub-

environments varies considerably according to the areal and depth uncertainty assessments and this 

influence on carbon storage variability is the focus of the next sub-section. 

 



 

109 
 

  

 

0

100

200

300

400

500

600

700

800

OA x AD OA x UBD OA x LBD

P
ro

je
ct

ed
 V

o
lu

m
e 

(m
³ 

x 
10

-³
)

Brackish Waterbodies Species Zone A Species Zone B Species Zone C Species Zone D

 

0

100

200

300

400

500

600

700

OA x AD OA x UBD OA x LBD

P
ro

je
ct

ed
 V

o
lu

m
e 

(m
³ 

x 
10

-³
)

Brackish Waterbodies Species Zone A Species Zone B Species Zone C Species Zone D

Figure 5.30(b). Variability in projected overall volume for the sub-environments: Species Zone A, B, C, D and Brackish Waterbodies. The error bars 

represent uncertainty in the manual areal assessment (i.e. MLBA x AD, MUBA x AD, MLBA x UBD, MUBA x UBD, MLBA x LBD and MUBA x LBD). 

. 

Figure 5.30(a). Variability in projected overall volume for the sub-environments: Species Zone A, B, C, D and Brackish Waterbodies. The error bars 

represent uncertainty in the remote areal assessment (i.e. RLBA x AD, RUBA x AD, RLBA x UBD, RUBA x UBD, RLBA x LBD and RUBA x LBD). 
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Figure 5.30(c). Variability in projected overall volume for Species Zone E. The error bars represent uncertainty in the remote areal 

assessment.  The manual areal assessment uncertainty is not displayed as the accuracy was 100%. 

 

Figure 5.30(d). Variability in projected overall volume for Species Zone F. The error bars represent uncertainty in the remote areal 

assessment.  The manual areal assessment uncertainty is not displayed as the accuracy was 100%. 
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Figure 5.30(e). Variability in projected overall volume for Exposed Sediment. The error bars represent uncertainty in the remote areal 

assessment. The manual areal assessment uncertainty is not displayed as the accuracy was 100%. 



 

112 
 

 

 
       Volume (m³ x 10-3)           

Sub-environment Type OA x AD 
OA x 
UBD 

OA x 
LBD RLBA x AD RUBA x AD 

MLBA x 
AD 

MUBA x 
AD 

RLBA x 
UBD 

RLBA x 
LBD 

Standard 
Deviation 

Standard Deviation 
(% of OA x AD) 

Brackish Waterbodies 253.9 274.4 233.5 220.2 287.7 217.6 290.2 237.9 202.4 36.8 14.5 

Species Zone A 228.6 316.6 140.6 197.0 260.1 200.0 257.1 272.9 121.2 79.9 35.0 

Species Zone B 445.0 537.7 352.3 397.8 492.3 356.0 534.0 480.7 314.9 103.0 23.2 

Species Zone C 523.0 630.2 415.7 447.6 598.3 523.0 523.0 539.4 355.8 103.5 19.8 

Species Zone D 128.5 165.8 91.2 116.5 140.5 128.5 128.5 150.2 82.7 32.5 25.3 

Species Zone E 68.5 97.8 39.3 59.4 77.7 68.5 68.5 84.8 34.1 25.5 37.2 

Species Zone F 2.9 2.9 2.9 2.6 3.2 2.9 2.9 2.6 2.6 0.2 6.8 

Exposed Sediment 2046.3 3255.4 837.1 1821.6 2271.0 2046.3 2046.3 2898.0 745.2 1034.9 50.6 

Sum of All Sub-
environments 3696.7 5280.7 2112.6 3262.7 4130.7 3542.8 3850.5 4666.5 1858.9   

 

Table 5.30. Volume projections for all volume projections for all sub-environments (1.d.p).  

     Volume (m³ x 10-3)       

Sub-environment 
Type 

RUBA x 
UBD 

RUBA x 
LBD 

MLBA x 
UBD 

MLBA x 
LBD 

MUBA x 
UBD 

MUBA x 
LBD 

Standard 
Deviation 

Standard Deviation 
(% of OA x AD) 

Brackish Waterbodies 310.8 264.5 235.2 200.1 313.6 266.8 36.8 14.5 

Species Zone A 360.2 159.9 277.0 123.0 356.1 158.1 79.9 35.0 

Species Zone B 594.8 389.7 430.2 281.9 645.3 422.8 103.0 23.2 

Species Zone C 721.0 475.7 630.2 415.7 630.2 415.7 103.5 19.8 

Species Zone D 181.3 99.7 165.8 91.2 165.8 91.2 32.5 25.3 

Species Zone E 110.8 44.5 97.8 39.3 97.8 39.3 25.5 37.2 

Species Zone F 3.2 3.2 2.9 2.9 2.9 2.9 0.2 6.8 

Exposed Sediment 3612.9 929.0 3255.4 837.1 3255.4 837.1 1034.9 50.6 

Sum of All Sub-
environments 5895.0 2366.3 5094.4 1991.3 5467.1 2234.0 

 

Table 5.31. Volume projections for all volume projections for all sub-environments (1.d.p). 

uncertaintiy analysis. 
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5.3.2.3 – Active Layer Carbon Variability 

Exposed Sediment had the highest overall active layer sub-surface carbon content for each 

projection due to the expansive volume of the sub-environment, despite the fact it has the lowest 

mean carbon OCD of 3.09 kg m-3 (See Table 5.32). The standard deviation between overall carbon 

projections was also the largest for Exposed Sediment both in terms of overall carbon mass of 9.42 x 

106 kg and percentage of 47.9% of OA x AD (see Table 5.33 and Figure 5.31(e)). Therefore, when the 

full range of OCD and volume uncertainties are considered (see Table 5.33 and 5.34) the active layer 

of the Exposed Sediment sub-environment could theoretically hold between 1.67 x 106 kg to 1.34 x 

106 kg. The 15 projections for Species Zones A and E indicated the sub-environments had the highest 

proportional SD (%) equalling 35.0% and 37.2% respectively (see Table 5.32). The similar OCDs of 

Species Zone A (3.93 kg) and Brackish Waterbodies (3.85 kg) combined with the volume means that 

neither sub-environment can be stated to definitively contain more carbon than the other due to the 

variability in areal and carbon uncertainty projections. This variability in projections had a reduced 

influence on Brackish Waterbodies (Figure 5.31(a)) which had the lowest degree of OCD standard 

deviation of 0.18 kg m-3 (4.7%) and smallest volume standard deviation (%) (excluding Species Zone 

F) which consequently resulted in the low standard deviation between mean total carbon 

projections of 142 kg (14.5% of OA x AD). The 2nd greatest mass of carbon is stored within Species 

Zone C, although as a proportion, this does not exceed 66.3% of the mass within Exposed Sediment 

(OA x LBD projection). However, Species Zone B could theoretically store a carbon mass similar to 

Species Zone C according to the MUBA x AD, MUBA x UBD and MUBA x LBD with respective 

differences of 5.51 x 104 kg, 5.95 x 104 kg and 5.07 x 104 kg between projections, although Species 

Zone C remains the greater carbon store. This was because of the 20% areal uncertainty surrounds 

the manual Species Zone B predictions, whilst Species Zone C projections were 100% accurate. 

Although Species Zones A and B have similar OCDs (0.02 kg m-3), the projections using average OCD 

values (Table 5.32) highlight it is plausible that Species Zone A could contain only 39.7% (OA x LBD) 

of the carbon mass of Species Zone B, and when the minimal OCD values (Table 5.34) are considered 

this decreases to 29.3% (MUBA x LBD). This is a result of greater uncertainty surrounding OCD (SD 

difference = 6.3%) and the uncertainty surrounding the active layer depth of Species Zone A is also 

greater than Species Zone B by 17.7%. The 25.3% standard deviation between all carbon storage 

projections using mean OCD values of Species Zone D was primarily a result of the active layer depth 

uncertainty of 29.0% and the high (SD=19.3) uncertainty surrounding the mean OCD values of the 

sub-environment. Regardless of the projections used, the projected carbon storage value for Species 

Zone D did not exceed or fall below the storage of any other sub-environment indicating the areas 

occupied by the sub-environment had a unique carbon storage potential.  
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Figure 5.31(b). Variability in projected overall active layer carbon storage for the sub-environments: Species Zones A, B, C, D and Brackish Waterbodies. The 

error bars represent uncertainty in the manual areal assessment(i.e. MLBA x AD, MUBA x AD, MLBA x UBD, MUBA x UBD, MLBA x LBD and MUBA x LBD).. 
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Figure 5.31(a). Variability in projected overall active layer carbon storage for the sub-environments: Species Zones A, B, C, D and Brackish Waterbodies. The 

error bars represent uncertainty in the remote areal assessment (i.e. RLBA x AD, RUBA x AD, RLBA x UBD, RUBA x UBD, RLBA x LBD and RUBA x 

LBD).assessment. 
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Figure 5.31(c). Variability in projected overall active layer carbon storage for the sub-environment Species F. The error bars represent 

uncertainty in the remote areal assessment. The manual areal assessment uncertainty is not displayed as the accuracy was 100%. 

 

Figure 5.31(d). Variability in projected overall active layer carbon storage for Species Zone F. The error bars represent uncertainty 

in the remote areal assessment. The manual areal assessment uncertainty is not displayed as the accuracy was 100%. 
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Figure 5.31(e). Variability in projected overall active layer carbon storage for Exposed Sediment. The error bars represent uncertainty in 

the remote areal assessment. The manual areal assessment uncertainty is not displayed as the accuracy was 100%. 
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    Projected Carbon Mass (kg x 10-3) 

Sub-environment 
Type 

Mean Organic 
Carbon Density OA x AD OA x UBD OA x LBD RLBA x AD RUBA x AD MLBA x AD MUBA x AD RLBA x UBD RLBA x LBD 

Species Zone A 3.91 894.3 1238.6 550.0 770.9 1017.6 782.5 1006.1 1067.8 474.1 

Species Zone B 3.93 1750.6 2115.3 1386.0 1564.9 1936.4 1400.5 2100.8 1890.8 1238.9 

Species Zone C 4.12 2155.9 2597.8 1713.9 1845.2 2466.5 2155.9 2155.9 2223.5 1466.9 

Species Zone D 3.56 457.4 590.1 324.7 414.6 500.2 457.4 457.4 534.9 294.3 

Species Zone E 4.26 291.7 416.1 167.3 252.9 330.4 291.7 291.7 360.8 145.0 

Species Zone F 3.48 10.1 10.1 10.1 9.1 11.2 10.1 10.1 9.1 9.1 
Brackish 
Waterbodies 3.85 978.6 1057.5 899.8 848.6 1108.7 838.8 1118.4 916.9 780.2 

Exposed Sediment 3.09 6321.5 10056.8 2586.1 5627.3 7015.6 6321.5 6321.5 8952.5 2302.1 

Sum of All Sub-environments 12860.1 18082.4 7637.8 11333.5 14386.7 12258.4 13461.8 15956.3 6710.6 

 

  Projected Carbon Mass (kg x 10-3)   

Sub-environment 
Type 

Mean Organic 
Carbon Density 

RUBA x 
UBD 

RUBA x 
LBD 

MLBA x 
UBD 

MLBA x 
LBD 

MUBA x 
UBD 

MUBA x 
LBD 

Projection Standard 
Deviation (kg) 

Projection Standard 
Deviation (% of OA x AD) 

Species Zone A 3.91 1409.5 625.8 1083.8 481.2 1393.5 618.7 312.6 35.0 

Species Zone B 3.93 2339.8 1533.0 1692.2 1108.8 2538.4 1663.2 405.3 23.2 

Species Zone C 4.12 2972.2 1960.9 2597.8 1713.9 2597.8 1713.9 426.7 19.8 

Species Zone D 3.56 645.4 355.1 590.1 324.7 590.1 324.7 115.8 25.3 

Species Zone E 4.26 471.4 189.5 416.1 167.3 416.1 167.3 108.5 37.2 

Species Zone F 3.48 11.2 11.2 10.1 10.1 10.1 10.1 0.7 6.8 
Brackish 
Waterbodies 3.85 1198.0 1019.4 906.4 771.2 1208.5 1028.3 141.9 14.5 

Exposed Sediment 3.09 11161.1 2870.0 10056.8 2586.1 10056.8 2586.1 3197.0 50.6 

Sum of All Sub-environments 20208.5 8564.9 17353.4 7163.3 18811.4 8112.2 4708.5 36.6 

 

Table 5.32. Active layer overall carbon mass projections for all sub-environments (1.d.p). 

Table 5.32. Active layer overall carbon mass projections for all sub-environments (1.d.p). 
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  Table 5.33. Uncertainty (standard deviation) surrounding sub-surface active section overall carbon mass projections for all sub-environments (1.d.p). 

    Standard Deviation in Projected Carbon Mass (kg x 10-3) 

Sub-environment 
Type 

Average Organic 
Carbon Density (kg) 

OCD Standard 
Deviation 

OCD Standard 
Deviation (%) 

OA x 
AD 

OA x 
UBD 

OA x 
LBD 

RLBA x 
AD 

RUBA x 
AD 

MLBA x 
AD 

MUBA x 
AD 

Species Zone A 3.91 0.65 16.6 148.6 205.8 91.4 128.1 169.1 130.0 167.1 

Species Zone B 3.93 0.40 10.3 178.0 215.1 140.9 159.1 196.9 142.4 213.6 

Species Zone C 4.12 0.22 5.4 115.1 138.6 91.5 98.5 131.6 115.1 115.1 

Species Zone D 3.56 0.69 19.3 88.7 114.4 62.9 80.4 97.0 88.7 88.7 

Species Zone E 4.26 0.19 4.5 13.0 18.6 7.5 11.3 14.8 13.0 13.0 

Species Zone F 3.48 0.83 23.9 2.4 2.4 2.4 2.2 2.7 2.4 2.4 
Brackish 
Waterbodies 3.85 0.18 4.7 45.7 49.4 42.0 39.6 51.8 39.2 52.2 

Exposed Sediment 3.09 0.48 15.5 982.2 1562.6 401.8 874.4 1090.1 982.2 982.2 

Sum of All Sub-environments 1573.6 2306.9 840.4 1393.5 1753.8 1512.9 1634.3 

 

 Standard Deviation in Projected Carbon Mass (kg x 10-3) 

Sub-environment 
Type RLBA x UBD RLBA x LBD RUBA x UBD RUBA x LBD MLBA x UBD MLBA x LBD MUBA x UBD MUBA x LBD 

Species Zone A 177.4 78.8 234.1 104.0 180.0 79.9 231.5 102.8 

Species Zone B 192.3 126.0 237.9 155.9 172.1 112.7 258.1 169.1 

Species Zone C 118.7 78.3 158.6 104.6 138.6 91.5 138.6 91.5 

Species Zone D 103.7 57.0 125.1 68.8 114.4 62.9 114.4 62.9 

Species Zone E 16.1 6.5 21.0 8.5 18.6 7.5 18.6 7.5 

Species Zone F 2.2 2.2 2.7 2.7 2.4 2.4 2.4 2.4 
Brackish 
Waterbodies 42.8 36.4 56.0 47.6 42.3 36.0 56.4 48.0 

Exposed Sediment 1391.0 357.7 1734.2 445.9 1562.6 401.8 1562.6 401.8 

Sum of All Sub-
environments 2044.1 742.8 2569.6 938.0 2231.1 794.8 2382.7 886.0 

 

Table 5.33. Uncertainty (standard deviation) surrounding sub-surface active section overall carbon mass projections for all sub-environments (1.d.p). 
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  Projected Carbon Mass (kg x 10-3)   

Sub-environment 
Type Min OCD (kg) OA x AD OA x UBD OA x LBD RLBA x AD RUBA x AD MLBA x AD MUBA x AD 

Species Zone A 2.48 566.8 785.1 348.6 488.6 645.0 496.0 637.7 

Species Zone B 3.17 1410.8 1704.6 1116.9 1261.1 1560.5 1128.6 1692.9 

Species Zone C 3.77 1971.6 2375.7 1567.4 1687.4 2255.7 1971.6 1971.6 

Species Zone D 2.41 309.6 399.5 219.8 280.6 338.6 309.6 309.6 

Species Zone E 4.07 279.0 398.0 160.0 241.9 316.0 279.0 279.0 

Species Zone F 2.89 8.4 8.4 8.4 7.5 9.3 8.4 8.4 
Brackish 
Waterbodies 3.75 952.2 1028.9 875.5 825.7 1078.8 816.2 1088.2 

Exposed Sediment 2.24 4583.7 7292.2 1875.2 4080.4 5087.0 4583.7 4583.7 

Sum of All Sub-environments 10082.0 13992.4 6171.7 8873.2 11290.8 9593.0 10571.1 

 

Table 5.34. Uncertainty (minimal bounds) surrounding sub-surface active section overall carbon mass projections for all sub-environments (1.d.p). 

  Projected Carbon Mass (kg x 10-3) 

Sub-environment Type Min OCD (kg) RUBA x UBD RUBA x LBD MLBA x UBD MLBA x LBD MUBA x UBD MUBA x LBD 

Species Zone A 2.48 893.4 396.7 686.9 305.0 883.2 392.1 

Species Zone B 3.17 1885.5 1235.4 1363.7 893.5 2045.6 1340.3 

Species Zone C 3.77 2718.1 1793.2 2375.7 1567.4 2375.7 1567.4 

Species Zone D 2.41 436.9 240.4 399.5 219.8 399.5 219.8 

Species Zone E 4.07 450.8 181.2 398.0 160.0 398.0 160.0 

Species Zone F 2.89 9.3 9.3 8.4 8.4 8.4 8.4 

Brackish Waterbodies 0 1165.7 991.9 881.9 750.4 1175.9 1000.6 

Exposed Sediment 0 8092.9 2081.1 7292.2 1875.2 7292.2 1875.2 

Sum of All Sub-environments 15652.6 6929.1 13406.3 5779.7 14578.5 6563.7 

 

Table 5.34. Uncertainty (minimal bounds) surrounding sub-surface active section overall carbon mass projections for all sub-environments (1.d.p). 
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  Projected Carbon Mass (kg x 10-3) 

Sub-environment 
Type 

Max OCD 
(kg) 

OA x 
AD 

OA x 
UBD 

OA x 
LBD 

RLBA x 
AD 

RUBA x 
AD 

MLBA x 
AD 

MUBA x 
AD 

RLBA x 
UBD 

RLBA x 
LBD 

Species Zone A 4.32 987.4 1367.5 607.2 851.2 1123.6 863.9 1110.8 1178.9 523.4 
Species Zone B 4.24 1887.0 2280.0 1493.9 1686.7 2087.2 1509.6 2264.4 2038.1 1335.4 
Species Zone C 4.33 2264.4 2728.6 1800.2 1938.1 2590.7 2264.4 2264.4 2335.4 1540.8 
Species Zone D 4.16 534.5 689.6 379.4 484.4 584.5 534.5 534.5 625.0 343.9 
Species Zone E 4.45 305.0 435.1 174.9 264.5 345.5 305.0 305.0 377.3 151.7 
Species Zone F 4.07 11.8 11.8 11.8 10.6 13.1 11.8 11.8 10.6 10.6 
Brackish 
Waterbodies 4.06 1030.9 1114.0 947.9 893.9 1168.0 883.7 1178.2 965.9 821.9 
Exposed Sediment 3.70 7571.2 12045.1 3097.4 6739.9 8402.6 7571.2 7571.2 10722.5 2757.3 

Sum of All Sub-environments 14592.2 20671.8 8512.7 12869.3 16315.2 13944.1 15240.3 18253.7 7484.9 

 

Table 5.35. Uncertainty (maximal bounds) surrounding sub-surface active section overall carbon mass projections for all sub-environments. 

.(1.d.p). 

  Projected Carbon Mass (kg x 10-3) 

Sub-environment 
Type 

Max OCD 
(kg) RUBA x UBD RUBA x LBD MLBA x UBD MLBA x LBD MUBA x UBD MUBA x LBD 

Species Zone A 4.32 1556.2 690.9 1196.6 531.3 1538.5 683.1 

Species Zone B 4.24 2522.0 1652.4 1824.0 1195.1 2736.0 1792.7 

Species Zone C 4.33 3121.8 2059.6 2728.6 1800.2 2728.6 1800.2 

Species Zone D 4.16 754.1 414.9 689.6 379.4 689.6 379.4 

Species Zone E 4.45 492.9 198.2 435.1 174.9 435.1 174.9 

Species Zone F 4.07 13.1 13.1 11.8 11.8 11.8 11.8 
Brackish 
Waterbodies 4.06 1262.0 1073.9 954.8 812.5 1273.1 1083.3 

Exposed Sediment 3.70 13367.7 3437.5 12045.1 3097.4 12045.1 3097.4 

Sum of All Sub-environments 23089.9 9540.4 19885.7 8002.6 21457.9 9022.8 

 

Table 5.35. Uncertainty (maximal bounds) surrounding sub-surface active section overall carbon mass projections for all sub-environments 

.(1.d.p). 
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5.3.3 – Spatial Distribution of Carbon Content 

5.3.3.1 – Introduction 

The following results exhibit how the carbon stored within the active section of each sub-

environment varies in accordance with elevation, gradient and watercourse proximity. The 

variability in above-ground biomass and active layer carbon is considered independently in order to 

determine how each of three factors influences each sub-environment. 

The results concerning carbon distribution across all sub-environments for OA x AD carbon 

projections are combined with the findings concerning the influence of elevation, gradient or 

watercourse proximity of sub-environment distribution in order to indicate overall carbon 

distribution throughout the saltmarshes of the Ribble. The OA x AD projections are plotted in the 

figures of this sub-section as they are most frequently closest to the mean carbon projections across 

all sub-environments for both above-ground biomass and active layer sub-surface sediment. The 

error bars represent the maximal uncertainty surrounding the areal projections (i.e. remote or 

manual depending on the sub-environment), depth (active layer only) and OCD in each sub-

environment. 

 

5.3.3.2 – Elevation 

Above-ground Biomass 

The carbon stored within above-ground biomass was concentrated between 4.2 – 4.8 mOD as 85.7% 

or 1.08 x 106 kg is stored within this elevation range according to the original remote area 

assessment with 46.3% of the mass being held between 4.4 - 4.6 mOD (see Figure 5.33). 

Alternatively, only 8.9% of the carbon is stored below MHWS (4.10 mOD) at Southport and 0.3% was 

found above HAT (5.10 mOD). Of the carbon between 4.2 – 4.8 mOD the sub-environments Species 

Zones C and D contributed the largest proportions at 32.8% and 30.3%, whilst Species Zones E and F 

contributed the least at 1.7% and <0.1%. Regarding the precision of the distribution (excluding 

Species Zone F) Brackish Waterbodies exhibited the most precise distribution with 52.2% of carbon 

within the sub-environment being found in the modal class of 4.2 – 4.4 mOD, whilst Species Zone E 

exhibited the least precise distribution with 20.0% of the carbon being found at this interval. Species 

Zone F was also unique as it the only sub-environment in which the modal class is 4.6 – 4.8 mOD 

owing to the unique isolated distribution in Marsh C.  

When uncertainty is considered Species Zone E (Figure 5.32(e)) was the most proportionally 

influenced of all predominantly sub-environments as it was plausible the carbon stored within the 
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sub-environment could differ by 65.4% when the maximal possible uncertainties concerning area 

and OCD are considered. As Species Zone E was most prominent between 4.0 – 4.2 mOD covering 

8.1% of the area at that elevation interval this increased overall uncertainty although the influence 

of this sub-environment was minor compared to the influence of Exposed Sediment which covers 

34.9% of the area and was surrounded by a maximal uncertainty of 118.3%. In contrast the maximal 

upper uncertainties surrounding Species Zone F and Brackish Waterbodies were the lowest at 13.3% 

and 21.2%. Regarding total uncertainty (kg) the maximal possible uncertainty influenced Species 

Zone C which hypothetically could contain 2.17 x 106 kg more or less carbon due to the large overall 

carbon storage capacity (3.71 x 106 kg – original remote area projections) of the sub-environment. 

When Species Zone F is excluded the smallest overall upper-bound maximal uncertainty influenced 

Brackish Waterbodies (1.24 x 105 kg of 5.83 x 105 kg), whilst Species Zone D has the 2nd lowest value 

(1.86 x 105 kg of 7.28 x 105 kg). Regarding elevation the overall uncertainties had the largest 

influence on the modal elevation bracket of 4.4 - 4.6 mOD which could contain 1.03 x 106 kg more or 

less carbon with Species Zone A and B being the largest uncertainty contributors with maximal 

uncertainties of 3.70 x 105 kg and 9.07 x 105 kg over the 0.2 m interval. The consequence of this 

elevational clustering of sites was that the areal above MHWS could theoretically contain 6.09 x 106 

kg increasing above-ground carbon by 53.4% between 4.10 – 7.0 mOD. 

There was correspondence between Species Zones A, B and D, in which 34.9%, 31.3 % and 30.7% of 

the above-ground carbon is found at elevations ≥ 4.6 m. However, for Species Zones C and E, which 

are comprised are more tolerant halophytes, there was a comparative shift in elevation distribution 

towards lower elevations as only 9.9% and 11.8% of the above-ground total carbon was found above 

4.6 m. Brackish Waterbodies and Exposed Sediment possess comparable distributions (see Figure 

5.32 g&h) as the modal interval in both cases was 4.2 – 4.4 m. However, the decline in carbon mass 

either side of this interval is more consistent for Brackish Waterbodies as there is only 855 kg (< 

0.1%) disparity between the carbon stored between 4.0 – 4.2 m and 4.4 – 4.6 m, whilst the disparity 

between the two intervals for Exposed Sediment is 2.27 x 105 kg (19.5%). The carbon mass stored 

within Brackish Waterbodies becomes negligible (<0.5%) below elevations of 3 m, whilst 4.40 x 104 

kg (3.8%) of above-ground biomass within Exposed Sediment is found below this elevation.  
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Figure 5.32(a-d). Above-ground biomass carbon variability with elevation within the sub-environments classified as Species Zone A (a), Species Zone B (b), 

Species Zone C (c) and Species Zone D (d). The error bars represent the maximal error including uncertainities concerning OCD and area. 

a  b  

d  c  
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Figure 5.32(e-h). Above-ground biomass carbon variability with elevation within the sub-environments classified as Species Zone E (e), 

Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h).  

e  f  

g h  
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Active Layer 

Whilst the distribution of active layer carbon partially corresponds with the above-ground biomass, 

disparities exist between the two concerning the total mass and the uncertainty surrounding 

projections in each sub-environment (see section 5.2.2.4). The most notable change in terms of 

overall mass contribution results from the influence of Exposed Sediment (see Figure 5.34(h)), which 

was the largest contributor to overall active section sub-surface carbon, contributing 49.4% of 

overall carbon mass as opposed to 9.2% of above-surface mass according to OA x AD projections. 

However, when the maximal uncertainty projections incorporating volume and OCD are considered 

it is plausible that the total carbon stored throughout the Ribble saltmarshes could vary by 8.37 x 106 

kg. Exposed Sediment contributed 63.9 % of this uncertainty which was principally a result of the 

high uncertainty surrounding OCD in the sub-environment and the large overall volume. Regarding 

elevation, the uncertainty is greatest between 4.2 – 4.4 mOD which was a result of the lower mean 

elevation of Exposed Sediment and the reduced proportional contribution of Species Zone A, B and 

D commonly found in the higher marsh. As a result the maximal uncertainty totalled 2.41 x 106 kg or 

66.3 % of the total carbon mass of the OA x AD projections between 4.2 – 4.4 mOD. In contrast, this 

uncertainty reduced to 9.73 x 106 kg or 62.1% of the OA x AD projections between 4.6 – 4.8 mOD. 
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Figure 5.33. Average above-ground biomass carbon variability with elevation across all 

sub-environments 
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When the OA x AD projections are considered, the enhanced contribution of Exposed Sediment can 

largely explain why 28.9% and 37.2% of active layer carbon is found between 4.2 – 4.4 m and 4.4 – 

4.6 m as opposed to 20.4% and 46.3% for above-ground biomass. Similarly <0.1% of active layer 

carbon was found above HAT (5.10 mOD) and 16.1% is found below MHWS (4.10 mOD) which is 

partially due to the skewing effect of Exposed Sediment. Species Zones A, B and D, which are 

comprised of less tolerant halophytes and found at higher elevations (see Section 5.1.2) have a 

reduced contribution as they only comprise 24.6% of active layer carbon mass as opposed to 53.8% 

of the above-ground biomass.  

The very low carbon mass of Species Zone F of 1.12 x 104 kg (OA x AD projection) means the sub-

environment makes a negligible contribution to the overall carbon distribution (see Figure 5.34 (f)). 

