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Abstract 

This research aims to investigate the effect of the exfoliation corrosion exposure time 

on the mechanical properties, the strength and elongation, of friction stir welded Al-Li 

alloy type 2195-T8. The exfoliation corrosion test was performed using the exfoliation 

corrosion (EXCO) solution, based on ASTM G34. The samples were exposed to 

different exposure times 24, 48, 96, 192 and 384 hours. The results showed that both 

the strength and elongation of the welded specimens - exposed to the exfoliation 

corrosion tests - were reduced. For example, the samples that were exposed to 384 hrs, 

their initial tensile strength and elongation were reduced by 13% and 17% respectively. 

The degradation process due to the exfoliation corrosion on the tensile strength was 

divided into three stages: fast (0-96 hrs: 443.7 MPa-416.3 MPa, the degraded rate was 

0.29 MPa/h), steady (96-192 hrs: 416.3 MPa-413.4 MPa, the degraded rate was 0.03 

MPa/h) and medium rate (192-384 hrs: 413.4 MPa-386.7 MPa, the degraded rate was 

0.14 MPa/h). For the elongation, in general, the reduction was similar to the style of 

strength, but with different rates. The TEM images showed that this degradation was 

due to the dissolution of T1 (Al2CuLi) and S  ́(Al2CuMg) phase. Also, the corrosion 

products and their role of adherence on the surface of the tested specimens were 

investigated. An empirical equation p-t (mechanical properties-exposure time) was 

established to calculate the effect of exposure corrosion time on the performance of 

welded specimens.  

Keyword: Al-Li alloy 2195-T8; friction stir welding; exfoliation corrosion; ultimate 

tensile strength; elongation; empirical equation p-t 
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1. Introduction 

In the last two decades, the Al-Li alloys have become widely used due to their 

good properties, reducing the weight structure by 10%-15% and increasing the stiffness 

to 15%-20% compared with traditional Al alloys, thereby becoming a candidate with 

great promise to replace other Al alloys [1-5]. Joining of aluminum alloys is a major 

process in many engineering applications, for example in aerospace. However, welding 

in general, and the fusion welding-based processes in particular, to some extends will 

limit the performance of Al-Li alloys, as it causes defects such as hot cracks, porosity, 

softening, difficultly removed oxide film, etc.  

The friction stir welding FSW process noticeably reduces the defects that associate 

with the fusion welding-based methods. FSW is a solid-state, autogenously process 

without melting [6-8] and is extensively applied in joining Al-Li alloys [9,10]. In 

general, the welded parts by using FSW method are divided into a base material (BM), 

heat affected zone (HAZ), thermal-mechanical affect zone (TMAZ) and weld nugget 

zone (WNZ) [10], thus each zone shows different microstructure [11-13]. The 

precipitates in the BM primarily consist of T1 (Al2CuLi) and θ´ (Al2Cu) phases [11, 14, 

15], while in HAZ the phases are δ (Al3Li) [14, 16-19], while there are reports show 

S  ́(Al2CuMg) phase in HAZ [10, 20-22]. In terms of WNZ, which is affected by both 

thermomechanical and stirring, both δ and β (Al3Zr) are the major strengthening 

phases [14, 16, 23, 24]. Due to these microstructural changes, many researchers have 

studied the corrosion performance of welded alloys [25-28]. Liu et al. [22] found that 

the high proportion of T1 phase reduced the corrosion sensitivity of the 2198 Al-Li alloy. 

Ma et al. [29] reported that the dissolution of T1 phase in FSW joint made the corrosion 

degree lower than BM in 2099 Al-Li alloy. Others [20, 30] found that the corrosion 

potential of θ´ phase was higher than the matrix and was often acted as a cathode to 

promote the corrosion. Ren et al. [20] revealed two corrosion mechanisms of S  ́phase, 

they found that pitting occurs around the S  ́phase. Bousquet et al. [21] found out that 

HAZ was more sensitive to intergranular corrosion than the BM and other welding areas 

due to S/S  ́phase precipitation along HAZ grain boundaries in welded alloys. Yi et al. 

