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   NIRS  can be used in soybean breeding programs to discriminate superior  

genotypes;    

   NIRS can be used in breeding programs to  predict  the  oil content  of   intact  

grains .    

   GA - LDA result ed in a high discrimination accuracy (88.89%  -   prediction  

set);     

   PLSR   oil prediction  models presented low RMSEP   ( 0.96%)  and adequate  

R 2   ( 0.66) ;     

  

  



 

  

Abstract  

In soybean (Glycine max L.) breeding programs, segregation is normally observed, 

and it is not possible to have replicates of individuals because each genotype is a unique 

copy. Therefore, near-infrared spectroscopy (NIRS) was used as a nondestructive tool to 

classify soybeans by genotypes and to predict oil content. A total of  

260 soybean genotypes were divided into five classes, which were composed of 32, 52, 

82, 46, and 49 samples of the BV, BVV, EB, JAB, and L class, respectively. NIR spectra 

were obtained using oven-dried samples (80 g) in a reflectance mode. A successive 

projection algorithm and genetic algorithm with linear discriminant analysis 

discriminated genotypes of the low (L class) from the high (EB class) for oil content 

(88.89% accuracy). The partial least square regression models for oil content were 

considered good (root mean square error of prediction of 0.96%). Therefore, NIRS can 

be used as a non-destructive tool in soybean breeding programs, but further investigation 

is necessary to improve the robustness of the models. It is important to note that to use 

the models, it is necessary to collect NIR spectra from dry soybean samples.  

  

Keywords: Glycine max L., principal component analysis (PCA), PCA with linear 
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1. Introduction   

 According to FAOSTAT (2019), in 2017 the world soybean [Glycine max L. (Merrill)] 

production was 353 million tons (MT). In 2012, Brazilian soybean production surpassed 

that of the United States (Palmer & Hymowitz, 2016); however, in 2017, production in 

the United States reached 119 MT, followed by Brazil (114 MT), Argentina (55 MT), and 



 

China (13 MT). Soybeans are considered one of the main cultivated oilseeds worldwide 

(Conab, 2019) and account for 67% of the protein meal in the world (Palmer & Hymowitz, 

2016). Similarly, soybeans are an important source of oil, protein for both humans and 

animals, and other products, such as biodiesel in Brazil (Woyann et al., 2019).  

In general, soybean breeding is conducted to create variability for desired traits, 

identification of superior genotypes, and production of commercial seeds (Miladinović et 

al., 2011). Plant breeding programs generally select the best genotypes based on the most 

important agronomic and commercial traits. Thus, for the soybean crop, one of the most 

important traits is the oil content in the seed, allied with agronomic traits (Bezerra et al., 

2017).  

 The soybean reproduces by self-fertilization, being considered a perfect autogamous 

species (Silva et al., 2017a). Therefore, the system of conducting a conventional breeding 

program consists of artificial hybridizations, to obtain variability and subsequent self-

fertilization for the selection of genotypes with superior traits. In the initial process of 

obtaining segregated generations with the existence of autogamy, from the first generation 

(F1) onwards, the plants self-fertilize again and the segregated generations produce unique 

genotypes, as long as segregation lasts. The fixed genotypes are obtained predominantly 

in the F6 generation. Thus, during the genotype segregation process, there is no possibility 

of having replicates for the individuals because each genotype produced is a unique copy 

(Silva et al., 2017a). Therefore, the existence of nondestructive methods for the evaluation 

and selection of agronomic traits, such as nearinfrared spectroscopy (NIRS), is a process 

of extreme importance for the early stages of a breeding program. Additionally, the non-

destruction of seeds allows these populations to be advanced to high levels by inbreeding, 

allowing the selection of superior strains for the future release of commercial cultivars 



 

carrying agronomic traits of interest, with high oil content among them. This process is 

the main focus of the present study (Silva et al., 2017b).  

Because our soybean breeding program is producing advanced lines of different 

genealogies from two-way, four-way, and eight-way crosses, with a high degree of 

endogamy, non-destructive evaluation of seeds would be an important tool for the 

improvement of the genetic gain. Thus, the main objective of this study was to use 

nearinfrared spectroscopy (NIRS) and chemometric tools as a non-destructive method to 

classify intact grains by genotypes and to predict oil content in soybean breeding program.   

