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1 Abstract6

One of the major uncertainties in estimating global Net Primary Productivity (NPP) and Gross Primary7

Productivity (GPP) is the ability of carbon-monitoring sites to represent the climate and canopy-density8

of global vegetation (“representativeness”). These sites are used for empirical upscaling and calibration of9

global land-surface models. The current study determines the representativeness of two important carbon-10

monitoring networks – FLUXNET2015 and the Ecosystem Model-Data Intercomparison (EMDI) – by calcu-11

lating the euclidian distance in climate-canopy space between each global 0.5◦ cell and all carbon-monitoring12

sites of the same biome or Plant Functional Type (PFT). Reliance on the single (most similar) site has been13

adopted in the past. A straightforward weighted upscaling, using inverse euclidian distance, identifies which14

PFTs contribute most to global primary productivity in the context of how well they are represented in15

carbon-monitoring networks. Some vegetation types, which are numerically well-represented within the16

network, are sampled at the ‘wrong’ latitude and in more temperate climes than their global distribution.17

This includes non-mediterranean needleleaf forest which is one of the main vegetation types contributing to18

global GPP and NPP. (Semi-)arid regions (mean annual precipitation <400 mm yr−1) are undersampled19

as well as the sparse vegetation that tends to characterise them. These regions include the tundra and the20

northern half of the boreal forest where growth is disproportionately affected by climate change. We find21

a large spread in NPP and GPP recorded at sites of the same PFT (standard deviation is 56% mean).22

Consequently, our bootstrap error analysis indicates that a minimum of 50 climate-representative sites per23

PFT is required to quantify adequately (2% precision) the primary productivity of each global vegetation24

type. Selecting unchartered climate-canopy space for new sites appears to be more important than a simple25

increase in site numbers.26
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Highlights30

• global productivity dominated by tropical/needleleaf forest & C3 grass/crops31

• well sampled PFTs (e.g. needleleaf forest) sampled at wrong latitude & climate32

• (semi-)arid (MAP<400 mm yr−1) & sparse (LAI≤2 m2m−2) vegetation undersampled33

• each PFT requires >50 climate-representative sites to determine its productivity34
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2 Introduction35

Estimates of NPP and GPP (see Tab. 1 for acronyms used frequently in the text) at PFT and global levels36

are still uncertain, despite their importance to the terrestrial carbon-cycle and rising atmospheric CO2 con-37

centration (Keenan et al 2016). For example, model estimates of global NPP vary by ±20% (55±11 Gt yr−1;38

Cramer et al 1999; Ito 2011), whilst anthropogenic carbon release is less than this dispersion (9 Gt yr−1;39

Le Quéré et al 2015). Therefore, our precision in quantifying the fluxes of the carbon cycle must improve40

considerably if we are to reliably identify carbon sinks/sources and to predict accurately the response of41

vegetation to climate change.42

43

How can we account for the uncertainty in global estimates of primary productivity? Firstly, no direct44

measurements (“truth”) exist for global NPP or GPP (Anav et al 2015). Secondly, the process-based45

land-surface and carbon models, which are frequently used for estimation, vary in their representation of46

mechanisms which are not completely understood (e.g. stomatal conductance, soil water dependence, leaf47

biochemistry; Knorr & Heimann 2001; Cramer et al 2001; Baker et al 2008; Bonan et al 2011). Thirdly,48

many of these models are over-parameterised with respect to the number of observable quantities available49

for either assignment or model calibration (Medlyn et al 2005; Zaehle et al 2005; Friend et al 2007; Prentice50

et al 2015). Fourthly, measurement or inference of NPP and GPP at site level, which is then used for global51

upscaling or model calibration, is subject to significant (∼20%) bias e.g. a preponderance of carbon sinks52

and lack of closure at FLUXNET sites (Wilson et al 2002; Baldocchi 2008), and systematic underestima-53

tion of NPP owing to frequently unmeasured below-ground productivity (Clark et al 2001; Malhi et al 2011).54

55

Another reason why global estimation is challenging – one that has received less attention in the past – is56

that the sampling at site level is sparse and with an uneven geographical distribution. That several PFTs are57

undersampled numerically, by FLUXNET for example, is noted by several previous authors. For example,58

Beer et al (2010) highlight inadequate coverage of C4 vegetation in their estimates of global GPP based on59

an ensemble of land-surface and statistical models. In proportion to global vegetation, Alton (2013) notes60

a dearth of tropical broadleaf forests and C4 grasslands. Indeed, a review by Schimel et al (2015) reveals61

that 85% FLUXNET sites are located between 30-50◦N and that coverage is severely limited in two critical62

“tipping regions” for positive feedbacks of the carbon cycle: the tropics and latitudes ≥60◦N. That certain63

geographical regions are devoid of FLUXNET towers is also noted (e. g. India; Sundareshwar et al 2007).64

65

Whilst undersampling of certain vegetation types is generally recognised, what is less clear is whether carbon-66

monitoring sites are typical, in terms of climate and canopy density, of the global PFTs they are intended67

to represent. With respect to canopy density, Baret et al (2006) note undersampling of sparse vegetation by68

networks such as FLUXNET. Systematic differences in carbon balance occur for forest canopies in different69

stages of development after disturbance (de Lucia et al 2007; Amiro et al 2010) but the distribution of70

sampling for different canopy densities within the same global PFT has rarely been analysed. With respect71

to climate, Xiao et al (2012) surmised that “FLUXNET is fairly representative of major climate types”.72

However, this hypothesis has seldom been tested in a quantitative manner at global level. At regional level,73

Hargrove et al (2003) conclude that the representativeness by Ameriflux sites of mainland USA ecoregions74

(defined by climate and edaphic properties) is robust for all but marginal areas of the continent. Yang et75

al (2008) concur using remotely sensed quantities for both climate and vegetation density. Using similar76

quantities, He et al (2015) find that the representativeness of FLUXNET sites in China is good for croplands77

and grassland but rather poor for sparsely vegetated areas. Sulkava et al (2011) adopt a similar approach78

to Hargrove et al (2003) to analyse representativeness within Europe. Globally, there appears to be only79

a single study of the representativeness of FLUXNET (Kumar et al 2016) where multivariate clustering of80

climatic and edaphic variables is used to define ecoregions and then determine the proximity of the next-81

nearest FLUXNET site to these ecoregions. The authors infer that representativeness is high except for the82

tropics. We emphasise that previous studies use a single (next-nearest) FLUXNET site to determine how83
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well a region is represented. There is potential, however, to average across all sites of the corresponding84

vegetation type to produce a more robust measure of representativeness. This is because any empirical85

upscaling of primary productivity, or use of carbon models calibrated for this purpose, would preferentially86

make use of the maximum number of available sites.87

88

The recent release of a standardised GPP dataset (FLUXNET2015) provides an opportunity to re-examine89

the issue of representativeness for eddy covariance sites. A database of a similar size (EMDI), which has90

received little focus in the past, permits the same exercise for site NPP. The EMDI database was compiled91

to provide reliable (above and below ground) measurements for calibration of global LSMs but its ability to92

represent global vegetation has never been assessed. We determine the ability of these two primary carbon-93

monitoring networks to represent global vegetation by calculating the euclidian distance in climate-canopy94

space between global 0.5◦ cells and all sites of the same PFT. We believe that averaging across all sites,95

rather than calculating proximity to a single (next-nearest) location, procures a more robust measure of96

representativeness. We then upscale the cells to PFT and global levels, using site values of GPP and NPP97

and the inverse euclidian distances as weights. We do this in order to ascertain the importance of each veg-98

etation type to global primary productivity (both GPP and NPP) in the context of how well each PFT is99

currently sampled. Kumar et al (2016) conduct global upscaling of GPP over ecoregions, rather than PFTs,100

using an inverse weighting similar to our own. However, they focus on temporal (seasonal and interannual)101

patterns, rather than on spatial annual averages as we do here. Similarly, Chu et al (2017) also investigate102

the temporal evolution of representativeness across FLUXNET. Representativeness has also been examined,103

to some extent, with complex statistical upscaling models in order to determine the ability of these models104

to extrapolate into environments that have not been used for model calibration (Jung et al 2009; Papale et105

al 2015).106

107

The specific research questions of the current study are as follows:108

1. How well are the major PFT contributors to global primary productivity currently represented in109

carbon-monitoring networks?;110

2. Do networks used for upscaling (and carbon-model calibration), such as FLUXNET2015 and EMDI,111

provide a robust representation of global vegetation? If not, which global climate zones and canopy112

densities require better representation and how many sites should we sample to ‘usefully’ quantify113

primary productivity of the land carbon cycle?114

3. What is the dispersion in NPP and GPP for sites of the same PFT and what uncertainty does this115

dispersion engender in undersampled PFTs and upscaled estimates of global primary productivity?116

