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19 Abstract 
20 A growing volume of evidence shows that the broad-scale biogeographic redistribution of species is 

21 occurring in response to increasing global temperatures. The present study documents poleward 

22 movements of up to eight species of nominally ‘tropical’ macroinvertebrates (molluscs, polychaetes, 

23 crustaceans and foraminifera) from intertidal mudflats on the south east coast of Australia. The speed 

24 of movement was comparable with that for Australian marine fauna generally, but was particularly 

25 fast for worms and molluscs (~70–300 km decade-1) and may be facilitated by the southward flowing 

26 East Australia Current. Further, two temperate taxa appear to have extended their ranges northwards. 

27 Changes in species biogeographic ranges raises questions surrounding the response of ecological 

28 processes within the altered and novel species combinations, including processes that underpin 

29 valuable ecosystem services. Using biological traits analysis to investigate how the observed species 

30 range changes might have impacted mudflat ecosystem functioning, and to predict the possible 

31 impacts of further poleward movements of tropical taxa. Our models suggest the changes to date, and 

32 those likely to occur in the near future, are within the envelope whereby ecological functioning is 

33 maintained by functional compensation and redundancy within the mudflat assemblage. However, in 

34 the most extreme scenario the replacement of temperate by tropical taxa resulted in major changes 
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35 in ecological functioning with potential impacts on nutrient cycling and C-cycling, undermining the 

36 potential of these mudflats to continue to deliver critical ecosystem services. The widespread nature 

37 of biogeographic range shifts and the value of coastal systems should add further weight to calls for 

38 global action to mitigate global temperature change.

39 Keywords: climate change; ecosystem services; infauna; functional compensation, biological 
40 traits; novel assemblages
41

42 1. Introduction
43

44 Global average temperatures have risen > 1°C since the 1900s and are predicted to rise a further 1.1–

45 4.8°C under most climate scenarios (RCP4.5 and above) by the end of the century (IPCC, 2014). 

46 Forecasting the responses of marine ecosystems to these changes is limited not only by uncertainties 

47 surrounding such predictions, but also by regional variations in environmental changes and ecological 

48 responses (IPCC, 2014; Poloczanska et al., 2013), differences in species biology and behaviour 

49 (Deutsch et al., 2015; Nagelkerken et al., 2016; Poloczanska et al., 2013; Wethey et al., 2011) and 

50 synergies between the effects of different anthropogenic pressures (e.g. fishing and pollution; 

51 Deutsch et al., 2015; Nagelkerken et al., 2016; Rijnsdorp et al., 2009). One consequence of warming is 

52 the global redistribution of taxa, with some displacement, contraction and expansion of species 

53 biogeographic ranges (Pecl et al., 2017; Poloczanska et al., 2016) leading to the formation of ‘novel 

54 species combinations’. That is assemblages which comprise, as yet, unobserved combinations of taxa 

55 (Alexander et al., 2015). For marine taxa the reported rates of biogeographic shifts are highly variable 

56 (~10–400 km decade-1) (Parmesan and Yohe, 2003; Poloczanska et al., 2016; Sorte et al., 2010). A 

57 recent meta-analysis found rates of 72 ± 13.5 km decade-1 for 360 marine species across a range of 

58 taxonomic groups at the poleward or ‘leading’ edge of their biogeographic distributions (Poloczanska 

59 et al., 2013). This is compared with 6.1 ± 2.4 km decade-1  (Poloczanska et al., 2013) to 17.6 ± 2.9 km 

60 decade-1  for terrestrial taxa (Chen et al., 2011). Przeslawski et al. (2012) assessed 311 marine 

61 invertebrates using rigorous criteria and found 37% had robust evidence for poleward shifts of 3.8–

62 8.9 km decade-1. Variations in the reported rates probably result from differing physiology and 

63 dispersal abilities of taxa, regional environmental variations and the more restrictive criteria used by 

64 Przeslawski et al. (2012). 

65

66 Whatever the mechanism driving species range shifts these taxa can have significant, positive and 

67 negative, impacts on the recipient marine communities that are similar to those for introduced non-
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68 native invasive species (Pecl et al., 2017; Sorte et al., 2010). Species arrivals may have no detectable 

69 impacts on the established assemblages (Zwerschke et al., 2018) or change may be catastrophic 

70 (Katsanevakis et al., 2014; Ling, 2008; Scheffer et al., 2001) for example the decline or extirpation of 

71 native species (Cheung et al., 2009; Landschoff et al., 2013; Pereira et al., 2010). The recipient 

72 communities are also subjected to changing temperatures, which may alter their abundance or 

73 distribution. Species vary in their thermal tolerance (Sunday et al., 2012) and it is likely that sensitive 

74 taxa will be lost first from an established community while the assemblage is being colonised by 

75 incoming taxa with higher thermal tolerances. The dynamics of species interactions, e.g. competition 

76 and predation (Alexander et al., 2015; Poloczanska et al., 2013), within novel assemblages may differ 

77 and so too might ecological functioning and service delivery. Sorte et al. (2010) identified eight 

78 biogeographic shifts which affected marine ecosystem processes including nutrient cycling, 

79 competition, herbivory, predation and disease dynamics. For example, the sea urchin 

80 Centrostephanus rodgersii extended its range from temperate New South Wales to eastern Tasmania 

81 where its intensive grazing negatively impacted the macroalgal communities. This loss of biogenic 

82 habitat contributed to declines in macrofaunal diversity (Ling, 2008). Poleward shifts, of 57–801 km, 

83 for > 30 species of tropical reef fish are impacting functional dynamics on temperate reefs by grazing 

84 important habitat-forming kelp species in New South Wales (Fowler et al., 2017; Vergés et al., 2016). 

85 Northward shifts of boreal fish are changing food-web dynamics in the Barents Sea, benthic-pelagic 

86 coupling has strengthened and competition with resident taxa has led to declines in fish and mammal 

87 abundance and body condition (Bonebrake et al., 2018; Kortsch et al., 2015). Similar changes are 

88 predicted for Arctic benthos due to shifts in larger, faster-growing molluscs from the Bering Sea 

89 (Vermeij and Roopnarine, 2008). The formation of novel assemblages and changes in species 

90 interactions will ultimately lead to changes in the ecosystem functioning (Alexander et al., 2015). The 

91 biological traits of species can be used to better anticipate functional changes which seem to be critical 

92 predictors of system responses to ‘invasion’ (Alexander et al., 2015; Kortsch et al., 2015; Kristensen et 

93 al., 2014). 

94

95 Intertidal soft sediment habitats such as mudflats deliver a range of ecosystem services (Crowe and 

96 Frid, 2015), including the production of food, fuel and construction materials, and the protection of 

97 coastal communities from storm surges and flooding (Barbier et al., 2011; Himes-Cornell et al., 2018). 

98 The ecosystem services provided by intertidal systems such as estuaries and mudflats are estimated 

99 to be US$ 5.2 x 1012 y-1 (in 2007) globally, with a further US$24.8 x 1012 y-1 (in 2007) from tidal marshes 

100 and mangroves (Costanza et al., 2014). Macrofaunal communities inhabiting soft sediments make 

101 important contributions to the ecological functions that underpin these ecosystem services, e.g. 
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102 facilitating effluxes of nutrients from sediments that support primary production or sequestering 

103 carbon and so mitigating ocean acidification and anthropogenic warming. Therefore, future changes 

104 in species biogeographic distributions that impact ecological functioning as a result of warming may 

105 have major impacts on the livelihood and economies of coastal communities.

106

107 Subtropical regions are a key area of focus for identifying changes in species distributions, where the 

108 arrival of tropical taxa and/or loss of temperate taxa become apparent as their ranges expand or 

109 contract (Bonada et al., 2007; Davie and Phillips, 2010; Endean et al., 1956). The present study 

110 examined changes in the distribution of macroinvertebrates in subtropical mudflats throughout SE 

111 Queensland. Generally, information on the biodiversity and taxonomic composition of soft-sediment 

112 invertebrate assemblages in SE Queensland are sparse (Davie and Phillips, 2010) with work focussing 

113 on sandy shores (Barnes and Hamylton, 2016), northern Queensland (Dittmann, 1996, 2002; Inglis and 

114 Kross, 2000) or subtidal benthos (Eertman and Hailstone, 1988; Poiner, 1977; Young and Wadley, 

115 1979). This study provides new data on mudflat macrofaunal assemblages in Moreton Bay, and 

116 considers changes in species distributions, and the implications of the observed and future variations 

117 for the traits, and so ecological functioning, of these economically important habitats.

118

119 2. Materials and Methods
120 2.1 Field site and macrofaunal sampling 
121

122 A total of 24 intertidal mudflats (comprising > 10% silt and clay) were sampled throughout SE 

123 Queensland from Deception Bay (27.15°S) in the north to Tallebudgera Creek (28.11°S) in the south 

124 (Fig. 1A-B, Appendix Table A.1)(Dissanayake et al. 2019). All mudflats were bordered by mangroves 

125 and showed little evidence of direct anthropogenic impact. This region (referred to herein as SE 

126 Queensland) is of recognised ecological value, being designated a RAMSAR wetland (Department of 

127 Environment and Science, 2019). The sampling sites occupy the northern part of the ‘Tweed Moreton 

128 ecoregion’ and so are near to the boundary (at 25°N) between the Temperate Australasian and Central 

129 Indo-Pacific biogeographic marine realms (Spalding et al., 2007). As such it represents an important 

130 faunal transition between tropical and temperate latitudes (Davie and Phillips, 2010; McPhee, 2017). 

131 The southern boundary of the ‘Tweed Moreton ecoregion’ (Spalding et al., 2007) is delimited by the 

132 point where the southward flowing East Australia Current meets the northward Tasman Sea Current 

133 (between 30–32°S) and is deflected offshore (Dambacher et al., 2012). 
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134

135 Sampling was conducted once in winter (July–August 2016) and once in summer (January–February 

136 2017). At each site, five box cores (25 * 25 cm to 11 cm sediment depth) were collected from the mid-

137 shore (approx. 2–5 cm above port datum) for infauna. A minimum of 2 m distance was maintained 

138 between box core samples. Sediments were sieved in situ over 0.5 mm mesh and the residues were 

139 preserved in 90% ethanol containing Rose Bengal stain. Samples were kept at 4°C and returned to the 

140 laboratory for identification and enumeration. Given the lower density, mobility and heterogeneous 

141 distribution of large epifauna, they were not expected to be adequately represented within the box 

142 core samples. Thus, epifauna were collected, adjacent to the infaunal sampling locations, from the 

143 upper 20 cm of sediment within three 0.5 x 0.5 m quadrats (with raised sides providing a barrier 

144 against fast-moving animals), and were sieved over 2 mm mesh. The retained fauna were preserved 

145 in 90 % ethanol. Scientific names were verified using the World Register of Marine Species (WoRMS 

146 Editorial Board, 2019).

147

148 2.2 Biological traits analysis
149

150 Biological trait analysis (BTA) was used (Bremner et al., 2003, 2006) to identify the potential 

151 contribution of macrofauna to the ecological functioning of the mudflats. Eleven traits were selected 

152 to represent a range of morphologies, life histories and behaviours. Each biological trait was 

153 characterised by 3–5 trait modalities (Table 1), giving a total of 45 trait modalities. The affinity of each 

154 taxon to each trait modality was assigned using fuzzy coding such that the ‘total’ affinity for each trait 

155 summed to 1. Using this approach the score may be split across the modalities within a single trait 

156 (Chevene et al., 1994) allowing both diversity/plasticity in the biology or behaviour of an organism to 

157 be captured, and/or any uncertainty surrounding its behaviour. Information on the biological traits of 

158 taxa was obtained from sources including the Biological Traits Information Catalogue (MarLIN, 2006), 

159 the Marine Species Identification Portal (ETI Bioinformatics, 2018), BOLD systems (Ratnasingham and 

160 Hebert, 2007), Polytraits (Faulwetter et al., 2014) and selected papers (e.g. Kristensen et al., 2012; 

161 Macdonald et al., 2010; Queirós et al., 2013). 

162

163 2.3 Biogeographic distribution of macrofaunal assemblages 
164

165 To explore biogeographic patterns in species and trait composition the 24 sampling sites were 

166 grouped according to three criteria (Fig. 1); (i) sites to the north and south of Cleveland, (ii) four equal-
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167 sized groups ordered north to south, and (iii) the northernmost and the southernmost six sites. 

168 Differences between water circulation patterns to the north (open bay) and south of Cleveland (many 

169 large islands inhibit water flow) provided a rationale for the latitudinal subdivision of mudflats 

170 (McPhee, 2017). Site groupings (ii) and (iii) were objectively divided based on latitude, with 

171 classification (iii) representing the two ends of the latitudinal gradient. Given the potential for complex 

172 environmental gradients in Moreton Bay, we carefully examined the ordinations for potential patterns 

173 in the species composition that would not be detected by statistical comparisons between the 

174 selected geographic groupings (i-iii). We concluded that no such patterns existed (Appendix Fig. B2).

175

176 The published biogeographic ranges of each of the taxa sampled were obtained from the Atlas of 

177 Living Australia (ALA, 2018) and the Ocean Biogeographic Information Systems (OBIS, 2018), these 

178 databases contain information from a series of museum records. For each species the apparent range 

179 change between the most recently documented occurrence (ALA, 2018; OBIS, 2018) and the most 

180 northerly or southerly sampled occurrences were estimated using the difference in degrees of latitude 

181 (1° latitude = 110 km) between the two. Subsequently each taxon was classified based on their 

182 published biogeographic ranges (ALA, 2018; OBIS, 2018) as either tropical, temperate or 

183 cosmopolitan. The taxa were assigned to one of six categories (A–F) based on their historic distribution 

184 or that recorded in this study. A. Tropical species that have extended their range to the southernmost 

185 six mudflats sampled in SE Queensland (range shifters, Fig. 1C–D). B. Tropical species that occur 

186 throughout SE Queensland. C. Tropical species that currently only occur in the northernmost sites of 

187 SE Queensland. D. ‘Robust’ temperate species whose current range extends throughout SE 

188 Queensland, and E temperate species that are sensitive to temperature change (i.e. did not occur in 

189 the northernmost six mudflats). The ‘cosmopolitan taxa’ formed group F. For the purposes of this 

190 study cosmopolitan taxa are those that were distributed throughout tropical, temperate and 

191 subtropical climatic zones along Australian coastlines only (cf. Hutchings and Kupriyanova, 2018). This 

192 restricted definition is used because these records have been confirmed by Australian taxonomists 

193 and so are not confounded with other morphologically similar taxa (Przeslawski et al., 2012). Based 

194 on their biogeographic distribution three species and the polygeneric taxa (Nematoda and Nemertina) 

195 were characterised as cosmopolitan. 

196

197 2.4 Effects of climate change on the ecological functioning of 
198 mudflats: Simulating taxonomic and trait change
199
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200 The observed changes in species biogeographic ranges were used as the basis for simulating five 

201 scenarios of changes in species composition of the mudflat fauna. The implications of past and further 

202 climate induced range shifts on mudflat ecosystem functioning were explored using biological traits 

203 analysis. Each scenario was derived from the macrofaunal assemblages at the southernmost six 

204 mudflats, with scenario 1 being the present or ‘baseline’ state (1), and for the remaining four scenarios 

205 (Table 2) taxonomic composition was manipulated as follows. 

206 • 1. Southern baseline: the present assemblage from the southernmost six mudflats.

207 • 2. Pre-invasion: the tropical range shifting species (observed in the 24 mudflats sampled in the 

208 present study) were removed from the baseline community. 