  

2. Material and methods  

2.1. Plant material  

A total of 260 soybean (Glycine max (L.) Merrill) genotypes from 2012/2013 and  

2013/2014 seasons were produced in the soybean breeding program of UNESP – FCAV 

(21°15′17″S, 48°19′20″W, 595 m above sea level). The 260 genotypes consisted of 

advanced lines and some commercial checks, which were placed into five different groups 

according to the research line from which they were originated. The genotypes from the 

class L were obtained by crossing parents predominantly with characteristics of precocity 

and high grain yield. The genotypes from the class JAB were obtained from a study that 

had a wide genetic basis for soybeans; thus, two-way, four-way and eight-way crosses 

were synthesized from commercial parents with high yield and traditional soybean 

germplasms. The genotypes from the classes BV and BVV were obtained from crosses 

between parents with high yield and parents with resistance to soybean rust (Phakopsora 

pachyrhizi). Finally, the genotypes from the class EB were obtained from crossings 

between parents with high yield and parents with resistance source to root-knot nematodes 

(Meloidogyne incognita) and soybean cyst nematode (Heterodera glycines), Table A.1. 



 

From each genotype, a sample of 80 g of intact soybean grains was obtained for the NIR 

spectra collection and reference analysis.  

2.2. NIR spectra collection  

 Before the NIR spectra collection, the samples were oven-dried at 105°C for 24 h to 

obtain grains with similar moisture content. After temperature stabilization at ~ 25°C, the 

intact soybean samples were poured into a glass vial, which was set on a rotary accessory. 

The NIR spectra were obtained using a Bruker spectrometer (model Tango, Ettlingen, 

Germany) using the reflectance mode on the wavenumber range of 12,000– 4,000 cm-1, 

with 64 scans and a resolution of 16 cm-1. A total of five spectra were collected from each 

genotype sample totaling 1,300 NIR spectra. The reflectance spectra were converted into 

a pseudo-absorbance scale Log(1/R), where R was the measured  

reflectance signal.  

2.3. Reference analysis  

2.3.1. Moisture content  

The soybean grains were dried in an oven (FANEM Model 320-SE, São Paulo, 

Brazil) at 105°C for 24 h and the moisture content was determined according to the 

recommendations of the Brazilian Ministry of Agriculture and Husbandry (Brasil, 2009).  

The results are expressed in percentages (%) in Table 1.   

2.3.2. Oil content  

After NIR spectra collection the dried soybean grain samples were ground in a 

knife mill (Metalúrgica Roma, model MR 340, São Paulo, Brazil) with a 1 mm screen. 

The oil extraction was carried using a Soxhlet extractor (Tecnal, model TE 044-5/50, 

Piracicaba, Brazil) according to the reference method reported by A.O.A.C. (1997). The 

results are expressed in percentages (%) in Table 1.   



 

2.4. Chemometric analysis  

The NIR spectral data pre-processing, classification, and prediction models were 

performed using MATLAB® software R2012b (MathWorks, USA). The NIR spectra  

were pre-processed using the multiplicative scatter correlation as described by Geladi et 

al. (1985), which is intended to reduce light scattering influences. Similarly, the standard 

normal variate was applied to the spectra as stated by Barnes et al. (1989). To correct the 

spectra baseline, the first (1SG) and second (2SG) derivative of Savitzky-Golay (Savitzky 

and Golay, 1964) were used. All NIR spectra were mean-centered and 1,300 spectra were 

reduced to their average spectra, totaling 260 spectra. These spectra were divided into 

calibration (70%), validation (15%), and prediction (15%) sets by applying the classical  

Kennard-Stone algorithm (Kennard and Stone, 1969).   

2.4.1. Classification model development  

For the development of the classification models, principal component analysis 

(PCA) with linear discriminate analysis (PCA-LDA), partial least squares discriminant 

analysis (PLS-DA), successive projection algorithm (SPA) with LDA (SPA-LDA), and a 

genetic algorithm (GA) with LDA (GA-LDA) (Costa et al., 2016) were used. The 

optimum number of variables for SPA-LDA and GA-LDA was obtained using the 

average G risk of incorrect classification of LDA. The cost function (G) was obtained 

from the validation set, as follows:   

                  (1) 

     

where  is the number of validation samples and  is defined as:  

                                                                              (2) 

where I (n) is the index of the truth class for the nth validation object, xn ; 

 is the square Mahalanobis distance between the object xn (class index) and  



 

the average of a sample m I (n ) in its truth class;  is the square Mahalanobis  

distance between the object xn and the sample average  in its wrong class.  

