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Abstract  11 
 12 
Background. Functional constraint through genomic architecture is suggested to be an important 13 
dimension of genome evolution, but quantitative evidence for this idea is rare. In this contribution, existing 14 
evidence and discussions on genomic architecture as constraint for convergent evolution, rapid adaptation, 15 
and genic adaptation are summarized into alternative, testable hypotheses. Network architecture statistics 16 
from protein-protein interaction networks are then used to calculate differences in evolutionary outcomes 17 
on the example of genomic evolution among yeast, and the results are used to evaluate statistical support 18 
for these longstanding hypotheses.  19 
Results. A discriminant function analysis lent statistical support to classifying the yeast interactome into 20 
hub, intermediate and peripheral nodes based on network neighborhood connectivity, betweenness 21 
centrality, and average shortest path length. Quantitative support for the existence of genomic architecture 22 
as mechanistic basis for evolutionary constraint is then revealed through utilizing these statistical 23 
parameters of the protein-protein interaction network in combination with estimators of protein evolution.  24 
Conclusions. As functional genetic networks are becoming increasingly available, it will now be possible 25 
to evaluate functional genetic network constraint against variables describing complex phenotypes and 26 
environments, for better understanding of commonly observed deterministic patterns of evolution in non-27 
model organisms. The hypothesis framework and methodological approach outlined herein may help to 28 
quantify the extrinsic versus intrinsic dimensions of evolutionary constraint, and result in a better 29 
understanding of how fast, effectively, or deterministically organisms adapt.  30 
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Background  38 
 39 
Genetic constraint and evolutionary outcomes 40 

Understanding the nature of the genetic dimension of evolutionary constraint is crucial to understanding 41 

adaptation and other repeatedly observed outcomes of evolution such as convergent phenotypes, rapid 42 

adaptation, or genic evolution (see Glossary in Table 1). For example, divergent genetic populations of the 43 

well-studied Caribbean lizard Anolis cybotes [1] have nonetheless evolved convergent phenotypic, 44 

ecological, reproductive, and physiological adaptations to high elevations on three separate mountain 45 

chains, which is mirrored by genomic adaptations in a subset of genes [2–5]. These observations made in 46 

natural populations suggest that the variants available to mutation and selection may be constrained at the 47 

genomic level, enabling faster adaptations and higher rates of convergent evolution than it were possible 48 

without constraint.  49 

Many studies have shown the non-independence of genes from one another, be it through physical linkage, 50 

phylogenetic relationship (e.g., in the case of whole genome duplications), or functional interaction (Figure 51 

1). Futuyma [6] cited Schluter [7], noting that correlations between genes could reduce the degrees of 52 

freedom on which selection can operate. Mayr [8] stated that “coadapted” genes are a result of natural 53 

selection, being brought together to form a “balanced system”, but ruled out that such gene complexes 54 

would be of any interest to evolutionary biology, as ultimately only the complete phenotype is selected ([8], 55 

p.184ff). Nonetheless, evolutionary trajectories of complex phenotypes have been extensively studied 56 

through the concept of the genetic variance-covariance or G-matrix [9]. Some mechanistic properties of the 57 

genome leading to these constraints that can be expressed as a G-matrix are trait polygeny, trait pleiotropy, 58 

and linkage (Figure 1, [10]), but the evolutionary constraints of correlated traits implied from a G-matrix 59 

can be rapidly overcome in only a few generations [11], hinting at additional genomic properties influencing 60 

evolutionary constraint. A more detailed look into the mechanistic basis of constrained phenotypic 61 

evolution at the molecular level is therefore necessary, and now made possible through the rapid 62 

accumulation of genomic and other molecular -omics data sets in the public domain.  63 

 64 
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Genetic constraint through gene functional importance 65 

The functional importance of a gene has long been thought to cause such evolutionary constraint at the 66 

molecular level: protein-coding genes that are indispensable for the organism should be highly conserved 67 

and thus, be constrained through evolution, as most nonsynonymous mutations would be detrimental to 68 

protein function and thus would most likely result in non-adaptive phenotypes. Consequently, these genes 69 

should have a lower rate of molecular evolution. Such genes have formerly been identified through their 70 

“dispensability”. This term describes how essential genes are for organismal function within a certain 71 

environmental context, which can be estimated through knockout experiments (Table 1). 72 

Zhang and Yang [12] reviewed evidence from empirical studies, but found that essential genes are not 73 

evolving more slowly than nonessential genes. Instead, highly expressed genes seem to have lower rates of 74 

protein evolution (dubbed the “E-R anticorrelation” [13, 14], which some authors relate to translational 75 

selection on amino acids with different metabolic cost [13]. Many studies have ascribed an important role 76 

to gene expression levels in constraining evolutionary rate of proteins [15–17]. But perhaps, functional 77 

importance needs to be defined differently than via gene essentiality or dispensability, and expression level 78 

may be a correlative variable linked to another cause. In Saccharomyces cerevisiae (in following: yeast), 79 

which was used for many studies on protein evolutionary rate and functional importance, essential genes 80 

are required for organismal growth and performance under optimal environmental conditions. A gene that 81 

renders an organism nonfunctional may thus predominantly be active in genetic pathways related to 82 

development and growth. However, in a multicellular organism such as a vertebrate, also the genes that are 83 

essential for organismal viability and reproduction are of high functional importance, and potentially could 84 

be under evolutionary constraint [18], such as in the example of genes coding for eye color determining 85 

mating success in Drosophila melanogaster [19]. A high proportion of the human genome has also been 86 

found to be under selective constraint in other mammals, indicating that gene dispensability is not a binary 87 

variable [20]. As reviewed by Zhang and Yang [12], Wilson et al. [21] suggested that evolutionary rate 88 

might be determined by both functional importance and functional constraint [12, 21]. If functional 89 

importance measured as (negative) gene dispensability does not predict variations and constraints of 90 
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evolutionary rate, perhaps functionally more constrained genes are the ones evolving slowly. Prior studies 91 

have attempted to identify functional constraint in terms of which sites within a protein are essential for 92 

performing its function, called protein functional site constraint in Figure 1. The Neutral Theory [22] 93 

already identified codon constraint where nonsynonymous mutations are of larger consequence than 94 

synonymous ones as being important for evolution (Figure 1).  95 

 96 

Genetic constraint through gene pleiotropy and network architecture 97 

During the recent decades, network thinking has emerged as a powerful approach for better understanding 98 

biological realities [23]. The network concept might also have deep implications in evolutionary biology. 99 