209 • 3. Further invasion: Tropical taxa that were absent from the southernmost six assemblages 

210 were added to the baseline at their mean densities found at the northernmost six sites.

211 • 4. Loss of sensitive temperate taxa: The most sensitive temperate taxa i.e. those absent from 

212 the northernmost six sites (suggesting they had reached the physiological limits of their 

213 distribution) were removed from the scenario 3 assemblage.

214 • 5. Loss of all temperate taxa: All temperate taxa were removed from the scenario 3 

215 assemblage. 

216 Analyses were performed on both unconstrained and constrained data. In the latter case all of the 

217 simulated assemblage data were standardised to the same total density to aid comparisons between 

218 scenarios. This emphasises the influence of changing species compliment rather than the size of the 

219 assemblage (Table 2). For each simulated assemblage the corresponding biological trait matrices were 

220 multiplied by the constrained and unconstrained densities to generate the biological trait composition 

221 for each scenario.

222

223 The impacts of climate-induced biogeographic range shifts on three ecological functions were 

224 investigated: nutrient cycling, C-cycling (food web dynamics) and biogenic habitat provision. In coastal 

225 seas nutrient cycling is strongly coupled with benthic processes that regenerate nitrogen compounds 

226 from sediments, this can provide 20–100% of the annual N requirements for water column primary 

227 production (Blackburn, 1986; Heinen and McManus, 2004). Macrofaunal communities also transport, 

228 transform and store carbon within an ecosystem, and may contribute 11–43% of total benthic 

229 community respiration (Hyndes et al., 2014; Piepenburg et al., 1995; Van Oevelen et al., 2006). This 

230 organic C-cycling is driven by food-web dynamics (ingestion, respiration, production) and reproductive 

231 processes. Infaunal and epifaunal macrofauna also provide structures (e.g. emergent tubes, 

232 mussel/oyster beds) creating habitat for species that require hard substrates, and they provide 
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233 physical protection and refugia (Buhl-Mortensen et al., 2010). Further discussion of these processes 

234 and rationale for the determination of these indices (Table 1) is addressed in Appendix B.

235

236 Two models were used to explore the implications of species losses and gains from the southernmost 

237 mudflat assemblages. Model A included only those trait modalities thought to make meaningful 

238 contributions to each of the functions, and these were assigned a weighting of 1 (Frid and Caswell, 

239 2016; Table 1). An additional model (Model B) employing differential weightings, to better reflect our, 

240 partial, understanding of the contribution of different trait modalities to particular functions, was also 

241 developed although it is not considered further herein (Appendix Tables A.2 and B.10, Fig. B.6). 

242

243 2.5 Data analyses
244
245 Firstly, the abundances for all infaunal and epifaunal samples were converted to density per m2. The 

246 epifaunal and infaunal data were combined, and in instances where epifaunal taxa occurred in both 

247 box cores and the 0.5 x 0.5m quadrats the mean densities from the quadrats were used as they were 

248 more reliable for mobile epifauna. The mean and median number of individuals, species richness, 

249 Shannon-Weiner diversity and Pielou’s evenness were calculated for each site for the two seasons 

250 separately, and for the three biogeographic groups (i)–(iii). Median values were compared between 

251 sites and groups using the Mann-Whitney U test or Kruskal-Wallis test (SPSS v.25, IBM). 

252

253 Bray Curtis similarities were calculated from log (x+1) transformed pooled species densities (per m2) 

254 from each site (for the replicate box cores and quadrats, as described above). For biological trait 

255 composition the species-traits (determined as described in Section 2.2) were multiplied by the species 

256 densities to produce a trait modality by site matrix. Bray-Curtis similarities were calculated on 

257 untransformed biological traits data. Differences in species and biological trait composition were 

258 explored between seasons, biogeographic groups (Section 2.3), and range shift scenarios (Section 2.4) 

259 using non-metric multidimensional scaling (nMDS), Analysis of Similarities (ANOSIM) and the similarity 

260 percentage routine (SIMPER). The delivery of ecological functioning under the five range shift 

261 scenarios were compared using one-way ANOVA, and differences in trait modalities were compared 

262 using t-tests. Differences in the trait profiles of the taxa were compared between climatic zones, based 

263 on their distribution (A to F, Table 2), using ordination (nMDS and ANOSIM). The similarity percentage 

264 (SIMPER) routine was used to identify the trait modalities that contributed to the dissimilarities 

265 between groups, and the abundances of the modalities were compared using t-tests. Multivariate 
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266 analyses were completed using Primer 6 Beta (Plymouth Routines in Multivariate Ecology Research 

267 Ltd).

268

269 3. Results
270 3.1 Macrofaunal assemblages of mudflats in southeast Queensland
271

272 A total of 3047 individuals were retrieved in the summer and 1800 were observed in winter across the 

273 24 sites sampled in SE Queensland (from 120 box core samples; Mann-Whitney U test, Z = -3.629, 

274 p<0.001, Fig. 2A). In the summer 50 taxa were recorded while in the winter there were 46, with the 

275 polychaete Platynereis antipoda, the bivalve Paratapes undulatus and the gastropods Recluzia johnii 

276 and Nassarius coronatus being absent during the winter. In both seasons 10 taxa contributed to ~70% 

277 of the cumulative macrofaunal density in the assemblage (Appendix Table B.1). In summer the 

278 suspension feeding bivalve Hiatula alba dominated, followed by the polychaetes Barantolla lepte and 

279 Aglaophamus australiensis. Whereas in winter the crabs Mictyris longicarpus and Macrophthalmus 

280 setosus dominated. Mudflat assemblage species composition significantly differed between winter 

281 2016 and summer 2017 (ANOSIM, global R = 0.076, p = 0.004, Fig. 2B) with an average SIMPER 

282 dissimilarity of ~52%. Given the marked seasonal differences in the mudflat assemblages, for the 

283 remainder of the analyses the summer and winter assemblages were considered separately.

284 3.2 Biogeographic variations in the species composition of mudflat 
285 assemblages
286

287 Overall, northern mudflats appeared to have higher macrofaunal densities, diversity and evenness 

288 than those to the south, however they did not significantly differ between mudflats in any of the three 

289 biogeographic comparisons (i–iii; Fig. 1B) in either season (Kruskal Wallis test, p < 0.05 in all cases; 

290 Appendix Fig. B1). Macrofaunal species composition did not significantly differ between mudflats 

291 north and south of Cleveland (one way ANOSIM; winter global R = -0.001, p > 0.05; summer global R 

292 = 0.011, p > 0.05) nor between the four groups of mudflats on a north-south gradient (ANOSIM, winter 

293 global R = -0.035, p > 0.05; summer, global R = 0.057, p > 0.05) (Appendix B). Despite the lack of 

294 significant differences in macrofaunal densities and diversity between the northernmost and 

295 southernmost six mudflats (comparison iii), species composition significantly differed between these 

296 mudflats in summer (ANOSIM, global R = 0.272, p = 0.015, 55% dissimilar, Fig. 3B), but not winter 

297 (global R = 0.065, p > 0.05, Fig. 3A). Five taxa, the polychaetes A. australiensis and M. dakini, the 
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298 bivalves H. alba, M. hiantina and the gastropod H. fusca each contributed > 4% to the SIMPER 

299 dissimilarity between the northernmost and southernmost six sites (Fig. 3). 

300

301 In summer, the assemblage at the southernmost sites was comprised mostly of taxa with temperate 

302 affinities and were dominated by the bivalve H. alba and the polychaete A. australiensis, but only A. 

303 australiensis occurred in significantly higher densities in the  south compared to the north (t-test, t(10) 

304 = 0.923, p = 0.017, Fig. 3E). M. dakini also occurred in higher densities in the south although it did not 

305 significantly differ (t-test, p > 0.05; Table 3, Fig. 3E). Four temperate taxa, the shrimp Alpheus 

306 richardsoni, the polychaetes Trypaea australiensis, Sthenelais boa and Helograpsus haswellianus, and 

307 three tropical taxa the stomatopod Clorida depressa, the gastropod R. johnii and the decapod Uca 

308 longidigita were present in the southernmost mudflats but were absent from the northernmost sites. 

309 The northernmost assemblage was dominated by the tropical bivalve M. hiantina which occurred at 

310 significantly higher density than in the south (t-test, t(10) = -1.991, p = 0.040). Density of the tropical 

311 gastropod H. fusca was five-fold higher in the north (Fig. 3E), although it did not significantly differ (t-

312 test, p > 0.05; Table 3, Fig. 3E). Five tropical taxa the bivalves Mactra maculata, P. undulatus, Lutraria 

313 impar, the brachiopod Lingula anatina and the decapod Tubuca polita occurred in the northernmost 

314 assemblages, but were absent from the southernmost mudflats.

315

316 Of the total pool of 50 taxa recorded in SE Queensland mudflats 50% were classified as temperate, 

317 40% were tropical and 10% were ‘cosmopolitan’ taxa (i.e. widely distributed in both zones) based on 

318 their known occurrences (ALA, 2018). According to the documented species distributions (ALA, 2018; 

319 OBIS, 2018), five taxa the polychaetes H. fusca, Prionospio queenslandica, Eurysyllis tuberculata, 

320 Sternaspis scutata, and the bivalve Laternula anatina had previously only been recorded once in the 

321 greater SE Queensland region (ALA, 2018; OBIS, 2018; Table 3). Three species had previously only been 

322 recorded once in the study area (Table 3). 

323

324 Ten taxa had wider biogeographic distributions throughout SE Queensland than had previously been 

325 documented (Table 3). Up to eight tropical taxa exhibited range shifts, the gastropod H. fusca, the 

326 bivalves L. anatina, M. maculata, M. hiantina, and the crustaceans Metapenaeus endeavouri, C. 

327 depressa and U. longidigita, and the foraminifera Elphidium discoidale extended their ranges 

328 southwards shifting on average 146 ± 66 km (Table 3, Fig. 1B). The relatively small difference in the 

329 biogeographic range of the stomatopod Clorida depressa since 1998 (Table 3) may simply result from 
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330 new records due to greater sampling effort. The foraminifera Elphidium discoidale may exhibit a shift 

331 of 381 km since 1983, but this is also uncertain, as it may be confounded by subspecies Elphidium 

332 discoidale var. multiloculum (Narayan and Pandolfi 2010). Two temperate taxa also changed 

333 distribution, the polychaetes V. australiensis, and M. australiensis which shifted 85 km and 374 km 

334 northwards (Table 3), respectively. The shifts ranged from 6 km up to 477 km, and the fastest shifters 

335 were H. fusca, L. anatina and M. australiensis which have all shifted > 100 km decade-1 (Table 3).

336

337 3.3 Biogeographic differences in macrofaunal trait composition
338

339 Trait modality richness of the macrofaunal assemblage did not significantly differ (Appendix Table B.4) 

340 between the mudflats; (i) north and south of Cleveland, (ii) in the four groups along the north to south 

341 gradient or (iii) at the northernmost and southernmost six sites. Overall, most macrofaunal taxa were 

342 short lived (1–2 years), intermediate sized (> 5 cm), unattached, free moving, habitat modifiers which 

343 made burrows, and had planktotrophic larval development (Appendix Fig. B.4). Although taxa 

344 composition significantly differed between the northernmost and southernmost six sites in winter or 

345 summer the trait composition did not differ (ANOSIM, winter global R = 0.004, summer global R = 

346 0.091, p > 0.05, Fig. 3C–D). Assemblages from mudflats north and south of Cleveland (ANOSIM, winter 

347 global R = 0.026, summer global R = -0.042, p > 0.05) and the four groups along a north-south gradient 

348 did not have different trait compositions (ANOSIM, winter global R = 0.013, summer global R = 0.073, 

349 p > 0.05; Appendix B).

350

351 3.4 Taxa trait modality profiles
352

353 The trait modality profiles for taxa with tropical, temperate and cosmopolitan geographic distributions 

354 significantly differed (ANOSIM, global R = 0.143, p = 0.002, Fig. 4A), with those for tropical taxa 

355 differing from those for temperate taxa (R = 0.149, p = 0.003; average SIMPER dissimilarity ~60%). 

356 More temperate taxa had body-sizes > 50 mm, and vermiform body shapes with no exoskeleton, 

357 contrastingly tropical taxa typically had more rectangular–subrectangular body shapes and were 

358 generally smaller and had exoskeletons. The trait profiles of cosmopolitan taxa did not differ from the 

359 tropical or temperate taxa (pairwise ANOSIM, p > 0.05).

360
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361 To explore these differences in greater detail the taxa were further categorised based on their 

362 occurrences within the 24 mudflats sampled and their reported biogeographic range. The trait profiles 

363 of macrofauna significantly differed between the six biogeographic (A–F, Table 3) categories of taxa 

364 (ANOSIM, global R = 0.223, p = 0.001, Fig. 4B). Pairwise ANOSIM showed the trait profiles of temperate 

365 taxa occurring across all 24 mudflats significantly differed from those of: tropical species occurring 

366 across all 24 sites (pairwise ANOSIM, R = 0.199, p = 0.012), tropical species present at all but the 

367 southernmost 6 sites (R = 0.518, p = 0.003) and tropical range shifters (R = 0.299, p = 0.003). A total of 

368 18 trait modalities contributed to > 50% of the cumulative SIMPER dissimilarity between the trait 

369 profiles of taxa in these four categories (Fig. 4C). The main differences between the trait profiles of 

370 temperate species (D) and those from the other three categories (A–C) was the greater incidence of 

371 vermiform body shapes and lack of body armour (Mann-Whitney U test, p < 0.05; > 50% contribution 

372 to dissimilarity; Fig. 4C, Appendix B). Whereas, tropical taxa (B–C) had more rectangular shaped 

373 bodies, and tropical taxa absent from the southernmost sites had more 0.5–1 mm thick body armour 

374 (p < 0.05). Tropical species which occurred throughout SE Queensland were typically 10–30 mm body 

375 size whereas the other three groups (A, C, E) were comprised of taxa > 50 mm body size. Significantly 

376 less of the temperate taxa were suspension feeders (Mann-Whitney U test, p<0.05) and significantly 

377 more were deposit feeders (p < 0.05) compared to the tropical range shifters. There were also 

378 significantly more deposit feeding temperate taxa (Mann-Whitney U test, p < 0.05) than tropical taxa 

379 absent from the southernmost sites (Fig. 4C, Appendix Table B.5). These differences in trait profiles 

380 are consistent with those between all tropical and all temperate taxa.

381

382 3.5 Simulations of species, traits and functional change
383

384 ANOSIM identified significant differences in the taxonomic composition of the simulated assemblages 

385 (or ‘scenarios’) using unconstrained species abundances during both seasons (ANOSIM, winter global 

386 R = 0.362, p = 0.001; summer global R = 0.401, p = 0.001, Fig. 5A-B). Pairwise ANOSIM showed both 

387 the winter and summer taxonomic composition of scenario 5 significantly differed from all other 

388 scenarios (SIMPER dissimilarity 61–81%); and, in summer scenario 1 differed from scenario 4, and 

389 scenario 2 differed from scenarios 3 and 4 (SIMPER 47–49% dissimilar; Appendix Table B.7). The 

390 biological trait composition significantly differed in winter (ANOSIM, global R = 0.127, p = 0.05, Fig. 

