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PREFACE 

 

The current thesis presents data obtained during my PhD research project, developed at Instituto 

de Medicina Molecular in the period of January 2010 to December 2013, under the supervision 

of Professor Doutor João Pedro Simas (Faculdade de Medicina, Universidade de Lisboa). 

 

This thesis is organized in 9 chapters, which are preceded by a summary written in Portuguese 

and an abstract. Before the description of the results, an introductory review of the subject is 

provided in chapter 1, followed by the aims of the work and the experimental strategy. In chapters 

2, 3, 4, 5, 6 and 7 the original data obtained during this research project are presented. Final 

considerations, including the discussion of the results obtained in previous chapters, and future 

directions are presented in chapter 8. Finally, chapter 9 concerns the description of the materials 

and methodologies employed to carry out the presented work. The publications that resulted from 

the research carried out throughout the duration of this project are included in appendix 1 and 2.  

 
 
 

Data presented in this dissertation were purely the result of work carried out by me and it 

is clearly acknowledge in the text whenever data or reagents produced by others were 

utilized. This work has not been submitted for any degree at this or any university. 
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RESUMO 

 

Os gama-herpesvírus (γHVs) são agentes com potencial oncogénico, que infectam mais de 95% 

da população adulta mundial, e persistem durante toda a vida do hospedeiro através do 

estabelecimento de infecções latentes em linfócitos B de memória. Para persistirem os γHVs 

exploram o normal ciclo de vida da célula B, induzindo a proliferação de células latentemente 

infectadas em centros germinativos e a sua posterior diferenciação em células B de memória de 

longa duração. Em indivíduos imunocompetentes, o equilíbrio dinâmico entre a capacidade 

linfoproliferativa do vírus e o controlo imunológico, em particular de linfócitos T citotóxicos (CTLs) 

CD8+, permite que o vírus persista sem causar doença. Contudo, se o equilíbrio γHV-hospedeiro 

é perturbado, nomeadamente quando a função de CD8+ CTLs é comprometida, as células B 

latentemente infectadas podem proliferar descontroladamente dando origem a doenças 

linfoproliferativas. Os dois γHVs humanos conhecidos até à data – vírus Epstein-Barr (EBV) e o 

vírus associado ao sarcoma de Kaposi (KSHV) – estão associados ao desenvolvimento de várias 

neoplasias como o linfoma de Burkitt, linfoma de Hodgkin, carcinoma da nasofaringe, sarcoma 

de Kaposi, entre outras. Consequentemente, o controlo dos γHVs constitui um objectivo clínico 

prioritário. 

Os epítopos virais de latência apresentados no contexto de moléculas do complexo principal de 

histocompatibilidade (MHC) à superfície de células latentemente infectadas e de tumores 

constituem um alvo para CD8+ CTLs. A apresentação destes epítopos latentes tem sido 

explorada com sucesso para prevenir e tratar doenças linfoproliferativas agudas causadas por 

EBV, através da transferência de CTLs, em pacientes submetidos a terapia imunossupressora 

após um transplante. Contudo, a optimização e a extensão deste tipo de imunoterapia a outras 

neoplasias induzidas por γHV, bem como o desenvolvimento de vacinas com fins profilácticos e 

terapêuticos tem-se revelado difícil, constituindo actualmente um importante desafio. A estrita 

especificidade de hospedeiro dos γHVs humanos tem limitado estudos in vivo. 

Consequentemente, um dos maiores desafios no estudo do controlo imunológico da infecção por 

γHVs consiste em relacionar a função efectora de CD8+ CTLs determinada in vitro com um efeito 

imunoprotector efectivo in vivo. 

Esta tese teve como principal objectivo identificar determinantes imunológicos críticos para o 

eficaz controlo in vivo da linfoproliferação induzida por γHV. Neste estudo utilizou-se a infecção 

de ratinhos de laboratório com o herpesvírus de murganho-4 (MuHV-4) como modelo 

experimental para identificar, in vivo, factores críticos para o eficaz reconhecimento e controlo 

imunológico da infecção latente por γHV. Em particular, analisou-se o impacto que a ligação de 

um epítopo de latência à molécula de MHC classe I e a avidez funcional da célula T para esse 

mesmo epítopo têm no controlo da infecção in vivo. O vírus MuHV-4 é um parasita natural de 

roedores selvagens, geneticamente relacionado com os γHVs humanos, EBV e KSHV, e que à 

semelhança destes, infecta latentemente células B, induzindo a sua proliferação em centros 

germinativos, e posterior diferenciação em células B de memória, como estratégia para persistir 

durante toda a vida do hospedeiro. A proteína de latência M2 codificada por MuHV-4 encontra-
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se envolvida na modulação de vias de sinalização que promovem a activação da célula B e 

simultaneamente constitui um alvo para CD8+ CTLs. M2 contem um epítopo restrito por H2Kd 

(M284-92/Kd) cujo reconhecimento por CD8+ CTLs de ratinhos BALB/c (H2d), mas não de ratinhos 

C57BL/6 (H2b), contribui para o controlo da proliferação das células B em centros germinativos, 

a longo termo após infecção. M2 codifica o único epítopo latente conhecido até à data para 

MuHV-4 e apresenta diversidade de aminoácidos na sua sequência primária, consistente com a 

possibilidade de selecção em resposta a pressão imunológica. Variações na sequência de 

aminoácidos de um epítopo latente que afectem a sua ligação à molécula de MHC classe I ou a 

avidez funcional da célula T CD8+ para o epítopo poderão ter um impacto crucial no controlo da 

infecção latente e, consequentemente, na capacidade de persistência do vírus no hospedeiro. 

Para investigar esta hipótese, neste estudo construíram-se vírus recombinantes nos quais foi 

introduzido em fusão com o C-terminal da proteína M2 um epítopo CD8+ bem caracterizado 

restrito por H2Kb (OVA257-264/Kb) ou variações do mesmo, que diferem num único aminoácido. 

Esta abordagem experimental permitiu que os epítopos introduzidos fossem apresentados num 

contexto fisiológico de latência, com a mesma cinética e no mesmo número de cópias do epítopo 

endógeno (M284-92/Kd). 

Para avaliar a relevância da apresentação e do reconhecimento imunológico de cada epítopo no 

controlo da infecção latente procedeu-se à infecção intranasal de ratinhos do haplotipo H2b com 

os vírus recombinantes construídos. A escolha do haplotipo H2b permitiu analisar o impacto 

individual da introdução de cada epítopo no controlo da proliferação das células B latentemente 

infectadas por CD8+ CTLs, sem que o epítopo endógeno de M2 (M284-92/Kd) fosse reconhecido. 

Cada epítopo foi caracterizado, in vitro, relativamente à sua capacidade de ligação à molécula 

de MHC classe I (H2Kb) e à sua avidez funcional para células T CD8+, purificadas de ratinhos 

OT-I, e que expressam um TCR transgénico específico para o epítopo OVA257-264/Kb.  

O impacto que a ligação de um único epítopo latente derivado de M2 à molécula de MHC classe 

I tem na colonização do hospedeiro foi analisado, in vivo, após infecção de ratinhos C57BL/6 

(H2b), por comparação com a infecção com o vírus selvagem (WT). Cada vírus foi analisado para 

a capacidade de induzir a proliferação de células B latentemente infectadas em centros 

germinativos, durante a fase de expansão de latência, e para a persistência no hospedeiro a 

longo termo. Adicionalmente, analisou-se a resposta de células T CD8+ induzida pelo 

reconhecimento de cada epítopo. Os resultados obtidos revelaram que o reconhecimento de um 

epítopo latente capaz de se ligar fortemente à molécula de MHC classe I comprometeu a 

capacidade do vírus estabelecer latência, traduzindo-se numa forte supressão da proliferação de 

células B latentemente infectadas em centros germinativos e numa diminuição dos níveis de 

persistência a longo termo no hospedeiro. Contudo, uma ligação subóptima à molécula de MHC 

classe I foi suficiente para permitir o estabelecimento de latência, a amplificação de células B 

infectadas em centros germinativos e o estabelecimento de níveis normais de persistência a 

longo termo. Logo, a forte ligação de um epítopo latente derivado de M2 à molécula de MHC 

classe I foi um determinante crítico para o eficaz controlo da linfoproliferação induzida pelo vírus. 

Pequenas variações na capacidade do epítopo se ligar a molécula de MHC classe I foram pouco 
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toleradas, resultando numa perda de controlo da infecção latente. Curiosamente, epítopos com 

ligação óptima à molécula de MHC classe I induziram respostas de CD8+ CTLs relativamente 

pequenas comparativamente com um epítopo com ligação subóptima, o qual produziu a resposta 

com maior magnitude. Estes resultados indicam que respostas de CD8+ CTLs de maior 

magnitude não são necessariamente mais eficazes e protectoras in vivo. Contudo, em ambas as 

situações as células T CD8+ revelaram semelhante capacidade efectora, em termos de produção 

de interferão-gama (IFNγ) e de eliminação de células alvo in vivo.  

A relevância da avidez funcional da célula T CD8+ para o controlo in vivo da infecção latente foi 

analisada após infecção intranasal de ratinhos transgénicos OT-I (H2b) com os diferentes vírus 

recombinantes e com o vírus WT em paralelo. O controlo da infecção latente foi tão mais eficaz 

quão maior a avidez funcional da célula T CD8+ para o epítopo apresentado. Obteve-se, portanto, 

uma hierarquia de diferentes níveis de controlo de latência in vivo, a qual correlacionou com a 

avidez funcional in vitro das células OT-I para cada um dos epítopos apresentados. 

Adicionalmente, demonstrou-se inequivocamente que o controlo da infecção latente foi mediado 

por CD8+ CTLs, visto que, após depleção de células T CD8+ os níveis de latência estabelecidos 

por cada vírus recombinante reverteram para os níveis de latência do vírus WT. Logo, a avidez 

funcional da célula T CD8+ para um epítopo latente revelou-se um factor importante para o 

controlo da infecção latente por MuHV-4. 

O limitado repertório de células T CD4+, inerente ao modelo OT-I, afecta a capacidade destes 

ratinhos desenvolverem centros germinativos, e consequentemente, a habilidade do vírus MuHV-

4 expandir a população de células B latentemente infectadas em centros germinativos. Com o 

objectivo de avaliar a relevância da avidez funcional de CD8+ CTLs para o controlo da infecção 

latente num ambiente mais favorável à linfoproliferação, cotransferiu-se para ratinhos TCRα-/- 

(H2b) células T CD4+ policlonais purificadas de ratinhos C57BL/6 (H2b) e células T CD8+ 

monoclonais isoladas de ratinhos CD45.1 Rag1-/- OT-I (H2b), um dia antes da infecção com os 

vírus recombinantes. O impacto da avidez funcional no desenvolvimento da resposta de CD8+ 

CTLs e no controlo da linfoproliferação induzida por MuHV-4 foram determinados in vivo. A 

expansão in vivo das células OT-I, a sua activação e aquisição de função efectora demonstraram 

uma correlação com a avidez funcional determinada in vitro para cada um dos epítopos, tendo-

se obtido uma hierarquia de resposta de CD8+ CTLs. Por sua vez, esta traduziu-se numa 

hierarquia de diferentes níveis de controlo in vivo da linfoproliferação induzida por MuHV-4. Logo, 

obtiveram-se resultados concordantes com os obtidos previamente usando o modelo de ratinho 

OT-I. Adicionalmente, foi possível estabelecer uma relação entre a avidez funcional in vitro da 

célula T CD8+ para cada epítopo e o controlo da linfoproliferação das células B latentemente 

infectadas em centros germinativos. Uma avidez funcional subóptima da célula T CD8+ para um 

epítopo latente não comprometeu o controlo da linfoproliferação induzida por MuHV-4 em centros 

germinativos. Contudo, uma drástica diminuição na avidez funcional da célula T CD8+ suprimiu 

o controlo da infecção, permitindo a expansão das células B latentemente infectadas. Logo, este 

aspecto do reconhecimento imunológico revelou-se mais flexível, quando comparado com o 
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efeito que semelhante perda de ligação à molécula de MHC classe I teve, no controlo da 

linfoproliferação induzida pelo vírus. 

Em suma, este estudo demonstrou que a introdução de um único epítopo CD8+ numa proteína 

de latência permitiu o eficaz controlo da linfoproliferação aguda induzida por MuHV-4 em centros 

germinativos e uma diminuição dos níveis de persistência no hospedeiro a longo termo, através 

de uma resposta de CD8+ CTLs específica. Adicionalmente, os resultados obtidos nesta tese 

permitiram identificar a capacidade de ligação de um epítopo latente à molécula de MHC classe 

I e a avidez funcional da célula T CD8+ para esse epítopo como determinantes imunológicos 

críticos do controlo in vivo da linfoproliferação induzida por γHV. A ligação óptima do epítopo à 

molécula de MHC classe I foi crucial para o eficaz controlo in vivo da linfoproliferação induzida 

pelo vírus, enquanto que variações na avidez funcional da célula T CD8+ para o epítopo foram 

melhor toleradas, até se reflectirem numa perda de controlo da infecção in vivo. Logo, este estudo 

permitiu relacionar, para um epítopo latente, valores de interacção com a molécula de MHC 

classe I e com a célula T CD8+ determinados in vitro com o respectivo efeito imunoprotector in 

vivo, destacando a importância e o potencial de se estabelecerem directrizes quantitativas para 

o controlo da infecção por γHV a partir de medidas bioquímicas.  

Em conclusão, a identificação de determinantes imunológicos críticos para o eficaz controlo in 

vivo da linfoproliferação induzida por γHV é fundamental para o desenvolvimento de 

imunoterapias e estratégias de vacinação, tendo em vista a prevenção ou controlo da infecção 

persistente por γHV. 

 

 

Palavras-chave: Gamma-herpesvírus; linfoproliferação induzida pelo vírus; linfócitos T citotóxicos 

CD8+; epítopo de latência; ligação a MHC classe I; avidez funcional da célula T CD8+. 
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ABSTRACT 

 

Gamma-herpesviruses (γHVs) are oncogenic pathogens that drive the proliferation of latently 

infected cells in germinal centres to achieve long-term persistence in memory B cells in face of 

host competent immune responses. Persistence relies on a dynamic balance between virus-

driven B cell proliferation and control by CD8+ cytotoxic T lymphocytes (CTLs). If this virus-host 

equilibrium is disrupted, as is the case when CD8+ CTL function is compromised, latently infected 

B cells can proliferate unchecked leading to the development of lymphoproliferative diseases. 

Viral latency epitopes presented in infected cells have been successfully exploited to prevent or 

treat γHV-associated lymphoproliferative disorders by adoptive CTL transfer in the transplantation 

setting. However, extending this approach to other γHV-associated tumours and to the 

development of prophylactic and therapeutic vaccines remains challenging. The narrow species 

tropism of human γHVs severely restricts in vivo analysis. Hence, an important unknown is how 

in vitro CD8+ CTL killing correlates with effective in vivo immune protection.    

The aim of this thesis was to identify immune engagement thresholds for effective in vivo CD8+ 

CTL control of virus-driven B cell proliferation. Infection of laboratory mouse with murid 

herpesvirus-4 (MuHV-4) was used as an experimental model to investigate, for a single latently 

expressed epitope, how MHC class I binding and CD8+ T cell functional avidity impact on infection 

control. The ability of MuHV-4 recombinants that differed only in latency epitope presentation to 

elicit epitope-specific CD8+ CTL responses and to drive the proliferation of latently infected B cells 

was assessed. CD8+ CTL control of latency amplification in GC B cells was critically dependent 

on strong epitope binding to MHC class I. By contrast, CD8+ T cell recognition was effective over 

a broad range of functional avidities before control of virus-driven lymphoproliferation failed, thus 

showing relatively good tolerance for sub-optimal T cell receptor engagement. In summary, this 

study identified critical MHC class I and CD8+ T cell engagement thresholds for in vivo CD8+ CTL 

control of virus-driven B cell proliferation. Defining in vivo thresholds of immune engagement for 

the effective control of γHV persistent infection is fundamental for the development of successful 

immunotherapies and vaccines. 

 

 

Keywords: Gamma-herpesvirus; virus-driven lymphoproliferation; CD8+ cytotoxic T lymphocytes; 

latent epitope; MHC class I binding; CD8+ T cell functional avidity. 
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ACr  acidic central repeat  

AIDS  acquired immunodeficiency syndrome  

AP  alkaline phosphatase 

APC  antigen-presenting cell  

APL  altered peptide ligand 

ATP  adenosine triphosphate  

BAC  bacterial artificial chromosome 

BCR  B cell receptor  

BHK  baby hamster kidney 

BL  Burkitt’s lymphoma   

bp  base pair 

CFSE  carboxyfluorescein succinimidyl ester 

CI  confidence interval 

cpe  cytopathic effect 

CSR  class switch recombination  

CTL  cytotoxic T lymphocyte 

DC  dendritic cell 

DIG  digoxigenin  

DMEM  Dulbecco’s modified Eagle’s medium 

DNA   Deoxyribonucleic acid 

EBER  EBV-encoded RNA  

EBNA  EBV nuclear antigen 

EBV  Epstein-Barr virus 

EC50  half-maximum effective concentration  

EDTA  ethylenediaminetetraacetic acid 

FACS  flow activated cell sorting 

FCS  fetal calf serum 

GAr  glycine-alanine repeat  

GC  germinal centre  

GMEM  Glasgow's modified Eagle's medium  

GVHD  graft-versus-host disease 

h  hour 

HEL   hen egg lysozyme  

HIV  human immunodeficiency virus  

HL  Hodgkin’s lymphoma  

HLA  human leukocyte antigen  

HMW  high molecular weight 

Ig  immunoglobulin  
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i.n.  intranasal  

i.p.  intraperitoneal 

ICA  infectious centre assay 

IFNγ  interferon-gamma  

IL  interleukin 

IM  infectious mononucleosis  

IRF  interferon regulatory factor 

ISH  in situ hybridization 

ITAM  immunoreceptor tyrosine-based activation motif 

i.v.  intravenous  

kbp  kilo base pair 

Kd  dissociation constant 

KICS  KSHV-inflammatory cytokine syndrome 

KS  Kaposi sarcoma 

KSHV  Kaposi sarcoma-associated herpesvirus 

LANA  latency-associated nuclear antigen 

LB  Luria Bertani 

LCL  lymphoblastoid cell line  

LMP  latent membrane protein 

MAb  monoclonal antibody 

MARCH membrane-associated RING-CH containing  

MCD  multicentric Castleman disease 

MFI  mean fluorescence intensity 

MHC  major histocompatibility complex  

min  minute 

miRNA  microRNA 

MHV-68 Murine herpesvirus 68 

MOI  multiplicity of infection 

MuHV-4 Murid herpesvirus 4  

MZ  marginal zone 

NCBI  National Centre for Biotechnology Information 

NF-κB  nuclear factor-kappa B  

NK  natural killer 

NP  nucleoprotein 

NPC  nasopharyngeal carcinoma  

nt  nucleotide  

OD  optical density 

ORF  open reading frame 

OVA  ovalbumin 

p.i.  post-infection 
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PBS  phosphate-buffered saline 

PCR  polymerase chain reaction 

PEL  primary effusion lymphoma  

PFU  plaque forming unit 

pMHC  peptide-MHC  
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3 

Introduction 

Gamma-herpesviruses, such as Epstein-Barr virus and Kaposi sarcoma associated herpesvirus, 

are human pathogens that establish lifelong latent infections in B lymphocytes. Latency is the 

hallmark of herpesviruses allowing them to persist in a non-infectious form, from which they 

periodically reactivate to disseminate to new hosts. It is characterized by limited gene expression, 

without virion production, and maintenance of the viral genome as a non-integrated circular 

episome, replicated by host cell DNA polymerase and equally distributed to daughter cells, when 

the latently infected cell divides during the course of cellular growth.  In the immunocompetent 

host latent infection is kept under control by the immune system and the virus persists without 

causing disease, indicating that a fine co-evolutionary balance has favored the survival of both 

virus and humans. However, if the virus-host equilibrium is broken, usually when the CD8+ T 

lymphocyte function is compromised, lymphoproliferative disorders can arise. In the absence of 

a competent immune response, latently infected cells can proliferate unchecked, leading to the 

development of lymphoproliferations that can range from controllable disease to highly aggressive 

life-threatening malignancy. This makes the control of gamma-herpesviruses an important clinical 

goal. Therefore, a major challenge consists in understanding the factors that regulate the fine 

balance between virus-driven proliferation of latently infected B cells and host immune control. 