Gene interaction networks were found to evolve either faster or slower than comparable genes functioning 100 

without being connected to others [24–27], and gene regulatory circuits convergently evolve in the absence 101 

of shared ancestry [28]. The overall network architecture or hierarchy of genes within the network is likely 102 

to contribute to the speed and mode of evolution and the phenotype components associated with it, regulated 103 

through functional constraint of nodes within the network [23]. For example, a study by Jeong and 104 

colleagues [29] found that genes with many functional interaction partners are also likely to be essential, 105 

which, however, does not provide enough evidence to extrapolate directly from functional constraint to 106 

evolutionary outcome.  107 

Functional genetic network structure has been shown to affect evolutionary outcomes through “gene 108 

pleiotropy” in yeast: gene products that interact with many others are thought to be involved in many 109 

cellular pathways and by that means, to have multiple (pleiotropic) effects on the cellular function [30, 31]. 110 

Fitness effects of mutations in pleiotropic genes could be partitioned across several phenotypic components, 111 

increasing the likelihood of maladaptive effects, which means that they should be more conserved through 112 

evolution and evolve more slowly [30]. However, it is important to note, that despite that a connection 113 

between pleiotropic gene and pleiotropic phenotype was implied in these studies [30, 31], gene pleiotropy 114 

or the number of functional connections a gene has with others should be regarded as a distinct concept 115 

from phenotypic pleiotropy, unless such a relationship to pleiotropic phenotype has been demonstrated. 116 
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Proteins with many interactants may be constrained in the evolution of their functional sites to instances of 117 

co-evolution with the interactant genes, in order to maintain their functionality [32]. A corresponding model 118 

of evolutionary constraint on evolution through gene pleiotropy that was explicitly based on functional 119 

network node hierarchy within an interactome was proposed by Pavlicev and Wagner [33]. They argued 120 

that for genetic adaptation in a target gene to happen, selection has to overcome the inertia generated 121 

through stabilizing selection of the genes functionally connected with the target [33]. The premise of this 122 

model is that any change in genotype-phenotype interaction represents a change in a developmental 123 

pathway and, due the position of a gene within a network, will have pleiotropic effects on the phenotype 124 

[33]. For example, most pleiotropic genes with many interaction partners only had a small pleiotropic effect 125 

on the phenotype, but some genes with large phenotypic effect were also more pleiotropic [18]. High gene 126 

pleiotropy is assumed to have a cost for adaptation, which was explained as nodes central to a network with 127 

many interaction partners evolving slower [18, 34]. This idea, dubbed the “cost of complexity” [35] would 128 

lead to faster evolution of organisms with less complex genomic architecture due to this constraint being 129 

relaxed [18], and to adaptive selection on standing genetic variation preferentially to occur in genes with 130 

low pleiotropic effects [36]. Concerning evolutionary outcomes, gene pleiotropy was suggested to limit 131 

events of genomic co-evolution [32], genomic adaptation [36], and convergent evolution [36] in nodes 132 

central to a network. Consequently, the properties of nodes within a functional genetic network may be 133 

informative to understand their evolutionary constraint. However, gene pleiotropy was defined by most of 134 

these authors [30–33, 35] as synonymy with number of interactants and with centrality in a network - but 135 

looking at more recently generated interactomes, nodes topologically central to the network are usually not 136 

the nodes with the highest number of connections. Instead, nodes with most connections are located in 137 

intermediate positions within a network [37]. The number of edges of a node consequently, may not be 138 

sufficient to disentangle the effects of network structure on evolutionary constraint since it only measures 139 

one of a network’s many properties. The concept of variable genomic networks existing within populations 140 

was first explored by Wagner [38] and was represented through a hypothetical “genotype space” of similar 141 

phenotypes that might correspond to the concept of “phenotypic optima”. Selection can cause a population 142 
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to modify their genotype networks in a way that renders them more robust to changes in the fitness 143 

landscape. 144 

While the concept of network architecture influencing evolutionary outcomes is known from the studies 145 

outlined above and from others, in many cases this concept has not been sufficiently transformed into 146 

testable hypotheses yet, and correspondingly, no straightforward methodology exists for biologists to test 147 

them empirically. The first aim of this paper is to deconstruct the abstract concept of gene pleiotropy by 148 

setting genomic network architecture in relation to the three evolutionary outcomes: 1) genomic re-use 149 

generating convergent phenotypes, 2) the simultaneous occurrence of convergence and divergence within 150 

a genome, resulting in genic adaptation, and 3) the speed of adaptation. For this purpose, I propose three 151 

categories of nodes with different putative evolutionary trajectories. I set these categories in relation to 152 

previously defined hypotheses and expectations aligning functional network constraint to evolutionary 153 

outcomes. The second aim is to demonstrate how these hypotheses can be quantitatively tested. First, the 154 

nodes of the yeast interaction network are transformed into categories based on network statistical 155 

parameters and discriminant function analysis. Secondly, these are then tested for differences of proxy 156 

measures of evolutionary outcomes using data from yeast evolution. For this I use published data, which 157 

aligns this study to others with similar questions [13, 39, 40] but utilizes a novel approach.  158 

