

Caswell et al. 2019 Graphical abstract

2		
3 4	1	Influence of climate-induced biogeographic range shifts
5	2	on mudflat ecological functioning in the subtropics
6 7 8	3	
9	4	Bryony A. Caswell ^{1,3,*} , Navodha G. Dissanayake ^{1,2} , Christopher L. J. Frid ²
11	5	
12 13	6 7	¹ Environmental Futures Research Institute, Griffith University, Gold Coast, Parklands Drive, QLD 4222, Australia
14 15 16	8 9	² School of Environment and Sciences, Griffith University, Gold Coast, Parklands Drive, QLD 4222, Australia
17 18	10	³ Department of Geography, Geology and Environment, University of Hull, Hull HU6 7RX, UK
19 20 21	11 12	*Corresponding author: <u>b.a.caswell@hull.ac.uk</u>
22	13	Manuscript length: ■8100
23 24	14	References: 118
25 26	15	Figures: six
27	16	Tables: Three
28 29	17	Appendices: six figures and 12 tables
30 31	18	
32	19	Abstract
34	20	A growing volume of evidence shows that the broad-scale biogeographic redistribution of species is
35 36	21	occurring in response to increasing global temperatures. The present study documents poleward
37 38	22	movements of up to eight species of nominally 'tropical' macroinvertebrates (molluscs, polychaetes,
39	23	crustaceans and foraminifera) from intertidal mudflats on the south east coast of Australia. The speed
40 41	24	of movement was comparable with that for Australian marine fauna generally, but was particularly
42	25	fast for worms and molluscs (~70–300 km decade ⁻¹) and may be facilitated by the southward flowing
43 44	26	East Australia Current. Further, two temperate taxa appear to have extended their ranges northwards.
45	27	Changes in species biogeographic ranges raises questions surrounding the response of ecological
46 47	28	processes within the altered and novel species combinations, including processes that underpin

valuable ecosystem services. Using biological traits analysis to investigate how the observed species range changes might have impacted mudflat ecosystem functioning, and to predict the possible impacts of further poleward movements of tropical taxa. Our models suggest the changes to date, and those likely to occur in the near future, are within the envelope whereby ecological functioning is maintained by functional compensation and redundancy within the mudflat assemblage. However, in the most extreme scenario the replacement of temperate by tropical taxa resulted in major changes

in ecological functioning with potential impacts on nutrient cycling and C-cycling, undermining the potential of these mudflats to continue to deliver critical ecosystem services. The widespread nature of biogeographic range shifts and the value of coastal systems should add further weight to calls for global action to mitigate global temperature change.

Keywords: climate change; ecosystem services; infauna; functional compensation, biological traits; novel assemblages

1. Introduction

Global average temperatures have risen > 1°C since the 1900s and are predicted to rise a further 1.1-4.8°C under most climate scenarios (RCP4.5 and above) by the end of the century (IPCC, 2014). Forecasting the responses of marine ecosystems to these changes is limited not only by uncertainties surrounding such predictions, but also by regional variations in environmental changes and ecological responses (IPCC, 2014; Poloczanska et al., 2013), differences in species biology and behaviour (Deutsch et al., 2015; Nagelkerken et al., 2016; Poloczanska et al., 2013; Wethey et al., 2011) and synergies between the effects of different anthropogenic pressures (e.g. fishing and pollution; Deutsch et al., 2015; Nagelkerken et al., 2016; Rijnsdorp et al., 2009). One consequence of warming is the global redistribution of taxa, with some displacement, contraction and expansion of species biogeographic ranges (Pecl et al., 2017; Poloczanska et al., 2016) leading to the formation of 'novel species combinations'. That is assemblages which comprise, as yet, unobserved combinations of taxa (Alexander et al., 2015). For marine taxa the reported rates of biogeographic shifts are highly variable (~10-400 km decade⁻¹) (Parmesan and Yohe, 2003; Poloczanska et al., 2016; Sorte et al., 2010). A recent meta-analysis found rates of 72 ± 13.5 km decade⁻¹ for 360 marine species across a range of taxonomic groups at the poleward or 'leading' edge of their biogeographic distributions (Poloczanska et al., 2013). This is compared with 6.1 \pm 2.4 km decade⁻¹ (Poloczanska et al., 2013) to 17.6 \pm 2.9 km decade⁻¹ for terrestrial taxa (Chen et al., 2011). Przeslawski et al. (2012) assessed 311 marine invertebrates using rigorous criteria and found 37% had robust evidence for poleward shifts of 3.8-8.9 km decade⁻¹. Variations in the reported rates probably result from differing physiology and

dispersal abilities of taxa, regional environmental variations and the more restrictive criteria used by Przeslawski et al. (2012). Whatever the mechanism driving species range shifts these taxa can have significant, positive and negative, impacts on the recipient marine communities that are similar to those for introduced non-

native invasive species (Pecl et al., 2017; Sorte et al., 2010). Species arrivals may have no detectable impacts on the established assemblages (Zwerschke et al., 2018) or change may be catastrophic (Katsanevakis et al., 2014; Ling, 2008; Scheffer et al., 2001) for example the decline or extirpation of native species (Cheung et al., 2009; Landschoff et al., 2013; Pereira et al., 2010). The recipient communities are also subjected to changing temperatures, which may alter their abundance or distribution. Species vary in their thermal tolerance (Sunday et al., 2012) and it is likely that sensitive taxa will be lost first from an established community while the assemblage is being colonised by incoming taxa with higher thermal tolerances. The dynamics of species interactions, e.g. competition and predation (Alexander et al., 2015; Poloczanska et al., 2013), within novel assemblages may differ and so too might ecological functioning and service delivery. Sorte et al. (2010) identified eight biogeographic shifts which affected marine ecosystem processes including nutrient cycling, competition, herbivory, predation and disease dynamics. For example, the sea urchin Centrostephanus rodgersii extended its range from temperate New South Wales to eastern Tasmania where its intensive grazing negatively impacted the macroalgal communities. This loss of biogenic habitat contributed to declines in macrofaunal diversity (Ling, 2008). Poleward shifts, of 57–801 km, for > 30 species of tropical reef fish are impacting functional dynamics on temperate reefs by grazing important habitat-forming kelp species in New South Wales (Fowler et al., 2017; Vergés et al., 2016). Northward shifts of boreal fish are changing food-web dynamics in the Barents Sea, benthic-pelagic coupling has strengthened and competition with resident taxa has led to declines in fish and mammal abundance and body condition (Bonebrake et al., 2018; Kortsch et al., 2015). Similar changes are predicted for Arctic benthos due to shifts in larger, faster-growing molluscs from the Bering Sea (Vermeij and Roopnarine, 2008). The formation of novel assemblages and changes in species interactions will ultimately lead to changes in the ecosystem functioning (Alexander et al., 2015). The biological traits of species can be used to better anticipate functional changes which seem to be critical predictors of system responses to 'invasion' (Alexander et al., 2015; Kortsch et al., 2015; Kristensen et al., 2014).

95 Intertidal soft sediment habitats such as mudflats deliver a range of ecosystem services (Crowe and

Frid, 2015), including the production of food, fuel and construction materials, and the protection of coastal communities from storm surges and flooding (Barbier et al., 2011; Himes-Cornell et al., 2018). The ecosystem services provided by intertidal systems such as estuaries and mudflats are estimated to be US\$ 5.2 x 10^{12} y⁻¹ (in 2007) globally, with a further US\$24.8 x 10^{12} y⁻¹ (in 2007) from tidal marshes and mangroves (Costanza et al., 2014). Macrofaunal communities inhabiting soft sediments make important contributions to the ecological functions that underpin these ecosystem services, e.g.

facilitating effluxes of nutrients from sediments that support primary production or sequestering
carbon and so mitigating ocean acidification and anthropogenic warming. Therefore, future changes
in species biogeographic distributions that impact ecological functioning as a result of warming may
have major impacts on the livelihood and economies of coastal communities.

106

Subtropical regions are a key area of focus for identifying changes in species distributions, where the arrival of tropical taxa and/or loss of temperate taxa become apparent as their ranges expand or contract (Bonada et al., 2007; Davie and Phillips, 2010; Endean et al., 1956). The present study examined changes in the distribution of macroinvertebrates in subtropical mudflats throughout SE Queensland. Generally, information on the biodiversity and taxonomic composition of soft-sediment invertebrate assemblages in SE Queensland are sparse (Davie and Phillips, 2010) with work focussing on sandy shores (Barnes and Hamylton, 2016), northern Queensland (Dittmann, 1996, 2002; Inglis and Kross, 2000) or subtidal benthos (Eertman and Hailstone, 1988; Poiner, 1977; Young and Wadley, 1979). This study provides new data on mudflat macrofaunal assemblages in Moreton Bay, and considers changes in species distributions, and the implications of the observed and future variations for the traits, and so ecological functioning, of these economically important habitats.

210 118

2. Materials and Methods

²¹⁴ 215 120 2.1 Field site and macrofaunal sampling

216 121

A total of 24 intertidal mudflats (comprising > 10% silt and clay) were sampled throughout SE Queensland from Deception Bay (27.15°S) in the north to Tallebudgera Creek (28.11°S) in the south (Fig. 1A-B, Appendix Table A.1)(Dissanayake et al. 2019). All mudflats were bordered by mangroves and showed little evidence of direct anthropogenic impact. This region (referred to herein as SE Queensland) is of recognised ecological value, being designated a RAMSAR wetland (Department of Environment and Science, 2019). The sampling sites occupy the northern part of the 'Tweed Moreton' ecoregion' and so are near to the boundary (at 25°N) between the Temperate Australasian and Central

- 129 Indo-Pacific biogeographic marine realms (Spalding et al., 2007). As such it represents an important
- 230 130 faunal transition between tropical and temperate latitudes (Davie and Phillips, 2010; McPhee, 2017).
- 131 The southern boundary of the 'Tweed Moreton ecoregion' (Spalding et al., 2007) is delimited by the
- ²³³ 132 point where the southward flowing East Australia Current meets the northward Tasman Sea Current

234
235 133 (between 30-32°S) and is deflected offshore (Dambacher et al., 2012).

Sampling was conducted once in winter (July-August 2016) and once in summer (January-February 2017). At each site, five box cores (25 * 25 cm to 11 cm sediment depth) were collected from the mid-shore (approx. 2–5 cm above port datum) for infauna. A minimum of 2 m distance was maintained between box core samples. Sediments were sieved in situ over 0.5 mm mesh and the residues were preserved in 90% ethanol containing Rose Bengal stain. Samples were kept at 4°C and returned to the laboratory for identification and enumeration. Given the lower density, mobility and heterogeneous distribution of large epifauna, they were not expected to be adequately represented within the box core samples. Thus, epifauna were collected, adjacent to the infaunal sampling locations, from the upper 20 cm of sediment within three 0.5 x 0.5 m quadrats (with raised sides providing a barrier against fast-moving animals), and were sieved over 2 mm mesh. The retained fauna were preserved in 90 % ethanol. Scientific names were verified using the World Register of Marine Species (WoRMS Editorial Board, 2019).

2.2 Biological traits analysis

Biological trait analysis (BTA) was used (Bremner et al., 2003, 2006) to identify the potential contribution of macrofauna to the ecological functioning of the mudflats. Eleven traits were selected to represent a range of morphologies, life histories and behaviours. Each biological trait was characterised by 3–5 trait modalities (Table 1), giving a total of 45 trait modalities. The affinity of each taxon to each trait modality was assigned using fuzzy coding such that the 'total' affinity for each trait summed to 1. Using this approach the score may be split across the modalities within a single trait (Chevene et al., 1994) allowing both diversity/plasticity in the biology or behaviour of an organism to be captured, and/or any uncertainty surrounding its behaviour. Information on the biological traits of taxa was obtained from sources including the Biological Traits Information Catalogue (MarLIN, 2006), the Marine Species Identification Portal (ETI Bioinformatics, 2018), BOLD systems (Ratnasingham and Hebert, 2007), Polytraits (Faulwetter et al., 2014) and selected papers (e.g. Kristensen et al., 2012; Macdonald et al., 2010; Queirós et al., 2013).

288		
289	162	
290		
291	163	2.3 Biogeographic distribution of macrofaunal assemblages
292	164	
293		
294	165	To explore biogeographic patterns in species and trait composition the 24 sampling sites were
295		
296	166	grouped according to three criteria (Fig. 1); (i) sites to the north and south of Cleveland, (ii) four equal-
297		
298		5
299		
300		

sized groups ordered north to south, and (iii) the northernmost and the southernmost six sites. Differences between water circulation patterns to the north (open bay) and south of Cleveland (many large islands inhibit water flow) provided a rationale for the latitudinal subdivision of mudflats (McPhee, 2017). Site groupings (ii) and (iii) were objectively divided based on latitude, with classification (iii) representing the two ends of the latitudinal gradient. Given the potential for complex environmental gradients in Moreton Bay, we carefully examined the ordinations for potential patterns in the species composition that would not be detected by statistical comparisons between the selected geographic groupings (i-iii). We concluded that no such patterns existed (Appendix Fig. B2).

175

The published biogeographic ranges of each of the taxa sampled were obtained from the Atlas of Living Australia (ALA, 2018) and the Ocean Biogeographic Information Systems (OBIS, 2018), these databases contain information from a series of museum records. For each species the apparent range change between the most recently documented occurrence (ALA, 2018; OBIS, 2018) and the most northerly or southerly sampled occurrences were estimated using the difference in degrees of latitude (1° latitude = 110 km) between the two. Subsequently each taxon was classified based on their published biogeographic ranges (ALA, 2018; OBIS, 2018) as either tropical, temperate or cosmopolitan. The taxa were assigned to one of six categories (A–F) based on their historic distribution or that recorded in this study. A. Tropical species that have extended their range to the southernmost six mudflats sampled in SE Queensland (range shifters, Fig. 1C–D). B. Tropical species that occur throughout SE Queensland. C. Tropical species that currently only occur in the northernmost sites of SE Queensland. D. 'Robust' temperate species whose current range extends throughout SE Queensland, and **E** temperate species that are sensitive to temperature change (i.e. did not occur in the northernmost six mudflats). The 'cosmopolitan taxa' formed group **F**. For the purposes of this study cosmopolitan taxa are those that were distributed throughout tropical, temperate and subtropical climatic zones along Australian coastlines only (cf. Hutchings and Kupriyanova, 2018). This restricted definition is used because these records have been confirmed by Australian taxonomists and so are not confounded with other morphologically similar taxa (Przeslawski et al., 2012). Based on their biogeographic distribution three species and the polygeneric taxa (Nematoda and Nemertina)

348	195	were characterised as cosmopolitan.
349		
350	196	
351		
352	107	2.4 Effects of climate change on the ocological functioning of
353	197	
354	198	mudflats: Simulating taxonomic and trait change
355	199	
356		
357		
358		6
359		
360		
360		

The observed changes in species biogeographic ranges were used as the basis for simulating five scenarios of changes in species composition of the mudflat fauna. The implications of past and further climate induced range shifts on mudflat ecosystem functioning were explored using biological traits analysis. Each scenario was derived from the macrofaunal assemblages at the southernmost six mudflats, with scenario 1 being the present or 'baseline' state (1), and for the remaining four scenarios (Table 2) taxonomic composition was manipulated as follows.

• 1. Southern baseline: the present assemblage from the southernmost six mudflats.

- 207 2. *Pre-invasion*: the tropical range shifting species (observed in the 24 mudflats sampled in the
 208 present study) were removed from the baseline community.
- Summer invasion: Tropical taxa that were absent from the southernmost six assemblages
 were added to the baseline at their mean densities found at the northernmost six sites.
- 4. Loss of sensitive temperate taxa: The most sensitive temperate taxa i.e. those absent from the northernmost six sites (suggesting they had reached the physiological limits of their distribution) were removed from the scenario 3 assemblage.
- 386 214
 387 388 215
 388 215
 388 assemblage.

Analyses were performed on both unconstrained and constrained data. In the latter case all of the simulated assemblage data were standardised to the same total density to aid comparisons between scenarios. This emphasises the influence of changing species compliment rather than the size of the assemblage (Table 2). For each simulated assemblage the corresponding biological trait matrices were multiplied by the constrained and unconstrained densities to generate the biological trait composition for each scenario.

 The impacts of climate-induced biogeographic range shifts on three ecological functions were investigated: nutrient cycling, C-cycling (food web dynamics) and biogenic habitat provision. In coastal seas nutrient cycling is strongly coupled with benthic processes that regenerate nitrogen compounds from sediments, this can provide 20–100% of the annual N requirements for water column primary

production (Blackburn, 1986; Heinen and McManus, 2004). Macrofaunal communities also transport, transform and store carbon within an ecosystem, and may contribute 11-43% of total benthic community respiration (Hyndes et al., 2014; Piepenburg et al., 1995; Van Oevelen et al., 2006). This organic C-cycling is driven by food-web dynamics (ingestion, respiration, production) and reproductive processes. Infaunal and epifaunal macrofauna also provide structures (e.g. emergent tubes, mussel/oyster beds) creating habitat for species that require hard substrates, and they provide

physical protection and refugia (Buhl-Mortensen et al., 2010). Further discussion of these processes and rationale for the determination of these indices (Table 1) is addressed in Appendix B.

Two models were used to explore the implications of species losses and gains from the southernmost mudflat assemblages. Model A included only those trait modalities thought to make meaningful contributions to each of the functions, and these were assigned a weighting of 1 (Frid and Caswell, 2016; Table 1). An additional model (Model B) employing differential weightings, to better reflect our, partial, understanding of the contribution of different trait modalities to particular functions, was also developed although it is not considered further herein (Appendix Tables A.2 and B.10, Fig. B.6).

2.5 Data analyses

Firstly, the abundances for all infaunal and epifaunal samples were converted to density per m². The epifaunal and infaunal data were combined, and in instances where epifaunal taxa occurred in both box cores and the 0.5 x 0.5m quadrats the mean densities from the quadrats were used as they were more reliable for mobile epifauna. The mean and median number of individuals, species richness, Shannon-Weiner diversity and Pielou's evenness were calculated for each site for the two seasons separately, and for the three biogeographic groups (i)–(iii). Median values were compared between sites and groups using the Mann-Whitney U test or Kruskal-Wallis test (SPSS v.25, IBM).

Bray Curtis similarities were calculated from $\log(x+1)$ transformed pooled species densities (per m²) from each site (for the replicate box cores and quadrats, as described above). For biological trait composition the species-traits (determined as described in Section 2.2) were multiplied by the species densities to produce a trait modality by site matrix. Bray-Curtis similarities were calculated on untransformed biological traits data. Differences in species and biological trait composition were explored between seasons, biogeographic groups (Section 2.3), and range shift scenarios (Section 2.4) using non-metric multidimensional scaling (nMDS), Analysis of Similarities (ANOSIM) and the similarity

percentage routine (SIMPER). The delivery of ecological functioning under the five range shift scenarios were compared using one-way ANOVA, and differences in trait modalities were compared using t-tests. Differences in the trait profiles of the taxa were compared between climatic zones, based on their distribution (A to F, Table 2), using ordination (nMDS and ANOSIM). The similarity percentage (SIMPER) routine was used to identify the trait modalities that contributed to the dissimilarities between groups, and the abundances of the modalities were compared using t-tests. Multivariate

analyses were completed using Primer 6 Beta (Plymouth Routines in Multivariate Ecology Research Ltd).

3. Results

3.1 Macrofaunal assemblages of mudflats in southeast Queensland

A total of 3047 individuals were retrieved in the summer and 1800 were observed in winter across the 24 sites sampled in SE Queensland (from 120 box core samples; Mann-Whitney U test, Z = -3.629, p<0.001, Fig. 2A). In the summer 50 taxa were recorded while in the winter there were 46, with the polychaete Platynereis antipoda, the bivalve Paratapes undulatus and the gastropods Recluzia johnii and Nassarius coronatus being absent during the winter. In both seasons 10 taxa contributed to ~70% of the cumulative macrofaunal density in the assemblage (Appendix Table B.1). In summer the suspension feeding bivalve Hiatula alba dominated, followed by the polychaetes Barantolla lepte and Aglaophamus australiensis. Whereas in winter the crabs Mictyris longicarpus and Macrophthalmus setosus dominated. Mudflat assemblage species composition significantly differed between winter 2016 and summer 2017 (ANOSIM, global R = 0.076, p = 0.004, Fig. 2B) with an average SIMPER dissimilarity of ~52%. Given the marked seasonal differences in the mudflat assemblages, for the remainder of the analyses the summer and winter assemblages were considered separately.