This understanding is crucial in order to provide the opportunity to improve or develop new 

therapeutic strategies against these viruses. Furthermore, studying virus/T cell interaction will 

increase the knowledge on essential processes of viral pathogenesis and immune system 

function. 

 

1.1. Epstein-Barr virus 

Epstein-Barr virus, or EBV, was discovered 50 years ago in cultured tumour cells from patients 

with Burkitt’s lymphoma (Epstein et al., 1964) and subsequently was found in several other 

lymphomas and carcinomas (Cesarman, 2014). If the success of a pathogen is defined by the 

number and extent of hosts it infects, EBV is the most successful human pathogen because it 

benignly infects more than 95% of the worldwide adult human population and persists for life 

(Kutok and Wang, 2006). Primary EBV infection in vivo generally occurs in the first decade of life 

and is usually asymptomatic. However, if the infection is acquired during adolescence or later, it 

can result in infectious mononucleosis (IM), a self-limiting lymphoproliferative disease (Henle et 

al., 1968; Kutok and Wang, 2006). Primary infection by EBV is rapidly controlled by both cellular 

and humoral immune mechanisms. Antibody limits the spread of infectious virus and cytotoxic T 

cells eliminate lytically and latently infected cells that express viral antigens (Hislop et al., 2007b). 

However, the immune system is unable to eliminate the virus, and as a consequence, EBV 

persists in vivo in a quiescent state in resting memory B lymphocytes that circulate in the 

peripheral blood for the life of healthy carriers (Babcock et al., 1998). Persistent infection is 
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characterized by stable low levels of latently infected memory B cells, approximately 1 in 10,000 

to 100,000 memory B cells (Laichalk et al., 2002). A low level of active viral replication continues 

asymptomatically in EBV carriers, leading to virus secretion into the saliva and allowing EBV 

transmission from one human to another through the oral route. Nevertheless, the virus is 

continuously monitored by the host immune system, as cytotoxic T lymphocytes (CTLs) and 

serum antibodies accompany the lifelong persistent infection, which are also stable over time 

(Hislop et al., 2007b). Therefore, EBV persistence is understood as a dynamic equilibrium 

between the virus-driven B cell proliferation ability and the host immune control. By contrast, in 

vitro EBV is a potent transforming virus capable of infecting any resting B cell, driving it out of the 

resting state to become and activated proliferating lymphoblast (Aman et al., 1984; Pope et al., 

1968; Thorley-Lawson and Mann, 1985). 

Regardless of the benign and uneventful nature of EBV infection in the majority of humans, EBV 

has been associated with a number of diseases that generally fall into two categories: 

autoimmunity and cancer. EBV-associated malignancies, such as B cell lymphomas, develop 

more frequently in the individuals whose immune system is compromised, further indicating that 

the regulation of EBV infection in B cells is finely balanced.  

 

1.1.1. Germinal centre model of EBV infection 

Two biological models have been proposed to explain EBV persistence: the germinal centre (GC) 

model (Thorley-Lawson, 2001; Thorley-Lawson, 2005; Thorley-Lawson et al., 2008; Thorley-

Lawson et al., 2013) and the direct infection model (Kurth et al., 2003; Kurth et al., 2000). 

The GC model, proposed by Thorley-Lawson and co-workers, states that EBV persists by 

exploiting normal B cell biology (Figure 1.1). Hence, according to it newly latently infected B cells 

pass through a series of differentiation stages, each employing a discrete viral gene transcription 

programme. Following oral transmission, EBV establishes a lytic infection of permissive cells in 

the oropharynx, leading to high levels of virus shedding in saliva. It is thought that both squamous 

epithelial cells and locally infiltrating B cells support this lytic infection. Whether de novo infected 

B cells can enter the lytic cycle immediately or only after a phase of growth transformation is not 

known. Thereafter, the virus colonises the general B cell system via growth-transforming latent 

infection of B cells in local lymphoid tissue such as the tonsil. According to the GC model, EBV 

directly infects naïve B cells, causing their activation into proliferating latently infected blasts, 

through expression of the growth transcription programme also known as latency III (Table 1.1) 

(Babcock et al., 2000; Joseph et al., 2000). The growth transcription programme is characterized 

by the expression of the full repertoire of EBV latent proteins, consisting of six EBV nuclear 

antigens (EBNAs) 1, 2, 3A, 3B, 3C and LP, and three latent membrane proteins (LMPs) 1, 2A and 

2B.  
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Figure 1.1. Normal B cell response and the parallel with the germinal centre (GC) model of EBV 

persistence. (A) Normal B cell response. The epithelium of the tonsil continuously samples antigens 

entering the mouth. Underneath the epithelium, naïve B cells that encounter cognate antigen become 

activated and migrate into a follicle where they receive further activation signals from dendritic cells and 

helper T cells, and establish a germinal centre (GC) reaction. In the GC, the blast undergoes repeated 

rounds of cell division, proliferating rapidly, in association with somatic hypermutation (SHM) and class 

switch recombination (CSR), followed by interaction with follicular dendritic and T cells to select those blasts 

that have the highest affinity for the antigen. The later receive further survival and differentiation signals, 

while the other cells die by apoptosis. The surviving ones differentiate into either a plasma cell or a memory 

B cell and leave the GC. Upon re-challenge with the antigen, memory B cells are quickly activated and 

differentiate into antibody producing plasma cells. (B) Germinal centre model of EBV persistence. EBV 

traverses the epithelium and infects a naïve B cell, activating it into a proliferating latently infected blast, as 

though the cell was responding to antigen, through expression of all nine known latent proteins – the growth 

transcription programme. These cells migrate to the follicle where the viral transcription programme changes 

to the more restricted default programme and a GC reaction is established. Subsequently the latently 

infected cells differentiate into memory B cells that leave the follicle. In the periphery, all viral protein 

expression is shut down – the latency programme – and the latently infected cells are maintained as normal 

memory B cells. These memory B cells can occasionally divide to maintain the pool of latently infected cells 

and so express the genome tethering protein EBNA1 – the EBNA1 only programme. At any time a small 

subset of latently infected memory B cells initiates lytic replication in association with terminal differentiation 

signals. Reactivation leads to the production of infectious virus and cell death. These virions can either 

replicate at a secondary tissue, where they are amplified and shed into saliva for transmission to new hosts, 
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or infect new naïve B cells, thus restarting the cycle of infection (adapted from Thorley-Lawson, 2005 and 

Thorley-Lawson et al., 2013). 

 

In culture, EBV immortalises resting human B cells by expressing the growth programme, driving 

the establishment of continuously proliferating lymphoblastoid cell lines (LCLs) (Thorley-Lawson 

and Mann, 1985). In vivo, proliferating latently infected blasts then migrate into a follicle to 

participate in the GC reaction and switch the viral transcription programme to a more restricted 

pattern of latent protein expression, the default programme also referred to as latency II (Table 

1.1) (Babcock et al., 2000; Roughan and Thorley-Lawson, 2009; Roughan et al., 2010). This viral 

transcription programme is characterized by the expression of only three latent proteins, EBNA1 

(the viral genome tethering protein), LMP1 (a CD40 functional homologue) and LMP2A (a B cell 

receptor (BCR) homologue), that have the potential to mimic B cell survival and progression 

signals transmitted from helper T cells and through the BCR, respectively  (Caldwell et al., 1998; 

Casola et al., 2004; Gires et al., 1997; He et al., 2003). Such signalling drives the differentiation 

of the latently infected B cells into memory B cells that leave the GC and enter the peripheral 

circulation (Thorley-Lawson, 2001). In latently infected memory B cells, EBV either only expresses 

the EBNA1 protein required for tethering the EBV DNA to the dividing host cell chromosomes, 

thereby maintaining and segregating the episomal DNA when B cells divide, EBNA1 only 

programme or latency I (Table 1.1); or no viral proteins at all, thereby shutting down all protein 

expression (Babcock et al., 2000). This later state, referred to as the latency programme or 

latency 0 (Table 1.1), is considered the “true” latency. Therefore, the memory compartment has 

been considered the site of long-term persistence because the virus is quiescent and, 

consequently, invisible to the host immune system. 

 

 

Table 1.1. Patterns of EBV latent gene expression in different B cell subsets of healthy 
individuals and in malignancies. The corresponding expression profiles in malignant 
lymphomas have been designated latencies I, II and III (adapted from Thorley-Lawson, 2005). 

Transcription 
programme 

Genes expresseda 
Infected normal  

B cell type 
Function Lymphoma type 

Growth 
(Latency III) 

EBNA1, 2, 3A, 3B, 3C, 
LP, LMP1, LMP2A and 
LMP2B 

Naïve B cell activation Immunoblastic 
lymphoma, PTLD 

Default 
(Latency II) 

EBNA1, LMP1 and 
LMP2A 

Germinal centre  Differentiation of 
activated B cell into 
memory 

Hodgkin’s disease 
Natural Killer-T cell 
lymphoma 

EBNA1 
(Latency I) 

EBNA1 Dividing memory  Cellular division of 
latently infected 
memory B cells 

Burkitt’s lymphoma 
Primary effusion 
lymphoma 

Latency 
(Latency 0) 

None Resting memory  Allow lifetime 
persistence 

 

Lytic All lytic genes Plasma cell Viral replication in 
plasma cell 

 

aDoes not include the noncoding EBER and BART RNAs. 

PTDL – Post-transplant lymphoproliferative disease 
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In addition to these latent proteins, EBV expresses several noncoding RNAs. Among these are 

the EBV-encoded RNA (EBER) 1 and 2, which are small noncoding RNAs expressed ubiquitously 

and abundantly in EBV infected cells (Swaminathan, 2008). MicroRNAs (miRNAs) are also 

expressed during EBV latency. EBV encodes two clusters of miRNAs, one adjacent to the BHRF1 

gene and the other with the BART transcript. At least 22 precursor and 44 mature EBV miRNAs 

have been identified (Lopes et al., 2013; Swaminathan, 2008). Recently, distinct patterns of EBV 

miRNA expression associated with latency III and the restricted forms of latency, latency II, I and 

0, have been found in latently infected cells in vivo (Qiu et al., 2011).  

At any time a small subset of latently infected memory B cells can reactivate and initiate lytic 

replication, which is thought to occur in response to normal physiologic signals that drive terminal 

B cell differentiation into a plasma cell (Laichalk and Thorley-Lawson, 2005). EBV reactivation is 

subdivided into three distinct phases; immediate early when the transcription factors that initiate 

viral replication are expressed, early, when the proteins involved in viral DNA replication are 

produced, and late, when viral DNA and structural proteins are assembled into virions. The large 

amount of virus continually shed by healthy individuals suggests that the viruses released by 

plasma cells replicate at a secondary site (Thorley-Lawson et al., 2008). It is widely believed that 

epithelial cell infection amplifies the levels of infectious virus before shedding (Hadinoto et al., 

2009). Released infectious virus can then either be shed into saliva for horizontal viral spread to 

new hosts or infect new naïve B cells, thus completing the infectious cycle. Each stage of this 

cycle has been demonstrated experimentally (Babcock et al., 1998; Babcock et al., 2000; Laichalk 

and Thorley-Lawson, 2005) and, with the exception of the memory compartment, is potentially 

regulated by the host immune system, which targets latently infected blasts and lytically infected 

plasma cells with cytotoxic T lymphocytes (CTLs) (Figure 1.2) and free virus with neutralizing 

antibodies (Hislop et al., 2007b).  

Currently a major unanswered question concerns to the exact role of LMP1 and LMP2A on the 

GC process. Specifically, it remains unclear if the role of EBV is essentially passive as latently 

infected cells transit the GC or if the virus actually plays an active role. In vitro studies and 

evidence from transgenic mouse models have shown that LMP1 and LMP2A have the potential 

to drive GC B cell survival and differentiation in the absence of T cell help and antigen (Caldwell 

et al., 1998; Casola et al., 2004; Gires et al., 1997). However, latently infected memory B cells 

have molecular hallmarks of classical antigen-selected memory B cells, that is, their 

immunoglobulin (Ig) genes bear somatic mutations and are typically isotype switched (Souza et 

al., 2005; Souza et al., 2007; Tracy et al., 2012). Moreover, a recent study using a double LMP1 

and LMP2A transgenic mouse model indicates that when co-expressed these two proteins have 

a modest impact on the GC process (Vrazo et al., 2012). Therefore, it has been suggested that 

LMP1 and LMP2A may simply provide the minimal signals required for the survival of EBV 

infected cells in the competitive environment of the GC, or may ensure that infected cells 

differentiate into memory rather than plasma cells (Thorley-Lawson et al., 2013). Further studies 

are needed to clarify this matter. 



Chapter 1 

8 

Rajewsky and co-workers have proposed that EBV infected cells do not participate in the GC 

reaction but, rather, that EBV directly infects memory B cells (Kurth et al., 2003; Kurth et al., 

2000). Although proposed over 10 years ago, this direct infection model remains ill-defined, 

unverified at the biological level and unable to explain the origin of EBV-associated lymphomas. 

The GC model remains the only experimentally validated model that explains both EBV biology 

and the origin and pathogenesis of EBV-associated lymphomas. However, a quantitative analysis 

of viral persistence and an understanding of the dynamic interactions between the different 

components of the GC model and how their regulation by the immune system produces the EBV 

pattern of persistence has been lacking. Recently, a mathematical description of the GC model 

has been developed that successfully recapitulates persistent EBV infection, correctly predicting 

the observed patterns of cytotoxic T cell regulation, namely which and by how much each infected 

population is regulated by the immune response, and the sizes of the infected GC and memory 

B cell populations (Delgado-Eckert and Shapiro, 2011; Hawkins et al., 2013). Importantly, this 

mathematical model predicts that it is the cycle of infection that explains persistence and provides 

the stability that allows EBV to persist at the extremely low levels observed, rather than 

quiescence in the memory B cell compartment. Thus, this moves the focus away from a single 

infected stage, the immunological invisible memory B cell compartment, to the entire cycle of 

infected stages (Figure 1.2). Experimental approaches that will distinguish between these two 

interpretations of the mechanism behind the GC model of persistence are now required. 

 

 

 

 

Figure 1.2. Cyclic EBV biological model. Naïve B cells infected by EBV, move into the follicle and enter 

the germinal centre (GC), where they continue to divide as EBV-infected GC B cells before differentiating 

into latently infected memory B cells that exit into the periphery. A small subset of memory B cells are induced 

to undergo lytic reactivation, processing through the lytic stages immediate early, early and late. Released 

infectious virus may be amplified through infection of the epithelium (not detailed in the model), but culminate 

in the infection of new naïve B cells which become blasts, thus completing the cycle. Theoretically each 

stage of the cycle has the capacity to elicit a CD8+ cytotoxic T lymphocyte (CTL) response and to promote 

Blast GC

MemoryLate

Early
Imm
Early

CTL

CTLCTL

CTLCTL

CTL
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the proliferation of its cognate CTL population (curved arrows) and is in turn controlled by those CTLs (red 

inhibitory arrows). Under biological conditions the blast, immediate early and early stages are always 

regulated by CTLs, while the GC and late stages may not always be recognized by CTLs, and there is never 

a CTL response against the memory stage (adapted from Thorley-Lawson, et al. 2013 and Hawkins et al., 

2013). 

 

1.1.2. EBV-associated malignancies 

EBV-associated tumours can be categorized by those that occur in immunosupressed individuals 

versus those that occur in individuals without overt evidence of immunosuppression (Kutok and 

Wang, 2006). The first category comprises post-transplant lymphoproliferative diseases (PTLDs) 

in patients undergoing transplantation, who are iatrogenically immunosuppressed, and 

immunoblastic lymphomas in patients with acquired immunodeficiency syndrome (AIDS), who are 

immunocompromised by human immunodeficiency virus (HIV) infection. These B cell 

lymphoproliferative diseases reflect the failure of the immune system, particularly of the CTL 

response, to control EBV-driven B cell proliferation. The other category includes Burkitt’s 

lymphoma (BL), Hodgkin’s lymphoma (HL) and nasopharyngeal carcinoma (NPC), a small subset 

of natural killer (NK) and T cell lymphomas, gastric carcinomas, follicular dendritic tumours and 

other epithelial carcinomas. These are found in the immunocompetent host, typical occur many 

years after primary EBV infection, and EBV is considered has one factor in a complex multistep 

process of malignant transformation (Mesri et al., 2014). In these cases, EBV genes that affect 

cell proliferation and survival may contribute directly to tumorigenesis or increase the potential for 

genetic transformation events. The current understanding indicates that EBV contributes to 

lymphomagenesis by affecting genome stability and by subverting the cellular molecular 

signalling machinery and metabolism to avoid immune surveillance and enhance tumour growth 

and survival (Cesarman, 2014). 

The GC model provided the first and, to date, only explanation for the origin of the EBV-associated 

lymphomas and the reason they express restricted patterns of latent proteins, despite having little 

to say about the origin of EBV-associated carcinomas (Thorley-Lawson and Gross, 2004). 

According to it any disruption of the immune system that interferes with the ability of EBV infected 

cells to become a resting memory B cell will increase the risk of tumour development. Therefore, 

different EBV-associated tumours are predicted to derive from different and discrete stages in the 

life cycle of latently infected B cells and represent a cell that is blocked from progressing into a 

resting state and thus continues to express the viral transcription programme of its progenitor. 

Using the GC latency model describing the predominant antigen expression and immunogenicity 

of infected cells, EBV-related tumours can be categorized into different latency types (Table 1.1). 

The growth transcription programme or latency type III pattern of EBV expression characterizes 

the EBV-associated B cell lymphoproliferative diseases that occur in individuals severely 

immunocompromised by organ transplantation, HIV infection or congenital immunodeficiency. 
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The obvious explanation is that an impaired CTL response permits uninhibited growth of EBV 

latently infected blasts expressing the growth programme, which are unable to exit the cell cycle. 

In some cases, additional genetic defects may occur in EBV-infected cells. These can include 

genes encoding p53, c-myc, or BCL-6. Because EBV expression of the growth transcription 

programme elicits an immune response in immunocompetent individuals, latency III B cells are 

eliminated by CTLs, and thus lymphomas with EBV latency type III will only develop in 

immunodeficient individuals, while EBV lymphomas and cancers in immunocompetent hosts 

display latency II or I patterns. 

HL is believed to derive from a latently infected GC B cell which have failed to successfully 

differentiate into a resting memory B cell and therefore constitutively expresses the default 

transcription programme or latency II (Thorley-Lawson and Gross, 2004). Latency type II is also 

observed in some types of T and NK cell lymphomas and in NPC. Why the default programme, 

usually found in GC B cells, is expressed in these tumours is completely unclear. BL was initially 

proposed to derive from a latently infected memory B cell and EBNA1 is the only latent protein 

expressed in this tumour. However, recent bioinformatics and genomics analysis indicate a GC 

origin also for BL (Victora et al., 2012). The interpretation for the origin of BL has been that it 

arises from a GC B cell that has left the follicle to become a resting memory B cell but is unable 

to do so because of a reciprocal c-myc translocation with one of three immunoglobulin chains, 

causing constitutively activation of the c-myc proto-oncogene; thus it maintains a GC cellular 

phenotype but attains the memory EBV phenotype (Thorley-Lawson and Gross, 2004). 

Additionally, it is now known that EBV-associated tumours, such as BL, HL, NPC and gastric 

carcinoma, do also express a large number of miRNAs encoded in the BART region (Qiu et al., 

2011). In vitro, these miRNAs have been shown to be dispensable for B cell transformation, but 

to confer an increased resistance to apoptosis (Marquitz et al., 2011; Seto et al., 2010). 

Furthermore, EBV encoded miRNAs have been shown to promote the survival of BL tumour cells 

in vitro (Vereide et al., 2014). Hence, currently BART miRNAs are believed to play a crucial role 

in vivo conferring survival/growth advantages for the tumours (Zhu et al., 2013). 

 

1.1.3. Immune control of EBV infection 

A potent innate and adaptive immune response occurs during primary EBV infection. This 

response, although it controls infection, does not eliminate it, and the virus remains for the lifetime 

of the infected individual. Thus, EBV persists in face of a host competent immune response in a 

lifelong dynamic balance with the host immune system. 

Cell mediated immune responses are crucial at all stages of the virus-host interaction; acting both 

to bring the primary infection under control and to limit reactivation of the persistent infection from 
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its latent reservoir. The main effectors of these cellular responses are natural killer (NK) cells, 

CD4+ and CD8+ T cells (Figure 1.3) (Rickinson et al., 2014).  

CD8+ CTLs play a crucial role in protecting the host during EBV persistent infection. Their 

importance for the surveillance of EBV latently infected cells can be inferred from the fact that 

EBV-associated lymphomas frequently occur under conditions of compromised T cell function. 