4. How do our upscaled estimates of global GPP and NPP compare with recent (mostly model-based)117

estimates?118

3 Materials and Methods119

The Methods are organised into five major sections. Firstly, we define representativeness and discuss the120

variables required to calculate it (§3.1). Secondly, we describe a straightforward upscaling, based on these121

variables, to determine the contribution, and therefore importance, of each PFT to global primary pro-122

ductivity (§3.2). Thirdly, we introduce the datasets required for global cells (§3.3). Fourthly, we discuss123

the carbon-monitoring networks and the datasets they provide for primary productivity (§3.4). Lastly, we124

summarise the workflow and discuss sources of error and ways to enhance representativeness (§3.5).125
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3.1 Determining Representativeness126

For each 0.5◦ vegetated global landpoint cell, we calculate the inverse euclidian distance (wi) in environmental127

variable space (var) between the global cell (varcell) and a carbon-monitoring site (i) of the same PFT (vari).128

Thus:129

wi =
1

√

∑

var

(

varcell−vari
sd(var)

)2
(1)

Here, sd(var) is the standard deviation of the environmental variable, var, from the mean across all global130

cells of the corresponding PFT. Dividing by sd(var) normalises the euclidean distance, allowing us to in-131

corporate variables of quite different ranges. We define climate zone using the primary climatic variables of132

temperature, precipitation and shortwave radiation (Strahler & Strahler 2013; Schimel et al 2015). However,133

we also take some account of differences in canopy cover within the same PFT by incorporating Leaf Area134

Index (LAI). Therefore, we define environmental variable space using Mean Annual Temperature (MAT;135

◦C), Mean Annual Precipitation (MAP; mm yr−1), Mean Annual Shortwave Radiation (MASW; W m−2)136

and the mean average of maximum seasonal LAI (LAImax; m
2m−2). To evaluate Eq. 1 we require MAT,137

MAP, MASW and LAImax (hereafter ‘climate-canopy space’) for all global cells (§3.3 below) and for all138

carbon-monitoring sites (§3.4 below).139

140

In Eq. 1, wi indicates the inverse euclidian distance in climate-canopy space separating the global cell from141

an individual carbon-monitoring site of the same PFT. To evaluate how well the global cell is represented142

by all corresponding carbon-monitoring sites, we define a modified mean inverse distance for each global cell143

(wcell) by averaging over wi thus:144

wcell =

nvar

n
∑

i=1
wi

2n
(2)

where nvar is the number of environmental variables (i.e. 4) and n is the number of sites for this PFT. We145

group and average wcell for global cells of the same PFT to determine how well each global PFT is repre-146

sented overall by carbon-monitoring sites (wpft). For random (non-biassed) sampling of the global PFT we147

expect wcell ≃ 1. We also create global maps of wcell to identify regions which are well/poorly represented.148

Note that wi, wcell and wpft are calculated separately for each carbon-monitoring network.149

150

The use of inverse euclidian distance is fairly well established as a means of defining proximity in environ-151

mental variable space (e.g. Hargrove et al 2003; Kumar et al 2016). Use of squared (∝w2
i ), rather than linear152

(∝wi), weighting produces an oversensitivity both to the normalisation of the variable (sd(var) in Eq. 1)153

and to a small number of (the very closest) sites.154

155

3.2 Weighted Upscaling156

To determine the contribution, and therefore importance, of each PFT to global primary productivity, we157

conduct a straightforward upscaling of fluxes from carbon-monitoring sites to global level. The carbon flux158

(NPP or GPP) at each global cell (Fcell) is approximated by the weighted mean of the annual carbon flux159

measured at all relevant carbon-monitoring sites (Fi). Thus:160

Fcell =

n
∑

i=1
wiFi

n
∑

i=1
wi

(3)
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where relevant sites (i=1,n) are those comprising the network in question (EMDI for NPP and FLUXNET2015161

for GPP) and are of the same PFT as the global cell. The weights, wi (hence nomenclature), follow from162

Eq. 1. Fcell is subsequently integrated to PFT and global levels.163

164

We recognise that this upscaling is simple compared to process-based and statistical models but it has the165

advantage of using environmental variables that are readily available both globally and at site level. The166

environmental variables (temperature, precipitation, shortwave radiation and leaf cover) have a first order167

influence on photosynthesis (e.g. Field et al 1995; Waring & Running 1998; Nemani et al 2003; Gurevitch et168

al 2006). Ideally, soil water availability might replace precipitation for the upscaling but this is a derived,169

rather than observed, variable requiring a water-balance model and knowledge of soil properties (e.g. Sellers170

et al 1997; Zhao & Running 2009). Such soil properties are undocumented for EMDI sites and many171

of the FLUXNET sites. Nearly half of the PFTs within FLUXNET2015 have sample sizes of ≤5 and172

this constraint on the number of degrees of freedom explains our predilection for a small number (4) of173

environmental variables.174

3.3 Global Cells175

To characterise the climate for the global cells in Eq. 1, we adopt the 3 hr reanalysis meteorology from176

Princeton University (Sheffield et al 2006; 2012; hereafter “Princeton meteorology”), which is reconstructed177

globally at 0.5◦ spatial resolution. Annual averages for MAT, MAP and MASW are created over the 7 yr178

period 2002-2008 (incl.), which corresponds to the overlap period with global LAI from MODIS.179

180

Global LAI maps at 0.5◦ resolution are created for 2002-2008 (incl. ) by extracting and mean averaging 0.5181

km pixels in the standard 8-day MCD15A2H (C6) MODIS product. The latest C6 LAI product corrects182

for long-term detector degradation present in previous (e.g. C4 and C5) releases (Yan et al 2016; Zhang183

et al 2017a). Only pixels of good quality are selected i.e. main algorithm, no significant cloud and >50%184

detectors working (Yang et al 2006b). To minimise noise in the phenology timeseries to be created (De185

Kauwe et al 2011), the global 0.5◦ maps are averaged temporally using a median 32-day moving window,186

except for the tropics where persistent cloud (Zhao et al 2005) necessitates selection of the maximum LAI187

value over a moving 48-day window (Ryu et al 2011). For each global 0.5◦ cell, we extract the maximum188

LAI in each year and mean-average these values to produce LAImax.189

190

PFT classification for each global cell is determined by the dominant landcover in the HYDE database191

(Goldwijk et al 2011) which provides a 0.5◦ global landcover map at the year 1990 (Fig. 1). Each cell is192

assigned to one of the PFTs in Tab. 2. The adopted PFTs are based on the land-surface model JULES-SF,193

which has been calibrated against FLUXNET sites in the past (Alton 2016; Alton 2017), and for which194

a sister paper is in preparation, assessing the impact of representativeness on model calibration. Various195

sources exist for landcover (e.g. Loveland et al 2000; Hansen & Reed 2000) but Goldwijk et al distinguishes196

carefully between natural and anthropogenic (pasture and cultivation) landcover. To distinguish cells dom-197

inated by C3 grasses/crops from those dominated by C4 grasses/crops, we use the global map of Still et al198

(2003) which quantifies the fraction of C4 vegetation in each grid-cell.199

3.4 Carbon-monitoring Networks200

We adopt two carbon-monitoring networks: (1) FLUXNET2015 where GPP is inferred from tower-based201

eddy-covariance measurements; and (2) EMDI where annual NPP is measured through field sampling. These202

measurements are discussed in turn below along with their adopted meteorology and LAI data.203



8

3.4.1 FLUXNET2015204

FLUXNET2015 tier 1 (http://fluxnet. fluxdata. org) provides a harmonised database of 151 sites cover-205

ing a range of PFTs made freely available to the modelling community. High-quality fluxes, including net206

ecosystem exchange, are inferred from eddy covariance. The measurement timestep is either 30 mins or207

hourly. Measurements are gap-filled, using a well-tested standardised method (Reichstein et al 2005), when208

data are either missing or recorded under low friction velocity (insufficient turbulence; Barr et al 2013).209

Two standard products for GPP are available with FLUXNET2015: (1) an empirical temperature fit to210

nighttime respiration which is extrapolated to daytime in order to subtract daytime respiration from net211

ecosystem exchange to yield GPP (gpp nt ref; Reichstein et al 2005); and (2) an empirical fit of daytime net212

ecosystem exchange against downwelling shortwave radation to infer daytime respiration at zero irradiance213

which can then be subtracted from daytime net ecosystem exchange to yield GPP (gpp dt ref; Lasslop et214

al 2010). A site list, with site coordinates, principal investigators, citations and general description is pro-215

vided at http://fluxnet.fluxdata.org and is also summarized by Haughton et al (2018). The geographical216

distribution, discussed in the Results, is also shown in Fig. 7. Siteyears span 1991-2014 but the mean year217

and standard deviation for the dataset are 2007±5.218

219

We summed the (half-)hourly values of both gpp dt ref and gpp nt ref to produce average annual GPP220

over the siteyears available at each site (7 on average). The root mean square difference between the two221

estimates was <1% which is small compared to the other sources of error (discussed below). Therefore, we222

adopted gpp dt ref as the measured site GPP. (Half-)hourly in situ meteorology, recorded by the fluxtower223

instruments, is averaged over all siteyears available for each site to determine MAT, MAP and MASW. Note224

that we sum to annual values of GPP for consistency with EMDI which only provides annual values of NPP.225