The reduced contribution of Species Zone E to sub-surface carbon stores compared to above-ground 

biomass theoretically serves to increase the mean elevation in which sub-surface carbon is found, as 

the sub-environment comprises only 2.2% of the total surface carbon (OA x AD projections) as 

opposed to 3.0% of the above-surface store. However, this influence of Species Zone E is negligible 

compared to the influence of Exposed Sediment as the former only holds 3.8% of the sub-surface 

carbon stored in Exposed Sediment.  

The net result of the low carbon mass of the sub-environments found at higher elevations is a steep 

rate of decline in carbon mass as elevation exceeds 4.6 m. Therefore the total active layer carbon 

stored between 4.6 – 4.8 m (1.57 x 106 kg) is 8.1 times higher than that stored between 4.8 – 5.0 m 

(1.93 x 105 kg) according to the OA x AD projections (see Figure 5.35).  
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Figure 5.34(a-d). Sub-surface active section carbon variability with elevation within the sub-environments classified as Species Zone A (a), Species Zone B 

(b), Species Zone C (c) and Species Zone D (d). The error bars represent the maximal error including uncertainities concerning OCD and volume. 

a  b  

d  c  
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Figure 5.34(e-h). Sub-surface active section carbon variability with elevation within the sub-environments classified as Species Zone E 

(e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h).  
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Figure 5.35. Average sub-surface active section carbon variability with elevation 

across all sub-environments.  
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5.3.3.3 – Gradient 

Above-ground 

The majority (1.12 x 107 kg or 99.8%) of the carbon stored within the above-ground biomass was 

found on land with a gradient <4°, whilst 75.7% (9.55 x 106 kg) was found at gradients <2° according 

to the OA projections. Of the area <2°, Species Zones B and C contributed the greatest carbon mass 

of 3.04 x 106 kg (31.8%) and 2.79 x 106 kg (29.2%) respectively, whilst the highest proportion of 

above-ground carbon at <2° was found in Species Zone A (82.9%) and Brackish Waterbodies (81.4%). 

Alternatively, the above-ground carbon in Species Zone E was found over the largest gradient range, 

with 14.2% of above-ground carbon store of 3.60 x 105 kg being found at a gradient ≥4°. Species 

Zone F possessed the 2nd least precise distribution (see Figure 5.12), although the total carbon stored 

within the Species Zone F at gradients ≥4° is < 0.1% of that stored within Species Zone E.  

At gradients ≥4°, 53.7% of above-ground carbon was contained within Exposed Sediment as opposed 

to 9.1% between <2° (see Figure 5.36(h)), highlighting the lack of vegetation biomass on steep slopes 

surrounding creeks and the marsh perimeter. The large (118.3%) maximal uncertainty surrounding 

Exposed Sediment and the predominance of the sub-environment in areas >4° resulted in the 

uncertainty surrounding the overall projections increasing with gradient from 54.3% at <2° to 56.4% 

between 10-12°. In contrast the maximal upper bound for uncertainty surrounding the projections 

for Brackish Waterbodies and Species Zone D (Figure 5.36(g)&(d)) were the lowest at 21.2% and 

25.6% due to the low areal and OCD uncertainties surrounding the two. However, as the carbon 

collectively found within Brackish Waterbodies and Species Zone D only comprised 10.7% (original 

remote area projection) of the total carbon stored within the entire environment, the collective 

influence on the overall uncertainty is reduced. Instead the influence sub-environments with a 

higher above-ground biomass such as Species Zone A which are surrounded by greater uncertainty 

(47.5%) produced the large overall uncertainty range.
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Figure 5.36(a-d). Above-ground biomass carbon variability with gradient within the sub-environments the sub-environments classified as Species Zone A (a), 

Species Zone B (b), Species Zone C (c) and Species Zone D (d). The error bars represent the maximal error including uncertainities concerning OCD and area. 

a  b  

d  c  
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Figure 5.36(e-h). Above-ground biomass carbon variability with elevation within the sub-environments classified as Species Zone E (e), 

Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h).  

e  f  

h  
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Active Layer 

The distribution of sub-surface carbon was primarily concentrated on land at gradients <4° with 

75.5% (9.62 x 106 kg) and 12.5% (1.59 x 106 kg) of sub-surface carbon being found at gradients <2° 

and 2-4° respectively according to the OA x AD projections. The major change in overall distribution 

compared to above-ground biomass was that 12.0% (1.53 x 106 kg) of all sub-surface carbon was 

stored at gradients >4° compared to 11.3% (1.42 x 106 kg) of above-ground biomass. The change in 

distribution is primarily a result of the increased influence of Exposed Sediment which accounts for 

8.26 x 105 kg of the 1.53 x 106 kg of sub-surface carbon found at a gradient ≥4°. Alternatively, the 

two sub-environments with the lowest mean gradient values (Species Zone A and Brackish 

Waterbodies) only collectively comprised 14.6% of the overall sub-surface active section carbon as 

opposed to 20.4% of above-ground biomass. Likewise, although <86% of the sub-surface carbon 

within Species Zone E and F was found at gradients <4° their impact on the overall distribution was 

minor as each only comprised 2.2% and <0.1% of the overall active layer carbon mass respectively. 

Despite occupying different elevation ranges Species Zone B and C have the most similar gradient 

distribution with 87.1% and 87.4% of all carbon being found at gradients <4°. However 3.43 x 105 kg 

more carbon is projected to be held within Species Zone C than B which is a result of the higher sub-

environment volume and active layer carbon density (0.55 kg m-3) (see Figure 5.38(b) & (c)). 
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Figure 5.37. Average above-ground biomass carbon variability with gradient across all 

sub-environments. 
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The greater prominence of Exposed Sediment (84.6%) in areas of higher gradient meant the 

maximum uncertainty for the overall sub-environment increased with gradient. At gradients <2° 

where Exposed Sediment contributes 49.3% of the overall carbon mass, the overall uncertainty was 

65.6% of the OA x AD projection and this increases to 67.2% at 30-32° where Exposed Sediment 

comprises 56.2% of the area. Asides from Exposed Sediment which is the most influenced by 

uncertainty both in terms of overall carbon 5.35 x 106 kg (OA x AD) and proportion (84.6%), Species 

Zone A and E (Figure 5.38(a) & (e)) are the next most proportionally influenced with uncertainty sub-

surface uncertainty values of 67.6% and 60.5%. Whilst the influence of Species Zone E is comparably 

small as it only contributed 2.8% of carbon, if Species Zone A was at the maximal limit of uncertainty 

the total carbon mass at gradients <2° could change by 5.04 x 105 kg or 7.9% of the total overall total 

carbon at this gradient interval (OA x AD projection). Alternatively, Species Zones D, F and Brackish 

Waterbodies were surrounded by the least maximal uncertainty despite the dissimilar gradient 

distribution between the three sub-environments. Whilst the contribution to Species Zone F remains 

negligible, if Brackish Waterbodies and Species Zone D were at their minimal or maximal extent the 

overall carbon mass at gradients <2° would increase by 2.2% in both instances. However, the 

proportional influence of Brackish Waterbodies and Species Zone D on overall uncertainty decreases 

as gradient increases primarily due to the increased influence of Exposed Sediment. 
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Figure 5.38(a-d). Sub-surface active section carbon variability with gradient within the sub-environments classified as classified as Species Zone A (a), Species 

Zone B (b), Species Zone C (c) and Species Zone D (d). The error bars represent the maximal error including uncertainities concerning OCD and volume. 
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Figure 5.38(e-h). Sub-surface active section carbon variability with gradient within sub-environments classified as Species Zone E (e), 

Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h).  
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Figure 5.39. Average sub-surface carbon variability with gradient across all sub-

environments. 
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5.3.3.4 – Watercourse Proximity 

Above-ground 

Of the eight sub-environments, six followed a consistent trend of decreasing above-ground carbon 

mass with distance from the watercourse, with Species Zones E and F being exceptions to this trend. 

Therefore, the overall above-ground carbon is throughout the saltmarsh was greatest within <10 m 

of a watercourse as 34.5% or 4.35 x 106 kg was found within this range whilst this decreased to 

22.8% (2.87 x 106 kg) and 17.0% (2.14 x 106 kg) at the respective intervals of 10 – 20 m or 20 – 30 m 

according to the original remote area projections. At distances <10 m from a watercourse the most 

above-ground carbon was stored in Species Zone B which stored 1.34 x 106 kg or 30.8% of the total 

carbon (original remote area projection), although there is little disparity between Species Zone B 

Species Zone C in which 1.34 x 106 kg (also 30.8%) is stored. However, between 10 – 20 m from a 

watercourse the proportional contribution of Species Zone C to the overall above-ground carbon 

mass was 6.82 x 104 kg or 2.4% greater than Species Zone B at 10 – 20 m (see Figure 5.40(b) & (c)). 

This trend of increasing proportional overall contribution between 10 – 20 m compared to <10 m 

was also present in Species Zones A and D which increased by 0.9% and 1.3%. Despite the 

proportional increase, the total above-ground carbon storage in both Species Zones A and D 

decreased by 30.0% (2.00 x 105 kg) and 17.8% (4.17 x 104 kg) between the intervals <10 to 10-20 m, 

highlighting the prominence of carbon at close proximity to watercourses. 

The sub-environments associated with watercourses Exposed Sediment and Brackish Waterbodies 

exhibited the largest proportional decreases of 18.8% (2.19 x 105 kg) and 16.0% (9.33 x 104 kg) 

between <10 m and 10-20 m (Figure 5.40(g) & (h)). However, between 10 – 20 m and 20 – 30 m the 

proportional rate of sub-environment carbon decrease of Species Zone D (7.6%) exceeds that of 

both Brackish Waterbodies (6.6%) and Exposed Sediment (5.8%). Between a distance of 30 – 40 m 

and 40 – 50 m the proportional decrease of carbon within each sub-environment remained 

comparatively consistent compared to intervals at closer distances to watercourses with a range of 

7.3% (Species Zone B) to 5.2% (Brackish Waterbodies). At the greatest distances from the 

watercourses between 260-270 m, Species Zone C, Brackish Waterbodies and Exposed Sediment 

respectively comprise 44.0%, 1.4% and 54.5% of the above-ground carbon although the mass 

theoretically collectively totals only 52 kg (original remote area projection). 

Species Zone E and F share a comparatively unique distribution as the carbon within the sub-

environments does not uniformly decrease with creek proximity. According to the original remote 

area projections Species Zone E, was comparatively constant over the first three 10 m intervals as 

above-ground carbon mass totals 6.83 x 104 kg, 6.87 x 104 kg to 6.86 x 104 kg (Figure 5.40(e), before 
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a rapid decrease of 4.62 x 104 kg between the 30 – 40 m and 60 – 70m (78.8% decrease compared to 

the 30 – 40 m value). Alternatively, Species Zone F exhibits a comparatively anomalous trend when 

compared to all other sub-environments as the modal above-ground carbon mass of 1880 kg is 

found between 60 – 70 m from the nearest watercourse. 

With regards to the maximal overall above-ground biomass uncertainty, it is theoretically possible 

that the above-ground biomass could differ by 3.18 x 106 kg or 55.4% if the original remote area 

projection at distances <10 m from a watercourse (Figure 5.41). This is predominantly due to the 

high level of uncertainty surrounding Species Zone C which comprised 30.7% of the total carbon in 

this interval and was surrounded by a maximal uncertainty of 58.5%. Moreover, the concentration of 

Exposed Sediment (10.8% of the original remote area) at distances <10 m also served to increase 

overall uncertainty compared to the subsequent proximity intervals. Consequently, the overall 

uncertainty decreases to 54.1% of the original remote area at 10 – 20 m, followed by successive 

decreases in uncertainty to a minimal value of 51.1% at 70 – 80 m. This trend can be explained by 

the increased proportional influence of certain predominantly vegetated sub-environments 

surrounded by lower levels of maximal uncertainty. The influence of the sub-environment with the 

greatest above-ground carbon mass (original remote area) Species Zone B (maximal uncertainty = 

45%) is probably most prominent in this trend as the mass of carbon stored within the sub-

environments progressively increased from 29.3% at 10-20 m to a maximum of 48.9% at 70-80 m. 

Species Zone D (maximal uncertainty = 25.6%) also had a more minor influence as the proportion of 

the overall above-ground carbon stored within the sub-environment is greater at 10 – 20 m (6.7%) 

and 20 – 30 m (6.4%). Although the proportional distribution of Species Zone E (maximal uncertainty 

= 65.4%) does counter this trend as the sub-environment is most prominent between 50 – 60 m, as 

the sub-environment comprised 2.56 x 104 kg at this interval compared to the 1.84 x 105 kg in 

Species Zone B this influence is largely negated. After a distance of 80 m, the proportional 

uncertainty increases up to 270 m which is a result of the increasing proportional effect of Exposed 

Sediment which comprises 54.5% of carbon between 260-270 m. This influence on overall above-

ground carbon uncertainty is minor however, as the total above-ground carbon stored between 80 – 

270 m is only 1.4% of the overall value (see Figure 5.41). 
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Figure 5.40(a-d). Above-ground biomass carbon variability with watercourse proximity within sub-environments classified as Species Zone A (a), Species Zone 

B (b), Species Zone C (c) and Species Zone D (d). The error bars represent the maximal error including uncertainities concerning OCD and areal. 

a  b  

d  c  
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Figure 5.40(e-h). Above-ground biomass carbon variability with watercourse proximity within sub-environments classified as Species 

Zone E (e), Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h).  
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Active Layer 

The overall projections for carbon found within the active layer sub-surface sediments across all sub-

environments highlighted a concentration of the majority of the overall carbon at close proximity to 

a watercourse as 37.3% (4.76 x 106 kg) and 22.3% (2.84 x 106 kg) of all carbon was found within <10 

m and 10 – 20 m of a watercourse (OA x AD projections) (Figure 5.43). Of the active layer carbon in 

the modal watercourse proximity interval of <10 m the sub-environments Exposed Sediment 

comprised the majority comprising 53.7% (2.56 x 106 kg) (Figure 5.42(h)), whilst Species Zone B and 

C comprised 12.9% (6.15 x 105 kg) and 14.1% (6.73 x 105 kg) respectively (see Figure 5.42(b) & (c)). 

The predominance of Exposed Sediment at <10 m can be explained by the spatial clustering of the 

sub-environment which is associated with creeks (40.4% is found within <10 m) and the large 

volume (55.3%) of the area according to the OA x AD projections as the mean OCD was only 3.09 kg 

m-3. Alternatively, the proportional influence of Species Zone B and C was reduced despite having 

higher OCDs of 3.93 kg m-3 and 4.12 kg m-3 as well as the fact the latter has the most precise 

distribution (Figure 5.19) and lowest median creek proximity, as each sub-environment only 

comprises 12.0% and 14.1% of the volume respectively. The increase in the overall proportion of 

active layer carbon mass found in Brackish Waterbodies compared to above-ground biomass 

combined with the association with creeks resulted in 39.3% of all active layer carbon in the sub-

environment being found within <10 m of a watercourse. The rate of decrease in carbon storage and 

the proportional influence of certain sub-environments between <10 m and 10 – 20 m is largest for 
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Figure 5.41. Average above-ground biomass carbon variability with watercourse 

proximity across all sub-environments. 
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Exposed Sediment which contains 1.19 x 106 kg less carbon at 10 – 20 m than <10 m. This resulted in 

the overall sub-environment carbon contribution of Exposed Sediment decreasing from 53.7% at <10 

m to 48.0% at 10 – 20m. Alternatively, Species Zone A, B, C, D and E all comprised a greater 

proportion of sub-surface carbon at 10 – 20 m than <10 m with respective increases of 1.1%, 0.7%, 

1.9%, 1.4% and 0.6%. Of the sub-environments that follow the overall trend of decreasing carbon 

storage Species Zone D decreased by the lowest rate as the carbon mass stored between 10 – 20 m 

is 17.7% lower than that stored at a proximity <10 m. Species Zones A, B and C exhibited similar 

rates of decrease between <10 m and 10 – 20 m of 30.0%, 37.2% and 32.0% which results from the 

similar spatial distributions <20 m from watercourses (see Figure 5.19 (a),(b) & (c)). As with above-

ground carbon predominantly vegetated sub-environments contributed the greatest proportion of 

all active layer carbon at the interval of 70-80 m in which Exposed Sediment comprised a minimum 

(for the sub-environment) of 37.8% whilst Species Zones B, A and C both comprise 28.2%, 10.2% and 

10.1% respectively. The comparatively anomalous spatial distribution of Species Zone F (Figure 

5.42(f)) means that it comprised 1.5% and 1.9% of all carbon between 70-80 m and 80-90 m which 

was a comparatively large contribution considering the sub-environment only occupies 20775 m2 

(<0.1% of any projection). This contribution is relatively negligible compared to the influence of 

Exposed Sediment which became increasingly more prominent at distances >80 m as the areal cover 

of predominantly vegetated sub-environment progressively decreased. 

The overall proportional uncertainty per proximity interval also corresponded with the abundance of 

Exposed Sediment as the maximal uncertainty is smallest between 70 – 80 m (63.4% or 6.66 x 104 kg) 

before it increases with watercourse proximity. This increase in overall uncertainty relative to above-

ground biomass was because the active layer calculations include depth uncertainty. Uncertainty 

also increased at a more gradual rate as watercourse proximity decreased and the overall 

uncertainty value of 66.9% at distances <10 m is principally due to the influence of Exposed 

Sediment which has a maximal uncertainty value of 84.6% resulting from the OCD uncertainty and 

the predominance of Exposed Sediment at this distance interval. The reduction in overall uncertainty 

to 65.1% (1.85 x 106 kg) at 10 – 20 m can be attributed to the increasing proportional contribution of 

sub-environments with lower levels of uncertainty such as Species Zone C (39.7%). However, as the 

proportional contribution of Brackish Waterbodies, the sub-environment with the lowest level of 

uncertainty (29.7%), does decline by 0.6% between <10 m to 10-20 m this moderates the decrease in 

uncertainty. 
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Figure 5.42(a-d). Sub-surface active section carbon variability with watercourse within sub-environments classified as Species Zone A (a), Species Zone B (b), 

Species Zone C (c) and Species Zone D (d). The error bars represent the maximal error including uncertainities concerning OCD and volume. 

a  b  

d  c  
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Figure 5.42(e-h). Sub-surface active section carbon variability with gradient within sub-environments classified as Species Zone E (e), 

Species Zone F (f), Brackish Waterbodies (g) and Exposed Sediment (h).  
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Figure 5.43. Average sub-surface carbon variability with watercourse proximity across all 

sub-environments. 



 

147 
 

5.3.4 – Key Controls on Carbon Distribution 

5.3.4.1 – Introduction 

Whilst the analyses conducted in Section 5.1.5 highlight the variability in sub-environment carbon 

storage and the respective influences of elevation, gradient and watercourse proximity, the 

observations and statistics do not completely reveal the contribution of each influence on carbon 

storage. Whilst standardised beta, T statistic and p value remain equal to those produced in the 

analysis in 5.1.5, the following results indicate the influence of the three key controls on overall 

above-ground and active layer carbon storage change as displayed by the unstandardised beta 

value.  

 

5.3.4.2 – Elevation 

Above-ground Biomass 

The predictor standardised beta values in Table 5.36 highlighted that the above-ground biomass 

carbon in the sub-environments Species Zone D (0.268) and Species Zone E (0.263) were most 

influenced by elevational change, whilst Brackish Waterbodies (0.178) and Species Zone C (0.187) 

were predicted to be least influenced by elevation. Despite the low standardised values, Species 

Zone C had an unstandardised value of 3.28 x 104 kg/m and Species Zone B possessed the highest 

value of 3.82 x 104 kg/m. Species Zones E and F had the lowest unstandardised values of 2390 kg/m 

and 135 kg/m respectively which was expected from sub-environments with mean above-ground 

carbon masses of 0.78 kg/m2 and 0.60 kg/m2 which cover 2.12% and 0.09% of the marsh 

respectively. However, the p values for elevation are universally above the alpha value of 0.05 

indicating that the influence of elevation is statistically insignificant. 

 

 

 

 

 

 

 

 

 

Sub-environment 
Unstandardised Beta 
(kg per m) 

Standardised 
Beta T p 

Species Zone A 19944 0.197 1.174 0.249 
Species Zone B 38156 0.211 1.257 0.217 
Species Zone C 32847 0.197 1.173 0.249 
Species Zone D 8986 0.212 1.267 0.213 
Species Zone E 2392 0.263 1.592 0.121 
Species Zone F 135 0.25 1.506 0.141 
Brackish Waterbodies 4639 0.178 1.056 0.298 
Exposed Sediment 9005 0.215 1.284 0.208 

 

Table 5.36. Multiple regression parameters and the significance of predictor variables 

concerning elevation and sub-environment above-ground biomass carbon storage (kg). 
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Active Layer 

The standardised beta values, which are equal to those for above-ground biomass, highlight active 

layer carbon in Species Zone E and F is proportionally influenced the most by elevational change. 

Alternatively, the standardised values for Species Zone A (0.197) and Brackish Waterbodies (0.0178) 

indicate the sub-environments were the least influenced. The unstandardised values highlight the 

increased importance of elevation on controlling the distribution of active layer carbon in the 

predominantly unvegetated sub-environments of Exposed Sediment (4.89 x 104 kg/m) and Brackish 

Waterbodies (7907 kg/m) when compared to above-ground carbon. Regarding predominantly 

vegetated sub-environments, a similar trend to that observed in the above-ground biomass is noted 

with carbon storage increasing by 1.75 x 104 kg and 1.65 x 104 kg per m for Species Zones B and C 

respectively. In contrast, Species Zone E and F contribute only 9.1% and 0.6% of the unstandardised 

value of Species Zone B for every metre of elevation despite the fact Species Zone B has a lower 

standardised value of 0.211. However the results are again statistically insignificant. 

 

 

 

 

 

 

 

 

 

5.3.4.3 – Gradient 

Above-ground Biomass 

Overall the standardised beta values highlight gradient has the greatest influence on Species Zone E 

and F with respective values of -0.496 and -0.448, whilst Species Zone A and Brackish Waterbodies 

are the least influenced by gradient change (-0.384). The two sub-environments with the highest 

mean above-ground biomass carbon content Species Zone B (1.19 kg/m2) and Species Zone C (0.97 

kg/m2) have the lowest (most negative) unstandardised beta values of -1.51 x 104 kg/m and -1.38 x 

104 kg/m, whilst Species Zone A had the 3rd lowest unstandardised beta despite the joint highest 

(closest to zero) standardised value. The p values for gradient are all below the alpha value of 0.05 

indicating the relationship is statistically significant. 

Sub-environment 
Unstandardised Beta 
(kg per m) 

Standardised 
Beta T p 

Species Zone A 9026 0.197 1.174 0.249 
Species Zone B 17483 0.211 1.257 0.217 
Species Zone C 16498 0.197 1.173 0.249 
Species Zone D 5337 0.212 1.267 0.214 
Species Zone E 1584 0.263 1.592 0.121 
Species Zone F 122 0.25 1.506 0.141 
Brackish Waterbodies 7907 0.178 1.056 0.298 
Exposed Sediment 48920 0.215 1.284 0.208 

 

Table 5.37. Multiple regression parameters and the significance of predictor variables 

concerning elevation and sub-environment active layer carbon storage (kg). 
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Active Layer 

Although the standardised values were lowest (most negative) for Species Zone E and F, both sub-

environments contributed little to the overall unstandardised change in kg per degree as the 

predicted unstandardised figures highlighted a respective change of -890 kg and -43 kg. Exposed 

Sediment was the most influenced by increasing gradient with an unstandardised change of -2.35 x 

10-4 kg per degree, whilst Species Zone B and C were predicted to decrease by -6940 kg and -6950 kg 

per degree respectively. This is a result of Exposed Sediment having the largest volume and 

therefore overall carbon content as the standardised value for the sub-environment of -0.409 was 

the joint 2nd highest (closest to zero) with Species Zone C at -0.409. The model predicted active layer 

carbon in Brackish waterbodies would decrease by -3670 kg per degree, a similar figure to Species 

Zone A which contributed to a decrease of 3470 kg. This was predictable given the similar respective 

mean carbon storage of the sub-environments of 3.85 and 3.91 kg m-3 and equal (3.s.f) standardised 

beta values of -0.384. 

 

 

 

 

 

 

 

Sub-environment 
Unstandardised Beta 
(kg per degree) 

Standardised 
Beta T p 

Species Zone A -7673 -0.384 -2.078 0.048 
Species Zone B -15141 -0.41 -2.247 0.034 
Species Zone C -13844 -0.409 -2.239 0.034 
Species Zone D -2696 -0.429 -2.374 0.026 
Species Zone E -1344 -0.496 -2.856 0.009 
Species Zone F -48 -0.448 -2.505 0.019 
Brackish Waterbodies -2207 -0.384 -2.082 0.048 
Exposed Sediment -4333 -0.409 -2.243 0.034 

 

Table 5.38. Multiple regression parameters and the significance of predictor variables 

concerning gradient and sub-environment above-ground biomass carbon storage (kg). 

Sub-environment 
Unstandardised Beta 
(kg per degree) 

Standardised 
Beta T p 

Species Zone A -3472 -0.384 -2.078 0.048 
Species Zone B -6938 -0.41 -2.247 0.034 
Species Zone C -6953 -0.409 -2.239 0.034 
Species Zone D -2023 -0.429 -2.374 0.026 
Species Zone E -890 -0.496 -2.856 0.009 
Species Zone F -43 -0.448 -2.505 0.019 
Brackish Waterbodies -3672 -0.384 -2.082 0.048 
Exposed Sediment -23539 -0.409 -2.243 0.034 

 

Table 5.39. Multiple regression parameters and the significance of predictor variables 

concerning gradient and sub-environment active layer carbon storage (kg). 
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5.3.4.4 – Watercourse Proximity 

Above-ground Biomass 

The unstandardised values for above-ground biomass highlighted that Species Zone B and C above-

ground biomass carbon would decrease by the greatest net amount per m from a watercourse, 

despite possessing only the 3rd and 6th lowest standardised values of -0.679 and -0.635. Species Zone 

E and F had the lowest (most negative) standardised values of any sub-environment and for any 

significant factor (i.e. lower than gradient), however the two sub-environments contributed to only -

232 kg and -6 kg of carbon loss per m. This was a result of low overall carbon storage in Species Zone 

E (3.60 x 105 kg) and F (1.24 x 104 kg). In contrast, watercourse proximity had a reduced standardised 

influence on Brackish Waterbodies (-0.617) and Exposed Sediment (-0.614), although the two 

predominately non-vegetated sub-environments collectively contributed to a change of -1230 kg as 

they comprised 50.9% of the area (original remote areal assessment). All p values were ⩽0.001 

suggesting it was highly unlikely any relationships occurred by chance. 

 

 

 

 

 

 

 

 

 

 

Active Layer 

The increased carbon density of the Exposed Sediment in the active layer relative to other sub-

environments combined with expansive volume resulted in the sub-environment possessing the 

greatest unstandardised influence (-4420 kg) on overall carbon storage, despite the high (closest to 

zero) standardised beta value (-0.614). Alternatively, the influence of Species Zone A (standardised 

=-0.661) on overall carbon storage was comparatively reduced when compared to both Brackish 

Waterbodies and Exposed Sediment (larger for above-ground biomass) as the unstandardised beta 

value for Species Zone A was predicted to be 88.3% and 14.1% of the value for the two respective 

sub-environments. The unstandardised values of Species Zone E and F were closest to 0 despite 

Sub-environment Unstandardised Beta (kg) Standardised Beta T p 

Species Zone A -1370 -0.661 -4.404 <0.001 
Species Zone B -2761 -0.679 -4.628 <0.001 
Species Zone C -2605 -0.635 -4.108 <0.001 
Species Zone D -510 -0.649 -4.266 <0.001 
Species Zone E -232 -0.757 -5.792 <0.001 
Species Zone F -6 -0.729 -5.325 <0.001 
Brackish Waterbodies -412 -0.617 -3.923 0.001 
Exposed Sediment -814 -0.614 -3.889 0.001 

 

Table 5.40. Multiple regression parameters and the significance of predictor variables concerning 

watercourse proximity and sub-environment above-ground biomass carbon storage (kg). 
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having the lowest (most negative) standardised values. Species Zone D possessed the 3rd highest 

(closest to zero) unstandardised value of -554 kg despite having the 3rd lowest standardised beta (-

0.706). This was a result of the reduced overall active layer carbon storage compared to above-

ground biomass in Species Zone D when compared to other sub-environments. All relationships 

were statistically significant as indicated by p values <0.05. 