 159 

 160 

Results and Discussion 161 

 162 

Aim 1: Novel node classification scheme based on network statistics 163 

Figure 2 outlines a testable, hypothetical scenario of how functional genetic network architecture could 164 

influence evolutionary outcomes: When selection acts upon a population (for example, through a sudden 165 

change in climate), advantageous mutations will be selected from standing genetic variation (allele 166 

frequencies). A population will have standing genetic variation in different nodes of the network, which is 167 

dependent on the topological position of the nodes. Organisms possess a finite subset of biochemical 168 
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pathways (underlying functional genetic networks) such as those related to temperature homeostasis [41–169 

43], and that align to a finite amount of selected phenotype components. The population must adapt to this 170 

newly arising selective pressure through selection of advantageous mutations in one of these subnetworks, 171 

but not by selecting mutations in any other subnetwork, as these are unrelated to the stimulus or organismal 172 

fitness in response to it, and would therefore not result in adaptation. This does not mean that other 173 

subnetworks are not under any selection, or under stabilizing selection for other causes, or that selection on 174 

one subnetworks does not influence others, but is a simplification here used for the purpose of classifying 175 

nodes. This constrains the number of mutations in the genome that selection will operate on, and thus 176 

determines the evolutionary response through genetic constraint. Second, and of high importance for the 177 

new classification scheme proposed here, node hierarchy within these subnetworks poses an additional 178 

level of constraint: and this additional level reduces the “evolutionary search space” for potential beneficial 179 

variants.  180 

This can be illustrated through the following hypothetical construct, which reduces network structure to 181 

distinct types of nodes. Network nodes, which are functionally important for the operation of the network 182 

(hub nodes central to the network - in following H-nodes), are less likely to harbor significant genetic 183 

variation in first- or second-codon positions or regulatory regions because of their high functional 184 

constraint. Consequently, genetic variation, as well as adaptation to an environmental selective pressure, 185 

should both be more likely to occur within non-hub nodes within the subnetwork. Nodes with highest 186 

number of edges are intermediately positioned within a network (intermediate nodes, in following I-nodes) 187 

and were shown to have weaker selective constraint [44, 45] than centrally positioned nodes, as they have 188 

lower functional constraint than H-nodes. Consequently, they should evolve faster. This assumption differs 189 

from the gene pleiotropy hypothesis, which places the highest functional constraint on these nodes. 190 

However, because of their high cost of complexity, adaptation in I-nodes should be highly constrained in 191 

terms of which genes can adapt (depending on the nature of their functional interactions) and how (through 192 

changing the wiring pattern with other nodes). Because of gene pleiotropy, adaptations that do evolve in 193 

these nodes should have a larger phenotypic effect, which combined with the reduced possibilities for 194 
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adaptation, increases the likelihood for convergent evolution in them. Genes peripheral in the network 195 

(peripheral nodes, in following, P-nodes) have higher degrees of freedom due to the lowest degree of gene 196 

pleiotropy and should be able to accumulate genetic variation with least cost. Therefore, the population 197 

should already harbor more genetic variation within these peripheral genes on which selection can operate. 198 

Change in such nodes however, due to lower gene pleiotropic interactions, would result in less phenotypic 199 

effect and thus they are less likely to promote large evolutionary changes. In such nodes, divergence is 200 

more likely to accumulate than convergence. The expectation is thus that different node types will differ in 201 

standing genetic variation due to the different genetic constraints acting upon them. H-nodes will be very 202 

strongly constrained and only can accumulate little standing genetic variation, resulting in a low potential 203 

for selection to operate on. I-nodes will harbor sufficient standing genetic variation but be under high 204 

functional constraint, so that selection can only operate on a limited amount of variants that all have multiple 205 

phenotypic effects. In different organisms, the same variants can be selected quickly due to this reduced 206 

search space, which leads to parallel genomic evolution resulting in convergent phenotypes. P-nodes will 207 

be least constrained, allowing a lot of variation but less sweeping phenotypic effects due to lower gene 208 

pleiotropy. Selection can operate on multiple variants in these; selective advantages are more likely due to 209 

the lower gene pleiotropy in more genes, so selection will less likely lead to convergence. All three 210 

evolutionary outcomes can (among other factors such as gene expression levels) be explained with this 211 

mechanism of constraint through functional genetic network structure.  212 

As Fraser [46] pointed out, objective classification of nodes into any such type of categories is important, 213 

and they should reflect true topological properties of an interactome. Therefore, values for three network 214 

statistical parameters were obtained from the yeast interactome whose definition corresponds to the above 215 

outlined node types. Those parameters were average shortest path length (maximal in peripheral nodes), 216 

neighborhood connectivity (maximal in nodes intermediate to the network), and betweenness centrality 217 

(maximal in nodes connecting subnetworks). Maximal values for each statistical parameter were used to 218 

bin nodes into P, I and H nodes, and a Discriminant Function Analysis yielded significant support for the 219 

allocation of network statistical parameters to these P, I, and H node categories (Figure 3, Table 3). To 220 
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explore the network position of nodes that have undergone convergent adaptation, yeast ORF IDs that were 221 

demonstrated experimentally to show convergent genomic adaptation in independent experiments, strains, 222 

or species of yeasts were identified from the literature (66, 74-78), Table 4). These nodes were classified 223 

as (C-nodes).   224 

All network statistical parameters significantly differed between node categories, as shown with Kruskal-225 