3.2 Biogeographic variations in the species composition of mudflat assemblages

Overall, northern mudflats appeared to have higher macrofaunal densities, diversity and evenness than those to the south, however they did not significantly differ between mudflats in any of the three biogeographic comparisons (i-iii; Fig. 1B) in either season (Kruskal Wallis test, p < 0.05 in all cases; Appendix Fig. B1). Macrofaunal species composition did not significantly differ between mudflats north and south of Cleveland (one way ANOSIM; winter global R = -0.001, p > 0.05; summer global R = 0.011, p > 0.05) nor between the four groups of mudflats on a north-south gradient (ANOSIM, winter

528 529	293	global R = -0.035, p > 0.05; summer, global R = 0.057, p > 0.05) (Appendix B). Despite the lack of
530	294	significant differences in macrofaunal densities and diversity between the northernmost and
531 532	295	southernmost six mudflats (comparison iii), species composition significantly differed between these
533	296	mudflats in summer (ANOSIM, global R = 0.272, p = 0.015, 55% dissimilar, Fig. 3B), but not winter
534 535	297	(global R = 0.065, $p > 0.05$, Fig. 3A). Five taxa, the polychaetes A. australiensis and M. dakini, the
536 537		
538		9
539		
540		

bivalves *H. alba*, *M. hiantina* and the gastropod *H. fusca* each contributed > 4% to the SIMPER
dissimilarity between the northernmost and southernmost six sites (Fig. 3).

In summer, the assemblage at the southernmost sites was comprised mostly of taxa with temperate affinities and were dominated by the bivalve H. alba and the polychaete A. australiensis, but only A. *australiensis* occurred in significantly higher densities in the south compared to the north (t-test, t(10) = 0.923, p = 0.017, Fig. 3E). M. dakini also occurred in higher densities in the south although it did not significantly differ (t-test, p > 0.05; Table 3, Fig. 3E). Four temperate taxa, the shrimp Alpheus richardsoni, the polychaetes Trypaea australiensis, Sthenelais boa and Helograpsus haswellianus, and three tropical taxa the stomatopod Clorida depressa, the gastropod R. johnii and the decapod Uca longidigita were present in the southernmost mudflats but were absent from the northernmost sites. The northernmost assemblage was dominated by the tropical bivalve M. hiantina which occurred at significantly higher density than in the south (t-test, t(10) = -1.991, p = 0.040). Density of the tropical gastropod H. fusca was five-fold higher in the north (Fig. 3E), although it did not significantly differ (t-test, p > 0.05; Table 3, Fig. 3E). Five tropical taxa the bivalves Mactra maculata, P. undulatus, Lutraria *impar*, the brachiopod *Lingula anatina* and the decapod *Tubuca polita* occurred in the northernmost assemblages, but were absent from the southernmost mudflats.

Of the total pool of 50 taxa recorded in SE Queensland mudflats 50% were classified as temperate, 40% were tropical and 10% were 'cosmopolitan' taxa (i.e. widely distributed in both zones) based on their known occurrences (ALA, 2018). According to the documented species distributions (ALA, 2018; OBIS, 2018), five taxa the polychaetes H. fusca, Prionospio queenslandica, Eurysyllis tuberculata, Sternaspis scutata, and the bivalve Laternula anatina had previously only been recorded once in the greater SE Queensland region (ALA, 2018; OBIS, 2018; Table 3). Three species had previously only been recorded once in the study area (Table 3).

323

Ton taxa had wider biogeographic distributions throughout CE Queensland than had providually been

588	324	Ten taxa had wider biogeographic distributions throughout SE Queensiand than had previously been
589	325	documented (Table 3). Up to eight tropical taxa exhibited range shifts, the gastropod H. fusca, the
590 591	326	bivalves L. anatina, M. maculata, M. hiantina, and the crustaceans Metapenaeus endeavouri, C.
592	327	depressa and U. longidigita, and the foraminifera Elphidium discoidale extended their ranges
593 594	328	southwards shifting on average 146 \pm 66 km (Table 3, Fig. 1B). The relatively small difference in the
595 596	329	biogeographic range of the stomatopod Clorida depressa since 1998 (Table 3) may simply result from
597		
598		10
599		
600		

new records due to greater sampling effort. The foraminifera Elphidium discoidale may exhibit a shift of 381 km since 1983, but this is also uncertain, as it may be confounded by subspecies Elphidium discoidale var. multiloculum (Narayan and Pandolfi 2010). Two temperate taxa also changed distribution, the polychaetes V. australiensis, and M. australiensis which shifted 85 km and 374 km northwards (Table 3), respectively. The shifts ranged from 6 km up to 477 km, and the fastest shifters were H. fusca, L. anatina and M. australiensis which have all shifted > 100 km decade⁻¹ (Table 3).

337 3.3 Biogeographic differences in macrofaunal trait composition

Trait modality richness of the macrofaunal assemblage did not significantly differ (Appendix Table B.4) between the mudflats; (i) north and south of Cleveland, (ii) in the four groups along the north to south gradient or (iii) at the northernmost and southernmost six sites. Overall, most macrofaunal taxa were short lived (1–2 years), intermediate sized (> 5 cm), unattached, free moving, habitat modifiers which made burrows, and had planktotrophic larval development (Appendix Fig. B.4). Although taxa composition significantly differed between the northernmost and southernmost six sites in winter or summer the trait composition did not differ (ANOSIM, winter global R = 0.004, summer global R = 0.091, p > 0.05, Fig. 3C–D). Assemblages from mudflats north and south of Cleveland (ANOSIM, winter global R = 0.026, summer global R = -0.042, p > 0.05) and the four groups along a north-south gradient did not have different trait compositions (ANOSIM, winter global R = 0.013, summer global R = 0.073, p > 0.05; Appendix B).

3.4 Taxa trait modality profiles

The trait modality profiles for taxa with tropical, temperate and cosmopolitan geographic distributions significantly differed (ANOSIM, global R = 0.143, p = 0.002, Fig. 4A), with those for tropical taxa differing from those for temperate taxa (R = 0.149, p = 0.003; average SIMPER dissimilarity ~60%). More temperate taxa had body-sizes > 50 mm, and vermiform body shapes with no exoskeleton, each tractionaly transient taxa transiently had means matter order order or the stars and were

contrastingly tropical taxa typically had more rectangular-subrectangular body shapes and were generally smaller and had exoskeletons. The trait profiles of cosmopolitan taxa did not differ from the tropical or temperate taxa (pairwise ANOSIM, p > 0.05).

To explore these differences in greater detail the taxa were further categorised based on their occurrences within the 24 mudflats sampled and their reported biogeographic range. The trait profiles of macrofauna significantly differed between the six biogeographic (A-F, Table 3) categories of taxa (ANOSIM, global R = 0.223, p = 0.001, Fig. 4B). Pairwise ANOSIM showed the trait profiles of temperate taxa occurring across all 24 mudflats significantly differed from those of: tropical species occurring across all 24 sites (pairwise ANOSIM, R = 0.199, p = 0.012), tropical species present at all but the southernmost 6 sites (R = 0.518, p = 0.003) and tropical range shifters (R = 0.299, p = 0.003). A total of 18 trait modalities contributed to > 50% of the cumulative SIMPER dissimilarity between the trait profiles of taxa in these four categories (Fig. 4C). The main differences between the trait profiles of temperate species (D) and those from the other three categories (A–C) was the greater incidence of vermiform body shapes and lack of body armour (Mann-Whitney U test, p < 0.05; > 50% contribution to dissimilarity; Fig. 4C, Appendix B). Whereas, tropical taxa (B-C) had more rectangular shaped bodies, and tropical taxa absent from the southernmost sites had more 0.5–1 mm thick body armour (p < 0.05). Tropical species which occurred throughout SE Queensland were typically 10–30 mm body size whereas the other three groups (A, C, E) were comprised of taxa > 50 mm body size. Significantly less of the temperate taxa were suspension feeders (Mann-Whitney U test, p<0.05) and significantly more were deposit feeders (p < 0.05) compared to the tropical range shifters. There were also significantly more deposit feeding temperate taxa (Mann-Whitney U test, p < 0.05) than tropical taxa absent from the southernmost sites (Fig. 4C, Appendix Table B.5). These differences in trait profiles are consistent with those between all tropical and all temperate taxa.

382 3.5 Simulations of species, traits and functional change

ANOSIM identified significant differences in the taxonomic composition of the simulated assemblages (or 'scenarios') using unconstrained species abundances during both seasons (ANOSIM, winter global R = 0.362, p = 0.001; summer global R = 0.401, p = 0.001, Fig. 5A-B). Pairwise ANOSIM showed both the winter and summer taxonomic composition of scenario 5 significantly differed from all other scenarios (SIMPER dissimilarity 61-81%); and, in summer scenario 1 differed from scenario 4, and

scenario 2 differed from scenarios 3 and 4 (SIMPER 47-49% dissimilar; Appendix Table B.7). The biological trait composition significantly differed in winter (ANOSIM, global R = 0.127, p = 0.05, Fig. 5A) and summer (ANOSIM, global R = 0.187, p = 0.004, Fig. 5B), and similar to taxonomic composition the traits of the scenario 5 assemblage significantly differed from all other scenarios (pairwise ANOSIM, p <0.01; Appendix B). Fourteen to seventeen of the 45 trait modalities contributed to 70% of the cumulative SIMPER dissimilarity between the trait composition for scenario 5 and all of the

other scenarios in both winter and summer (p<0.05). All modalities except one were significantly more
abundant in scenarios 1–4 (Appendix Table B.8). Thus, despite the changed density of 4–8 taxa in
scenarios 1–4 (Table 2) only scenario 5 consistently differed in species and trait composition across
both seasons (Appendix Table B.8 and B.9).

[,] 399

The estimates for nutrient cycling significantly differed between the winter scenarios (ANOVA, winter: F = 2.868, p = 0.04), however post-hoc Tukey tests failed to identify pairwise differences. Pairwise Mann-Whitney U tests (with sequential Bonferroni correction, Rice 1989, Appendix Table B.10) showed scenario 5 significantly differed from scenarios 1–4 only (p<0.05; Appendix Table B.10) and delivered three-fold lower mean functioning (Fig. 6A). Scenarios 1-4 contained more taxa with the following traits compared to scenario 5; medium and large body sizes (> 30 mm), showing free movement, bioturbate by biodiffusion, deposit feeders and deep sediment dwellers (> 50 mm). Therefore, a correspondence existed between the trait composition, functional estimates (Table 1, Appendix Fig. B.4A) and the elimination of all temperate taxa from the scenario 5 assemblage, the latter being typified by trait profiles with larger body sizes and deposit feeding modes.

Estimates for C-cycling were significantly higher in scenarios 1–4 than scenario 5 in the winter (ANOVA, F = 2.956, p = 0.04; Mann-Whitney U test, p < 0.05; Fig. 6B, Appendix Table B.10). Higher C-cycling was provided by taxa with medium and large body sizes (> 30 mm), a lack of armour, < 2 years longevity and planktotrophic larvae (Table 1, Appendix Fig. B.4A and Table B.10). In the summer estimates for biogenic habitat provision were higher in scenarios 3 and 4 compared with scenario 5 (ANOVA, F = 4.240, p < 0.001; Appendix B). However, the trait modalities included in the functional estimates (Table 1) represented a small proportion of the total density (and < 10% of the cumulative SIMPER dissimilarity) between the trait composition of the different scenarios (Appendix Table B.10).

764 419

For the constrained data the trait composition of the assemblage representing scenario 5 differed from all of the other scenarios (Appendix Table B.7), and for the three constrained functional estimates (Table 1) only biogenic habitat significantly differed between assemblages. The nature of the differences was consistent with that for the unconstrained estimates (Appendix Table B.6).

4. Discussion

Using new data on mudflat macrofaunal communities together with historic biogeographic datasets poleward biogeographic range expansions were identified for up to eight typically tropical species, representing 14% of the 50 taxa recorded from mudflats. To date this is the most comprehensive survey of mudflat macrofauna in SE Queensland, with most past work focussing on macrofauna within intertidal seagrass meadows (38%), mangroves (9%) and sandflats (16%) with mudflats forming only ~10% of the published work within the region. The SE Queensland assemblages were typical for the subtropics (Davie and Phillips, 2010; Dissanayake et al., 2018; Dissanayake et al. 2019; Johnson, 2010) having a mixture of species with tropical and temperate affinities, in the mudflats 50% of species were temperate and 40% tropical (ALA, 2018; OBIS, 2018). Similar patterns are observed for rocky shore invertebrates (Endean et al., 1956) and fish (Johnson, 2010) in Moreton Bay reflecting the transition from the Temperate Australasian to Central Indo-Pacific biogeographic realms at 25°S (Spalding et al., 2007). However, biogeographic shifts are apparent for fish (Fowler et al., 2017; Sunday et al., 2015), rocky shore (Poloczanska et al., 2011) and mudflat species (the present study) and further climatic warming may cause the biogeographic boundaries to move.

The documented shifts of mudflat macroinvertebrates are consistent with the widely reported movements of marine and terrestrial species towards the poles as a result of anthropogenic warming (Freeman et al., 2018; Poloczanska et al., 2016), and prompted us to ask how will the ecological functioning of marine ecosystems be affected by this restructuring of macrofaunal assemblages? Simulations were used to explore how macrofaunal assemblages formed by past, present and future biogeographic shifts will impact mudflat community structure and functioning. Our results suggest that even guite severe changes in species composition will not fundamentally alter the ecological functioning or the delivery of ecosystem services, initially because species with similar traits will compensate for the species lost. However, as the severity of the perturbation increase a sudden collapse in functioning may occur. This pattern of compensation followed by a catastrophic failure has previously been reported for hypoxia in ancient oceans (Caswell and Frid, 2017), and those

828 829	453	experiencing high levels of anthropogenic organic enrichment (Caswell et al., 2018).
830 831	454	
832	455	4.1 Biogeographic range expansions of macrofaunal taxa
834	456	
835		
836 837		
838		14
839		
840		

Changes in biogeographic ranges have been documented for 54 species in the SW Pacific and more than 360 marine species globally, across most taxonomic groups and ocean regions, at a mean rate of 72 km decade⁻¹ at the leading edge (Poloczanska et al., 2013; Poloczanska et al., 2016). For most of these range shifts increases in average global surface air and seawater temperatures since the start of the 20th century (IPCC 2014) have been implemented as the primary driver (Poloczanska et al., 2016; Sorte et al., 2010). Generally, leading edge expansion rates are fastest for taxonomic groups with high dispersal abilities e.g. phytoplankton (469.9 ± 115.3 km decade⁻¹), zooplankton (142.1 ± 27.8 km decade⁻¹) or bony fish (277.5 ± 76.9 km decade⁻¹)(Poloczanska et al. (2013). In this study up to eight usually tropical taxa appear to have shifted on average 145 km south over the last 20–60 years (Fig. 1). The poleward movements of these species are probably also symptomatic of ocean warming. The tropical mudflat species moved on average 34 km decade⁻¹ towards the poles and so shifted approximately four times faster than the 6.8 km decade⁻¹ for intertidal invertebrates reported by Przeslawski et al. (2012), but slower than reported for subtidal macroinvertebrates in the N Atlantic (Hale et al. 2017). The subtropical mudflat macrofauna shifted at approximately half the global rates reported across all marine taxa (Poloczanska et al., 2013), but were comparable with the average rate (29 km decade⁻¹) reported for Australian marine invertebrates and fish (Champion et al., 2018; Fowler et al., 2017; Hobday, 2010; Ramos and Pecl, 2015; Sunday et al., 2015). The rate of crustacean shifts were within the range already reported for the taxon, whereas the molluscs and polychaetes shifted ~70-300 km decade⁻¹ which is faster than the rates reported for these taxonomic groups in recent global meta-analyses (Poloczanska et al., 2016). L. anatina was the fastest moving taxon which is shifting ~220 km decade⁻¹, a very high rate for a benthic mollusc, and is comparable with that for zooplankton (Poloczanska et al., 2016).

878 479

Species traits that may facilitate biogeographic range shifts include large existing geographic ranges (and so thermal tolerances) and wide dispersal abilities, these taxa are more likely to successfully colonise new habitats (Cheung et al., 2009; Cowen and Sponaugle, 2009). Sunday et al. (2015) showed that this was the case for pelagic fish in SE Australia and that many of the fish species were omnivorous meaning they could exploit a greater range of resources. However, to date predictions

based on these traits have had limited power to explain the pattern of marine species range shifts (Angert et al., 2011; Pinsky et al., 2013; Przeslawski et al., 2012). The tropical range shifters documented in the present study did not differ from any of the non-shifting taxa with respect to these traits, similar results have been found for range shifters in the temperate Atlantic benthos (Hale et al., 2017). The faster rates of expansion for benthic invertebrates reported in the present study might be facilitated by oceanographic features such as the strong (up to 1.3 ms⁻¹) southward

903	491	flowing East Australia Current which promotes larval and juvenile dispersal (Booth et al., 2007),
904	400	
905	492	which has strengthened with climate change and now penetrates further south than prior to the
907	493	1940s (Ridgway, 2007). A further complicating factor may be the nature of the intertidal
908	494	environment which is subject to warming as a result of both rising sea and air temperatures and
909 910	495	while broadly correlated, the detailed changes will vary between sites and different species may be
911 912	496	more sensitive to one or another causing further variations in the response.

Species distributional responses to increasing SST are mixed, in addition to shifts at the leading edge of species biogeographic ranges some taxa lag or do not respond, and equatorward shifts such as those documented herein have been observed in response to complex regional phenomena (i.e., where seawater temperatures may vary locally or geographical barriers exist; Burrows et al., 2014; Pinsky et al., 2013) or due to differences in species biology or ecology (Poloczanska et al., 2013). For instance, in subtidal benthic communities along the Atlantic coast of USA between 1990 and 2010 60% of species shifted north (poleward) by on average 181 km and 23% shifted ~65 km southward (equatorward) (Hale et al., 2017). Of the two species of temperate taxa that seem to have expanded their geographic ranges towards the tropics in the present study, M. australiensis moved the furthest (368 km in 5 years). This rate is at the upper end of estimates for natural range expansions, and could indicate an introduction, for example on ship hulls or in ballast water (e.g. Ricciardi, 2016). None of the range shifting taxa were documented in the global non-native invasive species database (Invasive Species Specialist Group ISSG, 2015), however species introductions have been observed for Laternula anatina (Pagad et al., 2018) and the congenerics Clorida albolitura (Galil et al., 2009), Haminoea japonica (Hanson et al., 2013) and M. pentadentata (Nygren, 2004). Some of the equatorward shifts may simply result from the higher sampling intensity used in this study and so may represent new records and not biogeographic range shifts (e.g. McPhee, 2017). However, regional environmental variations may also contribute, for instance, within Australia the fastest warming (~30% faster than in Queensland) is occurring in a 'hotspot' on the south western and south eastern coasts (CSIRO and Bureau of Meteorology, 2015; Hobday and Pecl, 2014).

947 518

- 949 519 Reporting range shifts can be fraught with difficulties (Przeslawski et al., 2012), but our range shift
- 951 520 data conform to the rigorous criteria employed by other studies (Parmesan and Yohe, 2003;
- 952 521 Przeslawski et al., 2012; Sorte et al., 2010) for identifying range shifts, e.g. the data are based on
- 954 522 species occurrences, not abundances, and are collected from assemblages not individual species.
- 956 523 Further, all species were found at > 4 mudflats and were abundant in the majority of the mudflats

sampled. However, it is not possible to determine when the range shifts occurred nor when they achieved their current southerly limits, except to say that they shifted sometime between their most recent record in ALA or OBIS and our 2016-2017 sampling. Thus, the estimated rates of range shifts are maximums and assume movement spanned the entire time period between the two records. Given the paucity of studies in SE Queensland mudflats, some of these range expansions could simply result from new records due to greater sampling effort. Therefore, the findings of this study need to be further validated by conducting more extensive benthic sampling programs in this and other 'biogeographic boundary zones'.

977 532

4.2 Changes in macrofaunal traits and ecological functioning 534

Whilst the species within assemblages have differing identities, they often share traits (e.g. morphology, life history and behavioural characteristics; Bremner et al., 2006; Peres and Dolman, 2000) usually resulting in less variation in traits than taxa between assemblages (Bremner, 2008; Törnroos et al., 2013). For instance, the trait composition of subtidal benthos around the UK does not differ regionally between the southern North Sea and eastern English Channel unlike the taxonomic composition (Bremner et al., 2003). At the global scale this may also be true: clear latitudinal differences exist in the taxa that dominate marine systems e.g. the proportions of decapods and bivalves are higher in tropical mudflats (Boschi, 2000; Crame, 2000; Dissanayake et al., 2018). Therefore, it is likely that shifts in functioning will occur that are associated with the differing biology of these taxonomic groups when temperate species are replaced by tropical ones. Similar to the previously documented regional (Bremner et al., 2003; Hemingson and Bellwood, 2018; Toussaint et al., 2016) and global trends (e.g. Dissanayake et al., 2018; Safi et al., 2011), spatial differences in the taxa present but not their traits suggest conservation of the macrofaunal contribution to mudflat functioning within SE Queensland. The assemblages seemed to perform similar functional roles at the northernmost and southernmost (Fig. 1) ends of the biogeographic gradient. Therefore, turnover of species in these assemblages will not necessarily result in changes in trait composition or functioning.