Additionally, the importance of CD8+ CTLs is further highlighted by the successful treatment of 

EBV-related lymphoproliferative disorders by adoptive transfer of EBV-specific CTLs (details in 

section 1.1.7) (Bollard et al., 2012). 

Before focusing on the CD8+ T cell control of EBV infection it is important to consider some 

aspects of CD8+ cytotoxic T lymphocyte biology and response. 

 

1.1.4. CD8+ cytotoxic T lymphocytes 

Virus-specific CD8+ cytotoxic T lymphocytes (CTLs) recognize through their T cell receptor (TCR) 

viral epitopes, derived from the intracellular processing of viral proteins, that are displayed on the 

surface of infected cells by major histocompatibility complex (MHC) class I glycoproteins (called 

human leukocyte antigen (HLA) complex in humans) (Janeway et al., 2005). Antigen recognition 

drives CD8+ T cell activation a process characterized by robust proliferation and differentiation 

into effector CTLs. These acquire the ability to produce effector cytokines such as interferon-

gamma (IFNγ) and tumour-necrosis factor (TNF). CD8+ CTLs can induce apoptosis of target cells 

displaying specific antigen, either by releasing cytotoxins (perforin and granzymes) or by Fas-Fas 

ligand interactions, and thus contribute to infection clearance. Subsequently most of the virus-

specific CTLs die during the programmed contraction (cell death) phase while the surviving ones 

lead to the formation of a memory CD8+ T cell pool (Janeway et al., 2005). 

The specificity in the cellular immune response arises from an extensive TCR repertoire, as well 

as from MHC polymorphisms that control the size and diversity of the peptide repertoire presented 

(Janeway et al., 2005). The TCR diversity is critical to accommodate the myriad of potential 

peptide-MHC (pMHC) complexes comprising virus-derived peptides. Despite the potentially vast 

TCR repertoire, some immune responses, such as the CTL response to EBV, display strong 

biases in TCR selection. Although the understanding of the underlying mechanisms of TCR bias 

is far from complete, pMHC-I structure is considered to play a role. MHC molecules are encoded 

in a large cluster of genes that is inherited as a group or haplotype, which in the mouse are known 

as the H2 genes. Since laboratory mice are inbreed, each strain is homozygous and has a unique 

haplotype which is identified by a small letter (e.g. the MHC haplotype of BALB/c mice is H2d, 

while the one of C57BL/6 is H2b). Mice class I MHCs consist of three major loci, K, D and L. 
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CD8+ T cell functional avidity is a critical attribute of the antiviral immunity. The in vivo effector 

capacity of CD8+ T cells generally correlates well with functional avidity. The latter is a biological 

measure determined by ex vivo quantification of the ability of CD8+ T cell clones exposed to 

different concentrations of cognate antigen to proliferate, produce cytokines and lyse target cells. 

The affinity of the TCR for the pMHC-complex, that is, the strength of the interaction between the 

TCR and pMHC; expression levels of the TCR and the CD4 or CD8 coreceptors; the distribution 

and composition of signaling molecules as well as expression levels of molecules that attenuate 

T cell function and TCR signaling; are crucial in determining the functional avidity of a CD8+ T cell 

clone (Vigano et al., 2012). 

During the course of an immune response and following pathogen re-exposure the functional 

avidity of a CD8+ T cell population often increases (von Essen et al., 2012). However, it has also 

been reported that the functional avidity can decrease (Xiao et al., 2007) or remain similar (Zehn 

et al., 2009) during an infection. Despite that, in general it is well accepted that higher functional 

avidity CD8+ T cell responses are of higher efficacy both at clearing acute virus infections and at 

eliminating cancer cells, with several studies sustaining this notion. Therefore, when developing 

new immunotherapy and vaccination approaches against infections and tumours the strategy is 

generally to enhance the functional avidity of T cell responses to viral and tumour antigens. This 

include the use of potent adjuvants during immunization, adoptive immunotherapy of high-avidity 

T cell clones, and immunization with optimized peptides, that although altered in sequence result 

in augmented T cell responses to the native epitope. 

By contrast, the relevance of high versus low functional avidity CD8+ T cells in the control of 

chronic viral infections and established tumours is not so clear, with an increasing number of 

studies challenging the benefit of high avidity CD8+ T cells. In the context of HIV infection it has 

been reported that high functional avidity T cell responses can led to viral escape, T cell clonal 

exhaustion, and senescence (Almeida et al., 2007; Conrad et al., 2011; Iglesias et al., 2011; Leslie 

et al., 2006; O'Connor et al., 2002). Consequently, in the case of chronic and persistent infections, 

in which pathogen clearance cannot be accomplished, if the goal is to achieve a long-lasting 

effective infection control it has been proposed that when designing a vaccine the generation of 

low functional avidity T cell responses may be more suitable in order to attain a pool of durable 

effector competent CD8+ T cells (Vigano et al., 2012).  

Overall, the benefit of high versus low functional avidity CD8+ CTLs for anti-viral and anti-tumour 

immunity remains a challenging question. Further studies are needed to improve the knowledge 

in this field, which will be invaluable for immunotherapy and vaccine design.  
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1.1.5. CD8+ T cell response to EBV infection 

Analysis of infectious mononucleosis (IM), a clinical syndrome that can arise during primary EBV 

infection, has allowed the evolution of the EBV-specific CD8+ T cell response to be tracked over 

time, providing an understanding of the immune response to this pathogen. 

Infectious mononucleosis is characterized by a dramatic large expansion of activated CD8+ T 

cells in blood, which are EBV-specific, with lytic antigen dominant over latent antigen specificities 

(Figure 1.3). This dominance becomes less marked as the acute infection subsides and the highly 

expanded lytic antigen response contracts. These changes are consistent with the order of events 

in primary EBV infection. Early lytic replication activates responses first from NK cells and then 

from lytic antigen-specific CD8+ T cells; thereafter, the virus colonises the B cell pool through a 

latent growth-transforming infection that elicits the latent antigen-specific CD8+ T cell response. 

There are coincident CD4+ T cell responses to EBV in IM but these are much smaller and, as yet, 

poorly characterized. 

Originally the unusually large CD8+ T cell expansion in IM was thought to resemble nonspecific 

bystander activation (McNally and Welsh, 2002) or a polyclonal response to a virus-encoded or 

virus-induced superantigen (Sutkowski et al., 2001). However, the expanded populations were 

found to be markedly oligoclonal in TCR usage (Annels et al., 2000; Callan et al., 1996; Maini et 

al., 2000) and to contain EBV epitope-specific reactivities, detectable by ex vivo cytotoxicity 

assays (Steven et al., 1996), staining with HLA class I tetramers loaded with EBV-epitopes (Callan 

et al., 1998b) and ex vivo Elispot assays of IFNγ release (Catalina et al., 2001; Hislop et al., 2002; 

Hoshino et al., 1999; Pudney et al., 2005). Indeed, EBV represents the most dramatic case of 

conserved TCR usage within an epitope-specific CD8+ T cell response in humans. Still, responses 

to EBV epitopes can range from highly focused (Miles et al., 2005b), through varying degrees of 

oligoclonality (Annels et al., 2000; Couedel et al., 1999; Miles et al., 2005a), to a highly diverse 

repertoire (Silins et al., 1997). 

Lytic epitope-specific CD8+ T cells are the major expanded populations in IM and individually can 

account for 1%-50% of the total CD8+ T cell population (Hislop et al., 2005; Hislop and Sabbah, 

2008). Lytic cycle antigens display a reproducible hierarchy of immunodominace on many HLA I 

backgrounds. The numerically strongest responses focus on epitopes derived from the two 

immediate early expressed proteins, BZLF1 and BRLF1, or from a small subset of early proteins, 

and much weaker responses are elicited against the virion structural proteins that are expressed 

late in the cycle (Abbott et al., 2013; Hislop et al., 2007b; Pudney et al., 2005; Rickinson et al., 

2014). Interestingly, this hierarchy of immunodominance seems to be shaped by viral immune 

evasion mechanisms. It directly matches the falling efficiency with which the successively 

expressed antigens are presented on the lytically infected cell surface (Pudney et al., 2005), as 

the HLA class I pathway becomes gradually impaired and the battery of CD8 evasion proteins of 

EBV takes increasing hold (Ressing et al., 2008; Rowe and Zuo, 2010). It has been suggested 
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that this correlation between immunogenicity and epitope display on infected cells implies either 

that the CD8+ T cell response is initially primed by direct contact with lytically infected B cells, 

rather than crossprimed by antigen represented in dendritic cells, or; at least, its subsequent 

expansion is directly driven by such contacts (Rickinson et al., 2014). 

Responses to latent cycle proteins are slower and smaller, with individual specificities accounting 

for 0.1%-3% of the CD8+ T cell population (Hislop et al., 2002; Hislop and Sabbah, 2008). The 

latent cycle proteins are coexpressed in virus-transformed cells yet, as CD8+ CTL targets, also 

display a striking hierarchy of immunodominance. The strongest responses across several HLA I 

types are markedly focused on immunodominant epitopes derived from the largest latent cycle 

proteins, the transcriptional regulators EBNAs 3A, 3B, and 3C (Hislop and Sabbah, 2008; Hislop 

et al., 2007b; Rickinson et al., 2014). Accompanying subdominant responses often map to 

epitopes from LMP2, much less often from EBNA2, EBNA1, EBNA-LP, or LMP1. However, this 

is not always the case. Particular HLA alleles can induce strong responses against epitopes from 

one of the usually subdominant antigens, for example, the virus genome maintenance protein 

EBNA1 (Blake et al., 2000). Indeed, EBNA1 can be a relevant CD8+ CTL target despite 

impairment of its HLA I-restricted presentation by the glycine-alanine repeat (GAr) domain of the 

protein. This reflects the fact that the impairment is only partial and does not eliminate EBNA1 

epitope display on the infected cell surface (Mackay et al., 2009). Similarly, EBNA2, EBNA-LP 

and LMP2 epitope-specific CD8+ T cell responses were found to be immunodominant in the 

context of certain HLA class I alleles (Chapman et al., 2001; Lee et al., 1997). By contrast, 

although occasional responses to LMP1 epitopes have been detected these are usually very 

weak and detectable in only a small minority of certain allele-positive individuals. Therefore, most 

latent cycle proteins can clearly provide immunodominant epitopes given the right HLA context. 

Thus, it has been suggested that the marked immunodominance of the EBNA3 proteins does not 

need necessarily to reflect preferential handling by the HLA class I processing pathway. These 

three proteins collectively represent more than 60% of the unique sequences in all EBV latent 

proteins and may just happen to contain the strongest epitopes for the HLA alleles thus far tested, 

particularly alleles common in Caucasian populations (Hislop et al., 2007b). 

Cell surface phenotype analysis of the EBV-specific cells in IM indicates that these cells show 

characteristics of armed effector cells, contain perforin and are potently cytotoxic (Callan et al., 

2000; Catalina et al., 2002; Dunne et al., 2002; Hislop et al., 2002). However, these cells die 

rapidly by apoptosis in vitro unless given antigen stimulation. Accordingly, these cells express low 

levels of the anti-apoptotic Bcl-2 and Bcl-x proteins and high levels of the pro-apoptotic Bax 

protein (Callan et al., 2000; Dunne et al., 2002; Soares et al., 2004). 

With the resolution of acute symptoms the expanded CD8+ T cell pool rapidly decreases in size 

with the contraction of the EBV-specific responses (Catalina et al., 2001; Hadinoto et al., 2008). 

The highly expanded lytic epitope responses contract drastically, showing dramatic reductions 

both in absolute numbers and as a percentage of the diminishing CD8+ T cell pool. The smaller 
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latent epitope-specific CD8+ T cell responses also show a reduction in absolute numbers, but they 

contract less heavily and consequently their percentage representation in the circulating CD8+ T 

cell pool often rises in the months following IM. Interestingly, in addition to the differential levels 

of contraction of the expanded lytic- and latent-specific CD8+ T cell responses, there are also 

qualitative changes in the content of the EBV-specific CD8+ T cell response over time. Some 

specificities are consistently lost post-IM, even in cases where these responses are numerically 

dominant to other surviving responses (Hislop et al., 2002). The reason for the loss of such 

specificities from the immune repertoire remains unclear. Other reactivities, typically against 

subdominant latent epitopes, may not appear in detectable numbers in the blood until 3-4 months 

after primary infection but are stably maintained thereafter (Hislop et al., 2002; Woodberry et al., 

2005a). As a result of such qualitative changes, the distribution of EBV-specific CD8+ T cell 

reactivities established in CD8+ T cell memory can be quite different from that seen in acute 

infection.  

Most studies on the T cell response to EBV during IM have focused on the CD8+ response as 

sampled from the peripheral circulation. However, the blood picture is not always representative 

of the situation in lymphoid tissues. That is, the percentage of EBV-specific CD8+ T cells in IM 

blood overestimates that seen in tonsils during acute infection. Comparative studies of the CD8+ 

T cell response to EBV in both blood and tonsillar tissue revealed that despite substantial numbers 

of EBV-specific CD8+ T cells in the tonsils they are relatively inefficiently recruited to this site. As 

a consequence, the peripheral circulation can contain approximately a 3-fold higher proportion of 

EBV-lytic epitope specific cells as compared to the tonsil, while latent specificities are generally 

more evenly distributed between the two compartments (Hislop et al., 2005). The relatively poor 

recruitment to the site of virus replication was shown to correlate with a lack of expression of 

lymphoid homing receptors, namely CCR7 and CD62L, by EBV-specific cells in the blood; and 

may explain why there is prolonged high-level secretion of virus in the aftermath of acute IM 

disease. Nevertheless, with the resolution of infection, EBV-specific CD8+ T cells re-express 

lymphoid homing markers, particularly latent specificities (Hislop et al., 2002), and  begin to be 

more efficiently recruited to the tonsil, explaining the faster control of growth transforming infection 

at this site (Hislop et al., 2005). Therefore, in long-term carriers the situation is reversed and EBV-

specific memory populations, specifically latent antigen-specific CD8+ T cells, are enriched in 

tonsils (Figure 1.3). 

By contrast to the wealth of knowledge relating the understanding of the CD8+ T cell response to 

EBV during IM, relatively little is known about the response mounted in cases of asymptomatic 

primary infection. Healthy virus carriers, most likely contracting EBV years ago, have a similar 

response pattern to what is seen in patients with IM, though the magnitude of responses is smaller 

(Hislop and Sabbah, 2008). Lytic proteins elicit stronger CD8+ T cell responses when compared 

to latent proteins, with responses of up to 3% of CD8+ T cells being directed at one epitope 

(Catalina et al., 2001; Khan et al., 2004; Ouyang et al., 2003; Yang et al., 2000). The immediate 

early proteins, BZLF1 and BRFF1, and a subset of early proteins account for the majority of 
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detectable lytic CD8+ T cell responses (Benninger-Doring et al., 1999; Bihl et al., 2006; Saulquin 

et al., 2000; Tan et al., 1999). Latent-specific CD8+ T cells are directed towards epitopes 

processed from the EBNA3 family of proteins, with weaker responses to LMP2 and EBNA1, yet 

responses to LMP1, EBNA2 and EBNA-LP are rarely if ever seen (Saulquin et al., 2000). 

Responses to the EBNA3 family can range up to 1% of CD8+ T cells being specific for one epitope, 

but typically these are 0.5% or less (Benninger-Doring et al., 1999; Catalina et al., 2001; Hislop 

et al., 2001). 

 

 
 

Figure 1.3. Cellular immune response to EBV infection. In the immunocompetent host, primary EBV 

infection, as seen in infectious mononucleosis (IM) patients, induces activation of natural killer (NK) cells, 

large expansions of virus-specific CD8+ T cells and smaller expansions of virus-specific CD4+ T cells in the 

blood. Lytic antigen-specific CD8+ T cells are the major expanded populations in IM; responses to latent 

cycle proteins are slower to develop and smaller in magnitude. By contrast, latent antigen-specific CD4+ T 

cells are at least as represented as lytic antigen reactivities. These initial T cell expansions are later culled 

and in the blood of long-term virus carriers the number of virus-specific memory T cells are generally low. 

The blood picture generally is not representative of the situation in lymphoid tissues. The percentage of EBV-

specific T cells in blood overestimates that seen in tonsils during acute infection (IM), whereas the situation 

is reversed in long-term carriers where EBV-specific memory populations, particularly latent antigen-specific 

CD8+ T cells, are enriched in tonsils. Epit, epithelial cell; Lyt, litically infected cell; L3, latently infected B cell 

expressing the growth transcription programme or latency III; L0, memory B cell expressing the latency 

programme or latency 0 (adapted from Rickinson, et al., 2014).  
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Memory CD8+ T cell responses have been studied primarily in long-term asymptomatic EBV 

carriers, with no history of IM. These individuals shed low, often barely detectable, levels of 

infectious virus into the throat and have low numbers of latently infected cells in the blood (1-50 

cells/million B cells). Individual epitope-specific responses account for 0.2%-2% (Benninger-

Doring et al., 1999; Bihl et al., 2006; Saulquin et al., 2000) of the CD8+ T cell population in the 

case of lytic epitopes and 0.05%-1% for latent epitopes (Bihl et al., 2006). Most memory cells 

have a resting phenotype, they lack activation markers. However, at least some EBV-specific 

memory cells express perforin and are potently cytotoxic on peptide-loaded targets ex vivo 

(Catalina et al., 2002; Hislop et al., 2001). Although the proportion of EBV-specific CD8+ T cells 

appears to be quiet stable, over a longer time frame there is evidence for an age-related inflation 

of the EBV-specific response. Healthy individuals over age 60 can have individual EBV-specific 

responses constituting up to 14% of CD8+ T cells (Khan et al., 2004; Ouyang et al., 2003). 

Interestingly, this inflation of the EBV-specific CD8+ T cell response is not seen in older people 

carrying both EBV and cytomegalovirus (CMV); instead, dramatic expansions of CMV-specific 

CD8+ T cells are detected (Khan et al., 2004). 

 

1.1.6. Viral evasion of CD8+ T cell immune response 

Upon infecting a host, EBV is confronted by a coordinated and multi-faceted immune response. 

Therefore, it is not surprising that EBV has developed several strategies to evade the host 

immune surveillance. Active immune evasion mechanisms reduce the immunogenicity of EBV 

lytically and latently infected cells and are therefore of major importance for the virus to replicate 

and to establish a lifelong persistent infection in the immune competent host.  

Prompted by findings that antigen presentation to CD8+ T cells falls dramatically during lytic cycle 

several studies have identified three EBV early lytic proteins with immune evasive effects that 

interfere with MHC class I antigen presentation: BNLF2a, BGLF5 and BILF1 (Ressing et al., 2008; 

Rowe and Zuo, 2010). BNLF2a is a small membrane-associated protein, composed of 60 amino 

acid residues, that localizes to the endoplasmic reticulum, physically associates with the 

transporter associated with antigen processing (TAP) complex and acts as a powerful inhibitor of 

it (Hislop et al., 2007a; Horst et al., 2009). BLNF2a is composed of two specialized domains, its 

hydrophobic C-terminal tail anchor ensures membrane integration and retention in the 

endoplasmic reticulum, whereas its cytosolic N-terminus blocks antigen translocation by TAP 

(Horst et al., 2011; Wycisk et al., 2011). BNLF2a inhibits both peptide and ATP binding to TAP, 

thus efficiently blocking peptide delivery to nascent MHC molecules. This way BNLF2a effectively 

impairs MHC class I-restricted antigen presentation of immediate early and early proteins in 

lytically infected B cells, allowing escape from CTL recognition (Croft et al., 2009). Additionally, a 

recent study indicates that BNLF2a can also reduce antigen presentation and recognition of newly 

infected B cells by EBV-specific CD8+ T cells (Jochum et al., 2012). Thus, BLNF2a seems to be 
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important to significantly diminish the immunogenicity of EBV-infected cells also during the initial, 

pre-latent phase of infection and this way may improve the establishment of EBV latency in vivo. 

TAP transport is also hindered by BCRF1, the viral chemokine homologue of interleukin (IL)-10 

(vIL-10), which reduces expression of the TAP1 subunit (Zeidler et al., 1997). Downregulation of 

TAP1 by vIL-10 hampers the transport of peptide antigens into the endoplasmic reticulum, their 

loading onto empty MHC class I molecules, and the subsequent translocation to the cell surface. 

As a consequence, vIL-10 causes a general reduction of surface MHC class I molecules on B 

lymphocytes that might also affect the recognition of EBV-infected cells by CD8+ CTLs. 