391 5A) and summer (ANOSIM, global R = 0.187, p = 0.004, Fig. 5B), and similar to taxonomic composition 

392 the traits of the scenario 5 assemblage significantly differed from all other scenarios (pairwise 

393 ANOSIM, p <0.01; Appendix B). Fourteen to seventeen of the 45 trait modalities contributed to 70% 

394 of the cumulative SIMPER dissimilarity between the trait composition for scenario 5 and all of the 
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395 other scenarios in both winter and summer (p<0.05). All modalities except one were significantly more 

396 abundant in scenarios 1–4 (Appendix Table B.8). Thus, despite the changed density of 4–8 taxa in 

397 scenarios 1–4 (Table 2) only scenario 5 consistently differed in species and trait composition across 

398 both seasons (Appendix Table B.8 and B.9).

399

400 The estimates for nutrient cycling significantly differed between the winter scenarios (ANOVA, winter: 

401 F = 2.868, p = 0.04), however post-hoc Tukey tests failed to identify pairwise differences. Pairwise 

402 Mann-Whitney U tests (with sequential Bonferroni correction, Rice 1989, Appendix Table B.10) 

403 showed scenario 5 significantly differed from scenarios 1–4 only (p<0.05; Appendix Table B.10) and 

404 delivered three-fold lower mean functioning (Fig. 6A). Scenarios 1–4 contained more taxa with the 

405 following traits compared to scenario 5; medium and large body sizes (> 30 mm), showing free 

406 movement, bioturbate by biodiffusion, deposit feeders and deep sediment dwellers (> 50 mm). 

407 Therefore, a correspondence existed between the trait composition, functional estimates (Table 1, 

408 Appendix Fig. B.4A) and the elimination of all temperate taxa from the scenario 5 assemblage, the 

409 latter being typified by trait profiles with larger body sizes and deposit feeding modes.

410

411 Estimates for C-cycling were significantly higher in scenarios 1–4 than scenario 5 in the winter (ANOVA, 

412 F = 2.956, p = 0.04; Mann-Whitney U test, p < 0.05; Fig. 6B, Appendix Table B.10). Higher C-cycling was 

413 provided by taxa with medium and large body sizes (> 30 mm), a lack of armour, < 2 years longevity 

414 and planktotrophic larvae (Table 1, Appendix Fig. B.4A and Table B.10). In the summer estimates for 

415 biogenic habitat provision were higher in scenarios 3 and 4 compared with scenario 5 (ANOVA, F = 

416 4.240, p < 0.001; Appendix B). However, the trait modalities included in the functional estimates (Table 

417 1) represented a small proportion of the total density (and < 10% of the cumulative SIMPER 

418 dissimilarity) between the trait composition of the different scenarios (Appendix Table B.10). 

419

420 For the constrained data the trait composition of the assemblage representing scenario 5 differed 

421 from all of the other scenarios (Appendix Table B.7), and for the three constrained functional 

422 estimates (Table 1) only biogenic habitat significantly differed between assemblages. The nature of 

423 the differences was consistent with that for the unconstrained estimates (Appendix Table B.6).

424
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425 4. Discussion
426

427 Using new data on mudflat macrofaunal communities together with historic biogeographic datasets 

428 poleward biogeographic range expansions were identified for up to eight typically tropical species, 

429 representing 14% of the 50 taxa recorded from mudflats. To date this is the most comprehensive 

430 survey of mudflat macrofauna in SE Queensland, with most past work focussing on macrofauna 

431 within intertidal seagrass meadows (38%), mangroves (9%) and sandflats (16%) with mudflats 

432 forming only ~10% of the published work within the region. The SE Queensland assemblages were 

433 typical for the subtropics (Davie and Phillips, 2010; Dissanayake et al., 2018; Dissanayake et al. 2019; 

434 Johnson, 2010) having a mixture of species with tropical and temperate affinities, in the mudflats 

435 50% of species were temperate and 40% tropical (ALA, 2018; OBIS, 2018). Similar patterns are 

436 observed for rocky shore invertebrates (Endean et al., 1956) and fish (Johnson, 2010) in Moreton 

437 Bay reflecting the transition from the Temperate Australasian to Central Indo-Pacific biogeographic 

438 realms at 25°S (Spalding et al., 2007). However, biogeographic shifts are apparent for fish (Fowler et 

439 al., 2017; Sunday et al., 2015), rocky shore (Poloczanska et al., 2011) and mudflat species (the 

440 present study) and further climatic warming may cause the biogeographic boundaries to move. 

441

442 The documented shifts of mudflat macroinvertebrates are consistent with the widely reported 

443 movements of marine and terrestrial species towards the poles as a result of anthropogenic warming 

444 (Freeman et al., 2018; Poloczanska et al., 2016), and prompted us to ask how will the ecological 

445 functioning of marine ecosystems be affected by this restructuring of macrofaunal assemblages? 

446 Simulations were used to explore how macrofaunal assemblages formed by past, present and future 

447 biogeographic shifts will impact mudflat community structure and functioning. Our results suggest 

448 that even quite severe changes in species composition will not fundamentally alter the ecological 

449 functioning or the delivery of ecosystem services, initially because species with similar traits will 

450 compensate for the species lost. However, as the severity of the perturbation increase a sudden 

451 collapse in functioning may occur. This pattern of compensation followed by a catastrophic failure has 

452 previously been reported for hypoxia in ancient oceans (Caswell and Frid, 2017), and those 

453 experiencing high levels of anthropogenic organic enrichment (Caswell et al., 2018). 

454

455 4.1 Biogeographic range expansions of macrofaunal taxa
456
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457 Changes in biogeographic ranges have been documented for 54 species in the SW Pacific and more 

458 than 360 marine species globally, across most taxonomic groups and ocean regions, at a mean rate of 

459 72 km decade-1 at the leading edge (Poloczanska et al., 2013; Poloczanska et al., 2016). For most of 

460 these range shifts increases in average global surface air and seawater temperatures since the start 

461 of the 20th century (IPCC 2014) have been implemented as the primary driver (Poloczanska et al., 2016; 

462 Sorte et al., 2010). Generally, leading edge expansion rates are fastest for taxonomic groups with high 

463 dispersal abilities e.g. phytoplankton (469.9 ± 115.3 km decade-1), zooplankton (142.1 ± 27.8 km 

464 decade-1) or bony fish (277.5 ± 76.9 km decade-1)(Poloczanska et al. (2013). In this study up to eight 

465 usually tropical taxa appear to have shifted on average 145 km south over the last 20–60 years (Fig. 

466 1). The poleward movements of these species are probably also symptomatic of ocean warming. The 

467 tropical mudflat species moved on average 34 km decade-1 towards the poles and so shifted 

468 approximately four times faster than the 6.8 km decade-1 for intertidal invertebrates reported by 

469 Przeslawski et al. (2012), but slower than reported for subtidal macroinvertebrates in the N Atlantic 

470 (Hale et al. 2017). The subtropical mudflat macrofauna shifted at approximately half the global rates 

471 reported across all marine taxa (Poloczanska et al., 2013), but were comparable with the average rate 

472 (29 km decade-1) reported for Australian marine invertebrates and fish (Champion et al., 2018; Fowler 

473 et al., 2017; Hobday, 2010; Ramos and Pecl, 2015; Sunday et al., 2015). The rate of crustacean shifts 

474 were within the range already reported for the taxon, whereas the molluscs and polychaetes shifted 

475 ~70–300 km decade-1 which is faster than the rates reported for these taxonomic groups in recent 

476 global meta-analyses (Poloczanska et al., 2016). L. anatina was the fastest moving taxon which is 

477 shifting ~220 km decade-1, a very high rate for a benthic mollusc, and is comparable with that for 

478 zooplankton (Poloczanska et al., 2016).

479

480 Species traits that may facilitate biogeographic range shifts include large existing geographic ranges 

481 (and so thermal tolerances) and wide dispersal abilities, these taxa are more likely to successfully 

482 colonise new habitats (Cheung et al., 2009; Cowen and Sponaugle, 2009). Sunday et al. (2015) 

483 showed that this was the case for pelagic fish in SE Australia and that many of the fish species were 

484 omnivorous meaning they could exploit a greater range of resources. However, to date predictions 

485 based on these traits have had limited power to explain the pattern of marine species range shifts 

486 (Angert et al., 2011; Pinsky et al., 2013; Przeslawski et al., 2012). The tropical range shifters 

487 documented in the present study did not differ from any of the non-shifting taxa with respect to 

488 these traits, similar results have been found for range shifters in the temperate Atlantic benthos 

489 (Hale et al., 2017). The faster rates of expansion for benthic invertebrates reported in the present 

490 study might be facilitated by oceanographic features such as the strong (up to 1.3 ms−1) southward 
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491 flowing East Australia Current which promotes larval and juvenile dispersal (Booth et al., 2007), 

492 which has strengthened with climate change and now penetrates further south than prior to the 

493 1940s (Ridgway, 2007). A further complicating factor may be the nature of the intertidal 

494 environment which is subject to warming as a result of both rising sea and air temperatures and 

495 while broadly correlated, the detailed changes will vary between sites and different species may be 

496 more sensitive to one or another causing further variations in the response.

497

498 Species distributional responses to increasing SST are mixed, in addition to shifts at the leading edge 

499 of species biogeographic ranges some taxa lag or do not respond, and equatorward shifts such as 

500 those documented herein have been observed in response to complex regional phenomena (i.e., 

501 where seawater temperatures may vary locally or geographical barriers exist; Burrows et al., 2014; 

502 Pinsky et al., 2013) or due to differences in species biology or ecology (Poloczanska et al., 2013). For 

503 instance, in subtidal benthic communities along the Atlantic coast of USA between 1990 and 2010 

504 60% of species shifted north (poleward) by on average 181 km and 23% shifted ~65 km southward 

505 (equatorward) (Hale et al., 2017). Of the two species of temperate taxa that seem to have expanded 

506 their geographic ranges towards the tropics in the present study, M. australiensis moved the furthest 

507 (368 km in 5 years). This rate is at the upper end of estimates for natural range expansions, and could 

508 indicate an introduction, for example on ship hulls or in ballast water (e.g. Ricciardi, 2016). None of 

509 the range shifting taxa were documented in the global non-native invasive species database (Invasive 

510 Species Specialist Group ISSG, 2015), however species introductions have been observed for Laternula 

511 anatina (Pagad et al., 2018) and the congenerics Clorida albolitura (Galil et al., 2009), Haminoea 

512 japonica (Hanson et al., 2013) and M. pentadentata (Nygren, 2004). Some of the equatorward shifts 

513 may simply result from the higher sampling intensity used in this study and so may represent new 

514 records and not biogeographic range shifts (e.g. McPhee, 2017). However, regional environmental 

515 variations may also contribute, for instance, within Australia the fastest warming (~30% faster than in 

516 Queensland) is occurring in a ‘hotspot’ on the south western and south eastern coasts (CSIRO and 

517 Bureau of Meteorology, 2015; Hobday and Pecl, 2014).

518

519 Reporting range shifts can be fraught with difficulties (Przeslawski et al., 2012), but our range shift 

520 data conform to the rigorous criteria employed by other studies (Parmesan and Yohe, 2003; 

521 Przeslawski et al., 2012; Sorte et al., 2010) for identifying range shifts, e.g. the data are based on 

522 species occurrences, not abundances, and are collected from assemblages not individual species. 

523 Further, all species were found at > 4 mudflats and were abundant in the majority of the mudflats 
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524 sampled. However, it is not possible to determine when the range shifts occurred nor when they 

525 achieved their current southerly limits, except to say that they shifted sometime between their most 

526 recent record in ALA or OBIS and our 2016-2017 sampling. Thus, the estimated rates of range shifts 

527 are maximums and assume movement spanned the entire time period between the two records. 

528 Given the paucity of studies in SE Queensland mudflats, some of these range expansions could 

529 simply result from new records due to greater sampling effort. Therefore, the findings of this study 

530 need to be further validated by conducting more extensive benthic sampling programs in this and 

531 other ‘biogeographic boundary zones’. 

532

533 4.2 Changes in macrofaunal traits and ecological functioning
534

535 Whilst the species within assemblages have differing identities, they often share traits (e.g. 

536 morphology, life history and behavioural characteristics; Bremner et al., 2006; Peres and Dolman, 

537 2000) usually resulting in less variation in traits than taxa between assemblages (Bremner, 2008; 

538 Törnroos et al., 2013). For instance, the trait composition of subtidal benthos around the UK does not 

539 differ regionally between the southern North Sea and eastern English Channel unlike the taxonomic 

540 composition (Bremner et al., 2003). At the global scale this may also be true: clear latitudinal 

541 differences exist in the taxa that dominate marine systems e.g. the proportions of decapods and 

542 bivalves are higher in tropical mudflats (Boschi, 2000; Crame, 2000; Dissanayake et al., 2018). 

543 Therefore, it is likely that shifts in functioning will occur that are associated with the differing biology 

544 of these taxonomic groups when temperate species are replaced by tropical ones. Similar to the 

545 previously documented regional (Bremner et al., 2003; Hemingson and Bellwood, 2018; Toussaint et 

546 al., 2016) and global trends (e.g. Dissanayake et al., 2018; Safi et al., 2011), spatial differences in the 

547 taxa present but not their traits suggest conservation of the macrofaunal contribution to mudflat 

548 functioning within SE Queensland. The assemblages seemed to perform similar functional roles at the 

549 northernmost and southernmost (Fig. 1) ends of the biogeographic gradient. Therefore, turnover of 

550 species in these assemblages will not necessarily result in changes in trait composition or functioning.  

551

552 Up to eight tropical macroinvertebrate species were identified that have moved on average 145 km 

553 southwards in the last 60 years, and it is likely that these changes were driven by increasing SST on 

554 the SE Queensland coast. Mean SST in Queensland is predicted to increase 0.6–0.8°C by 2030 and 0.8–

555 2.9°C by 2090 (IPCC scenarios RCP2.6, RCP4.5 and RCP8.5) above the 1986–2005 baseline (CSIRO and 

556 Bureau of Meteorology, 2015; IPCC, 2014). Given future forecasts, it is highly likely that further shifts 
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557 will occur leading to a restructuring of macrofaunal assemblages. Such changes may include 

558 alterations to the biological traits and ecological functioning of macrofaunal assemblages. In the 

559 present study biogeographic range shifts were simulated to produce five novel species compositions 

560 for mudflats. By altering species composition, changes in the associated traits of macrofauna that 

561 mediate a range of benthic functions were also simulated. Specific biological trait modalities were 

562 mapped onto functions and it was assumed that all modalities contributed equally to functioning. This 

563 assumption was tested using an alternative model, and the functional estimates were found to be 

564 insensitive to the differential trait weighting (Frid and Caswell, 2016) and so the, unweighted, results 

565 presented here are conservative in describing functional change. This is consistent with other studies 

566 using this approach (Clare et al., 2015; Frid and Caswell, 2016). However, note these estimates 

567 describe ‘potential’ and relative levels of functioning only rather than actual values that might drive 

568 ecosystem or economic models (Bateman et al., 2013; Culhane et al., 2018; Pereira et al., 2010). 

