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Abstract—This study proposes a novel decentralized output
sliding-mode fault-tolerant control design for heterogeneous
multi-agent systems with matched disturbances, unmatched non-
linear interactions, and actuator faults. The respective iteration
and iteration-free algorithms in the sliding-mode fault-tolerant
control scheme are designed with adaptive upper bounding laws
to automatically compensate the matched and unmatched compo-
nents. Then, a continuous fault-tolerant protocol in the observer-
based integral sliding-mode design is developed to guarantee
the asymptotic stability of multi-agent systems and the ultimate
boundedness of the estimation errors. Simulation results validate
the efficiency of the proposed fault-tolerant control algorithm.

Index Terms—Decentralized output feedback, sliding-mode
fault-tolerant control, integral sliding-mode control, heteroge-
neous multi-agent systems, actuator faults.

I. INTRODUCTION

Multi-agent systems (MASs) have attracted considerable
attention in diverse fields, such as aerospace, transportation,
wireless networks, and power systems[1], [2]. Heterogeneous
multi-agent systems (HMASs) are MASs composed of a large
number of non-identical agents that are connected by me-
chanical interconnections or communication networks[3]-[6].
A decentralized control is equipped with a simpler architecture
with local information than a single centralized control and
thus is more practical to realize on physical HMASs[7]-[9].
One essential issue of the decentralized control for HMASs
involves the interaction of different agents[10]. Thus, remark-
able benefits can be obtained by specifying the decentralized
control concept for HMASs with interactions and subsequently
achieve the satisfactory local performance of each agent and
the global property of the overall HMASs.

Faults may occur more frequently in HMASs than in single
agents due to the existence of a number of controllers, sensors,
and interconnected equipments[11], [12]. Therefore, HMASs
are required to operate safely, and the fault-tolerant control
(FTC) is regarded an effective approach to guarantee the
stability and desired performance of HMASs with unpredicted
faults. An active FTC scheme was presented with a high-gain
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observer for high-order HMASs in the presence of actuator
faults and communication disconnections[13]. An FTC design
with fault detection and recovery mechanism was developed
for stabilization and navigation of heterogeneous multi-agent
formations of autonomous aerial and ground robots[14]. How-
ever, most existing studies of HMASs in dealing with faults
have centralized or distributed configurations. The centralized
and distributed schemes are easy to implement, but both rely
on information sharing and transmission among agents[15]-
[19]. A decentralized FTC (DFTC) design should be able to
automatically compensate the effects of faults without neces-
sarily exchanging information between individual agents[20].
Various DFTC approaches, such as adaptive DFTC[21], [22],
fuzzy DFTC[23], [24], and neural network-based DFTC[25],
[26], have been introduced by research in recent years. Most of
the results are based on either the state[7], [23], [27] or output
feedbacks[4], [8], [13], [25]. The literature indicates that the
research on local output DFTC for HMASs has received
minimal attention thus far. Furthermore, the DFTC protocol
in [20] is usually effective for HMASs with weak interactions
and small couplings, and more general assumption is needed
in this study compared with the strong interconnections[26],
[28]. In addition, the existing disturbances and actuator faults
in single agents are easy to spread in HMASs. The sliding
mode control (SMC) has been widely applied in handling
uncertainties and improving the robustness of HMASs[29]-
[31]. A continuous SMC method with an adaptive strategy
was designed for second-order nonlinear MASs with actua-
tor faults and disturbances to realize the consensus-tracking
objective[30]. An SMC design with a heterogeneous finite-
time disturbance observer was proposed for high-order H-
MASs to attenuate the effect of uncertainties[31]. On the one
hand, most results on SMC for HMASs focused on matched
disturbances in the input channel and did not consider the
unmatched one, such as flexible joint manipulators and multi-
machine power systems[9], which may not always satisfy the
matching condition[24], [32]. On the other hand, the results
on the decentralized output sliding-mode fault-tolerant control
(SM-FTC) of coupled nonlinear HMASs with matched distur-
bances, unmatched nonlinear interactions, and actuator faults
are dearth, hence the motivation of the present investigation.

To tackle the above mentioned difficulty, the decentralized
output SM-FTC scheme for HMASs is designed with adaptive
upper bounding laws. The matched disturbances, unmatched
interactions, and actuator faults are effectively compensated,
and then the robust performance of the SM-FTC strategy is
further achieved by rigorously performing a stability analysis
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of HMASs and conducting a reachability analysis of the SMC
motion. To the best of our knowledge, integral SMC can be
adopted in FTC schemes for various complex MASs[33]-[35].
Compared with the conventional SMC method that partitions
the state space into matched and unmatched parts[29], [36],
the matched disturbances and actuator faults are compensated
in the integral SMC strategy[37]. An integral SMC scheme
was presented for HMASs composed of quadrotors and two-
wheeled mobile robots associated with model uncertainties
and external disturbances to reach a consensus[34]. Actuator
faults and external disturbances/model uncertainties in a group
of nonlinear systems were tolerated by using the integral
SMC technique[35]. More importantly, there are few literature
on the subject of observer-based consensus for MASs[38],
[39]. The distributed pinning observer[40] and the finite-time
observer[41] in the consensus control strategy are designed to
estimate the state information of each single agent. In this case,
further introducing the observer-based integral SMC into the
decentralized output SM-FTC strategy for HMASs can lead to
complex research and analysis.

The major contributions of this study can be summarized as
follows. (i) This study is the first trial to consider the output
DFTC problem for HMASs with actuator faults and nonlinear
interactions, which contain unmatched components, in contrast
with the existing work that focuses mostly on matched model
uncertainties and external disturbances[26], [30], [34]. To
overcome this difficulty, an augmented dynamic configuration
is constructed with the dynamic compensator to satisfy the
Kimura-Davison condition[42] and the decentralized output
SM-FTC technique is introduced. (ii) In comparison with the
adaptive bounds[21], prescribed performance bounds[22], and
Lipschitz boundedness of the disturbances, model uncertainties
and nonlinearities[13], [19], [23], [35], the adaptive law is used
in this study to relax the known upper bound assumptions of
the matched disturbances and actuator faults. (iii) Two multi-
step algorithms based on the extended linear matrix inequality
(LMI) characterization are given to reduce the conservative-
ness of the solution of the nonlinear matrix inequality with
non-convex algebraic constraints by implementing iteration
and iteration-free strategies.