 

 

 

 

 

 

 

 

 

5.3.4.5 – Multiple Regression Summary 

The multiple regression analyses exhibit that gradient and watercourse proximity have a statistically 

significant influence on the spatial distribution of sub-environments and the carbon within the 

above-ground biomass and active layer. Although it is plausible that elevation influences sub-

environment carbon distribution, the analyses indicate it has the smallest standardised influence 

whilst p values ≥0.14 in all sub-environments exhibit the influence is statistically insignificant (alpha 

level = 0.05). When the statistically significant influences of gradient and watercourse proximity are 

compared, watercourse proximity has the greatest standardised influence on carbon mass ranging 

from a decrease in -0.614 (Exposed Sediment) to -0.757 (Species Zone E) standard deviations per 

increase in one standard deviation of watercourse proximity. Alternatively, the standardised 

influence of gradient on carbon ranges from -0.384 (Species Zone A and Brackish Waterbodies) to -

0.496 (Species Zone E). This exhibits the dual influence of both gradient and watercourse proximity 

on sub-environment and carbon distribution, although the influence of watercourse proximity is on 

average 1.6 times greater. Plausible explanations for the disparity between the significant 

influences, the insignificance of elevation and the variable levels of influence of gradient and 

watercourse proximity on different sub-environments will be the form the basis of discussion in 

Sections 6.2 and 6.3. 

 

Sub-environment Unstandardised Beta (kg) Standardised Beta T p 

Species Zone A -620 -0.661 -4.404 <0.001 
Species Zone B -1265 -0.679 -4.628 <0.001 
Species Zone C -1308 -0.635 -4.108 <0.001 
Species Zone D -554 -0.706 -4.461 <0.001 
Species Zone E -154 -0.757 -5.792 <0.001 
Species Zone F -6 -0.729 -5.325 <0.001 
Brackish Waterbodies -702 -0.617 -3.923 0.001 
Exposed Sediment -4420 -0.614 -3.889 0.001 

 

 

Table 5.41. Multiple regression parameters and the significance of predictor variables 

concerning watercourse proximity and sub-environment active layer carbon storage (kg). 
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5.4 – Summary 

Overall the results presented in Chapter 5 highlight the Ribble saltmarshes are comprised of a range 

of different sub-environments with variable carbon storage capacities which are uniquely influenced 

by elevation, gradient and watercourse proximity. The initial projections highlight that Exposed 

Sediment covered the largest area of ay sub-environment covering 9.36 km2 (42.6%) whilst Species 

Zone C was the most expansive predominantly non-vegetated sub-environment covering 3.81 km2 

(17.3%). The remote and manual uncertainty analyses highlighted that there was the potential an 

areal uncertainty of 10% and 13.8% (max uncertainty both remote assessment) surrounds the two 

respective sub-environments, whilst the greatest proportional uncertainty surrounded Species Zone 

B (20% - manual assessment). 

With regards to above-ground ground biomass OCD, Species Zone B and C had the highest mean 

carbon content of 1.19 kg/m2 and 0.97 kg/m2, whilst the predominantly un-vegetated sub-

environment of Exposed Sediment had the lowest mean OCD of 0.12 kg/m2 and was also surrounded 

by the greatest uncertainty (standard deviation = 108.3% of mean). Species Zone E and C had the 

highest sub-surface active layer mean OCDs of 4.26 kg m-3 and 4.12 kg m-3 whilst Exposed Sediment 

had the lowest 3.09 kg m-3. The greatest active layer carbon uncertainties surrounded Species Zone F 

(standard deviation = 23.9%) and Species Zone D (standard deviation =19.3%). 

The combination of results surrounding area and OCD exhibited that the above-ground biomass was 

projected to store 1.26 x 107 kg with Species Zone B and C contributing the greatest overall 

proportional of the carbon mass at 32.2% and 29.4% according to the original areal projection. 

However, it is plausible above-ground carbon could differ by a maximum of 54.5% of the original 

projection. Alternatively, the active layer sub-surface sediment was projected to contain 1.29 x 107 

kg according to the original projection with Exposed Sediment and Species Zone C contributing 

49.2% and 16.8% respectively. Due to the added uncertainty surrounding depth and the high 

uncertainty surrounding OCD of the more prominent Exposed Sediment, a theoretical maximal 

uncertainty of 65.8% surrounds the original active layer projection. 

The multiple regression analyses indicated the influences of gradient and watercourse proximity 

were the only significant influences on all sub-environments. The influence of elevation was 

insignificant and had the smallest standardised influence on sub-environment and carbon spatial 

distribution. Watercourse proximity had the greatest standardised influence on spatial distribution 

and the influence was on average 1.6 times greater than gradient. Above-ground biomass and active 

layer carbon was concentrated in areas with an elevation between 4.2 - 4.6 m, with a gradient <2° 

and <10 m from a watercourse. 
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6 – Discussion 

6.1 – Introduction 

The distribution of carbon within temperate saltmarshes is controlled by a range of factors which 

determine the spatial distribution of different sub-environments and the carbon held within them 

(Sanderson and Uchin, 2002; Zhou et al. 2007; Roner et al. 2016). Whilst multiple factors influence 

species and carbon distribution: elevation, gradient and watercourse proximity have been exhibited 

to exert a key influence on this spatial variability (Silvestri et al. 2005; Suchrow and Jensen, 2010; 

Townend et al. 2011). However, there have been few studies which have attempted to assess the 

different influence of all three variables on saltmarsh sub-environment and carbon distribution. 

Consequently, this study has sought to determine sub-environment distribution in the saltmarshes 

of the Ribble estuary and to quantify the active section carbon storage capacity. The influences of 

elevation, gradient and watercourse proximity on both sub-environment and carbon distribution are 

subsequently assessed. 

The results presented in Chapter 5 are now discussed and compared with relevant research in 

temperate saltmarshes. Specifically, the correspondence of the findings with ecological and 

geomorphological studies in saltmarshes is explored, whilst the influence of sea level rise on 

saltmarsh dynamics, carbon storage and coastal management is also considered (see Section 6.3). 

 

6.2 – The Spatial Distribution of Sub-environments and Influence of 

Elevation, Gradient and Watercourse Proximity 

6.2.2.1 – Overview 

The assessment of landcover variability over the saltmarshes of the Ribble estuary highlights the 

presence of a variety of halophytes commonly found on UK saltmarshes. Of the predominantly 

vegetated environments (Species Zones A-F), all comprising species are commonly found on UK 

saltmarshes (National Biodiversity Atlas, 2018). The areal coverage of the different sub-

environments expressed in Table 5.1 highlights that Species Zones A, B and C covered the greatest 

area covering 9.6%, 15.6% and 17.3% of the total area after Exposed Sediment (42.6%). This 

widespread presence of species including: Agrostis stolonifera (Species Zone A), Atriplex 

portulacoides (Species Zone A and C), Festuca rubra (Species Zone B), Elymus repens, (Species Zones 

B and D) and Puccinellia maritima (Species Zone C) in vegetated areas conferred with the findings of 

other assessments concerning saltmarsh vegetational distribution in North West England (Gray, 

1972; National Biodiversity Atlas, 2018). 
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As exhibited in Section 5.1.1 the areal projections for each sub-environment are surrounded by 

different levels of uncertainty however. Whilst the overall kappa coefficients for the respective 

remote and manual uncertainty analyses of 87.6% and 90.0% indicate an overall high level of 

classification accuracy, this respective 12.4% or 10% discrepancy in sub-environment classification 

highlights the coverage and spatial distribution of sub-environments could be markedly different 

than that indicated in Figure 5.1. Therefore a re-run of this study would potentially seek to employ 

the novel topographic method published by Goodwin et al. (2018) after this assessment. Such 

potential changes in sub-environment coverage would have direct and indirect implications on 

carbon storage due to the direct gain or loss of above-ground and sub-surface carbon in different 

sub-environments. Any change would also influence the ecological and geomorphological dynamics 

both between and in sub-environments and throughout the saltmarsh as a whole (Marani et al. 

2006; French, 2019) (see Section 6.3). 

According to the original observations, the overall elevation distribution of all saltmarsh sub-

environments does not comply with the ramp-salinity hypothesis (e.g. Williams et al. 1994; Bao-Shan 

et al. 2011) (see Figure 3.1) as 7.3 % of all predominantly vegetated sub-environments were found 

between MHWN (2.20 mOD) and MHWS (4.10 mOD). However, 92.2% of all predominantly 

vegetated were within the elevation range of MHWS and HAT (5.10 mOD) and the interquartile 

range of all vegetated sub-environments was between 4.18 - 4.46 mOD (see Figure 6.1). This 

elevation distribution gives support to alternative saltmarsh vegetation distribution theories which 

suggest the ramp model alone is too simplistic and distribution is instead controlled by a multitude 

of factors (Zhang et al. 2013; D’Alpos and Marini, 2016). The alternative theories state the influence 

of dendritic creek penetration as well as variable levels of sediment porosity enable saline 

transportation and deposition in areas above MHWS allowing diverse saltmarsh halophyte 

colonisation (Silvestri et al. 2005; Kim et al. 2013; Wilson et al. 2014).  

Although the ramp model proposed by Williams et al. (1994) does not apply to the marsh as a whole 

Figure 5.5 highlights the rapid decline in area of all sub-environments at an elevation equal to HAT at 

5.10 mOD. This could be evidence that the saltmarsh vegetation distribution conforms with the 

saline stress and competition theory which states that terrestrial vegetation becomes predominant 

above 5.10 mOD (e.g. Pennings et al. 2005; Colmer and Flowers, 2008). However, it is more likely 

that this rapid decline exists due to the presence of landward dikes which create an artificial 

boundary between the saltmarsh and terrestrial environments and are designed to prevent periodic 

inundation (Townend et al. 2011). 
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6.2.2.2 – Species Zone A 

Species Zone A is predominantly composed of less tolerant halophytes being found at the highest 

mean elevation (4.56 mOD) and at the shallowest gradient (1.5°) of all sub-environments. The spatial 

position and elevation distribution of the environment the reflect previous findings (Olff et al. 1988; 

Gray, 1992; Skov et al. 2016) as the Agrostis Stolonifera dominated sub-environment is found at a 

higher elevation mean than all sub-environment types expect Species Zone F. This is best shown by 

Figure 5.7 which highlights the sub-environment occupies >18.9% of the overall area between 4.57 - 

5.72 mOD. However, the multiple regression analyses (see Section 5.1.5) indicates that elevation has 

an insignificant influence on the spatial distribution of all sub-environments and instead gradient 

and watercourse proximity are the significant influences on Species Zone A distribution. The 

standardised beta values indicate that watercourse proximity has a greater influence on the 

distribution of Species Zone A than gradient with a standardised beta value of -0.661 as oppose to -

0.384. This suggests the direct proximity of dendritic creeks and fluvial inflows have the greatest 

relative influence on sub-environment distribution, although the existence of the incised channels 

also directly affects gradient (Perillo, 2019). Previous research concerning the most populous species 

Agrostis stolonifera largely corresponds with the findings and confirms the predominant location of 

 

Figure 6.1 - Tidal height projections (2012) relative to land cover on 

Marsh C.   
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the sub-environment in areas of close proximity to fluvial inflows and brackish channels in middle-

higher marsh (Gray, 1972; Gehrels and Newman, 2004; Masselink et al. 2017). Moreover, the 

presence of the second most populous species Atriplex portulacoides potentially explains the sub-

environment distribution throughout the saltmarsh as the species is commonly observed fringing 

channels and pools of higher salinity that are flooded at full tide (Redondo-Gomez et al. 2007). 

Likewise the mean watercourse proximity value of 23.3 m (the 3rd closest to watercourses of 

vegetated sub-environments) exhibits that the sub-environment is not confined to creek margins 

and is instead widely distributed throughout semi-saturated areas of middle-higher marsh 

(Bocklemann et al. 2002; Hulisz et al. 2016). 

The other significant influence of gradient is comparatively reduced compared to the influence of 

gradient on other sub-environments as the Species Zone A has the joint-smallest standardised value 

of -0.384 (see Table 5.21). When compared to other sub-environments the comparably similar 

distribution of Species Zone A to Species Zone C is highlighted by the significant F value of 4.9 (Table 

5.15). This comparative similarity in distribution may plausible occur because both sub-environments 

contain Atriplex portulacoides and are therefore likely to occupy areas with similar drainage. The 

0.9° difference in mean gradient between Species Zone A and C results because the former is not as 

commonly found in steeper areas surrounding creeks which confers with the salinity tolerances of 

the respective comprising species (Colmer et al. 2008). 

The similarity in species composition between Species Zone A and C is also apparent in the remote 

uncertainty assessment and confusion between sub-environments as 24/25 of the incorrectly 

classified results fall into the category of Species Zone C. Likewise, 29/35 incorrectly classified 

remote results for Species Zone C are classified as Species Zone A. Therefore, if the true area was 

10.9% larger as indicated by the remote assessment the results would suggest Species Zone A would 

mostly displace Species Zone C. However the fact the one anomalous reading for the manual 

assessment was classified as Species Zone B may suggest Species Zone A would jointly displace the 

two sub-environments. Although the explanation for this one confused manual reading is 

undetermined, the remote confusion can be explained as Species Zones A and C both contain 

Atriplex portulacoides so therefore possess similar spectral signals. Regarding systematic uncertainty 

the RMSE of the Environment Agency LiDAR elevation data could potentially influence both 

elevation and gradient results, however there is no published or clearly anomalous observed 

evidence to suggest this error would have a disproportion influence on any localised area or sub-

environment with certain elevation or gradient characteristics. The influence of this error on the 

largest significant factor watercourse course proximity is reduced as the difference between the 



 

157 
 

mean watercourse proximity of the sub-environments is in all cases greater than RMSE. Therefore, 

the conclusions regarding the proximity of Species Zone A relative to sub-environments remain valid. 

The findings concerning Species Zone A (and all sub-environments) add further support to the theory 

rebuking the ramp model of distribution. The results (particularly the multiple-regression analyses) 

further support the opposing theory that the penetration of dendritic creeks and fluvial inflows have 

greater influence on key factors such as on salinity and anoxia which determine saltmarsh 

vegetation distribution (e.g. Engles et al. 2011; Veldhuis et al. 2019). 

 

6.2.2.3 – Species Zones B, C and D 

The findings indicate that a combination of gradient and watercourse proximity are the main 

significant influences on the distribution of Species Zones B, C and D, with watercourse proximity 

having the greatest significant influence. Although the similar IQRs of the three species potentially 

suggests elevation is a key control on the distribution (see Figure 5.5 and Table 5.11), the multiple 

regression analysis (Table 5.20) indicates elevation is not a significant influence. 

Of the three sub-environments the standardised beta values indicated Species Zone B was most 

influenced by watercourse proximity (-0.679) with Species Zone C being the least influenced (-0.649). 

The greatest standardised decrease per metre of Species Zone B can be explained by the fact the 

sub-environment is predominantly composed of Festuca rubra which has lower salinity tolerance 

when compared to the other temperate marshes species (Kiehl et al. 1997; Suchro and Jensen, 

2010). Therefore, a sub-environment with a high abundance of Festuca rubra would be expected to 

be found in areas of low salinity in the higher marsh (mean elevation = 0.38 m above MHWS). As the 

majority of the watercourses are tidal creeks as opposed to fluvial influences the low negative beta 

value and the increase in saltmarsh proportional area cover from 14.8% at 5 m from a watercourse 

to a maximum of 25.0% at 97 m conforms with the sub-environment ecology. 

The reduced negative standardised beta value of Species Zone C perhaps reflects the predominance 

of Atriplex portulacoides which is a tolerant halophyte and a physiognomic dominant found widely 

across well-drained marshes and is less confined to creeks (Cott et al. 2013). The standardised beta 

value of -0.649 for Species Zone D perhaps also reflects the variable distribution of Species Zone D 

which is found in the higher marsh but also extends into the middle-lower marsh concentrated 

around the levees and terraces that define tidal creeks. This could be potentially explained the dual 

influence of Elymus Repens and Puccinellia maritima in the sub-environment. The presence of the 

latter plausibly explains the distribution of the species zone in areas where the sediments are 
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frequently waterlogged and exposed to highly saline conditions (Davy et al. 2011) such as those 

around the terraces and levees surrounding the tidal creeks networks. This is quantitatively 

exhibited indicated by the fact the Species Zone D has the lowest mean proximity to watercourses 

(20.4 m) of all sub-environments expect Brackish Waterbodies (Engels and Jensen, 2010). 

Alternatively, the presence of Elymus repens, would explain also the presence of the Species Zone D 

in the higher marsh where saline exposure is reduced (Barkowski et al. 2009). 

Whilst the mean distance of Species Zone C to watercourses is 1.4 m higher than Species Zone D 

(21.8 m), the value of the 1st quartile of 7.3 m and an IQR 0.7 m wider than Species Zone D (see 

Figure 5.20 and Table 5.17), perhaps reflects the predominance of Atriplex portulacoides in Species 

Zone C. Moreover, the presence of saline and saturation resistant Puccinellia maritima in both 

Species Zones C and D confers with their spatial gravitation around watercourses and tidal creeks in 

particular, although Species Zone C on average occupies lower elevations 0.14 m lower than Species 

Zone D. This discrepancy could be explained by the fact the 3rd and 4th most prominent species in 

Species Zone C, Cochlearia officinalis and Sueda Maritima, are also highly tolerant to saline exposure 

as well as resistant to waterlogging and therefore could tolerate more frequent inundation at lower 

elevations (Alhdad et al. 2013; de Vos et al. 2013). Therefore, it is unsurprising that there is a general 

concentration of Species Zone C on creek benches and also in the depressions between the levees 

predominantly occupied by Species Zone D (see Figure 6.2).  

Alternatively, the significant influence of gradient had the largest effect on Species Zone D                 

(standardised beta = -0.429) when compared to Species Zone B (-0.41) and C (-0.409). This 

potentially could have been predicted given the gravitation of Puccinellia maritima predominantly 

on the top of creek levees whilst it was rarely present on the steeper vegetated levee slopes (see 

Figure 6.2). The disparity of 0.001 in standardised beta values for Species Zones B and C also appears 

to highlight the similar influence of gradient of the two species zones which have the same mean 

gradient value of 2.4° despite occupying different areas and being comprised of different species. 

This is perhaps best indicated by the proportional areal coverage results which highlight the 

proportion of the saltmarsh covered by each Species Zone B and C consistently ranges from 16-19% 

from 0-20° (Figure 5.14 and 5.16). The findings combined with fact five sub-environments have a 

mean gradient value between 2.4 – 2.7° highlights that gradient remains largely constant throughout 

the marsh and localised areas of high gradient variability do not reflect the marsh as a whole. 

 

 



 

159 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 (a-b). A comparison of sub-environment distribution and elevation 

around a major creek in Marsh B 

(a) 

(b) 
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6.2.2.4 – Species Zone E 

Species Zone E has the lowest median (4.23 mOD) and mean (4.03 mOD) elevation of all sub-

environments. This conforms with the relevant research as Spartina Anglica and Salicornia spp. have 

high salinity tolerances and are commonly associated with lower marsh environments (e.g. 

Armstrong et al. 1985; Williams et al. 1995). The elevation distribution Species Zone E and the fact 

the sub-environment covers the greatest proportion of the overall saltmarsh at 4.0 mOD (8.2% see 

Figures 5.7 and 5.9) corresponds with Gray’s (1972) region-specific assessment of species elevation 

distribution of Spartina Anglica and Salicornia spp. (35 km away) Morecambe Bay (35 km away) (see 

Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

However, the multiple regression analyses indicated elevation had an insignificant influence (Table 

5.20) on the sub-environment distribution. Alternatively, gradient and watercourse proximity had a 

significant influence on sub-environment distribution although the gradient standardised beta value 

was 0.261 closer to zero, indicating an increase watercourse proximity resulted in a greater 

standardised decrease in areal cover. Species Zone E was also the most influenced of all sub-

environments by watercourse proximity with a standardised value -0.757 despite the 2nd lowest 

unstandardised value of 4.32 x 10-4 km2 which was a result of the small area coverage of the sub-

environment of 0.46 km2 (original assessment). 

 Figure 6.3. Elevation distribution of saltmarsh species in Morecambe Bay. 

The IQR is indicated by the dark box, whilst the overall range is shown by 

maximal extent of the arrows. (Source: Gray, 1972) 
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The gravitation of Species Zone E to the lower and pioneer marsh areas in close proximity to 

watercourses is also partially indicated by the gradient findings which exhibit the sub-environment 

has the highest first quartile (0.9°), median (1.8°) and third quartile (3.0°). Such findings are 

indicative of the steep gradients of the lower marsh as marsh topography commonly increases in the 

exposed pioneer and lower zone, especially if the marsh is situated on a levee of a main estuarine 

channel (e.g. Sanderson et al. 2000; Silvestri et al. 2003; Hladik and Alber, 2012).  

Likewise, the proximity from watercourse statistics (mean proximity = 29.5 m) along with the visual 

distribution of species (see Figure 5.1) also highlights the spatial clustering of Species Zone E around 

the largest estuarine channels with highly developed levees. However, there is an absence of Species 

Zone E around the smaller creeks channels which cover that are characterised by distinctive creek 

terraces and benches. These findings potentially indicate a link between the significant influences of 

gradient and watercourse proximity and species distribution as comparatively steep topography of 

the lower levees theoretically enhances drainage creating suitable conditions for Spartina Anglica 

and to a lesser extent Salicornia spp. (Tsuzaki, 2010). However, these species are outcompeted by 

other tolerant halophytes such as Puccinellia maritima in waterlogged environments were gradient 

is shallow and the drainage poor such as in the depressions between creeks (Cooper, 1982; Davy et 

al. 2011). This therefore plausibly explains the enhanced presence of Species Zones C and D in 

developed creeks in the middle-higher marsh and comparative absence of Species Zone E.  

Regarding uncertainty, it is plausible that the sub-environment areal coverage could differ by 13.3% 

according to the remote assessment (Table 5.2). Although this would theoretically only influence 

0.06 km2 of the total area, 16 and 4 of the 22 anomalous classifications are categorised as Exposed 

Sediment and Brackish Waterbodies. If this area was covered by predominantly un-vegetated sub-

environments this would have a direct impact on carbon storage but also substantially influence 

interconnected ecogeomorphological processes in the lower marsh. This change would potentially 

enhance saltmarsh degradation as a result of enhanced rates of erosion and a reduction in accretion, 

as the dissipating impact of Spartina Anglica and Salicornia spp. would be reduced (Van der Wal and 

Pye, 2004; Sheehan and Ellison, 2015). 

6.2.2.5 – Species Zone F 

Whilst the majority of sub-environments exhibit relatively consistent trends throughout the entire 

saltmarsh, Specie Zone F covers only 20775 m2 entirely in the western higher marsh of Marsh C. This 

comparative sparsity of Eleocharis uniglumis conforms with a national saltmarsh assessment which 

indicates that despite being rare nationally, the enhanced rainfall on western British coast enhances 
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the probability of the appearance of species on in areas the region (Boorman, 2003). The multiple 

regression analysis indicates watercourse proximity has the largest significant influence with a 

standardised beta value of -0.729 making the sub-environment the 2nd most influenced by 

watercourse proximity. The average distance (52.8 m) of Species Zone F from any watercourse in 

combination with the high mean elevation (4.70 mOD), highlights further similarities with the 

relevant research which points to the gravitation of the main comprising species Eleocharis 

uniglumis in areas which are seldom inundated with saline water away from watercourses and 

particularly creeks (Sanchez et al. 1996; Pigott et al. 2000). The high mean elevation and narrow 

elevation range (4.40 – 5.15 mOD) conforms with the findings of Sanchez et al. (1996) who found the 

species at the had a narrow elevation range and was found at the highest elevation of all species in 

their study on a temperate European saltmarsh environment. The ANOVA analysis also highlighted 

the unique elevational distribution of the sub-environment as the significant T-values ranged 

between 197.4 – 632.3 for all sub-environments expect Exposed Sediment (T-value = 5.0) whilst 

elevation had an overall insignificant influence on spatial distribution (p=0.208). 

The other significant influence of gradient had less influence on sub-environment areal decrease 

(standardised beta = -0.448) than watercourse proximity although the sub-environment was the 2nd 

most influenced by gradient increase. This corresponds with the location of Species Zone F in an area 

of low mean gradient (1.7°) and devoid of creeks as the gradient increase had a large standardised 

influence on the reduction of sub-environment area. The location of the sub-environment in an area 

where tidal access has been disturbed by the construction of dykes also shows correspondence with 

previous research which highlights that tidal restriction enables Eleocharis uniglumis to replace more 

tolerant halophytes in areas of low gradient, prone to the accumulation of stagnant rain water 

(Dijkema, 1990).  

The original remote areal assessment indicates a 13.3% uncertainty surrounds the sub-environment 

and a two-way confusion correspondence exists with Brackish Waterbodies. This most probably 

arises due to the similar spectra of the dark brown sub-environments which are located in brackish 

areas. However, if Species Zone F increased in areal cover by 13.3% displacing 2763 m2 of Brackish 

Waterbodies, the influence on above-ground (746 kg more assuming mean OCD disparity) and active 

layer (1020 kg less assuming mean OCD disparity) carbon storage and ecogeomorphological 

dynamics would be minor (see Section 6.3). 
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6.2.2.6 – Exposed Sediment and Brackish Waterbodies 

The sub-environment broadly defined as Exposed Sediment was predominantly comprised of 

exposed silt and sand at the seaward perimeter as well as within creek and saltpans. This spatial 

distribution at a low mean elevation 0.05 m below MHWS (4.10 mOD) conforms with the theory 

increased hydroperiods and saline stress at low elevation results in a reduction in vegetation 

(Bertness et al. 1992; Engels and Jensen, 2010; Moffett et al. 2010). Moreover, the influence of 

enhanced erosion by wave action and creek flows also prevents colonisation in regularly inundated 

areas at close proximity to watercourses leading to the classification as Exposed Sediment (Letzsch 

and Frey, 1980; Marini et al. 2011; Leonardi et al. 2016). However, the kernel density plot (Figure 

5.5) for the sub-environment highlights a wide elevation distribution which is to be expected given 

the broad definition and it therefore unsurprising elevation is not a significant influence on 

distribution. 

The wide distribution of the sub-environment over the saltmarsh is also reflected by the significant 

standardised beta scores for gradient (-0.614) which is the joint 5th highest (closet to zero). Given the 

wide distribution of the Exposed Sediment across all areas of the marsh which is highlighted the sub-

environment proportional areal cover compared to watercourse proximity (see Figure 5.21) it is 

unsurprising the sub-environment has the lowest standardised beta value for watercourse proximity 

of -0.614. It is also predictable that Brackish Waterbodies has the second-lowest value of -0.627 as it 

is plausible this could be attributed to the fact this sub-environment also comprises salt pans with no 

clear outflow or inflow (i.e. watercourse) as they are instead filled with stagnant brackish water from 

high tides and rainfall (Townend et al. 2011). The widespread presence of such salt pans is also 

indicated by the proportional area cover which highlights the proportion of area defined as Brackish 

Waterbodies increases to a maximum of 9.1% at 118 m although only 0.3% of total marsh area is 

found at this distance. 

It is possible a confusion anomaly exists between the two sub-environments which are surrounded 

by a maximal areal uncertainty of 10% (Exposed Sediment – remote) and 14.3% (Brackish 

Waterbodies – manual). Although the remote assessment indicates confusion for Exposed Sediment 

is more commonly associated with Species Zone E (35/56) 16 of the anomalous classifications are 

classified as Brackish Waterbodies (see Table 5.3). Whilst the only anomalous result from the manual 

classification indicates confusion with Species Zone F, the remote classification for Brackish 

Waterbodies (uncertainty = 12.6%) identifies Exposed Sediment as being the main source of 

confusion (13/19). This two-way confusion is unsurprising purely given the gravitation of both 
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environments to creek channels and the similar spectral signatures produced from semi to fully 

saturated uncovered sediment. However, if Exposed Sediment hypothetically covered the maximal 

or minimal extent indicated by the uncertainty assessment, the confusion relationship connecting 

the sub-environment and Species Zone E would have a more substantial impact on overall saltmarsh 

carbon storage and ecogeomorphology than the relationship between the two predominantly un-

vegetated sub-environments (Kirwan et al. 2010; Sheehan and Ellison, 2015). 
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6.3 - The Distribution of Carbon within the Ribble Estuary 

As is shown in Section 5.2 and 5.3 the different sub-environments that comprise the saltmarshes of 

the Ribble estuary have different active section carbon storage capacities (i.e. the above-ground and 

active layer). This carbon distribution is influenced by a range of interconnected ecological, 

hydrological and geomorphological processes which dictate the sub-environment distribution (e.g. 

Silvestri and Marani, 2004; Belliard et al. 2017 D’Alpaos et al. 2019) (see Section 5.3). However, the 

sub-environments and the carbon within them does not exist independently as saltmarshes are 

inherently interconnected ecosystems (Alizad et al. 2016; D’Alpaos and Mariani, 2016). The 

relationships between ecology, geomorphology and carbon storage on the Ribble saltmarshes will 

form the basis of the discussion in the following section. 