[31] showed that the effect of δ and β phase on local corrosion was relatively small, 

while the uniform corrosion was the main phenomenon. The microstructural 

characterization and mechanical properties of Al-Li alloy with FSW joints were studied 

by many researchers [32-34], however, the major concerns remained was about the 

corrosion behavior of the alloy. Li et al. [35] and Huang et al. [36] studied the 
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intergranular corrosion behaviors of 2195 Al-Li alloy and found that the intergranular 

corrosion of the alloy was related to T1 phase. Luo et al. [37] and Li et al. [38] studied 

the corrosion behaviors of Al-Li alloys in sodium chloride solution, they found that 

general corrosion and localized corrosion of intergranular and pitting corrosion in the 

alloy.  

There are some researchers have studied the influence of corrosive environment 

on the properties of aluminum alloys. Qiu et al. [39] studied the effect of corrosion on 

the mechanical parameters of aluminum alloy type 2024-T4, using ASTM G34 [40]. 

The results showed that the tensile strength and fatigue life are exponentially related to 

the average value of the corrosion rate. Liao et al. [41] found slightly different results 

using the fitting equation. Wang [42] indicated that the performance of 7075 alloys 

declined rapidly after the first two cycles (one cycle was 48h) against the marine 

atmospheric corrosion, while the decline rate of performance was relatively gentle with 

the extension of the test time. Khoshnaw [43] found that the exfoliation corrosion 

degree for 2024-T3 increased with increasing the aging time while decreased for 7075-

T6. The results were attributed to the type of precipitants in both alloys. Ma et al. [44] 

demonstrated that the pre-corrosion damage and saline environment had significant 

effects on the detailed fatigue performance of 7xxx series aluminum alloy, which was 

consistent with the research of Lu et al. [45]. Su [46] compared the corrosion behavior 

and mechanical properties of 2D12 aluminum alloy and 5A90 Al-Li alloy by using 

marine environmental exposure. The results showed that the corrosion process of the 

5A90 Al-Li alloy did not follow the law of power function, and the mechanical damage 

caused by corrosion was significantly greater than that of 2D12 alloy.  

Since the mechanical and corrosion properties of alloys strongly depend on the 

microstructure, the type, size and distribution of the precipitates. Therefore, further 

studies on the precipitated phases will help to explain the influence of corrosion on the 

microstructure of Al-Li alloys. The phases, such as T1, as the main strengthening phase 

of Al-Li alloy, might strongly affect the corrosion performance of the alloy. Li et al. 

[35] and Huang et al. [36], both showed that T1 was closely related to the generation of 

intergranular corrosion, and Su et al. [46] confirmed the same outcomes. Luo et al. [37] 

found that discontinuous localized corrosion in Al-Li alloy is associated with corroded 

θ´ (Al2Cu) particles, as well as pits that are formed by particle fall-out due to dissolution 

of surrounding Al substrate. The exfoliation corrosion leads to the delamination of thin 
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metal layers, thus the strength and ductility of the welded alloys would be affected, 

consequently posed a serious threat to the safety of the structural parts [40].  

Although there are studies have investigated the effect of corrosion, in general, on 

different Al alloys. There are still gaps in the effect of specific types of corrosion 

individually on the mechanical properties of welded Al-Li alloys. Therefore, this 

research aims to investigate the influence of the exfoliation corrosion on the mechanical 

properties of friction stir welded Al-Li alloy type 2195-T8. 

 

2. Materials and Experimental Works 

Plates, 8 mm thick, of Al-Li alloys type 2195-T8, were used in this study. The 

chemical composition analysis of the alloy was provided by Southwest Aluminum 

Corporation (Group) Co., Ltd. Table 1 shows the chemical composition of the alloy. 