226

To create an LAI 2002-2008 timeseries for each carbon-monitoring site, we follow the procedure above for227

global cells but extract a 3.5 km × 3.5 km subset (49 pixels) centred on the site. Note that subsets smaller228

than this are considered less robust in terms of the LAI produced by the MODIS radiative-transfer algorithm229

(Yang et al 2006a; Yang et al 2006b; Heinsch et al 2006). For each site, we extract the maximum LAI in230

each year and mean-average these to produce LAImax.231

3.4.2 EMDI232

EMDI is a standardised database for field-based annual NPP divided into class A (well-documented)233

and class B (less well-documented) sites (Olson et al 2008). The revised (R2) version of these datasets234

was accessed from the Land Processes Distributed Active Archive Center (LP DAAC) at the website235

daac. ornl. gov/NPP. Initially, we only used sites where both aboveground and belowground NPP were236

measured, yielding a total of 306 sites. Of these sites, ≃10% have repeat measurements and these repeat237

values were mean-averaged to yield NPP measurements for 277 sites. This approach led to very small238

sample sizes in some PFTs. Therefore, the requirement for belowground NPP to be measured was relaxed239

for C3 and C4 crops, savanna, tundra shrubs and non-tundra shrubs. Where belowground NPP is absent,240

the EMDI database assumes a value of one for the aboveground-to-belowground NPP ratio for these PFTs241

(Olson et al 2008). Some previous studies adopt a larger number of class B sites from the EMDI database242

and rely, therefore, more heavily on the assumed ratio of aboveground-to-belowground NPP (e.g. Zaks et al243

2007). However, we prefer to use a smaller, more robust, set of measurements which is comparable in size244

to the FLUXNET2015 database and makes less reliance on this ratio.245

246

In lieu of an in situ meteorology for EMDI sites, we adopt the Princeton meteorology, using bi-linear247

interpolation across the four 0.5◦ global cells closest in longitude and latitude to the site in question. Zaks248

et al (2007) use reanalysis meteorology at 10 arcmin resolution for EMDI sites but disaggregation to this249

spatial resolution entails greater uncertainties in the resultant meteorology. To test the impact of using250

a 0.5◦ (rather than in situ) meteorology, we conduct a separate experiment in which we substitute the251
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tower-based meteorology at FLUXNET2015 sites with the interpolated Princeton meteorology and monitor252

the change in representativenss for GPP. To determine LAImax at EMDI sites, we proceed as above for253

FLUXNET2015 (§3.4.1).254

3.5 Workflow, Error Analysis and Enhancing Representativeness255

3.5.1 Workflow256

We substitute values of MAT, MAP, MASW and LAImax for both carbon-monitoring sites and 0.5◦ global257

grid cells into eq. 1. The standard deviation of each environmental variable, across global cells of the same258

PFT, is also evaluated and substituted. We derive wcell from Eq. 2 as a measure of representativeness for259

each global cell. Using Eq. 3, both NPP and GPP are summed for each cell to produce totals at PFT and260

global levels.261

3.5.2 Error Analysis262

Random errors in annual carbon fluxes at FLUXNET sites are estimated at only 5% (Hollinger & Richard-263

son 2005; Baldocchi 2008). For annual GPP, the combined random uncertainties, including gap-filling, are264

estimated at <10% by Beer et al (2007). Comparing the root-mean-square difference between duplicate265

measurements within the EMDI database (available for 10% of sites; n=29), we infer a random error of 15%266

in site NPP. Systematic errors are larger than random errors for both NPP and GPP but it is difficult to267

account for them in their overall effect. Poor detection of high frequency gas fluctuations leads to systematic268

underestimation by 5-10% (Baldocchi 2008). However, incomplete energy closure suggests that underestima-269

tion might be larger (20%; Wilson et al 2002). Incomplete sampling of components (e.g. herbivory, smaller270

trees in plots) suggests a systematic underestimation of at least 20% in field-based NPP (Clark et al 2001;271

Malhi et al 2011). Whilst systematic errors probably lead to underestimation of both GPP and NPP, the272

vast majority of FLUXNET sites are known to be carbon sinks (Baldocchi 2008; Amiro et al 2010) and273

these sites, therefore, may be more productive than the global PFT they represent.274

275

For historical reasons, mostly concerned with accessibility and funding, both carbon-monitoring networks276

undersample numerically certain vegetation types. To account to some extent for limited sampling and277

random errors, we adopt a bootstrap method in our upscaling by randomly selecting site measurements278

with replacement (10000 iterations for both EMDI and FLUXNET2015) and monitoring the variation in279

PFT-level and global estimates (standard deviation from the mean).280

281

3.5.3 Enhancing Representativeness282

To quantify the number of sites needed to sample each global PFT accurately we conduct a separate, ad-283

ditional experiment for upscaling. We reduce the number of sites for PFTs which are numerically well284

represented so that they approach the sample size of those PFTs which are the least well represented nu-285

merically. This is done using random selection without replacement for sample sizes of 48, 24, 12, 6, and286

3, where the starting point (48 in this example) is the maximum number of sites available for the well-287

represented PFT in question. Estimation of GPP and NPP at PFT level is monitored as the sample size288

changes (mean and standard deviation over 1000 iterations for each sample size).289

290

The above approach assumes that carbon-monitoring sites are distributed evenly in climate-canopy space.291

However, the global PFT may occupy large areas of climate-canopy space which are not sampled at all292

at site level. Furthermore, our estimates of PFT primary productivity rely on interpolating between sites293

across climate-canopy space since they depend on a weighted upscaling (Eq. 3). To estimate the fraction of294

primary productivity which lies outside of the sampled climate-canopy space we employ a state-of-the-art295
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land-surface model (JULES-SF) which has previously been calibrated against diverse carbon flux datasets296

(Alton 2013).297

JULES-SF (Joint UK Land Environmental Simulator) is an enhanced version of the new UK Met. Office298

Surface Exchange Scheme (Cox et al 1999). It is state-of-the-art for ecophysiological process-based global299

models of the Penman-Monteith type (Monteith 1965) but represents particularly well multilayer light300

interception and photosynthesis within the canopy (Alton & Bodin 2010; Alton 2016). Note that we are301

not using this particular model to validate the upscaled values (i. e. as “truth”) since models vary in their302

inherent assumptions as well as their estimates of PFT and global primary productivity (Ito 2011; Anav et al303

2015; Prentice et al 2015). However, we assume that the model provides a useful surrogate for truth (Jung et304

al 2009) since it fully samples climate-canopy space for each PFT and may, therefore, indicate how primary305

productivity varies systematically between the interpolated and extrapolated climate-canopy space. To this306

end, we define a ratio for both GPP and NPP which is the model estimate for the interpolated climate-307

canopy space divided by the estimate for the full global climate-canopy space. We define the interpolated308

climate-canopy space as mean ±2 standard deviations across all 4 environmental variables where the mean309

and standard deviation correspond to FLUXNET2015 and EMDI sites, respectively, for GPP and NPP. The310

model provides an estimate of GPP and NPP for all global 0.5◦ landpoints which reside within this mean311

±2 standard deviations climate-canopy space as well as across the full global climate-canopy space. The312

interpolated space is defined generously (using 2 standard deviations) and, therefore, provides a lower limit313

to any biases which are detected.314

4 Results and Discussion315

To ascertain which PFTs are important contributors to global primary productivity, we first analyse the316

upscaling (§4.1) before examining the representativeness of the carbon-monitoring networks themselves317

(§4.2). Next, we investigate how many sites are required for the network to be representative of global PFTs318

(§4.3). The final section (§4.4) treats the limitations and caveats to the study.319

4.1 Upscaling320

Our weighted upscaling yields 131±8 Gt yr−1 and 66±4 Gt yr−1 for annual global GPP and NPP, respec-321

tively. Uncertainties follow from our bootstrap error analysis but, as noted above, this does not account for322

systematic errors associated with the site fluxes (EMDI and FLUXNET2015) used for upscaling. Global323