The remainder of this study is organized as follows. Section
II introduces the system formulation. Section III is devoted to
the SMC design with the stability analysis of HMASs and
reachability analysis of the SMC motion. The iteration and
iteration-free algorithms are further illustrated. The observer-
based integral SMC design is proposed in Section IV to
guarantee the ultimately uniformly boundedness of the esti-
mation errors. Simulations in Section V validate the efficiency
of the proposed algorithm. Finally, conclusions follow in
Section VI. The symbol sgn(·) denotes the sign function,
the vector x = col(xi) = [xT1 , · · · , xTN ]T , and the matrix
Y = diag(Yi) is of diagonal form with elements of matrices
Yi, i = 1, · · · , N . He(X) = X + XT and ? denotes the
symmetric part of the specific matrix.

II. SYSTEM FORMULATION

Consider a group of N agents in the presence of matched
disturbances, unmatched nonlinear interactions, and actuator

faults. The i-th agent of HMASs (i = 1, · · · , N) is given as

ẋi (t) = Aixi (t) +Bi (ui (t) + di (xi, ui, t))
+Fifi (t) + ξi (x, t)

yi (t) = Cixi (t)
(1)

where xi ∈ Rni , ui ∈ Rmi and yi ∈ Rpi are the system state,
input and output vectors respectively, di (xi, ui, t) ∈ Rmi de-
notes the matched disturbance, fi (t) ∈ Rqi denotes the actu-
ator fault and ξi (x, t) ∈ Rni denotes the nonlinear interaction
in HMASs with the global state vector x = col (xi). Matrices
Ai, Bi, Fi and Ci are known with compatible dimensions and
mi ≤ pi ≤ ni is satisfied.

Assumption 2.1: (i) The pairs (Ai, Bi) and (Ai, Ci) are
controllable and observable, respectively. (ii) The actuator
fault fi (t) is satisfied with rank (Bi, Fi) = rank (Bi) and
rank (CiFi) = rank (Fi), and it belongs to L2 [0,∞), i.e.,
‖fi (t) ‖ ≤ f̄i with the unknown upper bound f̄i. (iii) The
matched disturbance di (xi, ui, t) belongs to L2 [0,∞), i.e.,
‖di (xi, ui, t) ‖ ≤ d̄i with the unknown upper bound d̄i.

Assumption 2.2: The nonlinear interaction term ξi (x, t)
in HMASs satisfies with the quadratic constraint, i.e.,
ξTi (x, t) ξi (x, t) ≤ α2

ix
TETi Eix, where Ei is a known

constant matrix and αi is a known upper bound scalar.
Remark 2.1: Assumption 2.1 provides the controllable and

observable conditions for the described HMASs and guaran-
tees the actuator fault fi (t) to be constrained in a given com-
pensation range. The interaction term ξi (x, t) in Assumption
2.2 can be described as the physical interconnections, e.g. the
transmission links of smart grids[1] and the interconnections
of multi-machine power systems[9], [36]. Define ξ (x, t) =
col (ξi (x, t)), and it follows that the overall interaction term
satisfies ξT (x, t)ξ(x, t) ≤ xT (

∑N
i=1 α

2
iE

T
i Ei)x = xTETEx

with E = [α1E
T
1 , · · · , αNETN ]T .

Remark 2.2: In comparison with the known smooth and
bounded interactions[28], the known upper bounds of the
actuator faults[24], [26] and external disturbances[16], and the
unknown but locally Lipschitz nonlinearities[13], [19], [23],
the proposed assumptions in this study are more general with
adaptively approximating a surrogate of the upper bounds.
By contrast, the previous works on actuator faults have been
combined with interconnection delays[21], [22], unmeasured
states[23], and unstructured uncertainties[25], [26].

Lemma 2.1[43]: Consider the following inequality with a
symmetric matrix Ω ∈ Rl×l and matrices S and H of the
column dimension l:

Ω + STXH +HTXTS < 0 (2)

and the inequality (2) has a solution of matrix X of compatible
dimensions if and only if NT

S ΩNS < 0 and NT
HΩNH < 0 are

satisfied, where NS and NH represent the column form bases
of the null spaces of S and H , respectively. Furthermore, on
the basis of Finsler’s Lemma, the inequalities NT

S ΩNS < 0
and NT

HΩNH < 0 hold if and only if there exist scalars µS
and µH such that Ω− µSSTS < 0 and Ω− µHHTH < 0.

III. SMC DESIGN AND STABILITY ANALYSIS

A dynamic compensator of the appropriate dimension is
used in the output feedback SMC design to satisfy the Kimura-
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Davison condition[42]. On the basis of the available output
information, the dynamic compensator is given by

˙̄xi (t) = Āix̄i (t) + B̄iyi (t) , x̄i (t0) = x̄i0 (3)

and the decentralized control input is given associated with
the dynamic compensator (3) as follows

ui (t) = C̄ix̄i (t) + D̄iyi (t) + vi (t) (4)

where x̄i ∈ Rri denotes the state of the compensator and
vi ∈ Rmi denotes the nonlinear SM-FTC switching function
to compensate for the effects of matched disturbances and
actuator faults. Matrices Āi, B̄i, C̄i and D̄i are system gains
with compatible dimensions to be designed.

Define the augmented vectors x̃i = [xTi x̄Ti ]T and ỹi =
[yTi x̄Ti ]T . The i-th augmented dynamics of the combined
HMASs and the dynamic compensator are described as

˙̃xi (t) =
(
Ãi + B̃iKiC̃i

)
x̃i (t) + F̃ifi (t)

+B̃i0 (di (xi, ui, t) + vi (t)) + G̃iξi (x, t)

ỹi (t) = C̃ix̃i (t)

(5)

where

Ãi =

[
Ai 0
0 0

]
, B̃i =

[
Bi 0
0 Iri

]
,Ki =

[
D̄i C̄i

B̄i Āi

]
C̃i =

[
Ci 0
0 Iri

]
, B̃i0 =

[
Bi

0

]
, F̃i =

[
Fi

0

]
, G̃i =

[
Ini

0

]
Then, the augmented HMASs can be written as

˙̃x (t) =
(
Ã+ B̃KC̃

)
x̃ (t) + F̃ f (t)

+B̃0 (d (x, u, t) + v (t)) + G̃ξ (x, t)

ỹ (t) = C̃x̃ (t)

(6)

where x̃ = col (x̃i) ∈ Rn+r, ỹ = col (ỹi) ∈ Rp+r, d =
col (di) ∈ Rm, v = col (vi) ∈ Rm, f = col (fi) ∈ Rq .
Matrices Ã, B̃, B̃0,K, C̃, F̃ and G̃ are of diagonal forms with
elements of the respective matrices Ãi, B̃i, B̃i0,Ki, C̃i, F̃i and
G̃i. Scalars n =

∑N
i=1 ni,m =

∑N
i=1mi, q =

∑N
i=1 qi, p =∑N

i=1 pi and r =
∑N
i=1 ri.