1008	551	
1009 1010	552	Up to eight tropical macroinvertebrate species were identified that have moved on average 145 km
1011	553	southwards in the last 60 years, and it is likely that these changes were driven by increasing SST on
1012 1013	554	the SE Queensland coast. Mean SST in Queensland is predicted to increase 0.6-0.8°C by 2030 and 0.8-
1014	555	2.9°C by 2090 (IPCC scenarios RCP2.6, RCP4.5 and RCP8.5) above the 1986–2005 baseline (CSIRO and
1015 1016	556	Bureau of Meteorology, 2015; IPCC, 2014). Given future forecasts, it is highly likely that further shifts
1017		
1018		17
1019		
1020		

will occur leading to a restructuring of macrofaunal assemblages. Such changes may include alterations to the biological traits and ecological functioning of macrofaunal assemblages. In the present study biogeographic range shifts were simulated to produce five novel species compositions for mudflats. By altering species composition, changes in the associated traits of macrofauna that mediate a range of benthic functions were also simulated. Specific biological trait modalities were mapped onto functions and it was assumed that all modalities contributed equally to functioning. This assumption was tested using an alternative model, and the functional estimates were found to be insensitive to the differential trait weighting (Frid and Caswell, 2016) and so the, unweighted, results presented here are conservative in describing functional change. This is consistent with other studies using this approach (Clare et al., 2015; Frid and Caswell, 2016). However, note these estimates describe 'potential' and relative levels of functioning only rather than actual values that might drive ecosystem or economic models (Bateman et al., 2013; Culhane et al., 2018; Pereira et al., 2010).

Experimental studies are of limited utility for anticipating complex changes in ecosystem dynamics, therefore to predict ecosystem responses models are needed that explore hypothetical scenarios of species movements. In the present study, models of changing assemblage composition were based on three main assumptions. Firstly, species sharing physiological characteristics were assumed to move together rather than individually. Uncertainty regarding the species-specific relative rates of movement made it difficult to determine exactly where and when taxa will arrive. Secondly, species are assumed to function similarly within the new and existing assemblages, however this is unlikely to always be the case (Alexander et al., 2015). For instance, the feeding (Cesar and Frid, 2012) or burrowing behaviour (Olafsson, 1986) of taxa may vary between sediments with differing properties, and so the expression of their traits and the delivery of functioning may also differ. Thirdly, species relative abundances were assumed to be either: equivalent to the areas in which they presently reside (unconstrained total abundance; Table 2, Fig. 5); or, the total carrying capacity of the system was constrained whilst the relative proportions of taxa remained the same. The functioning estimates derived from these constrained and unconstrained formulations of the model followed similar trends. This suggests that while the abundance effect was clearly present in setting the

- 1068 585 quanta of the function predicted by the model, the pattern of functional change was robust under
- 1070 586 the different model formulations. This supports interpretations of a period of consistent functioning,
- ¹⁰⁷¹ 587 driven by species replacements, followed by collapse as previously reported for contemporary
- 1072
 1073 588 systems subject to anthropogenic pressures (Caswell et al., 2018; Clare et al., 2015).
- 1075 589

The transition from a 'pre-invasion' to the present-day scenario considers the arrival of up to eight taxa that have shifted southwards by 6–447 km over 23–70 years. These shifts are commensurate with a ~1°C increase in air and seawater surface temperatures (above the 1961-1990 average; CSIRO and Bureau of Meteorology, 2015, 2018; IPCC, 2014). In the 'further invasion' scenario tropical taxa moved 84 km south from Nudgee Beach to the mudflats between Redland Bay and Tallebudgera at on average 49 km decade⁻¹. If the rate of SST increase remained constant these taxa would reach Tallebudgera by ~2036. Our comparison of hypothetical scenarios shows that biological traits, and therefore also functioning, were initially conserved followed by a potential threshold when 10–50% of macrofaunal species were lost. This is seen in the shift between 'further invasion by tropical taxa sensitive to SST' (4 taxa, scenario 4) and subsequent loss of the temperate component of the assemblage (24 taxa, scenario 5). To date most marine species shifts have produced changes in trophic dynamics e.g. predator-prey dynamics or grazing patterns (e.g. Fowler et al., 2017; Ling, 2008; Vergés et al., 2016), but there are comparatively few identifying changes in nutrient or C-cycling within marine (but see Pessarrodona et al., 2019) or terrestrial systems (Collins et al., 2016; Pureswaran et al., 2015; Zhao et al., 2019). In the present study, estimates for nutrient cycling, C-cycling and biogenic habitat provision were three-fold lower after the loss of all temperate taxa compared with any other scenario (including the current scenario). Although the differences in emergent biogenic habitat provision were a small proportion of total functioning.

An increasing number of marine species are exhibiting changes in their biogeographic distributions, and these shifts are predicted to continue leading to elevated local extinctions in tropical and sub-polar regions (Cheung et al. 2009). Thus, novel species compositions will continue to form, however, considerable uncertainty remains regarding which species move and how the recipient communities will respond to the new arrivals. Experimental simulations have shown that differences in species interactions based on their traits can be more important predictors of ecosystem responses to 'invasion' than their physiological limits (Alexander et al., 2015). Forecasts of the possible impacts therefore could be improved by greater understanding of the functional dynamics of marine ecosystems. In this study it was only under the most extreme scenarios of species shifts that

functioning differed from the southern baseline assemblage. These changes were primarily driven by the loss of the temperate species, for which the invading tropical species, which had a different mix of traits, were unable to fully compensate. Arrival of novel species can also strongly undermine the performance of stressed communities through competition and predation. Functional dissimilarity between the incoming 'novel competitors' and 'resident competitors' has a greater impact at the trailing compared with the leading edges of species ranges (Alexander et al., 2015). Thus, the

impacts of changes in trait composition presented in this study are likely to be more moderate than in mudflats at the trailing edges. The vulnerability of ecosystem service delivery in coastal areas to climate-induced species redistribution needs to be considered within climate change resilience and mitigation planning. This study shows that these impacts could occur suddenly, associated with thresholds making collapses challenging to predict. Managers, fisheries and aquaculture sectors and others concerned with healthy functioning ecosystems in coastal systems need to be aware of these risks.

Acknowledgements

We gratefully thank the Quandamooka people the traditional custodians of the land and sea country where this work took place and respectfully acknowledge their elder's past, present and emerging. The work presented in the manuscript was funded by scholarships from the School of Environment and Science, Griffith University and the Environmental Futures Research Institute, Queensland. Thanks to Mike Elliott for editorial support, and two anonymous reviewers who helped us to improve the manuscript. We are grateful to Christopher Glasby (Museum and Art Gallery of the Northern Territory), Robin Wilson and Genefor Walker-Smith (Museum Victoria), and John Healy (Queensland Museum) for sharing their taxonomic expertise. Thanks to Dale Bryan-Brown, Nadeeka Rathnayake, Upul Wijeratne, Zachary Paterson, Ben Mackenzie, Amanda Bowler, Sarah Engelhard, Majid Bakhtiyari and Shafagh Kamal among others for assistance with field data collection. Discussions with Pat Hutchings, Ashely Rowden and Rod Connolly helped to develop the work. We would like to thank the Department of National Parks, Sport and Racing, Queensland Government for assistance with permits for selected sites within the Moreton Bay Marine Park, and Craig Wilson at the Port of Brisbane Pty Ltd. for facilitating access to field sites. References

ALA, 2018. Atlas of Living Australia, 16 November 2018 ed. Altas of Living Australia, Canberra,

1188	652	Australia. <u>https://www.ala.org.au</u> (accessed 17 th April 2019).
1189 1190	653	Alexander, J.M., Diez, J.M., Levine, J.M., 2015. Novel competitors shape species' responses to
1191	654	climate change. Nature 525, 515–518. DOI: 10.1038/nature14952
1192 1193	655	Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J., Chunco, A.J., 2011. Do species'
1194	656	traits predict recent shifts at expanding range edges? Ecology Letters 14, 677-689. DOI:
1195 1196	657	10.1111/j.1461-0248.2011.01620.x
1197		
1198		20
1199		
1200		

1201		
1202 1203		
1200	658	Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The value of
1205	659	estuarine and coastal ecosystem services. Ecological Monographs: 81, 169–193. DOI:
1206	660	10.1890/10-1510.1
1208	661	Barnes, R.S.K., Hamylton, S., 2016. On the very edge: faunal and functional responses to the
1209	662	interface between benthic seagrass and unvegetated sand assemblages. Marine Ecology
1211	663	Progress Series 553, 33-48. DOI: 10.3354/meps11800
1212 1213	664	Bateman, I.J., Harwood, A.R., Mace, G.M., Watson, R.T., Abson, D.J., Andrews, B., Binner, A., Crowe,
1214	665	A., Day, B.H., Dugdale, S., 2013. Bringing ecosystem services into economic decision-making:
1215	666	land use in the United Kingdom. Science 341, 45–50. DOI: 10.1126/science.1234379
1217	667	Biles, C.L., Solan, M., Isaksson, I., Paterson, D.M., Emes, C., Raffaelli, D.G., 2003. Flow modifies the
1218	668	effect of biodiversity on ecosystem functioning: an <i>in situ</i> study of estuarine sediments.
1220	669	Journal of Experimental Marine Biology and Ecology: 285, 165–177. DOI: 10.1016/S0022-
1221	670	0981(02)00525-7Blackburn, T.H., 1986. Nitrogen cycle in marine sediments. Ophelia 26, 65-
1223	671	76. DOI: 10.1080/00785326.1986.10421979
1224	672	Bolam, S.G., Fernandes, T.F., Huxham, M., 2002. Diversity, biomass, and ecosystem processes in the
1226	673	marine benthos. Ecological Monographs 72, 599–615. DOI: 10.1890/0012-
1227	674	9615(2002)072[0599:DBAEPI]2.0.CO:2
1229 1230	675	Bonada, N., DolÉDec, S., Statzner, B., 2007. Taxonomic and biological trait differences of stream
1231	676	macroinvertebrate communities between mediterranean and temperate regions:
1232 1233	677	implications for future climatic scenarios. Global Change Biology 13, 1658–1671, DOI:
1234	678	10.1111/i.1365-2486.2007.01375.x
1235 1236	679	Bonebrake TC Brown CI Bell ID Blanchard II Chauvenet A Champion C Chen I-C Clark
1237	680	T.D. Colwell R.K. Danielsen F. Dell A.L. Donelson J.M. Evengård B. Ferrier S. Frusher
1238 1239	681	S Garcia R A Griffis R B Hobday A L Jarzyna M A Lee F Lenoir L Linnetved H
1240	682	Martin V.Y. McCormack P.C. McDonald J. McDonald-Madden F. Mitchell N. Mustonen
1241 1242	683	T Pandolfi I M Pettorelli N Possingham H Pulsifer P Peynolds M Scheffers B P
1243	684	Sorte C.I.R. Struggell I.M. Tuanmu MN. Twiname S. Vergés A. Villanueva C. Wanstra
1244 1245	205	E Mornhorg T. Docl. C.T. 2019. Managing consequences of climate driven energies
1246	۲٥٢	E., Weinberg, T., Peci, G.T., 2010. Managing consequences of climate-universispecies
1247 1248	407	Deviews 02, 294, 205, DOI: 10, 1111/br/ 12244
1249	007	Reviews 93, 264-305. DOI: 10.1111/DIV.12344
1250 1251	000	Booth, D.J., Figueira, W.F., Gregson, M.A., Brown, L., Beretta, G., 2007. Occurrence of tropical fisnes
1252	689	In temperate southeastern Australia: role of the East Australian Current. Estuarine, Coastal
1253 1254	690	and Shelf Science 72, 102–114. DOI: 10.1016/j.ecss.2006.10.003
1255		
1256 1257		
1258		21
1259		

1261 1262		
1263 1264	691	Boschi, E.E., 2000. Biodiversity of marine decapod brachyurans of the Americas. Journal of
1265	692	Crustacean Biology 20, 337–342. DOI: 10.1163/1937240X-90000036
1266	693	Boulding, E.G., 1984. Crab-resistant features of shells of burrowing bivalves: decreasing vulnerability
1268	694	by increasing handling time. Journal of Experimental Marine Biology and Ecology: 76, 201–
1269	695	223. DOI: 10.1016/0022-0981(84)90189-8
1270	696	Bremner, J., 2008. Species' traits and ecological functioning in marine conservation and
1272	697	management Journal of Experimental Marine Biology and Ecology 366, 37–47, DOI
1273	698	10 1016/i jembe 2008 07 007
1275	600	Promper L Pagers SL Frid CLL 2002 Assessing functional diversity in marine benthic
1276 1277	700	brennier, J., Rogers, S.I., Frid, C.L.J., 2003. Assessing functional diversity in marine benchic
1278	/00	ecosystems: a comparison of approaches. Marine Ecology Progress Series 254, 11–25. DOI:
1279	701	10.3354/meps254011
1281	702	Bremner, J., Rogers, S.I., Frid, C.L.J., 2006. Methods for describing ecological functioning of marine
1282	703	benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6, 609–622.
1283 1284	704	DOI: <u>10.1016/j.ecolind.2005.08.026</u>
1285	705	Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P.,
1286 1287	706	Gheerardyn, H., King, N.J., Raes, M., 2010. Biological structures as a source of habitat
1288	707	heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31, 21–50. DOI:
1289	708	10.1111/j.1439-0485.2010.00359.x
1291	709	Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G., Hoffmann, A., Buckley, L.B., Moore,
1292	710	P.J., Brown, C.J., Bruno, J.F., Duarte, C.M., 2014. Geographical limits to species-range shifts
1294	711	are suggested by climate velocity. Nature 507, 492–495. DOI: 10.1038/nature12976
1295	712	Caswell, B.A., Frid, C.L., 2017. Marine ecosystem resilience during extreme deoxygenation: the Early
1290	713	Jurassic oceanic anoxic event. Oecologia 183, 275–290. DOI: <u>10.1007/s00442-016-3747-6</u>
1298	714	Caswell, B.A., Paine, M., Frid, C.L.J., 2018. Seafloor ecological functioning over two decades of
1299	715	organic enrichment. Marine Pollution Bulletin 136, 212–229. DOI:
1300	716	10.1016/j.marpolbul.2018.08.041
1302	717	Cesar, C.P., Frid, C.L.J., 2012. Benthic disturbance affects intertidal food web dynamics: implications
1303	718	for investigations of ecosystem functioning. Marine Ecology Progress Series 466, 35–41. DOI:
1305	719	10.3354/meps09938
1306	720	Champion, C., Hobday, A.J., Tracey, S.R., Pecl, G.T., 2018. Rapid shifts in distribution and

- 1307721high-latitude persistence of oceanographic habitat revealed using citizen science data from a1308722climate change hotspot. Global Change Biology 24, 5440-5453. DOI: 10.1111/gcb.14398130913091309
- 1310723Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species1311724associated with high levels of climate warming. Science 333, 1024–1026. DOI:131272510.1126/science.1206432

- Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R., Pauly, D., 2009. Projecting
 global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10,
 235–251. DOI: 10.1111/j.1467-2979.2008.00315.x

1321 1322		
1323		
1324 1325	729 730	Chevene, F., Doléadec, S., Chessel, D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31, 295–309. DOI: 10.1111/j.1365-2427.1994.tb01742.x
1326 1327	731	Clare, D.S., Robinson, L.A., Frid, C.L.J., 2015. Community variability and ecological functioning: 40
1328	732 733	10.1016/j.marenvres.2015.03.012
1329	734	Collins C.G. Carey C.L. Aronson F.L. Konn C.W. Diez J.M. 2016 Direct and indirect effects of
1331	735	native range expansion on soil microbial community structure and function. Journal of
1333	/30	Ecology 104, 1271-1203. DOI: 10.1111/1303-2743.12010.
1334	737	Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S.,
1335	738	Turner, R.K., 2014. Changes in the global value of ecosystem services. Global Environmental
1336	/39	Change 26, 152–158. DOI: 10.1016/j.gloenvcha.2014.04.002
1337 1338	740 741	Cowen, R.K., Sponaugle, S., 2009. Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466. DOI: 10.1146/annurev.marine.010908.163757
1339	740	Crame A L 2000 Evolution of taxonomic diversity gradients in the marine realmy evidence
1340	742 743	from the composition of recent bivalve faunas. Paleobiology 26, 188–214, DOI:
1342	744	10.1666/0094-8373(2000)026<0188:EOTDGI>2.0.CO:2
1343	745	Crowe T.P. Frid C.L.I. 2015 Marine Ecosystems: Human Impacts on Biodiversity Eunctioning and
1344	7 10	
1345 1346	746	Services. Cambridge University Press, United Kingdom, pp. 406.
1347	/4/	CSIRO and Bureau of Meteorology, 2015. Climate Change in Australia Information for Australia's
1348 1349	748	Natural Resource Management Regions. Technical Report. CSIRO and Bureau of
1350	749	Meteorology, Australia.
1351 1352	750	CSIRO and Bureau of Meteorology, 2018. State of the Climate 2018. Technical report. Australian
1353	751	Government, Canberra.
1354	752	Culhane, F.E., Frid, C.L.J., Royo Gelabert, E., White, L., Robinson, L.A., 2018. Linking marine
1355	753	ecosystems with the services they supply: what are the relevant service providing units?
1356	754	Ecological Applications 28, 1740–1751. DOI: 10.1002/eap.1779
1358 1359	755	Dambacher, J.M., Hosack, G.R., Rochester, W.A., 2012. Ecological Indicators for the Exclusive
1360	756	Economic Zone of Australia's South East Marine Region. A report prepared for the Australian
1361 1362	757	Government Department of Sustainability, Environment, Water, Population and
1363	758	Communities. CSIRO Wealth from Oceans Flagship, Hobart, p. 125.
1364 1365	759	Davie, P.J.F., Phillips, J.A., 2010. Proceedings of the 13th International Marine Biological Workshop,
1366	760	The Marine Fauna and Flora of Moreton Bay, Queensland, Dunwich, Queensland, Australia,
1367 1368	761	7-25 February, 2005. Memoirs of the Queensland Museum: 54.
1369	762	Department of Environment and Science, 2019. Moreton Bay Ramsar internationally important
1370 1371	763	wetland. Technical report. Queensland Government, Queensland.
1372	764	Deutsch, C., Ferrel, A., Seibel, B., Pörtner, HO., Huey, R.B., 2015. Climate change tightens a
1373	765	metabolic constraint on marine habitats. Science 348, 1132. DOI: 10.1126/science.aaa1605
1374		
1375		
1377		
1378		23

1381		
1382		
1384	766	Dissanayake, N.G., Frid, C.L.J., Drylie, T.P., Caswell, B.A., 2018. Ecological functioning of mudflats:
1385	767	global analysis reveals both regional differences and widespread conservation of
1386 1387	768	functioning. Marine Ecology Progress Series 604, 1–20. DOI: 10.3354/meps12728
1388	769	Dissanayake, N.G., Frid, C.L.J., Caswell, B.A., 2019. Biodiversity, trait compositon and
1389 1390	770	ecological functioning: impacts of urbanisation on subtropical mudflats. Marine and
1391	771 772	Freshwater Research 70, 1–19. DOI: 10.1071/MF19242 Dittmann S 1996 Effects of macrobenthic burrows on infaunal communities in tropical tidal flats
1392 1393	773	Marine Ecology Progress Series 134, 119–130, DOI: 10.3354/mens134119
1394	775	Dittmann 6, 2002 Banthia fauna in tranical tidal flata of Uinshinkrook Channel NE Australia.
1395	774	Dittmann, S., 2002. Benthic fauna in tropical tidal hats of Hinchindrook Channel, NE Australia:
1397	//5	diversity, abundance and their spatial and temporal variation. Wetlands Ecology and
1398	776	Management 10, 323–333. DOI: 10.1023/A:1020350413374
1400	777	Eertman, R.H.M., Hailstone, T.S., 1988. Zonation of intertidal epifauna on jetty piles in Moreton Bay,
1401	778	Queensland. Journal of the Malacological Society of Australia 9, 11–18. DOI:
1402 1403	779	10.1080/00852988.1988.10673995
1404	780	Endean, R., Kenny, R., Stephenson, W., 1956. The ecology and distribution of intertidal organisms on
1405 1406	781	the rocky shores of the Queensland mainland. Marine and Freshwater Research 7, 88–146.
1407	782	DOI: 10.1071/MF9560088
1408 1409	783	ETI Bioinformatics, 2018. Marine Species Indentification Portal. KeyToNature programme.
1410	784	www.species-identification.org (accessed 13 th April 2019).
1411 1412	785	Faulwetter, S., Markantonatou, V., Pavloudi, C., Papageorgiou, N., Keklikoglou, K., Chatzinikolaou, E.,
1413	786	Pafilis, E., Chatzigeorgiou, G., Vasileiadou, K., Dailianis, T., 2014. Polytraits: A database on
1414 1415	787	biological traits of marine polychaetes. Biodiversity Data 2.
1416	788	Fowler, A.M., Parkinson, K., Booth, D.J., 2017. New poleward observations of 30 tropical reef fishes
1417 1418	789	in temperate southeastern Australia. Marine Biodiversity 48, 2249–2254. DOI:
1419	790	10.1007/s12526-017-0748-6
1420 1421	791	Freeman, B.G., Lee-Yaw, J.A., Sunday, J.M., Hargreaves, A.L., 2018. Expanding, shifting and shrinking:
1422	792	The impact of global warming on species' elevational distributions. Global Ecology and
1423 1424	793	Biogeography 27, 1268-1276. DOI: 10.1111/geb.12774
1425	794	Frid, C.L.J., Caswell, B.A., 2016. Does ecological redundancy maintain functioning of marine benthos
1427	795	on centennial to millennial time scales? Marine Ecology 37, 392-410. DOI:
1428	796	10.1111/maec.12297
1429 1430	797	Galil. B.S., Yokes, M.B., Goren, M., Diamant, A., 2009. First record of the Indo-West Pacific mantis
1431 1432	798	shrimp. <i>Clorida albolitura</i> Ahvong & Naivanetr. 2000 (Stomatopoda. Squillidae) in Turkey.
1433	799	Aquatic Invasions 4, 701–702, DOI: 10.3391/ai.2009.4.4.19
1434 1425	800	
1436	500	
1437		24
1438 1439		24
1440		