Carbon-Use Efficiency (NPP/GPP) is 0.50±0.04, which is close to the value prescribed in many carbon324

models (e.g. Waring et al 1998).325

326

There are no measurements of GPP and NPP at global level that would serve for validation purposes (Anav327

et al 2015). However, given the simplicity of the method, our upscaled values compare fairly favourably with328

a compilation of previous estimates based on a diversity of methods (Tab. 3). Thus, our global NPP (66±4329

Gt yr−1) lies at the upper end of 251 previous estimates compiled by Ito (2011) and averaged according to330

method (46-61 Gt yr−1). Note, however, that this previously inferred range conceals a large standard devia-331

tion (13 Gt yr−1) between studies using a similar technique. Recent estimates might be converging towards332

a value of 56±14 Gt yr−1 (Ito 2011) but they also rely increasingly on models which contain numerous333

parameters, some of which are poorly constrained (Prentice et al 2015). Compared to NPP, far fewer global334

estimates of GPP are available. Recent estimates tend towards lower values (110-120 Gt yr−1), possibly335

owing to a greater reliance on Light-Use Efficiency models, including the standard MODIS products of GPP.336

Both ecophysiological process-based models and top-down studies of atmospheric isotopes still allow for a337

broad range of global GPP and, indeed, much higher values (≤175 Gt yr−1). Our estimate (131±8 Gt yr−1)338

is fairly central with respect to previous estimates.339

340
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The three PFTs which contribute most to global GPP are tropical broadleaf forest, non-mediterranean341

neeedleleaf forest and C3 grass (collectively 64%; Tab. 4). This is 9% higher than Beer et al (2010), who342

collate several (mostly model-based) estimates but find that productivity is higher in C4 (tropical) grassland343

compared to C3 (temperate) grassland (an inference which depends on the adopted global landcover). For344

NPP, Tab. 4 reveals a similar situation to GPP, except that the biggest single contributor is C3 crop (26%345

global NPP). The accuracy of NPP estimates for this PFT is discussed below (§4.3).346

347

4.2 Site Representativeness348

Focussing initially on site numbers, we show the proportion of each carbon-monitoring network distributed349

over each PFT and compare to the corresponding percentage of global area for that vegetation type (Tab. 2).350

For historical and accessibility reasons, both networks over-represent non-tropical (temperate) broadleaf for-351

est by an order of magnitude. This is in spite of the modest contribution of this PFT to global NPP and352

GPP (2-3% in Tab. 4). Tropical broadleaf forest is under-sampled by FLUXNET2015, even though this PFT353

contributes 29% to global GPP (Tab. 4) and is poorly constrained as a carbon sink/source (Gurney et al354

2002). The observation that FLUXNET undersamples tropical forest and oversamples temperate forests is355

noted by previous authors (e.g.Schimel et al 2015) but here we quantify in proportion to global land-surface356

(see also Baret et al 2006) and place in the context of the relative contributions of each PFT to global357

primary productivity.358

359

Fig. 2 compares the distribution of both carbon-monitoring networks with global vegetated 0.5◦ cells in360

terms of climate, specifically MAP and MAT. This graph confirms an undersampling of tropical rain forest361

within FLUXNET2015 (MAP>2500 mm yr−1, MAT>25◦C). Both networks undersample warm and cold362

(semi-)arid climes (MAP<400 mm yr−1), even though some of these regions are subject to the greatest cli-363

mate change and perturbation to their carbon cycle (e. g. warming/greening of the northern tundra; Myneni364

et al 1997; Elmendorf et al 2012).365

366

The sampling density within MAP-MAT climate space is quantified in Fig. 3 and compared with global367

vegetated cells. Outliers confirm over-representation (by a factor 2-3) of woodland, shrubs and forest within368

temperate regions (MAP=750 mm yr−1, MAT=5-15◦C) using the idealised climate-biomes of Whittaker369

(Fig. 2). In contrast, there is a dearth of sites within the tundra (MAP=250 mm yr−1, MAT=-15◦C). The370

pronounced scatter in panel (b) of Fig. 3 (R2=0.17-0.20) reveals that both networks are mediocre in their371

representation of global MAT-MAP space, although the strengths and weaknesses of each network vary372

according to PFT.373

374

(Semi-)arid regions are poorly sampled in Fig. 2 (both warm and cold). Furthermore, of the vegetated375

global cells with MAP<400 mm yr−1, 91% correspond to sparse vegetation with LAImax≤2 m2m−2. On av-376

erage, LAImax=0.97 m2m−2 for global vegetated cells with MAP<400 mm yr−1 compared to LAImax = 3.0377

m2m−2 for MAP≥400 mm yr−1. Fig. 4 reveals how carbon-monitoring networks represent global vegetation378

in terms of LAI. Notably, 50% global vegetation is characterised by LAImax≤2 m2m−2 but only 30-32%379

of both networks sample vegetation with an LAI as low as this. We estimate from our global upscaling380

that 0.5◦ cells with LAImax≤2 m2m−2 contribute 31% global GPP and 35% global NPP. The situation is381

more acute at lower canopy densities. Thus, 25% of the vegetated land-surface possesses LAImax≤1 m2m−2
382

but only 10% network sites sample such sparse vegetation. This dearth is noted when networks such as383

AERONET or FLUXNET are used to validate global satellite products (Baret et al 2006).384

385

For certain PFTs, the corresponding sites are relatively numerous but those sites fail to sample the average386

global climate of the PFT they represent. This is seen in Fig. 5 where the modified mean inverse euclidian387

distance (wpft) for global cells containing mediterranean needleleaf is lower than other PFTs (poor rep-388
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resentativeness). This is in spite of relatively high site numbers for this PFT in both networks (Tab. 2).389

On average, MAP and MAT are higher within the combined site samples of FLUXNET2015 and EMDI390

for mediterranean needleleaf (1210 mm yr−1 and 13.5◦C, respectively) compared to the mean values of391

the corresponding global cells (550 mm yr−1 and 1.7◦C). Similarly, non-tundra shrubs are sampled in the392

mid-latitudes (mean absolute latitude 40◦), whilst the global distribution is weighted more towards the sub-393

tropics (mean absolute latitude 22◦; panel (a) of Fig. 6). This bias results in a low value of wpft in Fig. 5,394

particularly with respect to FLUXNET2015.395

396

In terms of climate-canopy space, Figs. 7 and 8 reveal which parts of the globe are well represented by397

FLUXNET2015 and EMDI, respectively, by mapping the modified mean inverse euclidian distance (wi in398

Eq. 2). Superimposed markers for site locations reveal the pronounced clustering of carbon-monitoring399

sites within Europe and North America. The poor representativeness of tropical broadleaf forest, discussed400

above, is particularly conspicuous for the Old World formations in Africa and south-east Asia, especially401

for FLUXNET2015. This is already noted for south-east Asia by Kumar et al (2016), who assess global402

representativeness of FLUXNET with a next-nearest approach. Figs. 7 and 8 also reveal that both net-403

works represent rather poorly the northern half of the boreal conifer belt owing to site sampling of non-404

mediterranean needleleaf forest at lower latitudes (compare with landcover in Fig. 1 and see panel (b) of405

Fig. 6). Note that some regions have high representativeness in Figs. 7 and 8, even though they contain406

few carbon-monitoring sites. This is due to their proximity in climate-canopy space to sites of the same407

vegetation located elsewhere in the world. Thus, in West Asia, both C3 grassland and C3 crops have high408

representativeness for, respectively, NPP and GPP owing to sampling in, respectively, Europe and North409

America.410

411

The global distribution of NPP sampling has received very little attention in the past and Fig. 8 con-412

stitutes, to our knowledge, the first assessment of representativeness by EMDI. This network compiles413

NPP measurements for well-studied sites with the stated aim of improving global carbon models (Olson414

et al 2008). EMDI combines geographically dispersed measurements from the literature with previously415

collated databases, the latter often compiled for a specific purpose (e.g. change in forest NPP along a tran-416

sect). As with FLUXNET2015, measurements are biassed towards regions with better access and resources.417

Note, however, that the S. American tropical broadleaf forest is better represented by EMDI compared to418