The nonlinear interaction term G̃ξ (x, u, t) in (6) can be
written in the following form with Ẽ = [α1Ẽ

T
1 , · · · , αN ẼTN ]T .

ξT G̃T G̃ξ ≤ x̃T
(∑N

i=1 α
2
i

[
Ei 0
0 0

]T [
Ei 0
0 0

])
x̃

= x̃T
(∑N

i=1 α
2
i Ẽ

T
i Ẽi

)
x̃ = x̃T ẼT Ẽx̃

(7)
The SMC function for the i-th augmented HMASs on the

basis of the newly available output information ỹi = [yTi x̄
T
i ]T

is designed as

σi (x̄i, yi, t) = Tiỹi = [Ti1 Ti2] C̃ix̃i = Ti1yi + Ti2x̄i (8)

where Ti1 ∈ Rmi×pi and Ti2 ∈ Rmi×ri are matrices to
be designed. Furthermore, define the upper bound estimation
errors edi = ˆ̄di − d̄i and efi = ˆ̄fi − f̄i, where ˆ̄di and ˆ̄fi
are the estimations of the unknown upper bounds d̄i and f̄i,
respectively. Here, the adaptive algorithms for the estimated
upper bound parameters ˆ̄di and ˆ̄fi are designed as

˙̄̂
di = ‖Bi‖‖ỹi‖, i = 1, · · · , N (9)

˙̄̂
fi = ‖Fi‖‖ỹi‖, i = 1, · · · , N (10)

Remark 3.1. If the so-called Kimura-Davison condition[42]
is not satisfied, it is verified that it is difficult to propose a static
output feedback SMC scheme. In this case, a sufficient condi-
tion to solve this problem is adding an extra compensator (3),
(4) (i.e. a particular subsystem with the relative dimensions
x̄i ∈ Rri ), thus, providing additional degrees of freedom.

Here, the following theorem is given to achieve the stability
of the augmented HMASs and the insensitivity to the matched
disturbances and actuator faults.

Theorem 3.1. Consider the augmented HMASs (6) and the
decentralized control input (4), the overall dynamic system is
quadratically stable and the matched disturbances and actuator
faults can be compensated with the adaptive algorithms (9),
(10) and the following SM-FTC switching function vi if there
exist matrices W1i ∈ Rzi×zi ,W2i ∈ R(pi+ri)×(pi+ri) and
matrix P = diag(Pi) with each symmetric positive-definite
matrix Pi ∈ R(ni+ri)×(ni+ri) such that

B̃i0W1iB̃Ti0 + C̃Ti W2iC̃i > 0 (11)

He(PÃ+ PB̃KC̃) + PP + ẼT Ẽ < 0 (12)

where B̃i0 ∈ R(ni+ri)×zi is the orthogonal matrix of B̃i0
satisfying with B̃Ti0B̃i0 = 0. The SM-FTC switching function
vi in the decentralized control input (4) is designed as

vi (t) = −‖(TiC̃i)†‖(‖Pi‖(‖Bi‖ ˆ̄di + ‖Fi‖ ˆ̄fi)
+ηi)sgn (σi(x̄i, yi, t))

(13)

where (TiC̃i)
† = ((TiC̃i)

T (TiC̃i))
−1(TiC̃i)

T and ηi is a
positive scalar. The sign function sgn(σi(x̄i, yi, t)) = 0 when
σi(x̄i, yi, t) = 0 is satisfied, which implies that each SMC
function has been reached. Then, the gain matrices of the
nonlinear SM-FTC switching function (13) are derived as

Pi = B̃i0W1iB̃Ti0 + C̃Ti W2iC̃i, Ti = B̃Ti0C̃
T
i W

T
2i (14)

Proof. Since Pi = B̃i0W1iB̃Ti0 + C̃Ti W2iC̃i in (14) is a
symmetric positive-definite matrix, a Lyapunov function Vx̃
for the augmented HMASs (6) is considered as follows

Vx̃ = x̃TPx̃+
∑N
i=1 ‖Pi‖‖C̃i‖−1

(
e2di + e2fi

)
(15)

The time derivative of Vx̃ in (15) is obtained as

V̇x̃ = x̃T (PÃ+ ÃTP + PB̃KC̃ + C̃TKT B̃TP )x̃

+2x̃TPG̃ξ +
∑N
i=1 2x̃Ti PiB̃i0(di + vi)

+
∑N
i=1 2x̃Ti PiF̃ifi

+
∑N
i=1 2‖Pi‖‖C̃i‖−1‖ỹi‖(‖Bi‖edi + ‖Fi‖efi)

≤ x̃T (PÃ+ ÃTP + PB̃KC̃ + C̃TKT B̃TP

+PP + ẼT Ẽ)x̃+
∑N
i=1 2x̃Ti PiB̃i0vi

+
∑N
i=1(2‖x̃i‖‖Pi‖(‖Bi‖d̄i + ‖Fi‖f̄i))

+
∑N
i=1 2‖Pi‖‖x̃i‖(‖Bi‖edi + ‖Fi‖efi)

(16)
Since Pi = B̃i0W1iB̃Ti0 + C̃Ti W2iC̃i and Ti = B̃Ti0C̃

T
i W

T
2i ,

it is derived as PiB̃i0 = C̃Ti T
T
i . Then, it follows that

V̇x̃ ≤ x̃T (PÃ+ ÃTP + PB̃KC̃ + C̃TKT B̃TP

+PP + ẼT Ẽ)x̃−
∑N
i=1 2‖x̃i‖ηi

(17)
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It is obtained that V̇x̃ < 0 when the inequality in (12) and
ηi > 0 are satisfied. This completes the proof.

Notably, the inequality in (12) is not convex and thus cannot
be solved with the LMI toolbox. Here, the following corollary
is given with iteration to solve the non-convex constraints.

Corollary 3.1. Given the pre-designed symmetric matrix P̃ ,
scalars αi, positive scalars µC̃ and µW , and matrices W1 =
diag(W1i), W2 = diag(W2i), the inequality in (12) is solvable
for the symmetric positive-definite matrix P = B̃0W1B̃T0 +
C̃TW2C̃ > 0 with a diagonal matrix B̃0 = diag(B̃i0) if the
following minimization problem is solvable.

Ω1 P ẼT1 · · · ẼTN
? −In+r 0 · · · 0
? ? −α−21 I · · · 0
...

...
...

. . .
...

? ? ? · · · −α−2N I

 < 0 (18)



Ω2 P P̃ B̃ ẼT1 · · · ẼTN
? −In+r 0 0 · · · 0
? ? −µW Im+r 0 · · · 0
? ? ? −α−21 I · · · 0
...