The plates were cut into 100×650 mm, and every two pieces of the cut plates were 

welded by a numerical control Gantry type friction stir welding machine. The rotation 

speed and the welding speed were 800 rpm and 50 mm/min respectively.  

Table 1 Chemical composition of 2195-T8 Al-Li alloy. 

Cu Li Mg Zr Fe Ag Al 

3.99 1.09 0.38 0.11 0.17 0.42 Bal. 

The tensile test specimens, with specific dimensions, see Figure 1, were prepared, 

from the welded plates. The loading direction on the tensile specimens was 

perpendicular to the welded line, based on standard GB/228.1-2010.  

 

 

Figure 1. Dimensions of the test specimen. 

Exfoliation corrosion (EXCO) was carried out based on standard ASTM G34 [40], 

using EXCO solution, which consists of 234 g NaCl + 50g KNO3 + 6.3 mL HNO3 / L. 

The standard ASTM G34 is suitable to be used for as received and welded specimen 
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and widely used to study exfoliation corrosion of Al alloy [35, 39, 40, 43]. This standard 

provides a prediction exfoliation corrosion behavior of alloys in various types of 

outdoor environments, especially in marine and industrial environments [40].  

The ratio of the volume of the corrosive solution (Vm) to the exposed specimen 

surface area (Ss) is Vm : Ss = 15 mL/cm2. After rinsing and drying, the specimens were 

placed in EXCO solution at 25±3 ℃. The welded specimens were exposed to 

exfoliation corrosion for 24, 48, 96, 192 and 384 hours. To enhance the reliability of 

results, each test was repeated three times. Moreover, the corrosive solution was 

replaced every 96 h to minimize the corrosion byproducts effects. Figure 2 shows a 

welded specimen, the gauge length completely immerses in the EXCO solution, one 

end fixed in the middle of the bottom surface of the container and another end vertically 

towards the top.  

 

Figure 2. Schematic diagram of specimen placement. 

The specimens were exposed to exfoliation tests, rinsed and dried. Then the 

samples were exposed to tension stresses using universal testing machine type WDJ-

3008, the extension speed was 1 mm/min.  

The corrosion morphology was observed by SU8020 scanning electron 

microscope (SEM). The microstructural changes of the joints of different welded zones 

were characterized by transmission electron microscopy (TEM), type FEI Tecnai G2 

F20, operated at 200 kV. The specimens were prepared by twin-jet electro-polishing 

using a mixed solution of 30% HNO3 + 70% CH3OH at -30°C, as it was carried out in 

the liquid nitrogen, which helps to control the polishing speed and preventing oxidation.  
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3. Results 

3.1 Corrosion morphology 

Figure 3 shows the corrosion morphology under SEM which would be helpful to 

investigate the EXCO corrosion process. Figure 3a shows the surface morphology of 

the unexposed to corrosion sample, where a large number of white precipitates were 

observed. Energy Dispersive Spectroscopy - EDS - results indicated as a point in the 

image associated with a graph, showed that the precipitation phase containing Al and 

Cu. Figure 3b shows that there are many corrosion pits after 24 h EXCO corrosion, 

which indicates that the corrosion phenomenon originates from pitting, even in EXCO 

tests in strong acid solutions. Tang et al. [47] and Ding et al. [48], reported that the 

corrosion of aluminum alloy in EXCO solution was mainly initiated by pitting, and 

finally developed into exfoliation corrosion. With time, the corrosion products 

accumulate continuously, as shown in Figure 3c and d. After removing the corrosion 

products by an external force, it was found, see Figure 3e, that the pits were expanding 

and forming connections. Figure 3f shows a surface morphology of the sample exposed 

to corrosion for 96 h, as a lot of “white filiform products” are shown and distributed at 

the bottom of the pits, caused by the continuous reaction of exposed new surfaces 

during the corrosion process [43]. Figure 3g and h, show more corrosion products 

accumulated on the surface after 192 h corrosion, showing a tendency of self-peeling. 