FLUXNET2015 (Figs. 7 & 8). C3 grasslands are also better represented, owing to inclusion of an intensive419

study by Gill et al (2002), but C3 crops are better sampled by FLUXNET2015.420

421

Tab. 5 quantifies the climate-canopy distribution of global cells compared to the carbon-monitoring networks422

by presenting the mean and standard deviation of each environmental variable according to PFT. The tabu-423

lar data confirm that certain PFTs (e.g. non-mediterranean needleleaf forest, mediterranean needleleaf forest424

and tundra) are sampled, by either one or both carbon-monitoring networks, in more temperate (wetter425

and warmer) climes compared to their global distribution (see panel (b) of Fig. 6 for non-mediterranean426

needleleaf forest). Similarly, the table confirms the inference drawn from Fig. 6, namely, that non-tundra427

shrub is generally sampled in cooler regions compared to its principally sub-tropical global distribution. A428

similar conclusion is drawn for C4 crops from Tab. 5. Some of these PFTs (C4 crops and non-tundra shrub)429

only make a small (1-2%) contribution to global primary productivity. However, non-mediterranean needle-430

leaf forest contributes, respectively, 13% and 17% to global NPP and global GPP in Tab. 4. The global431

centroid of this PFT is -3.9±5.4◦C, 510±270 mm yr−1. This overlaps greatly with the Whittaker climate-432

biome designated as “tundra” in Fig. 2, previously noted as relatively devoid of sampling sites. As stated433

in connection with Fig.4, 50% vegetated global cells have LAImax ≤2 m2m−2. Of these sparsely vegetated434

global cells, 25% are classified as non-mediterranean needleleaf forest and 17% as tundra shrub. Therefore,435

better sampling of the climate-canopy space of these PFTs, especially non-mediterranean needleleaf forest,436

is important. The bias towards more temperate needleleaf sites, which are possibly more productive than437

the majority of the boreal needleleaf forest (owing to a more clement climate and higher LAI; Tab. 5), may438
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explain why some land-surface models, when calibrated against FLUXNET sites, underestimate continen-439

tal runoff at high northern latitudes (Alton 2013) compared to measured river-mouth discharge (Dai et al440

2009). The deficit in runoff suggests an overestimation of evapotranspiration, which is frequently dominated441

by transpiration for the vegetated land-surface (Jasechko et al 2013). Transpiration itself is tightly linked to442

GPP through stomatal conductance and this physiological link is exploited in regional and global estimates443

of GPP based on water-use efficiency (Beer et al 2007; 2010).444

445

4.3 Enhancing Representativeness: How many sites are required?446

The number of sites required to sample carbon fluxes fully depends not only on the distribution of global447

climate-canopy space, as discussed above, but also on the range in primary productivity measured across448

sites of the same PFT. We begin by focussing on this latter issue, which has received little discussion in the449

literature, before estimating how many sites are required.450

451

Barcharts for site GPP and NPP, expressed in kg m−2 yr−1 and grouped by PFT, exhibit a large spread452

(Fig. 9). Indeed, averaging across all PFTs for both NPP and GPP, the standard deviation in primary453

productivity constitutes 56% mean. It is this broad range in Fig. 9 that leads to substantial uncertainties454

in PFT primary productivity in Tab. 4 (on average 18%, but up to 40% for some PFTs). This is because455

a large number of sites must be sampled to provide precise estimates of the primary productivity of each456

PFT. For NPP in Fig. 9, our PFT means are close (root mean square difference of 0.13 kg m−2 yr−1) to457

those derived from previously compiled field measurements (Houghton & Skole 1990) when excluding crops458

(discussed below). They are also very close (root mean square difference of 0.09 kg m−2 yr−1) to the means459

estimated by Luyssaert et al (2007) for forest PFTs. These authors collate both NPP and GPP from diverse460

methods including eddy covariance, leaf chamber, harvesting, allometry and process-based models. For GPP461

in forests, our PFT means are fairly close (root mean square difference of 0.22 kg m−2 yr−1) to those of462

Luyssaert et al (2007) when omitting tropical broadleaf forest. Our mean GPP for tropical broadleaf forest463

(2.4 kg m−2 yr−1) is lower than that of Luyssaert et al (3.6 kg m−2 yr−1) but within 20% of the mean of 13464

tropical forests (2.9 kg m−2 yr−1) compiled by Fu et al (2018). Site NPP for C3 crops in Fig. 9 exhibits a465

very wide range (0.8-2.0 kg m−2 yr−1) compared to other PFTs and is higher, on average, than more recent466

estimates (0.5-1.0 kg m−2 yr−1; Ciais et al 2010; Li et al 2014). The CUE (ratio NPP/GPP) also appears467

too high in Fig. 9 compared to the theoretical and previously observed upper limit of 0.7 for non-woody468

vegetation (Choudhury 2000; van Iersel 2003). Measured crop NPP appears to vary greatly according to469

both species and treatment (irrigation and fertiliser) within the EMDI database. If this network generally470

overestimates for this PFT, the corresponding contribution to global NPP (26%; Tab. 4) may be too high471

(perhaps by a factor 2).472

473

We determine the number of sites required to quantify precisely the productivity of each PFT. As ex-474

plained in §3.5.2, we do this by reducing the number of sites used in the upscaling. We do this for PFTs475

which are numerically well represented (i. e. non-tropical broadleaf forest and C4 grassland for NPP, and476

non-mediterreanean needleleaf forest and C3 grassland for GPP) so that they approach the sample size477

of PFTs which are the least well represented numerically. For those PFTs in Tab. 2 with few (2-6) site478

samples (e.g. C4 crop), this bootstrap uncertainty analysis suggests that errors in NPP and GPP are large479

(20-40%; see Fig. 10). Furthermore, we require 30 and 50 sites per PFT to estimate PFT productivity to,480

respectively, 5% and 2% precision. Undersampling of individual PFTs has less impact globally owing to481

cancellation when integrating from PFT to global level (6% for both global NPP and GPP; see uncertainties482

in bottom row of Tab. 4). However, to be able to quantify and to monitor carbon-sinks within individual483

PFTs as a percentage of anthropogenic CO2 release (9 Gt yr−1 or 10-15% global NPP; Le Quéré et al 2015),484

we seek a precision of at least 2% at PFT-level. This requires a carbon-monitoring network consisting of at485

least 600 (50×12 PFTs) sites which are carefully selected (see below) to represent adequately the climate-486
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canopy space of global vegetation. Using a complex statistical model (artificial neural network) to upscale487

GPP for Europe, Papale et al (2015) recognise a stablisation in the inferred values when incorporating more488

than 30-50 FLUXNET sites into the model calibration. Although this study pools sites from different PFTs,489

it appears that the resulting stability (we infer <5% from their Fig. 3) is consistent with the results in Fig. 10.490

491

Our estimates of the number of required sites per PFT must be considered as a minimum. The bootstrap492

assumes a random set of measurements across the global distribution. However, as discussed above, certain493

PFTs are sampled within the “wrong” latitude or climate and, as such, might be too clumped compared494

to the corresponding global range. This is demonstrated in Fig. 11 which indicates how primary produc-495

tivity simulated by a land-surface model (JULES-SF) differs between the climate-canopy space sampled496

by FLUXNET2015 or EMDI i.e. the interpolated space (defined as mean ± 2 standard deviations for the497

corresponding carbon-monitoring sites) and the global climate-canopy space of the PFT in question (§3.5.3).498

On the basis of Fig. 11, the primary productivity of non-mediterranean needleleaf forest (as a global PFT)499

may be overestimated by 20-30% owing to site sampling in relatively temperate climes compared to the500

global distribution (§4.2). Of the other main PFTs contributing to global primary productivity, values for501

C3 grass might be underestimated, owing to sampling at sites which are somewhat cooler than the global502

distribution (Tab. 5). However, sites for C3 crops and tropical broadleaf forest appear representative of503

productivity across the corresponding global PFT. This is in spite of low site numbers for tropical broadleaf504

forest within FLUXNET2015 – an inference also made by Jung et al (2009) when comparing a complex505

statistical upscaling, based on model trees, against output from the LPJmL biosphere model. The mean506

absolute difference between the interpolated-to-full ratios in Fig. 11 and unity is 15% and 11% for NPP507

and GPP, respectively. This is more than the 2% precision identified in Fig. 10 for 50 sites. This implies508

that locating new sites in previously unsampled climate-canopy space may be more important than a simple509

increase in the number of sites (Baret et al 2006).510

511

4.4 Caveats and Limitations512

Our bootstrapping and sampling experiments conducted above cannot account for bias in site measurements,513

such as the systematic underestimation of site NPP in field measurements (Clark et al 2001; Malhi et al 2011)514

or a preponderance of carbon sinks at disturbed sites within FLUXNET2015 (Baldocchi 2008; Amiro et al515

2010). As noted earlier (§3.5.2), systematic errors and bias can be substantial (∼20%). Site measurements516

for NPP within the EMDI database are mostly from the 1970s or later. On the basis of FACE experiments517

(Ainsworth & Long 2005) and observed increasing atmospheric CO2 concentration (Keeling et al 1996), we518

might expect an enhancement in site NPP of up to 8% by 2002-2008 (period used for global NPP upscaling).519