6.3.1 – Above-ground Carbon Storage 

The above-ground biomass part of active section in this study is directly influenced by the 

interconnected ecological, hydrological and geomorphological processes (Kim et al. 2010; Da Lio et 

al. 2013). As is indicated in Table 5.26 the original remote assessments projected that 1.26 x 107 kg 

of carbon is stored within the above-ground mass of the saltmarshes of the Ribble estuary (see sub-

section 5.3.2.1), although this mass was unevenly distributed between sub-environments. The 

above-ground OCD was on average highest in Species Zone B (1.19 kg/m2) whilst Species Zone C 

which has the 2nd mass of carbon mass per m2 (0.97 kg/m2) (see Table 5.23) which consequently 

stored a disproportionally high carbon mass of 32.2% (areal cover 15.6%) and 29.4% (areal cover 

17.3%) respectively. The high carbon mass of Species Zone B directly reflects the ecological 

properties of the comprising species of Festuca Rubra and Triglochin maritima in particular, which 

have a high biomass per unit area compared to the majority of other saltmarsh species where there 

is a plentiful supply of N, P and K (Groenendijk, 1984; Kiehl et al. 1997). This confers with the spatial 

distribution of 95.7% of Species Zone B on Marsh C in areas of low gradient at close proximity to 

agricultural land where N, P and K (within artificial fertilisers) is likely to be transported by fluvial 

drainage channels (Olsen et al. 2011). The net result of the expansive cover and high carbon density 

is that Species Zone B stores the most above-ground carbon of any sub-environment at 4.06 x 106 kg, 

although in theory this mass could differ a maximum of 45% meaning the Species Zone C original 

projection of 3.71 x 106 kg is greater than the Species Zone B lower-bound estimate. Determining 

why this maximal uncertainty surrounds Species B leads back to the assessment of OCD variability 

and areal cover, which highlights the areal cover as the largest source of uncertainty due to the 20% 

uncertainty surrounding the manual assessment (remote 89.6%). As the confusion matrices for both 

the manual and remote uncertainties highlight that the only anomaly in the manual assessment 
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(Table 5.6) and 17/27 of anomalies in the remote assessment were classified as Species Zone D, this 

could mean a greater mass of carbon is concentrated within the latter which only hold 7.28 x 105 kg 

according to the original projections. 

The high average above-ground carbon biomass of Species Zones A (0.94 kg/m2) and Species Zone C 

(0.97 kg/m2) also confers to an extent with previous research as both sub-environments contain 

Atriplex portulacoides which has been found to have the highest biomass of any species on 

Northern-western European saltmarshes (Groenendijk, 1984; Bouchard and Lefeuvre, 2000). Whilst 

the mean carbon mass of both sub-environments are outside the standard deviation range for 

Atriplex portulacoides stated by Rupprecht et al. (2015) of 0.56 kg/m2 ± 0.23 kg/m2, when the 

standard deviations of ± 0.33 kg/m2 (Species Zone A) and ± 0.43 kg/m2 (Species Zone C) along with 

the influence of the other species and seasonal variability is considered the results are not overly 

dissimilar and highlight the high carbon density of Atriplex portulacoides compared to other in 

saltmarsh species. The overall influence of the uncertainties is that Species Zones A and C could 

respectively contain 47.5% and 58.5% more or less carbon than the 1.99 x 106 kg and 3.71 x 106 kg 

indicated in the original projections assuming mean OCD. Due to the sub-environment spatial 

distribution the influences of these uncertainties are largest (absolute mass) at <10m from a 

watercourse. Therefore, despite the fact gradient and watercourse proximity have smaller 

standardised beta values than other sub-environments of -0.661 and -0.635, the unstandardised loss 

per m from a watercourse is the third and second highest for Species Zone A (-1370 kg) and Species 

Zone C (-2610 kg) respectively due to the high above-ground carbon mass of each sub-environment. 

(see Figure 6.4(B)). This is also true for the other significant influence of gradient (see Figure 6.4(C)). 
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 Figure 6.4. A comparison of standardised and unstandardised beta values for the two 

significant influences on sub-environment and above-ground carbon spatial distribution. 
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The Puccinellia maritima and Agropyron pungens dominated Species Zone D had a mean above-

ground carbon mass of 0.79 kg/m2 and contributed the greatest proportion of overall saltmarsh 

carbon at a distance 10-20 m from a watercourse at 4.7% (Figure 5.23). This distribution combined 

with fact Species Zone D is only the 5th most influenced (standardised = -0.661) by watercourse 

proximity highlights that whilst watercourse proximity does influence the sub-environment and 

carbon distribution, the sub-environment is predominant distributed in the seldom inundated higher 

marsh and on certain well-developed levee’s surrounding mature creek systems. The moderate level 

of above-ground biomass stored in Species Zone D totalling 7.28 x 105 kg (original projection) can 

potentially be explained by the fact the biomass of Puccinellia Martimia has been exhibited to 

temporally fluctuate more than other common temperate saltmarsh species, as the winter biomass 

(and so carbon mass) can fall below 50% of the biomass values for late summer and autumn 

(Rouger, 2014). This peak in biomass productivity corresponds with the timing of increased solar 

radiation and the occurrence of spring tides which supply nutrients to the higher marsh and levees 

collectively increasing biological productivity of Puccinellia maritima (Oenema and De Laune, 1988; 

Touchette et al. 2019). However, throughout the year the mean biomass of Puccinellia maritima has 

been exhibited to be lower than that of species such as Atriplex portulacoides (Species Zones A and 

C) and Spartina Anglica (Species Zone E) (Groenendijk and Vink-Lievaart, 1987; Boorman and Ashton, 

1997) which is reflected in the results taken in the winter months. 

The lowest above-ground biomass carbon density values were found in sub-environments defined as 

Brackish Waterbodies (0.33 kg/m2) and Exposed Sediment (0.12 kg/m2). This can be explained by the 

fact both sub-environments are commonly found at low elevations and at close proximity or within 

waterbodies where a combination of increased salinity stress, waterlogging and erosion from wave 

action and flow within channels partially inhibits colonisation of these areas (Leonard and Luther, 

1995; Townend et al. 2011). However, it is plausible that such areas may contain more carbon as 

according to the maximal estimates Brackish Waterbodies and Exposed Sediment could collectively 

contribute up to 6.05 x 105 kg (13.9%) more above-ground carbon at distances <10m to a 

watercourse (see Figure 5.40(g) & (h)). Moreover, as watercourse proximity has the largest 

significant standardised influence on above-ground carbon storage in Brackish Waterbodies and the 

majority (39.4%) of carbon within the sub-environment is found within <10 of a creek, potential SLR-

driven creek expansion (Hughes et al. 2009) has the greatest potential to directly influence the areal 

cover and carbon storage capacity in the sub-environment more than any other (see Section 6.4). 

The location of Species Zone E (0.78 kg/m2) at lower elevations highlighted that lower marsh species 

such as Spartina Anglica and Spartina spp. with higher salinity tolerances had the potential to be 

substantial stores of above-ground carbon (Morris and Jensen, 1998; Cacador et al. 2004). Despite 
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covering only 2.1% of the overall saltmarsh area, the high proportional coverage of Species Zone E 

which ranged from 6.7% to 8.2% between 3.2 to 4.0 mOD and the mean above-ground carbon mass 

of 0.78 kg/m2 served to reduce the gradient of carbon decrease with elevation from 4.0 mOD to 2.20 

mOD (lower boundary for Species Zone E) after which Exposed Sediment predominated (>99.9% 

areal coverage). The spatial clustering of Species Zone E on the levees surrounding the main 

estuarine channels was also highlighted by the fact it had the greatest negative standardised beta 

values for both gradient (-0.496) and watercourse proximity (-0.757). Although the unstandardised 

decreases of -1340 kg per degree and -232 kg per m were the smallest due to the areal coverage, the 

distribution in the lower-pioneer marsh and ecogeomorphological importance of Spartina Anglica 

and Spartina spp. renders the sub-environments particularly important under a sea level rise 

scenario where submergence and creek incision is likely (Pont et al. 2002; Sheehan et al. 2014). The 

potential ecogeomorphological impacts of SLR on the spatial distribution and carbon storage of 

Species Zone E and the interconnected sub-environments are reviewed in Section 6.4. 

 

6.3.2 – Active Layer Carbon Content 

Whilst the carbon stored within the above-ground biomass is a key component of the saltmarsh 

carbon stocks, the storage potential of the active layer is projected to be 1.03 x 105 kg greater (1.29 x 

107 kg) than the that of the above-ground biomass (1.26 x 107 kg) according to the original area and 

average depth assessment (see section 5.3.2.2). As explained in Section 3.3.2 the surface vegetation 

and above-ground biomass influences the geomorphological characteristics and the carbon capacity 

of active layer (sub-surface section of the active section). The results presented in section 5.2.5.4 

exhibit that a degree of linear correlation (r2= 0.44 and p=<0.001) exists between all sub-

environments, although the deviation of Species Zone E and Brackish Waterbodies from the linear 

trend and uncertainty surrounding the overall sub-environment projections suggests this 

relationship is sub-environment specific (e.g. Kelleway et al. 2016; Roner et al. 2016).  

In order to determine how the carbon stocks of the Ribble compared with other similar 

environments and analyse the ecological and geomorphological relationships between above-

ground biomass carbon and sub-surface content, the results of this study were compared with the 

input results and projections of the Saltmarsh Carbon Stock Predictor (SCSP) (Skov et al. 2016; Ford 

et al. 2019) (see Figure 6.5). The SCSP findings offered a reliable comparison as they consist of four 

separate models designed to predict the carbon stock (kg m-3) of the first 10 cm of saltmarsh 

sediment, whilst the average active layer depth for the comparable Species Zones A, C and D which 

contained the same species featured in SCSP was 12.9 cm.  
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Moreover, the SCSP data was sourced from 23 saltmarsh sites on the Welsh coast as well as six 

saltmarshes in Morecambe Bay and the Thames estuary, many of which shared similar ecological 

and geomorphological characteristics to the Ribble (Halcrow et al. 2010c; Halcrow, 2013; Ford et al. 

2019). Subsequently, comparisons were drawn between relevant findings of this research (see 

section 5.3.2.2) as well as the contributing data used to form the overall SCSP model projections (see 

Figures 6.5). The analysis underpinning the SCSP predictions accounted for 37%, 40% and 44% (i.e. r2 

value) of the spatially observed variation in carbon stock for SCSP Models 1, 3 and 4 respectively, 

whilst SCSP models 3 and 4 take into account the basic sediment composition of the surface layer 

(i.e. clay, loam or sand).  

A comparison of the results exhibits that the mean and standard deviation of carbon within the 

active layer (samples with a mean OCD >15% than the overall sub-surface sediment which possessed 

undecomposed organic material) of the relevant species zones predominantly fall within the SD 

range of the majority of the relevant SCSP findings and projections. This is particularly the case for 

sub-environments Species Zones C (2nd most abundant species) and Species Zone D (1st most 

abundant species) which contain Puccinellia Maritima (see Figure 6.5(c)), although the value for 

Species Zone C is 0.32 kg m-3 closer than the latter to the SCSP model 4 projections clay/silt 

dominated sub-environments. As the active layers of Species Zone C and D were predominantly 

composed of organic silt it could explain why the mean values for Species Zone C are D >0.93 kg m-3 

than the SCSP Model 3 and 4 projections for sand dominated environments (Figure 6.5(c) - 19 and 

21) which are associated with lower levels of organic material and therefore carbon stocks. Whilst 

the SD surrounding the average Species Zone C active layer carbon stock is only 0.10 kg m-3 less than 

the SD surrounding SCSP Model 4 projections, this disparity increases to 0.69 kg m-3 for Species Zone 

D where the mean carbon content is greater than every finding except the observation at Malltraeth 

(SD = 1.6 kg m-3).  
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Figure 6.5. Correspondance between the findings of this research and SCSP carbon stock projections (kg m-3) where Atriplex portulacoides (a), Juncus gerardii (b) and 

Puccinelia Martima (c) was the predomiant , 2nd or 3rd most numerous species. Projections are derived from findings in different marshes on the welsh coast where the 

respective species predominated, the relevant SCSP model projections sourced from this data (Skov et al. 2016; Ford et al. 2019) and the active layer of relevant sub-

environments in this study where either species (a), (b) or (c) was the predominant species or 2nd most numerous. The error bars represent standard deviation. 

The findings and projections which correspond with the x-axis value as follows (predominant sediment composition/grain size is also indicated):  

(a) : 1= Malltraeth - Sand and Silt loam, 2= Shell Island - Clay loam, 3 = The Gann - Clay loam, 4 = Sandy Haven - Clay loam, 5 = Laugharne Castle – Clay, 6 = Black 

Scar - Clay loam, 7 = Gwendraeth - Clay loam, 8 = Pembury Burrows - Silt clay with loam, 9 = Salthouse Point - Clay loam, 10 = M1 SCSP, 11 = M3 SCSP Sand, 

12 = M3 SCSP Clay/Silt, 13 = M4 SCSP Sand, 14 = M4 SCSP Clay/Silt, 15 = Species Zone A and 16 = Species Zone C. 
 

(b) : 1= Morfa Madryn - Organic Sediment, 2= Malltraeth - Silty Loam, 3 = Four Mile Bridge - Silty clay loam, 4 = Y Foryd - Organic clay loam, 5 = Fairbourne – 

Loam, 6 = Ynys Hir - Clay loam, 7 = Dyfi West - Silty clay loam, 8 = Black Scar - Organic Loam, 9 = Trefenty - Organic Sediment, 10 = Cor-y-barlys - Organic 

Sediment, 11 = Gwendraeth- Loam, 12 = Gowerton - Organic Sediment, 13 = Landimore - Clay loam, 14 = M1 SCSP, 15 = M3 SCSP Sand, 16 = M3 SCSP 

Clay/Silt, 17 = M4 SCSP Sand, 18 = M4 SCSP Clay/Silt and 19 = Species Zone A. 
 

(c) : 1= Morfa Madryn - Organic loam, 2= Four Mile Bridge - Silty clay loam, 3 = Y Foryd - Clay loam, 4 = Morfa Harlech - Clay loam, 5 = Shell Island - Clay loam, 6 

= Dyfi North - Clay loam, 7 = Ynys Hir – Loam, 8 = Dyfi West - Silty clay loam, 9 = The Gann - Clay loam, 10 = Sandy Haven - Clay loam, greater clay proportion, 

11 = Black Scar - Clay loam, 12 = Trefenty - silty clay with clay loam, 13 = Gwendraeth – Loam, 14 = Pembury Burrows - Clay loam, 15 = Morfa Mawr- Clay 

loam, 16 = Gowerton – Loam, 17 = Landimore - Silt and loam, 18 = M1 SCSP, 19 = M3 SCSP Sand, 20 = M3 SCSP Clay/Silt, 21 = M4 SCSP Sand, 22 = M4 SCSP 

Clay/Silt, 23 = Species Zone C, 24 = Species Zone D.   
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The comparison between the findings concerning Atriplex portulacoides (Figure 6.5(a)) highlighted 

that the mean carbon stock of Species Zones A and C was greater than was found in 8 of the 9 

marshes were the species predominated. However, the Model 3 SCSP Clay/silt projections of a mean 

carbon stock of 4.1 kg m-3 was comparable to the mean value for Species Zone C of 4.12 kg m-3 which 

possessed silt dominated active layers. However, the fact Species Zone A was also greater than the 

majority of field findings and projections could suggest that the other comprising species served to 

either directly or indirectly increase active layer carbon stock.  

The findings concerning Juncus gerardii (Figure 6.5(b)) alternatively highlighted that the active layer 

of Species Zone A on average had a lower carbon density than the marshes surveyed by Skov et al 

(2016) and Ford et al (2019). However, although the two sites which had lower average carbon 

stocks at Ynys Hir (3.7 kg m-3) and Cor-y-barlys (3.6 kg m-3) had a similar organic loam sediment 

composition to Species Zone A, there was a greater degree of correspondence between the mean 

projections of the SCSPs models (3 & 4) for sand dominated sediments (3.6 kg m-3) rather than the 

SCSPs models for clay/silt dominated sediment. 

Whilst the findings from this project and the work of Skov et al. (2016) and Ford et al. (2019) 

highlight variability in terms of both active/surface layer carbon density, it is also highly plausible 

that this variability between the results of this project may exist due to the variety of species in each 

sub-environment and ecogeomorphological localised influences. This particularly applies to the 

relationship between Juncus gerardii and Species Zone A in which it is only the 3rd most prominent 

species. The difference in species could likely produce a disparity in both the mean and SD between 

the defined species zones of this project and the species-specific projections and findings of Skov et 

al. (2016) and Ford et al. (2019) (Groenendijk and Vink-Lievaart, 1987; Bai et al. 2016; Kelleway et al. 

2017). However, none of the findings concerning Species Zone A, C and D and the respective species 

appear anomalous in Figure 6.5. 

With regards to the relationship with carbon and depth there is a consistent difference between the 

active layer carbon content and the fossil horizons in all sub-environments. This difference in the 

carbon density between the active layer and sub-surface horizons is lesser in predominantly 

unvegetated sub-environments such as Brackish Waterbodies when compared to predominantly 

vegetated areas as the difference between the mean active layer and sub-surface OCD reduces to 

17.7% in Brackish Waterbodies compared to the overall mean difference of 43.5% (see Section 

5.2.2.3). Moreover, the mean active layer for Exposed Sediment of 3.09 kg m-3 is 0.66 kg m-3 (17.6%) 

less than the overall mean for all sub-environments and 1.17 kg m-3 (27.5%) less than the maximal 

mean active layer OCD in predominately vegetated Species Zone E (4.26 kg m-3). This suggests that 
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the carbon content of the active layer is likely to be directly influenced by the ecological and 

geomorphological surface processes in vegetated sub-environments as highlighted in Section 5.2.2.4 

and 6.2.1 (Cacador et al. 2004; Kulawardhana et al. 2015). The findings conform with established 

research in predominately vegetated saltmarsh environments, which highlight an exponential 

decrease in OCD between the ecogeomorphologically connected organic-rich active surface layers 

and fossil layers at greater depth (Mishra et al. 2009; Bai et al. 2016) (see Figure 6.6 for comparison 

with Bai et al. 2016). This disparity arises due to the high levels of surface layer biological 

productivity which is a result of periodic deposition of nutrients through tidal and fluvial deposition 

(Zhou et al. 2007; Andrews et al. 2008; Sousa et al. 2010). Alternatively, the progressive 

decomposition of organic matter over time and reduced biological productivity results in a lower 

fossil layer OCD and an exponential reduction of OCD with depth (Cacador et al. 2004; Mishra et al. 

2009; Mudd et al. 2009). 

Despite the low density of the sub-environment defined as Exposed Sediment the combination of 

the large areal coverage (42.6% original projection), high carbon uncertainty (areal and OCD 

maximum = 118.3%) and close proximity to watercourses render the sub-environment the largest 

and potentially most important store of active layer carbon. If the maximal uncertainty for volume 

and OCDs are assumed it is theoretically possible could contribute 5.35 x 106 kg or 84.6% more 

carbon than indicated in the original projections. Moreover, the association of the sub-environment 

with watercourses means that the mass of carbon within 10 m of a watercourse could increase by 

45.4% of the overall mass indicated in the OA x AD projection, whilst areas with a gradient >10 (i.e. 

surrounding developed creeks) could increase by 100.4% due to the predominance of Exposed 

Sediment in such areas. If the maximal uncertainties are correct any potential headward creek 

expansion or submergence of the lower marsh sub-environments (i.e. Species Zone E) may not lead 

to as substantial sub-surface carbon loss as predicted assuming mean OCD due to the high active 

layer volume and carbon content of Exposed Sediment. However the loss of predominantly 

vegetated sub-environments would have direct impacts on above-ground biomass and a subsequent 

range of ecogeomorphological consequences that would alter carbon storage dynamics throughout 

the saltmarsh (e.g. Valentim et al. 2013; Kulawardhana et al. 2015) (see section 6.4). 
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Figure 6.6. Carbon variation with depth comparison highlighting the compartive change in 

carbon content with depth in this study (a) and in the Yellow River Delta (b) (Bai et al. 

2016). This figure is an illustration of the exponential decrease in sediment carbon 

between the surface/active and fossil layers in an active saltmarsh.  
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6.4 - Sea level rise and Marsh Evolution 

As explained in 3.3.2 the active section is the most vulnerable to saltmarsh evolution which could be 

driven by the predicted regional SLR (Church et al. 2013; Palmer et al. 2018). Therefore the potential 

consequences of SLR on saltmarsh: ecology, geomorphology and active section carbon storage in the 

Ribble estuary will form the basis of the discussion in the following section. Specifically, the direct 

influence of SLR on elevation and saltmarsh carbon is considered, whilst the plausible consequences 

of SLR-driven changes on gradient and watercourse proximity are also discussed.  

6.4.1 - Potential Scenarios and Consequences 

As discussed in section 3.4 the influence of SLR on the future sub-environment and carbon 

distribution of the saltmarshes of the Ribble estuary will fundamentally depend on the rate of 

localised SLR and the consequent influences on the geomorphological and ecological dynamics of 

the estuary. According to the UKCP 18 regional (25 km2) projections for the area (see Appendix A) 

the sea level could rise by up to 0.21 m by 2050 and 0.63 m by 2100 under the most extreme IPCC 

RCP 8.5 scenario (50th percentile), although a rise as high as 1.98 m could occur under the High 1 

scenario devised by Pfeffer et al (2008). As indicated by Figure 6.7 (a and b) the projected areal 

extent of flooding at MHWS is controlled by a combination of the time elapsed, marsh topography 

and the prevailing sea level rise scenario. 
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If it is assumed the primary model of coastal squeeze (Doody, 2004; Wolters et al. 2005) (see Section 

3.4.1) could be applied to the saltmarsh, SLR could result in submergence prompting the loss of 

expansive areas of high marsh sub-environments due to the precise distribution of sub-

environments between 4.2 - 4.6 mOD (63.1%) and restrictions on landward regression. According to 

Horton et al. (2018) this loss is likely to occur as there is >80% positive tendency of marsh retreat in 

Liverpool Bay by as early as 2020 under the most extreme RCP 8.5 scenario, suggesting saltmarsh 

sub-environments and their carbon content are highly vulnerable. 

Elevation and Submergence 

The calculations of sub-environment and carbon response to SLR suggest it is possible extensive 

carbon loss is highly likely when the current sub-environment elevation distribution relative to tidal 

datum is considered (see Figures 6.8 and Appendix A). The calculations, which assume SLR will 

instigate submergence and coastal squeeze, assume the higher marsh sub-environments comprised 

of less tolerant halophytes with the highest mean elevations: Species Zone A, B and D will be 

 
Figure 6.7. Projected heights of MHWS at present in 2050 (a) and 2100 (b) under different 

sea level rise prediction scenarios assuming no topographic change. The UKCP 18 RCP 50th 

percentile projections shown are specific to a 25km2 area encompassing the Ribble 

estuary, whilst the Low 2 scenario represents Pfeffer et al’s (2008) median global sea level 

rise projection. The data for all SLR projections can be found in Appendix A.  
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collectively converted to Exposed Sediment first, before middle-lower sub-environments comprised 

of less tolerant halophytes: Species Zone C, Species Zone E and Brackish Waterbodies are 

subsequently converted in progressive order. The result of this SLR driven conversion is that the 

observed overall active section carbon storage capacity of the Ribble saltmarshes could decrease by 

11.4% of the 2012 capacity by 2050 (2.26 x 107 kg), and 30.7% by 2100 (1.76 x 107 kg) should the RCP 

8.5 (50th percentile) scenario or any scenario predicted by Pfeffer et al (2008) prevail (2100 only). 

However even under the RCP 2.6 (50th percentile) scenario, the overall carbon mass is projected to 

decrease by 23.6% of the 2012 capacity by 2100, whilst a decrease of 30.5% is observed under the 

RCP 4.5 (50th percentile) scenario (see Figure 6.8 and Appendix Section A Table A(vi)). It should be 

noted however that these projections represent the 50th percentile and more or less extreme 

saltmarsh and carbon loss could occur under each RCP scenario according to the 5th or 95th 

percentile projections.  

The standard deviation of error surrounding the carbon projections (considering variation in areal 

cover, volume and OCD) means it is plausible that 1.58 x 107 kg (38.0% less than the mean for RCP 

8.5) of carbon stored in 2012 could decrease to 1.22 x 107 kg (45.8% less than the mean) and 7.14 x 

106 kg (59.6% less than the mean) by 2050 and 2100 respectively under the RCP 8.5 projections. 

Alternatively, it is also possible that 3.52 x 107 kg (38.0% greater than the mean for RCP 2.6) was 

stored in 2012 and this would decrease to a mass of 3.40 x 107 kg (42.4% greater than the mean) and 

2.99 x 107 kg (54.0 % greater than the mean) by 2050 and 2100 under the RCP 2.6 projections. In 

each scenario uncertainty increases with time and uncertainty increases at a greater rate under 

more extreme sea level scenarios until the entire marsh is theoretically converted to Exposed 

Sediment (i.e. after 2070 under the RCP 8.5 scenario). This is due to the faster rate of conversion of 

predominantly vegetated sub-environments to Exposed Sediment which is surrounded by the 

greatest overall active section standard deviation of 59.6%. The exponential models fitted to the 

data which explain a high (≥92.2%) degree of variability highlight that carbon loss could be greater 

than indicated by the observed reading under the RCP 8.5 scenario by 2100 although losses are less 

than observed for the RCP 2.6 and 4.5 scenarios. However, all models exhibit that loss will continue 

with time regardless of the scenario with the progressively increasing rate of SLR (particularly under 

the RCP 4.5 and 8.5. This exponential loss complies with previous research exhibiting that 

proportional vegetated saltmarsh areal and carbon loss corresponds with the rate of SLR (Donnelly 

and Bertness, 2001; Spencer et al. 2016; Watson et al. 2016). Therefore, although the models 

predict that the rate of total loss in area and active section carbon storage will decrease after 2070 

under all scenarios, the proportional rate of carbon loss which can be lost (i.e. not within Exposed 

Sediment) is projected to increase due to the increasing rate of SLR. 
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Temporal variability is shown regarding the rate of loss between scenarios with the RCP 8.5 scenario 

showing the most rapid rate of carbon loss between 2040 and 2070, whilst the RCP 2.6 and 4.5 

scenarios exhibit an increase in carbon loss rate with time. This is a result of the greater rate of SLR 

in RCP 8.5, however when SLR is observed independently (see Figure 6.9) the rate of carbon loss can 

be seen to vary in relation to the specific elevation intervals of SLR. Specifically, the rate of carbon 

loss with SLR begins at an average rate of 1.96 x 105 kg per cm between 0 – 8 cm before increasing to 

4.41 x 105 kg per cm between 8 – 21 cm. Once SLR exceeds 21 cm the rate of carbon loss decreases 

to 8.56 x 104 kg per cm between 21 – 27 cm and the observed results show no further carbon loss 

theoretically occurs between 27 – 38 cm, as all other sub-environments have theoretically been 

converted to Exposed Sediment. However the model of exponential carbon loss indicates total 

carbon storage could continue to decrease after a depth of 27 cm, whilst the standard deviation in 

carbon storage indicates the marsh could contain between 7.14 x 106 – 2.82 x 107 kg after 38 cm of 

SLR (see Appendix Tables A (vi) and A(vii)).  
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Figure 6.8. Projected change in overall carbon storage during the 21st century under the 

three differing RCP scenarios featured in the UKCP 2018 report. The plotted graph assumes 

the mean OCD in all sub-environments as well as the original area projections for above-

ground biomass and OA x AD for active layer carbon. Error bars highlight the standard 

deviation in error surrounding mean projections. 
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However, despite the low mean carbon density (3.09 kg m-3) of the active layer in sub-environments 

defined as Exposed Sediment the large mean depth (21.9 cm) and consequently volume of the sub-

environment active layer results in an overall increase in active layer carbon with SLR (see Figure 

6.10(a)). This increase in active layer carbon is offset by the decrease in carbon stored in above-

ground biomass (see Figure 6.9(b)), which decreases by 58.8% and 78.4% of 2012 values by 2100 

under the RCP 2.6 and 8.5 scenarios respectively (see Figure 6.10(b)).  

Although the exponential models of carbon change associated with carbon stock prediction with SLR 

in the active layer sediments and above-ground biomass (Figure 6.10) explain a high degree (>88.3%) 

of the total variation in the three scenarios for above-ground biomass, active layer and overall 

carbon stocks, the predictions may be underestimates. It is plausible the initial retreat of species in 

the lower middle marsh may leave carbon-dense sediment which was once occupied by Species 

Zones C (mean = 4.12 kg m-3) and E (mean = 4.26 kg m-3) in the lower marsh prone to erosion due to 

the reduction in vegetation sediment stabilisation and wave dissipation (Pethick et al. 1993; 

Boorman et al. 1998; Schepeers, 2017). This would most likely increase the initial rate of carbon loss 

with SLR as such ecogeomorphological change could result in complete loss of carbon-dense 

sediment rather than a progressive conversion to the less carbon-dense sediment found in Exposed 
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Figure 6.9. Predicted change in overall carbon stocks in accordance with the sea level rise (SLR). 