After removing the corrosion products, it was found that the corrosion was still ongoing 

under the corrosion pit covered by the corrosion products, and a large number of “white 

filiform product” corrosion products adhere to the bottom of the corrosion pits, see 

Figure 3i. 
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Figure 3. SEM morphology of the specimen (a) the material without corrosion, (b) corrosion 

24 h, (c, d) corrosion products for 48 h, (e) pits after cleaning for 48 h corrosion, 

(f) corrosion for 96 h, (g, h) corrosion for 192 h, (i) pits bottom after corrosion 192 h. 

3.2 Mechanical properties after corrosion 

Figure 4 shows the stress-strain diagram of the friction stir welded specimens 

exposed to exfoliation corrosion for different times. The results showed that with 

increasing the exposure time, the mechanical properties gradually decreased. For 

example, with the exposure time equals 24 h, the ultimate tensile strength UTS was 

430.9 MPa and the elongation 11.08%. With increasing the exposure time to 384 h, the 

UTS reduced to 386.7 MPa and the elongation to 9.31%.   
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Figure 4. Stress-Strain diagram of Al-Li welded samples exposed to different corrosion 

times.  

To identify the effect of the exposure time of the exfoliation corrosion on the 

mechanical properties of the welded specimens, the intensity ratio was calculated, 

which was defined as the ratio of the UTS of the tested specimens (σtest) to the original, 

or unexposed to corrosion sample, UTS (σo), denoted as σtest /σo. Thus, the strength loss 

rate vsr was defined as the rate at which the intensity ratio σtest /σo changed over time, t, 

using Equation (1):  

vsr =(1-σtest /σo)/t                         (1) 

Similarly, the intensity ratio was calculated for elongation, as a ratio of elongation 

of the tested specimen (Eltest) to the initial elongation (Elo), denoted as Eltest/Elo. The 

elongation loss rate ver was defined as the rate at which the elongation ratio changed 

over time, using Equation (2): 

ver =(1-Eltest/Elo)/t                          (2) 

Table 2 shows that both the tensile strength (σo) and the elongation (Elo) of the 

joint deteriorates of different exposure time.  
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Table 2 Mechanical properties of the samples at different exposure times  

Times/h σtest/MPa Eltest/% σtest/σo Eltest/Elo vsr (×10-3/h) ver (×10-3/h) 

0 443.7 11.27 - - - - 

24 430.9 11.08 97.1% 98.3% 1.21 7.08 

48 423.4 10.91 95.4% 96.8% 0.96 6.67 

96 416.3 9.55 93.8% 84.7% 0.65 1.59 

192 413.4 9.42 93.2% 83.6% 0.35 0.85 

384 386.7 9.31 87.2% 82.6% 0.33 0.45 

Figure 5 shows the changes of the UTS and elongation with the corrosion exposure 

time. The figure has illustrated these changes in three stages. Figure 5a showed that the 

corrosion had the highest impact on the tensile strength of the joint at stage Ⅰ (t≤96 h), 

the loss rate of the tensile strength equals 0.29 MPa/h. In stage Ⅱ of corrosion (96<t≤

192 h), the loss rate equal to 0.03 MPa/h, which can be attributed to the formation of 

the corrosion products [46], were stuck to the surface of the joint and lowered the 

strength values. However, in stage Ⅲ of corrosion (192<t≤384 h), the tensile strength 

reduction rate was increased rapidly, and the loss rate was 0.14 MPa/h.  

 

Figure 5 Diagram shows the mechanical properties vs. the corrosion exposure time       

(a) UTS-exposure time, (b) elongation-exposure time. 

Figure 5b shows the influence of the corrosion exposure time on the elongation.  