  

The GA routine was conducted for 40 generations with 80 chromosomes each. 

The crossing probabilities and mutations were adjusted to 60% and 10%, respectively. 

Therefore, the algorithm was repeated three times from random initial populations. The 

best solution (in terms of aptitude value) resulting from the three GA routines was used. 

The LDA scores, loadings, and discriminant function (DF) were obtained for the different 

genotypes.  

2.4.2. Prediction model development  

The NIR spectral datasets were correlated with oil content using the partial least 

squares (PLS) regression and cross-validation Venetian blinds (six latent variables - LVs). 

The spectra were only mean-centered before model construction. To evaluate the 

performance of the calibration models, the root mean square error of the calibration 

(RMSEC) and root mean square error of the prediction (RMSEP) were calculated, 

according to the following equation:   

 RMSEC or RMSEP =      

where yi represents the value predicted by the multivariate model, yi represents 

the reference value, and n corresponds to the number of samples.  

The performance of the calibration models was also evaluated based on the 

determination coefficient R2, both for the calibration and prediction set (Pasquini, 2003).  

  



 

3. Results and discussion  

3.1. NIR spectra   

All models were built from the spectral data transformed into a pseudo-absorbance 

scale. The raw NIR spectra of all genotypes (n = 260) are shown in Figure 1a. Similarly, 

the mean NIR spectra of the genotype classes are shown in Figure 1b. The five genotype 

classes were composed of 32 samples of the BV class, 52 BVV class, 82 EB class, 46 

JAB class, and 49 L class (Figure 1b).   

 As shown in Figure 1, the spectral differences between genotypes (Figure 1a) and 

genotype classes (Figure 1b) were minimal, only the BVV class presented a lower 

apparent spectral intensity and a slight shift on wavenumbers higher than 5,000 cm-1. 

However, it was not possible to discriminate the different genotypes by only evaluating 

the NIR spectra.   

The raw NIR spectra presented broad light scattering (Figure 1a), but it was 

possible to identify seven main peaks at 4024, 4288, 4789, 5192, 5712–5824, 6752, and 

8320 cm-1 (Figure 1b). The absorption bands around 4789 cm-1 arose from R-OH, 5192 

cm-1 from the OH combinations, 5824 cm-1 from CH first overtone, the 6752 cm-1 from 

the OH first overtone caused by the presence of H2O, and the 8320 cm-1 from the CH 

second overtone (Firmani et al. 2019). Similar NIR spectra were reported by Bras et al. 

(2005) in soybean flour, but milling can provide better results by reducing the 

heterogeneity from intact soybean grains. Based on the NIR spectra features, to develop 

classification models for intact soybean grain classification based on oil content, the most 

important wavenumbers were 5712–5824 and 8320 cm-1 because they were related to CH 

bounds commonly present in fatty acids (Cozzolino et al. 2005; Firmani et al. 2019).  

However, due to sophisticated softwares the entire NIR spectra could be tested.  



 

3.2. Reference analysis: Moisture and oil content  

 The moisture and oil content obtained using the reference analysis are shown in Table 1. 

Because the soybean grains were dried out before NIR spectra collection, the moisture 

content was very low and ranged from 5.04 to 8.88% with an average value of 6.66% 

(Table 1). It is important to note that the average standard deviation values were very low, 

being 0.83%, and 1.88% for moisture, and oil content, respectively.  

 According to Palmer & Hymowitz (2016) soybeans are the most important source of 

edible vegetable oil and high-quality vegetable protein in the world. In general, soybeans 

contain 40% protein and 6.5% to 28.7% oil. Regarding oil content, an average value of 

19% is commonly reported in soybeans, which represents 360-610 kg of oil per hectare 

(Huang et al., 2016). For biodiesel production, it is important to develop cultivars with 

higher oil content. Cavalcante et al. (2011) evaluated 19 soybean lines and five cultivars 

and observed an average oil content of 16.75% with the highest oil content of  

21.59%. These values agreed with the range of 14.62 to 20.67% reported by Lundry et al. 