1442		
1443 1444	801	Greve, W., Reiners, F., Nast, J., Hoffmann, S., 2004. Helgoland Roads meso-and macrozooplankton
1445	802	time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at
1446 1447	803	the only off-shore island of the North Sea. Helgoland Marine Research: 58, 274–288. DOI:
1448	804	10.1007/s10152-004-0191-5.
1449 1450	805	Hale, S.S., Buffum, H.W., Kiddon, J.A., Hughes, M.M., 2017. Subtidal benthic invertebrates shifting
1451	806	northward along the US Atlantic Coast. Estuaries and Coasts 40, 1744–1756. DOI:
1452 1453	807	10.1007/s12237-017-0236-z.
1454	808	Hanson, D., Cooke, S., Hirano, Y., Malaquias, M.A., Crocetta, F., Valdés, Á., 2013. Slipping through the
1455 1456	809	cracks: the taxonomic impediment conceals the origin and dispersal of Haminoea japonica,
1457	810	an invasive species with impacts to human health. PloS One 8, e77457. DOI:
1458 1459	811	10.1371/journal.pone.0077457.
1460	812	Heinen, E.A., McManus, J., 2004. Carbon and Nutrient Cycling at the Sediment-water Boundary in
1461 1462	813	Western Lake Superior, Journal of Great Lakes Research 30, 113–132, DOI: 10,1016/S0380-
1463	814	1330(04)70381-0
1464 1465	815	Hemingson, C.R., Bellwood, D.R., 2018, Biogeographic patterns in major marine realms: function not
1466	816	taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 41
1467 1468	817	174-182 DOI: 10 1111/ecog 03010
1469	818	Himes-Cornell A. Grose S.O. Pendleton J. 2018 Mangrove Ecosystem Service Values and
1470	819	Methodological Approaches to Valuation: Where Do We Stand? Frontiers in Marine Science
1472	820	5 376 DOI: 10 3389/fmars 2018 00376
1473	821	Hobday A L 2010 Ensemble analysis of the future distribution of large pelagic fishes off Australia
1475 1476	021	Drogross in Oceanography 96, 201, 201, DOI: 10.1016/i. posean 2010.04.022
1470	022	Progress in Oceanography 60, 291-301. DOI: 10.1010/J.pocean.2010.04.023.
1478 1470	023	Hobday, A.J., Peci, G.T., 2014. Identification of global marine hotspots: sentinels for change and
1479	824	vanguards for adaptation action. Reviews in Fish Biology and Fisheries 24, 415–425. DOI:
1481 1482	825	10.1007/s11160-013-9326-6.
1483	826	Hutchings, P., Kupriyanova, E., 2018. Cosmopolitan polychaetes-fact or fiction? Personal and
1484 1485	827	historical perspectives. Invertebrate Systematics 32, 1–9. DOI: 10.10/1/IS1/035.
1486	828 829	Hyndes, G.A., Nagelkerken, I., McLeod, R.J., Connolly, R.M., Lavery, P.S., Vanderklift, M.A., 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological
1487 1488	830	Reviews 89, 232–254. DOI: 10.1111/brv.12055
1489	831	Inglis, G.J., Kross, J.E., 2000. Evidence for Systemic Changes in the Benthic Fauna of Tropical Estuaries
1490 1491	832	as a Result of Urbanization. Marine Pollution Bulletin 41, 367–376. DOI: 10.1016/S0025-
1492	833	326X(00)00093-X
1493 1494		
1495		
1496		
1497 1498		25
1499		
1500		

1501		
1502 1503	834	Invasive Species Specialist Group (ISSG) 2015. The Global Invasive Species Database. Invasive
1504 1505	825	Species Specialist Group of the Species Survival Commission (SSC) of the International Union
1505	000	for Concernation of Neture (ILICN), http://www.ieeg.org/detabase (accessed 1st July 2010)
1507	030	Tor Conservation of Nature (IOCN). http://www.issg.org/database (accessed 1st July 2019).
1508	837	Intergovernmental Panel on Climate Change, 2014. Climate Change 2014: Synthesis Report.
1510	838	Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
1511	839	Intergovernmental Panel on Climate Change. IPCC, New York.
1513	840	Johnson, J.W., 2010. Fishes of the Moreton Bay Marine Park and adjacent continental shelf waters,
1514 1515	841	Queensland, Australia. Memoirs of the Queensland Museum - Nature 54, 299–353.
1516	842	Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E., Çinar, M.E., Oztürk, B., Grabowski, M.,
1517 1518	843	Golani, D., Cardoso, A.C., 2014. Impacts of invasive alien marine species on ecosystem
1519	844	services and biodiversity: a pan-European review. Aquatic Invasions 9, 39–423. DOI:
1520 1521	845	10.3391/ai.2014.9.4.01
1522	846	Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A.V., Aschan, M., 2015. Climate change alters the
1523 1524	847	structure of arctic marine food webs due to poleward shifts of boreal generalists.
1525	848	Proceedings of the Royal Society B: Biological Sciences 282, 20151546. DOI:
1520	849	10.1098/rspb.2015.1546
1528 1529	850	Kristensen, E., Delefosse, M., Quintana, C.O., Flindt, M.R., Valdemarsen, T., 2014. Influence of
1530	851	benthic macrofauna community shifts on ecosystem functioning in shallow estuaries.
1531 1532	852	Frontiers in Marine Science 1, 41. DOI: 10.3389/fmars.2014.00041
1533	853	Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., Banta, G.T., 2012.
1534 1535	854	What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine
1536	855	Ecology Progress Series 446, 285-302. DOI: 10.3354/meps09506
1537 1538	856	Landschoff, J., Lackschewitz, D., Kesy, K., Reise, K., 2013. Globalization pressure and habitat change:
1539	857	Pacific rocky shore crabs invade armored shorelines in the Atlantic Wadden Sea. Aquatic
1540 1541	858	Invasions 8, 77-87. DOI: 10.3391/ai.2013.8.1.09
1542	859	Ling, S.D., 2008. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity:
1543 1544	860	a new and impoverished reef state. Oecologia 156, 883–894. DOI: 10.1007/s00442-008-
1545	861	1043-9
1546 1547	862	Macdonald, T.A., Burd, B.J., Macdonald, V.I., Van Roodselaar, A., 2010. Taxonomic and feeding guild

1548 1549	863	classification for the marine benthic macroinvertebrates of the Strait of Georgia, British
1550	864	Columbia. Fisheries and Oceans Canada Pêches et Océans Canada, 69 pp.
1551 1552	865	MarLIN, 2006. BIOTIC - Biological Traits Information Catalogue. Marine Biological Association of the
1553	866	United Kingdom, Plymouth. <u>https://www.marlin.ac.uk</u> (accessed 17 th April 2019).
1554		
1555		
1556		
1557		
1558		26
1559		
1560		

1561 1562		
1563	867	Mascaró, M., Seed, R., 2001. Choice of prey size and species in <i>Carcinus maenas</i> (L.) feeding on four
1565	868	bivalves of contrasting shell morphology. Hydrobiologia 449, 159–170. DOI:
1566	869	10.1023/A:1017569809818
1568	870	McPhee, D., 2017. Environmental History and Ecology of Moreton Bay. CSIRO Publishing, Australia,
1569 1570	871	224 pp.
1571	872	Mermillod-Blondin, F., Rosenberg, R., François-Carcaillet, F., Norling, K., Mauclaire, L., 2004.
1572 1573	873	Influence of bioturbation by three benthic infaunal species on microbial communities and
1574	874	biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36, 271–284. DOI:
1575 1576	875	10.3354/ame036271
1577 1578	876	Nagelkerken, I., Russell, B.D., Gillanders, B.M., Connell, S.D., 2016. Ocean acidification alters fish
1579	877	populations indirectly through habitat modification. Nature Climate Change 6, 89–93. DOI:
1580 1581	878	10.1038/nclimate2757
1582	879	Narayan, Y.R., Pandolfi, J.M., 2010. Benthic foraminiferal assemblages from Moreton Bay, South-East
1583 1584	880	Queensland, Australia: Applications in monitoring water and substrate quality in subtropical
1585	881	estuarine environments. Marine Pollution Bulletin 60, 2062–2078. DOI:
1586 1587	882	10.1016/j.marpolbul.2010.07.012
1588	883	Norkko, A., Villnäs, A., Norkko, J., Valanko, S., Pilditch, C., 2013. Size matters: implications of the loss
1589	884	of large individuals for ecosystem function. Scientific Reports: 3, 26–46. DOI:
1591 1592	885	10.1038/srep02646
1593	886	Nygren, A., 2004. Revision of Autolytinae (Syllidae: Polychaeta). Zootaxa 680, 1–314. DOI:
1594 1595	887	10.11646/zootaxa.680.1.1
1596	888	OBIS, 2018. Ocean Biogeographic Information System. International Oceanographic Data and
1597 1598	889	Information Programme. Intergovernmental Oceanographic Commission of UNESCO.
1599	890	www.iobis.org (accessed 13 th April 2018).
1600	891	Olafsson, E.B., 1986. Density Dependence in Suspension-Feeding and Deposit-Feeding Populations of
1602	892	the Bivalve Macoma balthica: A Field Experiment. Journal of Animal Ecology 55, 517–526.
1604	893	DOI: 10.2307/4735.
1605 1606	894	Pagad, S., Genovesi, P., Carnevali, L., Schigel, D., McGeoch, M.A., 2018. Introducing the Global
1607	895	Register of Introduced and Invasive Species. Scientific Data 5, 1–21. DOI:

1	608
1	609

10.1038/sdata.2017.202.

1610 897 Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across

natural systems. Nature 421, 37–42. DOI: doi.org/10.1038/nature01286

1621 1622		
1623 1624	899	Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, IC., Clark, T.D., Colwell, R.K.,
1625	900	Danielsen, F., Evengård, B., 2017. Biodiversity redistribution under climate change: Impacts
1626 1627	901	on ecosystems and human well-being. Science 355, eaai9214. DOI: 10.1126/science.aai9214
1628	902	Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-Manjarrés,
1629 1630	903	J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W.L., 2010. Scenarios for global
1631	904	biodiversity in the 21st century. Science 330, 1496–1501. DOI: 10.1126/science.1196624
1632 1633	905	Peres, C.A., Dolman, P.M., 2000. Density compensation in neotropical primate communities:
1634	906	evidence from 56 hunted and nonhunted Amazonian forests of varying productivity.
1635 1636	907	Oecologia 122, 175-189. DOI: 10.1007/PL00008845.
1637	908	Pessarrodona, A., Foggo, A., Smale, D.A., 2019. Can ecosystem functioning be maintained despite
1639	909	climate-driven shifts in species composition? Insights from novel marine forests. Journal of
1640 1641	910	Ecology 107, 91–104. DOI: 10.1111/1365-2745.13053
1642	911	Piepenburg, D., Blackburn, T H., Von Dorrien, C.F., Gutt, J.,, Hall, P.O.J., Hulth, S., Kendall, M.A.,
1643 1644	912	Opalinski, K.W., Rachor,, E., S., M.K., 1995. Partitioning of benthic community respiration in
1645	913	the Arctic (northwestern Barents Sea). Marine Ecology Progress Series 118, 199–213. DOI:
1646 1647	914	10.3354/meps118199
1648	915	Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L., Levin, S.A., 2013. Marine taxa track local
1649 1650	916	climate velocities. Science 341, 1239-1242. DOI: 10.1126/science.1239352
1651	917	Poiner, I., 1977. Microvariation in the fauna of a sublittoral sand bank, Moreton Bay, Queensland.
1652	918	Australian Journal of Ecology 2, 297–308. DOI: 10.1111/j.1442-9993.1977.tb01146.x
1654 1655	919	Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, K.,
1656	920	Bruno, J.F., Buckley, L.B., Burrows, M.T., 2013. Global imprint of climate change on marine
1657 1658	921	life. Nature Climate Change 3, 919–925. DOI: 10.1038/nclimate1958
1659	922	Poloczanska, E.S., Burrows, M.T., Brown, C.J., García Molinos, J., Halpern, B.S., Hoegh-Guldberg, O.,
1660 1661	923	Kappel, C.V., Moore, P.J., Richardson, A.J., Schoeman, D.S., 2016. Responses of marine
1662	924	organisms to climate change across oceans. Frontiers in Marine Science 3, 1–21. DOI:
1663 1664	925	10.3389/fmars.2016.00062
1665	926	Poloczanska, E.S., Smith, S., Fauconnet, L., Healy, J., Tibbetts, I.R., Burrows, M.T., Richardson, A.J.,
1667	927	2011. Little change in the distribution of rocky shore faunal communities on the Australian

1668 1669	928	east coast after 50 years of rapid warming. Journal of Experimental Marine Biology and
1670	929	Ecology 400, 145–154. DOI: 10.1016/j.jembe.2011.02.018
1671 1672	930	Przeslawski, R., Falkner, I., Ashcroft, M.B., Hutchings, P., 2012. Using rigorous selection criteria to
1673	931	investigate marine range shifts. Estuarine, Coastal and Shelf Science 113, 205–212. DOI:
1674 1675	932	10.1016/j.ecss.2012.08.005
1676		
1677		
1678		28
1679		
1680		

1681		
1683	022	Puroswaran D.S. Do Grandpró I. Daró D. Taylor A. Parrotto M. Morin H. Pógniàro I.
1684	733	Kassebaux D.D. 2015. Climete induced charges in best tree, incest above drive
1686	934	Kneesnaw, D.D., 2015. Climate-induced changes in nost tree-insect phenology may drive
1687	935	ecological state-shift in boreal forests. Ecology 96, 1480–1491. DOI: 10.1890/13-2366.1
1688 1689	936	Queirós, A.M., Birchenough, S.N., Bremner, J., Godbold, J.A., Parker, R.E., Romero-Ramirez, A., Reiss,
1690	937	H., Solan, M., Somerfield, P.J., Colen, C., 2013. A bioturbation classification of European
1691 1692	938	marine infaunal invertebrates. Ecology and Evolution 3, 3958–3985. DOI: 10.1002/ece3.769
1693	939	Ramos, J.E., Pecl, G.T., 2015. Climate Change. Marine range shifts in SE Australia. Technical report
1694 1695	940	Institute for Marine and Antarctic Studies, University of Tasmania.
1696	941	Ratnasingham, S., Hebert, P.D.N., 2007. BOLD: The Barcode of Life Data System (http://www.
1697 1698	942	barcodinglife. org). Molecular Ecology Resources 7, 355–364.
1699	943	Ricciardi, A., 2016. Tracking marine alien species by ship movements. Proceedings of the National
1700 1701	944	Academy of Sciences 113, 5470-5471. DOI: 10.1073/pnas.1605152113
1702	945	Ridgway, K.R., 2007. Long-term trend and decadal variability of the southward penetration of the
1703 1704	946	East Australian Current. Geophysical Research Letters 34, 1–5. DOI: 10.1029/2007GL030393
1705	947	Rijnsdorp, A.D., Peck, M.A., Engelhard, G.H., Möllmann, C., Pinnegar, J.K., 2009. Resolving the effect
1706 1707	948	of climate change on fish populations. ICES Journal of Marine Science 66, 1570–1583. DOI:
1708	949	10.1093/icesjms/fsp056
1709 1710	950	Safi, K., Cianciaruso, M.V., Loyola, R.D., Brito, D., Armour-Marshall, K., Diniz-Filho, J.A.F., 2011.
1711	951	Understanding global patterns of mammalian functional and phylogenetic diversity.
1712 1713	952	Philosophical Transactions of the Royal Society B: Biological Sciences 366, 2536–2544. DOI:
1714	953	10.1098/rstb.2011.0024
1716	954	Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts in ecosystems.
1717 1718	955	Nature 413, 591596.DOI: doi.org/10.1038/35098000
1719	956	Sorte, C.J., Williams, S.L., Carlton, J.T., 2010. Marine range shifts and species introductions:
1720 1721	957	comparative spread rates and community impacts. Global Ecology and Biogeography 19,
1722	958	303-316. DOI: 10.1111/j.1466-8238.2009.00519.x
1723 1724	959	Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge,
1725	960	M.A., Lombana, A., Lourie, S.A., 2007. Marine ecoregions of the world: a bioregionalization
1726	961	of coastal and shelf areas. BioScience 57, 573–583. DOI: 10.1641/B570707
1728 1729	962	Sunday, J.M., Bates, A.E., Dulvy, N.K., 2012. Thermal tolerance and the global redistribution
1730	963	of animals. Nature Climate Change 2, 686–690. DOI: 10.1038/nclimate1539
1731 1732	964	Sunday, J.M., Pecl, G.T., Frusher, S., Hobday, A.J., Hill, N., Holbrook, N.J., Edgar, G.J., Stuart-Smith, R.,
1733	965	Barrett, N., Wernberg, T., 2015. Species traits and climate velocity explain geographic range
1734 1735	966	shifts in an ocean-warming hotspot. Ecology Letters 18, 944–953. DOI: 10.1111/ele.12474
1736		
1737 1738		29
1739		
1740		

1741		
1742 1743		
1744	967	Thrush, S.F., Hewitt, J.E., Gibbs, M., Lundquist, C., Norkko, A., 2006. Functional role of large
1745 1746	968	organisms in intertidal communities: community effects and ecosystem function.
1740	969	Ecosystems: 9, 1029-1040. DOI: 10.1007/s10021-005-0068-8
1748	970	Törnroos, A., Nordström, M.C., Bonsdorff, E., 2013. Coastal Habitats as Surrogates for Taxonomic,
1749	971	Functional and Trophic Structures of Benthic Faunal Communities. PLOS ONE 8, e78910. DOI:
1751	972	10.1371/journal.pone.0078910
1752	973	Toussaint, A., Charpin, N., Brosse, S., Villéger, S., 2016. Global functional diversity of freshwater fish
1754 1755	974	is concentrated in the Neotropics while functional vulnerability is widespread. Scientific
1756	975	Reports: 6, 1 Toussaint, A., Charpin, N., Brosse, S., Villéger, S., 2016. Global functional
1757	976	diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is
1759	977	widespread. Scientific Reports 6, 1–9. DOI: 10.1038/srep22125
1760 1761	978	Van Oevelen, D., Soetaert, K., Middelburg, J.J., Herman, P.M.J., Moodley, L., Hamels, I., Moens, T.,
1762	979	Heip, C.H.R., 2006. Carbon flows through a benthic food web: Integrating biomass, isotope
1763 1764	980	and tracer data. Journal of Marine Research 64, 453–482. DOI:
1765	981	10.1357/002224006778189581
1766 1767	982	Vergés, A., Doropoulos, C., Malcolm, H.A., Skye, M., Garcia-Pizá, M., Marzinelli, E.M., Campbell, A.H.,
1768	983	Ballesteros, E., Hoey, A.S., Vila-Concejo, A., 2016. Long-term empirical evidence of ocean
1769 1770	984	warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp.
1771	985	Proceedings of the National Academy of Sciences 113, 13791–13796. DOI:
1772 1773	986	10.1073/pnas.1610725113
1774	987	Vermeij, G.J., Roopnarine, P.D., 2008. The Coming Arctic Invasion. Science 321, 780–781. DOI:
1775	988	10.1126/science.1160852
1777	989	Wethey, D.S., Woodin, S.A., Hilbish, T.J., Jones, S.J., Lima, F.P., Brannock, P.M., 2011. Response of
1778	990	intertidal populations to climate: effects of extreme events versus long term change. Journal
1780	991	of Experimental Marine Biology and Ecology 400, 132–144. DOI:
1782	992	10.1016/i.jembe.2011.02.008
1783 1784	993	WoRMS Editorial Board (2016) World Register of Marine Species (WoRMS).
1785	994	http://www.marinespecies.org at VLIZ (accessed 1 st August 2018).
1786 1787	995	Young, P., Wadley, V., 1979, Distribution of shallow-water epibenthic macrofauna in Moreton Bay.
1788	996	Oueensland, Australia, Marine Biology 53, 83–97, DOI: 10,1007/BF00386532
1789 1790	997	Zeuthen E 1953 Oxygen uptake as related to body size in organisms. The Quarterly Review of
1791	998	Biology 28, 1–12, DOI: 10, 1086/399308
1792 1793	//0	
1794		
1795 1796		
1797		
1798 1799		30
1800		

1801		
1802		
1803 1804	999	Zhao, M., Sun, B., Wu, L., Wang, F., Wen, C., Wang, M., Liang, Y., Hale, L., Zhou, J., Yang, Y., 2019.
1805	1000	Dissimilar responses of fungal and bacterial communities to soil transplantation simulating
1806	1001	abrupt climate changes. Molecular Ecology 28, 1842–1856. DOI: 10.1111/mec.15053
1808	1002	Zwerschke, N., Hollyman, P.R., Wild, R., Strigner, R., Turner, J.R., King, J.W., 2018. Limited impact of
1809	1003	an invasive ovster on intertidal assemblage structure and biodiversity: the importance of
1810	1004	environmental context and functional equivalency with native species. Marine Biology 165
1812	1004	
1813 1814	1005	1-13. DOI: 10.100//S0022/-018-3338-/
1815		
1816		
1817		
1818		
1819		
1820		
1821		
1822		
1823		
1824		
1020		
1827		
1828		
1829		
1830		
1831		
1832		
1833		
1834		
1835		
1836		
1037		
1839		
1840		
1841		
1842		
1843		
1844		
1845		
1846		
184/		

Figure captions

Fig. 1. Spatial distribution of the sites sampled, groupings for the biogeographic analyses and apparent range shifts. (A) Map of Australia with study region indicated. (B) The 24 mudflats (Appendix Table A.1) sampled (open circles) along the SE Queensland coast in 2016-17. The sites are numbered 1-24 from north to south, and for the purpose of biogeographic analyses are grouped into; (i) those to the north (1–14) and south (15–24) of Cleveland, (ii) into four equal-sized groups from north to south, (iii) the northernmost six (1-6) and southernmost six sites (19-24). (C) The northward biogeographic range shifts for the three temperate taxa. (D) Southward range shifts for crustaceans and foraminifera, and (E) molluscs. The distance and direction shifted is illustrated by grey arrows with the origin and year of most recent record in the Australian Living Atlas (ALA, 2018) and the Ocean Biogeographic Information System (OBIS, 2018). For distances moved (km) see Table 3. For three species (Myrianida australiensis, Laternula anatina and Haminoea fusca) only the current location is provided because the origin falls outside of the sampled area.