Error bars highlight the standard deviation in error surrounding mean projections. 
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Sediment sub-environments (Craft et al. 2009; Theuerkauf et al. 2015). Moreover, the reduced 

contribution from decomposed organic matter and sediment interception and deposition would 

plausibly serve to instigate to long-term organic degradation, producing predominantly non-organic 

sedimentary layers with reduced active layer sediment carbon density (Mudd et al. 2009; D’Alpaos 

and Marani, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternative research concerning the saltmarsh response to SLR also highlights it is plausible 

widespread saltmarsh degradation and loss of carbon stock could occur as a result of submergence. 

Research undertaken by Trivisonno et al. (2013) modelling saltmarsh response to SLR in a coastal 

marsh which was unable to transgress due to embanking indicated widespread saltmarsh loss and 
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Figure 6.10. Projected change in overall active layer (a) and above-ground 

biomass (b) carbon storage during the 21st century under the three differing RCP 

scenarios featured in the UKCP 2018 report.  
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conversion into mudflat areas (i.e. Exposed Sediment) would occur with future SLR. Between 2010-

2030 vegetated saltmarsh area cover was projected to decrease by 47.0% and 54.5% under the 

‘medium’ (8 mm y-1 or 0.16 m rise) and ‘high-end’ (11 mm y-1 or 0.22 m rise) SLR scenario projections 

which were respectively based off the IPCC 4th Assessment Report A1B and A1FI scenarios (Bindoff 

et al. 2007). However, the ‘high-end’ projections also included the impacts of recent warming trends 

on ice sheet dynamics on SLR in southern Australia (Government of Australia, 2012). In comparison it 

is predicted the total area excluding exposed sediment will decrease by 7.3% and 8.7% under the 

equivalent scenarios of RCPs 4.5 and 8.5 between 2012 and 2030 (see Appendices Tables A(xvii) and 

A((xxii). However the overall UKCP 18 adjusted SLR by 2030 is 0.08 m and 0.09 in the Ribble under 

the 50th percentile RCPs 4.5 and 8.5 scenarios (see Tables A(i) and A(ii)). Therefore there would be a 

theoretical decrease in vegetated saltmarsh area of 14.6% and 20.7% between 2012 and 2030 if the 

rates of SLR were equal to the medium and high-end projections in the work of Trivisonno et al. 

(2013). Regarding carbon, sequestration was predicted to decrease by 36.6% and 44.0% under the 

‘medium’ and ‘high-end’ SLR scenarios and carbon storage was expected to decrease at a 

proportional rate.  

Theurkauf et al. (2015) predicted SLR would reduce the width of a saltmarsh in North Carolina from 

314 m in 1996 to 277 m in 2053 (model assumed a 1 m shoreline length). As a result of a 

combination of carbon storage loss in the top 0.5 m of sediment due to submergence and shoreline 

erosion, the models indicated the saltmarsh would change from a sink to a source of carbon by 2021 

in a moderate sea level rise scenario, although it was plausible this had already occurred in 1996 or 

would occur as late as 2053. The influence of the model used and the species involved has also been 

shown to influence retreat as Ge et al. (2016) exhibited that the areal covered by Spartina 

alterniflora could change by +8% or -13% under the RCP 8.5 SLR scenario by 2050 according to two 

different models, whilst the areal cover of the less saline tolerant Scirpus mariqueter was projected 

to change by +35% or -21%. This variability and uncertainty surrounding predictions of saltmarsh 

response to SLR highlight the need for future research primarily focussed on modelling the influence 

of SLR on saltmarsh landcover and carbon stock change in the Ribble estuary. 

SLR will have highly complex consequences for the saltmarshes and carbon stored within the Ribble, 

and whilst coastal squeeze may occur it is highly unlikely it will occur at a linear rate (Schile et al. 

2014; Hunter et al. 2017). Although modelling of the impacts of SLR within the CETaSS study 

(Halcrow, 2010) have indicated a general potential for an increase in flood dominance and the 

simultaneous amplification of tidal elevations and tidal range in the estuary, SLR may provide a 

mechanism for import of additional sediment and so accretion of bed levels may negate increased 

tidal range and elevations (Halcrow, 2010 & 2013). This increase in accretion may allow the 
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saltmarsh to maintain elevation relative to sea level and could theoretically result in an increase in 

biological productivity and nutrient deposition, serving to increase the active section carbon stocks 

particularly if climatic change was favourable to halophyte biological productivity (Day et al. 2011; 

Kirwan et al. 2016). Moreover, the impact of the predicted increase in storm surge frequency and 

magnitude may also have variable consequences on carbon stock and species distribution (Gedan et 

al. 2011; Moller et al. 2014; Spencer et al. 2016). Whilst increased storminess may potentially 

increase erosion and removal of carbon from the lower marsh (Wolters et al. 2005; Moller et al. 

2014), the increased deposition of transported sediments and nutrients in the middle-higher marsh 

could serve to potentially increase productivity and subsequent marsh growth (Morris et al. 2002; 

Kirwan and Gutenspergen, 2012). However, accurately predicting future change will require localised 

modelling of saltmarsh response to SLR rise in the Ribble. 

Watercourse Proximity 

As watercourse proximity had the largest significance influence on sub-environment spatial and 

carbon distribution, the impact of SLR on the creeks and watercourses will most likely substantially 

influence future carbon distribution in the Ribble. This is due to the interconnected influence of 

creeks evolution on sediment/nutrient supply, saline intrusion, gradient and elevation (Fagherazzi et 

al. 2012; French, 2019). In the most likely scenario in which SLR instigates headward extension and 

incision of creeks (Hughes et al. 2009; Rizzetto and Tosi, 2012) there would be direct effects on the 

carbon storage capacity of the sub-environments within the creeks themselves, but also on the 

surrounding levees and depressions. The increase in tidal range forecast by Halcrow et al. (2010) 

(see Section 2.4) could serve to increase creek flow velocity and therefore erosion within the creek 

systems (Friedrichs and Perry, 2001; Stefanon et al. 2012) which would directly influence Species 

Zone C and D in particular as the two sub-environments are commonly found in close proximity to 

creek systems. Headward extension of creeks into the higher marsh would in theory result in the 

propagation of both Species Zones C and D into the higher marsh, replacing sub-environments 

composed of less tolerant halophytes such as Species Zone A and B which would be unable to 

withstand the saline stress (Townend et al. 2011; Fagherazzi et al. 2012). Whilst it is not possible to 

predict the temporal rate of change in watercourse proximity, the results of the multiple regression 

analyses (Section 5.3.4) highlight that creek extension would variably impact the spatial distribution 

and carbon storage of different sub-environments. 

As the multiple regression analysis indicates carbon mass in all sub-environments decreases with 

each metre from a watercourse, it could be assumed there would be a linear increase in combined 

above-ground and sub-surface carbon mass under a scenario of headward dendritic extension, in 

which all sub-environments became on average closer to a watercourse. However, whilst increasing 
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mean creek proximity theoretically enhances the overall carbon storage potential of all sub-

environments, it should be noted that this does not mean carbon storage will increase. In fact, the 

replacement of predominantly vegetated sub-environments with more extensive creek systems 

comprised of the low carbon density sub-environments Brackish Waterbodies and Exposed 

Sediment would most likely reduce vegetation cover and carbon storage as the sub-environment 

began a SLR-induced transition into an exposed mudflat environment (Wilson et al. 2014; Crosby et 

al. 2016). Moreover, as watercourse proximity was universally indicated to have the greatest 

significant impact on spatial distribution, sub-environment migration would most likely occur as each 

sub-environment adjusted to creek expansion in order to maintain ecogeomorphological equilibrium 

(Phillips et al. 2018; D’Alpaos et al. 2019). Therefore saltmarsh sub-environment and carbon loss 

would most likely occur due to the restrictions on transgression in the Ribble. Although this scenario 

of headward expansion is most likely, unlike progressive SLR, it is not plausible to simulate the 

influence of SLR on creek hydrogeomorphology without a model adapted for the environment. 

Therefore, although there is evidence to suggest SLR could potentially result in creek infilling (Stefan 

et al. 2015) which would have direct and indirect impacts on watercourse proximity and gradient, it 

remains more plausible that creek expansion will occur and catalyse saltmarsh degradation in the 

long-term given the localised SLR scenarios.  

Gradient 

The changes in gradient associated with the SLR driven extension of levees and creek benches into 

the higher marsh would also have consequences on carbon storage. Unlike watercourse proximity 

which prompts headward expansion of creeks resulting in sub-environments becoming theoretically 

closer to a creek, the direct influence of headward expansion would be to universally increase the 

gradient of sub-environments thereby reducing carbon storage. However, like watercourse 

proximity, the statistically significant influence of gradient on would most plausibly mean sub-

environments would re-establish themselves relative to the new saltmarsh gradient. Although the 

influence of gradient change would likely have only 58.1% (Species Zone A) to 66.6% (Exposed 

Sediment) of the standardised effect of watercourse proximity, the impact of creek extension on 

gradient would most likely contribute to the interconnected readjustment of sub-environments re-

establishing ecogeomorphological equilibrium following SLR (Fagherrazi et al. 2012; Alizad et al. 

2016). 

It is also important to consider that a more expansive network of creeks and the associated influence 

on drainage and saturation levels (Cahoon and Reed, 1995; Allen, 2000) would produce more 

partially enclosed basins created between the creek systems. This could potentially result in the 

creation of salt pans and stagnant brackish waterbodies which could become anoxic areas of low 
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productivity (Griffin et al. 2011; Kulawardhana et al. 2014) reducing both short and long-term carbon 

storage capacity in above-ground biomass and the active layer. 

 

Summary 

The influence of sea level rise on marsh hydrodynamics and potential creek headward expansion 

would likely result in ecogeomorphological change in saltmarsh sub-environment distribution and 

active section carbon storage. This would be driven by SLR-induced changes of the statistically 

significant influences of watercourse proximity and gradient on saltmarsh distribution which would 

prompt ecogeomorpholgoical change as the saltmarsh sub-environments adjusted to maintain 

equilibrium. Therefore, the direct and secondary influences of SLR-driven gradient and watercourse 

proximity change and the progressive influence of submergence on saltmarsh sub-environment and 

carbon distribution must be taken in into account when predicting future carbon storage change in 

the Ribble estuary. 

 

6.4.2 – Implications for Coastal Management and Further Research 

Although it is likely the saltmarshes of the Ribble and their carbon stocks will become increasingly 

vulnerable to SLR-driven marsh evolution and degradation (Cahoon et al. 2006; Craft et al. 2009; 

Horton et al. 2018), the future shoreline management plan (SLMP) will significantly influence SLR 

driven saltmarsh response and evolution (Sterr, 2008; Enwright et al. 2016; Borchert et al. 2018). 

The current shoreline management plan partially recognises the need to allow transgression to 

preserve the saltmarshes of the Ribble, however there is both a temporal and spatial variability in 

the management policies (Halcrow, 2010c – See Figure 6.12) which could consequently result in 

variability in marsh evolution (Saintilan and Rogers, 2013; Torio and Chmura, 2013).  

Most prominently there is a disparity in policy between the North and South banks were hold-the-

line and managed realignment (MR) policies are respectively favoured in the long-term. 

Theoretically, this would potentially enable the marshes C and D to transgress to landward as sea 

level rises, whilst the evolution of marshes A and B would be restrained as coastal defences are 

maintained to protect the socio-economic assets on the north bank. Therefore, under a SLR scenario 

it would be likely that the ecosystem services including carbon stocks provided by the marshes on 

the northern bank would be more vulnerable than those on the south if the ecogeomorphological 

response to sea level rise was approximately uniform across the estuary.  
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When the spatial distribution of sub-environments and carbon is considered, the loss of Species 

Zone A would most likely be of the greatest concern as 32.1% of the overall sub-environment 

comprising of 6.37 x 105 kg of above-ground biomass carbon (original areal projection) and 2.88 x 

105 kg (OA x AD projection) of active layer carbon is predominantly found Marsh B (see Appendix 

section B2). As a hold-the-line policy will be enforced in this area over the next 50-100 years and 

Species Zone A is more likely to be lost to coastal squeeze due to the location in the higher marsh 

(mean elevation = 4.56 mOD), a disproportionally high carbon loss could occur from the degradation 

of Species Zone A in Marsh B due to the inability of the saltmarsh to transgress and maintain 

ecogeomorphological equilibrium. Whilst the higher marsh sub-environments Species Zone B 

(average elevation = 4.48 mOD) and D (average elevation = 4.52 mOD) are also likely to be two of 

the first sub-environments to be impacted upon by coastal squeeze, as 8.4% of the cumulative area 

of Species Zones B and D is found on Marshes A and B, only a combined 8.4% of above-ground 

(original areal projection) and 9.1% (OA x AD projection) of sub-surface carbon within the two sub-

environments would be at risk. 

Although the carbon stocks of Marshes A and B are most at risk to future SLR-driven degradation 

when future SLMPs are considered, the expansive areal cover of Marsh C over 16.8 km2 (76.4% of 

overall) means it represents the most significant concern in terms of overall carbon loss as 9.94 x 106 

kg (78.8% of overall) of above-ground biomass carbon (original areal projection) and 9.70 x 106 kg 

(76.3% of overall) (OA x AD projection) of active layer carbon is currently stored in the marsh. An 

area of 3.83 km2 of Marsh C is classified as Species Zone B and D which cumulatively store 4.33 x 106 

kg above-ground biomass carbon (original areal projection) and 2.09 x 106 kg (OA x AD projection) of 

active layer carbon which could be vulnerable, particularly if the RCP 4.5 or 8.5 scenarios ensue 

before the suggested managed alignment policy is implemented between 2060 – 2110 (see Figure 

6.11). Although Species Zone F currently contains only 1.24 x 104 kg (<0.1% of overall) of above-

ground biomass carbon (original areal projection) and 1.12 x 104 kg (<0.1% of overall) (OA x AD 

projection) of active layer carbon, when one considers the rarity of Eleocharis uniglumis in Britain 

and the national nature conservation designation of the Ribble estuary, there is a stronger argument 

to bring forward MR in order to preserve species diversity. 

The argument to bring forward MR is strengthened when the more complex effects of potential SLR-

driven headward creek on watercourse proximity and gradient are considered as well as the 

progressive influence of submergence. The fact watercourse proximity is the greatest statistically 

significant influence on sub-environment and carbon distribution is particularly important to 

consider as sub-environments that are unable to adjust to maintain ecogeomorphological 

equilibrium relative to creeks will likely be lost if saltmarsh regression and adjustment is prevented. 
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The same is true but to a reduced extent with the other significant influence of gradient which would 

theoretically increase on average with creek network expansion. The result of an inability to 

establish ecogeomorphological relative to gradient and watercourse could be to exacerbate the sub-

environment and carbon losses sustained as a result of submergence (Day et al. 2008; Wilson et al. 

2014). Therefore, when the current research concerning saltmarsh response to SLR, projected SLR in 

the region and the current ecogeomorphological restrictions on the saltmarsh are collectively 

considered, a policy of MR should be promptly adopted in the interest of reducing the loss of 

saltmarsh ecosystem services and carbon storage. 

However, the decision to advance such shoreline management strategies must be treated with 

caution, especially considering the projected increase in regional vulnerability to future high 

magnitude coastal storms (Halcrow et al. 2013; Palmer et al. 2018). Whilst MR has already been 

partially implemented in the estuary to the east of Marsh C (see Figure 6.11), policymakers should 

be aware of the potential issues of implementing MR through dike breaching. For instance, an 

attempt to restore former saltmarsh at the Freiston Shore, Norfolk through intentional breaching, 

substantially enhanced net erosion of the active saltmarsh leading to a 28-fold increase in the annual 

rate of headward retreat in the 16 months following the ‘restoration’ attempt compared to the 

previous 10 years (Symonds and Collins, 2007; Friess et al. 2014). This highlights the importance of 

considering the ecogeomorphological dynamics of a specific saltmarsh before restoration may take 

place (Townend and Pethick, 2002) in order to ensure the vulnerability of saltmarsh carbon stocks is 

not further heightened by inadequate management strategies. 

However, shoreline management policy is just one of several factors that future research designed 

to model and predict the influence of saltmarsh carbon stocks must consider. Whilst coastal 

management is undoubtedly important, this research has emphasised the importance of considering 

the following: 

• The significance of gradient and watercourse proximity on sub-environment distribution. 

• The active section carbon density of different sub-environments and the relationship 

between above-ground biomass and active layer carbon. 

• The plausible ecogeomorphological influences of different SLR scenarios on elevation, 

gradient and watercourse proximity and their direct and secondary influences on carbon 

storage. 
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As SLR continues to result in the degradation of UK saltmarshes the loss of carbon from these 

efficient carbon stores will become an increasingly important factor to consider when assessing the 

secondary influences of sea level rise on future climatic change (Craft et al. 2009; Chumra, 2013; 

Horton et al. 2018). Therefore, there is justification for extending the spatial coverage of research of 

this nature to include other UK saltmarshes and to combine such assessments with models of SLR-

driven saltmarsh evolution in order to improve the overall understanding of the potential 

consequences of future SLR on saltmarsh blue carbon. Such findings could influence and inform 

coastal management strategies and ultimately reduce the degradation and loss of the key ecosystem 

services saltmarshes provide. 
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Figure 6.11. Shoreline management plan for the Ribble Estuary from 2010 to 2100.  

(Source: Halcrow, 2010c)   
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7 – Conclusions 

 

This study contributes to improving the overall understanding of the carbon storage potential of 

temperate saltmarshes and highlights how the distribution of sub-environments and the carbon 

within them varies throughout an estuarine saltmarsh. Specifically, this research aimed to increase 

the understanding of the influence of elevation, gradient and watercourse proximity on sub-

environment and carbon distribution, whilst also highlighting how future sea level rise could 

potentially influence the quantified blue carbon stocks of the saltmarshes of the Ribble Estuary. The 

four main findings of the research are as follows: 

1) Watercourse proximity has the largest statistically significant influence on sub-

environment and carbon distribution. 

The results of the remote sensing analysis of sub-environment distribution exhibited that elevation, 

gradient and watercourse proximity collectively influenced sub-environment distribution, serving to 

produce the ‘mosaic’ pattern widely observed throughout temperate saltmarshes (e.g. Silvestri et al. 

2005; Zedler et al. 2010; Mudd and Fagherazzi, 2016). Although it is acknowledged that the two 

assessments of landcover indicate that the true sub-environment distribution could differ from the 

original findings, the overall kappa accuracy values of the respective remote and manual 

assessments of 87.6% and 90% exhibit the sub-environment distribution is accurately represented in 

this study. Of the eight sub-environments, Exposed Sediment and Species Zone C covered the 

greatest area of 9.36 km2 (max uncertainty = 10.0%) and 3.81 km2 (max uncertainty = 13.8%), whilst 

Species Zone E and F covered the smallest respective areas of 0.46 km2 and 0.02 km2 (max 

uncertainty for both = 13.3%). 

Whilst the three influences are inherently connected, the findings indicate that watercourse 

proximity and gradient have a statistically significant influence on distribution, whilst the influence 

of elevation is insignificant. Of the statistically significant influences watercourse proximity exerted a 

greater standardised influence that was between 50.1% (Exposed Sediment) to 72.1% (Species Zone 

A) greater than the influence of gradient. Of all sub-environments Species Zone E, which was 

predominantly composed of the lower-middle marsh halophytes Spartina Anglica and Salicornia 

Spp., was most influenced (standardised beta = -0.757) by watercourse proximity whilst the widely 

distributed Exposed Sediment was the least influenced (standardised beta = -0.614). Regarding the 

overall influence of watercourse proximity on carbon, Species Zone B had the highest 

unstandardised above-ground carbon change of -2760 kg per m increase in watercourse proximity, 

whilst Exposed Sediment had the highest unstandardised active layer value of -4420 kg per m. 
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Overall the results rebuke the simple elevation ramp model of distribution and therefore support 

the alternative theories which suggest saltmarsh sub-environment and carbon distribution is 

controlled by a multitude of factors (Kim et al. 2013; D’Alpaos et al. 2019). 

 

2) The exponential decrease in the organic carbon density between the surface sediments 

and the sediments at greater depth provides evidence of an ecogeomorphologically 

connected active section and separate fossil layers.  

The study principally concerned the carbon storage within the above-ground biomass and the active 

layer sediments which were collectively termed the active section. There was a persistent difference 

in the carbon content between the active and fossil layers in all sub-environments. Active layer 

samples consistently had a mean OCD >15% than in the overall sub-surface sediment and possessed 

undecomposed organic material whilst an exponential decrease in OCD between the active and 

fossil layers was observed in all predominately vegetated sub-environments. In predominantly 

unvegetated sub-environments a smaller disparity existed between active and fossil layers when 

compared to predominantly vegetated sub-environments, as the difference between the mean 

active layer and sub-surface OCD reduced to 17.7% in Brackish Waterbodies compared to the overall 

mean of 43.5%. Moreover, OCD was lower in the predominantly unvegetated sub-environments as 

the mean active layer for Exposed Sediment of 3.09 kg m-3 was 17.6% less than the overall mean for 

all sub-environments and 27.5% less than the maximal mean active layer OCD in Species Zone E 

(4.26 kg m-3). The findings suggest that the exponential decrease in OCD with depth in 

predominately vegetated saltmarsh sub-environments is evidence of an ecogeomorphologically 

connected organic active section which is found above fossil layers which are not directly influenced 

by surface processes. 

 

3) The mosaic distribution of saltmarsh sub-environments creates a spatially variable active 

section carbon distribution produced by the differences in sub-environment 

ecogeomorphological characteristics. 

Overall 1.26 x 107 kg and 1.29 x 107 kg (3.s.f) of carbon is estimated to be stored within the above-

ground biomass and active layer respectively (original area and average depth assessment), although 

carbon is unevenly distributed between sub-environments. A positive correlation (r2= 0.44) between 

above-ground biomass and active layer carbon stock is observed overall, although the high degree of 

variance from the linear model suggests the existence of unique relationships between above-

ground and sub-surface carbon storage in each sub-environment. Regarding above-ground carbon, 

the highest mean density of 1.19 kg/m2 and total mass of 4.06 x 106 kg (32.2% of overall) was found 
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in Species Zone B, a middle-higher marsh sub-environment predominantly composed of Festuca 

rubra and Elymus repens, although standard deviations in error of 16.3% and 25.0% from the mean 

surrounded the respective landcover and above-ground biomass carbon density calculations. 

Alternatively, the largest proportion of active layer carbon (49.6% of overall) was found in sub-

environment classified as Exposed Sediment as the projections indicated 6.32 x 106 kg was stored in 

the sub-environment, although standard deviations in error of 50.6 % and 15.5% from the mean 

surround the respective volume and active layer carbon density estimates. Overall the results 

highlight the high degree of variability in active layer carbon storage both within and between sub-

environments exhibiting the ecogeomorphological heterogeneity of the Ribble saltmarshes. 

 

4) Future shoreline management plans must take into account the carbon distribution in the 

saltmarshes of the Ribble in order to minimise the potential loss of carbon storage 

resulting from sea level rise. 

The current restrictions on saltmarsh migration may result in the saltmarshes of the Ribble 

experiencing ecogeomorphological disequilibrium as a result of sea level rise rendering the 

environments vulnerable to future degradation (Robins et al. 2016; Horton et al. 2018). Assuming 

coastal squeeze will occur and result in the conversion of the currently vegetated areas to Exposed 

Sediment, the projections suggest that the overall active section carbon storage capacity of the 

Ribble saltmarshes could decrease by 23.8%, 30.7% or 30.9% of the 2012 capacity by 2100 under the 

respective RCP 2.6, 4.5 and 8.5 (50th percentile) scenarios. Whilst the net loss of carbon on Marsh C 

is likely to the greatest, marshes A and B are likely to suffer the largest proportional losses due to the 

hold-the-line shoreline management policy in the north of the estuary which prevents saltmarsh 

regression in response to sea level rise. Moreover, as gradient and watercourse proximity are the 

statistically significant influences on sub-environment and carbon distribution, the inability of sub-

environments to reach equilibrium following potential creek headward expansion could further 

exacerbate the loss of saltmarsh ecosystem services and active section carbon. 

As collective degradation and sub-environment loss could reduce the ability of the Ribble 

saltmarshes to act as an efficient carbon sink it is essential that appropriate management 

procedures are implemented that consider saltmarsh adaption and response to SLR. This may 

require the implementation of managed realignment policies on a wider scale and sooner in time 

than currently scheduled to ensure the saltmarshes can respond to SLR and can continue to act as a 

key blue carbon store. 
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Appendices 

Appendix A – Sea Level Rise and Carbon Projections 

Table A (i-iii) highlight the variability in elevation of differing tidal levels under various IPCC RCP 

scenarios from 2020-2100 (Church et al. 2013; Palmer et al. 2018). Although relevant, as this report 

does not specifically assess the influence of SLR inclusion of this data within the main document 

itself cannot be justified. The calculations utilise specific UKCP 18 future sea level projections which 

are specific to a 25 km2 area encompassing the Ribble estuary and account for the effect of glacial 

isostatic adjustment and regional thermal expansion. As the UKCP 18 projections exhibit the sea-

level anomalies from a 1981-2000 baseline and the tidal height projections used in this report are 

sourced from a 2012 admiralty chart (Halcrow et al. 2013) the projections also take into account the 

0.03 m of sea-level rise recorded at Heysham (the closest complete tidal gauge) between 1990-2012 

(British Oceanographic Data Centre, 2019). It should be noted that the RCP scenario 6.0 is absent 

from the UKCP 2018 predictions due to the little difference between RCP 4.5 and 6.0 projections 

(Church et al. 2013). 

Table A(iv) exhibits the variability in elevation of differing tidal heights under SLR scenarios predicted 

by Pfeffer et al (2008), takes into account the contribution of extreme global glacial and ice sheet 

meltwater to global SLR. Although the three projections don’t account for localised variability as 

they drastically differ from the RCP 8.5 projections which inform UKCP 18 predictions, the 0.03 m of 

sea level rise at Heysham between 2007 and 2012 is accounted for. Whilst considerably more 

uncertainty surrounds Pfeffer’s (2008) projections in the Ribble estuary, they nevertheless 

approximately indicate an extreme level of SLR that could occur by 2100. 

Figure A(v) highlights how overall projected stock will change in accordance with SLR, whilst Tables 

A(vi) show how total carbon storage will change from 2012-2100 according to the RCP projections 

2.6, 4.5 and 8.5. The associated change in error (standard deviation) is exhibited in Table A(vii). 