BGLF5 is a dual-function protein originally identified as a DNase enzyme (Baylis et al., 1989) 

essential for efficient infectious virus production. It is required for optimal viral DNA synthesis, 

genome encapsidation, and nuclear egress of the virus (Feederle et al., 2009). However, a 

second function of this protein was subsequently identified, a host protein-synthesis shutoff 

function which operates at the level of mRNA transcripts (Rowe et al., 2007). Thus, BGLF5 

decreases expression of MHC class I molecules at the cell surface and reduces antigen 

presentation to CD8+ CTLs by blocking the synthesis of new MHC class I molecules (Zuo et al., 

2008). Resolution of BGLF5 crystal structure revealed an intrinsic RNase activity in the presence 

of Mn++ ions, which degraded unstructured mRNA (Buisson et al., 2009), indicating that the shutoff 

phenotype results from mRNA degradation (Horst et al., 2012). 

BILF1 is a seven transmembrane spanning protein with structural and functional characteristics 

of a constitutively signalling vGPCR/chemokine receptor (Beisser et al., 2005; Paulsen et al., 

2005). Through its cytoplasmic C-terminal tail BILF1 targets a broad range of MHC class I 

molecules decreasing cell surface levels of MHC I (Griffin et al., 2013; Zuo et al., 2009). This is 

achieved by BILF-1 mediated acceleration of endocytosis and subsequent lysosomal degradation 

of MHC class I  molecules from the cell surface or by diversion of newly synthesized MHC class 

I molecules from the normal exocytic pathway that allows proteins to travel from the endoplasmic 

reticulum to the cell surface (Zuo et al., 2011). 

Overall, the concerted actions of these EBV lytic proteins, which all target the MHC class I antigen-

processing and presentation pathway, underscore the importance of the need for EBV to be able 

to evade CD8+ T cell surveillance during the lytic replication cycle, at a time when a large number 

of potential viral targets are expressed. This strategy provides EBV a window for generation of 

viral progeny and is thought to be vital for EBV to colonize the host and upon reactivation for EBV 

to spread to new hosts. 

Subsequently, the central strategy is to exist in a latent state, characterized by limited viral gene 

expression without virion production, enabling the virus to hide from the host immune response. 

Moreover, among the latent proteins EBNA1, which is expressed both in lytic and latently infected 

cells, is also able to interfere with antigen presentation although the mode of action is conceptually 
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distinct from BNLF2a, vIL-10, BGLF5 and BILF1, in that it only affects the processing of antigens 

from the EBNA1 protein itself. This unusual mechanism is the result of a large repetitive region in 

the EBNA1 gene encoding a glycine-alanine repeat (GAr) domain comprising about one-third of 

the protein that impairs MHC class I-restricted presentation of cis-linked epitopes (Levitskaya et 

al., 1995). This is achieved by EBNA1 decelerating its own synthesis, either transcriptionally via 

interference of the nascent GAr polypeptide with ribosome assembly on the messenger RNA 

(Apcher et al., 2010; Apcher et al., 2009), or translationally via sub-optimal codon usage within 

the GAr sequence (Tellam et al., 2008) or through RNA secondary structural elements (Tellam et 

al., 2012). Independently of the mechanism, the GAr effect is only partial, reducing the 

presentation of native EBNA1 epitopes by 30%, similar to its reduction in rate of synthesis 

(Mackay et al., 2009). The latent membrane protein LMP1 paradoxically upregulates MHC class 

I processing, enhancing trans-presentation of CD8+ T cell epitopes, yet itself is a poor CD8+ T cell 

target, due to its ability to self-aggregate (Smith et al., 2009). The ability of LMP1 to drive both its 

own synthesis and degradation makes LMP1 levels fluctuate in individual EBV-transformed B 

lymphoblastoid cell lines (LCLs) (Lee and Sugden, 2008). Parallel fluctuations in antigen 

processing efficiency imply that, at any one time, only a fraction of cells in a LCL culture are visible 

to CD8+ T cells (Brooks et al., 2009). 

EBV has evolved several mechanisms to modulate the host CD8+ T cell response that are 

essential for achieving a lifelong virus-host balance while minimizing the viral pathogenicity. 

Nevertheless, this multiple immune evasion mechanisms should be considered as strategies to 

dampen the efficiency of immune CD8+ T cell responses, rather than to completely evade them. 

Knowledge of EBV immune evasion strategies is crucial to provide important guidance to improve 

T cell therapies and the immunogenicity of viral vaccines.  

 

1.1.7. T cell therapy in the treatment of EBV-driven post-transplant 

lymphoproliferative disease 

EBV-associated post-transplant lymphoproliferative disease (PTLD) is a life-threatening condition 

that develops after haematopoietic stem cell or solid organ transplantation, when the T cell 

immune response to EBV is ablated or severely compromised by immunosupression (Gottschalk 

et al., 2005). These lymphoproliferative diseases are lymphomas, resulting from uncontrolled 

proliferation of EBV infected B cells, that usually express all latent EBV viral proteins, and are 

therefore amenable to T cell-based immune therapies, such as donor lymphocyte infusions and 

the adoptive transfer of EBV-specific CTLs (Bollard et al., 2012). 

PTLD developing after haematopoietic stem cell transplantation usually results from donor B cells 

and appears within the first 6-12 months post-transplantation, when profound deficiencies of EBV-

specific CTLs are seen (Meij et al., 2003). Early attempts to threat PTLD using unselected donor 
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lymphocytes from the original EBV-immune stem cell donor were marred by collateral graft-

versus-host disease (GVHD), due to the presence of alloreactive T cells in the lymphocyte 

infusions (Heslop et al., 1994; O'Reilly et al., 1997; Papadopoulos et al., 1994). Therefore, Heslop, 

Rooney, and colleagues adapted existing laboratory protocols of in vitro generation of EBV-

specific CTL preparations for the clinic and by 1995 completed their first small trial demonstrating 

the effectiveness against PTLD (Rooney et al., 1995). The selective expansion of donor-derived 

T cell lines directed against EBV antigens uses EBV-transformed B cells (LCLs) as antigen 

presenting cells. LCLs are generated by infecting donor peripheral blood B cells with a laboratory 

strain of EBV and similar to PTLD, express type III latency. Thus, the generated EBV-specific 

CTLs usually contain both CD8+ and CD4+ T cells that recognize multiple latent and early lytic 

cycle viral antigens and, when infused into patients, can reconstitute an immune response to EBV 

and eliminate PTLD without inducing GVHD (Doubrovina et al., 2012; Heslop et al., 2010). Indeed, 

adoptive transfer of donor-derived LCL-stimulated EBV-specific CTLs has proved a safe and 

effective prophylactic approach and a remarkably successful therapy for classical PTLD after 

haematopoietic stem cell transplantation. 

Failure to respond to EBV-specific CTL therapy has occurred when T cells of restricted specificity 

were infused, recipients lack HLA antigens through which EBV activity in the T cell line is 

restricted, or tumours express variants of the EBV antigens used to stimulate CTLs (Doubrovina 

et al., 2012; Gottschalk et al., 2001). 

In general, generation of EBV-specific CTLs takes approximately 8-12 weeks. Half of the time is 

required for the generation of the antigen presenting cells (EBV-LCLs) and the other half for the 

generation and expansion of the EBV-specific CTLs in order to obtain the cell numbers that are 

required for clinical use and product testing (Smith et al., 1995). Consequently, the relatively long 

production time has limited the widespread use of EBV-specific CTLs to prevent or treat EBV-

PTLD, as they cannot be generated in response to a patient developing PTLD. However, 

methodological improvements have now shortened the time required for the production of virus-

specific CTLs. Three methods have already been used clinically. Firstly, multimer selection allows 

the selection of T cells directed against specific viral peptides in the context of a specific HLA 

class I molecule (Uhlin et al., 2010). Secondly, isolation of IFNγ secreting T cells is based on the 

selection of T cells that secret IFNγ in response to stimulation by viral antigens (Icheva et al., 

2013; Moosmann et al., 2010). Lastly, faster ex vivo CTL culture methods use peptides or 

plasmid-derived viral antigens expressed in dendritic cells to stimulate T cells in the presence of 

cytokines (Gerdemann et al., 2009; Gerdemann et al., 2013; Gerdemann et al., 2012; Hao et al., 

2014).  

Establishing a bank of characterized HLA-typed EBV-specific T cell lines could make EBV CTLs 

rapidly available to a large number of patients. This third party approach was tested in the clinic 

in patients undergoing haemopoietic stem cell or solid organ transplantation who received closely 

HLA-matched EBV-specific CTLs generated from unrelated third-party blood donors (Barker et 
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al., 2010; Gallot et al., 2014; Haque et al., 2010; Haque et al., 2007; Leen et al., 2013).  The best 

results were observed in patients receiving donor T cells which were best HLA matched with the 

recipient. In some instances multiple infusions were required to control PTLD (Doubrovina et al., 

2012). Therefore, clinical protocols should allow for multiple infusions and for the substitution of 

donor CTL lines if patients fail to respond. 

In recipients of solid organ transplant, PTLD most commonly arises from recipient B cells and the 

donor is often not accessible. Moreover, donor and recipient are rarely HLA-matched. Therefore, 

autologous EBV-specific CTLs have been used in this setting (Khanna et al., 1999; Savoldo et 

al., 2006). However, the need for ongoing immunosuppressive therapy has limited the persistence 

of infused EBV CTLs. Hence, CTLs have been genetically engineered to render them resistance 

to immunosuppressive drugs, namely to calcineurin inhibitors (cyclosporine or tacromilus) and 

rapamycin, in preclinical studies (Brewin et al., 2009; De Angelis et al., 2009; Huye et al., 2011; 

Ricciardelli et al., 2013). This strategy is also considered as an advantage for patients who after 

haemopoeitic stem cell transplant require immune suppression to avoid GVHD. 

An important further development involving genetically manipulation of EBV-specific CTLs to 

render them therapeutically more effective in vivo aims at maximizing the chances of adoptively 

transferred cells to expand in their new host (Hoyos et al., 2010; Vera et al., 2009), to traffic to 

the tumour site and to resist the immunosuppressive environment that may exist there, 

overcoming tumour evasion mechanisms (Di Stasi et al., 2009; Foster et al., 2008). 

LCL-stimulated effectors tend to be dominated by CD8+ T cells against the EBNA 3A, 3B and 3C 

latent proteins. Therefore, using such effectors against other EBV-positive tumours is problematic 

since the tumours typically do not express these immunodominant targets (Hislop et al., 2007b). 

Nevertheless, this approach has revealed some success in the context of NPC (Louis et al., 

2010), and in patients with EBNA3-negative HL-like or BL-like tumours (Haque et al., 2007; 

McAulay et al., 2009). Interestingly, the most successful EBV-CTL preparations were those with 

polyclonal TCR usage, implying requirement for a broadly target T cell response, and with 

significant CD4+ T cell numbers. Although this may reflect the importance of CD4+ T cell help in 

the adoptively transferred preparations, CD4+ T cells may also be acting as effector cytotoxic cells 

by themselves. This is consistent with the finding that cytotoxic CD4+ T cells, specific either for 

EBV lytic or latent proteins, are present in LCL-stimulated preparations and are capable of LCL 

recognition (Adhikary et al., 2007; Merlo et al., 2010; Taylor et al., 2006).  

Efforts to optimise CTL therapies for EBV-positive tumours with limited antigen expression, such 

as NPC and HL, have focused attention on EBNA1 and the LMPs as target antigens (Bollard et 

al., 2014; Lutzky et al., 2014). Of these LMP2 is the richest source of CD8+ epitopes and is 

expressed in EBV-positive HL and NPC. Various methods have been developed to produce CTL 

populations enriched in appropriate specificities. These include ex vivo selection with EBV-

specific pentamers (Uhlin et al., 2010), in vitro stimulation with epitope peptides (Jones et al., 
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2010; Moosmann et al., 2010), with the autologous LCL over-expressing the antigen of choice 

(Bollard et al., 2007), with an adenovirus encoding EBNA1/LMP1/LMP2 epitope strings 

(Duraiswamy et al., 2004) or a scrambled EBNA1, LMP1, LMP2 protein sequence (Lutzky et al., 

2010). Moreover, there is an increasing argument that T cell based immunotherapy should be 

considered as a combination therapy with chemo/radiotherapy, particularly in advanced tumour 

disease to improve survival (Chia et al., 2014; Smith et al., 2012).    

Overall, the success of adoptive T cell therapy for EBV-driven post-transplant lymphoproliferative 

disease is stimulating efforts to target other EBV-associated tumours by immunotherapeutic 

means, and has reawakened interest in the ultimate intervention strategy, a prophylactic EBV 

vaccine. 

 

1.1.8. EBV vaccine development  

The global burden of disease linked to EBV infection, namely IM, the various EBV-associated 

malignancies and possibly also autoimmune diseases, is driving renewed interest in the 

development of a prophylactic vaccine to reduce the EBV-associated disease load (Balfour, 2014; 

Cohen et al., 2011; Cohen et al., 2013). EBV vaccine development has been hampered by the 

lack of an animal model other than subhuman primates, selection of an appropriate dose and 

adjuvant, and debate about what an EBV vaccine could or should actually achieve. 

The first EBV vaccine proposal was made by Epstein in 1976 (Epstein, 1976), who encouraged 

the use of EBV-determined membrane antigen as immunogen and assessment of vaccine 

efficacy in humans by protection of adolescents from IM. Epstein also highlighted the potential of 

a vaccine to prevent EBV-associated human cancers. Nevertheless, since then only three 

prophylactic EBV vaccines have been evaluated in controlled clinical trials. Two vaccines were 

constructed to induce neutralising antibody responses and one was designed to control the 

expansion of EBV infected cells by inducing CD8+ T cell immunity to EBNAs. 

One trial was conducted using vaccinia virus constructs expressing the EBV membrane 

glycoprotein gp350/220 (Gu et al., 1995). EBV causes infection predominantly by binding its major 

envelope glycoprotein gp350/220 to the CD21 receptor on the surface of B lymphocytes 

(Nemerow et al., 1987; Tanner et al., 1987) and antibodies against gp350/220 are able to 

neutralize EBV infectivity (Thorley-Lawson and Geilinger, 1980) and are the major component of 

neutralizing activity of human sera (Sashihara et al., 2009; Thorley-Lawson and Poodry, 1982). 

The vaccine was immunogenic and the authors concluded to have shown for the first time that 

protection and/or delay of EBV infection is possible in humans. However, no further work has 

been reported for this vaccine, possibly because of potential adverse events associated with the 

presence of live vaccinia (Maurer et al., 2003). Other trials have been conducted in healthy young 
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adults receiving recombinant gp350 protein with adjuvants (Moutschen et al., 2007; Sokal et al., 

2007). In these cases the vaccine did not prevent primary infection but had a protective effect 

against IM. A small clinical trial of recombinant gp350 vaccine with an adjuvant was also 

conducted in paediatric renal transplant candidates (Rees et al., 2009). The vaccine was poorly 

immunogenic, probably due to low dose and weak adjuvant, and the trial could not assess 

protection from PTLD. However, the vaccine was safe and the trial demonstrated that 

immunization of children awaiting for transplantation is feasible. The potential of a gp350-based 

vaccine is further supported by studies conducted in rhesus macaques, in which a soluble gp350 

vaccine afforded protection from infection after oral challenge and reduced blood levels of viral 

DNA for up to two years after infection with the challenge virus (Sashihara et al., 2011). Infection 

of rhesus macaques with rhesus lymphocryptovirus has been shown to reproduce many of the 

features of human EBV infection including long periods of viral shedding, viral latency, and the 

propensity to develop EBV associated malignancies if immunosupressed (Moghaddam et al., 

1997). Finally, a different vaccination strategy is to control expansion of EBV-infected B cells by 

generating CD8+ T cell responses to EBNAs (Khanna et al., 1992). Due to the potential role of 

EBNAs in B cell transformation, which precludes their use in whole protein-based vaccines, a 

single EBNA3A epitope vaccine restricted by HLA B8 was developed and tested in a trial (Elliott 

et al., 2008). This strategy was effective at generating an epitope-specific CD8+ T cell response 

and did not predispose subjects to disease after primary EBV infection. Therefore, the trial was a 

“proof-of-principle”, which showed the safety and immunogenicity of EBV single-epitope vaccines 

aimed at inducing CD8+ T cell immunity. While not practical for general use, because of HLA 

restriction, epitope vaccines might be useful for patients with PTLD, whose HLA type is known.  

Therapeutic vaccines to treat EBV-associated cancers, although in their early stages, are 

currently also in development. The goal is to enhance immune recognition of tumour cells by 

targeting their expression of viral antigens. A vaccinia Ankara recombinant vector expressing the 

tumour-associated latent antigens EBNA1 and LMP2 was recently delivered to patients with NPC 

(Hui et al., 2013). Safety, immunogenicity and a dose-response effect were demonstrated, thus 

phase 2 studies are planned using the highest dosage regimen. 

For prophylactic vaccines, ideal targets for efficacy trials in order of probable success have been 

proposed to be IM, PTLD and endemic BL (Balfour, 2007). A vaccine containing gp350 is a logical 

candidate, since neutralizing antibodies are presumably the best humoral defence against cell 

entry by EBV. The challenge now is to incorporate appropriate CTL target antigens into such 

vaccine constructs, thereby rendering the T cell response able to recognise and destroy de novo 

infected B cells upon which establishment of latency depends. However, the optimum vaccine 

formulation, including both the combination of EBV antigens and adjuvant, still needs to be 

determined (Cohen et al., 2013). Furthermore, a gp350-based vaccine may not be appropriate 

for all the suggested indications and more than one vaccine may need to be developed. For 

example, vaccines that induce T cell responses to EBV latent antigens expressed in tumour cells, 

especially EBNAs and LMPs, may be required to prevent or treat EBV-associated cancers. 
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One of the barriers to development of an effective vaccine has been the total reliance upon 

primates as animal models of EBV infection. The ability to reconstitute immunodeficient mouse 

strains with a functional human immune system (Leung et al., 2013) is now providing new models 

which not only allow EBV colonisation of the B cell system (Cocco et al., 2008) but also support 

the induction of EBV-specific CD8+ and CD4+ T cell responses (Shultz et al., 2010; Strowig et al., 

2009). However, these humanized mouse models might not have all the features of a normal 

immune response; for example, EBV interacts with several cellular proteins to evade the immune 

response and it is unclear whether these proteins would have the same properties in a humanized 

mouse. In addition to the limitations in animal models to study protection against EBV infection 

and disease, other obstacles to development of an EBV vaccine include the lack of knowledge of 

immune correlates for protection against EBV infection and disease; the difficulty of performing 

clinical trials to prevent EBV associated malignancies in the absence of good surrogate markers 

for tumour development, and the long period of time between primary EBV infection and 

development of many EBV tumours. 

Hence, one of the major EBV challenges to virologists and immunologists, to design a 

prophylactic vaccine that, even if cannot prevent primary infection, may limit virus load and protect 

against EBV-associated diseases, remains as potent as ever. 

  

1.2. Kaposi sarcoma-associated herpesvirus 

Kaposi sarcoma-associated herpesvirus, or KSHV, is the most recently identified human 

herpesvirus. The discovery of KSHV dates to 1994 and was made by Chang et al., who found 

unique herpesvirus-like sequences present in most Kaposi sarcoma (KS) lesions from AIDS 

patients (Chang et al., 1994). KS tumours are comprised of KSHV-infected cells of endothelial 

origin. Subsequently, KSHV was found in other human malignancies, namely, two types of B cell 

tumours, primary effusion lymphoma (PEL) (Cesarman et al., 1995a) and multicentric Castleman 

disease (MCD) (Soulier et al., 1995), that frequently develop in AIDS patients, and in rare 

instances in diffuse large B cell lymphoma. Furthermore, novel epidemiologic evidence suggests 

that KSHV increases the risk of marginal zone lymphoma (Benavente et al., 2011). Primary KSHV 

infection is usually asymptomatic in immunocompetent individuals and like infection with EBV 

results in lifelong latency. Reports of KSHV-associated mononucleosis or rash are few and far 

between. Recently, however, a new clinical entity has been proposed as being associated with 

acute KSHV replication, KSHV-inflammatory cytokine syndrome (KICS) (Polizzotto et al., 2012; 

Tamburro et al., 2012; Uldrick et al., 2010).  