Fig. 2. (A) Mean (±SE) macrofaunal density (number of individuals m⁻²), from the 24 mudflats sampled in SE Queensland, Australia (Fig. 1) in winter 2016 (black) and summer 2017 (white). Means are based on five 0.0625m² box cores at each site. (B) nMDS ordination of the Bray-Curtis similarity of the macrofaunal species composition (log X+1 transformed) in each season.

Fig. 3. nMDS ordination of the Bray-Curtis similarity of the mudflat macrofaunal assemblage taxonomic composition (log X+1 transformed density) for mudflats in the northernmost (between 1900 1028 Deception Bay and northern Moreton Bay) and southernmost six sites (between Redland Bay and Tallebudgera) sampled in SE Queensland (Fig. 1A), (A) in summer and (B) in winter. Macrofaunal trait 1903 1030 composition, weighted by density, (C) in winter and (D) in summer. (E) The mean densities (± SE) of the five taxa contributing most to the SIMPER dissimilarity between the northernmost and southernmost six sites in summer in SE Queensland. *Indicates significance difference.

¹⁹⁰⁸ 1033

Fig. 4. (A) The trait modality profiles of taxa based on their typical biogeographic occurrences e.g. 1912 1035 tropical, temperate or cosmopolitan. (B) Trait modality profiles of taxa based on the biogeographic

occurrences throughout the sampled area (including identified range shifters) in SE Queensland. The

1915 1037 species that were absent from the winter assemblage are indicated in 'W'. (C) The trait modalities

1921		
1922	1038	contributed to > 50% cumulative differences between the trait profiles of temperate taxa that
1924 1925	1039	occurred throughout SE Queensland (Qld) and tropical range shifters, tropical species that occurred
1926	1040	throughout SE Queensland, tropical species that were absent from the southernmost 6 sites. The traits
1928	1041	modalities that differed significantly (Mann-Whitney U test) between three pairs were illustrated in
1929 1930	1042	bold, 2 pairs as underlined and an $*$ was added to represent one significant pair.
1931		
1932 1933	1043	
1934	1044	Fig. 5. nMDS ordination of the Bray-Curtis similarity of the simulated mudflat macrofaunal assemblage
1935 1936	1045	trait composition in 24 SE Queensland mudflats under five scenarios of species compositional change
1937	1046	(e.g. pre-invasion, baseline, further invasion, loss of sensitive temperate species and loss of all
1938 1939	1047	temperate species scenarios) (A) in winter, and (B) in summer.
1940	1048	
1941	1010	
1942	1049	Fig. 6. Estimates for three ecological functions (mean \pm SE) within SE Queensland mudflats under five
1944	1050	scenarios of species compositional change (e.g. pre-invasion, baseline, further invasion, loss of
1945	1051	sensitive temperate species and loss of all temperate species scenarios). Data are standardised to zero
1947	1052	mean and unit variance. (A) Nutrient cycling, (B) C-cycling, and (C) biogenic habitat provision in model
1940	1053	A in both winter and summer.
1950	1054	
1951	1034	
1953		
1954		
1956		
1957		
1958		
1959		
1961		
1962		
1963		
1964		
1966		

Fig. 2 Caswell et al. 2019

Fig. 3 Caswell et al. 2019

Tropical sp. absent from southernmost 6 sites □ Tropical range shifters Tropical sp. that occurred throughout SE Qld ■ Temperate sp. that occur throughout SE Qld

Fig. 4 Caswell et al. 2020

\triangle Pre-invasion scenario

- * Southern baseline scenario
- Further invasions scenario
- Loss of sensitive temperate sp. scenario
- ▲ Loss of temperate sp. scenario

Fig. 5 Caswell et al. 2020

□ Pre-invasion scenario Loss of sensitive temperate sp. scenario ■ Southern baseline scenario ■ Loss of all temperate sp. scenaro Further invasion scenario

Fig. 6 Caswell et al. 2020

Table 1. The eleven biological traits and 45 trait modalities used to characterise the mudflat macrofaunal taxa, and the three ecological functions investigated (and the trait modalities used to index them). Traits were selected to represent a range of morphologies, life histories and behaviours and because they are thought to be important contributors to the three ecological functions (see detailed scientific rationale in Appendix A2). Two models were employed, for model A the value of 1 was assigned for trait modalities with highest affinity to functions and 0 for the lowest contribution. A differentially weighted model (B). was developed where trait modalities varied in their contribution to each function (see Appendix Table A.2).

Traits	Trait modalities
Morphological traits	
A. Maximum adult body size ¹	(1) <10 mm; (2) 10–30 mm; (3) 30–50 mm; (4) >50 mm
B. Body shape ²	(1) Round-oval; (2) rectangular-sub-rectangular; (3) vermiform
C. Body armour thickness	(1) None; (2) 0.1–0.5 mm; (3) 0.5–1 mm; (4) 1–5 mm; (5) >5 mm
Life history traits	
D. Degree of attachment ³	(1) None; (2) temporary; (3) permanent
E. Longevity	(1) <1 yr; (2) 1-2 yr; (3) 3-5 yr; (4) 5-10 yr; (5) >10 yr
F. Larval development	(1) Direct; (2) planktotrophic; (3) lecithotrophic
Behavioural traits	
G. Feeding	 Deposit feeder; suspension/filter feeder;
	(3) predator/scavenger; (4) grazer
H. Sediment dwelling depth	(1) Epifauna; (2) 2–20 mm; (3) 20–50 mm; (4) >50 mm
I. Adult mobility	(1) Sessile/sedentary; (2) limited movement; (3) free
	movement; (4) swimming
J. Sediment reworking ⁴	(1) None; (2) surface modifiers; (3) biodiffuser/diffusive
K Habitat modification ⁵	(1) No modification: (2) cast or mound: (3) burrow
R. Habitat modification	ditch/hollow: (4) biogenic tubes (5) emergent structures
Ecological Function	Models
Nutrient cycling	
Maximum adult body size >10	Model A: (A2*1) + (A3*1) + (A4*1) + (H3*1) + (H4*1) +
mm ^{5,6,7} (A2-A4) + rounded or	$(G1^*1) + (G2^*1) + (I3^*1) + (J2^*1) + (J3^*1) + (J4^*1) + (J5^*1) +$
rectangular body shapes (B1-B2) +	(H2*1) + (K3*1) + (B1*1) + (B2*1)
deposit or suspension/filter	

feeders¹¹(G1-G2) + sediment dwelling depths >2 mm¹⁰(H2-H4) +

taxa with adult mobility¹⁰ (I3) + all sediment reworking modes^{8, 9} (J2-J5) + taxa that modify habitat by burrowing (K3)¹⁰

Food web dynamics (C-cycling)

Taxa of all maximum adult body sizes¹² (A1-A4) + those with body armour <1 mm thick^{14, 15} (C1-C3) + Model A: $(A1^*1) + (A2^*1) + (A3^*1) + (A4^*1) + (C1^*1 + (C2^*1) + (C3^*1) + (E1^*1) + (E2^*1) + (F2^*1) + (F3^*1) + (G1^*1) + (G2^*1) + (G3^*1) + (G4^*1) + (H1^*1) + (H2^*1)$

<2 year longevity (E1-E2) + all larval developmental modes¹³ (F2-F3) + all feeding modes (G1-G4) + taxa dwelling at shallow sediment depths (H1-H2)

Biogenic habitat provision

Taxa that modify habitat by creating emergent structures (K5) + those that attach to substrates (D2-D3) **Model A:** (K5*1) + (D2*1) + (D3*1)

¹Largest dimension e.g. polychaetes body length, crab carapace width; ²Length: width ratio of B1 = 1-2; B2 = 3 -10; B3 > 10; ³D1 = highly mobile; D2= lives attached to substrate some of the time (e.g., via a weak byssus); D3 = lives permanently attached to hard substrates; ⁴ Sediment reworking includes: J1 = no bioturbation; J2 = surface modifiers bioturbate sediments near the surface; J3 = biodiffusors that constantly and randomly mix sediments; J4 = upward/downward conveyors that feed head up or down and transport sediment from depth to the surface or vice versa; J5 = regenerators that continuously excavate and maintaining burrows (Kristensen et al., 2012; Queirós et al., 2013). ⁵Habitat modification K4: infaunal tubes. ⁵Bolam et al. (2002); ⁶Thrush et al. (2006); ⁷Norkko et al. (2013); ⁸Biles et al. (2003); ⁹Kristensen et al. (2012); ¹⁰Mermillod-Blondin et al. (2004); ¹¹Welsh (2003); ¹²Zeuthen (1953); ¹³Greve et al. (2004); ¹⁴Mascaró and Seed (2001); ¹⁵Boulding (1984)

Table 2. Five scenarios of changing macrofaunal assemblage composition at the southernmost mudflats (Appendix Fig. B.2) under continued anthropogenic warming in SE Queensland mudflats. The scenarios are based on changes in six categories of taxa in SE Queensland: (A) tropical species that have extended their distribution southwards over the last 20-60 years (tropical range shifters, Fig. 1C-D); (B) tropical species that occur throughout SE Queensland; (C) tropical species that currently <u>only</u> occur in the northern sites, but that could shift in the future; (D) robust temperate species whose current range extends throughout SE Queensland; (E) temperate species that are sensitive to temperature change (i.e. did not occur in the northernmost sites); and, (F) cosmopolitan species. Species that were eliminated from the observed baseline community are indicated by 'minus' and those that were added are indicated by 'plus'. Most species were present in both seasons, however for those where adjustments were made in only one season those changes are indicated.

Scenarios	Description	Density manipulations						
		Sp	oeci	es ca	ateg	orie	es	Species manipulated
		А	В	С	D	Е	F	
1. Southern baseline Describes the current functioning of mudflats	The current community.	х	Х		Х	Х	Х	No manipulation
2. Pre-invasion Describes functioning prior to the arrival of tropical range shifters.	The baseline state without the tropical range shifters (A).		x		x	x	x	 <u>Both seasons</u> Minus A: E. discoidale, H. fusca, M. hiantina, M. endeavouri, U. longidigita <u>Winter</u> Minus A: M. maculata <u>Summer</u> Minus A: C. depressa, La. anatina
3. Further invasions Describes functioning if more tropical species invaded.	The baseline state with the addition of tropical species that might shift in the future (C).	X	x	X	x	x	x	 <u>Both seasons</u> Plus C: L. impar, Li. anatina, T. polita <u>Summer</u> Plus C: P. undulatus,
4. Loss of sensitive temperate taxa Describes functioning if more tropical species invaded AND sensitive temperate taxa were lost.	Scenario 3 without sensitive temperate species (E).	x	x	x	x		x	Both seasons • Plus C: Li. anatina, L. impar, T. polita • Minus E: A. sibogae, H. haswellianus, T. australiensis <u>Summer</u> • Minus E: S. boa • Plus C: P. undulata
5. Loss of all temperate taxa Describes functioning if temperate species were lost and only tropical species remained.	Scenario 3 without any temperate species (D or E).	x	x	x			x	 Both seasons Plus C: Li. anatina, L. impar, T. polita Minus D: A. australiensis, A. richardsoni, A. intermedia, A. ehlersi, B. lepte, C. punctulatum, G. americana, H. alba, L. bifurcatus, L. tetraura, M. setosus, M. dakini, M. mullawa, M. australiensis, O. australis, P. novaehollandiae, V. australiensis Minus E: A. sibogae, H. haswellianus, T. australiensis

- Plus C: P. undulata
- Minus D: N. torquatus, P. antipoda, S. miersi
- Minus E: S. boa

Table 3: The biogeographic ranges of the 50 taxa (summer and winter combined) found in the 24 mudflats sampled during this study, and their known latitudinal ranges in Australia as documented from published databases (ALA, 2018; OBIS, 2018). (Globally documented latitudinal ranges are provided in Appendix B.3, NB: these do not affect the range shifts documented herein). These new data extended the ranges of 10 species (**bold rows**), and for these species the year (the latest date the shift could have begun), extent and direction of the expansion is provided. The 'typical' climatic zone of each species based on previous records is given using: the tropical climatic zones defined as 23° 27'S in Dissanayake et al. (2018), and the temperate climatic zone boundary (32.4° 00'S) was based on the southern boundary of Moreton-Tweed marine ecoregion described by Spalding et al. (2007) and the convergence of the Australian East Coast Current and the Tasman Sea Current (Cetina-Heredia et al., 2014). Abbreviations: Trop = Tropical, Temp = Temperate, N= number of sites/records.

Species	Sp.	Max. c	locumented	l latitudinal	Latitu	udinal range	e of taxa at	Distance &	Rate	
	zone		range (°) of	taxa		mudflats s	ampled		direction	(km
			_				_		moved	decade ⁻¹)
		Year	North	South	N	North	South	N	(km)	
Acetes sibogae ²	Temp		-15.2250	-36.2070	174	-27.3436	-28.1069	12		
Aglaophamus australiensis	Temp		-17.0330	-43.0330	1093	-27.1464	-28.1069	23		
Alpheus richardsoni ²	Temp		-16.7660	-41.4660	143	-27.1747	-28.1069	9		
Armandia intermedia ²	Temp		-19.1160	-38.8500	285	-27.1747	-28.1069	16		
Australonereis ehlersi	Temp		-23.1830	-42.2752	566	-27.1464	-28.1069	12		
Australoplax tridentata	Trop		-10.7333	-36.2078	83	-27.1956	-28.1069	14		
Barantolla lepte	Temp		-22.3830	-38.8500	791	-27.1747	-27.8222	18		
Bulla vernicosa ²	Trop		-23.9000	-34.7500	430	-27.2597	-28.1069	3		
Chaenostoma punctulatum	Temp		-10.7160	-36.0653	58	-27.1464	-28.1069	14		
Cirriformia tentaculata ²	Temp		-22.3830	-42.8800	82	-27.1747	-27.6436	6		
Clorida depressa ²	Trop	1998	-21.2350	-27.6667	59	-27.1956	-27.7178	5	6 S	3
Conuber sordidum ²	All		-10.6000	-43.1179	544	-27.1464	-28.1069	21		
Elphidium discoidale ¹	Trop	1983	-20.9000	-24.6814	2	-27.1747	-28.1069	7	381 S	112
Eurysyllis tuberculata ^{2,4}	Trop		-14.5723	-34.7500	31	-27.1747	-27.7178	6		
Gelasimus vomeris ²	Trop		-23.4122	-33.8083	145	-27.2775	-28.1069	10		
Glycera americana ²	Temp		-22.3830	-41.1600	515	-27.1956	-27.8222	12		
Haminoea fusca⁴	Trop	1970	-14.6700	-25.2500	16	-27.1747	-28.1069	16	317 S	68
Helograpsus haswellianus ²	Temp		-9.5833	-43.0300	207	-27.3436	-27.8222	10		
Hiatula alba	Temp		-26.7660	-43.4630	69	-27.1464	-28.1069	18		
Laternula anatina ^{2,4}	Trop	1996	-16.5500	-23.4160	103	-27.1956	-27.7053	5	477 S	227
Leitoscoloplos bifurcatus	Temp		-14.6794	-42.3902	489	-27.1464	-28.1069	12		
Lingula anatina	Trop		-20.4000	-27.9667	47	-27.2597	-27.5158	2		
Lumbrineris tetraura ²	Temp		-28.1903	-38.7300	716	-27.1747	-28.1069	12		
Lutraria impar ²	Trop		-23.2000	-28.3803	24	-27.1956	-27.4764	4		
Macrophthalmus setosus	Temp		-22.3833	-36.0612	133	-27.1747	-28.1069	21		
Mactra maculata ^{2, 3}	Trop	1949	-14.6600	-27.5830	61	-27.1463	-28.1069	17	58 S	9
Magelona dakini	Temn		-18 7330	-41 1612	371	-27 1464	-28 1069	19		
Magelona dakim Marcia hiantina ²	Tron	1982	-23 1827	-27 6167	250	- 27 .1404	-28 1069	16	54 S	16
Marphysa mullawa	Temn	1702	-12 6660	-36 8917	122	-27 1747	-28 1069	9	515	10
Matapapagus and avouri ²	Tron	1061	-22 8450	-27 /167	2205	-07 0775	-29 1060	Q	77 S	11
Mieturia longiagraus ²		1701	-23.0430	-27.4107	2375	- 2/.2//J	-20.1007	20	113	14
Murianida australiansis	Tomp	2011	-11.9000	-30.4012	34Z 1	-27.1404 - 27.17/7	-20.1009	20 11	274 N	622
Naccarius coronatus ²	Ткор	2011	-30.3407	-30.3407	200	-2/.1/4/	-27.7303	11	374 N	023
Nassarius coronatus ²	1rop		-23.1300	-34.2544	299	-27.2397	-27.7503	4		
Nematoda ²			-10.1333	-41./339	30516	-27.1404	-28.1009	20		
Nemertea ²	All T		-14.5000	- 54./083	3202	-27.1747	-28.1069	13		
Notomastus torquatus	Temp		-23.8160	-38.4889	493	-27.1464	-28.1069	21		
Owenia australis	lemp –		-14.6/00	-38.9000	248	-27.1464	-28.1069	21		
Paratapes undulatus ²	Trop		-23.3330	-36.9033	230	-27.1956	-27.5158	2		
Phyllodoce	Temp		19.8830	-38.7661	108	-27.1464	-28.1069	16		
novaehollandiae					-		_			
Platynereis antipoda ²	Temp		10.5863	-43.4350	385	-27.2775	-27.7178	6		
Prionospio queenslandica ⁴	Trop		10.5861	-35.7461	17	-27.1463	-27.7178	11		
Pyrazus ebeninus	All		10.6830	-42.9111	380	-27.1464	-28.1069	22		
Recluzia johnii ³	Trop		23.4167	-34.0583	11	-27.7178	-27.7503	2		
Stenothoe miersi	Temp		14.5719	-37.8898	48	-27.1747	-28.1069	8		

Sternaspis scutata ^{2, 4}	Trop		23.8500	-32.5000	3177	-27.3436	-27.7503	7		
Sthenelais boa ²	Temp		27.1189	-34.0083	3971	-27.5158	-27.8222	4		
Trypaea australiensis	Temp		17.7833	-38.7000	651	-27.395	-28.1069	6		
Tubuca polita²	Trop		22.1167	-30.8830	102	-27.2775	-27.2775	1		
Uca longidigita	Trop	1962	21.1333	-27.5000	27	-27.4222	-27.7503	4	28 S	5
Victoriopisa australiensis ³	Temp	2007	27.9160	-37.0963	186	-27.1464	-27.7503	11	85 N	86

¹The range given is for *E. discoidale*, however this record could potentially be confounded as subspecies *Elphidium discoidale* var. *multiloculum* was described from Moreton Bay (-27.1108 to -27.6583) by Narayan and Pandolfi (2010). If this is-variety is confirmed as a distinct taxon then the record in the present study may not represent a range shift for the species. ²Species that have different global ranges (see Appendix Table B.3). ³Taxa previously recorded only once within the study area. ⁴Taxa not previously recorded in the study area (and only once in greater SE Queensland).