Wallis tests: Average shortest path length: KW-H (3,2208)=1220.590, p<0.0001; neighborhood 226 

connectivity, KW-H(3,2204)=926.571, p<0.0001; betweenness centrality KW-H(3,2208)=293.849, 227 

p<0.0001 (Figure 4). Fraser’s [46] first exploration of the influence of modules within genomes and their 228 

hub nodes (called “modularity”) found that the rate of protein evolution is faster in intramodule hubs (nodes 229 

that link genes with high co-expression in response to a stimulus) compared to intermodule hubs (linking 230 

low genes with low co-expression in response to a stimulus, defined after [47]. The node classification 231 

scheme of Fraser [46] was based on gene co-expression and not on node topology, and gene co-expression 232 

in response to a stimulus followed a bimodal distribution. In this contribution, I nodes instead have the 233 

highest number of edges and connect sub-networks, but are not defined with respect to their expression.  234 

 235 

Aim 2: Genetic constraint and network architecture influencing evolution 236 

A recent paper published by Schoenrock et al. [39] uses a data set of 4,179 protein-coding genes (sourced 237 

from [13, 40] to investigate the involvement of network structure in protein evolution. This data set was 238 

generated for five species of yeasts (Saccharomyces cerevisiae, S. paradoxus, S. bayanus, S. kudriavzevii, 239 

and S. mikatae). The study compared a quantitative variable related to network structure (computationally 240 

predicted re-wiring of nodes through evolution γ), with an estimator of protein evolutionary rate on nodes 241 

(substitution rate ω, measured as dN/dS). The authors find that the degree of rewiring of nodes across the 242 

phylogeny is only poorly associated with evolutionary sequence divergence, but nodes with very low 243 

evolutionary rate had high variability of rewiring scores, which indicates that changing gene interactions is 244 

an important mechanism how functionally constrained genes may evolve. While the study remained 245 

somewhat inconclusive about the influence of network structure and node rewiring on protein evolution, 246 
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the data contained within it, combined with additional data, allow demonstrating a test of the hypotheses 247 

outlined above using the new node classification scheme (The results are compared to previous studies in 248 

Table 2).   249 

To test the influence of functional network constraint on the evolutionary outcomes rapid adaptation and 250 

convergent evolution, as well as the important factor of gene expression, I rearranged and expanded on this 251 

[39] data set (see Methods). I then tested, how network statistical parameters relate to estimators of  252 

evolutionary parameters ω, γ, and CAI. The amount of mRNA produced by each gene in regular somatic 253 

cells can be estimated by CAI (Codon Adaptation Index) which is derived from codon use bias in yeast that 254 

correlates with mRNA levels (based on [48, 49]). First, a general linear model was run with evolutionary 255 

parameters as dependent variables, and network parameters as predictor variables. All three network 256 

statistical parameters were found to significantly predict estimators for evolutionary outcomes (Table 5). 257 

All node categories have significantly different values for ω (KW-H(3,2204) = 20.1345, p = 0.0002), CAI 258 

(KW-H(3,2195) = 26.1472, p = 0.00001) and γ (KW-H(3,2195) = 36.7936, p = 0.00000), as shown by 259 

Kruskal-Wallis tests (Figure 5).  260 

 261 

With regards to rapid adaptation, Figure 5 shows that the highest values of ω are found both in P and I-262 

nodes with almost identical median values (0.93 vs. 0.91), and the lowest values were found in H nodes. 263 

This shows that nodes located less centrally in the network evolve faster than other nodes, but does not 264 

identify peripheral nodes as adapting particularly fast. CAI increases towards the center of the network, 265 

with mRNA expression level being highest in hub nodes. Network node hierarchy may therefore be able to 266 

explain the E-R anticorrelation (gene expression levels being negatively correlated with evolutionary rate 267 

[12]. H-nodes connect various subnetworks with one another, and thus are likely to be involved in more 268 

diverse functions (which might be partitioned across different tissues, processes or life history phases), than 269 

nodes more peripheral in a network (Figure 5, [47]). Such common functions may require a high amount 270 

of product, which may translate into high levels of mRNA expression in these nodes. γ is highest in P and 271 

I-nodes, indicating that evolutionary rewiring events are more common in less central parts of the networks. 272 
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An interesting subject for further study may be to compare explicit topologies of nodes that underwent re-273 

wiring through evolution, in order to determine whether they can additionally move between I and P node 274 

categories over time.  I-nodes harbor the majority of edges within a network - genetically re-wiring these 275 

nodes could lead to rapid adaptation [50]. Centrality of H-nodes seems to reduce their adaptability while 276 

peripheral and intermediate nodes are less constrained to adapt, and this process may involve rewiring 277 

within the network. This demonstrates how functional constraint can explain evolutionary outcomes better 278 

than estimators for gene dispensability can. Rapid genomic adaptation within diversifying populations has 279 

been shown to occur as a rapid response to selection such as anthropogenic pollution [51]. Such rapid 280 

adaptation often occurs in the presence of gene flow [51, 52]. This means that adaptation is constrained to 281 

specific genes under selection, which can interrupt their gene flow between populations, while alleles of 282 

other genes show uninterrupted gene flow. The speed of such adaptation related to divergence of a subset 283 

of genes within the same genome has been dubbed the “genic theory of speciation” [52]. Such genic 284 

evolution was shown to occur in Timema stick insects [53]. Future studies could test whether such rapidly 285 

adapting loci are preferentially located in P- and I-nodes, and whether this leads to a change in wiring 286 

patterns.  287 

With respect to genic adaptation, Schoenrock et al. [39] could show that some functionally similar nodes 288 

experienced lower than expected levels of protein evolution, indicating purifying selection. Nodes that were 289 

evolving through fewer re-wiring events than expected, included functions related to phosphorylation, 290 

mitochondrial translation, response to pheromone, small GTPase mediated signal transduction, and 291 

transport. Nodes that were evolving among the five yeast species with higher than expected degrees of re-292 

wiring, included the functions metabolic process, and various gene ontologies related to transcription and 293 

its regulation, as well as the regulation of transposition regulation. As indicated in Figure 2, these results 294 

prove that evolutionary outcomes are different for functionally different subnetworks within an interactome. 295 