520

In lieu of an in situ meteorology for EMDI sites, we substituted the Princeton meteorology in our weighted521

upscaling, interpolating across the 0.5◦ grid cells that coincide with the site locations (§3.4.2). However, our522

results appears to be fairly insensitive to the dataset used for site meteorology. Thus, when replacing the523

tower meteorology at FLUXNET2015 locations with the corresponding Princeton meteorology, the mean524

representativeness at PFT level (wpft) drops by 0.05 on average. This is equivalent to 6% and does not525

significantly affect the ranking of PFTs in terms of representativeness. Systematic differences between tower526

and Princeton meteorology are 0.8◦C, 4% and 2% for MAT, MAP and MASW, respectively (n=154). These527

offsets are small compared to the standard deviation of the same variables across global PFTs which are used528

to normalise the euclidian distance in Eq. 1 (e.g. 53% for MAP when averaging across all PFTs in Tab. 5).529

Similarly, although MAT, MAP, MASW and LAImax are only calculated from a 7yr period (2002-2008)530

for global cells, the environmental variable with the greatest interannual variation (MAP) is estimated to531

a standard error of 14%. Once again, this is much less than the standard deviation across the global PFT532

(53%).533

534
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Some of our results are sensitive to landcover. Global landcover maps often manifest differences in classi-535

fication, particularly over heterogeneous landscapes (Quaife et al 2008). Site descriptions of landcover can536

also vary and are partly subjective (De Kauwe et al 2011). These inconsistencies engender uncertainty since:537

(i) representativeness depends on the landcover adopted for each global cell and is calculated with respect538

to sites of the same (or very similar) vegetation type; (ii) precise attribution of global primary productivity539

to different vegetation types depends on the adopted global landcover. The potential mixing/confusion of540

landcover at sites may also spuriously increase the productivity range determined for each PFT (Fig. 9).541

542

The method adopted for upscaling is very simple. However, its primary purpose is to determine broadly543

which PFTs contribute most to global primary productivity. The number of environmental variables used544

for representativeness and upscaling could be extended, once larger samples (more sites) are available for all545

PFTs. Additional variables, assuming they become available for all sites, could include soil properties, espe-546

cially those influencing plant water availability, and seasonality of climate. We also note that the extended547

network of FLUXNET sites, LaThuile, for which harmonised datasets of GPP are not yet available, still548

contains many of the geographical and climate biases discussed above for FLUXNET2015. Thus, interpo-549

lating across the 0.5◦ Princeton meteorology grid cells that coincide with LaThuile locations, an update of550

the MAP-MAT sampling density within Fig. 2, still reveals 2σ oversampling in temperate regions and little551

improvement in site-to-global correlation (r2=0.18 for LaThuile versus r2=0.17 using FLUXNET2015).552

5 Summary and Conclusions553

We determine the ability of two important carbon-monitoring networks (FLUXNET2015 and EMDI) to554

represent global vegetation by calculating the euclidian distance in climate-canopy space between global 0.5◦555

cells and carbon-monitoring sites of the same PFT. One of the carbon-monitoring networks, FLUXNET2015,556

constitutes a fairly new data release. Primary productivity for global cells is calculated as a weighted average557

of annual carbon flux from sites of the same PFT and the inverse euclidian distance as weights. Subsequent558

integration of global cells leads to estimates of GPP and NPP at PFT and global levels. The purpose of this559

upscaling is to determine broadly the main PFT contributing to annual global primary productivity with a560

view to improving their representativeness in carbon-monitoring networks. The main conclusions from this561

study are as follows:562

1. Upscaled global NPP and global GPP are 66±4 Gt yr−1 and 131±8 Gt yr−1, respectively. Given the563

simplicity of the upscaling method and the range in existing estimates, this is fairly close to (10-20%564

higher than) the majority of recent (mostly model-based) estimates.565

2. Of the main contributors to global NPP and GPP: (i) tropical broadleaf forest is numerically under-566

represented, particularly in the Old World by FLUXNET2015 (though the currently sampled climate-567

canopy space for this PFT may permit more robust upscaling compared to other vegetation types);568

(ii) C3 crops are sampled “correctly” in climate-canopy space but the global contribution of this PFT569

is uncertain owing to sensitivity of productivity to species and treatment; and (iii) site measurements570

of non-mediterranean needleleaf forest are relatively numerous but sampling occurs at the “wrong”571

latitude and climate with respect to the global stronghold of this PFT within the boreal forest. Poor572

sampling of global climate space also occurs for several other PFTs (mediterranean needleleaf forest,573

non-tundra shrub and C4 crops) but their contribution to global primary productivity is an order of574

magnitude less than that of non-mediterranean needleleaf forest. Considering its modest contribu-575

tion globally (2-3% primary productivity), non-tropical (temperate) broadleaf forest is oversampled576

compared to other PFTs.577

3. (Semi-)arid regions (MAP<400 mm yr−1) are undersampled by both carbon-monitoring networks,578

particularly the tundra and northern half of the boreal needleleaf forest. Of global vegetated cells579

with MAP<400 mm yr−1, 91% are characterised by sparse vegetation cover (LAImax ≤ 2 m2m−2).580
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In general, sparse vegetation is poorly sampled by both networks even though it covers 50% of the581

vegetated land-surface and contributes one third of global NPP and global GPP.582

4. Site-measured NPP and GPP exhibit a broad range within the same vegetation type (standard devi-583

ation is 56% mean). As a consequence of this broad range, our bootstrap error analysis indicates that584

at least 50 sites per PFT are required to quantify the primary productivity of each global vegetation585

type sufficiently well (2% precision) in order to identify its potential role as a sink of anthropogenic586

carbon (assuming ecosystem respiration is measured to the same precision). A land-surface model sim-587

ulation of primary productivity within the network-sampled climate-canopy space, compared against588

productivity simulated for global climate-canopy space, underlines the importance of adding sites which589

considerably extend the environmental range over which a given PFT is being sampled.590
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Table 1: An alphabetical list of acronyms, abbreviations and quantities used frequently in the main text.
Units are given where appropriate.

Definition

CUE Carbon-Use Efficiency
EMDI Ecosystem Model-Data Intercomparison
FLUXNET2015 Flux Network (2015 release)
GPP Gross Primary Productivity (Gt yr−1 or kg m−2 yr−1)
LAI Leaf Area Index (m2 m−2)

LAImax mean maximum seasonal LAI (m2 m−2)
LUE Light-Use Efficiency
MAP Mean Annual Precipitation (mm yr−1)
MAT Mean Annual Temperature (◦C)
MASW Mean Annual ShortWave radiation (W m−2)
MODIS Moderate Resolution Imaging Spectroradiometer
NPP Net Primary Productivity (Gt yr−1 or kg m−2 yr−1)
PFT Plant Functional Type

Table 2: The numerical representativeness of each plant functional type (PFT) within the carbon-monitoring
networks (FLUXNET2015 and EMDI) compared to corresponding global 0.5◦ land-points. The percentage
of sites (or vegetated global area) within each vegetation class is indicated and the number of sites, where
applicable, is shown in parentheses. LaThuile is an extended FLUXNET network (Stoy et al 2009) for which
a harmonised dataset of site GPP might be expected to become available in the future. For the LaThuile
network, we aggregate grasses and crops since data are not always available to reliably distinguish between
C3 and C4. The bottom row shows the global number of sites for each network. The second left-most
column indicates the PFT abbreviation adopted in subsequent tables and figures.

PFT PFT EMDI FLUXNET2015 LaThuile Global
abbreviation %(n) %(n) %(n) %

Non-tropical Broadleaf Forest BL 18.5(51) 16.9(26) 24.0(106) 1.9
Non-mediterranean Needleleaf Forest NL 21.0(58) 21.4(33) 17.9(79) 26.8
C3 crop Cr3 4.0(11) 10.4(16)

12.2(54)
10.6

C4 crop Cr4 1.1(3) 3.2(5) 1.0
Tundra Shrub Tu 4.3(12) 1.3(2) 0.7(3) 8.6
Mixed Forest MX 3.6(10) 5.2(8) 4.1(18) 4.5
Tropical Broadleaf Forest TBL 8.0(22) 3.2(5) 5.9(26) 9.1
C3 grass C3 5.4(15) 16.9(26)

19.3(85)
22.9

C4 grass C4 14.1(39) 2.6(4) 6.9
Non-tundra Shrub SH 4.7(13) 7.1(11) 6.3(28) 1.7
Savanna SAV 1.8(5) 8.4(13) 5.9(26) 5.4
Mediterranean Needleleaf Forest MNL 13.4(37) 3.2(5) 3.6(16) 0.7

Global (276) (154) (441)
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Table 3: Previous estimates of global Net Primary Productivity (NPP) and Gross Primary Productivity (GPP) compared to upscaled estimates
from the current study (in bold). Summary estimates for NPP are taken from the comprehensive review and compilation of Ito (2011),
aggregating the mean averages of various methodological subgroups. BGC and DGVM are biogeochemical and dynamic global vegetations
models, respectively. WUE is water-use efficiency. LUE and PEM are light-use efficiency and productivity-efficiency models. Indicative
references for global GPP, which has far fewer estimates than NPP, are given in the far right column (see also the partial review and technique
intercomparison of Anav et al (2015) and Zhang et al (2019)).