...
...

...
. . .

...
? ? ? ? · · · −α−2N I


< 0

(19)
where Ω1 = He(PÃ)− µC̃C̃T C̃ and Ω2 = He(P (Ã+ B̃K̃))
with the derived matrix K̃ = −B̃T P̃ .

Proof. According to Lemma 2.1, it is easy to check that
the inequality in (12) is in the form of that in (2). Define
W = B̃TP , and the inequality in (12) is solvable for matrix
K if and only if there exists a symmetric positive-definite
matrix P such that

NT
C̃

(PÃ+ ÃTP + PP + ẼT Ẽ)NC̃ < 0

NT
W (PÃ+ ÃTP + PP + ẼT Ẽ)NW < 0

(20)

where NC̃ and NW denote the column form bases of the null
spaces of C̃ and W , respectively. Then, the inequalities in (20)
are solvable by using Finsler’s Lemma if the following forms
are satisfied with positive scalars µC̃ and µW .

PÃ+ ÃTP + PP + ẼT Ẽ − µC̃C̃T C̃ < 0 (21)

PÃ+ ÃTP + PP + ẼT Ẽ − µWPB̃B̃TP < 0 (22)

The existing condition, i.e., µWPB̃B̃TP > 0, makes the
inequality in (22) non-convex, which needs to be further dealt
with. Furthermore, the inequality in (19) is equivalent to the
following form with K̃ = −B̃T P̃ .

PÃ+ ÃTP − PB̃B̃T P̃ − P̃ B̃B̃TP + PP

+ẼT Ẽ + µ−1W P̃ B̃B̃T P̃ < 0

⇒ PÃ+ ÃTP − µWPB̃B̃TP + PP + ẼT Ẽ < 0

(23)

Thus, the inequality in (19) is equivalent to that in (22).
Meanwhile, the formulation in (18) is equivalent to that in
(21). The solvable LMI formulations in (18) , (19) imply that
there exists a solution of matrix P satisfying the forms in
(21), (22). Hence, the inequality in (12) is solvable by using
Lemma 2.1 and this completes the proof.

The following algorithm is given with the iteration strategy.

Algorithm 3.1.
1) Define Ãs = Ã + sIn+r, where s is the pre-designed

degree of stability. Then, solve the following algebraic
Riccati equation and derive the symmetric matrix P̃ :

P̃ Ãs + ÃTs P̃ − P̃ B̃B̃T P̃ + εIn+r = 0 (24)

where ε > 0 is arbitrarily small.
2) Set K̃ = −B̃T P̃ with the derived matrix P̃ in step 1.
3) Solve the LMI minimization problem in (18), (19) and

derive the symmetric matrix P .
4) Fix P = B̃0W1B̃T0 + C̃TW2C̃ and derive the matrices

W1 and W2. Solve the following LMI minimization
problem and derive the matrix K.

Ω3 P ẼT1 · · · ẼTN
? −In+r 0 · · · 0
? ? −α−21 In+r · · · 0
...

...
...

. . .
...

? ? ? · · · −α−2N In+r

 < 0

(25)
where Ω3 = He(P (Ã + B̃KC̃)). Then, the dynamic
compensator matrix K = diag(Ki) and the matrix in
the SMC function (8) is derived as Ti = B̃Ti0C̃

T
i W

T
2i .

Furthermore, the matrices P and K in (12) can be decou-
pled without iteration and the following corollary is given to
reduce the space complexity of the LMI formulation.

Corollary 3.2. Given scalars αi, and matrices W1 =
diag(W1i), W2 = diag(W2i), the inequality in (12) is solvable
for the symmetric positive-definite matrices P = diag(Pi11)
and Q = diag(Qi11) with Pi11 = BiW1iBTi + CTi W2iCi if
the following minimization problem is solvable.

Ω4 NT
CP NT

CE
T
1 · · · NT

CE
T
N

? −In 0 · · · 0
? ? −α−21 In · · · 0
...

...
...

. . .
...

? ? ? · · · −α−2N In

 < 0 (26)


Ω5 NT

BQET1 · · · NT
BQETN

? −α−21 In · · · 0
...

...
. . .

...
? ? · · · −α−2N In

 < 0 (27)

[
BW1BT + CTW2C In

? Q

]
> 0 (28)

where Ω4 = NT
C (He(PA))NC ,Ω5 = NT

B (He(AQ) + In)NB .
Matrices NC and NB denote the column form bases of the null
spaces of C and B, respectively. Matrix B = diag(Bi) and its
element Bi ∈ Rni×zi is the orthogonal matrix of matrix Bi
satisfying with BTi Bi = 0. Matrices C and B are of diagonal
forms with elements of matrices Ci and Bi, respectively.

Proof. Define the symmetric positive-definite matrices P =
diag(Pi) and Q = diag(Qi) = P−1. According to Lemma
2.1, the necessary and sufficient condition of the feasible
solution in (12) is that matrices P and Q are satisfied with

NT
C̃

(PÃ+ ÃTP + PP + ẼT Ẽ)NC̃ < 0

NT
B̃

(ÃQ+QÃT + In+r +QẼT ẼQ)NB̃ < 0
(29)
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Partition every Pi and its inverse matrix Qi as

Pi =

[
Pi11 Pi12
? Pi22

]
, Qi =

[
Qi11 Qi12
? Qi22

]
(30)

Meanwhile, the following compact is derived on the basis
of the matrix inversion lemma.

P−1i =

[
P̃i11 −P̃i11Pi12P−1i22

? P−1i22 + P−1i22P
T
i12P̃i11Pi12P

−1
i22

]
(31)

where P̃i11 = (Pi11 − Pi12P
−1
i22P

T
i12)−1. Then, it is derived

as Pi11 − Q−1i11 = Pi12P
−1
i22P

T
i12 > 0, i.e., Pi11 > Q−1i11 and

BiW1iBTi + CTi W2iCi > Q−1i11. The following form is then
obtained and is equivalent to the formulation in (28).

BW1BT + CTW2C > Q−1 (32)

Select the first row and column in (29), and it is derived as

NT
C (PA+ATP + PP + ETE)NC < 0

NT
B (AQ+QAT + In +QETEQ)NB < 0

(33)

where P = diag(Pi11) and Q = diag(Qi11).
The inequalities in (33) are equivalent to that in (26), (27).

The solvable LMI formulations in (26)-(28) imply that there
exists a solution of matrices P,Q,W1 and W2 satisfying the
forms in (32), (33). Thus, the inequality in (12) is solvable by
using the following algorithm with an iteration-free strategy
and this completes the proof.