The figure shows, similar to UTS, has divided into three stages, obviously with different 

rates. In stage Ⅰ (t≤48 h), the joint ductility decreased with the occurrence of corrosion 

reaction, it was a slow process. In stage Ⅱ of corrosion (48<t≤96 h), the elongation 

decreased sharply and the slope of the curve in stage Ⅱ was the highest, which means 
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that the elongation dropped sharply. In stage Ⅲ (96<t≤384 h), the elongation of the 

joint decreased slowly.  

Figure 6 shows a diagram correlates between mechanical properties loss rate and 

corrosion exposure time of the joints. The highest UTS reduction rate was equal to 

1.21×10-3/h at an exposure time of 24 h, then gradually decreased for longer exposure 

times, the loss rate reduced to 0.33×10-3/h for 384 h of corrosion. In terms of the 

elongation loss rate, the value dropped sharply in the latter part of the early stage of 

corrosion. In the interval from 48 h to 96 h, the elongation loss rate dropped from 

6.67×10-3/h to 1.59×10-3/h, with a decrease of 319%.  

 

Figure 6. Intensity ratio change vs. the exposure time of welded samples. 

3.3 Empirical equation 

The results in Table 2, UTS and elongation vs. exposure time, were integrated - 

using MATLAB - to establish equations 3 and 4, which expect the effect of the exposure 

corrosion time on UTS and El% respectively. The fitting results as shown in Table 3. 

σt = -4.186×10-6t3+0.0028t2-0.515t+σo              (3) 

Elt = -7.426×10-10t3+7.169×10-7t2-0.00022t+Elo          (4) 

Table 3 Fitting results of the mechanical properties of the joints. 

 σ-Exposure time El-Exposure time 

SSE 3.279 3.972 

R2 0.9979 0.9224 

Confidence level 95% 95% 

Sum of Squared Errors - SSE value could judge the degree of data fitting, the 

smaller of SSE, the better of fitting degree. In statistics, R2 is the determining coefficient 

ranges between 0 and 1. Based on the fitting equation of σ-Exposure time - assuming 
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the joint failed when the strength of the joint reaches a specific value after corrosion - 

the service life of the joint in a solution similar to EXCO solution can be estimated. 

When R2 is equal to or close to 1, it indicates that the fitting results are relatively 

accurate. Based on Table 3, the SSE and R2 in the fitting results of the σ-Exposure time 

were 3.279 and 0.9979, while in the fitting results of El-Exposure time were 3.972 and 

0.9224, which means that the fitting degree of σ-Exposure time was more sufficient. 

The fitting results of R2 in the Equation (3) and (4) were both close to 1, and the 

confidence level was both 95%, indicating that the regression fitting result was satisfied. 

The Equation (3) and (4) were combined to cubic functions and could be expressed 

as Equation (5): 

3 2(property)f at bt ct d= + + +                      (5) 

were a, b and c are the coefficients related to the equation, and d was a constant 

of the equation.  

Equation 5 can be used to calculate the effect of the exfoliation corrosion time on 

the mechanical properties of welded FSW Al-Li alloy type 2195-T8.   

 

3.4 Microstructural Evolution of the Weldments 

Figure 7a, b and c show the TEM images of the base metal. The figures show that 

there are laminar-like T1 phases arranged in a specific direction in the BM sample, 

which has been indicated by other researchers [11, 14, 15]. In addition to the T1 phase, 

some θ´ phase was observed. However, T1 phase, with high electrochemical activity, 

precipitates preferentially at grain boundaries, sub-grain boundaries and dislocations, 

are the main places of corrosion selectivity [22, 29].  
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Figure 7. TEM images and the associated SAD patterns of friction stir welded 2195-T8 alloy 

joint: (a and b) BM, (c and d) HAZ, and (e and f) WNZ. 