We declare no conflict of interest

Bryony Caswell: Conceptualisation, methodology, Writing original draft preparation, Writing- review and editing, visualization, supervision

Navodha Dissanayake: Data curation, Writing original draft preparation, formal analysis, investigation, visualization

Chris Frid: Conceptualisation, methodology, Writing- review and editing, Resources, supervision, validation

Appendix A: Materials & methods

A.1 Geographic locations of the study site

Table A.1. The geographic coordinates of the 24 subtropical mudflats along the SE Queensland coast (negative latitudes indicate S of the equator) (Fig. 1).

Site no	Latitude (degrees)	Longitude (degrees)
1	-27.8222	153.0464
2	-27.1747	153.0319
3	-27.1956	153.0431
4	-27.2597	153.0747
5	-27.2775	153.0369
6	-27.3436	153.0933
7	-27.3425	153.1000
8	-27.3947	153.1391
9	-27.3950	153.1583
10	-27.3933	153.1689
11	-27.4222	153.1706
12	-27.4764	153.2033
13	-27.4808	153.2422
14	-27.5158	153.2622
15	-27.5739	153.3056
16	-27.5622	153.3003
17	-27.6019	153.3019
18	-27.6436	153.3119
19	-27.6589	153.3092
20	-27.7053	153.3239
21	-27.7178	153.3539
22	-27.7503	153.3511
23	-27.8222	153.3781
24	-28.1069	153.4464

A.2 Simulating species taxonomic and trait change and the effects on mudflat ecological functioning

Analyses were performed on both unconstrained and constrained data sets. In the latter case all of the simulated assemblage data were standardised to the same total density to aid comparisons between the five scenarios emphasising the influence of the changing species compliment rather than changes in the size of the assemblage (Table 2). This was prompted because biological traits analysis uses the total density of each trait modality to characterise an assemblage and so is sensitive to the

total number of individuals within an assemblage. As we have no simple means of predicting changes

in the relative densities of taxa, our constrained simulations capture changing species composition

from the mean densities of the species within their observed range (i.e. the mean number of

individuals/biomass recorded across the southernmost six sites during each season rounded to the

nearest 10). The macrofaunal assemblages were standardised to a total of 390 individuals per m² in the summer and 160 individuals per m² in winter.

Two models (A and B) were used to explore the implications of species losses and gains from the macrofaunal assemblages of the southernmost SE Queensland mudflats sampled in this study. Model A included the trait modalities thought to make a contribution to each functions and these were effectively assigned a weighting of 1 (Frid and Caswell, 2016)(Table 1). An additional model (model B) employing differential weightings on these traits, to better reflect our, partial, understanding of the contribution of each trait modality to a particular function was also developed. For instance, macrofauna with large body sizes contribute proportionally more to some functions than smaller individuals (Norkko et al., 2013; Thrush et al., 2006). The differential weightings were derived based on known relationships between the biological traits of species and the level of ecological functioning delivered (see justification below). For both models the selected trait modalities, weighted by density, were summed separately for each function and each scenario.

Nutrient cycling. In coastal seas nutrient cycling is strongly coupled with benthic processes that regenerate nitrogen compounds from within intertidal and subtidal sediments and this can provide 20–100% of the annual N requirements for water column primary production (Welsh, 2003). Mudflats are recognised sources and sinks for organic matter and nutrients, with the direction and magnitude of these fluxes being determined by the resident macroinvertebrate, benthic primary producers and the microbial communities (D'Andrea and DeWitt, 2009). Microbes oxidise organic matter and transform elements through a series of oxidation and reduction reactions which in turn drive the biogeochemical cycling of nutrients in coastal waters facilitating pelagic primary production (Worden et al., 2015). The composition of the sedimentary microbial community and the rates of their metabolic processes are strongly influenced by local environmental conditions (Welsh 2003; Thrush et al. 2006), in particular the sediment redox state and availability of (labile) organic material (Piepenburg et al., 1995; Van Oevelen et al., 2006) (In coastal systems macrofauna facilitate the

mineralization of sedimentary N and the efflux of the mineralization products into the water column. These fluxes are fourfold higher when macrobenthos are present compared with when they are not (Hansen and Blackburn, 1992; Kristensen and Blackburn, 1987; Welsh, 2003). Macrofauna facilitate nutrient cycling through a combination of biological traits such as sediment reworking which is mainly driven by the feeding, movement and behaviour of macroinvertebrates. These processes oxygenate the sediment, enhance the vertical transfer of organic matter, establish concentration

gradients, increase the sediment surface area for chemical exchange with the water column (Fenchel, 1996) and influence the composition of meiofaunal and microbial communities (Fenchel and Finlay, 2008; Olafsson, 2003; Warwick and Clarke, 1984). Those with surface modifying and biodiffusive mixing traits perform constant and random local sediment mixing over short distances and make similar contributions to nutrient efflux. For instance, biodiffusive mixing by Nereis diversicolor and surface modifying behaviour of Corophium volutator and Macoma balthica contribute 21-38 NH 4-N µmol L⁻¹ to nutrient effluxes (Biles et al., 2003). However, other bioturbatory modes such as sediment regenerators and upward/downward conveyors make greater contributions to sediment mixing and nutrient effluxes than surface modifiers or biodiffusors. The upward conveyors callianassid shrimps move deep sediment to the surface at a rate of 12 kg m⁻² d⁻¹ (Branch and Pringle, 1987) releasing 50-60 NH $_4$ -N μ mol L⁻¹ (Nates and Felder, 1998). Whereas, regenerators continuously excavate sediment through digging and maintaining burrows (Kristensen et al., 2012) e.g. Uca sp. burrow >10 cm, excavating ~10g of sediment per day (Penha-Lopes et al., 2009) contributing between 650 and 800 NH $_4$ -N μ mol L⁻¹ to the overlying waters. Thus, these traits were used to index nutrient cycling (Table 1) and included organisms with an adult body size >10 mm and more rounded/rectangular morphology that have the potential to overturn (or displace) larger amounts of sediment than those of smaller body size or more vermiform shape (Table 1, Norkko et al., 2013; Thrush et al., 2006). Similarly, mobile organisms and those that burrow have greater potential to disturb the sediment (Mermillod-Blondin et al., 2004), with some feeding and bioturbatory modes having greater influence upon sediment nutrient cycling and for this reason were weighted by their ability to disturb surface and subsurface sediments, irrigate their burrows (suspension feeders; Kristensen et al., 2012; Welsh, 2003) and mechanically degrade organic matter (Clare et al., 2015, Table 1; Welsh, 2003).

Food-web dynamics (C-cycling). The cycling of organic C in marine systems is driven by food-web dynamics (ingestion, respiration, production) and reproductive processes. Macrofaunal communities mediate the transport, transformation and storage of carbon within an ecosystem. Within sediments macrofauna may contribute between 11% and 43% of total benthic community respiration with the

remainder being from bacteria and microbenthos (Piepenburg et al., 1995; Van Oevelen et al.,

2006). Benthic macrofaunal C-cycling was therefore indexed by organisms of all body sizes, all feeding modes, and dispersive reproductive modes (these traits would move C around the wider ecosystem, and between the benthic and pelagic realm, more than direct developers where C from the adult is packaged into young and retained locally; Greve et al., 2004). In Model B this function was weighted towards larger-sized organisms (Table 2) that individually consume and respire more

and thus cycle more C (Norkko et al., 2013; Zeuthen, 1953). A differential weighting was further applied to larger taxa that are more likely to be predated by higher trophic level consumers (Thrush et al., 2006) and so may contribute more towards wider ecosystem carbon cycling. Similarly, taxa that lack or have only a thin exoskeleton and those that only burrow to shallow sediment depths will be more regularly predated and so contribute more to C-cycling than those which have more substantial protection from, or more effectively avoid, predators. Deposit feeders ingest sediment containing organic matter that enters back into the environment through faeces recycling carbon (Wilson et al., 1993). Suspension feeders were weighted above the other feeding modes because they feed on suspended particulate organic carbon in the water column and so draw carbon into the benthic realm facilitating benthic-pelagic coupling (Smaal and Prins, 1993) compared with other feeding modes that cycle carbon within the sediment only. Species with shorter life-spans cycle more carbon through the food web (REF) as they are regularly consumed and decomposed. Whereas, longer-lived, usually larger organisms, retain organic carbon within their body tissues throughout their lives. and so shorter-lived taxa (<2 years) were included in estimates of C-cycling.

Biogenic habitat provision. Biological structures such as mussel beds, oyster reefs and kelp forests may have a substantial influence on local species diversity by increasing habitat heterogeneity (Bracken, 2018; Buhl-Mortensen et al., 2010) and providing important refuges and nursery habitat. For example, the polychaete *Diopatra cuprea* builds emergent leathery tubes incorporating fragmented bivalve shells, and so it provides hard substrates for the growth of macroalgae creating further habitat (Thomsen and McGlathery, 2005). In this way the biological activities of one organism e.g. the creation of casts, mounds or burrows can provide habitat or shelter from predators, and structures that emerge from the sediment may provide hard substrates for attachment. Taxa with such traits may act as ecosystem engineers whereby the biogenic tubes trap sediment and provide sediment stability (Rabaut et al., 2007) altering local sediment properties and organic content. Biogenic habitats are constructed by organisms that are sessile and have an attached epifaunal life habit and so this function was indexed by taxa that attach themselves to substrates and produce the emergent structures (Table 1).

Table A.1. The three ecological functions investigated (and the trait modalities used to index them) for the subtropical SE Queensland mudflats. Two models were employed an unweighted 'baseline' (model A), and a differentially weighted model (B) where trait modalities vary in their contribution to each function. Differential weightings were developed from Frid and Caswell (2016).

Ecological Function	Models
Nutrient cycling	
Maximum adult body size >10 mm ^{5, 6, 7} (A2-A4) + rounded or rectangular body shapes (B1-B2) + deposit or suspension/filter feeders ¹¹ (G1-G2) +	Model A: $(A2^*1) + (A3^*1) + (A4^*1) + (H3^*1) + (H4^*1) + (G1^*1) + (G2^*1) + (I3^*1) + (J2^*1) + (J3^*1) + (J4^*1) + (J5^*1) + (H2^*1) + (K3^*1) + (B1^*1) + (B2^*1)$
sediment dwelling depths >2 mm ¹⁰ (H2-H4) + taxa with adult mobility ¹⁰ (I3) + all sediment reworking modes ^{8, 9} (J2-J5) + taxa that modify habitat by burrowing (K3) ¹⁰	Model B: $(A2^{2}) + (A3^{4}) + (A4^{6}) + (B1^{1}) + (B2^{1}) + (G1^{1}) + (G2^{1}) + (H2^{2}) + (H3^{4}) + (H4^{6}) + (I3^{1}) + (J2^{1}) + (J3^{1}) + (J4^{2}) + (J5^{2}) + (K3^{3})$
Food web dynamics (C-cycling)	
Taxa of all maximum adult body sizes ¹² (A1-A4) + those with body armour <1 mm thick ^{14, 15} (C1-C3) + <2 year	Model A: $(A1^*1) + (A2^*1) + (A3^*1) + (A4^*1) + (C1^*1 + (C2^*1) + (C3^*1) + (E1^*1) + (E2^*1) + (F2^*1) + (F3^*1) + (G1^*1) + (G2^*1) + (G3^*1) + (G4^*1) + (H1^*1) + (H2^*1)$
longevity (E1-E2) + all larval developmental modes ¹³ (F2-F3) + all feeding modes (G1-G4) + taxa dwelling at shallow sediment depths (H1-H2)	Model B: $(A1^*1) + (A2^*2) + (A3^*4) + (A4^*6) + (C1^*1) + (C2^*1) + (C3^*1) + (E1^*1) + (E2^*1) + (F2^*1) + (F3^*1) + (G1^*1) + (G2^*2) + (G3^*1) + (G4^*1) + (H1^*1) + (H2^*1)$
<u>Biogenic habitat provision</u> Taxa that modify habitat by creating emergent structures (K5) + those that	Model A: (K5*1) + (D2*1) + (D3*1)
attach to substrates (D2-D3)	Model B: (K5*3) + (D2*1) + (D3*1)`

⁵Bolam et al. (2002); ⁶Thrush et al. (2006); ⁷Norkko et al. (2013); ⁸Biles et al. (2003); ⁹Kristensen et al. (2012); ¹⁰Mermillod-Blondin et al. (2004); ¹¹Welsh (2003); ¹²Zeuthen (1953); ¹³Greve et al. (2004); ¹⁴Mascaró and Seed (2001); ¹⁵Boulding (1984)

Appendix B: Results

B.1 Macrofaunal assemblages of mudflats in SE Queensland

The total number of individuals recorded across the 24 sites were higher in summer (n = 3047) compared to winter (n = 1800). In both seasons 10 taxa contributed to ~70% of the cumulative macrofaunal density in the assemblage (Appendix Table B.1). In summer the suspension feeding bivalve *Hiatula alba* dominated, followed by the polychaetes *Barantolla lepte* and *Aglaophamus australiensis*. Whereas in winter the crabs *Mictyris longicarpus* and *Macrophthalmus setosus* dominated the assemblage.

Summer 2017		Winter 2016					
Таха	Abundance	Таха	Abundance				
	(%)		(%)				
Hiatula alba (bivalve)	14.8	Mictyris longicarpus (decapod)	10.4				
Barantolla lepte (polychaete)	9.8	Macrophthalmus setosus (decapod)	10.1				
Aglaophamus australiensis (polychaete)	9.7	Barantolla lepte (polychaete)	9.7				
Elphidium discoidale multilocutum (foraminifera)	9.4	Aglaophamus australiensis (polychaete)	9.2				
Macrophthalmus setosus (decapod)	5.5	Hiatula alba (bivalve)	8.2				
Magelona dakini (polychaete)	4.5	Pyrazus ebeninus (gastropod)	6.8				
Notomastus torquatus (polychaete)	3.8	Magelona dakini (polychaete)	4.3				
Marcia hiantina (bivalve)	3.6	Owenia australis (polychaete)	4.1				
Haminoea fusca (gastropod)	3.6	Uca vomeris (decapod)	4.0				
Nematoda	3.4	Notomastus torquatus (polychaete)	3.9				

Table B.1. The top 10 taxa (ranked by abundance) as a percentage of the total number of individuals retrieved in winter (2016) and summer (2017) from the 24 SE Queensland mudflats.

B.2 Biogeographic variations in the species composition of mudflat assemblages

Fig. B.1. Mudflat macrofaunal assemblage (n=24) mean (±SE) density, species richness, Shannon Weiner diversity and Pielou's evenness across varying biogeographic conditions in SE Queensland, Australia in winter 2016 and summer 2017. Data are grouped: (A)-(D) north and south of Cleveland; (E)-(I) into four subgroups from north to south by latitude (group 1: mudflat 1-6; group 2: mudflats 7-12; group 3: mudflats 13-18; group 4: mudflats 19-24 most southern sites (Fig. 1); and (J)-(L) the northernmost and southernmost six sites.

♦ North of Cleveland ♦ South of Cleveland

△1–6 mudflats ○ 7–12 mudflats ● 13–18 mudflats ▲ 19–24 mudflats

Fig. B.2 nMDS ordination of the Bray-Curtis similarity of the macrofaunal assemblage composition (log (X+1) transformed) in 24 mudflats in SE Queensland, Australia. The taxonomic composition of the mudflat assemblages (A) with site numbers for summer, (B) with site numbers for winter, (C) north

and south of Cleveland in winter, and (D) summer; (E) between four groups of sites from north (sites 1-6) to south (sites 19-24) in winter, and (F) summer.

Table B.2. Kruskal-Wallis comparisons of the median number of individuals per m², species richness, Shannon Weiner diversity and Pielou's evenness of the macrofaunal assemblages from 24 mudflats in SE Queensland in winter 2016 and summer 2017. Three biogeographic comparisons are included (Fig. 1): (i) sites to the north and south of Cleveland, (ii) the 24 sites divided into 4 equal-sized groups proceeding from north to south, and (iii) the northernmost and southernmost six sites. *Indicates a significant difference.

Metric (m ⁻²)	V	Vinter 2016)	Su	Summer 2017			
	χ^2	df, n	р	χ^2	df, n	р		
(i) North and south of Clevela	and							
Total no. individuals	0.992	1, 24	0.319	0.014	1, 24	0.907		
Species richness	0.679	1, 24	0.410	0.630	1, 24	0.427		
Shannon Weiner	2.143	1, 24	0.143	5.488	1, 24	0.019*		
Pielou's evenness	0.003	1, 24	0.953	1.895	1, 24	0.169		
(ii) Four equal sized groups								
Total no. individuals	4.112	3, 6	0.250	4.780	3, 6	0.189		
Species richness	2.934	3, 6	0.402	2.914	3, 6	0.405		
Shannon Weiner	3.713	3, 6	0.294	3.527	3, 6	0.317		
Pielou's evenness	0.420	3, 6	0.936	1.673	3, 6	0.643		
(iii) Northernmost and south	ernmost s	ix sites						
Total no. individuals	1.641	1, 6	0.200	0.641	1, 6	0.423		
Species richness	0.105	1, 6	0.746	0.103	1, 6	0.748		
Shannon Weiner	0.410	1, 6	0.522	1.641	1, 6	0.200		
Pielou's evenness	0.316	1, 6	0.574	0.926	1, 6	0.336		

Table B.3 The biogeographic ranges of the 50 taxa (summer and winter combined) found in the 24 mudflats sampled during this study, and their known **global** latitudinal ranges as documented from published databases (ALA, 2018; OBIS, 2018). (Australian documented latitudinal ranges in Australia are provided in the manuscript Table 3). These new records extended the ranges of 10 species (**bold rows**), and for these species the year (the latest date the shift could have begun), extent and direction of the expansion is provided. The 'typical' climatic zone of each species based on previous records is given using the tropical climatic zones defined as 23° 27'S (Dissanayake et al. (2018)), and the temperate climatic zone boundary (32.4° 00'S) was based on the southward boundary of Moreton-Tweed marine ecoregion described by Spalding et al. (2007) and the convergence of the Australian East Coast Current and westward Tasman Front (Cetina-Heredia et al., 2014). Abbreviations: Trop = Tropical, Temp = Temperate, N= number of sites/records.