Algorithm 3.2.
1) Solve the LMI minimization problem in (26)-(28) and

derive the matrices P,Q,W1 and W2.
2) Define Pi22 = Iri and Mi = Pi12P

T
i12. Then, Pi11 −

Q−1i11 =Mi is obtained with the derived matrices P and
Q in step 1. Then, the following form is obtained with
the diagonal decomposition method.

BiW1iBTi + CTi W2iCi −Q−1i11 = ViλiV
T
i (34)

where λi = diag(λi,1, · · · , λi,ni
) and Vi denote the

respective eigenvalues diagonal matrix and eigenvec-
tor matrix of matrix Mi. Furthermore, define λ̃i =
diag(

√
λi,1, · · · ,

√
λi,ri). Then, Pi12 = Viλ̃i and the

corresponding matrices Pi and Qi are given as

Pi =

[
BiW1iBTi + CTi W2iCi Viλ̃i

? Iri

]
Qi =

[
Qi11 −Qi11Viλ̃i
? Iri + λ̃iV

T
i Qi11Viλ̃i

] (35)

Hence, matrices P and Q are obtained.
3) Solve the LMI minimization problem in (25) with the

derived matrix P in step 2 and derive the dynamic
compensator matrix K = diag(Ki).

4) The matrices Ti1 and Ti2 in the SMC function (8) are
derived with W2i in step 1 and Pi12 in step 2.

Ti1 = BTi C
T
i W2i, Ti2 = BTi Viλ̃i (36)

Remark 3.2. (i) The orders of the LMI formulations (26)-
(28) in Corollary 3.2 are less than the formulations (18) , (19)
in Corollary 3.1. Hence, compared with the multi-step iterative
algorithm, the iteration-free algorithm has the advantage of the

lower space dimension and computational complexity, which
is more conducive to solving the non-convex constraints in
(12). (ii) Compared with the FTC based on fault detection and
isolation approach[11], [15], the nonlinear SM-FTC switching
compensation (13) does not need a fault diagnosis mechanism,
and the DFTC protocol is designed by the local output
feedbacks without the threshold setting and fault isolation. (iii)
Unlike the adaptive approximation algorithm of the unknown
disturbance effects and actuator fault function[21], [22], [33],
the unknown functions in this study are compensated through
adaptively approximating a surrogate of the estimated upper
bound parameters. Furthermore, the known boundedness of
the disturbances/faults[13], [16], [24], [26] and their first-order
derivatives[35] is not required in this study.

Consider the SMC function for the i-th agent in (8). The
time derivative of the SMC function σi(x̄i, yi, t) is given as

σ̇i(x̄i, yi, t) = TiC̃i(Ãi + B̃iKiC̃i)x̃i + TiC̃iF̃ifi
+TiC̃iB̃i0(di + vi) + TiC̃iG̃iξi

(37)

It is necessary to prove the reachability of the sliding surface
σi(x̄i, yi, t) and the following theorem is given.

Theorem 3.2. Consider the pre-calculated matrix P =
diag (Pi) satisfying (12) in Theorem 3.1, the SMC function
(8) for each agent (1) can be reached with the adaptive
algorithms (9), (10) for the unknown upper bounds and the
SM-FTC algorithm (13) in the decentralized control input (4).

Proof. Consider a Lyapunov function Vσi for the SMC
function σi(x̄i, yi, t) in (8) as

Vσi =
∑N
i=1 σ

T
i (x̄i, yi, t)(B̃

T
i0PiB̃i0)−1σi(x̄i, yi, t)

+
∑N
i=1 ‖Pi‖‖C̃i‖−1(e2di + e2fi)

(38)

The time derivative of Vσi
in (38) is derived in the following

form with a positive scalar ηi.

V̇σi = 2
∑N
i=1 σ

T
i (x̄i, yi, t)(B̃

T
i0PiB̃i0)−1

×(TiC̃i(Ãi + B̃iKiC̃i)x̃i + TiC̃iB̃i0(di + vi)

+TiC̃iF̃ifi + TiC̃iG̃iξi)

+
∑N
i=1 2‖Pi‖‖C̃i‖−1‖ỹi‖(‖Bi‖edi + ‖Fi‖efi)

≤ x̃T (PÃ+ ÃTP + PB̃KC̃ + C̃TKT B̃TP

+PP + ẼT Ẽ)x̃−
∑N
i=1 2‖x̃i‖ηi

+
∑N
i=1(2‖x̃i‖‖Pi‖(‖Bi‖d̄i + ‖Fi‖f̄i))

+
∑N
i=1 2‖Pi‖‖x̃i‖(‖Bi‖edi + ‖Fi‖efi)

−
∑N
i=1 2‖x̃i‖‖Pi‖(‖Bi‖ ˆ̄di + ‖Fi‖ ˆ̄fi)

≤ x̃T (PÃ+ ÃTP + PB̃KC̃ + C̃TKT B̃TP

+PP + ẼT Ẽ)x̃−
∑N
i=1 2‖x̃i‖ηi

(39)
It follows that V̇σi

< 0 when the inequality in (12) and
ηi > 0 are satisfied, and each SMC function σi(x̄i, yi, t) = 0
can be reached and subsequently remained there.

Remark 3.3. From Theorems 3.1 and 3.2, both the stability
of HMASs and the reachability of the SMC motion depend
on the nonlinear inequality constraint in (12): PÃ+ ÃTP +
PB̃KC̃ + C̃TKT B̃TP + PP + ẼT Ẽ < 0 and ηi > 0. The
positive scalar ηi is related with the estimated upper bounds of
the matched disturbances and actuator faults ( ˆ̄di and ˆ̄fi) in the
SM-FTC function (13). In fact, the SMC function σi(x̄i, yi, t)
is essential to limit the updates in ˆ̄di and ˆ̄fi. Furthermore,
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the parameters Āi, B̄i, C̄i, D̄i in the dynamic compensator
(3) , (4) and the matrix Ti in the SMC function (8) can be
derived in the two multi-step algorithms with iteration and
iteration-free strategies.

IV. OBSERVER-BASED INTEGRAL SMC DESIGN

In this section, both the matched disturbances and actuator
faults occur in the control input. The observer-based integral
SMC design can effectively reject the matched perturbations
and improve the robustness of the unmatched interactions.

First, the linear Luenberger observer is designed as

˙̂xi(t) = Aix̂i(t) +Biui0(t) + Li (yi(t)− ŷi(t))
ŷi(t) = Cix̂i(t)

(40)

where x̂i and ŷi are the respective estimations of xi and yi.
Matrix Li ∈ Rni×pi is the observer gain and ui0 = Kix̂i is
the linear component to make the SMC motion stable.