Unlike EBV, KSHV is not ubiquitous in the human population. KSHV prevalence is low  (<10%) in 

most areas of Europe, Asia and United States, moderate in some Mediterranean countries (4-

35%) and high in sub-Saharan Africa (30-60%) (Uldrick and Whitby, 2011). The incidences of 
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KSHV-associated neoplastic diseases mirror the geographic KSHV seroprevalence, and certain 

groups of patients are at higher risk (Edelman, 2005). These include immunocompromised 

patients, such as HIV infected individuals and transplant recipients. The exact mechanism of 

transmission remains to be elucidated. However, saliva seems to be the major source of 

transmission because it contains virus more frequently and at a higher level than other body fluids 

(Johnston et al., 2009; Pauk et al., 2000). A much less frequent route of transmission is through 

organ transplants (Barozzi et al., 2003; Regamey et al., 1998) and via blood transfusion (Hladik 

et al., 2006), and sexual transmission remains controversial.  

Similar to EBV, infection with KSHV has two distinct phases, lytic replication and latency, both of 

each contribute to pathogenesis. The latent programme allows the virus to persist in a relatively 

stable and immunological silent mode, whereas the lytic programme enables the virirons to be 

shed and transmitted to new hosts (Coscoy, 2007). In KSHV-associated malignancies, most 

tumour cells are latently infected, yet expression of viral lytic genes is detected in a small 

percentage of cells (Wen and Damania, 2010). This has led to the suggestion that lytic replication 

may enhance the growth of latently infected cells in a paracrine fashion, especially by expressing 

viral lytic proteins that are homologues of cellular cytokines and chemokines (Mesri et al., 2010; 

Nicholas, 2005). In addition, lytic replication can contribute to tumorigenesis indirectly by 

producing infectious virions to de novo infect naïve cells, thus replenishing the pool of latently 

infected cells, subsequently giving rise to transformed cells (Ganem, 2010). Individual KSHV 

genes and miRNAs have been shown to promote cell proliferation in multiple experimental 

systems and also to modulate autophagy and oncogene-induce senescence (Giffin and Damania, 

2014; Lee et al., 2009a; Lei et al., 2010; Leidal et al., 2012). Recent evidence also indicates that 

during latency KSHV is able to modulate different metabolic pathways, both in B cells and 

endothelial cells, to its own profit (Bhatt et al., 2012; Delgado et al., 2010; Delgado et al., 2012).  

 

1.2.1. KSHV latency 

In contrast to EBV, attempts to generate human B cell lines immortalized in vitro by KSHV have 

failed and therefore the study of KSHV latency has largely focused on characterizing viral gene 

expression and function in B cell lines derived from PEL tumours and in epithelial cells. 

During latency, as with EBV, KSHV expresses only a limited set of viral genes and miRNAs, 

thereby minimizing its exposure to the host immune system. KSHV latency locus includes the 

viral genes of the latency-associated nuclear antigen (LANA), the viral cyclin D homolog (v-cyclin), 

the viral Fas-associated death domain (FADD) interleukin-1B-converting enzyme (FLICE) 

inhibitory protein (vFLIP), kaposin A, B and C, and the viral miRNAs (Dittmer et al., 1998; Sin and 

Dittmer, 2013). LANA, v-cyclin and v-FLIP genes are encoded in a tricistronic transcript from a 

single promoter, also referred to as the KSHV oncogenic cluster, and are consistently expressed 
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in latency-associated diseases and B cell lines (Table 1.2) (Dittmer et al., 1998; Sarid et al., 1998). 

The latently expressed viral products ensure maintenance and faithful segregation of the viral 

genome during host cell division (LANA), continued survival of latently infected cells, and are also 

believed to be necessary for malignant transformation (Giffin and Damania, 2014). LANA can 

additionally interfere with several pathways that regulate cell proliferation and apoptosis, the 

cellular processes that are targeted by v-cyclin and v-FLIP as well (Ganem, 2010; Giffin and 

Damania, 2014; Mesri et al., 2010). Other viral genes expressed during latency include viral IRF-

3 (vIRF-3), viral IL-6 (vIL-6), K1 and K15 (Table 1.2) (Wen and Damania, 2010). K1 is a 

transmembrane glycoprotein, encoded at the left end of the viral genome (Lagunoff and Ganem, 

1997), that contains an immunoreceptor tyrosine-based activation motif (ITAM) (Lee et al., 

1998a). K1 appears to function as a constitutively signaling BCR independent of ligand binding 

(Lee et al., 1998b) and thus may play a role similar to that of the EBV LMP2A. K1 expression has 

been detected in KS, PEL and MCD (Wen and Damania, 2010). K1 contains the two most variable 

regions across the entire viral genome, showing substantial diversity between viral isolates, and 

is used to sub-classify KSHV into A, B, C and D strains (Hayward, 1999; McGeoch, 2001; Zong 

et al., 1999).  

KSHV also encodes a cluster of 12 miRNAs, all nestled within the latency-associated locus of the 

KSHV genome, which is highly active in gene expression in all forms of KSHV-associated 

malignancies (Gottwein et al., 2006; Samols et al., 2007). From the validated and the potential 

targets revealed so far, KSHV miRNAs appear to regulate the host immune response, cell survival 

and proliferation, apoptosis, as well as the control of lytic replication and maintenance of latency 

(Boss et al., 2009; Gottwein et al., 2011; Lei et al., 2010; Zhu et al., 2013). 

 

Table 1.2. KSHV latent gene expression in different malignancies (adapted from Wen, K.W. & 

Damania, B., 2010 and Taylor, G.S. & Blackbourn D.J., 2011). 

Malignancy Viral latent gene expression 

KSa LANA, v-cyclin, v-FLIP, kaposin, vIL-6b, K1b 

PELa LANA, v-cyclin, v-FLIP, kaposin, vIRF-3, vIL-6b, K1b 

MCDa LANA, v-cyclin, v-FLIP, vIRF-3b, vIL-6b, K1 

aKSHV lytic gene expression can also be detected in these tumours. 

bRepresents a viral gene whose protein levels can be detected in only a small percentage of tumours. 

 

In vivo, KSHV has been detected in endothelial cells, epithelial cells, B cells, and monocytes 

(Ambroziak et al., 1995; Blasig et al., 1997; Dupin et al., 1999; Pauk et al., 2000). However, the 

main target of KSHV latent infection is the B cell. KSHV infection and establishment of long-term 

latency seems to be restricted to a subset of only lambda (λ) expressing B cells (Chadburn et al., 

2008; Hassman et al., 2011). KSHV infection drives primary B cells to proliferate (Hassman et al., 
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2011) and individual KSHV latent genes, specifically LANA, v-FLIP and vIL-6, induce B cell 

proliferative phenotypes in transgenic mice (Ballon et al., 2011; Sin et al., 2010; Suthaus et al., 

2012). Individual KSHV miRNAs also have transforming properties in B cell models in vivo, 

particularly the KSHV mir-155 ortholog (Boss et al., 2011). B cell specific expression of multiple 

viral latent genes, including LANA, v-FLIP, v-cyclin, all viral miRNAs, and kaposin, leads to 

sustained hyperplasia, lymphoma, and hyper-responsiveness to antigen stimulation in transgenic 

mice (Sin and Dittmer, 2013).  

The mechanisms by which KSHV establishes and maintains latency are not as well studied as for 

EBV. The overall strategy, however, is believed to be the same – subversion of normal B cell 

developmental pathways to induce cell proliferation and achieve long-term persistence. A putative 

model of KSHV B cell pathogenesis has been proposed (Dittmer and Damania, 2013) that would 

start with the primary infection event, driving the infected cell into an activated state. In non-

permissive cell subtypes, such as IgM+ kappa B cells, or T cells, the virus is rapidly lost or the 

cell dies. By contrast, in cells permissive for the establishment of latency, the virus persists, 

conferring a survival advantage to the infected cell. The molecular basis and the exact 

complement of viral genes that confer this advantage are not well defined. This model would be 

analogous to the establishment of EBV latency, which starts with expression of a set of genes 

that afterwards contracts to latency type I or even type 0.    

 

1.2.2. KSHV-associated malignancies 

Infection with KSHV increases the risk for development of several human malignancies, namely, 

Kaposi sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman disease 

(MCD). KS is grouped in four epidemiological forms: classic KS, which is a rare disease observed 

in elderly Mediterranean men; endemic KS, a frequent disease of children in sub-Saharan Africa; 

AIDS-associated KS, one of the most frequent malignancies developed in AIDS patients; and 

iatrogenic KS, which develops in immunossupressed individuals after organ transplant (Mesri et 

al., 2010). In all of these clinical categories of KS, the tumour represents aberrant angiogenesis 

or lymphangiogenesis through proliferation of KSHV infected elongated, spindle-shaped 

endothelial cells that line the vascular structures (Ganem, 2010; Mesri et al., 2010). KSHV 

infected endothelial cells express KSHV latent genes and all viral miRNAs (Dittmer, 2011; O'Hara 

et al., 2009). There is little evidence for long-term KSHV infected endothelial cells outside KS 

lesions, or before disease manifestation, and in infected endothelial lineage culture systems 

KSHV is rapidly lost unless latently infected cells undergo additional transforming events (Dittmer 

and Damania, 2013). 

PEL is a diffuse large B cell lymphoma, which lacks expression of B cell-associated antigens, but 

instead expresses plasma cell markers, has immunoglobulin gene rearrangements and 
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hypermutation of the immunoglobulin genes, indicating a post-GC origin (Cesarman, 2011; 

Cesarman, 2014). It represents the extreme end of KSHV pathogenesis: a fully transformed cell, 

which maintains KSHV in high copy numbers, has acquired additional mutations, and which 

establishes tumours in immune deficient mice (Dittmer and Damania, 2013). PEL cells can be 

KSHV single positive or can be co-infected with EBV (Nador et al., 1996). These tumours have 

proven invaluable for laboratory-based studies of KSHV owing to the relatively consistent growth 

of PEL cell lines in culture. PEL-derived cell lines have provided both a source of KSHV genomic 

material for in vitro studies (Cesarman et al., 1995b) and an essential in vitro culture system for 

molecular studies in KSHV pathogenesis (Renne et al., 1996). 

Unlike PEL, MCD cells do not show hypermutation of the immunoglobulin G locus, which could 

argue that these cells did not participate in the canonical GC reaction. MCD is an uncommon 

disseminated lymphadenopathy characterized by an abnormal proliferation of IgM λ-restricted 

plasmablasts within the mantle zone of B cell follicles (Cesarman, 2011; Cesarman, 2014). 

Interestingly, KSHV infection in MCD is quite lytic as compared to KS and PEL (Chadburn et al., 

2008; Polizzotto et al., 2012). 

 

1.2.3. CD8+ T cell control of KSHV infection 

Most KSHV infected healthy individuals are able to control persistent KSHV infection without 

developing disease. It is thought that adaptive T cell and neutralizing antibody responses are 

mounted against KSHV and are effective at controlling replication and concomitant pathogenesis 

of the persistent virus (Taylor and Blackbourn, 2011).  Nevertheless, KSHV immune responses 

neither prevent de novo infection nor eliminate persistent infection. 

Similar to what is seen with EBV, KSHV-associated disease originates when the host-pathogen 

equilibrium is disrupted. Specifically, when T cell immune control declines, for example, through 

AIDS or treatment with immunosuppressive drugs, both the prevalence of KSHV infection and the 

incidence of KS in KSHV carriers dramatically increase (Boshoff, 2002; Hislop and Sabbah, 2008; 

Robey et al., 2010). Moreover, a dramatic and spontaneous improvement in KS is frequently seen 

when immunity is restored, for example, through antiretroviral therapy or the cessation of 

iatrogenic drugs (Bower et al., 2009; Franceschi et al., 2008; Nagy et al., 2000). This indicates 

that successful T cell immunity targeted against KSHV plays a key role in containing KSHV 

infection, enabling the virus to establish controlled lifelong infection and to coexist with its host. 

Much less is known about the cellular immune response to KSHV when compared to EBV. CD8+ 

T cell responses to KSHV have been studied mostly in KS patients and asymptomatic carriers of 

KSHV. Few HLA-restricted KSHV-specific T cell epitopes have been identified, which are almost 

exclusively CD8+ epitopes (Hislop and Sabbah, 2008; Robey et al., 2010), and these were found 
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to elicit weak CD8+ T cell responses when compared to EBV (Bihl et al., 2007). KSHV-specific 

CD8+ T cell responses have been detected against both lytic and latent proteins (Hislop and 

Sabbah, 2008; Robey et al., 2010). Some of these responses have been demonstrated to be 

functionally cytotoxic in vitro. In contrast to the lytic CD8+ T cell response to EBV, which is heavily 

skewed towards EBV immediate-early stage lytic genes, lytic CD8+ T cell responses against 

KSHV preferentially target both early and late lytic proteins (Robey et al., 2009). A study 

comparing the functionality of KSHV-specific CD8+ T cells directed against lytic or latent antigens, 

in HIV-positive asymptomatic carriers of KSHV, found that multifunctional KSHV-specific CD8+ T 

cells elicited to latent antigens are more frequently detected in CD8+ T cell populations than those 

targeted to lytic antigens (Bihl et al., 2007). Latent CD8+ CTL target epitopes have been identified 

in 4 latent proteins: LANA, Kaposin, K15 and the highly variable K1 (Brander et al., 2001; Guihot 

et al., 2006; Levitskaya et al., 1995; Robey et al., 2010; Stebbing et al., 2003). CD8+ T cell 

responses to KSHV epitopes have been found to be of higher frequency and of greater antigenic 

diversity in asymptomatic carriers compared to those with either AIDS-related, classic, or 

iatrogenic KS (Barozzi et al., 2008; Guihot et al., 2006; Lambert et al., 2006). 

Overall, neither the breadth of the antigenic repertoire of the KSHV-specific CD8+ T cell immune 

response, nor its immunodominant targets, are fully understood. Even less is known about KSHV-

specific CD4+ T cell responses. Neutralizing antibodies against KSHV are induced (Kimball et al., 

2004), however their target has not been elucidated. Gamma delta (γδ) T cells (Barcy et al., 2008) 

and NK cells (Dewan et al., 2006) may also play a role in KSHV immune surveillance. 

 

1.2.4. KSHV evasion of cytotoxic CD8+ T cell responses 

Crucial to KSHV ability to establish a persistent viral reservoir is evasion of host immune 

recognition and attack that would otherwise eliminate the virus. As a sophisticated oncogenic 

virus, KSHV has evolved to possess a formidable repertoire of potent mechanisms to sabotage 

almost every aspect of the host immune system (Liang et al., 2008). Almost 50% of KSHV genome 

is dedicated to modulating host immune response. The immune evasion strategies of KSHV in 

the context of host innate and adaptive immunity include: interference with interferon (IFN) 

signaling, alteration of host chemokine signaling, inhibition of complement control, blockage of 

apoptotic and autophagic pathways, escape from NK cell lysis and cytotoxic T cell response (Feng 

et al., 2013; Hu and Usherwood, 2014; Liang et al., 2008). These evasion strategies ensure 

persistent infection and spread of KSHV, and contribute to the pathogenesis of KSHV-associated 

diseases. As before, special emphasis is given to KSHV evasion of CD8+ CTL response. 

As with EBV, KSHV-specific mechanisms inhibiting CD8+ T cell responses tend to act on antigen 

processing and presentation. K3 and K5 gene products of KSHV act in concert to efficiently 

downregulate the expression of HLA molecules on the surface of infected cells, thus preventing 
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antiviral CD8+ CTL responses (Coscoy and Ganem, 2000; Ishido et al., 2000). K3 and K5 are 

highly homologous (~40% identity) and are expressed during the lytic replication cycle (Nicholas 

et al., 1997a). However, both genes may also be expressed during latency in response to Notch 

signaling (Chang et al., 2005). Both contain a RING-CH type zinc finger domain at the N-terminus, 

two transmembrane domains in the central region, but vary in the C-terminal tail (Nicholas et al., 

1997a). Although predominantly located in the endoplasmic reticulum, K3 and K5 do not affect 

the assembly or transport of HLA molecules through the secretory pathway. Instead, they are the 

prototypical members of the membrane-associated RING-CH containing (MARCH) family of 

proteins and act as E3 ubiquitin ligases that mediate ubiquitination of the cytosolic tail of HLA 

molecules on the cell surface, which once ubiquitinated are rapidly internalized and degraded by 

the lysosome (Coscoy et al., 2001; Hewitt et al., 2002). K3 and K5 show different HLA allotype 

specificities. While K3 extensively downregulates the expression of HLA-A, -B, -C and –E; K5 

effectively downregulates HLA-A and –B, HLA-C only weakly and is unable to target HLA-E 

(Coscoy and Ganem, 2000; Ishido et al., 2000). The E3 ligase activity of both K3 and K5 can be 

lysine-independent, in that they can alternatively ubiquitinate cysteine residues on HLA molecules 

(Cadwell and Coscoy, 2005; Cadwell and Coscoy, 2008). Moreover, K3 and K5 can downregulate 

not only HLA molecules from the cell surface, but also other components involved in T cell 

functions such as ICAM I and IFN-γR1 (Coscoy et al., 2001; Li et al., 2007). 

Therefore, in addition to repressing antigen presentation, KSHV infection also causes 

downregulation of co-stimulatory molecules such as, CD80, CD86, CD1a, and CD83 on antigen-

presenting cells (APCs) (Gregory et al., 2012). These co-stimulatory molecules are required for 

TCR-mediated activation of CTLs, so the downregulation of these proteins is another mechanism 

by which KSHV infection inhibits the adaptive T cell immune response. 

The product of the DNase/alkaline exonuclease gene of KSHV, SOX, as EBV BGLF5, shuts down 

host cell protein synthesis, reducing surface HLA and concomitant antigen-specific CD8+ T cell 

recognition (Zuo et al., 2008). SOX induces host mRNA degradation by hyperadenylation of the 

transcripts and induces relocalization of cytoplasmic poly(A)-binding proteins, which are important 

for stability and translation of cytoplasmic mRNAs, into the nucleus. Thus, SOX may prevent 

nascent mRNA export and deplete preexisting cytoplasmic mRNAs (Kumar and Glaunsinger, 

2010; Lee and Glaunsinger, 2009). vIRF-1 is another KSHV encoded protein known to inhibit HLA 

expression (Lagos et al., 2007). Overall K3, K5, SOX and vIRF-1 are lytic cycle proteins and their 

contribution to reducing antigen presentation in vivo in the context of KS and PEL are unknown. 

Nonetheless, downregulation of class I molecules and co-stimulators is also observed in latent 

KHSV infected cells (Tomescu et al., 2003) suggesting that CTL evasion is a constitutive demand 

for KSHV.  

During latency, a minimal number of gene products is expressed, which reduces the number of 

antigens that can be presented to CD8+ T cells and invoke a response. LANA is a viral latent 

protein essential for the establishment and maintenance of KSHV latency in proliferating cells, 
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therefore contributing to the latent signature of KSHV infection. LANA tethers the viral episome to 

the host chromosomes during mitosis, ensuring partioning of the viral genome into progeny cells 

(Ballestas et al., 1999). Thus, consistent expression of LANA in latently infected cells creates a 

potential target for immune recognition. As seen with its functional EBV EBNA1 equivalent, LANA 

contains a repeat sequence, the acidic central repeat (ACr) domain, that similarly regulates LANA 

own translation and degradation to minimize antigen processing in cis, allowing escape from CTL 

recognition (Kwun et al., 2007; Zaldumbide et al., 2007). Nevertheless, CD8+ T cell responses 

can be detected against LANA (Guihot et al., 2006; Woodberry et al., 2005b). 

The sophisticated evasion of the host immune control by KSHV provides a foundation for 

persistent viral infection and pathogenesis. Nonetheless, due to the absence of in vivo models, 

as with EBV, it remains difficult to extrapolate in vitro observations to the in vivo viral infection. 

 

1.2.5. KSHV vaccine prospect 

Interests and efforts to develop a KSHV vaccine are limited. Since its discovery, research has 

focused essentially on the molecular virology and potential mechanisms of KSHV oncogenesis. 

Nevertheless, KSHV vaccines designed to prevent a naïve host from infection and to boost the 

immune control of KSHV in persistently infected people could have a major impact on individuals 

who are at a high risk of developing KSHV-associated diseases, namely, HIV infected individuals, 

those under immunosuppression, or living in endemic African areas (Wu et al., 2010). It has been 

proposed that a vaccine should increase immune control of lytic replication and decrease KSHV 

viral load in people already infected in order to reduce the risk of KS and shedding of virus for 

transmission (Wu et al., 2012). Furthermore, for a therapeutic vaccine incorporation of epitopes 

derived from latent proteins, such as LANA and Kaposin, is believed to increase its efficacy.  