Species	Sp. zone	Max. d range	locumented (°) of taxa	l latitudinal	al Latitudinal range of taxa at 24 mudflats sampled			Dist. moved (km)	Rate (km decade⁻¹)	
		Year	North	South	Ν	North	South	Ν		·
Acetes sibogae ²	Temp		-5.0000	-36.2070	174	-27.3436	-28.1069	12		
Aglaophamus australiensis	Temp		-17.0330	-43.0330	1093	-27.1464	-28.1069	23		
Alpheus richardsoni ²	Temp		-9.5000	-41,4660	143	-27.1747	-28.1069	9		

Armandia intermedia ²	Temp		27.2355	-38.8500	285	-27.1747	-28.1069	16	
Australonereis ehlersi	Temp		-23.1830	-42.2752	566	-27.1464	-28.1069	12	
Australoplax tridentata	Trop		-10.7333	-36.2078	83	-27.1956	-28.1069	14	
Barantolla lepte	Temp		-22.3830	-38.8500	791	-27.1747	-27.8222	18	
Bulla vernicosa ²	Trop		26.5000	-34.7500	430	-27.2597	-28.1069	3	
Chaenostoma punctulatum	Temp		-10.7160	-36.0653	58	-27.1464	-28.1069	14	
Cirriformia tentaculata ²	Temp		60.4103	-42.8800	82	-27.1747	-27.6436	6	
Clorida depressa ²	Trop	1998	-4.8172	-27.6667	59	-27.1956	-27.7178	5	6 S
Conuber sordidum ²	All		-1.5000	-43.1179	544	-27.1464	-28.1069	21	

Elphidium discoidale ^{1, 2}	Trop		29.3800	-24.6814	48	-27.1747	-28.1069	7		
Eurysyllis tuberculata ^{2, 4}	Trop		60.4102	-34.7500	31	-27.1747	-27.7178	6		
Gelasimus vomeris ²	Trop		11.6660	-33.8083	145	-27.2775	-28.1069	10		
Glycera americana²	Temp		54.9781	-41.1600	515	-27.1956	-27.8222	12		
Haminoea fusca ⁴	Trop	1970	-14.6700	-25.2500	16	-27.1747	-28.1069	16	317 S	68
Helograpsus haswellianus ²	Temp		34.6800	-43.0300	207	-27.3436	-27.8222	10		
Hiatula alba	Temp		-21.4592	-43.4630	69	-27.1464	-28.1069	18		
Laternula anatina ^{2, 4}	Trop	1996	35.3317	-23.4160	103	-27.1956	-27.7053	5	477 S	227
Leitoscoloplos bifurcatus	Temp		-12.4330	-42.3902	489	-27.1464	-28.1069	12		
Lingula anatina	Trop		-21.6786	-27.9667	47	-27.2597	-27.5158	2		
Lumbrineris tetraura ²	Temp		60.4100	-38.7300	716	-27.1747	-28.1069	12		
Lutraria impar²	Trop		21.6788	-28.3803	24	-27.1956	-27.4764	4		
Macrophthalmus setosus	Temp		-22.3833	-36.0612	133	-27.1747	-28.1069	21		
Mactra maculata ^{2,3}	Trop	1949	-9.9500	-27.5830	61	-27.1463	-28.1069	17	58 S	9
Magelona dakini	Temp		-18.7330	-41.1612	371	-27.1464	-28.1069	19		
Marcia hiantina ²	Trop	1982	22.6252	-27.6167	250	-27.1464	-28.1069	16	54 S	16
Marphysa mullawa	Temp		-12.6660	-36.8917	122	-27.1747	-28.1069	9		
Metapenaeus endeavouri ²	Trop	1961	-9.3100	-27.4167	2395	-27.2775	-28.1069	8	77 S	14
Mictyris longicarpus ²	All		24.1792	-38.4612	342	-27.1464	-28.1069	20		
Myrianida australiensis	Temp	2011	-30.5409	-30.5409	1	-27.1747	-27.7503	11	374 N	623
Nassarius coronatus ²	Trop		28.9660	-34.2544	299	-27.2597	-27.7503	4		
Nematoda ²	All		69.3539	-41.7339	30516	-27.1464	-28.1069	20		
Nemertea ²	All		71.5508	- 75.0967	3202	-27.1747	-28.1069	13		
Notomastus torquatus	Temp		-23.8160	-38.4889	493	-27.1464	-28.1069	21		
Owenia australis	Temp		-12.0880	-38.9000	248	-27.1464	-28.1069	21		
Paratapes undulatus ²	Trop		23.9850	-36.9033	230	-27.1956	-27.5158	2		
Phyllodoce novaehollandiae	Temp		-19.8830	-38.7661	108	-27.1464	-28.1069	16		
Platynereis antipoda ²	Temp		21.4100	-43.4350	385	-27.2775	-27.7178	6		
Prionospio queenslandica ⁴	Trop		-10.5861	-35.7461	17	-27.1463	-27.7178	11		
Pyrazus ebeninus	All		-10.6830	-42.9111	380	-27.1464	-28.1069	22		
Recluzia johnii²	Trop		-12.3500	-34.0583	11	-27.7178	-27.7503	2		
Stenothoe miersi	Temp		-14.5719	-37.8898	48	-27.1747	-28.1069	8		
Sternaspis scutata ^{2,4}	Trop		77.9983	-70.5000	3177	-27.3436	-27.7503	7		
Sthenelais boa ²	Temp		69.9475	-34.0083	3971	-27.5158	-27.8222	4		
Trypaea australiensis	Temp		-12.8667	-38.7000	651	-27.395	-28.1069	6		
Tubuca polita²	Trop		-9.3830	-30.8830	102	-27.2775	-27.2775	1		
Uca longidigita	Trop	1962	-21.1333	-27.5000	27	-27.4222	-27.7503	4	28 S	5
Victoriopisa australiensis ³	Temp	2007	-27.9160	-37.0963	186	-27.1464	-27.7503	11	86 N	86

¹The range given is for *E. discoidale*, however this record could potentially be confounded as subspecies *Elphidium discoidale* var. *multiloculum* was described from Moreton Bay (-27.1108 to -27.6583) by Narayan and Pandolfi (2010). If this is variety is confirmed as a distinct taxon then the record in the present study may not represent a range shift for the species. ²The global range of the species differed from the Australian range. ³Taxa previously recorded only once within the study area. ⁴Taxa not previously recorded in the study area (and only once in greater SE Queensland).

B.3. Biogeographic differences in macrofaunal trait composition

Similar to species compositional patterns, the trait diversity measures did not differ significantly between each biogeographic gradient (Table B.4) of the SE Queensland subtropical mudflat assemblages

Table B.4. Kruskal-Wallis comparisons of the median number of trait modality richness, Shannon Weiner diversity and Pielou's evenness for trait modalities of the macrofaunal assemblages found in mudflats from 24 sites in SE Queensland in the winter of 2016 and summer of 2017. Three comparisons are included (i) those sites to the north and south of Cleveland, (ii) the 24 sites divided into 4 groups (six sites each) proceeding from north to south, and (iii) the northernmost and southernmost six sites. *Indicates a significant difference

Metric (m ⁻²)	V	Vinter 2016)	Summer 2017				
	χ^2	df, n	р	χ^2	df, n	р		
(i) North and south of Clevel	and							
Trait modality richness	0.468	1, 24	0.494	0.004	1, 24	0.951		
Shannon Weiner	2.788	1, 24	0.095	4.443	1, 24	0.035*		
Pielou's evenness	0.494	1, 24	0.492	3.295	1, 24	0.069		
(ii) Four equal sized groups								
Trait modality richness	1.379	3, 6	0.711	3.729	3, 6	0.292		
Shannon Weiner	3.980	3, 6	0.264	3.800	3, 6	0.284		
Pielou's evenness	2.256	3, 6	0.521	2.993	3, 6	0.393		
(iii) Northernmost and south	ernmost s	ix sites						
Trait modality richness	0.061	1, 6	0.805	0.408	1, 6	0.523		
Shannon Weiner	1.447	1, 6	0.229	1.256	1, 6	0.262		
Pielou's evenness	0.231	1, 6	0.631	0.641	1, 6	0.423		

B.4. Trait modality profiles

Table B.5. The trait modalities that contributed >50% cumulative dissimilarity between the trait profiles of temperate species that occurred throughout SE Queensland and (i) tropical range shifters, (ii) tropical species that occurred throughout SE Queensland, (iii) tropical species that were absent from southernmost 6 sites. The significant differences (*) of the trait modalities between the paired groups identified by Mann-Whitney *U* test are also represented.

Trait modalities	Mann-Whitney U test	to compare the difference	es between the groups
Temperate taxa vs	Tropical range shifters	Tropical sp. occurred	Tropical sp. that were
		throughout SE Qld	absent in SE Qld
10-30 mm body size	Z = -0.445, p = 0.657	Z = -2.912, p = 0.004*	Z = -0.149, p = 0.882
>50 mm body size	Z = -0.176, p = 0.861	Z = -2.8276, p = 0.005*	Z = -0.872, p = 0.383
Round shaped	Z = -2.611, p = 0.009*	Z = -0.922, p = 0.357	Z = -0.855, p = 0.392
Rectangular shaped	Z = -1.237, p = 0.216	Z = -1.966, p = 0.049*	Z = -2.238, p = 0.025*
Vermiform shaped	Z = -3.223, p = 0.001*	Z = -2.451, p = 0.014*	Z = -2.619, p = 0.009*
No body armour	Z = -2.524, p = 0.012*	Z = -2.493, p = 0.013*	Z = -3.117, p = 0.002*
0.5-1 mm body	Z = -0.832, p = 0.405	Z = -1.436, p = 0.151	Z = -3.441, p = 0.001*
armour			
Temporary attached	Z = 0.000, p = 1.000	Z = 0.000, p = 1.000	Z = -3.310, p = 0.001*
Planktotrophic	Z = -0.310, p = 0.756	Z = -0.990, p = 0.322	Z = -0.441, p = 0.659
Deposit feeder	Z = -2.069, p = 0.039*	Z = -0.219, p = 0.827	Z = -1.193, p = 0.233
Suspension feeder	Z = -2.891, p = 0.004*	Z = -0.131, p = 0.896	Z = -3.241, p = 0.001*
Predator/scavenger	Z = -1.406, p = 0.160	Z = -0.461, p = 0.645	Z = -1.698, p = 0.090
>50 mm sed. depth	Z = -0.731, p = 0.465	Z = -1.367, p = 0.172	Z = -1.468, p = 0.142
Sessile	Z = -0.577, p = 0.564	Z = -0.655, p = 0.513	Z = -2.500, p = 0.012*
Free movement	Z = -0.622, p = 0.534	Z = -0.520, p = 0.603	Z = -1.370, p = 0.171
Surface modifier	Z = -1.768, p = 0.077	Z = -0.085, p = 0.932	Z = -1.737, p = 0.082

Biodiffusers	Z = -1.346, p = 0.178	Z = -1.098, p = 0.272	Z = -1.869, p = 0.062
No habitat	Z = -1.258, p = 0.209	Z = -0.284, p = 0.777	Z = -0.555, p = 0.579
modification			

B.5. Simulations of species and traits composition and functional change

The addition or removal of species from the baseline scenario changed the number of individuals within the unconstrained assemblage while the total abundance of individuals in the assemblage was capped for the constrained scenarios. The species composition (in both constrained and unconstrained analyses) differed significantly between the 5 scenarios in both seasons (Fig. B.3), with scenario 5 differing significantly from the remaining 4 scenarios in every case (ANOSIM p<0.05 in each case) (Table B.6).

The trait composition, in trials with the constrained total abundance, differed significantly between the 5 scenarios for winter (ANOSIM, global R = 0.209, p = 0.002, Fig. B.3A) and summer (ANOSIM, global R = 0.254, p = 0.001, Fig. B.3B). The pairwise ANOSIM results showed that the trait composition of scenario 5 differed significantly from the trait compositions of the remaining 4 scenarios, in line with the changed species composition (Table B.7-8).

 \triangle Pre-invasion scenario * Baseline scenario \bullet Further invasions scenario

◆ Loss of sensitive temperate sp. scenario ▲ Loss of temperate sp. scenario

Fig. B.3. nMDS ordination of the Bray-Curtis similarity of the taxonomic composition (log (X+1) transformed) of the simulated mudflat macrofaunal assemblages observed in the six southernmost mudflats in SE Queensland. For the five scenarios based on unconstrained density (A) in winter 2016 and (B) in summer 2017; species composition (constrained density) (C) in winter 2016 and (D) in summer 2017.

Table B.6. Comparisons of the simulated macrofaunal species composition in SE Queensland mudflats (unconstrained and constrained density; pairwise ANOSIM) and SIMPER dissimilarity between the five range shift scenarios for winter 2016 and summer 2017. Species that contributed >5% to the dissimilarity between each of the scenarios is shown. Species that differed significantly between the two scenarios are indicated in '*' sign. A. *australiensis = Aglaophamus australiensis, B. lepte = Barantolla lepte, H. alba = Hiatula alba, Li. anatina = Lingula anatine, Lu. impar = Lutraria impar, M. setosus = Macrophthalmus setosus, M. dakini = Magelona dakini, N. torquatus = Notomastus torquatus and P. ebeninus = Pyrazus ebeninus.*

Scenario comparisons	ANOSIM statistics	SIMPER dissim. (%)	Species that contributed >5% to SIMPER dissimilarity
Winter density	(unconstrained)	(/0)	
5&1	R = 0.906,p=0.002*	83.01	A. australiensis, B. lepte, M. dakini, N. torquatus
5&2	R = 0.983,p=0.002*	87.54	A. australiensis, B. lepte, M. dakini, N. torauatus,
			H. alba, M. setosus
5&3	R = 0.785,p=0.002*	69.44	A. australiensis, B. lepte, M. dakini, N. torquatus,
	-		H. alba, M. setosus
5&4	R = 0.783,	68.84	A. australiensis, B. lepte, M. dakini, N. torquatus,
	p=0.002*		H. alba, M. setosus
Summer densi	ty (unconstrained)		
1&4	R = 0.250,p=0.019*	49.20	Lu. impar, H. alba
2&3	R = 0.250,p=0.032*	47.00	Lu. impar, H. alba
2&4	R = 0.309,p=0.009*	49.66	Lu. impar, H. alba
5&1	R = 0.870,p=0.002*	78.48	A. australiensis, M. dakini, Lu. impar, N. torquatus
5&2	R = 0.993,p=0.002*	81.53	A. australiensis, M. dakini, Lu. impar, N.
			torquatus, B. lepte
5&3	R = 0.700,p=0.002*	63.66	A. australiensis, M. dakini, N. torquatus, B. lepte
5&4	R = 0.650,p=0.002*	61.90	A. australiensis, M. dakini, N. torquatus, B. lepte,
			M. setosus
Winter density	(constrained)		
5&1	R = 0.970,p=0.002*	80.92	Lu. impar, A. australiensis
5&2	R = 0.998,p=0.002*	83.77	Lu. impar, A. australiensis
5&3	R = 0.872,p=0.002*	68.37	A. australiensis, M. dakini
5&4	R = 0.859,p=0.002*	66.90	A. australiensis, M. dakini

Summer density (d	constrained)
-------------------	--------------

5&1	R = 0.917,p=0.002*	77.60	A. australiensis*, B. lepte, Lu. impar, M. dakini, Li. anatina
5&2	R = 1.000,p=0.002*	80.78	A. australiensis, B. lepte, Lu. impar, M. dakini, Li. anatina
5&3	R = 0.783,p=0.002*	67.18	A. australiensis, B. lepte, Lu. impar, M. dakini
5&4	R = 0.752, p=0.002*	66.56	A. australiensis, B. lepte, Lu. impar, M. dakini

Fig. B.4. nMDS ordination of the Bray-Curtis similarity of the trait composition (density constrained) simulated mudflat macrofaunal assemblages observed in the SE Queensland southernmost 6 mudflats (A) in winter 2016 and (B) in summer 2017.

Table B.7. Comparisons of the simulated macrofaunal trait composition of SE Queensland southernmost 6 mudflats (density unconstrained and constrained; pairwise ANOSIM) and SIMPER dissimilarity between the five range shift scenarios for winter 2016 and summer 2017. Significant differences are indicated in ^(*) sign.

Scenario comparisons	ANOSIM results	Average SIMPER dissimilarity (%)						
Winter density unconstrained								
5&1	R = 0.572, p = 0.009*	58.74						
5&2	R = 0.580, p = 0.009*	57.91						
5&3	R = 0.578, p = 0.006*	57.97						
5&4	R = 0.569, p = 0.009*	57.75						
Summer density uncons	strained							
5&1	R = 0.726, p = 0.002*	67.27						
5&2	R = 0.733, P = 0.002*	66.86						
5&3	R = 0.707, p = 0.002*	66.45						
5&4	R = 0.700, p = 0.002*	66.04						
Winter density constrai	ned							
5&1	R = 0.765, p =0.002*	29.92						
5&2	R = 0.815, p =0.002*	31.74						
5&3	R = 0.646, p =0.002*	27.66						
5&4	R = 0.659, p =0.002*	27.92						
Summer density constrained								
5&1	R = 0.880, p =0.002*	36.98						
5&2	R = 0.946, p =0.002*	39.61						
5&3	R = 0.765, p =0.002*	33.62						
5&4	R = 0.776, p =0.002*	34.19						

Pre-invasion scenario
 Baseline scenario
 Further invasion scenario
 Loss of sensitive temperate sp. scenario
 Loss of all temperate sp. scenario

Fig B.5. The trait modalities (mean \pm SE) that contributed to >70% cumulative dissimilarity (SIMPER analysis) between the pairwise unconstrained trait compositional scenario groups in SE Queensland southernmost 6 mudflats (A) winter 2016 and (B) summer 2017, and constrained trait compositional scenario groups (C) winter 2016 and (D) summer 2017. The trait modalities in **bold** indicate that the trait composition of scenario 5 differed significantly (p < 0.05) from the remaining 4 scenarios, and the <u>underlined</u> trait modalities indicate that 2 scenarios have differed significantly from scenario 5 (Table B.8-9).

Table B.8 Results of T-test to compare means abundances of trait modalities that contributed to the 70% of the dissimilarity between the five biogeographic range shift scenarios for mudflat macrofaunal assemblages in winter in SE Queensland. Results from both unconstrained and constrained macroinvertebrate density in winter 2016. Degrees of freedom=10. The biological traits that showed significant differences between the pairs are indicated in * sign

Trait modalities	Scenario	comparisons	(unconstraine	d density)	ty) Scenario comparisons (constrained density		l density)	
(for winter)								
	1&5	2&5	3&5	4&5	1&5	2 & 5	3 & 5	4 & 5
Body size 30-50	t = 2.889		t = 2.889	t = 2.889	t = 2.800.		t = 2.533	t = 2.580
mm	$p = 0.016^*$		$p = 0.016^*$	$p = 0.016^*$	$p = 0.019^*$		$p = 0.030^*$	$p = 0.027^*$
Body size >50 mm	t = 3.116	t = 3.059	t = 3.116	t = 3548	p 0.01)		p 0.000	p 0.02,
Dody 5120 + 50 mm	$n = 0.011^*$	n = 0.037	$n = 0.011^*$	$n = 0.005^*$				
Rectangular shaped	p 0.011	p 0.012	p 0.011	p 0.005	t = -2.893	t = -3.049	t = -2.558	t = -2.669
. .					p = 0.016*	p = 0.012*	p = 0.028*	p = 0.024*
Round shaped					t = -1.117	t = -1.567	t = -1.030	t = -1.004
·					p = 0.290	p = 0.148	p = 0.327	p = 0.339
Vermiform shaped	t = 4.819.	t = 4.819.	t = 4.819.	t = 4.819.	t = 4.294.	t = 4.895.	t = 4.021.	t = 4.099 p
· · · · · · · · · · · · · · · · · · ·	$p = 0.001^*$	$p = 0.001^*$	$p = 0.001^*$	$p = 0.001^*$	$p = 0.002^*$	$p = 0.001^*$	$p = 0.002^*$	= 0.002*
No body armour	t = 4.545.	t = 4.602.	t = 4.545.	t = 4.618.	P	P	P	
	$p = 0.001^*$	$p = 0.001^*$	$p = 0.001^*$	$p = 0.001^*$				
0.1-0.5 mm body	P	F	F	F	t = -1.095	t = -1.095	t = -0.979	t = -1.036
armour thickness					p = 0.299	p = 0.299	p = 0.350	p = 0.325
0.5-1.0 mm body					t = -2.707	t = -2.707	t = 2.147	t = -2.151
armour thickness					$p = 0.022^*$	$p = 0.022^*$	p = 0.057	p = 0.057
No attachment	t = 3.345.	t = 3.246.	t = 3.364.	t = 3.341.	p 01022	p 0.022	p 0.007	p 0.007
	$p = 0.007^*$	$p = 0.009^*$	$p = 0.007^*$	$p = 0.007^*$				
Temporary	p 0.007	p 0.007	p 0.007	p 0.007	t = -4 721	t = -4 729	t = -3 200	t = 3 178
attached					$n = 0.001^*$	$n = 0.001^*$	$n = 0.009^*$	$n = 0.010^{*}$
Longevity 1-2 years	t = 2 743	t = 2 364	t = 2 992	t = 2 965	f = -3.382	t = -3.382	f = -3.335	t = -3.303
Longevity I Z years	t = 2.7 + 3, $n = 0.021^*$	t = 2.304, $n = 0.040^*$	t = 2.772, $n = 0.014^*$	t = 2.705, $n = 0.014^*$	$n = 0.002^*$	$n = 0.007^*$	n = 0.008*	$n = 0.008^*$
Longevity 3-5 years	p = 0.021 t = 4.033	p = 0.040 t = 4.033	p = 0.014	p = 0.014 t = 3.975	p = 0.007 t = 5.664	p = 0.007 t = 5.664	p = 0.000 t = 5.271	p = 0.000 t = 5.281
Longevity 5 5 years	t = 4.000, $n = 0.002^*$	t = 4.000, $n = 0.002^*$	t = 4.000; $n = 0.002^*$	$t = 0.003^*$	t = 5.004,	t = 5.004,	t = 5.271,	t = 5.201
Planktotrophic	p = 0.002 + = 3.316	p = 0.002 t = 3.363	p = 0.002 + = 2.552	p = 0.003 t = 2.555	p < 0.0001 + - 3 160	p < 0.0001	+ - 2 201	μ<0.0001 + - 3 609
	1 = 3.310, $n = 0.008^*$	1 = 3.303, $n = 0.009^*$	1 = 3.333, $n = 0.005^*$	$l = 0.005^*$	1 = 3.100, $n = 0.010^*$	l = 3.100, $n = 0.010^*$	$l = 0.007^*$	l = 0.007
lacithatrophic	p - 0.000	p = 0.007	p = 0.005	ρ - 0.005	μ = 0.010 t = -4.009	p = 0.010 t = -4.009	p = 0.007 t = -4.211	p = 0.005 + = -1 170
					l = -4.007	l = -4.007	l = -4.211 n = 0.002*	l = -4.477
laivae Donosit foodor	+ - 2 904	+ - 2 740	+ - 2 022	+ - 2 940	μ = 0.002 + = 1.102	μ = 0.002 + = 1.102	μ = 0.002 + = 0.964	p = 0.001
Deposit reeder	l = 3.070	l = 3.709	l = 3.732	1 - 3.040	l = 1.192,	l = 1.192,	l = 0.004	l = 0.040
Suspension feeder	p=0.003	p=0.004	p =0.003	p =0.003	p = 0.201	p = 0.201	μ = 0.406	p = 0.417
Suspension reeder					t = -3.603	t = -3.603	t = -3.057	t = -3.128
Due deterration					p = 0.005	p = 0.005	$p = 0.012^{\circ}$	p = 0.011
Predator/scavenger					t = 7.685,	t = 7.685	t = 7.584	t = 7.571,
					p<0.0001*	p<0.0001*	p<0.0001*	p<0.0001*
>50 mm sed. Depth	t = 2.748	t = 2.519	t = 3.038	t = 2.9/8				
- /	p =0.021*	p =0.030*	p =0.013*	p =0.014*				
Free movement	t = 3.123	t = 3.195	t = 3.149	t = 3.115				
	p =0.011*	p = 0.010*	p = 0.010*	p = 0.011*				
Surface modifiers	t = 1.724,	t = 1.332,	t = 2.029,	t = 2.029,	t = -1.597	t = -1.597	t = -1.254	t = -1.187
	p = 0.115	p = 0.212	p = 0.070	p = 0.070	p = 0.141	p = 0.141	p = 0.238	p = 0.263
Biodiffusers	t = 4.675	t = 4.629	t = 4.675	t = 4.582	t = 3.840	t = 3.840,	t = 3.840,	t = 3.834 p
	p = 0.001*	p = 0.001*	p = 0.001*	p = 0.001*	p = 0.003	p = 0.003	p = 0.003	= 0.003
Upward/downward					t = -0.079	t = -0.079	t = 0.234	t = -0.197
conveyors					p = 0.939	p = 0.939	p = 0.820	p = 0.848
No habitat	t = 3.177	t = 3.157,	t = 3.278,	t = 3.278,	t = 1.599,	t = 1.599	t = 1.478,	t = 1.576 p
modification	p = 0.010*	p = 0.010*	p = 0.008*	p = 0.008*	p = 0.141	p = 0.141	p = 0.170	= 0.146
Burrow/ditch					t = -2.004	t = -2.004	t = -1.835	t = -1.953
					p = 0.070	p = 0.070	p = 0.095	p = 0.079
Biogenic tubes		t = 2.586,			t = 0.335,	t = 0.335,	t = 0.177,	t = 0.227 p
		p = 0.027*			p = 0.745	p = 0.745	p = 0.863	= 0.825