Define the state error exi = xi − x̂i and the decentralized
control input ui = ui0+ui1 with the nonlinear FTC component
ui1 to compensate for the effects of disturbances and actuator
faults and to guarantee the system trajectories to remain within
the SMC surface. Then, the state error dynamics are given as

ėxi(t) = (Ai − LiCi) exi(t) + ξi(x, t)
+Bi (ui1(t) + di(xi, ui, t) + fi(t))

(41)

The SMC function here is modified in the following com-
pact with an integral component.

σi (x̂i, yi, t) = Ri (yi (t)− yi (t0))

−Ri
∫ t
t0
Ci (Aix̂i (s) +Biui0 (s)) ds

(42)

where matrix Ri = BTi C
†
i is designed to guarantee the

invertibility of matrix RiCiBi and C†i = (CTi Ci)
−1CTi . The

SMC function in (42) implies that the system trajectories start
from the SMC manifold, i.e., σi(x̂i, yi, t0) = 0. Then, the time
derivative of the SMC function (42) is derived as

σ̇i(x̂i, yi, t) = RiCi(Aiexi(t) + ξi(x, t)
+Bi(ui1(t) + di(xi, ui, t) + fi(t)))

(43)

Here, an extra bound condition of the nonlinear interaction
term is given as ‖ξi(x, t)‖ ≤ ξ̄i with the unknown upper bound
ξ̄i. The parameter estimation error eξi is defined as eξi = ˆ̄ξi−
ξ̄i with the estimation of the upper bound ˆ̄ξi. Furthermore, the
adaptive algorithms for the estimated upper bound parameters
˙̄̂
di,

˙̄̂
fi and

˙̄̂
ξi are modified as

˙̄̂
ξi = ‖Ci‖‖σi (x̂i, yi, t) ‖, i = 1, · · · , N
˙̄̂
fi =

˙̄̂
di = ‖σi (x̂i, yi, t) ‖, i = 1, · · · , N

(44)

Theorem 4.1. Given a matrix Ri = BTi C
†
i which satisfies

the invertibility of matrix RiCiBi and a large enough scalar
η̄i , the SMC function (42) can be reached with the adaptive
algorithm (44) and the nonlinear FTC input as follows

ui1(t) = −(‖(RiCiBi)−1Ri‖(‖Ci‖ ˆ̄ξi)

+ ˆ̄fi + ˆ̄di + η̄i)tanh(σi(x̂i, yi, t))
(45)

Furthermore, given diagonal matrices A and J with ele-
ments of the respective Ai = BiB

†
iAi and Ji = Ini −BiB

†
i ,

the HMASs are asymptotically stable and the overall state
estimation errors ex = col(exi) are ultimately bounded if there
exist symmetric positive-definite diagonal matrices S1 and S2

with elements of matrices Si1 ∈ Rni×ni and Si2 ∈ Rni×ni ,
and diagonal matrices L and K with elements of matrices
Li ∈ Rni×pi and Ki ∈ Rmi×ni such that

Φ11 Φ12 S1J S2J
? Φ22 0 0
? ? −In 0
? ? ? −In

 < 0 (46)

with Φ11 = S1A+ATS1 +S1BK+KTBTS1 +ETE,Φ12 =
−S1BK−S1A and Φ22 = S2A+ATS2−S2LC−CTLTS2−
S2A − ATS2 + ETE, where matrices A,B and C are of
diagonal forms with elements of Ai, Bi and Ci, respectively.

Proof. Consider a Lyapunov function Vσ̂i for the SMC
function σi(x̂i, yi, t) in (42) as

Vσ̂i = 1
2

∑N
i=1(σTi (x̂i, yi, t)(RiCiBi)

−1σi(x̂i, yi, t)
+‖(RiCiBi)−1Ri‖e2ξi + e2di + e2fi)

(47)

The time derivative of Vσ̂i in (47) is obtained as

V̇σ̂i
=
∑N
i=1 σ

T
i (x̂i, yi, t)(RiCiBi)

−1(RiCiAiexi
+RiCiξi) +

∑N
i=1 σ

T
i (x̂i, yi, t)(ui1 + di + fi)

+
∑N
i=1 ‖σi(x̂i, yi, t)‖(‖(RiCiBi)−1Ri‖

×(eξi‖Ci‖) + edi + efi)

≤
∑N
i=1 ‖σi(x̂i, yi, t)‖‖(RiCiBi)−1RiCiAi‖‖exi‖

+
∑N
i=1 ‖σi(x̂i, yi, t)‖(‖(RiCiBi)−1Ri‖‖Ci‖ξ̄i

+f̄i + d̄i) +
∑N
i=1 σ

T
i (x̂i, yi, t)ui1

+
∑N
i=1 ‖σi(x̂i, yi, t)‖(‖(RiCiBi)−1Ri‖

×(eξi‖Ci‖) + edi + efi)

≤
∑N
i=1 ‖σi(x̂i, yi, t)‖
×(‖(RiCiBi)−1RiCiAi‖‖exi‖ − η̄i)

(48)
It is easy to check that the system trajectory will remain

within the SMC function if the Euclidean norm of the state es-
timation error ‖exi‖ is bounded and decreasing. Furthermore,
define η̄i = ‖(RiCiBi)−1RiCiAi‖‖exi(t0)‖+ εi, where εi is
a positive scalar. Hence, it is derived as

V̇σ̂i
≤ −

∑N
i=1 εi‖σi(x̂i, yi, t)‖ ≤ 0 (49)

This implies that the SMC function can be reached with
the nonlinear FTC strategy (45) and the reachability analysis
is completed. Hence, the dynamic trajectory of HMASs can
remain within it on the basis of the stability of the state
estimation error exi, which needs to be further dealt with.

Note that the dynamic trajectory can remain within the SMC
surface, i.e., σi(x̂i, yi, t) = 0 and σ̇i(x̂i, yi, t) = 0. Hence, the
equivalent FTC input ui1 can be derived as

ui1 = −(RiCiBi)
−1(RiCiAiexi +RiCiBidi

+RiCiBifi +RiCiξi)
(50)

Then, the dynamics of the i-th agent can be modified as

ẋi = Aixi +Biui0 −Aiexi + Jiξi
= (Ai +BiKi)xi − (BiKi +Ai)exi + Jiξi

(51)

where matrices Ai = BiB
†
iAi and Ji = Ini − BiB

†
i . Note

that the matched disturbances di and actuator faults fi are
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completely compensated with the equivalent FTC input (50).
Then, the state estimation error dynamics are also modified as

ėxi = (Ai − LiCi −Ai) exi + Jiξi (52)

Furthermore, consider a Lyapunov function V (xi, exi) for
the dynamics (51) and the state estimation error dynamics (52)
with symmetric positive-definite matrices Si1 and Si2.