569

570 Experimental studies are of limited utility for anticipating complex changes in ecosystem dynamics, 

571 therefore to predict ecosystem responses models are needed that explore hypothetical scenarios of 

572 species movements. In the present study, models of changing assemblage composition were based 

573 on three main assumptions. Firstly, species sharing physiological characteristics were assumed to 

574 move together rather than individually. Uncertainty regarding the species-specific relative rates of 

575 movement made it difficult to determine exactly where and when taxa will arrive. Secondly, species 

576 are assumed to function similarly within the new and existing assemblages, however this is unlikely 

577 to always be the case (Alexander et al., 2015). For instance, the feeding (Cesar and Frid, 2012) or 

578 burrowing behaviour (Olafsson, 1986) of taxa may vary between sediments with differing properties, 

579 and so the expression of their traits and the delivery of functioning may also differ. Thirdly, species 

580 relative abundances were assumed to be either: equivalent to the areas in which they presently 

581 reside (unconstrained total abundance; Table 2, Fig. 5); or, the total carrying capacity of the system 

582 was constrained whilst the relative proportions of taxa remained the same. The functioning 

583 estimates derived from these constrained and unconstrained formulations of the model followed 

584 similar trends. This suggests that while the abundance effect was clearly present in setting the 

585 quanta of the function predicted by the model, the pattern of functional change was robust under 

586 the different model formulations. This supports interpretations of a period of consistent functioning, 

587 driven by species replacements, followed by collapse as previously reported for contemporary 

588 systems subject to anthropogenic pressures (Caswell et al., 2018; Clare et al., 2015).

589

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080



19

590 The transition from a ‘pre-invasion’ to the present-day scenario considers the arrival of up to eight 

591 taxa that have shifted southwards by 6–447 km over 23–70 years. These shifts are commensurate 

592 with a ~1°C increase in air and seawater surface temperatures (above the 1961-1990 average; CSIRO 

593 and Bureau of Meteorology, 2015, 2018; IPCC, 2014). In the ‘further invasion’ scenario tropical taxa 

594 moved 84 km south from Nudgee Beach to the mudflats between Redland Bay and Tallebudgera at 

595 on average 49 km decade-1. If the rate of SST increase remained constant these taxa would reach 

596 Tallebudgera by ~2036. Our comparison of hypothetical scenarios shows that biological traits, and 

597 therefore also functioning, were initially conserved followed by a potential threshold when 10–50% 

598 of macrofaunal species were lost. This is seen in the shift between ‘further invasion by tropical taxa 

599 sensitive to SST’ (4 taxa, scenario 4) and subsequent loss of the temperate component of the 

600 assemblage (24 taxa, scenario 5). To date most marine species shifts have produced changes in 

601 trophic dynamics e.g. predator-prey dynamics or grazing patterns (e.g. Fowler et al., 2017; Ling, 

602 2008; Vergés et al., 2016), but there are comparatively few identifying changes in nutrient or C-

603 cycling within marine (but see Pessarrodona et al., 2019) or terrestrial systems (Collins et al., 2016; 

604 Pureswaran et al., 2015; Zhao et al., 2019). In the present study, estimates for nutrient cycling, C-

605 cycling and biogenic habitat provision were three-fold lower after the loss of all temperate taxa 

606 compared with any other scenario (including the current scenario). Although the differences in 

607 emergent biogenic habitat provision were a small proportion of total functioning. 

608

609 An increasing  number of marine species are exhibiting changes in their  biogeographic distributions, 

610 and these shifts are predicted to continue leading to elevated local extinctions in tropical and sub-

611 polar regions (Cheung et al. 2009). Thus, novel species compositions will continue to form, however, 

612 considerable uncertainty remains regarding which species move and how the recipient communities 

613 will respond to the new arrivals. Experimental simulations have shown that differences in species 

614 interactions based on their traits can be more important predictors of ecosystem responses to 

615 ‘invasion’ than their physiological limits (Alexander et al., 2015). Forecasts of the possible impacts 

616 therefore could be improved by greater understanding of the functional dynamics of marine 

617 ecosystems. In this study it was only under the most extreme scenarios of species shifts that 

618 functioning differed from the southern baseline assemblage. These changes were primarily driven by 

619 the loss of the temperate species, for which the invading tropical species, which had a different mix 

620 of traits, were unable to fully compensate. Arrival of novel species can also strongly undermine the 

621 performance of stressed communities through competition and predation. Functional dissimilarity 

622 between the incoming ‘novel competitors’ and ‘resident competitors’ has a greater impact at the 

623 trailing compared with the leading edges of species ranges (Alexander et al., 2015). Thus, the 
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624 impacts of changes in trait composition presented in this study are likely to be more moderate than 

625 in mudflats at the trailing edges. The vulnerability of ecosystem service delivery in coastal areas to 

626 climate-induced species redistribution needs to be considered within climate change resilience and 

627 mitigation planning. This study shows that these impacts could occur suddenly, associated with 

628 thresholds making collapses challenging to predict. Managers, fisheries and aquaculture sectors and 

629 others concerned with healthy functioning ecosystems in coastal systems need to be aware of these 

630 risks. 
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1006 Figure captions
1007

1008 Fig. 1. Spatial distribution of the sites sampled, groupings for the biogeographic analyses and apparent 

1009 range shifts. (A) Map of Australia with study region indicated. (B) The 24 mudflats (Appendix Table 

1010 A.1) sampled (open circles) along the SE Queensland coast in 2016-17. The sites are numbered 1-24 

1011 from north to south, and for the purpose of biogeographic analyses are grouped into; (i) those to the 

1012 north (1–14) and south (15–24) of Cleveland, (ii) into four equal-sized groups from north to south, (iii) 

1013 the northernmost six (1-6) and southernmost six sites (19-24). (C) The northward biogeographic range 

1014 shifts for the three temperate taxa. (D) Southward range shifts for crustaceans and foraminifera, and 

1015 (E) molluscs. The distance and direction shifted is illustrated by grey arrows with the origin and year 

1016 of most recent record in the Australian Living Atlas (ALA, 2018) and the Ocean Biogeographic 

1017 Information System (OBIS, 2018). For distances moved (km) see Table 3. For three species (Myrianida 

1018 australiensis, Laternula anatina and Haminoea fusca) only the current location is provided because 

1019 the origin falls outside of the sampled area. 

1020

1021 Fig. 2. (A) Mean (±SE) macrofaunal density (number of individuals m-2), from the 24 mudflats sampled 

1022 in SE Queensland, Australia (Fig. 1) in winter 2016 (black) and summer 2017 (white). Means are based 

1023 on five 0.0625m2 box cores at each site. (B) nMDS ordination of the Bray-Curtis similarity of the 

1024 macrofaunal species composition (log X+1 transformed) in each season. 

1025

1026 Fig. 3. nMDS ordination of the Bray-Curtis similarity of the mudflat macrofaunal assemblage 

1027 taxonomic composition (log X+1 transformed density) for mudflats in the northernmost (between 

1028 Deception Bay and northern Moreton Bay) and southernmost six sites (between Redland Bay and 

1029 Tallebudgera) sampled in SE Queensland (Fig. 1A), (A) in summer and (B) in winter. Macrofaunal trait 

1030 composition, weighted by density, (C) in winter and (D) in summer. (E) The mean densities (± SE) of 

1031 the five taxa contributing most to the SIMPER dissimilarity between the northernmost and 

1032 southernmost six sites in summer in SE Queensland. *Indicates significance difference. 

1033

1034 Fig. 4. (A) The trait modality profiles of taxa based on their typical biogeographic occurrences e.g. 

1035 tropical, temperate or cosmopolitan. (B) Trait modality profiles of taxa based on the biogeographic 

1036 occurrences throughout the sampled area (including identified range shifters) in SE Queensland. The 

1037 species that were absent from the winter assemblage are indicated in ‘W’. (C) The trait modalities 
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1038 contributed to > 50% cumulative differences between the trait profiles of temperate taxa that 

1039 occurred throughout SE Queensland (Qld) and tropical range shifters, tropical species that occurred 

1040 throughout SE Queensland, tropical species that were absent from the southernmost 6 sites. The traits 

1041 modalities that differed significantly (Mann-Whitney U test) between three pairs were illustrated in 

1042 bold, 2 pairs as underlined and an * was added to represent one significant pair.

1043

1044 Fig. 5. nMDS ordination of the Bray-Curtis similarity of the simulated mudflat macrofaunal assemblage 

1045 trait composition in 24 SE Queensland mudflats under five scenarios of species compositional change 

1046 (e.g. pre-invasion, baseline, further invasion, loss of sensitive temperate species and loss of all 

1047 temperate species scenarios) (A) in winter, and (B) in summer. 

1048

1049 Fig. 6. Estimates for three ecological functions (mean ± SE) within SE Queensland mudflats under five 

1050 scenarios of species compositional change (e.g. pre-invasion, baseline, further invasion, loss of 

1051 sensitive temperate species and loss of all temperate species scenarios). Data are standardised to zero 

1052 mean and unit variance. (A) Nutrient cycling, (B) C-cycling, and (C) biogenic habitat provision in model 

1053 A in both winter and summer. 
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Table 1. The eleven biological traits and 45 trait modalities used to characterise the mudflat 
macrofaunal taxa, and the three ecological functions investigated (and the trait modalities used to 
index them). Traits were selected to represent a range of morphologies, life histories and behaviours 
and because they are thought to be important contributors to the three ecological functions (see 
detailed scientific rationale in Appendix A2). Two models were employed, for model A the value of 1 
was assigned for trait modalities with highest affinity to functions and 0 for the lowest contribution. 
A differentially weighted model (B). was developed where trait modalities varied in their contribution 
to each function (see Appendix Table A.2).

Traits Trait modalities
Morphological traits
A. Maximum adult body size1 (1) <10 mm; (2) 10–30 mm; (3) 30–50 mm; (4) >50 mm
B. Body shape2 (1) Round-oval; (2) rectangular-sub-rectangular; (3) 

vermiform
C. Body armour thickness (1) None; (2) 0.1–0.5 mm; (3) 0.5–1 mm; (4) 1–5 mm; (5) >5 

mm
Life history traits
D. Degree of attachment3 (1) None; (2) temporary; (3) permanent
E. Longevity (1) <1 yr; (2) 1−2 yr; (3) 3−5 yr; (4) 5−10 yr; (5) >10 yr
F. Larval development (1) Direct; (2) planktotrophic; (3) lecithotrophic
Behavioural traits
G. Feeding (1) Deposit feeder; (2) suspension/filter feeder;

(3) predator/scavenger; (4) grazer
H. Sediment dwelling depth (1) Epifauna; (2) 2–20 mm; (3) 20–50 mm; (4) >50 mm

I. Adult mobility (1) Sessile/sedentary; (2) limited movement; (3) free 
movement; (4) swimming

J. Sediment reworking4 (1) None; (2) surface modifiers; (3) biodiffuser/diffusive 
mixing; (4) regenerators; (5) upward / downward conveyors

K. Habitat modification5 (1) No modification; (2) cast or mound; (3) burrow 
ditch/hollow; (4) biogenic tubes (5) emergent structures

Ecological Function Models 

Nutrient cycling

Maximum adult body size >10 
mm5,6,7 (A2-A4) + rounded or 
rectangular body shapes (B1-B2) + 
deposit or suspension/filter 
feeders11 (G1-G2) + sediment 
dwelling depths >2 mm10 (H2-H4) + 
taxa with adult mobility10 (I3) + all 
sediment reworking modes8, 9 (J2-
J5) + taxa that modify habitat by 
burrowing (K3)10 

Model A: (A2*1) + (A3*1) + (A4*1) + (H3*1) + (H4*1) + 
(G1*1) + (G2*1) + (I3*1) + ( J2*1) + (J3*1) + (J4*1) + (J5*1) + 
(H2*1) + (K3*1) + (B1*1) + (B2*1)

Food web dynamics (C-cycling)
Taxa of all maximum adult body 
sizes12 (A1-A4) + those with body 
armour <1 mm thick14, 15 (C1-C3) + 

Model A: (A1*1) + (A2*1) + (A3*1) + (A4*1) + (C1*1 + (C2*1) 
+ (C3*1) + (E1*1) + (E2*1) + (F2*1) + (F3*1) + (G1*1) + 
(G2*1) + (G3*1) + (G4*1) + (H1*1) + (H2*1)



<2 year longevity (E1-E2) + all larval 
developmental modes13 (F2-F3) + 
all feeding modes (G1-G4) + taxa 
dwelling at shallow sediment 
depths (H1-H2)

Biogenic habitat provision
Taxa that modify habitat by 
creating emergent structures (K5) + 
those that attach to substrates 
(D2-D3)

Model A: (K5*1) + (D2*1) + (D3*1)

1Largest dimension e.g. polychaetes body length, crab carapace width; 2Length: width ratio of B1 = 1-
2; B2 = 3 -10; B3 > 10; 3 D1 = highly mobile; D2= lives attached to substrate some of the time (e.g., via 
a weak byssus); D3 = lives permanently attached to hard substrates; 4 Sediment reworking includes: 
J1 = no bioturbation; J2 = surface modifiers bioturbate sediments near the surface; J3 = biodiffusors 
that constantly and randomly mix sediments; J4 = upward/downward conveyors that feed head up 
or down and transport sediment from depth to the surface or vice versa; J5 = regenerators that 
continuously excavate and maintaining burrows (Kristensen et al., 2012; Queirós et al., 2013). 
5Habitat modification K4: infaunal tubes. 5Bolam et al. (2002); 6Thrush et al. (2006); 7Norkko et al. 
(2013); 8Biles et al. (2003); 9Kristensen et al. (2012); 10Mermillod-Blondin et al. (2004); 11Welsh 
(2003); 12Zeuthen (1953); 13Greve et al. (2004); 14Mascaró and Seed (2001); 15Boulding (1984)



Table 2. Five scenarios of changing macrofaunal assemblage composition at the southernmost 
mudflats (Appendix Fig. B.2) under continued anthropogenic warming in SE Queensland mudflats. The 
scenarios are based on changes in six categories of taxa in SE Queensland: (A) tropical species that 
have extended their distribution southwards over the last 20-60 years (tropical range shifters, Fig. 1C-
D); (B) tropical species that occur throughout SE Queensland; (C) tropical species that currently only 
occur in the northern sites, but that could shift in the future; (D) robust temperate species whose 
current range extends throughout SE Queensland; (E) temperate species that are sensitive to 
temperature change (i.e. did not occur in the northernmost sites); and, (F) cosmopolitan species. 
Species that were eliminated from the observed baseline community are indicated by ‘minus’ and 
those that were added are indicated by ‘plus’. Most species were present in both seasons, however 
for those where adjustments were made in only one season those changes are indicated.

Density manipulationsScenarios Description
Species categories

A B C D E F
Species manipulated

1. Southern baseline 
Describes the current 
functioning of mudflats

The current 
community.

x x x x x No manipulation

2. Pre-invasion
Describes functioning 
prior to the arrival of 
tropical range shifters.

The baseline 
state without 
the tropical 
range shifters 
(A).  

x x x x Both seasons
• Minus A: E. discoidale, H. fusca, M. hiantina, M. 

endeavouri, U. longidigita
Winter
• Minus A: M. maculata

Summer
• Minus A: C. depressa, La. anatina

3. Further invasions
Describes functioning if 
more tropical species 
invaded.

The baseline 
state with the 
addition of 
tropical species 
that might shift 
in the future 
(C).

x x x x x x Both seasons
• Plus C: L. impar, Li. anatina, T. polita

Summer
• Plus C: P. undulatus,

4. Loss of sensitive 
temperate taxa
Describes functioning if 
more tropical species 
invaded AND sensitive 
temperate taxa were lost.

Scenario 3 
without 
sensitive 
temperate 
species (E).

x x x x x Both seasons
• Plus C: Li. anatina, L. impar, T. polita
•Minus E: A. sibogae, H. haswellianus,
T. australiensis 
Summer
•Minus E: S. boa
• Plus C: P. undulata

5. Loss of all temperate 
taxa
Describes functioning if 
temperate species were 
lost and only tropical 
species remained.