Technique Global NPP Global GPP
Range Subgroup Range Subgroup References
[Gt yr−1] [Gt yr−1]

Empirical Scaling 46-54 inventory, empirical 120-130 inventory, statistical Beer et al (2010); Zhang et al (2017b);
Bodesheim et al (2018)

Process-based Modelling 56-61 BGC, DGVM 120-170 BGC, DGVM Kattge et al (2009); Chen et al (2017);
Ryu et al (2011); Alton (2013); Anav et al (2015)

LUE Models 49 LUE, PEMs 105-140 LUE, PEMs Yuan et al (2010); Zhang et al (2009);
Yebra et al (2015); Zhang et al (2017b); Joiner et al (2018)

WUE Approach – – 125-130 – Beer et al (2010); Jasechko et al (2013)
Oxygen isotopes – – 120-175 – Welp et al (2011); Liang et al (2017)
Atmospheric CO2 Modelling – – 125-165 – Koffi et al (2012)
Weighted Upscaling 66±4 – 131±8 – this study
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Table 4: The Net Primary Productivity (NPP) and Gross Primary Productivity (GPP) per Plant Functional Type (PFT) and as a global sum
(last row). PFTs are ranked, with greatest contribution to global GPP at the top, and are abbreviated according to Tab. 2. Estimates for NPP
and GPP are given both in Gt yr−1 and as a percentage of the global total. Uncertainties in Gt yr−1 are derived from the bootstrap error
analysis. The global area occupied by each PFT is given in millions of km2.

PFT Area NPP GPP
(-) (mi.km2) (Gt yr−1) (%) (Gt yr−1) (%)

TBL 13.8 14.1±1.0 22 37.8±6.0 29
C3 27.8 10.1±1.8 16 23.5±2.9 18
NL 19.9 8.5±0.7 13 22.6±1.9 17
Cr3 12.6 17.1±2.3 26 15.4±1.4 12
SAV 8.0 5.0±2.0 8 8.9±1.1 7
MX 5.1 2.8±0.3 5 8.5±1.0 6
C4 9.8 4.2±0.6 7 5.6±2.0 4
BL 2.1 1.3±0.1 2 3.5±0.1 3
Tu 5.6 0.5±0.1 1 1.6±0.4 1
SH 2.4 0.3±0.1 1 1.2±0.4 1
Cr4 1.4 1.2±0.2 2 1.1±0.1 1
MNL 0.9 0.4±0.1 1 1.1±0.3 1

global 109 66±4 100 131±8 100
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Table 5: The climate distribution for global 0.5◦ cells, organised according to plant functional type (PFT), compared to sites classified with the
same vegetation in the EMDI and FLUXNET2015 networks. MAP, MAT, MASW and LAImax denote, respectively, Mean Annual Precipitation,
Mean Annual Temperature, Mean Annual Shortwave radiation and mean maximum seasonal LAI. In each case we show the mean plus or
minus the standard deviation. Values highlighted in bold indicate site means which lie more than two (global) standard deviations from the
corresponding global mean. In the left-most column, the PFT is abbreviated according to Tab. 2. Sample sizes for EMDI and FLUXNET2015
are also given in Tab. 2.

PFT Global EMDI FLUXNET2015

MAP MAT MASW LAImax MAP MAT MASW LAImax MAP MAT MASW LAImax

[mm yr−1] [◦C] [W m−2] [m2m−2] [mm yr−1] [◦C] [W m−2] [m2m−2] [mm yr−1] [◦C] [W m−2] [m2m−2]

BL 1130±500 12.6±4.1 160±30 3.3±1.1 990±460 12.6±6.9 150±40 3.7±1.2 830±320 11.5±4.0 160±20 3.9±1.5
NL 510±270 -3.9±5.4 110±20 2.3±1.0 890±500 5.4±4.5 140±30 3.5±1.1 710±390 4.3±4.9 140±30 3.2±1.1
Cr3 830±520 14.8±7.7 170±40 2.4±1.2 840±820 14.0±7.7 180±30 2.3±1.2 750±390 11.4±3.4 160±40 2.5±0.7
Cr4 1040±520 24.1±5.3 210±20 2.5±1.3 1430±950 20.0±9.4 190±30 2.2±1.1 720±180 10.8±2.4 180±30 2.5±0.5
Tu 290±210 -10.7±5.0 100±40 0.7±0.5 810±580 -0.7±5.7 120±30 1.9±1.4 170±10 -6.6±2.6 90±20 0.6±0.1
MX 1060±460 11.2±6.0 160±40 3.5±1.1 990±390 11.6±3.2 180±20 3.9±1.0 820±360 9.4±5.1 150±40 4.1±1.2
TBL 2260±750 25.9±1.7 200±10 5.6±1.2 2200±780 25.8±1.9 210±20 5.7±1.2 1750±850 23.2±2.1 190±30 5.5±1.7
C3 530±530 13.5±8.6 190±40 1.5±1.4 540±270 7.8±4.6 160±30 1.7±0.9 690±340 8.7±6.7 170±40 2.4±1.4
C4 610±410 24.2±4.3 230±20 1.5±1.1 820±390 21.6±5.4 210±20 2.2±1.2 690±420 21.9±3.9 250±10 1.6±1.1
SH 520±190 21.6±5.3 230±20 1.3±0.9 380±160 13.8±6.0 200±20 1.1±0.8 460±260 7.8±10.8 180±50 2.0±1.3
SAV 1250±470 25.4±2.3 220±10 3.4±1.2 600±310 27.4±1.2 220±10 1.7±1.0 780±510 23.3±4.2 230±20 1.7±0.8
MNL 550±210 1.7±2.7 210±20 1.0±0.8 1240±630 13.3±4.5 170±20 3.4±1.3 1010±400 15.1±7.5 200±40 2.9±1.5
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Figure Captions:966

967

Fig.1: Global Plant Functional Types (PFTs) based on Goldwijk et al (2011) with modification according968

to the distribution of C4 vegetation (Still et al 2003). Grid-squares are at 0.5◦ resolution. PFTs are abbre-969

viated according to Tab. 2. Land without vegetation is black.970

971

Fig.2: Climate zones covered by the carbon-monitoring sites compared to global vegetated 0.5◦ landpoints972

(represented by dots). Climate is expressed as Mean Annual Temperature versus Mean Annual Precipi-973

tation. The delineated climate-biomes follow Whittaker (1975), namely: tundra (Tu), boreal forest (BF),974

temperate grassland (TeG), woody shrubland (WoSh), temperate deciduous forest (TeDF), temperate rain975

forest (TeRF), tropical deciduous forest (TrDF), tropical rain forest (TrRF), savanna (Sa) and desert (De).976

977

Fig.3: Density of carbon-monitoring sites within temperature-precipitation space versus global 0.5◦ vege-978

tated cells. Panel (a) combines all sites whereas panel (b) presents for individual carbon-monitoring net-979

works. Density is recorded as number of locations (or global grid cells) per 500 mm yr−1 in mean annual980

precipitation and per 10◦C in mean annual temperature. In panel (b) the vertical right axis has been scaled981

to allow a comparison between EMDI and FLUXNET2015. In panel (a), we annotate 2σ outliers from the982

linear fit.983

984

Fig.4: The mean amplitude of seasonal Leaf Area Index (LAI) versus the mean maximum seasonal LAI985

(LAImax) for the carbon-monitoring networks, compared to global vegetated 0.5◦ cells (represented by986

dots). Amplitude is defined as the difference between the maximum and minimum LAI over the course of987

the year at the MODIS 8 day timestep. For both sites and global cells, the plotted amplitudes and maxima988

are averages over the period 2002-2008 (incl.). Displacement from the line y=x towards the bottom-right of989

the plot indicates a more evergreen habit.990

991

Fig.5: The mean of wcell averaged across all global 0.5◦ cells within the same PFT (wpft) for FLUXNET2015992

(vertical axis) and EMDI (horizontal axis). The quantity wcell is defined in Eq. 2 using the inverse euclid-993

ian distance in climate-canopy space between global cells and relevant (same-PFT) carbon-monitoring sites.994

High values of wpft (&1) suggest that the network (FLUXNET2015 for GPP and EMDI for NPP) represents995

well the vegetation type (“good rep.”). Poorly represented PFTs are towards the bottom-left (“poor rep.”).996