V (xi, exi) =
∑N
i=1(xTi Si1xi + eTxiSi2exi) (53)

The time-derivative of V (xi, exi) in (53) is obtained as

V̇ (xi, exi) =
∑N
i=1 x

T
i (Si1(Ai +BiKi) + (Ai +BiKi)T

×Si1)xi − 2
∑N
i=1 x

T
i Si1(BiKi +Ai)exi

+
∑N
i=1 e

T
xi(Si2(Ai − LiCi −Ai)

+(Ai − LiCi −Ai)TSi2)exi
+2
∑N
i=1 e

T
xiSi2Jiξi + 2

∑N
i=1 x

T
i Si1Jiξi

≤
[
x
ex

]T [
Φ̃11 Φ̃12

? Φ̃22

] [
x
ex

]
(54)

where Φ̃11 = S1A + ATS1 + S1BK + KTBTS1 + ETE +
S1JJ TS1, Φ̃12 = −S1BK−S1A and Φ̃22 = S2A+ATS2−
S2LC − CTLTS2 − S2A−ATS2 + ETE + S2JJ TS2.

The inequality in (54) is equivalent to that in (46) with
Schur Lemma. Hence, V̇ (xi, exi) < 0 is obtained, which
implies the asymptotic stability of the dynamic system (51)
and the state estimation error (52). This completes the proof.

Remark 4.1. (i) It follows that V (xi, exi) is bounded, i.e., xi
and exi are bounded. On the basis of the bounded parameters
xi, exi and ξi, ẋi and ėxi are bounded, i.e., V̇ (xi, exi) is
bounded as well. Thus, the condition that the derivative
of V (xi, exi) in (53) should be uniformly continuous with
respect to t is satisfied. (ii) Since V̇ (xi, exi) < 0 in (54)
and the uniform continuity of the derivative of V (xi, exi) in
(53), it follows that limt→∞ V̇ (xi, exi) = 0, ‖xi‖ → 0 and
‖exi‖ → 0 are satisfied by using Barbalat Lemma.

Remark 4.2. The conventional separation principle cannot
be used in HMASs because of the existing interactions among
HMASs. The bidirectional interaction term ξi(x, t) appears in
both the state dynamics (51) and the estimation error dynamics
(52). In comparison with the work that the interactions are
satisfied with the matching condition[24], [32], the unmatched
interactions in this study are further handled with additional
freedoms provided in the integral SMC design.

Remark 4.3. (i) The decentralized controller in the integral
SMC contains two parts, namely, the linear and nonlinear
FTC compensating components. The nominal linear controller
serves to guarantee the stability of the SMC motion, whereas
the FTC compensating controller aims to attenuate the effect
caused by disturbances and actuator faults. (ii) As opposed
to the discontinuous dynamics in the SMC protocol[33] and
the sign function sgn(·) in (13), the nonlinear FTC input in
the integral SMC protocol is continuous within a boundary
layer of the hyperbolic tangent tanh(·) and prevents system
chattering[30], [31]. More importantly with the help of an
adaptive mechanism, the corresponding protocol can work
effectively even without prior knowledge of the actuator faults
and interactions[13], [21], [22], [25].

 !"#$%&

'

 !"#$%&

(

 !"#$%&

)

'
x

 
x

 
x

 !
p

 !
p

 !
p

Fig. 1. The 3-machine power systems.

TABLE I
THE PHYSICAL MEANINGS AND VALUES OF THE PARAMETERS

Parameter Physical meaning M1 M2 M3

D Damping coefficient 5 3 3

H Inertia time constant 4 5.1 5.1

ωo Synchronous speed 314.2 314.2 314.2

Tm Time constant of turbine 0.35 0.35 0.35

Te Time constant of speed governor 0.1 0.1 0.1

Km Gain of turbine 1 1 1

Ke Gain of speed governor 1 1 1

R Regulation constant 0.05 0.05 0.05

V. SIMULATION RESULTS

In this section, a numerical simulation of 3-machine power
systems with nonlinear interactions and actuator faults is put
forward to validate the effectiveness of the proposed control
designs, i.e., the decentralized output SM-FTC scheme and the
observer-based integral SMC scheme.

The HMASs model of the 3-machine power systems with
steam valve control is given in the form of (1) with the state
vector xi = [∆δTi ω

T
i ∆PTmi ∆XT

ei]
T of each machine, where

∆δi = δi−δi0,∆Pmi = Pmi−Pmi0 and ∆Xei = Xei−Xei0.
δi, ωi, Pmi and Xei denote the rotor angle, relative speed, per
unit mechanical power and steam valve aperture of the i-th
machine (i = 1, 2, 3), respectively. δi0, Pmi0 and Xei0 denote
the respective nominal values. Furthermore, the 3-machine
power systems are characterized by the following matrices[36].

Ai =


0 1 0 0
0 − Di

2Hi

ωo

2Hi
0

0 0 − 1
Tmi

Kmi

Tmi

0 − Kei

TeiRiωo
0 − 1

Tei

 , Bi =


0
0
0
1
Tei


The structure of the 3-machine power systems is shown

in Figure 1 and the physical meanings and values of the
parameters are illustrated in TABLE I[36], [37]. Furthermore,
the nonlinear interaction term ξi(x, t) is given as

ξi(x, u, t) =
∑3
i=1 pij

[
0 − ωoqiqjBij

2Hi
0 0
]T

sin (∆δi −∆δj)

where pij is a weight coefficient and pii = 0, pij = 1 if there
is a connection between the i-th and j-th machines, otherwise
pij = 0, qi and qj are the per unit internal transient voltages
and Bij is per unit nodal susceptance between the i-th and j-th
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machines. It follows that the overall interaction term is satis-
fied with ξT (x, t)ξ(x, t) ≤ xT (LTmax ⊗ CTm)(Lmax ⊗ Cm)x.

Lmax =

 0.6598 −0.3299 −0.3299
−0.2772 0.5544 −0.2772
−0.3299 −0.2772 0.6071

 , Cm = [1 01×3]

To demonstrate the efficiency of the proposed algorithms in
Theorems 3.1, 3.2 and 4.1, the actuator faults in the power
systems are considered in the steam valve control inputs and
the fault distribution matrices are satisfied with Fi = Bi.

f1 =

{
|0.1sin (0.5t) |, t ≤ 8
0.05sat (0.1sin (0.5t)) , t > 8

, f2 =

{
0.2, t ≤ 40
0.1, t > 40

f3 =

{
|0.2sin (0.5t) |, t ≤ 20
0.1sat (0.2sin (0.5t)) , t > 20

The matched disturbances di, i = 1, 2, 3 are considered as
d1 = 0.1sin(0.5t), d2 = 0.1cos(0.5t) and d3 = |0.1sin(0.5t)|.