It might be worth noting that, as outlined above, none of these functions is particularly related to growth 296 

but rather to maintaining organismal function, which is why they would be overlooked if conserved genes 297 

were only classified by the criterion of dispensability for colony growth. Gresham et al. [54] similarly 298 
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showed that evolutionary constraint in experimentally evolved yeast populations over 200 generations is 299 

dependent on the type of selection (limiting Glucose or Phosphate vs. Sulphur), with convergence being an 300 

outcome of the system level organization of the respective metabolic pathway. Additionally, the same 301 

differences in evolutionary estimators between node categories that could promote rapid adaptation, would 302 

allow genes in different node categories to evolve with differential speed, which allows for genic adaptation. 303 

Traditionally, convergence has been studied in non-model organisms, and with a focus on adaptive 304 

modification of the phenotype (e.g., [55]. More recently, phenotypic convergence has been traced back to 305 

in some instances resulting from identical genotypic variants (called “genomic re-use”, reviewed in [36]). 306 

These can arise either as new parallel mutations or from parallel selection of the same alleles from standing 307 

genetic variation [36] such as in the independent selection of body armor in the ectodysplasin locus of 308 

stickleback fish [56]. Other examples have recently been uncovered in skin toxin transport in poison frogs, 309 

[57] or in functional genomic adaptation to cold in a range of extant and extinct mammals including the 310 

mammoth [58]. Such genomic re-use causing convergence in distantly related lineages may indicate that 311 

constraint at the genomic level is important to generate convergent evolution and has been identified to 312 

drive speciation [59]. However, convergent phenotypic adaptations can alternatively be produced by 313 

different genes. They may also be exaptations, where a similar allele evolved due to ancestrally different 314 

selective pressures with a subsequent change of function [60]. In this study, I could test whether or not a 315 

small number of convergently adapting genes are preferentially located within I-nodes, as described above. 316 

Figures 4 and 5 support this idea. C-nodes have network statistical parameters most similar to I-nodes, 317 

showing that convergently adapting genes have similar evolutionary rates, expression levels, and degrees, 318 

as nodes that are located intermediately in the interactome (cf. inset network in Figure 4). This supports the 319 

notion that nodes with highest number of edges and intermediate network position are constrained to adapt 320 

and thus increase the likelihood for convergent evolution. Gresham et al. [54], from which five C-nodes 321 

were obtained, also showed that convergent evolution is related to system level organization of the 322 

respective metabolic pathway. In summary, these results clearly demonstrate a relationship between 323 
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network architecture and convergence, and if additional genes are becoming known to evolve convergently 324 

in yeast, this hypothesis can be further tested.  325 

 326 

In previous studies, gene expression level estimates (using CAI as proxy) were identified as the 327 

predominant explanatory variable related to functional genetic constraint influencing evolutionary 328 

outcomes. Therefore, the effect size of network statistical parameters as predictors for variables estimating 329 

evolutionary outcomes relative to CAI was determined. When CAI was incorporated into the analysis to 330 

predict values of ω and γ, average shortest path length (P-node classifier) was the predictor with highest 331 

power (0.99), followed by its interaction term with CAI (0.97), then CAI itself (0.92), followed by 332 

neighborhood connectivity (the I-node classifier, 0.83). Only betweenness centrality (the H-node classifier) 333 

was not significantly contributing to this model (Supplementary Tables 1 and 2). As mentioned previously, 334 

Figure 5 shows that the estimator of gene expression levels is highest in H-nodes, which might explain why 335 

CAI was seen as a better predictor for ω and γ than betweenness centrality. However, AIC based model 336 

selection revealed that a global model of all four variables including CAI and network parameters explains 337 

ω and γ better than CAI itself (Supplementary Tables 3 and 4). For ω, the only model with higher likelihood 338 

than the global model is that excluding betweenness centrality, whilst the CAI-only model ranks 8th. The 339 

rewiring score γ is best explained by the global model and the CAI-only model ranks 5th. These results 340 

confirm that whilst gene expression levels are an important element of genetic constraint, the position of 341 

highly expressed nodes as hub nodes in the network, together with the other network topology parameters, 342 

yield better explanatory power for two estimators of evolutionary outcomes. These results further support 343 

network topology as an important agent of evolutionary constraint. 344 

 345 

Conclusions 346 

Metagenomic resequencing of every 500 generations within a 60,000 generation E. coli long term evolution 347 

experiment [61] revealed that certain genes accumulated beneficial mutations through selection 348 

significantly more often than expected by chance, and were very often affected by parallel adaptation [61]. 349 
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These results, together with the incidences of recurrent genomic adaptations reviewed herein, demonstrate 350 

that the above-described relationship between network structure and convergent evolution may be 351 

expandable to organisms other than yeasts [36]. Apart from the quick assessment performed in this 352 

contribution, the influence of network structure in shaping evolutionary outcomes in more complex 353 

organisms than yeast such as vertebrates still needs to be comprehensively tested. Additionally, statistics 354 

computed on edge distributions may change over time as more experimental evidence on interactions 355 

becomes available, and evolutionary constraint might differ by the type of interactions studied. 356 

As demonstrated above in the yeast example, the impending advent of large-scale functional genomic 357 

networks for many new species makes it possible to convert functional genomic network structure of related 358 

species into variables describing hierarchical node position within the network. Future tests relating 359 

evolution to genomic constraint could include node architecture, and revolve around (1) Comparing 360 

standing genetic variation to network node position (while considering the effect of demography, selective 361 

sweeps, genetic drift, bottlenecks, and other levels of extrinsic constraint); (2) Testing whether similar 362 

subnetworks/node hierarchies adapt to same selection pressure in different organisms. (3) Comparing the 363 

speed of realized adaptation to a mutation/selection expectation, without considering network constraint. 364 