Figures 7d, e and f show the TEM images of the HAZ. A large number of θ´ and 

T1 precipitates can be seen in Figures 7d and e. This is an indication that during the 

welding process, parts of T1 precipitates have dissolved and accumulated, while growth 

of θ´ precipitates occurs in specific regions within HAZ. Besides, the S (́Al2CuMg) 

phase was observed in HAZ, see Figure 7e, which can be attributed to the S  ́ has 

precipitated under the action of heating during welding. The S  ́phase, as a vulnerable 

phase [20, 21], acts as anode and preferential corrosion. Both θ′ and S  ́phases can be 

observed in intergranular precipitates, see Figures 7e and f, which lead to a further 

reduction in the corrosion resistance of HAZ. 

Figures 7g and h show the TEM images of WNZ region. The precipitated T1 and 

θ´ phase were transformed into the δ phase and β´ (Al3Zr) phase. 
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4. Discussion 

Aluminum, magnesium and lithium are sensitive to highly acidic solutions due to 

their high electrochemical activity [22, 46], they all have negative electrochemical force 

values, which is also called corrosion potential [31]. Hydrogen ions in the acidic 

environment (EXCO solution) receive electrons consequently hydrogen released, 

which acts as a driving force for corrosion occurrence.  

Figure 4 showed the mechanical properties of the welded Al-Li alloy were 

negatively interrelated with the exposure time. This could be attributed to the fact that 

since corrosion induces surface pits with time while it is in contact with a corrosive 

solution, and it has a profound effect on property degradation of materials, thus the 

longer the exposure time, the lowest the mechanical properties of the joint [39, 44]. 

Similarly, the elongation decreased with the increase of corrosion time, which was 

related to a transverse pit/crack defect caused by the applied stress and the decrease of 

the cross-sectional area of samples. These results are similar to other researches, Qiu 

[39], Nikolaos et al. [49] and Leslie et al. [50], reported that such degradation process 

was mainly due to the reaction between the solution and the surface areas where the 

phases, T1 and S  ́phase, have existed, which are acting to reduce the effective cross-

sectional area, i.e. coherency, and the surface pits caused by corrosion would induce 

the formation of transverse cracks, consequently, the degradation occurs. 

Figure 5 showed the changes of the UTS and elongation with the corrosion 

exposure time. The figure showed that both mechanical properties, UTS and elongation, 

were divided into three stages. In correlation with the microstructure analysis in Figure 

7 and based on other researches studied the influence of microstructure on the corrosion 

behavior of Al-Li alloy [17-21], the three stages behavior could be explained in a way 

that, T1 and S  ́were consumed continuously due to the priority of corrosion during the 

corrosion process [14, 15], the continuous corrosion leads to a reduction in UTS values, 

see Figure 5a. While the tensile strength of the joints becomes lower due to the 

corrosion phenomenon of the preferential phases, the corrosion byproducts generate, 

gathered, adhered to the surfaces, thus the early elastic drop appears. The protection of 

corrosion products for the decline of elongation in the middle stage of corrosion makes 

stage Ⅲ of elongation decline tend to be steady. 

The three stages in Figure 5a of the influence of corrosion on the tensile strength 

of the joint could be summarized as the following three steps: 
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In stage Ⅰ (t≤96 h), while the corrosive solution is in contact with the substrate, 

corrosion reaction occurs, it first reacted with the corrosive phases, such as T1 and S  ́

[16, 17] and this affected the tensile strength of the joint, thus the UTS decreased 

significantly. 

In stage Ⅱ (96<t≤192 h) the reduction rate of UTS was slowed down, which was 

related to the formation of corrosion products, adhere to surfaces, thus the contact 

between the corrosive environment and the substrate become limited. Similar 

approaches have been mentioned by other researchers, Su et al. [46], Sun et al. [51] and 

João et al. [52] the protective effect of corrosion products on the matrix was reported, 

the existence of this isolation effect would slow down the corrosion reaction, thus 

reducing the degradation rate. 

In stage Ⅲ (192<t≤384 h), after a long exposure time, a large amount of corrosion 

products has been generated and accumulated, but because the amount of insoluble 

corrosion products was larger than the amount of the corroded metal, this was resulting 

in “wedge effect” [20, 47, 48], see Figure 3g and h, which supported by the uncorroded 

metal in the upper layer and caused layer peeling [39, 49], the decreased of the effective 

cross-sectional area made the tensile strength decline rapidly. 