Twenty years after the discovery of KSHV, simple cytotoxic chemotherapy regimens remain the 

only clinically validated treatments, there exists no vaccine against this virus and except mTOR 

inhibitors, no targeted agents have been added to clinical practice (Bhatt et al., 2010; Krown et 

al., 2012; Roy et al., 2013; Sin et al., 2007). 
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1.3. Murid Herpesvirus-4 

Both EBV and KSHV have a very narrow species tropism, and this has hampered in vivo studies. 

The discovery of Murid herpesvirus-4 (MuHV-4) (archetypal strain Murine herpesvirus 68 (MHV-

68)) (Blaskovic et al., 1980), its relative simplicity and its capacity to establish a realistic infection 

in inbred mice have enabled rapid progress of the knowledge of gamma-herpesvirus (γHV) 

pathogenesis and provided the first opportunity to test directly the role of CD8+ T cells in γHV 

pathogenesis. This system provides a tractable small animal model for studying key aspects of 

γHV infection in a natural host. It gives the opportunity to address in vivo the strategies used by 

γHVs to subvert the normal host cell function, characterize the immune effector mechanisms that 

control persistent infection and the mechanisms used by the virus to evade them and, finally, 

assess the effectiveness of different therapeutic strategies (Stevenson and Efstathiou, 2005). 

MuHV-4 is a naturally occurring rodent pathogen, originally isolated from two species of free living 

small rodents: Apodemus flavicollis (yellow-necked mouse) and Clethrionomys glareolus (bank 

vole) in Slovakia, in 1980 (Blaskovic et al., 1980). Later studies indicated that this virus is endemic 

in wood mice (Apodemus sylvaticus) in the United Kingdom, suggesting that this may be the 

natural host species (Blasdell et al., 2003). 

Genetically MuHV-4 is more closely related to KSHV than to EBV, its genome contains ~118 kbp 

of unique DNA flanked by terminal repeats with at least 80 genes, of which more than 60 open 

reading frames (ORFs) are homologous to those of KSHV (Efstathiou et al., 1990a; Virgin et al., 

1997). Despite the fact that most ORFs are homologues of other γHVs or cellular genes, MuHV-

4 genome also harbors a number of unique genes encoded at the left end of the genome, termed 

M1-4, most of which are dispensable for lytic replication and thus are presumably involved in 

persistent infection in vivo (Moorman et al., 2004; Song et al., 2005). Functional studies on some 

of these “unique” gene products have demonstrated conservation of key functions (e.g., MuHV-4 

M2, EBV LMP2A and KSHV K1 and K15 all harbor SH2 and SH3 docking sites capable of 

interacting with Src or Syk family members, mimicking or interfering with BCR signaling) 

(Damania, 2004; Damania et al., 2000; Pires de Miranda et al., 2013). Like EBV, MuHV-4 causes 

an acute infectious mononucleosis syndrome, it is B cell tropic and shows a similar approach to 

host colonization, that is, both MuHV-4 and EBV drive B cell proliferation and exploit host GCs to 

persist in memory B cells (Blackman and Flano, 2002; Bowden et al., 1997; Doherty et al., 2001; 

Nash et al., 2001; Roughan and Thorley-Lawson, 2009; Simas and Efstathiou, 1998; Stevenson 

and Efstathiou, 2005). Moreover, persistent infection with MuHV-4 has been associated with 

increased frequencies of malignancies in mice with defective immune systems, mainly B cell 

lymphomas, but also other tumours of both lymphoid and non-lymphoid origin (Lee et al., 2009c; 

Sunil-Chandra et al., 1994; Tarakanova et al., 2005). Importantly, MuHV-4 also provides a natural 

in vivo infection model in which host immune evasion mechanisms are preserved (Stevenson et 

al., 2009). Adding to this the highly conserved nature of the innate and adaptive immune systems 

between mice and humans, studying MuHV-4 as a mouse model of γHV pathogenesis is believed 
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to allow the identification of conserved host and viral strategies for the simultaneous maintenance 

of lifelong persistence and prevention of disease.  

An additional advantage of using MuHV-4 as a model is the possibility of infecting various 

genetically modified mice and manipulating the immune system, and the fact that MuHV-4 

genome can be readily manipulated for mutational analysis. 

Therefore, MuHV-4 presents as a unique experimental model for dissecting γHVs infection and 

immune control in vivo.  

 

1.3.1. MuHV-4 model of infection    

In the laboratory mouse, following intranasal inoculation MuHV-4 primary infection is 

characterized by acute lytic virus replication in lung alveolar epithelial cells (Figure 1.4) (Sunil-

Chandra et al., 1992a). Lytic infection is resolved within 10 to 12 days by the host immune 

response, with CD8+ T cells playing a prominent, but not exclusive, role. Subsequently, the virus 

establishes lifelong latency, predominantly in B cells (Marques et al., 2003; Sunil-Chandra et al., 

1992b) of the secondary lymphoid organs, but also in dendritic cells (DCs), macrophages (Flano 

et al., 2000), and lung epithelial cells (Stewart et al., 1998). Latent infection in the spleen is 

characterized by an initial proliferation of the infected B cells and consequent amplification of the 

latent virus, reaching maximum levels around 14 days post-infection (p.i.), and decreasing 

thereafter to low but steady state levels of latently infected cells that persist throughout the entire 

life of the host without overt disease. 

The peak of latent infection is accompanied by a transient splenomegaly and lymphadenopathy 

(Sunil-Chandra et al., 1992a), which are due to the proliferation of latently infected B cells, but 

also to a large increase in CD4+ and CD8+ T cell numbers, and are dependent on CD4+ T cells 

(Ehtisham et al., 1993; Usherwood et al., 1996). This phase of infection is also accompanied by 

high levels of non-virus-specific antibodies and CD8+ T cells in the peripheral blood thus 

resembling the IM caused by EBV (Blackman et al., 2000; Tripp et al., 1997). However, in contrast 

to the human IM in which the majority of T cells in the peripheral blood are oligoclonal outgrowths 

of lytic and latent-specific T cells and most are specific for a single or a few EBV lytic or latent 

epitopes, MuHV-4-induced IM results in selective expansion of Vβ4+CD8+ T cells (Hardy et al., 

2000; Tripp et al., 1997). These cells are MHC-independent and are activated by the secreted M1 

viral protein, in a manner reminiscent of a viral superantigen (Evans et al., 2008).  
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Figure 1.4. Model of MuHV-4 infection. After intranasal (i.n.) infection of inbred mice, MuHV-4 establishes 

a productive infection in the respiratory tract that peaks at around 4-7 days post-infection (p.i.) and is cleared 

to undetectable levels by 10-12 days p.i.. From the lung, the virus disseminates to the lymphoid tissue, with 

latent virus being first detected in the lymph nodes and subsequently in the spleen, mainly in B cells. During 

latent infection in the spleen there is an amplification of latent virus that reaches maximum levels at around 

2 weeks p.i. and afterwards decreases to reach low steady-state levels of latently infected cells that persist 

for the lifetime of the host. From the spleen, the virus further disseminates to other sites probably via infected 

memory B cells (adapted from Stevenson, 2002). 

 

In agreement to what has been proposed for EBV, the establishment of latent infection does not 

require a prior productive infection. In fact, latency is established in lung B cells as early as 3 days 

after respiratory inoculation, supporting the hypothesis that infection of B cells is a concurrent 

event with the ongoing lytic infection of the mucosal epithelium (Flano et al., 2005). Moreover, 

recombinant viruses that cannot undergo lytic replication still establish latency in mice (Flano et 

al., 2005; Moser et al., 2006). However, lytic replication is required for virus trafficking and 

establishment of latency in the spleen. 

In vitro, MuHV-4 is able to productively infect epithelial and fibroblast cells from a variety of 

species raging from chickens to primates (Svobodova et al., 1982) and to latently infect murine B 

cell lines (Sunil-Chandra et al., 1993). MuHV-4+ B cell lines have been established from tumours 

of infected mice, of which S11 is the best characterized (Usherwood et al., 1996). Infection of 

primary B cells with MuHV-4 results in their activation and increased proliferation, however the 

cells do not become transformed and usually die within two weeks (Dutia et al., 1999; Stevenson 

and Doherty, 1999). MuHV-4 has been shown to immortalize only fetal B cells in vitro (Liang et 

al., 2011). KSHV also colonizes B cells in vivo, but fails to transform them in vitro. Thus, EBV, 
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KSHV and MuHV-4 differ in vitro but remain strikingly similar regarding in vivo host B cell 

colonization.  

 

1.3.2. MuHV-4 latency 

MuHV-4 enters new hosts via the olfactory neuroepithelium (Milho et al., 2012) or genital tract 

(Francois et al., 2013), dendritic cells take it to lymph nodes (Gaspar et al., 2011), and from there 

it reaches the spleen. This epithelial/myeloid/lymphoid MuHV-4 infection pathway (Frederico et 

al., 2012) is consequently quite different to the epithelial cell/B cell exchange proposed for EBV 

(Borza and Hutt-Fletcher, 2002). Then, MuHV-4 enters the spleen by infecting marginal zone (MZ) 

macrophages, which provide a conduit to MZ B cells (Frederico et al., 2014). These relocate to 

the white pulp allowing virus transfer to follicular dendritic cells, which appear to transfer the virus 

without becoming infected (analogous to their presentation of immune complexes to GC B cells), 

and from there the virus reaches GC B cells to establish persistent infection (Frederico et al., 

2014). Thus, MuHV-4 exploits normal splenic immune communication routes to spread by serial 

myeloid/lymphoid exchange (Frederico et al., 2014). 

Several B cells subsets, and other cell types, namely macrophages and dendritic cells, are 

infected during the establishment of latency. However, B cells are the main reservoir of MuHV-4 

latently infected cells. During the establishment of latency MuHV-4 is found in naïve, GC, memory 

B cells and plasma cells (Collins et al., 2009; Flano et al., 2002; Marques et al., 2003; Willer and 

Speck, 2003). At the peak of latent infection the majority of MuHV-4 latently infected cells 

correspond to B cells that are proliferating in a GC. This proliferation leads to the amplification of 

the pool of latently infected cells that reaches maximal levels at two to three weeks post-infection. 

Afterwards, most GCs regress and there is a consequent decline in the latent load to a low steady 

state that persists for the lifetime of the host. Therefore, latency in naïve and GC B cells wanes 

with time and at late times post-infection MuHV-4 latency is predominantly maintained in isotype 

switched memory B cells (Flano et al., 2002; Willer and Speck, 2003). GC B cell proliferation and 

differentiation into memory B cells is critical for maintenance of MuHV-4 long-term persistence 

(Kim et al., 2003; Moser et al., 2005). Although several B cell subsets can be initially infected by 

MuHV-4, only the ones that access a GC and differentiate into memory B cells are capable of 

maintaining long-term MuHV-4 latent infection. These observations imply similarities with the 

proposed model for EBV latency, indicating that MuHV-4 is also exploiting the normal B cell 

developmental pathways in order to achieve latency in the long-lived memory B cell compartment. 

Thus, the virus takes advantage of the GC reaction to expand the pool of latently infected cells 

and later to induce the differentiation of the infected cells into long-lived memory B cells. 

MuHV-4-driven B cell activation, proliferation, expansion and differentiation of latently infected 

cells depends on CD4+ T cells (Collins and Speck, 2014; Stevenson and Doherty, 1999; 
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Usherwood et al., 1996), CD40 ligand (Brooks et al., 1999), and CD40 (Kim et al., 2003), implying 

that MuHV-4 depends on normal T cell help to enter the GC reaction and differentiate into a 

memory B cell. In the absence of CD4+ T cells, infected B cells show impaired proliferation in 

GCs, there is a reduced amplification of latency and no splenomegaly. In addition to CD4+ T cell 

help, host colonization also requires T cell-independent survival signals provided by the B cell 

activating factor (BAFF) receptor (BAFF-R) (Frederico et al., 2014). 

Several ORFs were shown to be transcribed during the establishment of latency, including M1, 

M2, M3, M4, M8, M9, M11 (v-bcl2), K3, ORF72 (v-cyclin), mLANA (ORF73) and ORF74 (Marques 

et al., 2003). Furthermore, the pattern of transcription in B cells is selective and dependent upon 

the differentiation status of the B cell, which reflects the possibility of different latency 

programmes, as occurs with EBV. 

Analogous to EBV and KSHV, MuHV-4 also encodes at least 15 miRNAs (miR-M1-1 to miR-M1-

15) at the left end of its genome, which are expressed both in lytic and latently infected cells in 

vitro (Pfeffer et al., 2005; Zhu et al., 2010). An unusual feature of this miRNAs is that they are part 

of tRNA-like genes transcribed by RNA pol III and processed Drosha-independently by tRNaseZ 

(Bogerd et al., 2010; Diebel et al., 2010). Their targets and biological functions, particularly in the 

context of infection remain unknown. However, they are predicted to be expressed during latency 

in vivo and to modulate key aspects of the virus lifecycle. Uncharged viral tRNAs are also 

expressed in the spleens of latently infected mice and have been used as a marker to study the 

kinetics of viral latency (Bowden et al., 1997; Simas et al., 1999).  

The mechanism by which MuHV-4 promotes the differentiation of newly infected naïve B cells 

into GC B cells, memory and plasma cells remains to be elucidated. Research conducted in our 

laboratory has focused on the latent phase of MuHV-4 infection, in particular in dissecting basic 

molecular mechanisms and characterizing the biological functions of both M2 and mLANA latent 

proteins, and their contribution to in vivo establishment of latency and host colonization. Our 

studies indicate that both proteins play important key functions during in vivo MuHV-4 expansion 

in GC B cells. The M2 protein has been shown to function as a modulator of B cell signaling, 

exhibiting functional homology with EBV LMP2A and KSHV K1 and K15, and to promote acute 

latency amplification in vivo (Pires de Miranda et al., 2008; Pires de Miranda et al., 2013; 

Rodrigues et al., 2006). mLANA, the virus episome maintenance protein, modulates cellular 

nuclear factor-kappa B (NF-κB) and c-myc through its E3 ubiquitin-ligase activity (Rodrigues et 

al., 2009; Rodrigues et al., 2013). Specifically, mLANA-mediated poly-ubiquitination of the 

p65/RelA subunit of NF-κB targets it for proteasomal degradation (Rodrigues et al., 2009), 

whereas heterotypic poly-ubiquitination of c-myc increases its stability resulting in increased 

progression through the cell cycle (Rodrigues et al., 2013). By simultaneously inhibiting NFκB 

signaling and increasing c-myc stability, mLANA is believed to be promoting the expansion of 

MuHV-4 in GC B cells and thereby contributing to MuHV-4 persistence in the host. Additionally, 

resolution of the crystal structure of mLANA C-terminal domain revealed a dimer, composed of a 
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ventral face mediating viral DNA binding and a dorsal face containing a novel structural motif with 

a patch of positively charged lysine residues, predicted to mediate interaction with host cell 

protein(s) (Correia et al., 2013). Mutations in the mLANA DNA binding motif abolished MuHV-4-

driven GC B cell proliferation severely compromising virus persistence. Substitutions of lysine 

residues, located at the periphery of the positively charged dorsal motif, interfered with the 

efficient expansion of latently infected GC B cells (Correia et al., 2013). 

Another study performed in our laboratory aimed at clarifying the role of BCR specificity in the 

establishment of MuHV-4 latency in B cells. This study demonstrated that MuHV-4 latency is not 

restricted to virus-specific B cells. Taking advantage of the switch hen egg lysozyme (SWHEL) 

mice, which contain up to ~10% of hen egg lysozyme (HEL)-specific B cells, and the yellow 

fluorescent protein (YFP)-expressing MuHV-4, experiments were designed to investigate in 

parallel how MuHV-4 influences a normal B cell repertoire (HEL-) and a clonal population of non-

virus specific B cells (HEL+) (Decalf, J. & Godinho-Silva C. et al., 2014, accepted, in press). In 

vivo tracking of HEL- and HEL+ B cells, revealed that latency was restricted to HEL- B cells 

although both populations were equally sensitive to virus infection in vitro. MuHV-4 infection 

triggered two waves of B cell activation. The first wave was characterized by general B cell 

activation, with expansion of both HEL- and HEL+ B cells and upregulation of CD69 expression. 

The second wave was restricted to the population of HEL- B cells which acquired GC and plasma 

cell phenotypes. HEL+ B cells, despite being activated in vivo, did not support MuHV-4 latent 

infection and did not differentiate into GC B cells. Upon cognate antigenic stimulation, HEL+ B 

cells differentiated into GC B cells, still MuHV-4 latent infection remained undetectable, indicating 

that the virus could not benefit from an acute B cell response to establish latency. Therefore, this 

study supports the idea that MuHV-4 establishment of latency in B cells is not a stochastic event 

in terms of BCR specificity relying on mechanisms that remain, however, to be identified. 

Similarly, little is known about how MuHV-4 reactivates from latency and re-enters the lytic cycle. 

However, like with EBV and KSHV, plasma cell differentiation seems to be linked to MuHV-4 

reactivation from latency, and it has been proposed that the M2 latency-associated protein is 

probably involved in this process (Liang et al., 2009). 

 

1.3.3. M2 latency-associated protein 

M2 was initially classified as a latency-candidate gene on the basis of its genomic position. M2 is 

located at the left end of MuHV-4 genome, a region that contains four unique ORFs (M1-M4), 

eight viral tRNAs and at least fifteen miRNAs (Virgin et al., 1997). Comparative studies with 

closely related MuHV-4-like viruses revealed that M2 is the most divergent of the four proteins 

(Hughes et al., 2010). Among γHVs, this genomic region besides being very divergent is also 

known to encode latency-associated and transforming proteins (Virgin et al., 1999).  
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M2 is composed of two exons that, upon splicing, produce a unique 192 amino acid-long protein, 

bearing no discernible homology to any other viral or cellular proteins existent in the databases 

(Husain et al., 1999). This protein has no obvious conserved domains or intracellular signals and 

examination of its primary structure reveals only the presence of eight proline-rich regions and 

three tyrosine residues, two of which Y120 and Y129 are differentially and constitutively 

phosphorylated by Src family kinases (Figure 1.5) (Pires de Miranda et al., 2008; Rodrigues et 

al., 2006). Additionally, M2 contains an H2Kd-restricted epitope (M284-92/Kd) that is recognized by 

CD8+ T cells from infected BALB/c (H2d) mice (Husain et al., 1999). A CTL line that recognizes 

this epitope is able to kill the latently infected S11 cells, suggesting that the M2 protein is 

expressed during latent infection and is a target for the host CD8+ CTL response (Husain et al., 

1999). 

 

 

Figure 1.5. Primary sequence of the M2 latency-associated protein. The proline residues organized in 

PxxP motifs (P represents a proline residue and x any amino acid) are shown in green, and the two tyrosine 

residues (Y120 and Y129) with the potential to be phosphorylated by kynases are shown in pink and with an 

asterisk. The H2Kd-restricted CD8+ CTL epitope is shown in blue and underlined, with the anchor residues, 

which are specific residues through which the peptide fragment binds to the MHC molecules, in yellow.   

 

M2 transcripts were firstly detected in splenocytes of infected mice during the establishment of 

latency, but not in lytically infected fibroblasts (Husain et al., 1999; Virgin et al., 1999). 

Subsequently, work performed in our laboratory and another independent study demonstrated 

that the M2 gene is consistently expressed during latency in the spleen in several B cell subsets, 

including the GC B cells, where it is one of the most expressed ORFs, and also in dendritic cells 

(Flano et al., 2002; Marques et al., 2003). 

In vivo the M2 protein was shown to play a critical role in the establishment of latency as well as 

reactivation from latency (Herskowitz et al., 2005; Jacoby et al., 2002; Macrae et al., 2003). 

Following intranasal infection, disruption of M2 did not affect the acute phase of virus replication, 

but caused a severe decrease in the establishment of latency in the spleen and a profound 

reactivation defect. In a study from our group, a detailed phenotypical analysis of an M2-defective 

virus was performed, addressing the establishment and maintenance of latency in different spleen 

cell subsets and splenic regions (Simas et al., 2004). Disruption of M2 resulted in a reduction in 

the number of latently infected follicles at 14 days post-infection. However, the mean number of 

latently infected cells per infected follicle was equivalent between the M2-defective virus and wild 

type. In addition, the frequencies of infection in total B, GC and memory B cells were also 

significantly lower compared to the wild type. Late in infection, at 50 and 70 days post-infection, 

MAPTPPQGKIPNPWPGGCSQNPVLWGDGTDGNYRPSEPWILGQVPCDQRFPHPSGNKNSSSTSGGR

PQRPPLPRTRFPKTIRRGFNKLRSTLKSPWKPRPSPVPSPEEVNPAGSPEENIY*ETANSEPVY*IQPIST

RSLMMLDSGSTDSPENLGPPTRPLPKLPNQHPMNPEIRLPIIPPSKCHKGFVEWGEE
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disruption of M2 resulted in sustained and abnormally high levels of virus persistence in splenic 

total B and GC B cells but not in memory B cells. Both the percentage of infected follicles and the 

mean number of infected cells per follicle were increased late during infection with the M2-

disrupted virus.  