The potential benefits of better understanding genetic constraint leading to deterministic evolution may be 365 

wide ranging-- in humans, the use of functional interaction networks is omnipresent in genomic and 366 

transcriptomic study of cancer data, and recently, calls have been made for evolutionary methods to be 367 

applied to cancer problems [62]. A recent study demonstrates how the early progression of pancreatic cancer 368 

is defined through evolutionary constraints resulting from following one of three tumor suppressive 369 

pathways, and thus may be predictable [63]. Recognizing network constraint as evolutionary force, rather 370 

than disregarding evolution through natural selection [64], would allow quantifying “background genetic 371 

constraint” through functional network structure.  The remaining variance could be better allocated to 372 

mutation and selection in directing rapid, convergent, and genic phenotypic evolution.  373 

 374 
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Methods 376 

To assess evolutionary outcomes rapid adaptation and convergent evolution, as well as to address the 377 

important factor of gene expression in shaping protein-coding gene evolution, the data set of Schoenrock 378 

et al. including yeast ORF ID, computationally predicted evolutionary PPI re-wiring score (γ), and 379 

substitution rate (ω)[39] was downloaded. The re-wiring score was obtained from comparing networks 380 

across five species of yeast [39] and was used here to assess whether nodes that change wiring patterns are 381 

linked to specific positions within the network. The dataset was then rearranged and integrated with data 382 

downloaded from Wall et al. [13] including ORF ID, and CAI (Codon Adaptation Index, a measure of RNA 383 

expression levels, based on [48]. When analyzing networks, it is important to do so on exhaustive data sets 384 

[65] to avoid experimental bias [66]. Such an exhaustive interactome for yeast generated from the 385 

BIOGRID database [67] was obtained from CYTOSCAPE v.3.6.0 [68], which contained 6,508 nodes and 386 

340,000 edges, with data curated from 5,500 studies. With the goal to calculate a classifier that will aid in 387 

describing hierarchical node position within networks, common network statistical parameters were 388 

calculated from this exhaustive yeast interactome in CYTOSCAPE v.3.6.0 [68] using the Network Analyzer 389 

function. Data for the matching node ORFs were appended to the data set, and variables with non-normal 390 

distribution were BoxCox transformed. The final data set contained 2209 ORFs with only a few missing 391 

data points per variable. The network statistical parameters obtained from the yeast interactome were 392 

average shortest path length (maximal in peripheral nodes), neighborhood connectivity (maximal in nodes 393 

intermediate to the network), and betweenness centrality (maximal in nodes connecting subnetworks). 394 

Nodes with maximum values for each one of these three statistical parameters, and that were not 395 

overlapping with each other (1081 nodes, Figure 2), were each assigned to a category: P (peripheral nodes), 396 

I (intermediate nodes) and H (hub nodes). To assign node categories to the remaining nodes in the network 397 

that may be harder to allocate visually, a discriminant function analysis (DFA) was employed in 398 

STATISTICA (V13, Tibco). All remaining nodes with significant statistical support could be associated to 399 

one of these three categories (Table 3). To explore the network position of nodes that have undergone 400 

convergent adaptation, ORF IDs that were demonstrated experimentally to show convergent genomic 401 
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adaptation in independent experiments, strains, or species of yeasts (C-nodes) were identified from the 402 

literature (66, 74-78), Table 4). Out of the 26 obtained C-nodes, 21 nodes were allocated by DFA to the I-403 

category, and five were allocated to the P-category. It was then tested, how network statistical parameters 404 

relate to the evolutionary parameters ω, γ, and CAI. First, a general linear model was run with evolutionary 405 

parameters as dependent variables, and network parameters as predictor variables. Differences in, 406 

respectively, network statistical parameters or estimators for evolutionary parameters, and node categories 407 

were tested with Kruskal-Wallis tests. Because previous studies [15–17] have ascribed gene expression 408 

(here measured as CAI) an important role for constraining evolution, it is possible that whilst network 409 

statistical parameters do explain evolutionary parameters well, this effect could disappear once CAI itself 410 

is considered as a predictor for ω and γ. This assumption was therefore tested through (i) comparing power 411 

of predictors in another linear model, including network statistical parameters, CAI, as well as interaction 412 

terms as predictors and (ii) comparing Akaike information criteria of models generated from these variables 413 

and their interaction terms.  414 
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 435 
 436 
Table 1. Glossary of terms 437 
 438 

Evolutionary constraint [69]: the phenomenon of evolution producing a finite number of genomic and 

associated phenotypic outcomes from a near infinite number of possible genetic 

variants. 

Genetic constraint The portion of evolutionary constraint, which is determined at the level of genes or 

their gene products, for example codon constraint or developmental genetic pathways. 

Functional network 

constraint 

The portion of network constraint attributed to the structure or architecture of gene 

interactions that can be expressed in the form of a network. Networks consist of nodes 

(genes) and edges (functional interactions between these genes). 

Genic evolution The phenomenon of different evolutionary outcomes being the outcome of 

independent mutation and selection events in different genes. For example, the 

occurrence of convergent evolution in diverging populations, both of which are 

caused by evolution in distinct genes.  

Rapid adaptation The phenomenon of adaptive change in allele frequencies of a population to natural 

selection, taking place within just a few generations. 

Convergent evolution / 

convergence 

Traditionally defined as similar phenotypes evolving from similar selective pressure 

in response to similar environments [70]. May be caused at the genomic level through 

genomic re-use of the same genes or alleles, which is also called parallel genetic 

evolution or genomic re-use. 

Gene dispensability A variable to estimate gene essentiality. The less dispensable a gene is for organismal 

growth and function, the more essential it is. An estimator for the mean fitness effect 

of all possible mutations of a gene across environments the cell is likely to encounter. 

In yeast, this is experimentally determined through knockouts. 