Scenario 3 
without any 
temperate 
species (D or E). 

x x x x Both seasons
• Plus C: Li. anatina, L. impar, T. polita
• Minus D: A. australiensis, A. richardsoni, A. 

intermedia, A. ehlersi, B. lepte, C. punctulatum, 
G. americana, H. alba, L. bifurcatus, L. tetraura, 
M. setosus, M. dakini, M. mullawa, M. 
australiensis, O. australis, P. novaehollandiae, 
V. australiensis

• Minus E: A. sibogae, H. haswellianus, T. 
australiensis 

Summer
• Plus C: P. undulata
• Minus D: N. torquatus, P. antipoda, S. miersi
• Minus E: S. boa



Table 3: The biogeographic ranges of the 50 taxa (summer and winter combined) found in the 24 mudflats 
sampled during this study, and their known latitudinal ranges in Australia as documented from published 
databases (ALA, 2018; OBIS, 2018). (Globally documented latitudinal ranges are provided in Appendix B.3, NB:  
these do not affect the range shifts documented herein). These new data extended the ranges of 10 species 
(bold rows), and for these species the year (the latest date the shift could have begun), extent and direction of 
the expansion is provided. The ‘typical’ climatic zone of each species based on previous records is given using: 
the tropical climatic zones defined as 23° 27’S in Dissanayake et al. (2018), and the temperate climatic zone 
boundary (32.4° 00’S) was based on the southern boundary of Moreton-Tweed marine ecoregion described by 
Spalding et al. (2007) and the convergence of the Australian East Coast Current and the Tasman Sea Current 
(Cetina‐Heredia et al., 2014). Abbreviations: Trop = Tropical, Temp = Temperate, N= number of sites/records.

Max. documented latitudinal 
range (°) of taxa

Latitudinal range of taxa at 24 
mudflats sampled

Species Sp. 
zone 

Year North South N North South N

Distance & 
direction 
moved 

(km)

Rate 
(km 

decade-1)

Acetes sibogae2 Temp -15.2250 -36.2070 174 -27.3436 -28.1069 12
Aglaophamus australiensis Temp -17.0330 -43.0330 1093 -27.1464 -28.1069 23
Alpheus richardsoni2 Temp -16.7660 -41.4660 143 -27.1747 -28.1069 9
Armandia intermedia2 Temp -19.1160 -38.8500 285 -27.1747 -28.1069 16
Australonereis ehlersi Temp -23.1830 -42.2752 566 -27.1464 -28.1069 12
Australoplax tridentata Trop -10.7333 -36.2078 83 -27.1956 -28.1069 14
Barantolla lepte Temp -22.3830 -38.8500 791 -27.1747 -27.8222 18
Bulla vernicosa2 Trop -23.9000 -34.7500 430 -27.2597 -28.1069 3
Chaenostoma punctulatum Temp -10.7160 -36.0653 58 -27.1464 -28.1069 14
Cirriformia tentaculata2 Temp -22.3830 -42.8800 82 -27.1747 -27.6436 6
Clorida depressa2

Put range in from pandolfi 
paperClorida depressa

Trop 1998 -21.2350 -27.6667 59 -27.1956 -27.7178 5 6 S 3
Conuber sordidum2 All -10.6000 -43.1179 544 -27.1464 -28.1069 21
Elphidium discoidale 1 Trop 1983 -20.9000 -24.6814 2 -27.1747 -28.1069 7 381 S 112
Eurysyllis tuberculata2,4 Trop -14.5723 -34.7500 31 -27.1747 -27.7178 6
Gelasimus vomeris2 Trop -23.4122 -33.8083 145 -27.2775 -28.1069 10
Glycera americana2 Temp -22.3830 -41.1600 515 -27.1956 -27.8222 12
Haminoea fusca4 Trop 1970 -14.6700 -25.2500 16 -27.1747 -28.1069 16 317 S 68
Helograpsus haswellianus2 Temp -9.5833 -43.0300 207 -27.3436 -27.8222 10
Hiatula alba Temp -26.7660 -43.4630 69 -27.1464 -28.1069 18
Laternula anatina2,4 Trop 1996 -16.5500 -23.4160 103 -27.1956 -27.7053 5 477 S 227
Leitoscoloplos bifurcatus Temp -14.6794 -42.3902 489 -27.1464 -28.1069 12
Lingula anatina Trop -20.4000 -27.9667 47 -27.2597 -27.5158 2
Lumbrineris tetraura2 Temp -28.1903 -38.7300 716 -27.1747 -28.1069 12
Lutraria impar2 Trop -23.2000 -28.3803 24 -27.1956 -27.4764 4
Macrophthalmus setosus Temp -22.3833 -36.0612 133 -27.1747 -28.1069 21
Mactra maculata2, 3 Trop 1949 -14.6600 -27.5830 61 -27.1463 -28.1069 17 58 S 9
Magelona dakini Temp -18.7330 -41.1612 371 -27.1464 -28.1069 19
Marcia hiantina2 Trop 1982 -23.1827 -27.6167 250 -27.1464 -28.1069 16 54 S 16
Marphysa mullawa Temp -12.6660 -36.8917 122 -27.1747 -28.1069 9
Metapenaeus endeavouri2 Trop 1961 -23.8450 -27.4167 2395 -27.2775 -28.1069 8 77 S 14
Mictyris longicarpus2 All -11.9000 -38.4612 342 -27.1464 -28.1069 20
Myrianida australiensis Temp 2011 -30.5409 -30.5409 1 -27.1747 -27.7503 11 374 N 623
Nassarius coronatus2 Trop -23.1300 -34.2544 299 -27.2597 -27.7503 4
Nematoda2 All -16.1333 -41.7339 30516 -27.1464 -28.1069 20
Nemertea2 All -14.5000 - 54.7083 3202 -27.1747 -28.1069 13
Notomastus torquatus Temp -23.8160 -38.4889 493 -27.1464 -28.1069 21
Owenia australis Temp -14.6700 -38.9000 248 -27.1464 -28.1069 21
Paratapes undulatus2 Trop -23.3330 -36.9033 230 -27.1956 -27.5158 2
Phyllodoce 
novaehollandiae

Temp 19.8830 -38.7661 108 -27.1464 -28.1069 16

Platynereis antipoda2 Temp 10.5863 -43.4350 385 -27.2775 -27.7178 6
Prionospio queenslandica4 Trop 10.5861 -35.7461 17 -27.1463 -27.7178 11
Pyrazus ebeninus All 10.6830 -42.9111 380 -27.1464 -28.1069 22
Recluzia johnii3 Trop 23.4167 -34.0583 11 -27.7178 -27.7503 2
Stenothoe miersi Temp 14.5719 -37.8898 48 -27.1747 -28.1069 8



Sternaspis scutata2, 4 Trop 23.8500 -32.5000 3177 -27.3436 -27.7503 7
Sthenelais boa2 Temp 27.1189 -34.0083 3971 -27.5158 -27.8222 4
Trypaea australiensis Temp 17.7833 -38.7000 651 -27.395 -28.1069 6
Tubuca polita2 Trop 22.1167 -30.8830 102 -27.2775 -27.2775 1
Uca longidigita Trop 1962 21.1333 -27.5000 27 -27.4222 -27.7503 4 28 S 5
Victoriopisa australiensis3 Temp 2007 27.9160 -37.0963 186 -27.1464 -27.7503 11 85 N 86

1The range given is for E. discoidale, however this record could potentially be confounded as subspecies 
Elphidium discoidale var. multiloculum was described from Moreton Bay (-27.1108 to -27.6583) by Narayan 
and Pandolfi (2010). If this is variety is confirmed as a distinct taxon then the record in the present study may 
not represent a range shift for the species. 2Species that have different global ranges (see Appendix Table B.3). 
3Taxa previously recorded only once within the study area. 4Taxa not previously recorded in the study area 
(and only once in greater SE Queensland).



We declare no conflict of interest



Bryony Caswell: Conceptualisation, methodology, Writing original draft preparation, 
Writing- review and editing, visualization, supervision
Navodha Dissanayake: Data curation, Writing original draft preparation, formal analysis, 
investigation, visualization
Chris Frid: Conceptualisation, methodology, Writing- review and editing, Resources, 
supervision, validation



[Type here]

Appendix A: Materials & methods

A.1 Geographic locations of the study site

Table A.1. The geographic coordinates of the 24 subtropical mudflats along the SE Queensland coast 
(negative latitudes indicate S of the equator) (Fig. 1).

Site no Latitude (degrees) Longitude (degrees)
1 -27.8222 153.0464
2 -27.1747 153.0319
3 -27.1956 153.0431
4 -27.2597 153.0747
5 -27.2775 153.0369
6 -27.3436 153.0933
7 -27.3425 153.1000
8 -27.3947 153.1391
9 -27.3950 153.1583

10 -27.3933 153.1689
11 -27.4222 153.1706
12 -27.4764 153.2033
13 -27.4808 153.2422
14 -27.5158 153.2622
15 -27.5739 153.3056
16 -27.5622 153.3003
17 -27.6019 153.3019
18 -27.6436 153.3119
19 -27.6589 153.3092
20 -27.7053 153.3239
21 -27.7178 153.3539
22 -27.7503 153.3511
23 -27.8222 153.3781
24 -28.1069 153.4464

A.2 Simulating species taxonomic and trait change and the effects on mudflat ecological functioning

Analyses were performed on both unconstrained and constrained data sets. In the latter case all of 

the simulated assemblage data were standardised to the same total density to aid comparisons 

between the five scenarios emphasising the influence of the changing species compliment rather than 

changes in the size of the assemblage (Table 2). This was prompted because biological traits analysis 

uses the total density of each trait modality to characterise an assemblage and so is sensitive to the 

total number of individuals within an assemblage. As we have no simple means of predicting changes 

in the relative densities of taxa, our constrained simulations capture changing species composition 

from the mean densities of the species within their observed range (i.e. the mean number of 

individuals/biomass recorded across the southernmost six sites during each season rounded to the 
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nearest 10). The macrofaunal assemblages were standardised to a total of 390 individuals per m2 in 

the summer and 160 individuals per m2 in winter. 

Two models (A and B) were used to explore the implications of species losses and gains from the 

macrofaunal assemblages of the southernmost SE Queensland mudflats sampled in this study. Model 

A included the trait modalities thought to make a contribution to each functions and these were 

effectively assigned a weighting of 1 (Frid and Caswell, 2016)(Table 1). An additional model (model B) 

employing differential weightings on these traits, to better reflect our, partial, understanding of the 

contribution of each trait modality to a particular function was also developed. For instance, 

macrofauna with large body sizes contribute proportionally more to some functions than smaller 

individuals (Norkko et al., 2013; Thrush et al., 2006). The differential weightings were derived based 

on known relationships between the biological traits of species and the level of ecological functioning 

delivered (see justification below). For both models the selected trait modalities, weighted by density, 

were summed separately for each function and each scenario.

Nutrient cycling. In coastal seas nutrient cycling is strongly coupled with benthic processes that 

regenerate nitrogen compounds from within intertidal and subtidal sediments and this can provide 

20–100% of the annual N requirements for water column primary production (Welsh, 2003). 

Mudflats are recognised sources and sinks for organic matter and nutrients, with the direction and 

magnitude of these fluxes being determined by the resident macroinvertebrate, benthic primary 

producers and the microbial communities (D'Andrea and DeWitt, 2009). Microbes oxidise organic 

matter and transform elements through a series of oxidation and reduction reactions which in turn 

drive the biogeochemical cycling of nutrients in coastal waters facilitating pelagic primary production 

(Worden et al., 2015). The composition of the sedimentary microbial community and the rates of 

their metabolic processes are strongly influenced by local environmental conditions (Welsh 2003; 

Thrush et al. 2006), in particular the sediment redox state and availability of (labile) organic material 

(Piepenburg et al., 1995; Van Oevelen et al., 2006) (In coastal systems macrofauna facilitate the 

mineralization of sedimentary N and the efflux of the mineralization products into the water column. 

These fluxes are fourfold higher when macrobenthos are present compared with when they are not 

(Hansen and Blackburn, 1992; Kristensen and Blackburn, 1987; Welsh, 2003). Macrofauna facilitate 

nutrient cycling through a combination of biological traits such as sediment reworking which is 

mainly driven by the feeding, movement and behaviour of macroinvertebrates. These processes 

oxygenate the sediment, enhance the vertical transfer of organic matter, establish concentration 
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gradients, increase the sediment surface area for chemical exchange with the water column 

(Fenchel, 1996) and influence the composition of meiofaunal and microbial communities (Fenchel 

and Finlay, 2008; Olafsson, 2003; Warwick and Clarke, 1984). Those with surface modifying and 

biodiffusive mixing traits perform constant and random local sediment mixing over short distances 

and make similar contributions to nutrient efflux. For instance, biodiffusive mixing by Nereis 

diversicolor and surface modifying behaviour of Corophium volutator and Macoma balthica 

contribute 21-38 NH 4-N μmol L-1 to nutrient effluxes (Biles et al., 2003). However, other 

bioturbatory modes such as sediment regenerators and upward/downward conveyors make greater 

contributions to sediment mixing and nutrient effluxes than surface modifiers or biodiffusors. The 

upward conveyors callianassid shrimps move deep sediment to the surface at a rate of 12 kg m-2 d-1 

(Branch and Pringle, 1987) releasing 50-60 NH 4-N μmol L-1 (Nates and Felder, 1998). Whereas, 

regenerators continuously excavate sediment through digging and maintaining burrows (Kristensen 

et al., 2012) e.g. Uca sp. burrow >10 cm, excavating ~10g of sediment per day (Penha-Lopes et al., 

2009) contributing between 650 and 800 NH 4-N μmol L-1 to the overlying waters. Thus, these traits 

were used to index nutrient cycling (Table 1) and included organisms with an adult body size >10 

mm and more rounded/rectangular morphology that have the potential to overturn (or displace) 

larger amounts of sediment than those of smaller body size or more vermiform shape (Table 1, 

Norkko et al., 2013; Thrush et al., 2006). Similarly, mobile organisms and those that burrow have 

greater potential to disturb the sediment (Mermillod-Blondin et al., 2004), with some feeding and 

bioturbatory modes having greater influence upon sediment nutrient cycling and for this reason 

were weighted by their ability to disturb surface and subsurface sediments, irrigate their burrows 

(suspension feeders; Kristensen et al., 2012; Welsh, 2003) and mechanically degrade organic matter 

(Clare et al., 2015, Table 1; Welsh, 2003). 

Food-web dynamics (C-cycling). The cycling of organic C in marine systems is driven by food-web 

dynamics (ingestion, respiration, production) and reproductive processes. Macrofaunal communities 

mediate the transport, transformation and storage of carbon within an ecosystem. Within sediments 

macrofauna may contribute between 11% and 43% of total benthic community respiration with the 

remainder being from bacteria and microbenthos (Piepenburg et al., 1995; Van Oevelen et al., 

2006). Benthic macrofaunal C-cycling was therefore indexed by organisms of all body sizes, all 

feeding modes, and dispersive reproductive modes (these traits would move C around the wider 

ecosystem, and between the benthic and pelagic realm, more than direct developers where C from 

the adult is packaged into young and retained locally; Greve et al., 2004). In Model B this function 

was weighted towards larger-sized organisms (Table 2) that individually consume and respire more 
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and thus cycle more C (Norkko et al., 2013; Zeuthen, 1953). A differential weighting was further 

applied to larger taxa that are more likely to be predated by higher trophic level consumers (Thrush 

et al., 2006) and so may contribute more towards wider ecosystem carbon cycling. Similarly, taxa 

that lack or have only a thin exoskeleton and those that only burrow to shallow sediment depths will 

be more regularly predated and so contribute more to C-cycling than those which have more 

substantial protection from, or more effectively avoid, predators. Deposit feeders ingest sediment 

containing organic matter that enters back into the environment through faeces recycling carbon 

(Wilson et al., 1993). Suspension feeders were weighted above the other feeding modes because 

they feed on suspended particulate organic carbon in the water column and so draw carbon into the 

benthic realm facilitating benthic-pelagic coupling (Smaal and Prins, 1993) compared with other 

feeding modes that cycle carbon within the sediment only. Species with shorter life-spans cycle 

more carbon through the food web (REF) as they are regularly consumed and decomposed. 