(2008), but Marro et al. (2020) studying different soybean cultivars in Argentina reported 

higher oil contents (20-27%). Therefore, the oil content of the developed soybean 

genotypes was in the range of what is commonly reported for this species, but the 

identification of superior genotypes is important for obtaining superior genotypes. It was 

possible to accomplish this using multivariate classification techniques.  

3.4. Chemometrics: Oil prediction  

 The oil content of intact soybean grains was predicted using partial least squares 

regression (PLSR) with cross-validation Venetian blinds using 10 data splits (RMSECV =  

1.68%). Mean-centering was the only pre-processing applied to the spectral dataset 

because this produced the best RMSECV value. The RMSEC and RMSEP were considered 

low, 1.42 and 0.96%, respectively. The correlation coefficients (R2) were below 0.70, 



 

with 0.51 and 0.66 for the calibration and prediction sets. The measured versus predicted 

oil content by PLS is shown in Figure 2. Similar results for soybean oil prediction were 

reported by Ferreira et al. (2013) and Xu et al. (2020).  

3.3. Chemometrics: classification  

To develop the classification models, two approaches were used. First, the raw 

NIR spectra were used and then the NIR spectra were pre-processed with different 

preprocessing techniques. The performance of these pre-processing techniques was 

evaluated by comparing the accuracy, sensitivity, and specificity with the validation set 

for each classification model tested. The best classification metrics were obtained with 

the raw NIR spectra; hence, all models were built without pre-processing the spectra.  

3.3.1. PCA  

 The PCA was performed with mean-centered NIR spectra. Principal component 1 (PC1) 

accounted for 94.58% of the variance in the data and principal component 2 (PC2) 

accounted for 4.52%, which together represented 99.10% of the variance of the data. The 

scores plot for PC1 versus PC2 is shown in Figure 3c. The scores plot did not exhibit a 

very clear discrimination profile for the genotype classes, although the EB genotype 

appeared to be clustered mostly below zero for scores on PC2 and the L genotype was 

above this mark. On the other hand, on PC1, the scores for the JAB genotype were 

clustered primarily on the right side and the BVV genotype on the left side. The scores 

for the BV genotype were scattered inside the entire confidence ellipse at the 95% 

confidence level (Figure 3c). Therefore, other multivariate techniques needed to be tested 

to improve classification results.  

3.3.2. PCA-LDA  

 PCA with linear discriminant analysis (PCA-LDA) was applied to the raw NIR spectra. 

To perform the discrimination using PCA-LDA it was used with five PCs because they 



 

accounted for 98.29% of the data variance (Figure 3d). The final number of PCs was 

defined according to the distribution of the variance for each PC, such that the minimum 

number of PCs accounted for the maximum variance, which occurred before the variance 

reached a small and constant trend, was selected. By applying the PCA-LDA it was not 

possible to obtain satisfactory discrimination between genotype groups, and the 

classification rates for the calibration, validation, and prediction sets were 67.72, 76.47, 

and 86.11%, respectively (Figure 3d). It was not possible to visualize a clear separation 

among genotype groups, although good classification parameters, especially for the EB  

(F-score = 100%, area under the curve (AUC) = 1.00) and JAB (F-score = 94.6%, AUC 

= 0.948) classes, were observed in the prediction set (Table 2). The F-score depicts the 

overall classification performance for each class considering the unbalanced size. The  

ROC curves for each chemometric model tested are shown in the Supplementary Material. 

Using the same chemometric method, Carvalho et al. (2018) also could not differentiate 

macadamia cultivars produced by plant breeding. Therefore, more sophisticated 

chemometric techniques were tested.  

3.3.3. PLS-DA  

 PLS-DA was applied to the mean-centered raw spectra using five latent variables selected 

by Venetian blinds (10 data splits) cross-validation (cumulative spectral variance of 

99.65%). The PLS-DA performance with the prediction set is displayed in Table 2, 

whereas the regression coefficients and DF graph are shown in Figure 4. PLS-DA 

exhibited good predictive performance for BVV (F-score = 92.3%), EB (F-score =  

100%), JAB (F-score = 88.5%), and L (F-score = 91.7%) classes with AUC values of  

0.812, 1.00, 0.894, and 0.937, respectively. However, the BV class was poorly classified 

with an F-score of 68.1% and AUC of 0.719.  