Tables A(viii) – (xxii) exhibit how the area, volume and active section carbon storage potential may 

plausibly change under the RCP 2.6, 4.5 & 8.5 (50th percentile) SLR featured in the UKCP 18 

predictions. The projections assume that submergence and coastal squeeze will occur in accordance 

with SLR resulting in the conversion of the currently vegetated areas to Exposed Sediment.  The 

calculations assume the carbon-dense higher marsh sub-environments: Species Zone A, B and D will 

be collectively converted to Exposed Sediment first, before the middle-lower sub-environments: 

Species Zone C, Species Zone E and Brackish Waterbodies are subsequently converted in progressive 

order. Projections for the SLR scenarios devised by Pfeffer et al (2008) are not exhibited as the 
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carbon distribution throughout all sub-environments does not change after SLR exceeds 0.27 m as all 

sub-environments have been converted to Exposed Sediment. Therefore, the carbon projections for 

the Pfeffer et al (2008) scenarios are identical to the RCP 8.5 projections for the years 2080, 2090 

and 2100.  
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         Time-mean sea level anomaly percentile (m)       

 5th percentile SLR 50th percentile SLR  95th percentile SLR 

    
SLR post 
2012 

MHWN MHWS HAT   MHWN MHWS HAT   MHWN MHWS HAT 

Year 2.2 4.1 5.1 
SLR post 
2012 2.2 4.1 5.1 

SLR post 
2012 2.2 4.1 5.1 

2020 0.01 2.21 4.11 5.11 0.04 2.24 4.14 5.14 0.07 2.27 4.17 5.17 

2030 0.03 2.23 4.13 5.13 0.07 2.27 4.17 5.17 0.13 2.33 4.23 5.23 

2040 0.06 2.26 4.16 5.16 0.11 2.31 4.21 5.21 0.18 2.38 4.28 5.28 

2050 0.08 2.28 4.18 5.18 0.15 2.35 4.25 5.25 0.24 2.44 4.34 5.34 

2060 0.10 2.30 4.20 5.20 0.18 2.38 4.28 5.28 0.31 2.51 4.41 5.41 

2070 0.12 2.32 4.22 5.22 0.22 2.42 4.32 5.32 0.37 2.57 4.47 5.47 

2080 0.13 2.33 4.23 5.23 0.25 2.45 4.35 5.35 0.43 2.63 4.53 5.53 

2090 0.15 2.35 4.25 5.25 0.28 2.48 4.38 5.38 0.50 2.70 4.60 5.60 

2100 0.16 2.36 4.26 5.26 0.31 2.51 4.41 5.41 0.56 2.76 4.66 5.66 

 

          Time-mean sea level anomaly percentile (m)       

  5th percentile SLR 50th percentile SLR 95th percentile SLR 

    MHWN MHWS HAT   MHWN MHWS HAT   MHWN MHWS HAT 

Year 
SLR post 
2012 2.2 4.1 5.1 

SLR post 
2012 2.2 4.1 5.1 

SLR post 
2012 2.2 4.1 5.1 

2020 0.01 2.21 4.11 5.11 0.04 2.24 4.14 5.14 0.07 2.27 4.17 5.17 
2030 0.04 2.24 4.14 5.14 0.08 2.28 4.18 5.18 0.13 2.33 4.23 5.23 

2040 0.06 2.26 4.16 5.16 0.12 2.32 4.22 5.22 0.19 2.39 4.29 5.29 

2050 0.09 2.29 4.19 5.19 0.16 2.36 4.26 5.26 0.26 2.46 4.36 5.36 

2060 0.12 2.32 4.22 5.22 0.21 2.41 4.31 5.31 0.34 2.54 4.44 5.44 
2070 0.15 2.35 4.25 5.25 0.26 2.46 4.36 5.36 0.43 2.63 4.53 5.53 

2080 0.18 2.38 4.28 5.28 0.31 2.51 4.41 5.41 0.51 2.71 4.61 5.61 

2090 0.21 2.41 4.31 5.31 0.36 2.56 4.46 5.46 0.60 2.80 4.70 5.70 

2100 0.23 2.43 4.33 5.33 0.41 2.61 4.51 5.51 0.69 2.89 4.79 5.79 

 

Table A(i). Temporal variability in tidal elevations (mOD) under the IPCC RCP 2.6 scenario 

 

Table A(ii). Temporal variability in tidal elevations (mOD) under the IPCC RCP 4.5 scenario.  
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          Time-mean sea level anomaly percentile (m)       

  5th percentile SLR 50th percentile SLR 95th percentile SLR 

    MHWN MHWS HAT   MHWN MHWS HAT   MHWN MHWS HAT 

Year 
SLR post 
2012 2.2 4.1 5.1 

SLR post 
2012 2.2 4.1 5.1 

SLR post 
2012 2.2 4.1 5.1 

2020 0.02 2.22 4.12 5.12 0.04 2.24 4.14 5.14 0.07 2.27 4.17 5.17 

2030 0.05 2.25 4.15 5.15 0.09 2.29 4.19 5.19 0.14 2.34 4.24 5.24 

2040 0.08 2.28 4.18 5.18 0.14 2.34 4.24 5.24 0.21 2.41 4.31 5.31 

2050 0.12 2.32 4.22 5.22 0.21 2.41 4.31 5.31 0.31 2.51 4.41 5.41 

2060 0.17 2.37 4.27 5.27 0.28 2.48 4.38 5.38 0.42 2.62 4.52 5.52 

2070 0.22 2.42 4.32 5.32 0.36 2.56 4.46 5.46 0.55 2.75 4.65 5.65 

2080 0.27 2.47 4.37 5.37 0.45 2.65 4.55 5.55 0.68 2.88 4.78 5.78 

2090 0.33 2.53 4.43 5.43 0.54 2.74 4.64 5.64 0.84 3.04 4.94 5.94 

2100 0.38 2.58 4.48 5.48 0.63 2.83 4.73 5.73 0.98 3.18 5.08 6.08 

 

Table A(iii). Temporal variability in tidal elevations (mOD) under the IPCC RCP 8.5 scenario.  

 

    MHWN MHWS HAT 
Scenario 
Type 

SLR post 
2007 2.2 4.1 5.1 

Low 1 0.76 2.96 4.86 5.86 

Low 2 0.80 3.00 4.90 5.90 

High 1 1.98 4.18 6.08 7.08 

 

Table A(iv). Variability in tidal elevations (mOD) for the 

year 2100 under scenarios devised by Pfeffer et al (2008).  
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SLR (m) 
Above-ground 
Carbon Storage (kg) 

Sub-surface Carbon 
Storage (kg) 

Overall Carbon 
Storage (kg) 

Lower Bound Standard 
Deviation (kg) 

Upper Bound Standard 
Deviation (kg) 

0 12604672 12860082 25464754 15776882 35152626 

0.01 12265416 12923190 25188606 15384037 34993174 

0.02 12265416 12923190 25188606 15384037 34993174 

0.03 11932725 12984068 24916793 14869314 34964272 

0.04 11811574 13006237 24817811 14875717 34759905 

0.05 11682759 13029809 24712568 14747441 34677695 

0.06 11398385 13081845 24480230 14454620 34505841 

0.08 10681399 13213045 23894443 13770652 34018235 

0.09 10470355 13251663 23722018 13508937 33935099 

0.1 9959729 13351811 23311541 13128372 33494709 

0.12 9021137 13545021 22566158 12268506 32863810 

0.13 7499313 13819482 21318795 10812682 31824908 

0.15 6242209 14017831 20260041 9765318 30754763 

0.16 5193489 14249086 19442575 8938865 29946285 

0.18 4516338 14398405 18914743 8775590 29053896 

0.21 3546560 14612252 18158811 7723284 28594338 

0.22 3404126 14643660 18047786 7631010 28464561 

0.23 2856929 14848789 17705718 7347414 28064022 

0.27 2719211 14925728 17644940 7137259 28152620 

0.33 2719211 14925728 17644940 7137259 28152620 

0.38 2719211 14925728 17644940 7137259 28152620 

 

Table A(v). Projected change in above-ground biomass, active layer and overall carbon storage with SLR in the 21st 

century according to the IPCC RCP projections. All SLR heights shown are predicted by the RCP projections (hence the 

absence of certain heights) and the uncertainty indicated in Figure 6.9 is also shown. 
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 Overall Carbon Storage (kg)   

Year RCP 2.6 RCP 4.5 RCP 8.5 

2012 25464754 25464754 25464754 

2020 25188606 25188606 25188606 

2030 24916793 24817812 24712568 

2040 24480231 24346389 24055004 

2050 23894444 23722018 22566158 

2060 23311541 22566158 20260041 

2070 22294046 20929149 18047786 

2080 21318795 18914743 17644940 

2090 20260041 18158812 17644940 

2100 19442575 17705718 17644940 

 

 Standard Deviation         

 RCP 2.6   RCP 4.5   RCP 8.5   

Year kg % kg % kg % 

2012 9687872 0.38 9687872 0.38 9687872 0.38 

2020 9804568 0.39 9804568 0.39 9804568 0.39 

2030 10047479 0.40 9942094 0.40 9965127 0.40 

2040 10025610 0.41 10078638 0.41 10087120 0.42 

2050 10123791 0.42 10213081 0.43 10343008 0.46 

2060 10183168 0.44 10297652 0.46 10499259 0.52 

2070 10322712 0.46 10489834 0.50 10416776 0.58 

2080 10506113 0.49 10139153 0.54 10507681 0.60 

2090 10494722 0.52 10435527 0.57 10507681 0.60 

2100 10503710 0.54 10358304 0.59 10507681 0.60 

 

Table A(vi). Projected change overall carbon storage in the 21st century according 

to the IPCC RCP projections 2.5, 4.5 and 8.5. The values for the predictions made 

by Pfeffer et al. 2008 are equal to RCP 8.5 2080-2100.  

Table A(vii). Projected change in the standard deviation of error surrounding carbon storage in the 21st 

century according to the IPCC RCP projections 2.5, 4.5 and 8.5. The values for the predictions made by 

Pfeffer et al. 2008 are equal to RCP 8.5 2080-2100.  
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     Sub-environment         

    Species Zone A     Species Zone B   

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 2105133 228557 1986706 894290 3423371 445038 4063410 1750632 
2020 1988079 215848 1876237 849076 3314368 430868 3934027 1776228 
2030 1857021 201619 1752552 793103 3183398 413842 3778572 1706039 
2040 1646495 178762 1553870 703191 2973019 386492 3528859 1593293 
2050 1363944 148085 1287214 582518 2690672 349787 3193725 1441979 
2060 1038280 112727 979870 443433 2365222 307479 2807428 1267564 
2070 353155 38342 333287 150827 1680496 218464 1994685 900608 
2080 0 0 0 0 835793 108653 992054 447916 
2090 0 0 0 0 0 0 0 0 
2100 0 0 0 0 0 0 0 0 

 

       Sub-environment       

  Species Zone C     Species Zone D     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 3813245 522959 3706886 2155871 917716 128480 728440 457424 
2020 3813245 522959 3706886 2155871 793410 111077 629771 472671 
2030 3813245 522959 3706886 2155871 662272 92718 525681 394546 
2040 3813245 522959 3706886 2155871 451615 63226 358471 269048 
2050 3813245 522959 3706886 2155871 168880 23643 134049 100610 
2060 3813245 522959 3706886 2155871 0 0 0 0 
2070 3813245 522959 3706886 2155871 0 0 0 0 
2080 3813245 522959 3706886 2155871 0 0 0 0 
2090 3813245 522959 3706886 2155871 0 0 0 0 
2100 2150537 294931 2090554 1050032 0 0 0 0 

 

Table A(viii). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones A and B throughout the 21st century under the RCP 2.5 scenario (50th percentile) assuming coastal squeeze. 

Table A(ix). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones C and D throughout the 21st century under the RCP 2.5 scenario (50th percentile) assuming coastal squeeze. 
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         Sub-environment       

  Species Zone E     Species Zone F     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 464685 68541 360367 291665 20775 2909 12369 10127 

2020 464685 68541 360367 291665 0 0 0 0 

2030 464685 68541 360367 291665 0 0 0 0 

2040 464685 68541 360367 291665 0 0 0 0 

2050 464685 68541 360367 291665 0 0 0 0 

2060 464685 68541 360367 291665 0 0 0 0 

2070 464685 68541 360367 291665 0 0 0 0 

2080 464685 68541 360367 291665 0 0 0 0 

2090 464685 68541 360367 291665 0 0 0 0 

2100 464685 68541 360367 291665 0 0 0 0 

 

       Sub-environment       

  Brackish Waterbodies   Exposed Sediment     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 1771562 253924 582914 978623 9362072 2046281 1163580 6321451 

2020 1771562 253924 582914 978623 9733210 2153695 1250125 6324146 

2030 1771562 253924 582914 978623 10126376 2239918 1299434 6590542 

2040 1771562 253924 582914 978623 10757937 2378437 1378661 7018512 

2050 1771562 253924 582914 978623 11605570 2564372 1485037 7592987 

2060 1771562 253924 582914 978623 12425565 2744298 1588024 8148898 

2070 1771562 253924 582914 978623 13795416 3045014 1760286 9078029 

2080 1771562 253924 582914 978623 14993274 3308202 1911270 9891232 

2090 1771562 253924 582914 978623 15829067 3528839 1639512 10544204 

2100 1771562 253924 582914 978623 17491775 3859789 2200822 11887599 

 

Table A(x). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones E and F throughout the 21st century under the RCP 2.5 scenario (50th percentile) assuming coastal squeeze. 

Table A(xi). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon mass (kg) 

of Brackish Waterbodies and Exposed Sediment throughout the 21st century under the RCP 2.5 scenario (50th percentile) assuming coastal squeeze. 
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 Overall excluding Exposed Sediment       Overall      

                      

Year Area Volume 

Above-surface 
Carbon 
Content 

Active Layer 
Carbon 
Content 

Above-ground + 
Sub-surface 
carbon content Area Volume 

Above-surface 
Carbon 
Content 

Active Layer 
Carbon 
Content 

Above-ground + Sub-
surface carbon 
content 

2012 12516487 1650408 11441091 6538632 7485031 21878559 3696690 12604671 12860082 25464754 

2020 12145348 1603217 11090202 6524134 7574271 21878559 3756912 12340327 12848280 25188606 

2030 11752183 1553603 10706970 6319847 7889976 21878559 3793521 12006403 12910390 24916793 

2040 11120621 1473905 10091366 5991691 8397174 21878559 3852341 11470028 13010203 24480231 

2050 10272989 1366940 9265154 5551265 9078024 21878559 3931312 10750191 13144253 23894444 

2060 9452994 1265630 8437464 5137155 9736922 21878559 4009928 10025488 13286053 23311541 

2070 8083143 1102231 6978138 4477593 10838316 21878559 4147245 8738424 13555622 22294046 

2080 6885284 954077 5642220 3874074 11802501 21878559 4262279 7553489 13765306 21318795 

2090 6049492 845424 4650166 3426158 12183717 21878559 4374263 6289678 13970363 20260041 

2100 4386783 617395 3033834 2320320 14088421 21878559 4477185 5234657 14207918 19442575 

 

Table A(xii). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg), active layer 

carbon mass (kg) and overall carbon content (kg) of all areas excluding Exposed Sediment and overall throughout the 21st century 

under the RCP 2.5 scenario (50th percentile) assuming coastal squeeze. 
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     Sub-environment         

  Species Zone A   Species Zone B 

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 2105133 228557 1986706 894290 3423371 445038 4063410 1750632 

2020 1988079 215848 1876237 849076 3314368 430868 3934027 1776228 

2030 1809292 196437 1707508 772719 3135702 407641 3721958 1680478 

2040 1581944 171754 1492950 675623 2908514 378107 3452294 1558724 

2050 1280761 139054 1208710 546992 2607551 338982 3095064 1397433 

2060 536419 58240 506242 229096 1863650 242274 2212081 998763 

2070 0 0 0 0 410817 53406 487624 220164 

2080 0 0 0 0 0 0 0 0 

2090 0 0 0 0 0 0 0 0 

2100 0 0 0 0 0 0 0 0 

 

     Sub-environment         

  Species Zone C   Species Zone D     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 3813245 522959 3706886 2155871 917716 128480 728440 457424 

2020 3813245 522959 3706886 2155871 793410 111077 629771 472671 

2030 3813245 522959 3706886 2155871 614514 86032 487772 366094 

2040 3813245 522959 3706886 2155871 387023 54183 307200 230567 

2050 3813245 522959 3706886 2155871 85641 11990 67978 51020 

2060 3813245 522959 3706886 2155871 0 0 0 0 

2070 3813245 522959 3706886 2155871 0 0 0 0 

2080 1345807 184568 1308270 657111 0 0 0 0 

2090 192704 26428 187329 94090 0 0 0 0 

2100 0 0 0 0 0 0 0 0 

 

Table A(xiii). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones A and B throughout the 21st century under the RCP 4.5 scenario (50th percentile) assuming coastal squeeze. 

Table A(xiv). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones C and D throughout the 21st century under the RCP 4.5 scenario (50th percentile) assuming coastal squeeze. 
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     Sub-environment         

  Species Zone E Species Zone F     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer Carbon 
Content 

2012 464685 68541 360367 291665 20775 2909 12369 10127 

2020 464685 68541 360367 291665 0 0 0 0 

2030 464685 68541 360367 291665 0 0 0 0 

2040 464685 68541 360367 291665 0 0 0 0 

2050 464685 68541 360367 291665 0 0 0 0 

2060 464685 68541 360367 291665 0 0 0 0 

2070 464685 68541 360367 291665 0 0 0 0 

2080 464685 68541 360367 291665 0 0 0 0 

2090 464685 68541 360367 291665 0 0 0 0 

2100 0 0 0 0 0 0 0 0 

 

     Sub-environment         

  Brackish Waterbodies   Exposed Sediment     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 1771562 253924 582914 978623 9362072 2046281 1163580 6321451 

2020 1771562 253924 582914 978623 9733210 2153695 1250125 6324146 

2030 1771562 253924 582914 978623 10269559 2271321 1317393 6687564 

2040 1771562 253924 582914 978623 10951586 2420912 1402960 7149747 

2050 1771562 253924 582914 978623 11855113 2619118 1516364 7762133 

2060 1771562 253924 582914 978623 13428997 2964565 1714190 8829461 

2070 1771562 253924 582914 978623 15418249 3401672 1964985 10180051 

2080 1771562 253924 582914 978623 18296505 4036709 2301594 12434200 

2090 1771562 253924 582914 978623 19449608 4290324 2446068 13217757 

2100 678460 97246 223240 380500 21200099 4675392 2658575 14443402 

 

Table A(xv). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones E and F throughout the 21st century under the RCP 4.5 scenario (50th percentile) assuming coastal squeeze. 

Table A(xvi). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon mass (kg) 

of Brackish Waterbodies and Exposed Sediment throughout the 21st century under the RCP 4.5 scenario (50th percentile) assuming coastal squeeze. 
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 Overall excluding Exposed Sediment         Overall      

                      

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon 
Content 

Above-ground + 
Sub-surface carbon 
content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon 
Content 

Overall 
Carbon 
Content 

2012 12516487 1650408 11441091 6538632 7485031 21878559 3696690 12604671 12860082 25464754 

2020 12145348 1603217 11090202 6524134 7574271 21878559 3756912 12340327 12848280 25188606 

2030 11609000 1535534 10567404 6245450 8004958 21878559 3806855 11884797 12933014 24817811 

2040 10926972 1449468 9902610 5891072 8552706 21878559 3870380 11305570 13040819 24346389 

2050 10023446 1335449 9021918 5421604 9278497 21878559 3954568 10538282 13183737 23722018 

2060 8449561 1145938 7368490 4654017 10543651 21878559 4110503 9082680 13483478 22566158 

2070 6460309 898830 5137790 3646323 12145035 21878559 4300503 7102775 13826373 20929148 

2080 3582054 507033 2251550 1927398 14735794 21878559 4543742 4553145 14361598 18914743 

2090 2428950 348893 1130609 1364378 15663825 21878559 4639217 3576677 14582135 18158812 

2100 678460 97246 223240 380500 17101978 21878559 4772638 2881816 14823903 17705718 

 

Table A(xvii). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg), active layer 

carbon mass (kg) and overall carbon content (kg) of all areas excluding Exposed Sediment and overall throughout the 21st century 

under the RCP 4.5 scenario (50th percentile) assuming coastal squeeze. 
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     Sub-environment         

    Species Zone A     Species Zone B   

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 2105133 228557 1986706 894290 3423371 445038 4063410 1750632 

2020 1988079 215848 1876237 849076 3314368 430868 3934027 1776228 

2030 1758541 190927 1659612 751044 3084987 401048 3661761 1653299 

2040 1441398 156494 1360310 615597 2768068 359849 3285591 1483457 

2050 536419 58240 506242 229096 1863650 242274 2212081 998763 

2060 0 0 0 0 0 0 0 0 

2070 0 0 0 0 0 0 0 0 

2080 0 0 0 0 0 0 0 0 

2090 0 0 0 0 0 0 0 0 

2100 0 0 0 0 0 0 0 0 

 

     Sub-environment         

  Species Zone C     Species Zone D     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 3813245 522959 3706886 2155871 917716 128480 728440 457424 

2020 3813245 522959 3706886 2155871 793410 111077 629771 472671 

2030 3813245 522959 3706886 2155871 563732 78922 447464 335841 

2040 3813245 522959 3706886 2155871 246384 34494 195568 146783 

2050 3813245 522959 3706886 2155871 0 0 0 0 

2060 3396215 465766 3301487 1658254 0 0 0 0 

2070 23278 3192 22629 11366 0 0 0 0 

2080 0 0 0 0 0 0 0 0 

2090 0 0 0 0 0 0 0 0 

2100 0 0 0 0 0 0 0 0 

 

Table A(xviii). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones A and B throughout the 21st century under the RCP 8.5 scenario (50th percentile) assuming coastal squeeze. 

Table A(xix). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones C and D throughout the 21st century under the RCP 8.5 scenario (50th percentile) assuming coastal squeeze. 
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       Sub-environment         

  Species Zone E     Species Zone F     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 464685 68541 360367 291665 20775 2909 12369 10127 

2020 464685 68541 360367 291665 0 0 0 0 

2030 464685 68541 360367 291665 0 0 0 0 

2040 464685 68541 360367 291665 0 0 0 0 

2050 464685 68541 360367 291665 0 0 0 0 

2060 464685 68541 360367 291665 0 0 0 0 

2070 464685 68541 360367 291665 0 0 0 0 

2080 0 0 0 0 0 0 0 0 

2090 0 0 0 0 0 0 0 0 

2100 0 0 0 0 0 0 0 0 

 

     Sub-environment         

  Brackish Waterbodies   Exposed Sediment     

Year Area Volume 
Above-surface 
Carbon Content 

Active Layer 
Carbon Content Area Volume 

Above-surface 
Carbon Content 

Active Layer 
Carbon Content 

2012 1771562 253924 582914 978623 9362072 2046281 1163580 6321451 

2020 1771562 253924 582914 978623 9733210 2153695 1250125 6324146 

2030 1771562 253924 582914 978623 10421807 2304712 1336492 6790731 

2040 1771562 253924 582914 978623 11373216 2513400 1455872 7435502 

2050 1771562 253924 582914 978623 13428997 2964565 1714190 8829461 

2060 1771562 253924 582914 978623 16246097 3586032 2044911 11041822 

2070 1771562 253924 582914 978623 19619034 4327599 2467303 13332920 

2080 0 0 0 0 21878559 4823828 2742981 14901959 

2090 0 0 0 0 21878559 4823828 2742981 14901959 

2100 0 0 0 0 21878559 4823828 2742981 14901959 

 

Table A(xx). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon 

mass (kg) of Species Zones E and F throughout the 21st century under the RCP 8.5 scenario (50th percentile) assuming coastal squeeze. 

Table A(xxi). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg) and active layer carbon mass (kg) of 

Brackish Waterbodies and Exposed Sediment throughout the 21st century under the RCP 8.5 scenario (50th percentile) assuming coastal squeeze. 
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 Overall excluding Exposed Sediment       Overall      

                      

Year Area Volume 

Above-surface 
Carbon 
Content 

Active Layer 
Carbon 
Content 

Above-ground + 
Sub-surface 
carbon content Area Volume 

Above-surface 
Carbon 
Content 

Active Layer 
Carbon 
Content 

Above-ground + 
Sub-surface 
carbon content 

2012 12516487 1650408 11441091 6538632 7485031 21878559 3696690 12604671 12860082 25464754 

2020 12145348 1603217 11090202 6524134 17614335 21878559 3756912 12340327 12848280 25188606 

2030 11456751 1516322 10419003 6166343 16585345 21878559 3821034 11755494 12957074 24712568 

2040 10505342 1396261 9491635 5671995 15163630 21878559 3909661 10947508 13107497 24055004 

2050 8449561 1145938 7368490 4654017 12022507 21878559 4110503 9082680 13483478 22566158 

2060 5632461 788231 4244768 2928541 7173309 21878559 4374263 6289678 13970363 20260041 

2070 2259525 325657 965909 1281653 2247563 21878559 4653256 3433212 14614574 18047786 

2080 0 0 0 0 0 21878559 4823828 2742981 14901959 17644940 

2090 0 0 0 0 0 21878559 4823828 2742981 14901959 17644940 

2100 0 0 0 0 0 21878559 4823828 2742981 14901959 17644940 

 

Table A(xxii). Projected change in the active section area (m2), volume (m3), above-ground biomass carbon mass (kg), active layer 

carbon mass (kg) and overall carbon content (kg) of all areas excluding Exposed Sediment and overall throughout the 21st century 

under the RCP 8.5 scenario (50th percentile) assuming coastal squeeze. 
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Appendix B –Spatial Analysis of Land Cover 

This section presents the findings concerning the areal extent of the differing sub-environments and 

the uncertainty surrounding them for each of the four pre-defined marshes in the Ribble. As with the 

overall analysis, the uncertainty assessments of land cover are divided into the remote and manual 

assessments and the findings from each marsh are subsequently summarised. 

B1 – Marsh A 

 

 

 

 

 

 

 

Landcover Type ML Original Area (km²) % of Overall Area 

Brackish Waterbodies 0.010 2.8 
Exposed Sediment 0.103 29.6 

Shadows 0.001 0.4 
Species Zone A 0.026 7.4 
Species Zone B 0.033 9.6 
Species Zone C 0.071 20.6 
Species Zone D 0.027 7.7 
Species Zone E 0.076 21.9 

Overall 0.35  

 

Table B(i) – Overall area and % composition of each sub-environment determined following 

the original landcover classification. 
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Sampling Locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure B(i) – ML classification exhibiting the spatial distribution of sub-environments and ground truthing sites on Marsh A. 
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Remote Uncertainty Analysis – 

Landcover Type No Reference Points Correctly Classified Accuracy (%) 

Brackish Waterbodies 18 15 83.3 

Exposed Sediment 38 34 89.5 

Shadows 13 13 100.0 

Species Zone A 27 23 85.2 

Species Zone B 50 44 88.0 

Species Zone C 23 20 87.0 

Species Zone D 21 18 85.7 

Species Zone E 40 34 85.0 

Sum 230 201 87.4 

  k 85.3 

 

Table B(ii) – Summary of the remote uncertainity analysis. 
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Landcover Type 
Brackish 
Waterbodies 

Exposed 
Sediment Shadows 

Species 
Zone A 

Species 
Zone B 

Species 
Zone C 

Species 
Zone D 

Species 
Zone E 

Column 
Total 

% of 
Overall 

Brackish Waterbodies 15 2 0 0 0 0 0 1 18 7.8 

Exposed Sediment 2 34 0 0 0 0 0 2 38 16.5 

Shadows 0 0 13 0 0 0 0 0 13 5.7 

Species Zone A 0 0 0 23 0 4 0 0 27 11.7 

Species Zone B 0 0 0 2 44 0 4 0 50 21.7 

Species Zone C 0 0 0 3 0 20 0 0 23 10.0 

Species Zone D 0 0 0 0 3 0 18 0 21 9.1 

Species Zone E 2 4 0 0 0 0 0 34 40 17.4 

Row Total 19 40 13 28 47 24 22 37 
Overall 
Sum 230 

% of Overall Sum 8.3 17.4 5.7 12.2 20.4 10.4 9.6 16.1 A 87.4 

         k 85.3 

 

Table B(iii) – Confusion matrix exhibiting the accuracy of the ML classification indicated by the remote uncertainty analysis. The average corresponding 

value (A)  indicates the overall accuracy of the procedure whilst the Kappa coefficent (k) likewise represents the overall accuracy but also takes into 

account the possibility of the agreement occurring by chance. Anomalous values appear in columns which represent differing species to that of the row. 