Taken together, these data are consistent with M2 playing a crucial role in two distinct steps of 

the GC reaction. During the establishment of latency, M2 is required for efficient colonization of 

splenic follicles but is dispensable for the expansion of latently infected GC B cells. Late in 

infection, M2 seems to be signaling the overall cessation of virus-driven expansion of infected GC 

B cells. The acute latency amplification deficit associated with disruption of M2 suggested that 

this protein might be modulating B cell signaling pathways in order to induce the initial activation 

of the infected B cell and to promote the establishment of long-term latency in the memory B cell 

pool. This strategy had previously been demonstrated for the human γHV latent proteins, LMP1 

and LMP2A encoded by EBV and K1 and K15 encoded by KSHV, that interfere with different 

aspects of the host cellular signaling by mimicking the normal function of the B cell or CD40 

receptors. Therefore, the in vivo work was complemented with biochemical studies in order to 

understand and characterize the molecular functions of M2 during latent infection. 

The first biochemical study demonstrated that M2 is capable of inhibiting the IFN-mediated signal 

transduction, suggesting that by antagonizing IFN-mediated host immunity, M2 may be protecting 

latently infected cells from elimination (Liang et al., 2004). After, the same authors found that M2 

could interact with several proteins involved in the DNA damage signaling, blocking DNA-

damage-induced apoptosis (Liang et al., 2006). In vitro studies showed that M2 expression 

enhances B cell proliferation and survival, through secretion of high levels of IL-10 (Madureira et 

al., 2005; Rangaswamy and Speck, 2014; Siegel et al., 2008). In vivo high serum levels of IL-10 

observed during MuHV-4 infection were dependent on a functional M2 gene. Interestingly, 

recently LMP2A was also found to be capable of upregulating IL-10 production in mitogen-

stimulated primary B cells and B cell lymphomas, and increased IL-10 promoted the survival of 

these cells (Incrocci et al., 2013). Furthermore, EBV encodes an IL-10 homolog, suggesting that 

manipulation of IL-10 expression may be a common strategy among γHV. 

In vitro M2 was also shown to drive B cell differentiation towards a pre-plasma memory B cell 

phenotype in primary murine B cells and in a B lymphoma cell line (Liang et al., 2009; Siegel et 

al., 2008). In vivo infection of mice with a M2-null mutant results in an absence of virus infected 

plasma cells at the peak of latency expansion, whereas in mice infected with wild type MuHV-4 

approximately 8-10% of virus infected splenocytes are plasma cells, with these cells accounting 

for the majority of reactivation observed upon explant of splenocytes (Liang et al., 2009). Thus, 

the role of M2 in MuHV-4 reactivation from latently infected B cells has been attributed to its ability 

to manipulate plasma cell differentiation. Moreover, a recent report demonstrates that in vitro M2 

activates the NFAT pathway in a Src kinase-dependent manner leading to induction of the plasma 

cell-associated transcription factor, interferon regulatory factor-4 (IRF4), which can regulate the 
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IL-10 promoter in B cells, providing insights into how M2 potentially facilitates plasma cell 

differentiation and subsequent virus reactivation (Rangaswamy and Speck, 2014). 

Biochemical research carried out in our laboratory has identified several intracellular targets of 

the M2 protein and demonstrated that M2 promotes the assembly of B cell signalling complexes 

downstream of the BCR (Pires de Miranda et al., 2008; Pires de Miranda et al., 2013; Rodrigues 

et al., 2006). The M2 C-terminal proline rich region was shown to be important for interaction of 

M2 with SH3 domains of Src family tyrosine kinases, for translocation of M2 to the plasma 

membrane, and for subsequent phosphorylation of two closely spaced tyrosine residues of M2 

(Y120 and Y129) present in a proposed unconventional ITAM  (Pires de Miranda et al., 2013), with 

similar sequence identity to the ITAM of K1 (KSHV) (Lee et al., 1998a). Phosphorylation of M2 

tyrosine residues creates additional docking sites that allow direct and selective interaction of M2 

with SH2-containing molecules involved in B cell signalling, specifically, Fyn, Lyn, Vav1, Nck1, 

PLCγ2, PI3K and SHP2. Thus, M2 coordinates the formation of a signalosome similar to the one 

that is assembled by K1 (KSHV) and like K1 drives the phosphorylation of PLCγ2 (Lagunoff et al., 

1999; Lee et al., 2005). M2 has also been shown to activate the Vav1/Rac1 pathway (Pires de 

Miranda et al., 2008; Rodrigues et al., 2006). Furthermore, efficient entry of latently infected B 

cells into GC reactions in vivo is dependent on M2, particularly on its C-terminal proline rich region 

and phosphotyrosines  (Herskowitz et al., 2008; Jacoby et al., 2002; Macrae et al., 2003; Pires 

de Miranda et al., 2008; Simas et al., 2004). Hence, M2 modulation of B cell signaling is critical 

for the efficient colonization of splenic follicles in vivo. Interestingly, experiments being carried out 

in our group indicate that M2 is also promoting the formation of an immunological synapse 

between the B cell and CD4+ T cell, which in normal B cell development is important to drive GC 

reactions (F. Lopes and D. Fontinha, unpublished). Therefore, it is possible that M2 is inducing a 

pre-synaptic state in the B cell that reduces the threshold or even replaces the need for cognate 

CD4+ T cell help. Experiments are currently being performed by D. Fontinha to clarify this issue.  

Globally, these studies indicate that M2 by modulating B cell signaling exhibits functional 

homologies with EBV LMP2A and KSHV K1, which mimic a constitutive activated BCR. Although 

EBV LMP2A and KSHV K1 manipulate B cell signaling events at the receptor level while MuHV-

4 M2 modulates the signaling downstream of the BCR, the overall result is equivalent, implying 

that these latency-associated proteins exhibit convergent functions to allow the exploitation of the 

normal B cell developmental pathways in order to efficiently establish lifelong persistent infections 

in the host. 

As previously mentioned, in vivo an unusual feature of the M2 knockout phenotype in BALB/c 

(H2d) mice is that despite an acute latency deficit, long-term latent loads are increased (Simas et 

al., 2004). C57BL/6 (H2b) mice, which are not known to recognize an M2 epitope, show the same 

acute latency deficit, but not the long-term increase (Jacoby et al., 2002). These observations 

suggested that long-term latency depends both on viral M2 expression and host H2 haplotype. 

Indeed, the increased long-term persistence observed in H2d mice infected with a M2 defective 
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virus results from an immunological effect rather than abrogation of the M2 molecular functions. 

A study conducted in our laboratory demonstrated that in BALB/c (H2d) mice absence of the M2 

epitope results in uncontrolled long-term MuHV-4-driven proliferation of latently infected cells in 

GCs (details in section 1.3.5) (Marques et al., 2008). 

In summary, M2 modulates B cell signaling pathways in order to promote in vivo acute latency 

amplification in GC B cells and its H2Kd-restricted CD8+ CTL epitope, in the appropriate host MHC 

haplotype, renders M2 indirectly responsible for setting the long-term viral load.  

 

1.3.4. Adaptive immunity to MuHV-4 

Adaptive immunity plays a major role in controlling MuHV-4 infection. Studies in MuHV-4, utilizing 

mice deficient for specific components of the adaptive host immune response, have provided 

important insights into their individual contribution for the control of both the lytic and latent phases 

of MuHV-4 infection (Table 1.3) (Barton et al., 2011; Stevenson et al., 2009).  

The adaptive immune response to MuHV-4 acute infection is characterized by remarkable 

redundancy. That is, distinct components of the adaptive host immune response are individually 

dispensable for resolution of acute virus replication. Mice lacking CD4+ T cells, CD8+ T cells, B 

cells, or IFNγ effectively control acute virus replication, although the capacity of IFNγ-/- mice to 

control acute infection is strain specific (Cardin et al., 1996; Christensen et al., 1999; Lee et al., 

2009b; Tsai et al., 2011). Therefore, CD4+ T cells can be directly antiviral, independent of CD8+ 

T cells or B cells. However, concurrent removal of both CD4+ and CD8+ T cell subsets is invariably 

fatal (Stevenson et al., 1999c). Nevertheless, in wild type mice the cells detected in the 

brochoalveolar lavages during lytic infection are mainly CD8+ T lymphocytes, emphasizing the 

important role of CD8+ CTLs in the control of primary acute infection. In fact, their depletion 

increases while their priming reduces the levels of infectious viruses in the lungs following 

intranasal infection (Ehtisham et al., 1993; Stevenson et al., 1999b; Stevenson et al., 1999c). 

In contrast, control of persistent and reactivating MuHV-4 infection can be accomplished only by 

non-redundant, collaborative functions of CD4+ and CD8+ T cells, B cells and functional IFNγ 

signaling. Absence of any of these effector results in deregulated chronic infection.  

CD4+ T cell deficient mice are able to control the acute lytic lung infection but although they appear 

healthy for 2 to 3 months, MuHV-4 reactivates from latency at high levels, the mice develop severe 

chronic lung disease and eventually die, despite the presence of normal numbers and functional 

virus-specific CD8+ T cells (Belz et al., 2003; Cardin et al., 1996; Ehtisham et al., 1993). IFNγ, at 

least partially derived from CD4+ T cells, is critical for elimination of persistent lytic replication and 

for adequate control of reactivation. In the absence of either CD4+ T cells or IFNγ, acute infection 

resolves but persistent replication continues at a low but pathologic level in multiple tissues, 
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leading to an array of pathologies that are uniformly fatal after several months (Christensen et al., 

1999; Sparks-Thissen et al., 2005).   

CD4+ T cells may play a major effector role in controlling the establishment and maintenance of 

latency, still such a function has been hard to define. Yet, the finding that CD4+ T cells lyse latently 

MuHV-4 infected B cells (Stuller and Flano, 2009) suggests that CD4+ T cells may directly control 

latency rather than just provide helper T cell function. The effector function of CD4+ T cells is 

possibly mediated by two independent mechanisms, IFNγ production and cytotoxicity, as 

persistently infected mice display two distinct effector populations, one producing IFNγ and the 

other possessing killing activity (Stuller et al., 2010). CD4+ T cells seem to be continuously 

stimulated by infected B cells and dendritic cells (Freeman et al., 2011). However, it remains 

unclear which viral antigens are presented to CD4+ T cells during latency and which targets CD4+ 

T cells may recognize. 

Another mechanism by which CD4+ T cells may contribute to long-term MuHV-4 control is by 

enhancing CD8+ T cell responses. Yet, the mechanism of CD4+ T cell help operating during 

MuHV-4 chronic infection is not fully understood. CD4+ T cell-mediated activation of dendritic 

cells, through CD40-CD40L interactions has been shown to be important for effective long-term 

control of MuHV-4 (Giannoni et al., 2008). CD4+ T cell-mediated activation of dendritic cells could 

enable effective long-term activation of CD8+ T cells encountering antigen-presenting dendritic 

cells in lymph nodes, however, this has not been demonstrated. Furthermore, recent reports 

indicate that in the absence of CD4+ T cell help an IL-10-producing CD8+ T cell population arises 

during persistent MuHV-4 infection that belongs to a subset of CD8+ regulatory T cells (Hu et al., 

2013; Molloy et al., 2011). IL-10 produced from these cells is partly responsible for erosion in 

immune surveillance, leading to spontaneous virus reactivation in lungs during the chronic stage 

(Molloy et al., 2011). IL-10-producing CD8+ T cells showed partial overlap with the markers of 

regulatory CD8+ T cells, and suppressed the proliferation of naïve CD8+ T cells. Despite retaining 

cytotoxic activity and the ability to produce effector cytokines, these cells showed a proliferative 

defect that could be restored by addition of exogenous IL-2 or blockade of IL-10. (Hu et al., 2013).  

In mice lacking CD8+ T cells, the frequency of latently infected cells is increased, these cells are 

more likely to undergo reactivation and persistent low-level lytic replication occurs in the peritoneal 

compartment and to a lesser extent in the spleen (Tibbetts et al., 2002). In agreement, CD8+ T 

cell depleted mice show a consistent rise in the level of latently infected cells in the spleen, 

suggesting an inability to control virus-driven proliferation of latently infected cells (Stevenson et 

al., 1999c). Moreover, in β2-microglobulin deficient BALB/c mice, which lack traditional CD8+ T 

cells, MuHV-4 infection is associated with an increased incidence of lymphoproliferative diseases 

(Tarakanova et al., 2005). However, such disease does not occur in β2-microglobulin deficient 

C57BL/6 mice. A recent study has shown that fetal liver-derived B cells immortalized by MuHV-4 

could be controlled by both CD8+ and CD4+ T cells in vivo (Liang et al., 2013). 
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Table 1.3. Key players in adaptive immune response to MuHV-4 (adapted from Barton, E. et al., 
2011). 

Component of the adaptive 
immune response 

Effect on MuHV-4 life cycle 
(in vitro or in vivo) 

Potential mechanism 

Conventional CD8+ T cells 

↓ acute replication  
↓ latency 
↓ persistent replication 
↓ reactivation 

Perforin-, granzyme- and Fas-dependent 
cytolysis;  
IFNγ-dependent control of reactivation. 

Unconventional and 
Vβ4+ CD8+ T cells 

↓ persistent replication 
↓ reactivation 

Unknown, Vβ4+ CD8+ T cells secret IFNγ; 
cytolytic activity unlikely. 

CD4+ T cells 
↓ acute replication 
↓ persistent replication 
↓ reactivation 

Long-term maintenance of effective CD8+ 
CTL response via CD4-DC interactions; 
IFNγ-dependent control of reactivation; 
cytolysis. 

IFNγ 

↓ acute replication (in BALB/c 
mice) 
↓ persistent replication 
↓ reactivation 

In vitro repression of viral RTAa promoter; 
In vivo mechanism unknown. 

B cells 
↓ persistent replication 
↓ reactivation 

B cell presentation of viral antigen to 
CD8+ T cells and concomitant increase in 
IFNγ secretion. 

Virus-specific antibody 
↓ latency 
↓ reactivation 

Neutralization of virus produced upon 
reactivation 

aMuHV-4 replication and transcriptional activator (RTA) is essential for virus lytic replication and reactivation 

from latency (lytic switch protein). 

 

Overall, it remains uncertain if CD4+ T cells function predominantly as direct cytolytic effectors, 

as a critical source of IFNγ, or through providing help to CD8+ T cells and B cells, and how this 

help is mediated. Regarding CD8+ T cells, it is not fully understood why CD8+ T cells elicited in 

the absence of CD4+ T cells initially control infection, yet subsequently fail to keep latent cells in 

check, despite maintaining high levels of cytokine expression and cytolytic function. However, it 

is undeniable that both CD4+ and CD8+ T cell subsets are needed to achieve optimal in vivo 

control of MuHV-4 persistent infection.  

Neutralizing antibodies and total virus-specific antibodies slowly increase during MuHV-4 

intranasal infection, reaching the peak one month later, and remaining high without declines 

(Stevenson and Doherty, 1998). Although it seems that virus-specific antibodies do not play an 

important role during the acute infection phase, the contribution of humoral responses to the 

control of persistent MuHV-4 infection has been demonstrated (Kim et al., 2002; Stevenson et al., 

1999c; Tibbetts et al., 2003). These studies indicate to an important role for antibody in regulating 

latency, both by decreasing the number of latently infected cells and by inhibiting reactivation. 
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1.3.5. CD8+ T cell response to MuHV-4 

MuHV-4 infection elicits a highly heterogeneous CD8+ T cell response that segregates into three 

kinetically and anatomically distinct waves of viral antigen presentation, during the lytic and 

latency amplification stages of infection, that are mirrored in the expansion and contraction of 

peptide-specific CD8+ T cells (Freeman et al., 2010; Gredmark-Russ et al., 2008; Liu et al., 1999a; 

Stevenson et al., 1999a). The first two waves are derived from viral lytic proteins, but they display 

distinct kinetics. The first wave of epitope-specific CD8+ T cells peaks at day 6 post-infection, 

while a second wave peaks around day 10 (Gredmark-Russ et al., 2008). Both are most abundant 

in the lungs and draining lymph nodes. These epitopes are thought to be presented solely during 

acute infection because CD8+ T cells specific for these epitopes contract more rapidly after 

resolution of acute lytic lung infection (Gredmark-Russ et al., 2008). A third, delayed class of lytic 

epitope-specific CD8+ T cells is detected coincident with the peak of latency expansion in the 

spleen, between days 15 and 20 post-infection, and is maintained at high levels for at least two 

months after resolution of acute infection (Freeman et al., 2010; Stevenson et al., 1999a). These 

epitope-specific CD8+ T cells show signs of continued antigen exposure in vivo during latency, 

they proliferate rapidly and exhibit functional avidity maturation over time, and their slow rate of 

decline is blunted following infection with a viral mutant that fails to establish latency (Freeman et 

al., 2010). CD8+ T cells analysed both during acute and latent infection retain functionality, as 

indicated by IFNγ and TNFα secretion and cytotoxic capacity upon antigen re-exposure, during 

persistent infection, with no evidence of functional exhaustion (Cush et al., 2007). CD8+ T cell 

transition from effector to effector-memory to central-memory phenotypic maturation is relatively 

prolonged, with effector contraction occurring over several months (Cush et al., 2007). It is 

believed that low-level antigen exposure, presumably driven by reactivation, plays a role in 

maintaining a highly functional CD8+ effector population for the life of the host, although this has 

not been formally demonstrated. Nevertheless, MuHV-4-specific memory CD8+ T cells do not 

require the presence of antigen for survival and are capable of homeostatic renewal if transferred 

into a lymphopenic host (Cush and Flano, 2009).  

More than 30 MHC class I epitopes derived from MuHV-4 early and late genes have been 

identified in the C57BL/6 (H2b) and BALB/c (H2d) mice (Freeman et al., 2010; Gredmark-Russ et 

al., 2008). However, despite meaningful efforts to characterize the antigenic diversity, functionality 

and kinetics of MuHV-4-specific CD8+ T cell responses all class I-restricted epitopes identified 

thus far derive from lytic cycle proteins. The only MuHV-4 latent specific CD8+ CTL target known 

is the H2Kd-restricted epitope present in the M2 latency-associated protein (M284-92/Kd, 

GFNKLRSTL) recognized by CD8+ CTLs of BALB/c (H2d) mice, but not of C57BL/6 (H2b) mice 

(Husain et al., 1999). The M2-specific CD8+ T cell response is B cell dependent, transient and 

induced by the rapid increase in latently infected cells in the spleen around day 14 after infection 

(Usherwood et al., 2000). It expands and then contracts in parallel with latency amplification, 

reaching a peak 18 days after infection. 
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Attempts to improve CD8+ CTL control of latency towards M2 had limited success. Adoptive 

transfer of M284-92/Kd-specific CD8+ CTLs to BALB/c mice contributed to a reduction of the initial 

load of latently infected cells, however the long-term load was unaffected (Usherwood et al., 

2000). Vaccination with the M2 antigen DNA also resulted in lower levels of latency in vivo at 14 

days post-infection but did not prevent reaching normal long-term latent loads (Usherwood et al., 

2001). A reduction in splenic long-term latent levels was only achieved by immunizing mice both 

intranasally and subcutaneously with adenoviral vectors encoding both M2 and M3 (Hoegh-

Petersen et al., 2009). Thus, although a reduction in the latent loads was achieved neither 

strategy prevented the establishment of MuHV-4 latent infection. The relatively small contribution 

that M2-specific CD8+ T cells apparently have in the control of latent infection is probably due to 

dominance of viral evasion over CD8+ T cell function (details in section 1.3.6) (Stevenson and 

Efstathiou, 2005; Stevenson et al., 2009). 