 

3.3.4. SPA-LDA  

Successive projection algorithms with linear discriminant analysis (SPA-LDA) 

were applied to the NIR spectra and to develop the SPA-LDA models, four variables were 

selected according to the minimum of the cost function (Figure 5a). The selected variables 

were the wavenumbers 4008, 4536, 5256, and 9920 cm-1 (Figure 5a). By applying the 

SPA-LDA, it was possible to discriminate the genotype EB from the other genotypes and 

these genotypes were also grouped and a slight separation appeared (Figure 5b). The 

classification rates increased when the SPA-LDA was used and values of 69.62, 85.29, 

and 88.89% were obtained for the calibration, validation, and prediction sets, respectively. 

The model performance using the external prediction set is depicted in Table 2, in which 

the F-scores and AUC values ranged 87.6–100% and 0.857–1.00, respectively. To 

improve the classification of the soybean genotypes, the genetic algorithm with linear 

discriminant analysis (GA-LDA) was also tested.  

3.3.5. GA-LDA  

The GA-LDA was applied to the raw NIR spectra and 11 variables were selected  

(Figure 6a). The selected variables were the wavenumbers 4040, 4696, 5392, 5952, 6032, 

7224, 7328, 7776, 7864, 10264, and 10632 cm-1 (Figure 6a). The GA-LDA was 

considered the best technique to develop discriminate models to classify the different 

soybean genotypes. The genotype EB was also segregated from the other genotypes, but 

by applying GA-LDA it was possible to improve the grouping and segregation of the 

other genotypes. Genotypes L and BVV formed two distinct classes, but JAB and BV 

intermingled and their discrimination was not possible (Figure 6b). The classification 

rates increased considerably when GA-LDA was used and it was possible to obtain values 

of 82.28, 97.01, and 88.89% for the calibration, validation, and prediction sets, 

respectively. The classification results for the five groups of genotypes in the prediction 



 

set are shown in Table 2, where GA-LDA produced F-scores of 57.1–100% and AUC 

values of 0.700–1.00. The algorithm presented a poor classification for the BV class, 

similar to that of PCA-LDA, although it showed much better classification for the other 

four classes (BVV, EB, JAB, and L).  

The classification results for the five groups of genotypes are shown in Table A.2. 

A possible explanation for the separation of the genotype EB from the other genotypes 

might be related to its lower oil content (Figure 6a). Additionally, some of their parents 

were considered sources of resistance to root-knot nematode (Sambaíba parent) and cyst 

nematode (Matrinxã and Kinoshita parents), which were not present in the genealogy of 

other groups of evaluated genotypes (L, JAB, BV, and BVV), according to Table 1S.  

By examining the number of samples that had oil content above 20% (Figure 7), 

the genotype L stands out because almost 70% of its sample had an oil content above 20%  

(early genotypes, from FT-Cometa, IAC-Foscarin parents and Monsoy 7501, 

COODETEC 205, IAC 23 checks). On the other hand, the EB genotypes had the lowest 

percentage of samples (3.66%) having an oil content above 20% (Figure 7). The 20% oil 

content was chosen as the threshold value and superior genotypes should have an oil 

content above this limit.   

  

4. Conclusions  

The NIRS can be use to as a non-destructive method to classify intact grains by 

genotypes and to predict oil content in soybean breeding program. Classification 

chemometric techniques, especially SPA-LDA, can be applied to discriminate soybean 

genotypes with high accuracy.   

The PLSR models for oil content prediction were considered good. Therefore, 

NIRS could be used to predict the oil content of intact soybean grains, but further 



 

investigation must address other sources of variability to improve the robustness of the 

prediction models.   

The use of oven-dried samples is not a problem for practical application because 

the seeds can be dried using other drying methods, such as in desiccators with silica gel.  

The important aspect is to only use dry soybean samples.  
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Figure 1.   Near - infrared (NIR) spectra of intact soybean grains from 260 different  

genotypes   ( a), and the mean NIR spectra of the correspondent genotype groups (b).  The  

spectra are plotted as pseudo - absorbance Log(1/R), where R is the reflectance.   