For the changes in elongation, shown in Figure 5b, although it was also divided 

into three stages, the reduction rates were different than the UTS. This is because the 

increase of joint ductility by corrosion was mainly related to the corrosion consumption 

T1 and S ,́ and the generation, adhesion, and shedding of corrosion products also played 

a certain role in the change of joint.  

In stage Ⅰ (t≤48 h), the T1 phase was corroded first and the pits were small, 

therefore the elongation does not decline very quickly. However, when the corrosion 

continues to stage Ⅱ (48<t≤96 h), a large amount of T1, surrounded by aluminum 

matrix were dissolved, then exposed S  ́phase begins to corrode, and the corrosion holes 

were interconnected and aggregated to form bigger weak areas. The common influence 

of the T1 and S  ́ phases, and the formation of weak areas [39], so the elongation 

decreases rapidly. In the stage Ⅲ (96<t≤384 h), a large number of corrosion products 

were generated and adhered, filled up some gaps and pits on the surface, which 

compensated the loss of the cross-sectional area due to previous stages of corrosion 

[39], leading to a reduction in the rate of the change. Even after the spalling of the 

specimen, the cross-sectional area decreased, and the new surface was exposed, but the 
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presence of many uncorroded and strengthened phases T1, see Figure 7, caused a 

decline of elongation not significant. 

Figure 7 showed θ´ phase as the main strengthening phase of Al-Li alloy. Because 

Cu has a high electrochemical force which makes this phase acts as cathode compared 

to Al substrate and the T1 phase, leading to the dissolution of the surface of the Al alloy 

[20, 30]. Moreover, S  ́phase is prone to corrosion, its quantity was far less than that of 

T1 phase, and its corrosion resistance was slightly higher than that of T1 phase [31]. 

These are the reasons behind the fact that the reduction of strength and elongation in 

the corrosion process was not completely linear. On the other hand, both δ and β´phases 

have low electrochemical activity, i.e. high corrosion potential, but they were both the 

strengthening phases of Al-Li alloy [23, 34]. Therefore, during the corrosion process, 

the joint performance did not show a completely linear relationship with the corrosion, 

see Figure 6, due to the consumption of T1 and S .́ 

 

5. Conclusions 

• Exfoliation corrosion acted to reduce the UTS and El% of FSW Al-Li type 

2195-T8. The UTS values were decreased at different rates with the corrosion 

exposure times, 97% within 24 h, 95% in 48 h, 94% for 96 h, 93% for 192 h 

and 87% in 384 h, compared with the initial UTS equals to 443.7 MPa. While, 

for the same exposure times, El% was reduced by 98%, 97%, 85%, 84% and 

83% comparing with the initial El, was equal to 11.27%. 

• The degradation rate of the exfoliation corrosion on the mechanical properties 

was divided into three stages: for UTS, fast (0-96 h - the degradation rate was 

0.29 MPa/h), steady (96-192 h - the rate equals 0.03 MPa/h) and medium (192-

384 h - the rate was 0.14 MPa/h). While for El%, the rate was divided into slow 

(0-48 h - the degraded rate was 0.008%/h), fast (48-96 h - the rate was 0.028%/h) 

and steady (96-384 h - the rate was 0.001%/h).  

• The degradation of welded specimens due to the exfoliation corrosion was 

interrelated with the microstructure, mainly to the dissolution of T1 phase and 

S ,́ generation corrosion byproducts, adhesion with the surfaces and shedding 

the surfaces affected the change of the joint performance, mainly in stage Ⅱ and 

stage Ⅲ. 
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• A mathematical equation has been derived to predict the effect of the exfoliation 

corrosion exposure time on the mechanical properties of the FS welded Al-Li 

alloy type 2195-T8.  
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