Whereas, longer-lived, usually larger organisms, retain organic carbon within their body tissues 

throughout their lives. and so shorter-lived taxa (<2 years) were included in estimates of C-cycling.

Biogenic habitat provision. Biological structures such as mussel beds, oyster reefs and kelp forests 

may have a substantial influence on local species diversity by increasing habitat heterogeneity 

(Bracken, 2018; Buhl-Mortensen et al., 2010) and providing important refuges and nursery habitat. 

For example, the polychaete Diopatra cuprea builds emergent leathery tubes incorporating 

fragmented bivalve shells, and so it provides hard substrates for the growth of macroalgae creating 

further habitat (Thomsen and McGlathery, 2005). In this way the biological activities of one 

organism e.g. the creation of casts, mounds or burrows can provide habitat or shelter from 

predators, and structures that emerge from the sediment may provide hard substrates for 

attachment. Taxa with such traits may act as ecosystem engineers whereby the biogenic tubes trap 

sediment and provide sediment stability (Rabaut et al., 2007) altering local sediment properties and 

organic content. Biogenic habitats are constructed by organisms that are sessile and have an 

attached epifaunal life habit and so this function was indexed by taxa that attach themselves to 

substrates and produce the emergent structures (Table 1).
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Table A.1. The three ecological functions investigated (and the trait modalities used to index them) 
for the subtropical SE Queensland mudflats. Two models were employed an unweighted ‘baseline’ 
(model A), and a differentially weighted model (B) where trait modalities vary in their contribution to 
each function. Differential weightings were developed from Frid and Caswell (2016).

Ecological Function Models 

Nutrient cycling

Maximum adult body size >10 mm 5, 6, 7 
(A2-A4) + rounded or rectangular body 
shapes (B1-B2) + deposit or 
suspension/filter feeders11 (G1-G2) + 
sediment dwelling depths >2 mm10 
(H2-H4) + taxa with adult mobility10 
(I3) + all sediment reworking modes8, 9 
(J2-J5) + taxa that modify habitat by 
burrowing (K3)10

Model A: (A2*1) + (A3*1) + (A4*1) + (H3*1) + (H4*1) + 
(G1*1) + (G2*1) + (I3*1) + ( J2*1) + (J3*1) + (J4*1) + (J5*1) 
+ (H2*1) + (K3*1) + (B1*1) + (B2*1)

Model B: (A2*2) + (A3*4) + (A4*6) + (B1*1) + (B2*1) + 
(G1*1) + (G2*1) +(H2*2) + (H3*4) + (H4*6) + (I3*1) + 
(J2*1) + (J3*1) + (J4*2) + (J5*2) + (K3*3)

Food web dynamics (C-cycling)
Taxa of all maximum adult body sizes12 
(A1-A4) + those with body armour <1 
mm thick14, 15 (C1-C3) + <2 year 
longevity (E1-E2) + all larval 
developmental modes13 (F2-F3) + all 
feeding modes (G1-G4) + taxa dwelling 
at shallow sediment depths (H1-H2)

Model A: (A1*1) + (A2*1) + (A3*1) + (A4*1) + (C1*1 + 
(C2*1) + (C3*1) + (E1*1) + (E2*1) + (F2*1) + (F3*1) + 
(G1*1) + (G2*1) + (G3*1) + (G4*1) + (H1*1) + (H2*1)

Model B: (A1*1) + (A2*2) + (A3*4) + (A4*6) + (C1*1) + 
(C2*1) + (C3*1) + (E1*1) +  (E2*1) + (F2*1) + (F3*1) +
 (G1*1) + (G2*2) + (G3*1) + (G4*1) + (H1*1) + (H2*1)

Biogenic habitat provision
Taxa that modify habitat by creating 
emergent structures (K5) + those that 
attach to substrates (D2-D3)

Model A: (K5*1) + (D2*1) + (D3*1)

Model B: (K5*3) + (D2*1) + (D3*1)`
5Bolam et al. (2002); 6Thrush et al. (2006); 7Norkko et al. (2013); 8Biles et al. (2003); 9Kristensen et al. 
(2012); 10Mermillod-Blondin et al. (2004); 11Welsh (2003); 12Zeuthen (1953); 13Greve et al. (2004); 
14Mascaró and Seed (2001); 15Boulding (1984)
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Appendix B: Results

B.1 Macrofaunal assemblages of mudflats in SE Queensland

The total number of individuals recorded across the 24 sites were higher in summer (n = 3047) 

compared to winter (n = 1800). In both seasons 10 taxa contributed to ~70% of the cumulative 

macrofaunal density in the assemblage (Appendix Table B.1). In summer the suspension feeding 

bivalve Hiatula alba dominated, followed by the polychaetes Barantolla lepte and Aglaophamus 

australiensis. Whereas in winter the crabs Mictyris longicarpus and Macrophthalmus setosus 

dominated the assemblage. 

Table B.1. The top 10 taxa (ranked by abundance) as a percentage of the total number of individuals 

retrieved in winter (2016) and summer (2017) from the 24 SE Queensland mudflats. 

Summer 2017 Winter 2016
Taxa Abundance 

(%)
Taxa Abundance 

(%)
Hiatula alba (bivalve) 14.8 Mictyris longicarpus (decapod) 10.4
Barantolla lepte (polychaete) 9.8 Macrophthalmus setosus 

(decapod)
10.1

Aglaophamus australiensis 
(polychaete)

9.7 Barantolla lepte (polychaete) 9.7

Elphidium discoidale 
multilocutum (foraminifera)

9.4 Aglaophamus australiensis 
(polychaete)

9.2

Macrophthalmus setosus 
(decapod)

5.5 Hiatula alba (bivalve) 8.2

Magelona dakini (polychaete) 4.5 Pyrazus ebeninus (gastropod) 6.8
Notomastus torquatus 
(polychaete)

3.8 Magelona dakini (polychaete) 4.3

Marcia hiantina (bivalve) 3.6 Owenia australis (polychaete) 4.1
Haminoea fusca (gastropod) 3.6 Uca vomeris (decapod) 4.0
Nematoda 3.4 Notomastus torquatus (polychaete) 3.9
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B.2 Biogeographic variations in the species composition of mudflat assemblages

Fig. B.1. Mudflat macrofaunal assemblage (n=24) mean (±SE) density, species richness, Shannon 
Weiner diversity and Pielou’s evenness across varying biogeographic conditions in SE Queensland, 
Australia in winter 2016 and summer 2017. Data are grouped: (A)-(D) north and south of Cleveland; 
(E)-(I) into four subgroups from north to south by latitude (group 1: mudflat 1-6; group 2: mudflats 7-
12; group 3: mudflats 13-18; group 4: mudflats 19-24 most southern sites (Fig. 1); and (J)-(L) the 
northernmost and southernmost six sites.
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Fig. B.2 nMDS ordination of the Bray-Curtis similarity of the macrofaunal assemblage composition (log 

(X+1) transformed) in 24 mudflats in SE Queensland, Australia. The taxonomic composition of the 

mudflat assemblages (A) with site numbers for summer, (B) with site numbers for winter, (C) north 

and south of Cleveland in winter, and (D) summer; (E) between four groups of sites from north (sites 

1-6) to south (sites 19-24) in winter, and (F) summer. 
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Table B.2. Kruskal-Wallis comparisons of the median number of individuals per m2, species richness, 
Shannon Weiner diversity and Pielou’s evenness of the macrofaunal assemblages from 24 mudflats 
in SE Queensland in winter 2016 and summer 2017. Three biogeographic comparisons are included 
(Fig. 1): (i) sites to the north and south of Cleveland, (ii) the 24 sites divided into 4 equal-sized groups 
proceeding from north to south, and (iii) the northernmost and southernmost six sites. *Indicates a 
significant difference.

Metric (m-2) Winter 2016 Summer 2017
χ2 df, n p χ2 df, n p

(i) North and south of Cleveland 
Total no. individuals 0.992 1, 24 0.319 0.014 1, 24 0.907
Species richness 0.679 1, 24 0.410 0.630 1, 24 0.427
Shannon Weiner 2.143 1, 24 0.143 5.488 1, 24 0.019*
Pielou’s evenness 0.003 1, 24 0.953 1.895 1, 24 0.169
(ii) Four equal sized groups 
Total no. individuals 4.112 3, 6 0.250 4.780 3, 6 0.189
Species richness 2.934 3, 6 0.402 2.914 3, 6 0.405
Shannon Weiner 3.713 3, 6 0.294 3.527 3, 6 0.317
Pielou’s evenness 0.420 3, 6 0.936 1.673 3, 6 0.643
(iii) Northernmost and southernmost six sites
Total no. individuals 1.641 1, 6 0.200 0.641 1, 6 0.423
Species richness 0.105 1, 6 0.746 0.103 1, 6 0.748
Shannon Weiner 0.410 1, 6 0.522 1.641 1, 6 0.200
Pielou’s evenness 0.316 1, 6 0.574 0.926 1, 6 0.336

Table B.3 The biogeographic ranges of the 50 taxa (summer and winter combined) found in the 24 
mudflats sampled during this study, and their known global latitudinal ranges as documented from 
published databases (ALA, 2018; OBIS, 2018). (Australian documented latitudinal ranges in Australia 
are provided in the manuscript Table 3). These new records extended the ranges of 10 species (bold 
rows), and for these species the year (the latest date the shift could have begun), extent and direction 
of the expansion is provided. The ‘typical’ climatic zone of each species based on previous records is 
given using the tropical climatic zones defined as 23° 27’S (Dissanayake et al. (2018)), and the 
temperate climatic zone boundary (32.4° 00’S) was based on the southward boundary of Moreton-
Tweed marine ecoregion described by Spalding et al. (2007) and the convergence of the Australian 
East Coast Current and westward Tasman Front (Cetina‐Heredia et al., 2014). Abbreviations: Trop = 
Tropical, Temp = Temperate, N= number of sites/records.

Max. documented latitudinal 
range (°) of taxa 

Latitudinal range of taxa at 24 
mudflats sampled

Species Sp. 
zone 

Year North South N North South N

Dist. 
moved 

(km)

Rate 
(km 

decade-1)

Acetes sibogae2 Temp -5.0000 -36.2070 174 -27.3436 -28.1069 12
Aglaophamus australiensis Temp -17.0330 -43.0330 1093 -27.1464 -28.1069 23
Alpheus richardsoni2 Temp -9.5000 -41.4660 143 -27.1747 -28.1069 9
Armandia intermedia2 Temp 27.2355 -38.8500 285 -27.1747 -28.1069 16
Australonereis ehlersi Temp -23.1830 -42.2752 566 -27.1464 -28.1069 12
Australoplax tridentata Trop -10.7333 -36.2078 83 -27.1956 -28.1069 14
Barantolla lepte Temp -22.3830 -38.8500 791 -27.1747 -27.8222 18
Bulla vernicosa2 Trop 26.5000 -34.7500 430 -27.2597 -28.1069 3
Chaenostoma punctulatum Temp -10.7160 -36.0653 58 -27.1464 -28.1069 14
Cirriformia tentaculata2 Temp 60.4103 -42.8800 82 -27.1747 -27.6436 6
Clorida depressa2 Trop 1998 -4.8172 -27.6667 59 -27.1956 -27.7178 5 6 S 3
Conuber sordidum2 All -1.5000 -43.1179 544 -27.1464 -28.1069 21
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Elphidium discoidale1, 2 Trop 29.3800 -24.6814 48 -27.1747 -28.1069 7

Eurysyllis tuberculata2, 4 Trop 60.4102 -34.7500 31 -27.1747 -27.7178 6
Gelasimus vomeris2 Trop 11.6660 -33.8083 145 -27.2775 -28.1069 10
Glycera americana2 Temp 54.9781 -41.1600 515 -27.1956 -27.8222 12
Haminoea fusca4 Trop 1970 -14.6700 -25.2500 16 -27.1747 -28.1069 16 317 S 68
Helograpsus haswellianus2 Temp 34.6800 -43.0300 207 -27.3436 -27.8222 10
Hiatula alba Temp -21.4592 -43.4630 69 -27.1464 -28.1069 18
Laternula anatina2, 4 Trop 1996 35.3317 -23.4160 103 -27.1956 -27.7053 5 477 S 227
Leitoscoloplos bifurcatus Temp -12.4330 -42.3902 489 -27.1464 -28.1069 12
Lingula anatina Trop -21.6786 -27.9667 47 -27.2597 -27.5158 2
Lumbrineris tetraura2 Temp 60.4100 -38.7300 716 -27.1747 -28.1069 12
Lutraria impar2 Trop 21.6788 -28.3803 24 -27.1956 -27.4764 4
Macrophthalmus setosus Temp -22.3833 -36.0612 133 -27.1747 -28.1069 21
Mactra maculata2,3 Trop 1949 -9.9500 -27.5830 61 -27.1463 -28.1069 17 58 S 9
Magelona dakini Temp -18.7330 -41.1612 371 -27.1464 -28.1069 19
Marcia hiantina2 Trop 1982 22.6252 -27.6167 250 -27.1464 -28.1069 16 54 S 16
Marphysa mullawa Temp -12.6660 -36.8917 122 -27.1747 -28.1069 9
Metapenaeus endeavouri2 Trop 1961 -9.3100 -27.4167 2395 -27.2775 -28.1069 8 77 S 14
Mictyris longicarpus2 All 24.1792 -38.4612 342 -27.1464 -28.1069 20
Myrianida australiensis Temp 2011 -30.5409 -30.5409 1 -27.1747 -27.7503 11 374 N 623
Nassarius coronatus2 Trop 28.9660 -34.2544 299 -27.2597 -27.7503 4
Nematoda2 All 69.3539 -41.7339 30516 -27.1464 -28.1069 20
Nemertea2 All 71.5508 - 75.0967 3202 -27.1747 -28.1069 13
Notomastus torquatus Temp -23.8160 -38.4889 493 -27.1464 -28.1069 21
Owenia australis Temp -12.0880 -38.9000 248 -27.1464 -28.1069 21
Paratapes undulatus2 Trop 23.9850 -36.9033 230 -27.1956 -27.5158 2
Phyllodoce 
novaehollandiae Temp -19.8830 -38.7661 108 -27.1464 -28.1069 16

Platynereis antipoda2 Temp 21.4100 -43.4350 385 -27.2775 -27.7178 6
Prionospio queenslandica4 Trop -10.5861 -35.7461 17 -27.1463 -27.7178 11
Pyrazus ebeninus All -10.6830 -42.9111 380 -27.1464 -28.1069 22
Recluzia johnii2 Trop -12.3500 -34.0583 11 -27.7178 -27.7503 2
Stenothoe miersi Temp -14.5719 -37.8898 48 -27.1747 -28.1069 8
Sternaspis scutata2 ,4 Trop 77.9983 -70.5000 3177 -27.3436 -27.7503 7
Sthenelais boa2 Temp 69.9475 -34.0083 3971 -27.5158 -27.8222 4
Trypaea australiensis Temp -12.8667 -38.7000 651 -27.395 -28.1069 6
Tubuca polita2 Trop -9.3830 -30.8830 102 -27.2775 -27.2775 1
Uca longidigita Trop 1962 -21.1333 -27.5000 27 -27.4222 -27.7503 4 28 S 5
Victoriopisa australiensis3 Temp 2007 -27.9160 -37.0963 186 -27.1464 -27.7503 11 86 N 86
1The range given is for E. discoidale, however this record could potentially be confounded as subspecies 
Elphidium discoidale var. multiloculum was described from Moreton Bay (-27.1108 to -27.6583) by Narayan and 
Pandolfi (2010). If this is variety is confirmed as a distinct taxon then the record in the present study may not 
represent a range shift for the species. 2The global range of the species differed from the Australian range. 
3Taxa previously recorded only once within the study area. 4Taxa not previously recorded in the study area (and 
only once in greater SE Queensland).