E.g. Of the 18 test polygons for Brackish Waterbodies anomalous readings were recorded as Exposed Sediment (2) and Species Zone E (1). 
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Manual Uncertainty Analysis 

 

Ground Truthing Ref Pre-fieldwork ML Landcover Type 
Post-fieldwork/ Observed 

Landcover Type 
Pre and Post GT 

correspondence with ML 

A EGT1 Dark Green Higher Marsh Vegetation Species Zone A Y 

A EGT2 Orange-Brown Vegetation Species Zone E Y 

A EGT3 Exposed Sediment Exposed Sediment Y 

A EGT4 Mid-Green Lower Terrace Vegetation Species Zone C Y 

A EGT5 Dark Brown Brackish Waterbodies Brackish Waterbodies Y 

A CGT1 Dark Green Higher Marsh Vegetation Species Zone A Y 

A CGT2 Mid-green Lower Creek Terrace Vegetation Species Zone C Y 

A CGT3 Orange-Brown Vegetation Species Zone E Y 

A WGT1 Dark Green Higher Marsh Vegetation Species Zone A Y 

A WGT2 Very Light Green Vegetation Species Zone B Y 

A WGT3 Exposed Sediment Exposed Sediment Y 

A WGT4 Mid-Green Lower Terrace Vegetation Species Zone C Y 

A WGT5 Exposed Sediment Exposed Brown Sediment Y 

 Accuracy 100% 

 

Table B(iv) – Summary of the manual, field-based uncertainity analysis (see Figure 5.1. for locations). 
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Summary – 
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Figure B(ii) – Summary of the landcover area assessments, highlighting variance in 

projected areas according to the original ML classification and subsequent uncertainity 

assessments. Both remote and manual uncertainity figures represent the minimal area 

covered by each sub-environment and utilise overall accuracy figures for all marshes. 
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Landcover Type 
ML Original 
Area (km²) 

% of 
Overall 

Area 

Overall ML 

Accuracy 

(%) 

Area - Remote 
Uncertainty 

Assessment (km²) 
% of Overall 

Area 

Overall 

Manual 

Accuracy (%) 

Area - Manual 
Uncertainty 

Assessment (km²) 
% of Overall 

Area 

Brackish Waterbodies 0.010 2.8 86.7 0.008 2.4 85.7 0.008 2.4 
Exposed Sediment 0.103 29.6 89.0 0.091 26.3 100.0 0.103 29.6 

Shadows 0.001 0.4 96.6 0.001 0.4 N/A 0.001 0.4 
Species Zone A 0.026 7.4 86.2 0.022 6.4 87.5 0.023 6.5 
Species Zone B 0.033 9.6 89.4 0.030 8.6 80.0 0.027 7.7 
Species Zone C 0.071 20.6 85.6 0.061 17.6 100.0 0.071 20.6 
Species Zone D 0.027 7.7 90.6 0.024 7.0 100.0 0.027 7.7 
Species Zone E 0.076 21.9 86.7 0.066 19.0 100.0 0.076 21.9 

 

Table B(V) – Summary of the landcover area assessments. Both remote and manual uncertainity figures represent the minimal area covered by each 

sub-environment and utilise overall accuracy figures for all marshes. 
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B2 – Marsh B 

 

 

 

 

 

 

 

 

 

Landcover Type 
ML Original 
Area (km²) 

% of Overall 
Area 

Brackish Waterbodies 0.29 8.8 

Exposed Sediment 1.36 41.4 

Shadows 0.02 0.5 

Species Zone A 0.68 20.6 

Species Zone B 0.01 0.3 

Species Zone C 0.47 14.3 

Species Zone D 0.30 9.0 

Species Zone E 0.17 5.0 

Overall 3.28  

 

Table B(Vi) – Overall area and % composition of each 

sub-environment determined following the original 

landcover classification. 
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Sampling Location 

  

N 

 

B NGT1 

B NGT2 

B NGT3 

B MCGT1 

B MCGT 2 B MCGT3 

B WCGT1 

B WCGT2 

B WCGT3 

B WGT1 

B WGT2 

B WGT3 

 

Figure B(iii) – ML classification exhibiting the spatial distribution of sub-environments and ground truthing sites on Marsh B. 
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Remote Uncertainty Analysis – 

  

Landcover Type No Reference Points Correctly Classified 
Accuracy 
(%) 

Brackish Waterbodies 35 30 85.7 

Exposed Sediment 88 77 87.5 

Shadows 41 40 97.6 

Species Zone A 30 27 90.0 

Species Zone B 11 10 90.9 

Species Zone C 55 51 92.7 

Species Zone D 55 48 87.3 

Species Zone E 50 44 88.0 

Total 365 327 89.6 

  Kappa Coefficient 87.7 

 

Table B(Vii) – Summary of the remote uncertainity analysis. 
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Landcover Type 
Brackish 
Waterbodies 

Exposed 
Sediment Shadows 

Species 
Zone A 

Species 
Zone B 

Species 
Zone C 

Species 
Zone D 

Species 
Zone E 

Column 
Total 

% of 
Overall 

Brackish 
Waterbodies 30 4 0 0 0 0 0 1 35 9.6 

Exposed Sediment 4 77 0 0 0 0 2 5 88 24.1 

Shadows 1 0 40 0 0 0 0 0 41 11.2 

Species Zone A 0 0 0 27 0 3 0 0 30 8.2 

Species Zone B 0 0 0 0 10 0 1 0 11 3.0 

Species Zone C 0 2 0 2 0 51 0 0 55 15.1 

Species Zone D 0 0 1 0 6 0 48 0 55 15.1 

Species Zone E 0 5 0 0 0 0 1 44 50 13.7 

Row Total 35 88 41 29 16 54 52 50 Overall Sum 365 

% of Overall Sum 9.6 24.1 11.2 7.9 4.4 14.8 14.2 13.7 A 89.6 

         k 87.7 

 

Table B(Viii) – Confusion matrix exhibiting the accuracy of the ML classification indicated by the remote uncertainty analysis. The average corresponding 

value (A)  indicates the overall accuracy of the procedure whilst the Kappa coefficent (k) likewise represents the overall accuracy but also takes into 

account the possibility of the agreement occurring by chance. Anomalous values appear in columns which represent differing species to that of the row. 
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Manual Uncertainty Analysis 

  

Ground 
Truthing Ref 

Pre-fieldwork ML Landcover Type 
Post-fieldwork/ Observed 

Landcover Type 
Pre and Post GT 

correspondence with ML 

B WGT1 Very light green vegetation Species Zone B Y 
B WGT2 Brackish Waterbodies Brackish Water Bodies Y 

B WGT3 Very light green vegetation Species Zone D N 

B NGT1 Brackish Waterbodies Brackish Water Bodies Y 

B NGT2 Dark green higher marsh vegetation Species Zone A Y 

B NGT3 Exposed  Sediment Exposed  Sediment Y 

B MCGT1 Light Green Higher Terrace Vegetation Species Zone D Y 
B MCGT2 Mid-green Lower Terrace Vegetation Species Zone C Y 

B MCGT3 Exposed Brown Sediment Exposed Brown Sediment Y 

B WCGT1 Dark green higher marsh vegetation Species Zone A Y 

B WCGT2 Mid-green Lower Terrace Vegetation Species Zone C Y 

B WCGT3 Orange-Brown Vegetation Species Zone E Y 

  Accuracy 91.6 % 

 

Table B(iX) – Summary of the manual, field-based uncertainity analysis. 

 

Ground 
Truthing Ref 

OS Grid Reference Pre-fieldwork ML Landcover Type 
Post-fieldwork/ Observed 

Landcover Type 
Pre and Post GT 

correspondence with ML 

B WGT1 SD 40642 27153 Very light green vegetation Species Zone B Y 
B WGT2 SD 40895 26936 Brackish Waterbodies Brackish Water Bodies Y 

B WGT3 SD 40769 26706 Very light green vegetation Species Zone D N 

B NGT1 SD 39506 27697 Brackish Waterbodies Brackish Water Bodies Y 

B NGT2 SD 39190 27458 Dark green higher marsh vegetation Species Zone A Y 

B NGT3 SD 39470 27296 Exposed  Sediment Exposed  Sediment Y 

B MCGT1 SD 39506 27697 Light Green Higher Terrace Vegetation Species Zone D Y 
B MCGT2 SD 39190 27458 Mid-green Lower Terrace Vegetation Species Zone C Y 

B MCGT3 SD 39470 27296 Exposed Brown Sediment Exposed Brown Sediment Y 

B WCGT1 SD 39506 27697 Dark green higher marsh vegetation Species Zone A Y 

B WCGT2 SD 39190 27458 Mid-green Lower Terrace Vegetation Species Zone C Y 

B WCGT3 SD 39470 27296 Orange-Brown Vegetation Species Zone E Y 

   Accuracy 91.6 % 

Table 5.9 – Summary of the manual, field-based uncertainity analysis 
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Summary – 
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Figure B(iV) – Summary of the landcover area assessments, highlighting variance in projected 

areas according to the original ML classification and subsequent uncertainity assessments on 

Marsh B. Both remote and manual uncertainity figures represent the minimal area covered by 

each sub-environment and utilise overall accuracy figures for all marshes. 
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Landcover Type 
ML Original 
Area (km²) 

% of Overall 
Area 

Overall ML 
Accuracy 

(%) 

Area - ML 
Uncertainty 

Assessment (km²) 
% of Overall 

Area 

Overall 
Manual 

Accuracy (%) 

Area - Manual 
Uncertainty 

Assessment (km²) 
% of Overall 

Area 

Brackish Waterbodies 0.29 8.8 86.7 0.25 7.6 85.7 0.25 7.5 

Exposed Sediment 1.36 41.4 89.0 1.21 36.9 100.0 1.36 41.4 

Shadows 0.02 0.5 96.6 0.02 0.5 N/A 0.02 0.5 

Species Zone A 0.68 20.6 86.2 0.58 17.8 87.5 0.59 18.0 

Species Zone B 0.01 0.3 89.4 0.01 0.3 80.0 0.01 0.2 

Species Zone C 0.47 14.3 85.6 0.40 12.2 100.0 0.47 14.3 

Species Zone D 0.30 9.0 90.6 0.27 8.2 100.0 0.30 9.0 

Species Zone E 0.17 5.0 86.7 0.14 4.4 100.0 0.17 5.0 

 

 

Table B(X) – Summary of the landcover area assessments. Both remote and manual uncertainity figures represent the minimal area covered by each 

sub-environment and utilise overall accuracy figures for all marshes. 
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B3 – Marsh C

Landcover Type 
ML Original 
Area (km²) 

% of Overall 
Area 

Brackish Waterbodies 1.43 8.5 

Exposed Sediment 6.96 41.4 

Shadows 0.10 0.6 

Species Zone A 1.35 8.0 

Species Zone B 3.28 19.5 

Species Zone C 2.93 17.5 

Species Zone D 0.56 3.3 

Species Zone E 0.17 1.0 

Species Zone F 0.02 0.1 

Overall 16.79  

 

Table B(Xi) – Overall area and % composition of each sub-environment 

determined following the original landcover classification. 
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C WGT1 
C WGT2 

C WGT3 
C WGT4 

C CGT4 
C CGT3 

C CGT2 

C CGT1 

C EGT1 

C EGT4 

C EGT 2 

C EGT3 

Figure B(V) – ML classification exhibiting the spatial distribution of sub-environments and ground truthing sites on Marsh C. 

C WGT5 
C WGT6 

C WGT7 

C CGT5 
C CGT6 

C CGT7 
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Remote Uncertainty Analysis – 

 

  Table B(Xii). Summary of the remote uncertainity analysis on Marsh C. 

Landcover Type No Reference Points Correctly Classified Accuracy (%) 

Brackish Waterbodies 80 72 90.0 

Exposed Sediment 322 292 90.7 

Shadows 56 54 96.4 

Species Zone A 112 98 87.5 

Species Zone B 164 148 90.2 

Species Zone C 126 104 82.5 

Species Zone D 142 134 94.4 

Species Zone E 60 52 86.7 

Species Zone F 30 26 86.7 

Sum 1092 980 89.7 

  Kappa Coefficient 87.8 
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Landcover Type 
Brackish 
Waterbodies 

Exposed 
Sediment Shadows 

Species 
Zone A 

Species 
Zone B 

Species 
Zone C 

Species 
Zone D 

Species 
Zone E 

Species 
Zone F Column Total 

% of 
Overall 

Brackish 
Waterbodies 72 4 0 0 0 0 0 1 3 80 7.3 

Exposed Sediment 8 292 0 0 0 0 2 20 0 322 29.5 

Shadows 2 0 54 0 0 0 0 0 0 56 5.1 

Species Zone A 1 0 0 98 0 13 0 0 0 112 10.3 

Species Zone B 0 0 0 0 148 7 9 0 0 164 15.0 

Species Zone C 0 2 0 20 0 104 0 0 0 126 11.5 

Species Zone D 0 0 3 0 5 0 134 0 0 142 13.0 

Species Zone E 2 5 0 0 0 0 1 52 0 60 5.5 

Species Zone F 4 0 0 0 0 0 0 0 26 30 2.7 

Row Total 89 303 57 118 153 124 146 73 29 Overall Sum 1092 

% of Overall Sum 8.2 27.7 5.2 10.8 14.0 11.4 13.4 6.7 2.7 A 89.8 

          k 87.8 

 

Table B(XiV). Confusion matrix exhibiting the accuracy of the ML classification indicated by the remote uncertainty analysis. The average corresponding 

value (A)  indicates the overall accuracy of the procedure whilst the Kappa coefficent (k) likewise represents the overall accuracy but also takes into account 

the possibility of the agreement occurring by chance. Anomalous values appear in columns which represent differing species to that of the row. 
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Manual Uncertainty Analysis 

 

 

  Ground 
Truthing 

Ref 
Pre-fieldwork ML Landcover Type 

Post-fieldwork/ 
Observed 

Landcover Type 

Pre and Post GT 
correspondence 

with ML 

C WGT1 Brackish Waterbodies Species Zone F N 

C WGT2 Dark green higher marsh vegetation Species Zone A Y 

C WGT3 Orange-Brown Vegetation Species Zone E Y 

C WGT4 Very light green vegetation Species Zone B Y 

C WGT5 
Mid-green Lower Terrace 

Vegetation 
Species C Y 

C WGT6 Dark green higher marsh vegetation Species Zone A Y 

C WGT7 Orange-Brown Vegetation Species Zone E Y 

C CGT1 Very light green vegetation Species Zone B Y 

C CGT2 Brackish Waterbodies 
Brackish Water 

Bodies 
Y 

C CGT3 
Light Green Higher Terrace 

Vegetation 
Species Zone D Y 

C CGT4 
Mid-green Lower Terrace 

Vegetation 
Species Zone C Y 

C CGT5 Exposed Sediment Exposed Sediment Y 

C CGT6 
Light Green Higher Terrace 

Vegetation 
Species Zone D Y 

C CGT7 Exposed  Sediment 
Exposed  

Sediment 
Y 

C EGT1 
Light Green Higher Terrace 

Vegetation 
Species Zone D Y 

C EGT2 Exposed Sediment Exposed Sediment Y 

C EGT3 
Mid-green Lower Terrace 

Vegetation 
Species Zone C Y 

C EGT4 Exposed  Sediment 
Exposed  

Sediment 
Y 

  Accuracy 94.7% 

 

Table B(XV). Summary of the manual, field-based uncertainity analysis on Marsh C. 
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Summary – 
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Figure B(Vi) – Summary of the landcover area assessments on Marsh C, 

exhiting variance in projected areas according to the original ML classification 

and subsequent uncertainity assessments. Both remote and manual 

uncertainity figures represent the minimal area covered by each sub-

environment and utilise overall accuracy figures for all marshes. 
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Landcover Type 
ML Original 
Area (km²) 

% of Overall 
Area 

Overall ML 
Accuracy (%) 

Area - ML 
Uncertainty 

Assessment (km²) 
% of Overall 

Area 

Overall Manual 
Accuracy (%) 

Area - Manual 
Uncertainty 

Assessment (km²) 
% of Overall 

Area 

Brackish Waterbodies 1.43 8.5 86.7 1.24 7.4 85.7 1.23 7.3 
Exposed Sediment 6.96 41.4 89.0 6.19 36.9 100.0 6.96 41.4 

Shadows 0.10 0.6 96.6 0.09 0.6 N/A 0.10 0.6 
Species Zone A 1.35 8.0 86.2 1.16 6.9 87.5 1.18 7.0 
Species Zone B 3.28 19.5 89.4 2.93 17.4 80.0 2.62 15.6 
Species Zone C 2.93 17.5 85.6 2.51 14.9 100.0 2.93 17.5 
Species Zone D 0.56 3.3 90.6 0.50 3.0 100.0 0.56 3.3 
Species Zone E 0.17 1.0 86.7 0.15 0.9 100.0 0.17 1.0 
Species Zone F 0.02 0.1 86.7 0.02 0.1 N/A 0.02 0.1 

 

Table B(XVi). Summary of the landcover area assessments. Both remote and manual uncertainity figures represent the minimal area covered by 

each sub-environment and utilise overall accuracy figures for all marshes. 
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B4 – Marsh D  

 

  

Landcover Type ML Original Area (km²) % of Overall Area 

Brackish Waterbodies 0.04 2.7 

Exposed Sediment 0.95 59.9 

Shadows 0.00 0.0 

Species Zone A 0.06 3.5 

Species Zone B 0.10 6.5 

Species Zone C 0.34 21.6 

Species Zone D 0.04 2.5 

Species Zone E 0.05 3.3 

Overall 1.58  

 

Table B(XVii). Overall area and % composition of each sub-environment determined 

following the original landcover classification. 
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D SGT3 
D SGT2 

D SGT1 
D NGT4 D NGT3 

D NGT2 

D NGT1 

Figure B(Vii) – ML classification exhibiting the spatial distribution of sub-environments and ground truthing sites on Marsh D 
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Remote Uncertainty Analysis – 

  

Landcover Type 
No Reference 
Points 

Correctly 
Classified 

Accuracy 
(%) 

Brackish Waterbodies 18 15 83.3 

Exposed Sediment 112 101 90.2 

Shadows 12 11 91.7 

Species Zone A 60 56 93.3 

Species Zone B 35 31 88.6 

Species Zone C 50 44 88.0 

Species Zone D 14 12 85.7 

Species Zone E 15 13 86.7 

Sum 316 283 89.9 

  Kappa Coefficient 87.4 

 

Table B(XViii). Summary of the remote uncertainity analysis for Marsh D. 
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Landcover Type 
Brackish 
Waterbodies Exposed Sediment Shadows 

Species 
Zone A 

Species 
Zone B 

Species 
Zone C 

Species 
Zone D 

Species 
Zone E 

Column 
Total 

% of 
Overall 

Brackish Waterbodies 15 3 0 0 0 0 0 0 18 12.7 

Exposed Sediment 2 101 0 0 0 0 1 8 112 31.5 

Shadows 1 0 11 0 0 0 0 0 12 3.0 

Species Zone A 0 0 0 56 0 4 0 0 60 17.3 

Species Zone B 0 0 0 1 31 0 3 0 35 10.2 

Species Zone C 0 1 1 4 0 44 0 0 50 12.7 

Species Zone D 0 0 0 0 2 0 12 0 14 8.6 

Species Zone E 0 2 0 0 0 0 0 13 15 4.1 

Row Total 18 107 12 61 33 48 16 21 
Overall 
Sum 197 

% of Overall Sum 11.7 28.9 3.0 15.2 11.2 13.7 8.1 8.1 A 89.9 

         k 87.4 

 

Table B(XiiX). Confusion matrix exhibiting the accuracy of the ML classification indicated by the remote uncertainty analysis on Marsh D. The average 

corresponding value (A)  indicates the overall accuracy of the procedure whilst the Kappa coefficent (k) likewise represents the overall accuracy but also takes 

into account the possibility of the agreement occurring by chance. Anomalous values appear in columns which represent differing species to that of the row. 
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Manual Uncertainty Analysis 

 

  

Ground 
Truthing 

Ref 

Pre-fieldwork ML 
Landcover Type 

Post-fieldwork/ 
Observed Landcover 

Type 

Pre and Post GT 
correspondence 

with ML 

D NGT1 
Dark Green Higher Marsh 

Vegetation 
Species Zone A Y 

D NGT2 
Very light green 

vegetation 
Species Zone A N 

D NGT3 
Mid-green Lower Terrace 

Vegetation 
Species Zone C Y 

D NGT4 Exposed Brown Sediment 
Exposed Brown 

Sediment 
Y 

D SGT1 
Very light green 

Vegetation 
Species Zone B Y 

D SGT2 
Mid-green Lower Terrace 

Vegetation 
Species Zone C Y 

D SGT3 Exposed Sediment Exposed Sediment Y 

 Accuracy 85.7% 

 

Table B(XiX). Summary of the manual, field-based uncertainity analysis 

on Marsh D. 
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Summary  
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Figure B(Viii) – Summary of the landcover area assessments, highlighting variance in 

projected areas according to the original ML classification and subsequent uncertainity 

assessments. Both remote and manual uncertainity figures represent the minimal area 

covered by each sub-environment and utilise overall accuracy figures for all marshes. 
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Landcover Type Area (km²) 
% of Overall 

Area 
Overall ML 
Accuracy (%) 

Area - ML 
Accuracy (km²) 

% of Overall 
Area 

Overall Manual 
Accuracy (%) 

Area Manual 
Accuracy (km2) 

% of Overall 
Area 

Brackish 
Waterbodies 0.04 2.7 

86.7 
0.04 2.3 

85.7 
0.04 2.3 

Exposed Sediment 0.95 59.9 89.0 0.84 53.3 100.0 0.95 59.9 
Shadows 0.00 0.0 96.6 0.00 0.0 N/A 0.00 0.0 
Species Zone A 0.06 3.5 86.2 0.05 3.0 87.5 0.05 3.1 
Species Zone B 0.10 6.5 89.4 0.09 5.8 80.0 0.08 5.2 
Species Zone C 0.34 21.6 85.6 0.29 18.5 100.0 0.34 21.6 
Species Zone D 0.04 2.5 90.6 0.04 2.3 100.0 0.04 2.5 
Species Zone E 0.05 3.3 86.7 0.05 2.9 100.0 0.05 3.3 

 

Table B(XX). Summary of the landcover area assessments on Marsh D. Both remote and manual uncertainity figures represent the minimal 

area covered by each sub-environment and utilise overall accuracy figures for all marshes. 
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B5 – Influence on Spatial Distribution 

The following section highlights the influence of elevation, gradient and watercourse proximity on 

the areal coverage of each sub-environment. The results mirror the smoothed kernel density curves 

shown in Figures 5.5, 5.12 and 5.19 although the areal coverage of each sub-environment at uniform 

intervals for each influence is quantified in km2. 

B5(i) – Elevation and Sub-environment Areal Coverage 
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Figure B(X) – Area of marsh at 0.2m elevation intervals over all predominantly vegetated 

sub-enviornments on all marshes (i.e all environments exluding Exposed Sediment and 

Brackish Waterbodies). 

Figure B(iX) – Area of marsh at 0.2m elevation intervals over all sub-environments and 

marshes. The value on the x axis represents the lower interval of each bin e.g. 4.2 

represents the area of land at 4 m - 4.199 m above ordnance datum. 
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Figure 5.14(Xi) – Area of marsh at 0.2m elevation intervals on the sub-environments classified as Species Zone A (a), Species Zone B 

(b), Species Zone C (c) and Species Zone D (d).  

a  b  

d  c  
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Figure 5.14(Xi) – Area of marsh at 0.2m elevation intervals on the sub-environments classified as Species Zone E (e), Species Zone F (f), 

Brackish Waterbodies (g) and Exposed Sediment (h).  

e  f  

g h  



 

267 
 

B5(ii) – Gradient and Sub-environment Areal Coverage 
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Figure B(Xii) – Area of marsh at 2° gradient intervals over all sub-environments and marshes. The 

label on the x-axis indicates the lower limit of each 2° bin. 

Figure B(Xiii) – Area of marsh at 2° gradient intervals over all predominantly vegetated 

sub-enviornments on all marshes (i.e all environments exluding Exposed Sediment and 

Brackish Waterbodies). 
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Figure B(XiV) – Area of marsh at 2° gradient intervals on the sub-environments classified as Species Zone A (a), Species Zone B (b), 

Species Zone C (c) and Species Zone D (d).  
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Figure B(XiV) – Area of marsh at 2° gradient intervals on the sub-environments classified as Species Zone E (e), Species Zone F (f), 

Brackish Waterbodies (g) and Exposed Sediment (h).  
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B5(iii) – Watercourse Proximity and Sub-environment Areal Coverage 
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Figure B(XV) – Combined area of all sub-environments at 10m distance intervals from all 

watercourses.  
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Figure B(XVi) – Combined area of all predominalty vegetated sub-environments at 10m 

distance intervals from all watercourses.  



 

271 
 

 

  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

A
re

a 
(k

m
²)

Distance (m)

Species Zone A

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

A
re

a 
(k

m
²)

Distance (m)

Species Zone B

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

A
re

a 
(k

m
²)

Distance (m)

Species Zone D

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

A
re

a 
(k

m
²)

Distance (m)

Species Zone C

Figure B (XVii) – Area of land at 10m distance intervals from all watercourses for each sub-environment zone over all marshes. 
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Figure B(XVii) – Area of land at 10m distance intervals from all watercourses for each sub-environment zone over all marshes. 
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Appendix C - Marsh Specific Geomorphological Findings 

The following section presents the findings concerning the geomorphological and carbon assessment 

of the four marshes of the Ribble estuary which contribute to the overall analysis. The above-ground 

and sub-surface carbon assessments for each marsh are presented separately whilst the initial 

observations from the Troels-Smith (1955) assessments at each site are also presented. As with the 

overall analysis, OCD, BD and depth variability at each site is compared and there is a specific focus 

on the sedimentological nature and carbon content of the active layer and section. 

C1 - Marsh A  

C1(i) – Field Findings 

The samples taken on Marsh A were highly spatially clustered when compared to the sampling 

distribution on all other marshes with a maximal distance range between sample sites of 952 m. As 

with all marshes the sampling design was structured so that it incorporated all the predominant sub-

environment zones on the marsh and the number of samples taken from each zone was 

approximately proportional to the overall area. 

Above-ground Biomass 

 

 

 

 

 

 

Site 
Sub-environment 
Type 

OS Grid 
Reference 

Elevation 
(mOD) 

C Mass 
(kg/m2) 

Uncertainty 
kg (±) 

Uncertainty 
(%) 

W Site A Species Zone A SD 36235 26913 5.85 1.257 0.001 0.08 

W Site B Species Zone B SD 36239 26869 5.6 0.780 0.0005 0.06 

W Site C Exposed Sediment SD 36242 26816 3.19 0 0 0 

C Site A Species Zone A SD 36667 26910 5.21 0.999 0.001 0.10 

C Site B Species Zone D SD 36657 26854 5.37 0.709 0.0005 0.07 

C Site C Species Zone E SD 36651 26793 3.76 0.647 0.0005 0.08 

E Site A Species Zone D SD 36963 26901 5.56 1.021 0.001 0.10 

E Site B Species Zone E SD 37032 26786 3.58 1.316 0.001 0.08 

 

Table C(i). Location of sampling sites and above-ground biomass carbon storage quantification 

for Marsh A. 
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Sampling Locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A W Site A 

A W Site B 
A W Site C A C Site C 

A C Site B 
A C Site A A E Site A 

A E Site B 

Figure C(i). Sampling locations and sub-environment spatial distribution on Marsh A.  
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Figure C(ii). Levelled stratigraphy and horizon consistency for all sample sites on Marsh A.  
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Lithology Key after Troels-Smith (1955) 

As = Clay (<0.002mm), Ag = Silt (0.002 – 0.06mm), Ga = Coarse sand (0.6 – 2mm), Ca = Calcareous shell, Sh = Humified 
organics beyond identification, Th = Roots, stems and rhizomes of herbaceous plants, Dh = Fragments of stems and 
leaves of herbaceous plants >2mm, Lf = Mineral and/or organic iron oxide 
 

Approximate Composition –  

4 = 100%     3 = 75%     2 = 50%     1 = 25%     + = 12.5% (Trace) 
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C1(ii) - Sub-Surface Carbon and Bulk Density Variability  

 

  

Sub-environment 
classification Site Name 

Horizon 
Number 

Depth 
(m) OCD (kg m-3) BD (kg m-3) 

Species Zone A W Site A 1 0.06 2.5 1827 

    2 0.22 1.9 2098 

    3 0.59 2.0 1866 

    4 0.99 1.6 1901 

Species Zone D W Site B 1 0.11 2.4 1978 

    2 0.29 2.0 2072 

Exposed Sediment   1 0.44 2.2 1777 

  W Site C 2 0.59 1.4 1934 

    3 0.64 1.3 2103 

Species Zone A   1 0.08 4.3 1460 

  C Site A 2 0.48 2.7 1729 

    3 1.57 2.1 1952 

    4 1.97 1.1 2145 

Species Zone D   1 0.14 3.8 1403 

  C Site B 2 0.3 2.9 1616 

    3 0.62 2.1 1892 

    4 1.98 1.2 1940 

Species Zone E   1 0.22 4.5 1695 

  C Site C 2 1.13 2.1 1823 

    3 1.77 0.8 2003 

Species Zone D   1 0.2 4.2 1510 

  E Site A 2 0.6 2.9 1729 

    3 1.25 2.1 1989 

    4 1.63 0.8 2203 

Species Zone E   1 0.11 4.2 1697 

  E Site B 2 0.78 2.7 1843 

    3 1.98 1.1 2023 

 

Table C(ii). Variation in horizon depth, organic carbon density and bulk density on Marsh A. 