Pleiotropy and cost of 

complexity 

Traditionally defined as one gene influencing more than one trait. In the papers cited 

in this study, has been defined as gene products with more than one functional 

interactions with other gene products, with the link to pleiotropy of phenotypic traits 

being implied. It is therefore here called “gene pleiotropy”.  

Gene expression level 

CAI 
The amount of mRNA produced by each gene in regular somatic cells. CAI (Codon 

Adaptation Index) is used as a substitute variable in this paper, and is derived from 

codon use bias in yeast that correlates with mRNA levels.  

Omega ω The ratio of nonsynonymous to synonymous substitutions dN/dS. It is assumed that 

dS remains constant, and dN is used here as an estimator for directional evolution.  

Gamma γ A score developed for estimating events of rewiring functional connections between 

network nodes over the course of evolution. Developed on the example of five species 

of yeasts.  

Neighborhood 

connectivity 

A network statistic used to describe the structure of a functional genetic network. 

Describes the number of connections of all neighbors of each node. Highest values 

are expected in intermediately located nodes within a network. 

Betweenness centrality A network statistic used to describe the structure of a functional genetic network, 

describing where a node lies within paths between other nodes. Nodes with many 

paths progressing through them may be important in transmitting information. 

Highest values are expected in nodes central to a network. 

Average shortest path 

length 

A network statistic used to describe the structure of a functional genetic network. 

Shortest distance between a node and other nodes. Highest values are expected in 

peripheral nodes of a network. 
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Table 2. Hypotheses relating network constraint to evolutionary outcomes and results of hypothesis 443 
assessment using a node classification scheme in yeast. 444 

 445 

Evolutionary outcome Hypothesis (H) Alternative Hypothesis (HA) Results in this paper following 

assessment with hierarchical 

node classification scheme. 

Speed of evolution Indispensable or essential genes 

are more constrained and evolve 
slowly [71]. 

 

Functionally important and thus 

functionally constrained genes 
evolve slowly, independent of 

dispensability [21]. 

Highly expressed genes evolve 
slowest [13, 14]. 

 

HA: Functionally most 

constrained genes (H-nodes) have 
the lowest substitution ratios of all 

categories, and are most highly 

expressed, but have lower scores 
of evolutionary rewiring than P 

and I-nodes. 

Speed of evolution Central nodes have highest 

number of edges; evolve very 

slowly because any change will 

lead to maladaptive pleiotropic 

effects - causes balancing 
selection through cost of 

complexity. 

[36],[35],[18],[34] 

Intermediate nodes evolve fastest 

as their higher number of edges 

allows for evolution through 

rewiring  

([44, 45]). 
 

HA: Nodes with highest number 

of edges are intermediate to the 

network, evolve fast (high ɷ) and 

have a high score of rewiring (ɣ), 

indicating that the substitution rate 
of these genes may be associated 

with evolutionary rewiring events.  

Speed of evolution 

 

Nodes with a low number of 

edges evolve fastest due to higher 
degrees of freedom, which allows 

for genetic adaptations 

minimizing pleiotropic effects. 
[72], [36] 

--- 

 

H: Peripheral nodes evolve fast 

(high ɷ) and have a high score of 
rewiring (ɣ), indicating that the 

substitution rate of these genes 

may be associated with 
evolutionary rewiring events.  

Convergent evolution Nodes with a low number of 
edges should be the prime target 

of convergent evolution. 

Pleiotropic negative effects are 

expected to be low, and mutations 

in them can maximize adaptation 

[36]. 

Peripheral nodes have the highest 
degrees of freedom and thus 

divergence is more likely than 

convergence in them. 

Convergent evolution should 

instead be favored in nodes that 

allow for genetic variance, while 
having reduced degrees of 

freedom (I-nodes)  

(This contribution). 

HA: 21 out of 26 nodes with 
convergent evolution demonstrated 

in yeasts were classified as I- 

nodes by DFA, and five as P 

nodes. ɷ and CAI were similar to 

I-nodes, but none of these 26 

nodes showed evidence of 
evolutionary rewiring. 

Genic evolution Adaptations can be characterized 

(either causative or correlative for 
the speciation process) by any 

number of divergent genes within 

the genome, whereas other genes 
are not associated with adaptation. 

[52]. 

Only the complete phenotype is 

selected, the genic component is 
less important [8]. 

H: Different clusters of 

functionally similar nodes 
experience either higher, lower 

than expected or neutral rates of 

evolution across five species of 
yeast [69]. Causation or 

correlation to speciation process 

not testable with data. 
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Table 3. Discriminant function analysis summary to assign node categories H, I, P to nodes within dataset. 447 
Wilks' Lambda: 0.0704 approx. F (6,2152)=992.780 p<0.001. 448 
 449 

  Wilks 

Lambda 

Partial 

Lambda 

F-remove 

2,1076 

p-value Toler. 1-Toler. (R-

sqr.) 

Neighborhood 

connectivity 

0.137 0.514 507.835 <0.001 0.988 0.012 

 

Betweenness centrality 0.105 0.673 261.039 <0.001 0.994 0.006 

Average shortest path 

length 

0.133 0.528 480.907 <0.001 0.983 0.017 
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Table 4. List of yeast genes that were found to adapt to novel environments, and were additionally shown 453 
to evolve these adaptations convergently across populations or species of yeast. Node hierarchy categories 454 
after discriminant function analysis (DFA) are shown in the first column. P - peripheral nodes, I - 455 
intermediate nodes.  456 