B.3. Biogeographic differences in macrofaunal trait composition

Similar to species compositional patterns, the trait diversity measures did not differ significantly 

between each biogeographic gradient (Table B.4) of the SE Queensland subtropical mudflat 

assemblages
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Table B.4. Kruskal-Wallis comparisons of the median number of trait modality richness, Shannon 
Weiner diversity and Pielou’s evenness for trait modalities of the macrofaunal assemblages found in 
mudflats from 24 sites in SE Queensland in the winter of 2016 and summer of 2017. Three 
comparisons are included (i) those sites to the north and south of Cleveland, (ii) the 24 sites divided 
into 4 groups (six sites each) proceeding from north to south, and (iii) the northernmost and 
southernmost six sites. *Indicates a significant difference

Metric (m-2) Winter 2016 Summer 2017
χ2 df, n p χ2 df, n p

(i) North and south of Cleveland 
Trait modality richness 0.468 1, 24 0.494 0.004 1, 24 0.951
Shannon Weiner 2.788 1, 24 0.095 4.443 1, 24 0.035*
Pielou’s evenness 0.494 1, 24 0.492 3.295 1, 24 0.069
(ii) Four equal sized groups 
Trait modality richness 1.379 3, 6 0.711 3.729 3, 6 0.292
Shannon Weiner 3.980 3, 6 0.264 3.800 3, 6 0.284
Pielou’s evenness 2.256 3, 6 0.521 2.993 3, 6 0.393
(iii) Northernmost and southernmost six sites
Trait modality richness 0.061 1, 6 0.805 0.408 1, 6 0.523
Shannon Weiner 1.447 1, 6 0.229 1.256 1, 6 0.262
Pielou’s evenness 0.231 1, 6 0.631 0.641 1, 6 0.423

B.4. Trait modality profiles

Table B.5. The trait modalities that contributed >50% cumulative dissimilarity between the trait 
profiles of temperate species that occurred throughout SE Queensland and (i) tropical range shifters, 
(ii) tropical species that occurred throughout SE Queensland, (iii) tropical species that were absent 
from southernmost 6 sites. The significant differences (*) of the trait modalities between the paired 
groups identified by Mann-Whitney U test are also represented. 

Trait modalities Mann-Whitney U test to compare the differences between the groups
Temperate taxa vs Tropical range shifters Tropical sp. occurred 

throughout SE Qld 
Tropical sp. that were 
absent in SE Qld

10-30 mm body size Z = -0.445, p = 0.657 Z = -2.912, p = 0.004* Z = -0.149, p = 0.882
>50 mm body size Z = -0.176, p = 0.861 Z = -2.8276, p = 0.005* Z = -0.872, p = 0.383
Round shaped Z = -2.611, p = 0.009* Z = -0.922, p = 0.357 Z = -0.855, p = 0.392
Rectangular shaped Z = -1.237, p = 0.216 Z = -1.966, p = 0.049* Z = -2.238, p = 0.025*
Vermiform shaped Z = -3.223, p = 0.001* Z = -2.451, p = 0.014* Z = -2.619, p = 0.009*
No body armour Z = -2.524, p = 0.012* Z = -2.493, p = 0.013* Z = -3.117, p = 0.002*
0.5-1 mm body 
armour

Z = -0.832, p = 0.405 Z = -1.436, p = 0.151 Z = -3.441, p = 0.001*

Temporary attached Z = 0.000, p = 1.000 Z = 0.000, p = 1.000 Z = -3.310, p = 0.001*
Planktotrophic Z = -0.310, p = 0.756 Z = -0.990, p = 0.322 Z = -0.441, p = 0.659
Deposit feeder Z = -2.069, p = 0.039* Z = -0.219, p = 0.827 Z = -1.193, p = 0.233
Suspension feeder Z = -2.891, p = 0.004* Z = -0.131, p = 0.896 Z = -3.241, p = 0.001*
Predator/scavenger Z = -1.406, p = 0.160 Z = -0.461, p = 0.645 Z = -1.698, p = 0.090
>50 mm sed. depth Z = -0.731, p = 0.465 Z = -1.367, p = 0.172 Z = -1.468, p = 0.142
Sessile Z = -0.577, p = 0.564 Z = -0.655, p = 0.513 Z = -2.500, p = 0.012*
Free movement Z = -0.622, p = 0.534 Z = -0.520, p = 0.603 Z = -1.370, p = 0.171
Surface modifier Z = -1.768, p = 0.077 Z = -0.085, p = 0.932 Z = -1.737, p = 0.082
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Biodiffusers Z = -1.346, p = 0.178 Z = -1.098, p = 0.272 Z = -1.869, p = 0.062
No habitat 
modification

Z = -1.258, p = 0.209 Z = -0.284, p = 0.777 Z = -0.555, p = 0.579

B.5. Simulations of species and traits composition and functional change

The addition or removal of species from the baseline scenario changed the number of individuals 

within the unconstrained assemblage while the total abundance of individuals in the assemblage was 

capped for the constrained scenarios. The species composition (in both constrained and 

unconstrained analyses) differed significantly between the 5 scenarios in both seasons (Fig. B.3), with 

scenario 5 differing significantly from the remaining 4 scenarios in every case (ANOSIM p<0.05 in each 

case) (Table B.6).

The trait composition, in trials with the constrained total abundance, differed significantly between 

the 5 scenarios for winter (ANOSIM, global R = 0.209, p = 0.002, Fig. B.3A) and summer (ANOSIM, 

global R = 0.254, p = 0.001, Fig. B.3B). The pairwise ANOSIM results showed that the trait composition 

of scenario 5 differed significantly from the trait compositions of the remaining 4 scenarios, in line 

with the changed species composition (Table B.7-8). 
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Fig. B.3. nMDS ordination of the Bray-Curtis similarity of the taxonomic composition (log (X+1) 

transformed) of the simulated mudflat macrofaunal assemblages observed in the six southernmost 

mudflats in SE Queensland. For the five scenarios based on unconstrained density (A) in winter 2016 

and (B) in summer 2017; species composition (constrained density) (C) in winter 2016 and (D) in 

summer 2017. 

Table B.6. Comparisons of the simulated macrofaunal species composition in SE Queensland mudflats 
(unconstrained and constrained density; pairwise ANOSIM) and SIMPER dissimilarity between the five 
range shift scenarios for winter 2016 and summer 2017. Species that contributed >5% to the 
dissimilarity between each of the scenarios is shown. Species that differed significantly between the 
two scenarios are indicated in ‘*’ sign. A. australiensis = Aglaophamus australiensis, B. lepte = 
Barantolla lepte, H. alba = Hiatula alba, Li. anatina = Lingula anatine, Lu. impar = Lutraria impar, M. 
setosus = Macrophthalmus setosus, M. dakini = Magelona dakini, N. torquatus = Notomastus 
torquatus and P. ebeninus = Pyrazus ebeninus. 

Scenario 
comparisons

ANOSIM statistics SIMPER 
dissim. 

(%)

Species that contributed >5% to SIMPER 
dissimilarity 

Winter density (unconstrained)
5 & 1 R = 0.906,p=0.002* 83.01 A. australiensis, B. lepte, M. dakini, N. torquatus
5 & 2 R = 0.983,p=0.002* 87.54 A. australiensis, B. lepte, M. dakini, N. torquatus, 

H. alba, M. setosus
5 & 3 R = 0.785,p=0.002* 69.44 A. australiensis, B. lepte, M. dakini, N. torquatus, 

H. alba, M. setosus
5 & 4 R = 0.783, 

p=0.002*
68.84 A. australiensis, B. lepte, M. dakini, N. torquatus, 

H. alba, M. setosus
Summer density (unconstrained)
1 & 4 R = 0.250,p=0.019* 49.20 Lu. impar, H. alba
2 & 3 R = 0.250,p=0.032* 47.00 Lu. impar, H. alba
2 & 4 R = 0.309,p=0.009* 49.66 Lu. impar, H. alba
5 & 1 R = 0.870,p=0.002* 78.48 A. australiensis, M. dakini, Lu. impar, N. torquatus
5 & 2 R = 0.993,p=0.002* 81.53 A. australiensis, M. dakini, Lu. impar, N. 

torquatus, B. lepte
5 & 3 R = 0.700,p=0.002* 63.66 A. australiensis, M. dakini, N. torquatus, B. lepte
5 & 4 R = 0.650,p=0.002* 61.90 A. australiensis, M. dakini, N. torquatus, B. lepte, 

M. setosus
Winter density (constrained) 
5 & 1 R = 0.970,p=0.002* 80.92 Lu. impar, A. australiensis
5 & 2 R = 0.998,p=0.002* 83.77 Lu. impar, A. australiensis
5 & 3 R = 0.872,p=0.002* 68.37 A. australiensis, M. dakini
5 & 4 R = 0.859,p=0.002* 66.90 A. australiensis, M. dakini
Summer density (constrained)
5 & 1 R = 0.917,p=0.002* 77.60 A. australiensis*, B. lepte, Lu. impar, M. dakini, Li. 

anatina
5 & 2 R = 1.000,p=0.002* 80.78 A. australiensis, B. lepte, Lu. impar, M. dakini, Li. 

anatina
5 & 3 R = 0.783,p=0.002* 67.18 A. australiensis, B. lepte, Lu. impar, M. dakini
5 & 4 R = 0.752, 

p=0.002*
66.56 A. australiensis, B. lepte, Lu. impar, M. dakini
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Fig. B.4. nMDS ordination of the Bray-Curtis similarity of the trait composition (density constrained) 

simulated mudflat macrofaunal assemblages observed in the SE Queensland southernmost 6 mudflats 

(A) in winter 2016 and (B) in summer 2017.

Table B.7. Comparisons of the simulated macrofaunal trait composition of SE Queensland 
southernmost 6 mudflats (density unconstrained and constrained; pairwise ANOSIM) and SIMPER 
dissimilarity between the five range shift scenarios for winter 2016 and summer 2017. Significant 
differences are indicated in ‘*’ sign.

Scenario comparisons ANOSIM results Average SIMPER 
dissimilarity (%)

Winter density unconstrained
5 & 1 R = 0.572, p = 0.009* 58.74
5 & 2 R = 0.580, p = 0.009* 57.91
5 & 3 R = 0.578, p = 0.006* 57.97
5 & 4 R = 0.569, p = 0.009* 57.75
Summer density unconstrained 
5 & 1 R = 0.726, p = 0.002* 67.27
5 & 2 R = 0.733, P = 0.002* 66.86
5 & 3 R = 0.707, p = 0.002* 66.45
5 & 4 R = 0.700, p = 0.002* 66.04
Winter density constrained
5 & 1 R =  0.765, p =0.002* 29.92
5 & 2 R = 0.815, p =0.002* 31.74
5 & 3 R = 0.646, p =0.002* 27.66
5 & 4 R = 0.659, p =0.002* 27.92
Summer density constrained
5 & 1 R = 0.880, p =0.002* 36.98
5 & 2 R = 0.946, p =0.002* 39.61
5 & 3 R = 0.765, p =0.002* 33.62
5 & 4 R = 0.776, p =0.002* 34.19
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Fig B.5. The trait modalities (mean ± SE) that contributed to >70% cumulative dissimilarity (SIMPER 
analysis) between the pairwise unconstrained trait compositional scenario groups in SE Queensland 
southernmost 6 mudflats (A) winter 2016 and (B) summer 2017, and constrained trait compositional 
scenario groups (C) winter 2016 and (D) summer 2017. The trait modalities in bold indicate that the 
trait composition of scenario 5 differed significantly (p < 0.05) from the remaining 4 scenarios, and the 
underlined trait modalities indicate that 2 scenarios have differed significantly from scenario 5 (Table 
B.8-9).
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Table B.8 Results of T-test to compare means abundances of trait modalities that contributed to the 
70% of the dissimilarity between the five biogeographic range shift scenarios for mudflat macrofaunal 
assemblages in winter in SE Queensland. Results from both unconstrained and constrained 
macroinvertebrate density in winter 2016. Degrees of freedom=10. The biological traits that showed 
significant differences between the pairs are indicated in * sign

Trait modalities 
(for winter)

Scenario comparisons (unconstrained density) Scenario comparisons (constrained density)