    

a. b. 



 

 

  

Figure  2 .   Measured and predicted o il content  ( %) in intact soybean genotypes .    

  



 

 

  

Figure  3 .   ( a) explained variance for each principal component (PC) for the PCA. (b)  

loadings on the first and second PCs for the PCA. (c) Scores plot on PC1 versus PC2 for  

classes BV ( ● ) , BVV  ( ● ) ( , EB  ● ) , JAB (●) and L  ( ● ) . (d) discrimination factor (DF) plot  

of PC A - LDA with raw NIR spectra of 260 soybean genotypes grouped in five classes.   

    



 

 

  

Figure  4 .   ( a) PLS - DA regression coefficients for each genotype class. (b) PLS - DA  

predicted classes (Y) for the prediction set.     
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Figure  5 .   ( a) Selected variables (wavenumbers  –   cm - 1 )  using successive projection  

algorithm (SPA). (b) Discrimination factor (DF) plot of SPA - LDA with raw NIR spectra  

of 260 soybean genotypes grouped in five classes.    

  



 

 
  

  

Figure  6 .   ( a) Selected variables (wavenum bers  –   cm - 1 )  using genetic algorithm (GA). (b)  

Discrimination factor (DF) plot of GA - LDA with raw NIR spectra of 260 soybean  

genotypes grouped in five classes.    

    



 

 
 

 

  

  

Figure  7 .   ( a)  Distribution of oil content between the five soybean genotypes classes,  ( b )   

percentage of samples within classes with oil content above 20% .     

  



 

Tables: 

 

Table 1. Descriptive statistics of intact soybean grains from the different genotypes: 

moisture, dry matter, and oil content. 

Parameters 
  

Maximum Minimum  Average SDa number 

Moisture (%) 
     

   BV 7.06 6.75 6.73 0.18 31 

   BVV 7.10 5.86 6.40 0.27 50 

   JAB 7.83 6.65 6.65 2.08 45 

   L 8.88 6.27 7.25 0.84 48 

   EB 7.26 5.04 5.98 0.41 80 

      
Dry matter (%) 

     
   BV 93.57 93.25 93.27 0.18 31 

   BVV 94.14 92.90 9360 0.27 50 

   JAB 92.50 93.83 92.50 0.93 45 

   L 91.12 93.73 92.75 0.84 48 

   EB 92.74 94.96 94.02 0.41 80 

      
Oil (%) 

     
   BV 22.13 18.73 19.15 1.39 31 

   BVV 22.99 14.80 18.54 1.73 50 

   JAB 19.73 23.57 19.73 1.51 45 

   L 18.08 23.85 20.75 1.49 48 

   EB 13.96 20.98 17.43 1.27 80 

      
aSD = standard deviation. 



 

Table 2. Figures of merit for the classification models of intact soybean grains from the 

different genotypes. AUC stands for ‘area under the curve’ of the receiver operating 

characteristic curve (ROC). 

Algorithm Class Accuracy (%) Sensitivity (%) Specificity (%) F-score (%) AUC 

PCA-LDA BV 94.4 80.0 96.8 87.6 0.884 

 BVV 94.4 75.0 100 85.7 0.875 

 EB 100 100 100 100 1.00 

 JAB 91.7 100 89.7 94.6 0.948 

 L 91.7 75.0 96.4 84.4 0.857 

PLS-DA BV 75.8 100 51.6 68.1 0.719 

 BVV 92.8 100 85.7 92.3 0.812 

 EB 100 100 100 100 1.00 

 JAB 89.6 100 79.3 88.5 0.894 

 L 91.9 87.5 96.4 91.7 0.937 

SPA-LDA BV 94.4 80.0 96.8 87.6 0.884 

 BVV 97.2 87.5 100 93.3 0.937 

 EB 100 100 100 100 1.00 

 JAB 94.6 100 93.1 96.4 0.966 

 L 91.7 100 93.1 96.4 0.857 

GA-LDA BV 91.7 40.0 100 57.1 0.700 

 BVV 91.7 87.5 92.9 90.1 0.902 

 EB 100 100 100 100 1.00 

 JAB 94.6 100 93.1 96.4 0.966 

 L 100 100 100 100 1.00 

 