DFA estimated Node hierarchy Gene symbol ORF ID Reference 

I STE11 YLR362W Lang et al., 2013 

I STE12 YHR084W Lang et al., 2013 

I STE4 YOR212W Lang et al., 2013 

P KRE6 YPR159W Lang et al., 2013 

I SFL1 YOR140W Lang et al., 2013 

I STE5 YDR103W Lang et al., 2013 

P ANP1 YEL036C Lang et al., 2013 

I GCN1 YGL195W Lang et al., 2013 

I ERG5 YMR015C Gerstein et al., 2012 

P ERG7 YHR072W Gerstein et al., 2012 

I CNE1 YAL058W Lang et al., 2013 

I GPB1 YOR371C Lang et al., 2013 

P KEG1 YFR042W Lang et al., 2013 

I KRE5 YOR336W Lang et al., 2013 

I TOH1 YJL171C Lang et al., 2013 

P SUL4 YBR294W Gresham et al 2008 

I GAL3 YDR009W Hittinger et al., 2004; Stern, 2013 

I GIN4 YDR507C Gresham et al 2008 

I PDR1 YGL013C Anderson et al. 2003 

I SGF73 YGL066W Gresham et al 2008 

I SET4 YJL105W Lang et al., 2013 

I SIR1 YKR101W Gresham et al 2008 

I ACE2 YLR131C Lang et al., 2013 

I GAS1 YMR307W Lang et al., 2013 

I WHI2 YOR043W Lang et al., 2013 

I CKA2 YOR061W Gresham et al 2008 

 457 
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Table 5. Multivariate Wilks tests of significance and powers for network parameters to explain protein 460 
evolutionary rate (�), gene expression (Codon Adaptation Index CAI), and evolutionary rewiring between 461 

species of yeast (�). All predictors were significant. 462 

 463 

  Wilks’ 

Lambda 

F Effect df Error df p Observed 

power (alpha) 

Intercept 0.317 1569.597 3 2188 <0.001 1.000 

Neighborhoo

d connectivity 

0.924 59.892 3 2188 <0.001 1.000 

Betweenness 

centrality 

0.995 3.931 3 2188 0.008 0.832 

Average 

shortest path 

length 

0.961 29.553 3 2188 <0.001 1.000 
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 466 

 467 
 468 
Figure 1. Examples for different levels of genetic constraint. Linkage is a transient constraint, which is 469 
broken up through recombination or other chromosome rearrangements. If a gene arises through 470 
duplication, phylogenetic constraint means that the function of its gene product may be non-independent 471 
with relation to the ancestral gene product. Codon constraint describes the likelihood of the different codon 472 
positions to produce beneficial mutations. Protein functional site constraint describes constraint located in 473 
genomic regions that code for functional sites of proteins versus other regions of the proteins. This is related 474 
to the idea that gene products form a functional genomic network. Within this network, interactions of these 475 
gene products also pose an element of constraint on evolution, but this is not well researched.  476 
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 490 
 491 
Figure 2. Proposed testable relationship between functional genomic network architecture, network 492 
node position, and evolutionary outcomes. SN are subnetworks within the functional genomic network 493 
of a population with distinct functions (e.g., metabolic pathways). Standing genetic variation exists within 494 
nodes, but depends on their position within the network. Black nodes (H) are essential for organismal 495 
function and not likely to accumulate non-synonymous mutations; Grey nodes (I) are functionally 496 
connected with many others and constrained in accumulating non-synonymous mutations. White nodes (P) 497 
are functionally connected to fewest others and most likely to accumulate non-synonymous mutations. 498 
Resulting from this, three evolutionary outcomes can be explained: Rapid adaptation is facilitated in white 499 
nodes through their high standing genetic variation. Selection being constrained to operate on these nodes 500 
in a specific subnetwork increases the speed of adaptation. Convergent evolution is facilitated through the 501 
finite number of networks that are related to specific functions and shared among species through common 502 
ancestry. The likelihood of convergent evolution within one subnetwork in response to selection increases 503 
through the moderate level of genetic variance, combined with constraint posed by the high number of 504 
connections to other nodes. Genic evolution is facilitated through the selection pressure only having an 505 
effect in the subnetwork with organismal functions related to it but not in others. Selection is likely to 506 
operate on standing genetic variation, which is likely concentrated in white nodes (shown as blue squares). 507 
These different processes can explain the coexistence of convergent and divergent (rapid, genic) evolution 508 
within the genomes of a population.   509 
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 510 
 511 
Figure 3. Distribution of yeast interactome nodes within network parameter space (neighborhood 512 
connectivity, average shortest path length, and betweenness centrality). The top values for each axis are 513 
colored in shades of red (light, filled: P-nodes; light, open: I-nodes; dark, filled: H-nodes). Convergent 514 
evolution nodes are indicated in dark blue. These top values for each axis formed the basis to classify the 515 
remaining nodes based on discriminant function analysis.  516 
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 518 
 519 
Figure 4. Visualization of node classification scheme in yeast interactome. Values of a) average shortest 520 
path length, b) neighborhood connectivity, and c) betweenness centrality within the yeast interactome (left 521 
panels), and values for the DFA-derived hierarchical node categories P, I and H, and for nodes known to 522 
be under convergent evolution in yeasts (C, N=18). The small inset network shows the location of 523 
convergently evolved genes (C-nodes) within the interactome (yellow nodes). 524 
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 526 
 527 
 528 
Figure 5. Relationship between hierarchical node structure of yeast interactome and evolutionary 529 
parameters. Node types are designated as peripheral (P), intermediate (I), or hub (H) based on discriminant 530 
function analysis, and nodes that were found to evolve convergently (C; N=22) in yeasts. Three 531 
evolutionary outcomes (a) substitution rate, (b) expression level, approximated through Codon Adaptation 532 
Index (CAI), and (c) evolutionary rewiring score significantly differ among node categories (see text). C-533 
node boxes are sorted by Median. Double red line: outliers above median not shown in figure but included 534 
in tests. Raw data points - triangles, circles - outliers, stars - extreme values, squares - Medians, boxes - 25-535 
75% data, whiskers - non-outlier range. 536 
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