Table B.9. Results of T-tests to compare mean abundance of trait modalities that contributed to 70% of the dissimilarity between the five biogeographic range shift scenarios for mudflat macrofaunal assemblages in summer in SE Queensland. Results from both unconstrained and constrained macroinvertebrate density in summer 2017. Degrees of freedom=10. The biological traits that showed significant differences between the pairs are indicated in * sign

Trait modalities (for summer)	Scenario comparisons (unconstrained density)			Scenario comparisons (constrained density)				
(,	1&5	2 & 5	3&5	4 & 5	1&5	2&5	3&5	4&5
Body size >50 mm	t = 5.981	t = 3.059,	t = 7.018,	t = 7.048,				
	p<0.0001*	p = 0.012*	p<0.0001*	p<0.0001*				
Rectangular shaped					t = -4.517	t = -4.840	t = -3.735	t = -4.034
					p = 0.001*	p = 0.001*	p = 0.004*	p = 0.002*
Round shaped	t = 1.106,			t = 1.134,	t = -0.675	t = -0.998	t = -0.707	t = -0.670
	p = 0.296			p = 0.283	p = 0.515	p = 0.346	p = 0.495	p = 0.518
Vermiform shaped	t = 7.370,	t = 4.819,	t = 7.370,	t = 7.409,	t = 4.197,	t = 4.607,	t = 4.069	t = 4.116,
	p<0.0001*	p = 0.001*	p < 0.001*	p < 0.001*	p = 0.002*	p = 0.001*	p = 0.002*	p = 0.002*
No body armour	t = 5.663	t = 5.706,	t = 5.663,	t = 5.434,	t = 3.916,	t = 3.608,	t = 3.680	t = 3.644
	p<0.0001*	p = 0.001*	p<0.0001*	p<0.0001*	p = 0.003*	p = 0.005*	p = 0.004*	p = 0.005*
0.1-0.5 mm body					t = -0.451			
armour thickness					p = 0.661			
0.5-1.0 mm body						t = -0.601	t = -0.464	t = -0.448
armour thickness						p = 0.561	p = 0.652	p = 0.664
No attachment	t = 2.993,	t = 3.002,	t = 3.020,	t = 2.919,				
	p = 0.013*	p = 0.013*	p = 0.013*	p = 0.015*				
Temporary					t = -5.151	t = -5.151	t = -3.826	t = -3.765
attached					p<0.0001*	p<0.0001*	p = 0.003*	p = 0.004*
Longevity 1-2 years	t = 2.206,	t = 2.364,	t = 2.376,	t = 2.291,	t = -0.230	t = -0.533	t = -0.200	t = -0.214
	p = 0.051	p = 0.040*	p = 0.039*	p = 0.045*	p = 0.823	p = 0.606	p = 0.846	p = 0.835
Longevity 3-5 years	t = 3.847,	t = 4.033,	t = 2.376,	t = 3.886,	t = 5.954	t = 6.314,	t = 5.773,	t = 5.985,
	p = 0.003*	p = 0.002*	p = 0.039*	p = 0.003*	p<0.0001*	p<0.0001*	p<0.0001*	p<0.0001*
Planktotrophic	t = 2.343,	t = 3.363,	t = 2.548,	t = 2.520,				
larvae	p = 0.040*	p = 0.009*	p = 0.029*	p = 0.030*				
Deposit feeder	t = 4.675,	t = 3.769,	t = 4.717,	t = 4.743,	t = 4.124,	t = 5.384	t = 3.882,	t = 3.952
	p = 0.001*	p = 0.004*	p = 0.001*	p = 0.001*	p = 0.002*	p<0.0001*	p = 0.003*	p = 0.003*
Suspension feeder					t = -4.052	t = -5.109	t = -3.677	t = -3.731
					p = 0.002*	p<0.0001*	p = 0.004*	p = 0.004*
>50 mm sed. Depth	t = 2.755,	t = 2.519,	t = 3.030,	t = 2.988,				
	p = 0.020*	p = 0.030*	p = 0.013*	p = 0.014*				
Free movement	t = 5.773	t = 3.195,	t = 5.826,	t = 5.909,	t = 2.907,	t = 3.032,	t = 2.659,	t = 2.709
	p<0.0001*	p = 0.010*	p<0.0001*	p<0.0001*	p = 0.016*	p = 0.013*	p = 0.024*	p = 0.022*
Limited movement	t = 1.318,		t = 1.132,	t = 1.132,				
	p = 0.217		p = 0.213	p = 0.213				
Surface modifiers	t = 1.572,	t = 1.332,	t = 1.833,	t = 1.833,	t = -2.752	t = -2.826	t = -2.574	t = -2.464
	p = 0.147	p = 0.212	p = 0.097	p = 0.097	p = 0.020*	p = 0.018*	p = 0.028*	p = 0.033*
Biodiffusers		t = 4.629,	t = 4.112,	t = 4.041,				
		p = 0.001*	p = 0.002*	p = 0.002*				
No habitat	t = 3.343,	t = 3.157,	t = 3.380,	t = 3.343,	t = 5.088,	t = 5.998,	t = 4.438,	t = 4.632,
modification	p = 0.007*	p = 0.010*	p = 0.007*	p = 0.007*	p<0.0001*	p<0.0001*	p = 0.001*	p = 0.001*
Burrow/ditch					t = -5.652	t = -6.520	t = -4.936	t = -5.181
					p<0.0001*	p<0.0001*	p = 0.001*	p<0.0001*
Biogenic tubes		t = 2.586,			t = 3.126,	t = 3.122,	t = 3.198,	t = 3.160,
		p = 0.027*			p = 0.011*	p = 0.011*	p = 0.010*	p = 0.010*

B.5.1 Mudflat ecological functioning past, present and future

For model A (constrained density), nutrient cycling (ANOVA, winter: F = 0.294, p = 0.879; summer: F = 0.061, p = 0.993, Fig B.6A) and c-cycling (ANOVA, winter: F = 0.039, p = 0.997; summer: F = 0.156, p = 0.958, Fig. B.6B) functions did not differ significantly between the scenarios in either season. However, the biogenic habitat provision function differed significantly between the 5 scenarios (ANOVA, F = 8.659, p < 0.0001, Fig. B.5C) with scenario 1 to 4 differing significantly from scenario 5 (p < 0.05, Table B.10).

The unconstrained estimates of nutrient cycling significantly differed between scenarios for model B (ANOVA, winter: F = 3.197, p = 0.030, summer: F = 3.117, p = 0.033; Table B.10, Fig. B.7A). Nutrient cycling in scenario 3 and 4 were 5 fold higher in summer and 3 fold higher in winter compared to scenario 5. There were no significant differences observed for constrained density in both seasons.

Unconstrained estimates for c-cycling differed significantly between the 5 scenarios in model B for both seasons (ANOVA, winter: F = 3.172, p = 0.031; summer: F = 3.128, p = 0.032; Table B.10, Fig. B.6B) but did not show a significant difference between the scenarios for constrained density (ANOVA, winter: F = 0.559, p = 0.694; summer: F = 1.782, p = 0.164; Table B.10, Fig.B.7D). The mean c-cycling was significantly higher in scenario 3 than in scenario 5 in for both seasons in model B (p<0.05).

Biogenic habitat provision (unconstrained and constrained estimates) significantly differed between scenarios, with scenarios 3 and 4 differing from scenario 5 in summer for model B unconstrained, and scenario 1 differing from scenario 5 for constrained model B (ANOVA, unconstrained: F = 3.079, p = 0.034, Fig B.7E; constrained: F = 3.495, p = 0.021, Table B.10, Fig. B.7F).

Table B.10. Results of ANOVA and post-hoc tests (Tukey test or Mann-Whitney U¹) to compare delivery of estimates for three ecological functions (e.g. nutrient cycling, c-cycling and biogenic habitat provision) in SE Queensland's southernmost 6 mudflats for the 5 scenarios. Models are based on trait modalities with affinities for each function (Model A) and application of differential weighting (Model B) (Table A.2). Hyphen indicates no post-hoc test because of non-significant ANOVA. The pairs that differed significantly (p<0.05) are indicated in '*' sign.

Ecosystem function		Winter	Summer
Unconstrained density			
Nutrient cycling	Model A ¹	F = 2.868, p = 0.044*	F = 2.362, p = 0.080
	Scenario 1 & 5	Z = -2.402, p = 0.016*	-
	Scenario 2 & 5	Z = -2.401, p = 0.017*	-
	Scenario 3 & 5	Z = -2.565, p = 0.010*	-
	Scenario 4 & 5	Z = -2.564, p = 0.011*	-
	Model B	F = 3.197, p = 0.030*	F = 3.117, p = 0.033*
	Scenario 3 & 5	p = 0.043*	p = 0.045*
	Scenario 4 & 5	p = 0.05*	p = 0.05*
C-cycling	Model A ¹	F = 2.956, p = 0.040*	F = 2.301, p = 0.087
	Scenario 1 & 5	Z = -2.242, p = 0.025*	-
	Scenario 2 & 5	Z = -2.244, p = 0.026*	-
	Scenario 3 & 5	Z = -2.562, p = 0.010*	-
	Scenario 4 & 5	Z = -2.563, p = 0.011*	-

	<u>Model B</u>	F = 3.172, p = 0.031*	F = 3.128, p = 0.032*
	Scenario 3 & 5	p = 0.045*	p = 0.044*
Biogenic habitat provision	<u>Model A</u> Scenario 3 & 5 Scenario 4 & 5	F = 2.266, p = 0.091 - -	F = 4.240, p = 0.009* p = 0.046* p = 0.046*
	<u>Model B</u>	F = 1.753, p = 0.170	F = 3.079, p = 0.034*
	Scenario 3 & 5	-	p = 0.049*
	Scenario 4 & 5	-	p = 0.049*
Constrained density			
Nutrient cycling	<u>Model A</u>	F = 0.294, p = 0.879	F = 0.061, p = 0.993
	Model B	F = 0.650, p = 0.054	F = 1.148, p = 0.357
C-cycling	<u>Model A</u>	F = 0.039, p = 0.997	F = 0.156, p = 0.958
	Model B	F = 0.961, p = 0.446	F = 0.131, p = 0.969
Biogenic habitat provision	<u>Model A</u> Scenario 1 & 5 Scenario 2 & 5 Scenario 3 & 5 Scenario 4 & 5	F = 1.442, p = 0.250 - - -	F = 8.659, p < 0.0001* p < 0.0001* p < 0.0001* p = 0.009* p = 0.012*
	<u>Model B</u>	F = 0.146, p = 0.963	F = 3.495, p = 0.021*
	Scenario 1 & 5	-	p < 0.030*

¹Post-hoc tests (Tukey, Student-Newman-Keuls) failed to identify pairwise differences between the scenarios, therefore Mann-Whitney U tests were performed (with Bonferroni correction) to identify which scenarios differed.

[Type here]

Fig B.6. Delivery of three ecological functions (mean ± SE of 6 sites) of the SE Queensland mudflats,

standardised to zero mean and unit variance under five scenarios of species compositional change (A) nutrient cycling, (B) c-cycling and (C) biogenic habitat provision in <u>model A</u> (weighted by density **constrained**) in both winter and summer. For unconstrained estimates see Fig. 7

[Type here]

Pre-invasion scenario
 Baseline scenario
 Further invasion scenario
 Loss of sensitive temperate sp. scenario
 Loss of all temperate sp. scenario

Fig. B.7. Delivery of three of ecological functions (mean \pm SE) of the SE Queensland mudflats, standardised to zero mean and unit variance under five scenarios of species compositional change (A) nutrient cycling density unconstrained, (B) nutrient cycling density constrained, (C) c-cycling density unconstrained, (D) and c-cycling density constrained (E) biogenic habitat provision density unconstrained and (F) biogenic habitat provision density constrained between the five scenarios in **model B** in both winter and summer.

References

ALA, 2018. Atlas of Living Australia, 16 November 2018 ed. Altas of Living Australia, Canberra, Australia.

Biles, C.L., Solan, M., Isaksson, I., Paterson, D.M., Emes, C., Raffaelli, D.G., 2003. Flow modifies the effect of biodiversity on ecosystem functioning: an in situ study of estuarine sediments. Journal of Experimental Marine Biology and Ecology:285, 165-177.

Bolam, S.G., Fernandes, T.F., Huxham, M., 2002. Diversity, biomass, and ecosystem processes in the marine benthos. Ecological Monographs:72, 599-615.

Boulding, E.G., 1984. Crab-resistant features of shells of burrowing bivalves: decreasing vulnerability by increasing handling time. Journal of Experimental Marine Biology and Ecology:76, 201-223.

Bracken, M.E.S., 2018. When one foundation species supports another: Tubeworms facilitate an extensive kelp bed in a soft-sediment habitat. Ecosphere:9, e02429.

Branch, G.M., Pringle, A., 1987. The impact of the sand prawn *Callianassa kraussi* Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. Journal of Experimental Marine Biology and Ecology:107, 219-235.

Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P., Gheerardyn, H., King, N.J., Raes, M., 2010. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology:31, 21-50.

Cetina-Heredia, P., Roughan, M., Van Sebille, E., Coleman, M., 2014. Long-term trends in the East Australian Current separation latitude and eddy driven transport. Journal of Geophysical Research: Oceans:119, 4351-4366.

Clare, D.S., Robinson, L.A., Frid, C.L.J., 2015. Community variability and ecological functioning: 40 years of change in the North Sea benthos. Marine Environmental Research:107, 24-34.

D'Andrea, A.F., DeWitt, T.H., 2009. Geochemical ecosystem engineering by the mud shrimp *Upogebia pugettensis* (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling. Limnology and Oceanography:54, 1911-1932.

Dissanayake, N.G., Frid, C.L.J., Drylie, T.P., Caswell, B.A., 2018. Ecological functioning of mudflats: global analysis reveals both regional differences and widespread conservation of functioning. Marine Ecology Progress Series:604, 1-20.

Fenchel, T., 1996. Worm burrows and oxic microniches in marine sediments. 1. Spatial and temporal scales. Marine Biology:127, 289-295.

Fenchel, T., Finlay, B., 2008. Oxygen and the spatial structure of microbial communities. Biological Reviews:83, 553-569.

Frid, C.L.J., Caswell, B.A., 2016. Does ecological redundancy maintain functioning of marine benthos on centennial to millennial time scales? Marine Ecology:37, 392-410.

Greve, W., Reiners, F., Nast, J., Hoffmann, S., 2004. Helgoland Roads meso-and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgoland Marine Research:58, 274-288.

Hansen, L.S., Blackburn, T.H., 1992. Mineralization budgets in sediment microcosms: effect of the infauna and anoxic conditions. FEMS microbiology ecology:11, 33-43.

Kristensen, E., Blackburn, T.H., 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. Journal of Marine Research:45, 231-257.

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., Banta, G.T., 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series:446, 285-302.

Mascaró, M., Seed, R., 2001. Choice of prey size and species in *Carcinus maenas* (L.) feeding on four bivalves of contrasting shell morphology, Advances in Decapod Crustacean Research. Springer, pp. 159-170.

Mermillod-Blondin, F., Rosenberg, R., FranÃf§ois-Carcaillet, F., Norling, K., Mauclaire, L., 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology:36, 271-284.

Narayan, Y.R., Pandolfi, J.M., 2010. Benthic foraminiferal assemblages from Moreton Bay, South-East Queensland, Australia: Applications in monitoring water and substrate quality in subtropical estuarine environments. Marine Pollution Bulletin:60, 2062-2078.

Nates, S.F., Felder, D.L., 1998. Impacts of Burrowing Ghost Shrimp, Genus *Lepidophthalmus* Crustacea: Decapoda: Thalassinidea, on Penaeid Shrimp Culture. Journal of the World Aquaculture Society:29, 188-210.

Norkko, A., Villnäs, A., Norkko, J., Valanko, S., Pilditch, C., 2013. Size matters: implications of the loss of large individuals for ecosystem function. Scientific Reports:3, 26-46.

OBIS, 2018. Ocean Biogeographic Information System. International Oceanographic Data and Information Programme. Intergovernmental Oceanographic Commission of UNESCO.

Olafsson, E., 2003. Do macrofauna structure meiofauna assemblages in marine softbottoms? *Vie Milieu*:53, 249–265.

Penha-Lopes, G., Bartolini, F., Limbu, S., Cannicci, S., Kristensen, E., Paula, J., 2009. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? Marine Pollution Bulletin:58, 1694-1703.

Piepenburg, D., Blackburn, T H., Von Dorrien, C.F., Gutt, J.,, Hall, P.O.J., Hulth, S., Kendall, M.A., Opalinski, K.W., Rachor,, E., S., M.K., 1995. Partitioning of benthic community respiration in the Arctic (northwestern Barents Sea)'. Marine Ecology Progress Series:118, 199-213.

Rabaut, M., Guilini, K., Van Hoey, G., Vincx, M., Degraer, S., 2007. A bio-engineered softbottom environment: the impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuarine, Coastal and Shelf Science:75, 525-536.

Smaal, A.C., Prins, T.C., 1993. The uptake of organic matter and the release of inorganic nutrients by bivalve suspension feeder beds, Bivalve filter feeders. Springer, Berlin, Heidelberg, pp. 271-298.

Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience:57, 573-583.

Thomsen, M.S., McGlathery, K., 2005. Facilitation of macroalgae by the sedimentary tube forming polychaete *Diopatra cuprea*. Estuarine, Coastal and Shelf Science:62, 63-73.

Thrush, S.F., Hewitt, J.E., Gibbs, M., Lundquist, C., Norkko, A., 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems:9, 1029-1040.

Van Oevelen, D., Soetaert, K., Middelburg, J.J., Herman, P.M.J., Moodley, L., Hamels, I., Moens, T., Heip, C.H.R., 2006. Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. Journal of Marine Research:64, 453-482.

Warwick, R.M., Clarke, K.R., 1984. Species size distributions in marine benthic communities. Oecologia:61, 32-41.

Welsh, D.T., 2003. It's a dirty job but someone has to do it: The role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chemistry and Ecology:19, 321-342.

Wilson, R.S., Cohen, B.F., Poore, G.C.B., 1993. The role of suspension-feeding and deposit-feeding benthic macroinvertebrates in nutrient cycling in Port Phillip Bay. CSIRO, Melbourne, pp.

Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E., Keeling, P.J.,

2015. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science: 347, 1257594.

Zeuthen, E., 1953. Oxygen uptake as related to body size in organisms. The Quarterly review of biology:28, 1-12.