PFTs are labelled according to Tab. 2.997

998

Fig.6: Mean annual temperature versus latitude for 0.5◦ global cells (small dots) compared to sites of the999

same vegetation type within FLUXNET2015 and EMDI (large coloured markers). Panels (a) and (b) show,1000

respectively, non-tundra shrub and non-mediterranean needleleaf forest. Note that both axes change their1001

range between panels (a) and (b). For non-mediterranean needleleaf forest, there is a very small proportion1002

of global cells (<1%) at latitudes ≃ -50◦ which is not shown.1003

1004

Fig.7: The modified mean inverse euclidian distance (wcell) calculated for 0.5◦ global cells, with respect1005

to FLUXNET2015, using Eq. 2. High values indicate good representativeness of the climate-canopy space1006

by FLUXNET2015 sites of the same PFT as the cell. Non-vegetated areas are black. Crosses denote1007

FLUXNET2015 locations.1008

1009

Fig.8: The modified mean inverse euclidian distance (wcell) calculated for 0.5◦ global cells, with respect to1010

EMDI, using Eq. 2. High values indicate good representativeness of the climate-canopy space by EMDI sites1011

of the same PFT as the cell. Non-vegetated areas are black. Crosses denote EMDI locations.1012

1013

Fig.9: The ranges of Net Primary Productivity (NPP) and Gross Primary Productivity (GPP) for EMDI and1014

FLUXNET2015 sites, respectively, expressed in kg m−2 yr−1. Range is defined as mean-SD to mean+SD,1015
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where SD is the standard deviation. Sites are grouped by PFT which is abbreviated according to Tab. 2. The1016

filled circle is the mean GPP of each PFTmultiplied by a reference Carbon-Use Efficiency (CUE=NPP/GPP)1017

of 0.45.1018

1019

Fig.10: Estimates of Net Primary Productivity (NPP; upper panel) and Gross Primary Productivity (GPP;1020

lower panel) for PFTs which are well represented in terms of the original sample size (abbreviated according1021

to Tab. 2). To compare different vegetation types, primary productivity is expressed per unit area (kg1022

m−2 yr−1) by averaging over all global grid cells of the corresponding PFT. The sample size used in the1023

weighted global calculation of GPP (FLUXNET2015 sites) or NPP (EMDI sites) is decreased systematically1024

from approximately the maximum number of available sites to a minimum of 3. Sample selection is based1025

on a bootstrap method without replacement. Markers represent the mean across the bootstrap samples.1026

Errorbars represent the standard deviation from the mean and reveal the uncertainty in GPP and NPP1027

owing to limited sampling. For clarity, markers have been slightly offset from one another horizontally.1028

1029

Fig.11: The GPP ratio versus NPP ratio for global vegetated 0.5◦ landpoints, shown separately for each PFT1030

and labelled according to Tab. 2. The ratio equals the primary productivity simulated within the interpolated1031

climate-canopy space, by the land-surface model JULES-SF, divided by the primary productivity simulated1032

for the global climate-canopy space. Interpolated space depends on the distribution of carbon-monitoring1033

sites for FLUXNET2015 and EMDI (§4.2). Similarity between the interpolated and global space should1034

yield a ratio close to unity (dot-dash line). The dashed line (y=x) represents similar biases for NPP and1035

GPP.1036
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Figure 1: Global Plant Functional Types (PFTs) based on Goldwijk et al (2011) with modification according
to the distribution of C4 vegetation (Still et al 2003). Grid-squares are at 0.5◦ resolution. PFTs are
abbreviated according to Tab. 2. Land without vegetation is black.
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Figure 2: Climate zones covered by the carbon-monitoring sites compared to global vegetated 0.5◦ land-
points (represented by dots). Climate is expressed as Mean Annual Temperature versus Mean Annual
Precipitation. The delineated climate-biomes follow Whittaker (1975), namely: tundra (Tu), boreal forest
(BF), temperate grassland (TeG), woody shrubland (WoSh), temperate deciduous forest (TeDF), temperate
rain forest (TeRF), tropical deciduous forest (TrDF), tropical rain forest (TrRF), savanna (Sa) and desert
(De).
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Figure 3: Density of carbon-monitoring sites within temperature-precipitation space versus global 0.5◦

vegetated cells. Panel (a) combines all sites whereas panel (b) presents for individual carbon-monitoring
networks. Density is recorded as number of locations (or global grid cells) per 500 mm yr−1 in mean annual
precipitation and per 10◦C in mean annual temperature. In panel (b) the vertical right axis has been scaled
to allow a comparison between EMDI and FLUXNET2015. In panel (a), we annotate 2σ outliers from the
linear fit.
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Figure 4: The mean amplitude of seasonal Leaf Area Index (LAI) versus the mean maximum seasonal
LAI (LAImax) for the carbon-monitoring networks, compared to global vegetated 0.5◦ cells (represented by
dots). Amplitude is defined as the difference between the maximum and minimum LAI over the course of
the year at the MODIS 8 day timestep. For both sites and global cells, the plotted amplitudes and maxima
are averages over the period 2002-2008 (incl.). Displacement from the line y=x towards the bottom-right of
the plot indicates a more evergreen habit.
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Figure 5: The mean of wcell averaged across all global 0.5◦ cells within the same PFT (wpft) for
FLUXNET2015 (vertical axis) and EMDI (horizontal axis). The quantity wcell is defined in Eq. 2 us-
ing the inverse euclidian distance in climate-canopy space between global cells and relevant (same-PFT)
carbon-monitoring sites. High values of wpft (&1) suggest that the network (FLUXNET2015 for GPP and
EMDI for NPP) represents well the vegetation type (“good rep.”). Poorly represented PFTs are towards
the bottom-left (“poor rep.”). PFTs are labelled according to Tab. 2.
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Figure 6: Mean annual temperature versus latitude for 0.5◦ global cells (small dots) compared to sites of the
same vegetation type within FLUXNET2015 and EMDI (large coloured markers). Panels (a) and (b) show,
respectively, non-tundra shrub and non-mediterranean needleleaf forest. Note that both axes change their
range between panels (a) and (b). For non-mediterranean needleleaf forest, there is a very small proportion
of global cells (<1%) at latitudes ≃ -50◦ which is not shown.
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Figure 7: The modified mean inverse euclidian distance (wcell) calculated for 0.5◦ global cells, with respect
to FLUXNET2015, using Eq. 2. High values indicate good representativeness of the climate-canopy space
by FLUXNET2015 sites of the same PFT as the cell. Non-vegetated areas are black. Crosses denote
FLUXNET2015 locations.
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Figure 8: The modified mean inverse euclidian distance (wcell) calculated for 0.5◦ global cells, with respect
to EMDI, using Eq. 2. High values indicate good representativeness of the climate-canopy space by EMDI
sites of the same PFT as the cell. Non-vegetated areas are black. Crosses denote EMDI locations.
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Figure 9: The ranges of Net Primary Productivity (NPP) and Gross Primary Productivity (GPP) for
EMDI and FLUXNET2015 sites, respectively, expressed in kg m−2 yr−1. Range is defined as mean-SD to
mean+SD, where SD is the standard deviation. Sites are grouped by PFT which is abbreviated according
to Tab. 2. The filled circle is the mean GPP of each PFT multiplied by a reference Carbon-Use Efficiency
(CUE=NPP/GPP) of 0.45.
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Figure 10: Estimates of Net Primary Productivity (NPP; upper panel) and Gross Primary Productivity
(GPP; lower panel) for PFTs which are well represented in terms of the original sample size (abbreviated
according to Tab. 2). To compare different vegetation types, primary productivity is expressed per unit area
(kg m−2 yr−1) by averaging over all global grid cells of the corresponding PFT. The sample size used in the
weighted global calculation of GPP (FLUXNET2015 sites) or NPP (EMDI sites) is decreased systematically
from approximately the maximum number of available sites to a minimum of 3. Sample selection is based
on a bootstrap method without replacement. Markers represent the mean across the bootstrap samples.
Errorbars represent the standard deviation from the mean and reveal the uncertainty in GPP and NPP
owing to limited sampling. For clarity, markers have been slightly offset from one another horizontally.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20  25  30  35  40

N
P

P
 [k

g 
m

-2
 y

r-1
]

 BL
 C4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  5  10  15  20  25  30  35  40

G
P

P
 [k

g 
m

-2
 y

r-1
]

Sample Size [-]

 NL
 C3



42

Figure 11: The GPP ratio versus NPP ratio for global vegetated 0.5◦ landpoints, shown separately for
each PFT and labelled according to Tab. 2. The ratio equals the primary productivity simulated within
the interpolated climate-canopy space, by the land-surface model JULES-SF, divided by the primary pro-
ductivity simulated for the global climate-canopy space. Interpolated space depends on the distribution
of carbon-monitoring sites for FLUXNET2015 and EMDI (§4.2). Similarity between the interpolated and
global space should yield a ratio close to unity (dot-dash line). The dashed line (y=x) represents similar
biases for NPP and GPP.
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