Simulation parameters are designed as ε = 0.01 and µC̃ =
µW = 0.1, and the gains in the augmented dynamics (5) and
the SMC function (8) are derived by solving Algorithm 3.1.

T1 = [−5.7768 0] , T2 = [−0.0828 0] , T3 = [−3.7063 0]

K1 =

[
−2.2451 0.0000
0.0000 −4.0499

]
,K2 =

[
−1.2882 0.0000
0.0000 −4.0499

]
K3 =

[
−1.9541 0.0000
0.0000 −4.0499

]
Furthermore, the following gains, i.e., the symmetric posi-

tive definite matrices Pi in (12), the SMC matrices Ti in (8)
and the dynamic compensator matrices Ki in (5) are derived
by solving Algorithm 3.2.

P1 =


0.1517 −0.0099 −0.0109 0.0487 −0.0773
−0.0099 0.0040 −0.3333 0.3339 −0.2419
−0.0109 −0.3333 0.8193 −0.0537 −0.0976
0.0487 0.3339 −0.0537 0.7292 1.0093
−0.0773 −0.2419 −0.0976 1.0093 1.0000



P2 =


0.1755 −0.0168 −0.0184 0.0503 0.0799
−0.0168 0.0026 −0.3558 0.3320 0.2410
−0.0184 −0.3558 0.8461 −0.0567 0.0957
0.0503 0.3320 −0.0567 0.7289 −1.0131
0.0799 0.2410 0.0957 −1.0131 1.0000



P3 =


0.1637 −0.0154 −0.0173 0.0491 0.0923
−0.0154 0.0023 −0.3555 0.3321 0.2696
−0.0173 −0.3555 0.8459 −0.0566 0.0803
0.0491 0.3321 −0.0566 0.7289 −1.0279
0.0923 0.2696 0.0803 −1.0279 1.0000


T11 = 8.4265, T21 = 8.1593, T31 = 8.1774
T12 = 10.0931, T22 = −10.1309, T32 = −10.2794

K1 =

[
0.2866 −1.6224
−1.6224 5.6023

]
,K2 =

[
0.3101 1.5162
1.5162 4.5578

]
K3 =

[
0.3314 1.5393
1.5393 4.6515

]
In the presence of the time-varying additive faults both in

the first and third machines and the time-invariant additive
faults in the second machine, the results in Figures 2-3 indicate
the effectiveness of the decentralized output SM-FTC design in
Theorems 3.1 and 3.2. The respective deviations of the rotor
angles ∆δi in the three machines are depicted in Figure 2
with the application of Algorithms 3.1 and 3.2. The respective
deviations of the relative speed ωi, the per unit mechanical
power ∆Pmi and the steam valve aperture ∆Xei in the three
machines in Figure 3 show the robust stability of the 3-
machine power systems. Note that the first machine fails at

t = 8s, the second one fails at t = 40s and the third one
suffers a failure at t = 20s. These figures show that with the
proposed SM-FTC strategy, the HMASs are insensitive to the
considered actuator faults and the matched disturbances can
be compensated in finite-time simulations.
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Fig. 2. The respective deviations of the rotor angles ∆δi in three machines
with the decentralized output SM-FTC scheme (Algorithms 3.1 and 3.2).
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Fig. 3. The respective deviations ωi,∆Pmi and ∆Xei in three machines
with the decentralized output SM-FTC scheme.

In the observer-based integral SMC scheme, the following
gains, i.e., the linear feedback gains Ki and the observer gains
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Li in (40) are derived by solving Theorem 4.1.

K1 =
[

0.0106 −0.1521 −0.0004 0.0419
]

K2 =
[

0.0101 −0.1251 −0.0008 0.0429
]

K3 =
[

0.0101 −0.1251 −0.0009 0.0429
]

L1 =

 −0.3247
3.3132
1.1008
1.7007

 , L2 =

 −0.2961
3.0191
1.1828
1.6974

 , L3 =

 −0.2956
3.0177
1.1830
1.6967


In the presence of the same actuator faults in the steam valve

aperture channel, the results in Figures 4-6 show the effec-
tiveness of the observer-based integral SMC design. Using the
proposed control scheme in Theorem 4.1, the time responses
of the states in 3-machine power systems are shown in Figures
4-6. These figures indicate that the 3-machine power systems
are stabilized and insensitive toward the matched disturbances
and faults under the action of actuators in their respective
time constants t = 8s, 20s and 40s. The curves in Figure
7 depict the state estimation errors and indicate the good
tracking properties of the rated and estimated states of the
3-machine power systems. Only the state estimation errors
ex14, ex24 and ex34 in the fourth channel in three machines
show the fluctuations at each fault occurring time instants. The
state estimation curves are within the rated values and exhibit
small oscillation amplitudes during convergence at each fault-
occurring time instance.

Hence, the numerical simulation case demonstrates the ef-
fectiveness of the proposed decentralized output SM-FTC and
the observer-based integral SMC schemes for the 3-machine
power systems.
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Fig. 4. The respective deviations ∆δi, ωi,∆Pmi and ∆Xei in the first
machine with the observer-based integral SMC scheme.

VI. CONCLUSIONS

In this study, a decentralized output SMC-FTC design is
developed for a class of nonlinear HMASs in the presence
of matched disturbances, unmatched interactions, and actuator
faults. The nonlinear interaction term is treated as a quadratic
constraint. Meanwhile, the disturbances and faults are com-
pensated by adaptively estimating the unknown upper bound-
s. Subsequently, two LMI minimization algorithms, namely,
iteration and iteration-free protocols, are integrated into the
SM-FTC design to solve the nonlinear matrix inequality.
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Fig. 5. The deviations ∆δi, ωi,∆Pmi and ∆Xei in the second machine
with the observer-based integral SMC scheme.
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Fig. 6. The respective deviations ∆δi, ωi,∆Pmi and ∆Xei in the third
machine with the observer-based integral SMC scheme.

The observer-based integral SMC is further introduced into
the proposed SM-FTC scheme to guarantee the asymptotic
stability of HMASs and ultimately realize the boundedness
of the estimation errors. Current investigations focus on the
extension of the proposed method to nonlinear HMASs with
model uncertainties, unmatched disturbances and simultane-
ous actuator/sensor faults under the circumstance of network
disconnections and cyber attacks.
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