Horizon 1 in each sample site (highlighted in green) denotes the active layer. 
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Figure C(iii). Correspondance between the depth, organic carbon density and bulk density 

in the differing horizons of Marsh A.  
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Figure C(iV). Levelled stratigraphy for all sample sites on Marsh A exhibiting organic carbon denisty of each horizon from 

every sampled core. Resulted were determined derived after a loss on ignition test conducted on all samples following a 

standardised procedure outlined in the TESSA guidelines. 
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C1(iii) – Active Layer Characteristics 

 

  

    

  
Organic Carbon Density (kg m-3) Bulk Density (kg m-3) 

Species 
Zone 

Site 
Reference 

Sub-Horizon 
Sample 
Number 

Sample 
Depth 

Sample 
OCD  Average  

Standard 
Deviation  

Sample 
BD  Average  

Standard 
Deviation 

SA W Site A 1 0.01 2.50 2.48 0.02 1819 1827 10 
    1b 0.02 2.50    1817    
    1c 0.03 2.48    1828    
    1d 0.04 2.47    1840    
    1e 0.05 2.45     1832     

SD W Site B 1 0.02 2.43 2.41 0.02 1920 1978 38 
    1b 0.04 2.41    1965    
    1c 0.06 2.42    1987    
    1d 0.08 2.39    1997    
    1e 0.1 2.39    2021     

EX W Site C  1 0.08 2.27 2.24 0.03 1720 1777 80 
    1b 0.16 2.24    1699    
    1c 0.24 2.24    1765    
    1d 0.3 2.22    1802    
    1e 0.38 2.20     1901     

  C Site A 1 0.01 4.47 4.27 0.18 1302 1460 108 
SA   1b 0.03 4.42    1444    
    1c 0.05 4.21    1498    
    1d 0.06 4.24    1455    
    1e 0.08 4.01    1602    

SC C Site B 1 0.02 4.04 3.79 0.15 1321 1403 76 
    1b 0.05 3.70    1376    
    1c 0.08 3.81    1354    
    1d 0.11 3.72    1462    
    1e 0.14 3.67     1501     

SD W Site B 1 0.02 2.43 2.41 0.02 1920 1978 38 
    1b 0.04 2.41    1965    
    1c 0.06 2.42    1987    
    1d 0.08 2.39    1997    
    1e 0.1 2.39    2021    

SE C Site C  1 0.02 4.74 4.45 0.19 1592 1695 79 
    1b 0.06 4.35    1640    
    1c 0.1 4.24    1711    
    1d 0.14 4.50    1743    
    1e 0.18 4.42     1789     

SD E Site A 1 0.04 4.23 4.16 0.20 1429 1510 63 
    1b 0.08 4.30    1481    
    1c 0.12 3.94    1504    
    1d 0.16 3.97    1537    
    1e 0.2 4.38    1598    

SE E Site B 1 0.02 4.54 4.25 0.25 1662 1697 51 
    1b 0.04 4.30    1657    
    1c 0.06 4.34    1681    
    1d 0.08 4.21    1701    
    1e 0.1 3.85     1782     

 

Table C(iii). Variation in horizon depth, organic carbon density and bulk density in the active 

layer (i.e. horizon 1) on Marsh A.  
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Figure C(V). Correspondance between the depth, organic carbon density and bulk density 

in the differing active layer horizons of Marsh A.  
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C2 - Marsh B 

C2(i) - Field Findings 

The sampling design on Marsh B was structured in order to enable the extraction of cores from the 

varying sub-environments that characterised the environment which resembled a saltmarsh mosaic 

discussed in Section 3.2.2. However, it should be noted that accessibility issues and permission 

restrictions limited sampling in the south-west of the marsh hence the study best represents the 

sub-environment composition of the marsh given the circumstances. 

Above-ground Biomass 

 

 

 

 

  

Site 
Sub-environment 

Type 
OS Grid 

Reference 
Elevation 

(mOD) 
C Mass 
(kg/m2) 

Uncertainty 
kg (±) 

Uncertainty 
(%) 

W Site A Species Zone B SD 40642 27153 5.83 1.326 0.001 0.08 

W Site B 
Brackish 

Waterbodies 
SD 40895 26936 5.17 0.355 0.0005 0.14 

W Site C Species Zone C SD 40769 26706 5.62 1.024 0.001 0.10 

N Site A 
Brackish 

Waterbodies 
SD 39506 27697 5.44 0.312 0.0005 0.16 

N Site B Species Zone B SD 39190 27458 5.99 1.223 0.001 0.08 

N Site C 
Exposed 

Sediment 
SD 39470 27296 5.57 0.190 0.0005 0.26 

MC Site A Species Zone D SD 39471 27222 5.7 0.813 0.0005 0.06 

MC Site B Species Zone C SD 39228 27058 5.18 1.319 0.001 0.08 

MC Site C 
Exposed 

Sediment 
SD 39125 27034 4.86 0.017 0.0005 2.97 

WC Site A Species Zone A SD 40374 27312 5.52 0.903 0.0005 0.06 

WC Site B Species Zone C SD 40363 27091 4.9 0.897 0.0005 0.06 

WC Site C Species Zone E SD 40343 26880 5.58 0.789 0.0005 0.06 

 

Table C(iV).  Location of sampling sites and above-ground biomass carbon storage quantification 

for Marsh B. 
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Figure C(Vi). Location of coring sites and post-ground truthing ML sub-enviornment map of Marsh B 
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Figure C(Vii). Stratigraphy and composition of cores taken on the western and northern sites of Marsh B. 

Lithology Key after Troels-Smith (1955) 

As = Clay (<0.002mm), Ag = Silt (0.002 – 0.06mm), Ga = Coarse sand (0.6 – 2mm), Ca = Calcareous shell, Sh = Humified organics beyond 
identification, Th = Roots, stems and rhizomes of herbaceous plants, Dh = Fragments of stems and leaves of herbaceous plants >2mm, 
Lf = Mineral and/or organic iron oxide 
 

Approximate Composition –  

4 = 100%     3 = 75%     2 = 50%     1 = 25%     + = 12.5% (Trace) 
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Figure C(Vii). Stratigraphy and composition of cores taken on the main central and west central sites of Marsh B. 

Lithology Key after Troels-Smith (1955) 

As = Clay (<0.002mm), Ag = Silt (0.002 – 0.06mm), Ga = Coarse sand (0.6 – 2mm), Ca = Calcareous shell, Sh = Humified organics 
beyond identification, Th = Roots, stems and rhizomes of herbaceous plants, Dh = Fragments of stems and leaves of herbaceous plants 
>2mm, Lf = Mineral and/or organic iron oxide 
 

Approximate Composition –  

4 = 100%     3 = 75%     2 = 50%     1 = 25%     + = 12.5% (Trace) 
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C2(ii) - Sub-surface Carbon Content and Bulk Density Variability 

  

Sub-environment 
classification 

Site 
Name 

Horizon 
Number 

Depth 
(m) 

OCD (kg 
m-3) BD (kg m-3) 

Species Zone D 

W Site A 

1 0.11 4.19 1468 

  2 0.29 2.91 1797 

  3 0.5 2.41 1930 

  4 0.77 2.14 2123 

Brackish Waterbodies 
W Site B 

1 0.14 3.75 1711 

  2 0.53 2.64 1849 

Species Zone C 

W Site C  

1 0.17 4.24 1659 

  2 0.64 2.57 1894 

  3 0.76 1.41 2045 

Brackish Waterbodies 
N Site A 

1 0.15 4.06 1739 

  2 0.48 2.60 1906 

Species Zone A 

N Site B 

1 0.14 4.05 1528 

  2 0.38 2.63 1723 

  3 0.75 1.86 1980 

Exposed Sediment 

N Site C 

1 0.27 3.57 1832 

  2 0.69 2.53 1990 

  3 0.83 1.70 2098 

Species Zone D 

MC Site A 

1 0.16 3.65 1626 

  2 0.83 2.57 1955 

  3 1.31 2.00 2107 

Species Zone C 

MC Site B 

1 0.09 4.33 1543 

  2 0.71 2.71 1843 

  3 1.07 1.35 1970 

  4 1.19 1.28 2089 

Exposed Sediment 

MC Site C 

1 0.07 3.70 1641 

  2 0.54 2.50 1795 

  3 0.75 1.63 2055 

Species Zone A 

WC Site A 

1 0.18 4.16 1496 

  2 0.6 2.66 1760 

  3 0.97 2.22 1887 

  4 1.06 1.37 2132 

Species Zone C 

WC Site B 

1 0.15 3.77 1582 

  2 0.61 2.97 1962 

  3 0.96 2.07 2076 

  4 1.05 1.29 2190 

Species Zone E 

WC Site C 

1 0.09 4.07 1574 

  2 0.93 2.68 1820 

  3 1.01 1.24 2093 

 

Table C(V) Variation in horizon depth, organic carbon density and bulk density on Marsh B.  
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Figure C(Viii). Correspondance between the depth, organic carbon density and bulk 

density in the differing horizons of Marsh B.  
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Figure C(iX). Levelled stratigraphy for all sample sites on Marsh B exhibiting organic carbon denisty in each horizon of 

every sampled core. Resulted were determined derived after a loss on ignition test conducted on all samples following a 

standardised procedure outlined in the TESSA guidelines. Please see tables 6.2.2.2(a,b,c&d)  for estimated organic carbon 

contents of all horizons. 
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C2(iii) - Active Layer Characteristics 

  

    Organic Carbon Density (kg m-3) Bulk Density (kg m-3)   

Species 
Zone 

Site 
Reference 

Sub-horizon 
Sample 
Number 

Sample 
Depth (m) 

Sample 
value Average 

Standard 
Deviation 

Sample 
Value Average 

Standard 
Deviation 

SA W Site A 1 0.02 4.64 4.19 0.41 1367 1468 87 
    1b 0.04 4.01    1423    
    1c 0.06 4.42    1440    
    1d 0.08 4.29    1521    
    1e 0.1 3.58    1589    

BW W Site B 1 0.03 3.63 3.75 0.12 1602 1711 77 
    1b 0.05 3.74    1682    
    1c 0.07 3.93    1720    
    1d 0.1 3.78    1740    
    1e 0.13 3.68     1810     

SC W Site C  1 0.03 4.36 4.24 0.31 1542 1659 93 
    1b 0.07 4.11    1602    
    1c 0.1 4.70    1671    
    1d 0.13 4.17    1788    
    1e 0.17 3.88    1691    

SB WC Site A 1 0.03 4.33 4.16 0.24 1378 1496 136 
    1b 0.07 4.41    1400    
    1c 0.11 4.26    1589    
    1d 0.13 3.93    1423    
    1e 0.17 3.88     1689     

SC WC Site B 1 0.03 4.00 3.77 0.27 1432 1582 111 
    1b 0.06 3.96    1530    
    1c 0.08 3.93    1576    
    1d 0.12 3.60    1650    
    1e 0.15 3.38    1721    

SE WC Site C 1 0.02 4.11 4.07 0.08 1502 1574 64 
    1b 0.04 3.96    1578    
    1c 0.06 4.15    1530    
    1d 0.07 4.04    1589    
    1e 0.09 4.09     1670     

BW N Site A 1 0.03 4.26 4.06 0.21 1621 1739 71 
    1b 0.07 4.30    1730    
    1c 0.1 3.90    1782    
    1d 0.13 4.05    1760    
    1e 0.15 3.82    1802    

SA N Site B 1 0.03 4.34 4.05 0.28 1401 1528 83 
    1b 0.06 4.24    1497    
    1c 0.08 3.82    1543    
    1d 0.11 4.14    1601    
    1e 0.14 3.69     1598     

EX N Site C 1 0.06 3.74 3.57 0.20 1692 1832 94 
    1b 0.11 3.56    1782    
    1c 0.16 3.77    1873    
    1d 0.2 3.45    1890    
    1e 0.25 3.31    1923    

 

Table C(Vi) Variation in horizon depth, organic carbon density and bulk density in the active 

layer (i.e. horizon 1) on Marsh B.  
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    Organic Carbon Density (kg m-3) Bulk Density (kg m-3)   

Species 
Zone 

Site 
Reference 

Sub-horizon 
Sample 
Number 

Sample 
Depth 
(m) 

Sample 
value Average 

Standard 
Deviation 

Sample 
Value Average 

Standard 
Deviation 

SD MC Site A 1 0.03 4.10 3.65 0.39 1501 1626 85 

    1b 0.07 3.98    1593    

    1c 0.1 3.60    1632    

    1d 0.13 3.40    1680    

    1e 0.16 3.16     1723     

SC MC Site B 1 0.01 4.58 4.33 0.18 1380 1543 173 

    1b 0.03 4.40    1421    

    1c 0.05 4.30    1465    

    1d 0.07 4.30    1667    

    1e 0.09 4.08    1780    

EX MC Site C 1 0.01 4.02 3.70 0.24 1588 1641 40 

    1b 0.03 3.79    1624    

    1c 0.05 3.74    1699    

    1d 0.06 3.58    1643    

    1e 0.07 3.37     1650     

SB WC Site A 1 0.03 4.10 3.65 0.39 1378 1496 136 

    1b 0.07 3.98    1400    

    1c 0.11 3.60    1589    

    1d 0.13 3.40    1423    

    1e 0.17 3.16     1689     

SC WC Site B 1 0.03 4.58 4.33 0.18 1432 1582 111 

    1b 0.06 4.40    1530    

    1c 0.08 4.30    1576    

    1d 0.12 4.30    1650    

    1e 0.15 4.08    1721    

SE WC Site C 1 0.02 4.02 3.70 0.24 1502 1574 64 

    1b 0.04 3.79    1578    

    1c 0.06 3.74    1530    

    1d 0.07 3.58    1589    

    1e 0.09 3.37     1670     
 

Table C(Vi). Variation in horizon depth, organic carbon density and bulk density in the active 

layer (i.e. horizon 1) on Marsh B.  
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Figure C(X). Correspondance between the depth, organic carbon density and bulk density 

in the differing active layer horizons of Marsh B.  
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C3 - Marsh C 

C3(i) - Field Findings 

The sampling design for Marsh C was structured in order to ensure as many sub-environments as 

possible were sampled despite logistical and safety restrictions produced as a result of its 

comparatively large area and the location of major creeks. As can be observed in Figure C (Xiii) the 

sampling was conducted over the area of Marsh C, enabling an assessment of how carbon storage 

varied across the accessible marsh. 

Above-ground Biomass 

 

 

 

  

Site Sub-environment Type 
OS Grid 
Reference 

Elevation 
(mOD) 

C Mass 
(kg/m2) 

Uncertainty 
kg (±) 

Uncertainty 
(%) 

W Site A Species Zone F SD 35612 20848 4.93 0.595 0.0005 0.08 

W Site B Species Zone A SD 35676 20809 5.52 0.459 0.0005 0.11 

W Site C Species Zone E SD 35587 20954 4.29 0.349 0.0005 0.14 

W Site D Species Zone B SD 35334 21189 4.58 1.412 0.001 0.07 

C Site A Species Zone A SD 38401 22373 4.72 1.299 0.001 0.08 

C Site B Brackish Waterbodies SD 38383 22621 4.39 0.320 0.0005 0.16 

C Site C Species Zone D SD 37925 22965 4.98 0.734 0.0005 0.07 

C Site D Species Zone C SD 38014 23066 4.53 0.179 0.0005 0.28 

E Site A Species Zone B SD 40158 23860 5.21 0.872 0.0005 0.06 

E Site B Exposed Sediment SD 40164 24235 4.98 0 0 0 

E Site C Species Zone D SD 39699 24764 5.51 0.692 0.0005 0.07 

E Site D Exposed Sediment SD 39389 25319 4.82 0.240 0.0005 0.21 

 

Table C(Vii). Location of sampling sites and above-ground biomass carbon storage quantification 

for Marsh C. 
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Figure C(Xi). Marsh C sampling locations and landcover distribution. 
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Sub-surface 
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Figure C(Xii). Levelled stratigraphy for all sample sites on Marsh C. 
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As2, Ag1, Th1, 
Dh+, Sh+ 

As3, Ag1, 
Th+, Sh+ 

As2+, Ag1, Th1, 
Dh+, Sh+, Lf+ 

As3, Ag1, Th+, 
Sh+, Lf+ 

As2+, Ag1, Th1, Dh+, Sh+, Lf+ 

 Ag3, As1+, Th+, Dh+, Sh+, Lf+ 

Ag4, As+, 
Ga+  

Ag2+, As1+, 
Th1, Dh+, Sh+ 

Ag3+, As1, Th+, Dh+, Sh+ 
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Lithology Key after Troels-Smith (1955) 

As = Clay (<0.002mm), Ag = Silt (0.002 – 0.06mm), Ga = Coarse sand (0.6 – 2mm), Ca = Calcareous shell, Sh = Humified organics beyond 
identification, Th = Roots, stems and rhizomes of herbaceous plants, Dh = Fragments of stems and leaves of herbaceous plants >2mm, 
Lf = Mineral and/or organic iron oxide 
 

Approximate Composition –  

4 = 100%     3 = 75%     2 = 50%     1 = 25%     + = 12.5% (Trace) 
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C3(ii) - Sub-surface Carbon Content and Bulk Density Variability 

  

Table C(Viii). Variation in horizon depth, organic carbon density and bulk density on Marsh C.  

Sub-environment 
classification 

Site 
Name 

Horizon 
Number 

Depth 
(m) 

OCD (kg 
m-3) 

BD (kg 
m-3) 

Species Zone F 
W Site 
A 1 0.15 2.89 1502 

    2 0.27 1.98 1709 

Species Zone A 
W Site 
B 1 0.19 3.88 1498 

    2 0.44 2.54 1690 

    3 0.68 2.10 1733 

Species Zone E 
W Site 
C 1 0.23 4.07 1492 

    2 0.39 2.81 1696 

    3 0.79 1.89 1773 

Species Zone B 
W Site 
D 1 0.14 3.17 1502 

    2 0.49 2.23 1692 

    3 0.62 1.41 1912 

Species Zone B C Site A 1 0.12 4.06 1494 

    2 0.3 3.33 1607 

Brackish 
Waterbodies C Site B 1 0.16 3.75 1470 

    2 0.52 2.84 1647 

Species Zone D C Site C 1 0.14 3.60 1506 

    2 0.5 2.08 1612 

Species Zone C C Site D 1 0.14 4.33 1523 

    2 1 1.93 1743 

    3 1.86 2.07 1848 

    4 1.95 1.34 2093 

Species Zone D E Site A 1 0.12 3.98 1482 

    2 0.28 3.48 1524 

    3 0.49 2.40 1600 

    4 0.62 1.65 1812 

Exposed Sediment E Site B 1 0.41 3.12 1533 

    2 0.56 2.52 1589 

    3 0.68 2.15 1721 

    4 0.8 1.32 1957 

Species Zone C E Site C 1 0.16 4.25 1473 

    2 0.41 2.98 1609 

    3 0.49 1.86 1822 

Exposed Sediment E Site D 1 0.2 3.12 1522 

    2 0.39 2.33 1690 

    3 0.6 2.01 1771 

    4 0.73 1.32 1953 
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Figure C(Xiii). Correspondance between the depth, organic carbon density and bulk 

density in the differing horizons of Marsh C.  
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Marsh C - Carbon Content 
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Figure C(XiV). Levelled stratigraphy for all sample sites on Marsh C exhibiting organic carbon denisty in each horizon of 

every sampled core. Resulted were determined derived after a loss on ignition test conducted on all samples following a 

standardised procedure outlined in the TESSA guidelines. Please see tables 6.3.2.2(a,b,c&d)  for estimated organic carbon 

contents of all horizons. 
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C3(iii) - Active Layer Characteristics 

  

    

Organic Carbon Density (kg 
m-3) 

Bulk Density (kg m-3) 
  

Species 
Zone 

Site 
Reference 

Sub-horizon 
Sample 
Number 

Sample 
Depth (m) 

Sample 
value Average 

Standard 
Deviation 

Sample 
Value Average 

Standard 
Deviation 

SF W Site A 1a 0.03 3.14 2.89 0.31 1461 1502 33 

    1b 0.06 3.30    1486    

    1c 0.09 2.77    1500    

    1d 0.11 2.66    1513    

    1e 0.14 2.60     1550     

SA W Site B 1a 0.04 4.27 3.88 0.27 1422 1498 70 

    1b 0.07 4.01    1427    

    1c 0.11 3.84    1523    

    1d 0.14 3.72    1544    

    1e 0.18 3.57    1574    

SE W Site C 1a 0.05 4.34 4.07 0.42 1397 1492 71 

    1b 0.09 4.51    1447    

    1c 0.13 4.24    1499    

    1d 0.18 3.71    1545    

    1e 0.22 3.54     1572     

SB W Site D 1a 0.02 3.14 3.17 0.10 1443 1502 43 

    1b 0.05 3.31    1483    

    1c 0.07 3.20    1501    

    1d 0.09 3.04    1527    

    1e 0.12 3.18    1556    

SB C Site A 1a 0.03 4.36 4.06 0.27 1410 1494 71 

    1b 0.05 4.31    1445    

    1c 0.07 3.93    1490    

    1d 0.09 3.95    1536    

    1e 0.11 3.73     1589     

BW C Site B 1a 0.03 4.07 3.75 0.27 1421 1470 50 

    1b 0.06 3.86    1444    

    1c 0.09 3.84    1441    

    1d 0.12 3.59    1502    

    1e 0.15 3.37    1542    

SD C Site C 1a 0.03 3.96 3.60 0.25 1423 1506 65 

    1b 0.05 3.68    1476    

    1c 0.07 3.59    1490    

    1d 0.1 3.51    1552    

    1e 0.13 3.27     1587     

SC  C Site D 1a 0.03 4.64 4.33 0.31 1461 1523 55 

    1b 0.05 4.62   1502    

    1c 0.08 4.35   1493    

    1d 0.11 4.07   1568    

    1e 0.14 3.96   1593    

          

    1b 0.06 4.24    1402    

    1c 0.09 4.25   1429   

Table C(iX). Variation in horizon depth, organic carbon density and bulk density in the active 

layer (i.e. horizon 1) on Marsh B.  
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Organic Carbon Density         
(kg m-3) 

Bulk Density (kg m-3) 
  

Species Zone 
Site 
Reference 

Sub-horizon 
Sample 
Number 

Sample 
Depth (m) 

Sample 
value Average 

Standard 
Deviation 

Sample 
Value Average 

Standard 
Deviation 

SD E Site A 1a 0.02 4.26 3.98 0.21 1464 1482 16 

    1b 0.04 4.00    1465    

    1c 0.07 3.96    1486    

    1d 0.08 3.98    1493    

    1e 0.11 3.67     1500     

EX E Site B 1a 0.08 3.04 3.12 0.26 1510 1553 46 

    1b 0.16 3.17    1535    

    1c 0.24 3.29    1520    

    1d 0.31 3.37    1580    

    1e 0.39 2.71    1620    

SC E Site C 1a 0.03 4.42 4.25 0.13 1385 1447 63 

    1b 0.06 4.24    1402    

    1c 0.09 4.25    1429    

    1d 0.13 4.29    1480    

    1e 0.16 4.04     1539     

EX E Site D 1a 0.03 3.08 3.12 0.19 1484 1522 33 

    1b 0.07 2.88    1508    

    1c 0.12 3.24    1509    

    1d 0.16 3.37    1540    

    1e 0.2 3.03     1570     

 

Table C(iX). Variation in horizon depth, organic carbon density and bulk density in the active 

layer (i.e. horizon 1) on Marsh B.  
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Figure C(XV). Correspondance between the depth, organic carbon density and bulk 

density in the differing active layer horizons of Marsh C.  
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C4 - Marsh D 

C4(i) - Field Findings 

Marsh D represented the furthest western extent of the Ribble saltmarshes at the head of the 

estuary. Sampling was designed to gauge how the above-ground biomass and sediment 

characteristics changed between the predominantly vegetated NE and the sparsely vegetated SW. 

Above-ground Biomass 

 

 

 

 

 

 

  

Site 
Sub-environment 
Type 

OS Grid 
Reference 

Elevation 
(mOD) 

C Mass 
(kg/m2) 

Uncertainty 
kg (±) 

Uncertainty 
(%) 

N Site A  Species Zone A SD 35169 20432 5.02 1.136 0.001 0.09 

N Site B Species Zone A SD 34790 20421 4.90 0.553 0.0005 0.09 

N Site C Species Zone C SD 34479 20302 4.31 1.401 0.001 0.07 

N Site D 
Exposed 
Sediment 

SD 33902 19723 3.85 
0.000 0 0 

S Site A Species Zone B SD 34602 19772 5.13 1.509 0.001 0.07 

S Site B Species Zone C SD 34432 19690 4.85 1.012 0.001 0.10 

S Site C 
Exposed 
Sediment 

SD 34236 19301 4.12 
0.299 0.0005 0.17 

 

Table C(X). Location of sampling sites and above-ground biomass carbon storage quantification 

for Marsh D. 
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D S Site C 

Figure C(XVi). Marsh D sampling and ground truthing locations. 
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Figure C(XVii). Levelled stratigraphy for all sample sites on Marsh D. N.b. Labels indicate a horizon’s physical 

characteristics determined following a Troels Smith Analysis (see universal key – Figure 1.2.1). Numbers to the left of 

all horizons indicate the depth at which a sample that was deemed to best represent the entire horizon was taken 

from. The green layer represents the surface horizon of each core. 
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C4(ii) - Sub-surface Carbon Content and Bulk Density Variability 

  

Table C(Xi) Variation in horizon depth, organic carbon density and bulk density on Marsh D.  

Sub-environment 
classification Site Name 

Horizon 
Number Depth (m) 

OCD (kg 
m-3) 

(BD kg   
m-3) 

Species Zone A 

N Site A 

1 0.1 4.32 1482 

  2 0.29 2.84 1581 

  3 0.5 2.06 1723 

  4 0.7 1.60 1982 

Species Zone A 

N Site B 

1 0.13 4.20 1469 

  2 0.29 2.89 1638 

  3 0.93 2.01 1773 

Species Zone C 

N Site C 

1 0.12 3.97 1526 

  2 0.71 2.36 1646 

  3 0.85 1.97 1953 

  4 0.96 1.66 2106 

Exposed Sediment 

N Site D 

1 0.15 2.92 1598 

  2 0.7 1.71 1670 

  3 0.89 1.62 1821 

  4 1.13 1.42 2192 

Species Zone B S Site A 1 0.12 4.18 1442 

   2 0.21 2.94 1566 

   3 0.3 2.11 1672 

   4 0.6 1.95 1865 

    5 0.7 1.24 1916 

Species Zone C S Site B 1 0.12 4.09 1382 

   2 0.5 2.56 1501 

    3 0.68 1.70 1830 

Exposed Sediment S Site C 1 0.09 2.97 1496 

   2 0.28 1.97 1631 

   3 0.49 1.57 1872 

   4 0.62 1.37 1997 

    5 0.81 1.30 2178 
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Figure C(XViii). Correspondance between the depth, organic carbon density and bulk 

density in the differing horizons of Marsh D.  
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Marsh D - Carbon Content 
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Figure C(XiX).  Levelled stratigraphy for all sample sites on Marsh D exhibiting organic carbon denisty in each horizon of 

every sampled core. Resulted were determined derived after a loss on ignition test conducted on all samples following a 

standardised procedure outlined in the TESSA guidelines. Please see tables 6.3.2.2(a,b,c&d)  for estimated organic carbon 

contents of all horizons. 
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C4(iii) - Active Layer Characteristics 

  

    

Organic Carbon Density (kg 
m-3) 

Bulk Density (kg m-3) 
  

Species 
Zone 

Site 
Reference 

Sub-horizon 
Sample Number 

Sample 
Depth (m) 

Sample 
value Average 

Standard 
Deviation 

Sample 
Value Average 

Standard 
Deviation 

SA N Site A 1a 0.02 4.60 4.32 0.30 1432 1482 41 

    1b 0.04 4.34   1443    

    1c 0.06 4.60   1505    

    1d 0.08 4.13   1521    

    1e 0.1 3.91     1507     

SA N Site B 1a 0.02 4.09 4.20 0.16 1420 1469 44 

    1b 0.04 4.22   1423    

    1c 0.07 4.46   1502    

    1d 0.09 4.17   1489    

    1e 0.11 4.08   1512    

SC N Site C 1a 0.02 4.17 3.97 0.34 1475 1526 37 

    1b 0.04 4.46   1505    

    1c 0.07 3.77   1530    

    1d 0.09 3.83   1552    

    1e 0.11 3.63     1568     

EX N Site D 1a 0.03 2.98 2.92 0.29 1672 1716 97 

    1b 0.06 3.32   1720    

    1c 0.09 2.60   1576    

    1d 0.12 3.01   1802    

    1e 0.15 2.67   1809    

SB S Site A 1a 0.02 4.41 4.18 0.18 1388 1442 55 

    1b 0.04 4.18   1411    

    1c 0.06 4.05   1412    

    1d 0.09 4.30   1489    

    1e 0.12 3.95     1512     

SC S Site B 1a 0.03 4.34 4.09 0.23 1334 1382 49 

    1b 0.05 4.12   1328    

    1c 0.07 4.26   1398    

    1d 0.09 3.77   1410    

    1e 0.11 3.93   1440    

EX S Site C 1a 0.01 2.94 2.97 0.22 1432 1496 54 

    1b 0.03 3.00   1460    

    1c 0.05 3.30   1496    

    1d 0.07 2.67   1521    

    1e 0.09 2.93     1570     

 

Table C(Xii). Variation in horizon depth, organic carbon density and bulk density in the 

active layer (i.e. horizon 1) on Marsh D.  
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Figure C(XX). Correspondance between the depth, organic carbon density and bulk 

density in the differing active layer horizons of Marsh D.  
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