1 & 5 2 & 5 3 & 5 4 & 5  1 & 5 2 & 5 3 & 5 4 & 5  

Body size 30–50 
mm

t = 2.889
p = 0.016*

t = 2.889
p = 0.016*

t = 2.889
p = 0.016*

t = 2.800, 
p = 0.019*

t = 2.533
p = 0.030*

t = 2.580
p = 0.027*

Body size >50 mm t = 3.116
p = 0.011*

t = 3.059,
p = 0.012*

t = 3.116, 
p = 0.011*

t = 3.548, 
p = 0.005*

Rectangular shaped t = -2.893
p = 0.016*

t = -3.049
p = 0.012*

t = -2.558
p = 0.028*

t = -2.669
p = 0.024*

Round shaped t = -1.117
p = 0.290

t = -1.567
p = 0.148

t = -1.030
p = 0.327

t = -1.004
p = 0.339

Vermiform shaped t = 4.819, 
p = 0.001*

t = 4.819, 
p = 0.001*

t = 4.819, 
p = 0.001*

t = 4.819, 
p = 0.001*

t = 4.294, 
p = 0.002*

t = 4.895, 
p = 0.001*

t = 4.021, 
p = 0.002*

t = 4.099 p 
= 0.002*

No body armour t = 4.545, 
p = 0.001*

t = 4.602, 
p = 0.001*

t = 4.545, 
p = 0.001*

t = 4.618, 
p = 0.001*

0.1-0.5 mm body 
armour thickness

t = -1.095
p = 0.299

t = -1.095
p = 0.299

t = -0.979
p = 0.350

t = -1.036
p = 0.325

0.5-1.0 mm body 
armour thickness

t = -2.707
p = 0.022*

t = -2.707
p = 0.022*

t = 2.147
p = 0.057

t = -2.151
p = 0.057

No attachment t = 3.345, 
p = 0.007*

t = 3.246, 
p = 0.009*

t = 3.364, 
p = 0.007*

t = 3.341, 
p = 0.007*

Temporary 
attached

t = -4.721 
p = 0.001*

t = -4.729
p = 0.001*

t = -3.200
p = 0.009*

t = 3.178, 
p = 0.010*

Longevity 1-2 years t = 2.743, 
p = 0.021*

t = 2.364, 
p = 0.040*

t = 2.992, 
p = 0.014*

t = 2.965, 
p = 0.014*

t = -3.382 
p = 0.007*

t = -3.382
p = 0.007*

t = -3.335
p = 0.008*

t = -3.303
p = 0.008*

Longevity 3-5 years t = 4.033, 
p = 0.002*

t = 4.033, 
p = 0.002*

t = 4.033, 
p = 0.002*

t = 3.975, 
p = 0.003*

t = 5.664, 
p<0.0001*

t = 5.664, 
p<0.0001*

t = 5.271, 
p<0.0001*

t = 5.281
p<0.0001*

Planktotrophic 
larvae

t = 3.316, 
p = 0.008*

t = 3.363, 
p = 0.009*

t = 3.553, 
p = 0.005*

t = 3.555, 
p = 0.005*

t = 3.160, 
p = 0.010*

t = 3.160, 
p = 0.010*

t = 3.391, 
p = 0.007*

t = 3.609 
p = 0.005*

Lecithotrophic 
larvae

t = -4.009
p = 0.002*

t = -4.009
p = 0.002*

t = -4.211
p = 0.002*

t = -4.479
p = 0.001*

Deposit feeder t = 3.896
 p=0.003*

t = 3.769
 p=0.004*

t = 3.932
 p =0.003*

t = 3.840
 p =0.003*

t = 1.192, 
p = 0.261

t = 1.192, 
p = 0.261

t = 0.864
p = 0.408

t = 0.846
p = 0.417

Suspension feeder t = -3.603
p = 0.005*

t = -3.603
p = 0.005*

t = -3.057
p = 0.012*

t = -3.128
p = 0.011*

Predator/scavenger t = 7.685, 
p<0.0001*

t = 7.685 
p<0.0001*

t = 7.584
p<0.0001*

t = 7.571, 
p<0.0001*

>50 mm sed. Depth t = 2.748
 p =0.021*

t = 2.519
 p =0.030*

t = 3.038
 p =0.013*

t = 2.978
 p =0.014*

Free movement t = 3.123
p =0.011*

t = 3.195 
p = 0.010*

t = 3.149 
p = 0.010*

t = 3.115
p = 0.011*

Surface modifiers t = 1.724, 
p = 0.115

t = 1.332, 
p = 0.212

t = 2.029, 
p = 0.070

t = 2.029, 
p = 0.070

t = -1.597
p = 0.141

t = -1.597
p = 0.141

t = -1.254
p = 0.238

t = -1.187
p = 0.263

Biodiffusers t = 4.675
p = 0.001*

t = 4.629
p = 0.001*

t = 4.675
p = 0.001*

t = 4.582
p = 0.001*

t = 3.840
 p = 0.003

t = 3.840, 
p = 0.003

t = 3.840, 
p = 0.003

t = 3.834 p 
= 0.003

Upward/downward 
conveyors

t = -0.079
p = 0.939

t = -0.079
p = 0.939

t = 0.234 
p = 0.820

t = -0.197
p = 0.848

No habitat 
modification

t = 3.177
p = 0.010*

t = 3.157, 
p = 0.010*

t = 3.278, 
p = 0.008*

t = 3.278, 
p = 0.008*

t = 1.599, 
p = 0.141

t = 1.599
p = 0.141

t = 1.478, 
p = 0.170

t = 1.576 p 
= 0.146

Burrow/ditch t = -2.004 
p = 0.070

t = -2.004
p = 0.070

t = -1.835
p = 0.095

t = -1.953
p = 0.079

Biogenic tubes t = 2.586, 
p = 0.027*

t = 0.335, 
p = 0.745

t = 0.335, 
p = 0.745

t = 0.177, 
p = 0.863

t = 0.227 p 
= 0.825



[Type here]

Table B.9. Results of T-tests to compare mean abundance of trait modalities that contributed to 70% 
of the dissimilarity between the five biogeographic range shift scenarios for mudflat macrofaunal 
assemblages in summer in SE Queensland. Results from both unconstrained and constrained 
macroinvertebrate density in summer 2017. Degrees of freedom=10. The biological traits that showed 
significant differences between the pairs are indicated in * sign

Trait modalities 
(for summer)

Scenario comparisons (unconstrained density) Scenario comparisons (constrained density)

1 & 5 2 &5 3 & 5 4 & 5 1 & 5 2 & 5 3 & 5 4 & 5
Body size >50 mm t = 5.981 

p<0.0001*
t = 3.059, 
p = 0.012*

t = 7.018, 
p<0.0001*

t = 7.048, 
p<0.0001*

Rectangular shaped t = -4.517
p = 0.001*

t = -4.840
p = 0.001*

t = -3.735
p = 0.004*

t = -4.034
p = 0.002*

Round shaped t = 1.106, 
p = 0.296

t = 1.134, 
p = 0.283

t = -0.675
p = 0.515

t = -0.998
p = 0.346

t = -0.707
p = 0.495

t = -0.670
p = 0.518

Vermiform shaped t = 7.370, 
p<0.0001*

t = 4.819, 
p = 0.001*

t = 7.370, 
p < 0.001*

t = 7.409, 
p < 0.001*

t = 4.197, 
p = 0.002*

t = 4.607, 
p = 0.001*

t = 4.069 
p = 0.002*

t = 4.116, 
p = 0.002*

No body armour t = 5.663 
p<0.0001*

t = 5.706, 
p = 0.001*

t = 5.663, 
p<0.0001*

t = 5.434, 
p<0.0001*

t = 3.916, 
p = 0.003*

t = 3.608, 
p = 0.005*

t = 3.680
p = 0.004*

t = 3.644 
p = 0.005*

0.1-0.5 mm body 
armour thickness

t = -0.451
p = 0.661

0.5-1.0 mm body 
armour thickness

t = -0.601
p = 0.561

t = -0.464
p = 0.652

t = -0.448
p = 0.664

No attachment t = 2.993, 
p = 0.013*

t = 3.002, 
p = 0.013*

t = 3.020, 
p = 0.013*

t = 2.919, 
p = 0.015*

Temporary 
attached

t = -5.151
p<0.0001*

t = -5.151
p<0.0001*

t = -3.826
p = 0.003*

t = -3.765
p = 0.004*

Longevity 1-2 years t = 2.206, 
p = 0.051

t = 2.364, 
p = 0.040*

t = 2.376, 
p = 0.039*

t = 2.291, 
p = 0.045*

t = -0.230
p = 0.823

t = -0.533
p = 0.606

t = -0.200
p = 0.846

t = -0.214
p = 0.835

Longevity 3-5 years t = 3.847, 
p = 0.003*

t = 4.033, 
p = 0.002*

t = 2.376, 
p = 0.039*

t = 3.886, 
p = 0.003*

t = 5.954
p<0.0001*

t = 6.314, 
p<0.0001*

t = 5.773, 
p<0.0001*

t = 5.985, 
p<0.0001*

Planktotrophic 
larvae

t = 2.343, 
p = 0.040*

t = 3.363, 
p = 0.009*

t = 2.548, 
p = 0.029*

t = 2.520, 
p = 0.030*

Deposit feeder t = 4.675, 
p = 0.001*

t = 3.769, 
p = 0.004*

t = 4.717, 
p = 0.001*

t = 4.743, 
p = 0.001*

t = 4.124, 
p = 0.002*

t = 5.384
p<0.0001*

t = 3.882, 
p = 0.003*

t = 3.952 
p = 0.003*

Suspension feeder t = -4.052
p = 0.002*

t = -5.109
p<0.0001*

t = -3.677
p = 0.004*

t = -3.731
p = 0.004*

>50 mm sed. Depth t = 2.755, 
p = 0.020*

t = 2.519, 
p = 0.030*

t = 3.030, 
p = 0.013*

t = 2.988, 
p = 0.014*

Free movement t = 5.773 
p<0.0001*

t = 3.195, 
p = 0.010*

t = 5.826, 
p<0.0001*

t = 5.909, 
p<0.0001*

t = 2.907, 
p = 0.016*

t = 3.032, 
p = 0.013*

t = 2.659, 
p = 0.024*

t = 2.709 
p = 0.022*

Limited movement t = 1.318, 
p = 0.217

t = 1.132, 
p = 0.213

t = 1.132, 
p = 0.213

Surface modifiers t = 1.572, 
p = 0.147

t = 1.332, 
p = 0.212

t = 1.833, 
p = 0.097

t = 1.833, 
p = 0.097

t = -2.752 
p = 0.020*

t = -2.826
p = 0.018*

t = -2.574
p = 0.028*

t = -2.464
p = 0.033*

Biodiffusers t = 4.629, 
p = 0.001*

t = 4.112, 
p = 0.002*

t = 4.041, 
p = 0.002*

No habitat 
modification

t = 3.343, 
p = 0.007*

t = 3.157, 
p = 0.010*

t = 3.380, 
p = 0.007*

t = 3.343, 
p = 0.007*

t = 5.088, 
p<0.0001*

t = 5.998, 
p<0.0001*

t = 4.438, 
p = 0.001*

t = 4.632, 
p = 0.001*

Burrow/ditch t = -5.652 
p<0.0001*

t = -6.520
p<0.0001*

t = -4.936
p = 0.001*

t = -5.181
p<0.0001*

Biogenic tubes t = 2.586, 
p = 0.027*

t = 3.126, 
p = 0.011*

t = 3.122, 
p = 0.011*

t = 3.198, 
p = 0.010*

t = 3.160, 
p = 0.010*
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B.5.1 Mudflat ecological functioning past, present and future

For model A (constrained density), nutrient cycling (ANOVA, winter: F = 0.294, p = 0.879; summer: F 
= 0.061, p = 0.993, Fig B.6A) and c-cycling (ANOVA, winter: F = 0.039, p = 0.997; summer: F = 0.156, p 
= 0.958, Fig. B.6B) functions did not differ significantly between the scenarios in either season. 
However, the biogenic habitat provision function differed significantly between the 5 scenarios 
(ANOVA, F = 8.659, p < 0.0001, Fig. B.5C) with scenario 1 to 4 differing significantly from scenario 5 
(p < 0.05, Table B.10).

The unconstrained estimates of nutrient cycling significantly differed between scenarios for model B 
(ANOVA, winter: F = 3.197, p = 0.030, summer: F = 3.117, p = 0.033; Table B.10, Fig. B.7A). Nutrient 
cycling in scenario 3 and 4 were 5 fold higher in summer and 3 fold higher in winter compared to 
scenario 5. There were no significant differences observed for constrained density in both seasons.

Unconstrained estimates for c-cycling differed significantly between the 5 scenarios in model B for 
both seasons (ANOVA, winter: F = 3.172, p = 0.031; summer: F = 3.128, p = 0.032; Table B.10, Fig. 
B.6B) but did not show a significant difference between the scenarios for constrained density 
(ANOVA, winter: F = 0.559, p = 0.694; summer: F = 1.782, p = 0.164; Table B.10, Fig.B.7D). The mean 
c-cycling was significantly higher in scenario 3 than in scenario 5 in for both seasons in model B 
(p<0.05). 

Biogenic habitat provision (unconstrained and constrained estimates) significantly differed between 
scenarios, with scenarios 3 and 4 differing from scenario 5 in summer for model B unconstrained, 
and scenario 1 differing from scenario 5 for constrained model B (ANOVA, unconstrained: F = 3.079, 
p = 0.034, Fig B.7E; constrained: F = 3.495, p = 0.021, Table B.10, Fig. B.7F). 

Table B.10. Results of ANOVA and post-hoc tests (Tukey test or Mann-Whitney U1) to compare 
delivery of estimates for three ecological functions (e.g. nutrient cycling, c-cycling and biogenic 
habitat provision) in SE Queensland’s southernmost 6 mudflats for the 5 scenarios. Models are 
based on trait modalities with affinities for each function (Model A) and application of differential 
weighting (Model B) (Table A.2). Hyphen indicates no post-hoc test because of non-significant 
ANOVA. The pairs that differed significantly (p<0.05) are indicated in ‘*’ sign.

Ecosystem function Winter Summer
Unconstrained density
Nutrient cycling Model A1 F = 2.868, p = 0.044* F = 2.362, p = 0.080

   Scenario 1 & 5
   Scenario 2 & 5
   Scenario 3 & 5
   Scenario 4 & 5

Z = -2.402, p = 0.016*
Z = -2.401, p = 0.017*
Z = -2.565, p = 0.010*
Z = -2.564, p = 0.011*

-
-
-
-

Model B
   Scenario 3 & 5
   Scenario 4 & 5

F = 3.197, p = 0.030*
p = 0.043*
p = 0.05*

F = 3.117, p = 0.033*
p = 0.045*
p = 0.05*

C-cycling Model A1 F = 2.956, p = 0.040* F = 2.301, p = 0.087
   Scenario 1 & 5
   Scenario 2 & 5
   Scenario 3 & 5
   Scenario 4 & 5

Z = -2.242, p = 0.025*
Z = -2.244, p = 0.026*
Z = -2.562, p = 0.010*
Z = -2.563, p = 0.011*

-
-
-
-
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Model B
    Scenario 3 & 5

F = 3.172, p = 0.031*
p = 0.045*

F = 3.128, p = 0.032*
p = 0.044*

Biogenic habitat 
provision

Model A
   Scenario 3 & 5
   Scenario 4 & 5

F = 2.266, p = 0.091
-
-

F = 4.240, p = 0.009*
p = 0.046*
p = 0.046*

Model B
   Scenario 3 & 5
   Scenario 4 & 5

F = 1.753, p = 0.170
-
-

F = 3.079, p = 0.034*
p = 0.049*
p = 0.049*

Constrained density
Nutrient cycling

C-cycling

Biogenic habitat 
provision

Model A
Model B

Model A
Model B

Model A   
   Scenario 1 & 5
   Scenario 2 & 5
   Scenario 3 & 5
   Scenario 4 & 5

F = 0.294, p = 0.879
F = 0.650, p = 0.054

F = 0.039, p = 0.997
F = 0.961, p = 0.446

F = 1.442, p = 0.250
-
-
-
-

F = 0.061, p = 0.993
F = 1.148, p = 0.357

F = 0.156, p = 0.958
F = 0.131, p = 0.969

F = 8.659, p < 0.0001*
p < 0.0001*
p < 0.0001*
p = 0.009*
p = 0.012*

Model B
   Scenario 1 & 5
   

F = 0.146, p = 0.963
-

F = 3.495, p = 0.021*
p < 0.030*

1Post-hoc tests (Tukey, Student-Newman-Keuls) failed to identify pairwise differences between the 
scenarios, therefore Mann-Whitney U tests were performed (with Bonferroni correction) to identify 
which scenarios differed. 
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Fig B.6. Delivery of three ecological functions (mean ± SE of 6 sites) of the SE Queensland mudflats, 
standardised to zero mean and unit variance under five scenarios of species compositional change (A) 
nutrient cycling, (B) c-cycling and (C) biogenic habitat provision in model A (weighted by density 
constrained) in both winter and summer. For unconstrained estimates see Fig. 7
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Fig. B.7. Delivery of three  of ecological functions (mean ± SE) of the SE Queensland mudflats, 
standardised to zero mean and unit variance under five scenarios of species compositional change (A) 
nutrient cycling density unconstrained, (B) nutrient cycling density constrained, (C) c-cycling density 
unconstrained, (D) and c-cycling density constrained (E) biogenic habitat provision density 
unconstrained and (F) biogenic habitat provision density constrained between the five scenarios in 
model B in both winter and summer.
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