Thus, little is known about MuHV-4 latent antigenic-specific CD8+ T cell responses and their 

importance for in vivo control of the virus-driven lymphoproliferation. A clear picture has come 

from a previous study conducted in our laboratory demonstrating that in BALB/c (H2d) mice CD8+ 

CTL recognition of the endogenous M2 epitope reduces MuHV-4 long-term latent loads (Marques 

et al., 2008). BALB/c mice display lower long-term latent loads than mouse strains not recognizing 

M2, such as C57BL/6 (H2b), but not when infected with a recombinant virus in which the M2 

epitope anchor residues have been mutated to prevent epitope binding to MHC class I and 

therefore presentation to CD8+ T cells. Mutating the M2 epitope anchor residues increases long-

term GC B cell colonization by MuHV-4 in H2d mice and restoring epitope presentation returns it 

to normal, consistent with the idea that disrupting CD8+ T cell recognition of M2 allows more 

extensive proliferation of latently infected B cells (Marques et al., 2008). Thus, latent antigen-

specific CD8+ CTLs help to regulate long-term latent loads and for MuHV-4 this has been shown 

to depend on a single CD8+ T cell epitope. Yet, the in vivo quantitative determinants of virus-

driven lymphoproliferation control by CD8+ CTL remain largely undefined.  

Interestingly, in H2b mice, that do not recognize the endogenous M2 epitope, there is a massive 

expansion of non-classical Vβ4+ CD8+ T cells capable of producing IFNγ and TNFα (Braaten et 

al., 2006). The expansion of Vβ4+ CD8+ T cells begins 18 to 20 days post-infection (Evans et al., 

2008) and has been shown to expand after the epitope-specific CD8+ T cells already have 

declined (Stevenson et al., 1999a). This is considered as a back-up defence mechanism when 

classical CD8+ T cell recognition of a key MuHV-4 target fails (Stevenson et al., 2009). However, 

the higher latent loads of H2b mice imply that the control exerted by Vβ4+ CD8+ T cells is not so 

efficient. In BALB/c (H2d) mice infected with MuHV-4 (Evans et al., 2008) or in C57BL/6 (H2b) 

mice infected with a viral recombinant deficient in viral CD8+ T cell evasion (K3-deficient MuHV-

4) (Stevenson et al., 2002), Vβ4+ CD8+ T cell expansion is minimal, probably because classical 

CD8+ T cell recognition takes over.  Nevertheless, non-classical CD8+ T cell recognition seems 

to provide protection without overt disease when host genetics or viral evasion limit antigen 

presentation. 
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1.3.6. CD8+ T cell evasion during MuHV-4 infection 

MuHV-4 represents a moving target for the host immune defences as it traffics from the lung to 

the lymphoid organs and from a lytic to a latent infection. Therefore, as with its human 

counterparts, immune evasion is a fundamental part of the MuHV-4 life cycle (Figure 1.6 and 

Table 1.4) (Feng et al., 2013; Hu and Usherwood, 2014; Stevenson et al., 2009). Studies with 

MuHV-4 have uncovered the importance of viral evasion for in vivo host colonization. 

Two CD8+ T cell evasion genes have been identified in MuHV-4: M3 and mK3. Both M3 and mK3 

are expressed in the lytic cycle, but also in lymphoid tissue during latency establishment (Marques 

et al., 2003). M3 and mK3 mRNA has been detected in myeloid cells and in latently infected B 

cells, including in GC B cells (Marques et al., 2003). M3 and mK3 elicit two distinct CD8+ T cell 

evasion mechanisms that have been shown to be required to protect MuHV-4 infected cells from 

immune elimination by CD8+ T cells at the stage of acute latency amplification.  

 

MuHV-4 M3 is a secreted broad-spectrum chemokine binding protein that binds selected CC and 

CXC chemokines with antiviral activity (Parry et al., 2000; van Berkel et al., 2000). After intranasal 

infection, an M3 deficiency had surprisingly little effect on lytic cycle replication, in the respiratory 

tract, or on the initial spread of virus to lymphoid tissues. However, there was a marked reduction 

in the amplification of latently infected B cells in the spleen (Bridgeman et al., 2001). In vivo this 

deficit was largely reverse by CD8+ T cell depletion, suggesting that the chemokine neutralization 

afforded by M3 may function to block effective CD8+ T cell recruitment into lymphoid tissue during 

MuHV-4 expansion of latency (Bridgeman et al., 2001; Rice et al., 2002).  Human γHVs encode 

homologues of cellular cytokines and chemokines, including vIL-10 of EBV (Moore et al., 1990) 

and viral CC chemokine ligands (vCCLs, or MIPs) of KSHV (Moore et al., 1996; Nicholas et al., 

1997b), that likely modulate the host immune response to favor viral infection.    

 

mK3 is a homolog of KSHV-encoded K3 and K5, containing a RING domain and having E3 

ubiquitin ligase activity. It is predominantly expressed in the endoplasmic reticulum membrane 

where it directly associates with and ubiquitinates the cytoplasmic tails of newly synthesized MHC 

class I glycoproteins, targeting them for proteosomal degradation, in contrast to KSHV K3 and 

K5, which induce rapid endocytose and lysosomal degradation of cell surface MHC class I 

molecules (Boname and Stevenson, 2001). mK3 can also degrade TAP and tapasin (Boname et 

al., 2004b; Boname et al., 2005), resembling EBV BLNF2a-mediated inhibition of TAP function. 

Thus, mK3 reduces cell surface expression of MHC class I molecules inhibiting recognition by 

antigen-specific CD8+ CTLs (Stevenson et al., 2000). In vivo depletion of MuHV-4 K3 has minimal 

effect on the viral clearance from the lung, but leads to attenuated viral latency amplification, a 

defect that can be reversed by CD8+ T cell depletion (Stevenson et al., 2002). Therefore, MHC 

class I inhibition seems to promote optimal seeding of latency without preventing the induction of 
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a robust and broad CD8+ T cell response during acute lytic infection (Freeman et al., 2010; 

Gredmark-Russ et al., 2008). 

 

 

Figure 1.6.  Immune evasion and immune control during MuHV-4 infection. CD8+ T cell evasion is a 

key aspect of MuHV-4 life cycle. MuHV-4 M3 and mK3 promote CD8+ T cell evasion during latency 

amplification and during lytic reactivation. CD4+ T cells play a role in limiting reactivation and low levels of 

lytic infection, likely through IFNγ signalling. Antibody also plays an important role in limiting the extent of 

viral reactivation as well as latency expansion (adapted from Stevenson et al., 2002).  

 

Hence, MuHV-4 viral evasion of CD8+ T cell function increases the extent of acute virus-driven 

lymphoproliferation. Additionally, latency is a successful mechanism of evasion for all 

herpesvirus. Limiting antigen expression is the first and foremost long-term CD8+ T cell evasion 

mechanism. Even so, when latently infected cells divide, their viral episomes must be replicated 

and segregated by the viral episome maintenance protein. Thus, the MuHV-4 episome 

maintenance protein mLANA (Habison et al., 2012; Paden et al., 2012), although it lacks a 

glycine-alanine repeat (GAr) or an acidic central repeat (ACr) domain, similar to EBV EBNA1 and 

KSHV LANA, limits epitope presentation in cis through reduced protein synthesis and degradation 

(Bennett et al., 2005). Using MuHV-4 it was possible to define the in vivo contribution of cis-acting 

CD8+ CTL evasion to host colonization. If this cis-acting evasion is bypassed, CD8+ T cells ablate 
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latency, indicating that γHV have evolved mechanisms to keep episome maintenance 

immunologically silent and protected, since cis-acting evasion during episome maintenance was 

essential for normal host colonization (Bennett et al., 2005). Optimized expression of a CD4+ T 

cell epitope during episome maintenance had no effect on host colonization in vivo (Smith et al., 

2006).   

In summary, studies in MuHV-4 have highlighted the importance of immune evasion for γHV to 

increase the number of latently infected cells and thus for effective host colonization. 

 

Table 1.4. MuHV-4 CD8+ T cell evasion mechanisms (adapted from Stevenson et al., 2009). 

Gene Site of action Mechanism Human γ-herpesvirus equivalents 

K3 Lytic and latent MHC class I and TAP 
degradation 

EBV BNLF2a and KSHV K3 and K5 

M3 Lytic and latent Chemokine binding  Possibly EBV vIL-10 and KSHV vMIPsa 

mLANA 
 

Latency Poor antigen presentation EBV EBNA1 and KSHV LANA   

M2 Latency Selection of virus variants  EBV LMP2A and EBNA3B, KSHV K1 

aThese are functionally different from M3 but conform to the same strategy of a secreted lytic cycle protein 
that can afford immune evasion in trans in a mixed lytic/latent lesion. 

 

1.3.7. MuHV-4 vaccination strategies 

Owing to the oncogenic potential associated with EBV and KSHV persistent infection, vaccine 

development has focused on subunit vaccines. The discovery and establishment of MuHV-4 as 

an in vivo model of γHV infection has allowed researchers to explore and test proof of principle 

vaccination strategies (Wu et al., 2010; Wu et al., 2012). The goal is to pursue a vaccine strategy 

than can prevent or reduce long-term viral latency and hence lower tumour risk. 

Peptide and subunit vaccination targeting lytic (glycoprotein150, glycoprotein B, ORF6, ORF61, 

M3) (Obar et al., 2004; Stevenson et al., 1999b; Stewart et al., 1999; Woodland et al., 2001b) and 

latency-associated viral proteins (M2) (Usherwood et al., 2001), heat-inactivated virions (Arico et 

al., 2004) and replication deficiency viruses (Kayhan et al., 2007) reduced the level of acute lung 

lytic replication and peak splenic latency of the challenge virus, however did not affect the 

establishment of long-term latency. 

The only effective vaccination strategies that reduced long-term latency were based on live 

attenuated viruses, particularly viruses engineered to be deficient in the establishment of latency  

(Boname et al., 2004a; Fowler and Efstathiou, 2004; Freeman et al., 2012; Jia et al., 2010; 

Rickabaugh et al., 2004; Tibbetts et al., 2003). To achieve latency deficiency two principal 

strategies were exploited. One was to constitutively over-express the replication and 
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transcriptional activator (RTA), which is necessary and sufficient to disrupt latency and initiate the 

viral lytic cycle, thereby constantly driving the virus toward lytic replication (May et al., 2004; 

Rickabaugh et al., 2004). The other strategy was to eliminate the viral episome maintenance 

protein mLANA, thus preventing the virus from establishing splenic latency (Fowler et al., 2003; 

Moorman et al., 2003). Others have combined both strategies and generated a vaccine virus by 

replacing the locus containing mLANA and the potentially oncogenic proteins ORF72 (v-cyclin) 

and M11 (v-blc2) with the RTA expression cassete driven by a strong and constitutively active 

promotor (Freeman et al., 2012; Jia et al., 2010). These vaccines based on live attenuated viruses 

enable the presentation of a full repertoire of viral antigens in the context of active replication and 

thus effectively elicit humoral and cell-mediated immune responses. The next challenge is 

considered to be to attenuate viral lytic replication without losing immunogenicity. A rational 

approach is to eliminate viral immune evasion genes, especially those blocking MHC class I 

presentation, such as K3.   

Based on these studies with MuHV-4 it has been proposed that live attenuated EBV and KSHV 

viruses unable to establish latency could be a viable option for vaccination (Wu et al., 2010). 

Furthermore, for post-exposure vaccination incorporation of epitopes derived from latent proteins 

is believed to be important to increase its efficacy. Overall, the development of safe and effective 

EBV and KSHV vaccines not only to induce protective immunity in naïve hosts, but also to 

enhance the immune control of virus carriers remains a major challenge. 
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1.4. Aims 

The proliferation of latently infected cells and their control by CD8+ T cells are central to γHVs 

pathogenesis. Latently expressed epitopes in B and tumour cells provide an immune target that 

has been successfully exploited to prevent and treat EBV-driven lymphoproliferative diseases in 

immunosuppressed transplant recipients by adoptive CTL transfer. However, efforts to optimize 

CTL-based immunotherapies to target other γHVs-associated tumours and to develop 

prophylactic and therapeutic vaccines have proved difficult. A major challenge consists in 

understanding the quantitative determinants of effective in vivo γHVs control by CD8+ CTLs.  

The narrow species tropism of human γHVs severely restricts in vivo analysis. Latent EBV 

transforms primary B cells in vitro and consequently immunological analysis has focused on in 

vitro recognition, mainly by CD8+ T cells. However, most in vivo infected B cells have passed 

through GCs in lymphoid tissue and differentiated into long-lived resting memory B cells. 

Therefore, an important unknown is how far in vivo immune recognition matches the CD8+ T cell 

mediated killing that is defined in vitro. That is, although many CD8+ CTL targets have been 

identified, the functional impact of their engagement in vivo remains ill-defined. 

MuHV-4 is a well-characterized animal model of γHV pathogenesis. Like EBV, it drives B cell 

proliferation in splenic GCs and persists in memory B cells. Hence, it provides a tractable 

experimental model that allows researchers to correlate biochemical interactions with in vivo 

immune function and infection control.   

The aim of this thesis was to identify thresholds of immune engagement for effective in vivo CD8+ 

CTL control of virus-driven B cell proliferation. Specifically, MuHV-4 was used to determine, for a 

single latently expressed epitope, how MHC class I binding and CD8+ T cell functional avidity 

impact on in vivo infection control and host colonization. 
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1.5. Experimental strategy 

During latency both transcriptional silencing and viral CD8+ CTL evasion restrict the pool of 

possible epitopes. This creates a scenario in which amino acid variations in epitope sequences 

that affect peptide affinity for MHC class I and TCR functional avidity can have a major impact on 

in vivo immune control and consequently on host colonization. EBV LMP2A, KSHV K1 and MuHV-

4 M2 are latently expressed functional homologues that modulate B cell signaling and represent 

potential CD8+ CTL targets. Additionally, all show evidence of amino acid sequence diversity, 

consistent with immune selection. Therefore, the diversity of LMP2A, K1 and M2 prompt the in 

vivo analysis of the consequences of varying MHC class I binding and CD8+ T cell functional 

avidity for a single epitope derived from M2.  

MuHV-4 infection of mice makes addressing this question experimentally possible because long-

term MuHV-4-driven proliferation of latently infected B cells in GCs was shown to be regulated by 

CD8+ CTLs directed against a single H2Kd-restricted epitope present in the M2 protein - M284-

92/Kd – GFNKLRSTL (Figure 1.7 panel A). This epitope is recognized in vivo by CD8+ CTLs of 

BALB/c (H2d) mice but not of C57BL/6 (H2b) mice and it constitutes the only latent-specific CTL 

epitope identified, thus far, for MuHV4. Thus, lack of an endogenous H2b-restricted M2 epitope 

allowed the introduction of new CD8+ CTL targets in a context where it is known to be important. 

The experimental strategy involved infection of H2b mice with MuHV-4 recombinants engineered 

to express from the M2 C-terminus the well characterized H2Kb-restricted epitope comprising 

amino acid residues 257-264 of ovalbumin (OVA) or derived altered peptide ligands (APLs) 

(Figure 1.7 panel B). The choice of an H2b haplotype renders the endogenous H2Kd-restricted 

M284-92 epitope unrecognised by CD8+ T cells of C57BL/6 mice, making possible to analyse the 

impact of OVA or APLs as single epitopes on the control of MuHV-4-induced lymphoproliferation. 

Furthermore, by attaching each epitope to the M2 C-terminus, this strategy allows expression of 

the introduced epitopes with the kinetics and copy number of a known endogenous latent epitope. 

Thus, this constitutes a physiologically relevant approach to epitope presentation since it 

conforms to normal latent gene expression. 

First, OVA and APLs were characterized in vitro for MHC class I binding and CD8+ T cell functional 

avidity was assessed using CD8+ T cells purified from OT-I mice, which express a transgenic 

rearranged TCR designed to recognize OVA257-264 in the context of H2Kb. Subsequently, the 

experimental approach involved infection of three independent but complementary H2b mouse 

models with the engineered MuHV-4 epitope recombinants (Figure 1.7).  
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Figure 1.7.  Generation of MuHV-4 recombinants expressing OVA or APLs thereof linked to M2. (A) 

CD8+ cytotoxic T lymphocytes (CTLs) from BALB/c (H2d) mice recognize latently infected B cells displaying 

on MHC class I (H2Kd) molecules the H2Kd-restricted epitope comprising amino acid residues 84-92 of the 

M2 latency-associated protein (M284-92/Kd – GFNKLRSTL). CD8+ CTL recognition of this single latent epitope 

controls long-term MuHV-4-driven B cell proliferation in GCs, in H2d mice. The epitope anchor residues, 

which are the amino acid residues that mediate binding to the MHC molecule, are shown in yellow. (B) 

MuHV-4 epitope recombinants were engineered to express from the M2 C-terminus the H2Kb-restricted 

epitope comprising amino acid residues 256-264 of chicken ovalbumin (OVA) or altered peptide ligands 

(APLs) thereof. Lack of an endogenous H2b-restricted M2 epitope allowed to determine for a single latently 

expressed epitope how variations in MHC class I binding and CD8+ T cell functional avidity impact on host 

colonization, in C57BL/6 (H2b) mice. The epitope anchor residues are represented in orange. 

 

The impact of MHC class I binding by a single latently expressed epitope derived from M2 on in 

vivo host colonization was addressed in C57BL/6 (H2b) mice, which mount polyclonal CD8+ T cell 

responses (Figure 1.8 panel A). Both the ability of MuHV-4 epitope recombinants to drive the 

proliferation of latently infected B cells in GCs and the CD8+ T cell responses elicited were 

determined upon infection of mice. 

Then, to investigate the relevance of CD8+ T cell functional avidity for in vivo control of MuHV-4 

latent infection, we focused on the well-established OT-I transgenic mouse model, which has a 

single TCR specificity for OVA257-264/Kb (Figure 1.8 panel B). OT-I (H2b) mice were intranasally 

infected with MuHV-4 recombinants expressing epitopes with comparable H2Kb binding but with 

different TCR functional avidities and the splenic latent loads established in the host were 

determined. The CD8+ T cell functional avidity defined in vitro for each epitope was related to in 

vivo virus control. 

Finally, to overcome the deficit in CD4+ T cell help and GC formation inherent to OT-I transgenic 

mice, which impairs the ability of MuHV-4 to driven B cell proliferation in GCs, polyclonal CD4+ T 

cells purified from C57BL/6 mice and OT-I cells isolated from CD45.1 Rag1-/- OT-I mice were 

adoptively transferred into TCRα-/- (H2b) recipients, one day prior to infection (Figure 1.8 panel C).  
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Figure 1.8. Experimental approach – MuHV-4 epitope recombinants were used to identify for a 
single latently expressed epitope functional immune engagement thresholds for in vivo CD8

+
 CTL 

control of virus-driven B cell proliferation. (A) Impact of MHC class I binding on host colonization. 

C57BL/6 (H2
b
) mice were intranasally infected with MuHV-4 recombinants expressing OVA or APLs linked 

to M2 (described in Figure 1.7, panel B). The ability of each MuHV-4 recombinant to drive the proliferation 
of latently infected cells in GCs and to elicit epitope-specific CD8

+
 CTL responses were measured in the 

context of a polyclonal TCR repertoire. (B) Impact of CD8
+
 T cell functional avidity on the control of MuHV-

4 latent infection. OT-I transgenic (H2
b
) mice, whose CD8

+
 T cells express a transgenic TCR designed to 

recognize OVA257-264 in the context of H2K
b
, were intranasally infected with MuHV-4 epitope recombinants 

with similar MHC class I binding but that elicit OT-I T cell responses with different functional avidities. 
Latent infection levels established in the spleen were determined in this monoclonal CD8

+
 T cell setting. 

The limited CD4
+
 T cell repertoire of OT-I mice impairs GC formation. (C) Impact of CD8

+
 T cell functional 

avidity on the control of MuHV-4-driven proliferation of latently infected cells in GCs. To overcome the 
deficit in CD4

+
 T cell help and, thus, on GC formation inherent to OT-I mice, polyclonal CD4

+
 T cells 

purified from C57BL/6 mice and OT-I cells isolated from CD45.1 Rag1
-/-

 OT-I mice were adoptively 
transferred into TCRα

-/- 
(H2

b
) recipients, one day prior to infection with MuHV-4 epitope recombinants. 

Reconstituted mice had, therefore, polyclonal CD4
+
 T cells and a monoclonal CD8

+
 T cell compartment 

restricted to OT-I cells. These mice were used to determine how different TCR engagement thresholds by 
a latency epitope affect CD8

+
 CTL of MuHV-4-driven B cell proliferation in GCs.  

 

 

Thus, the reconstituted mice had polyclonal CD4
+
 T cells and a monoclonal CD8

+
 TCR 

transgenic compartment restricted to OT-I cells. This approach allowed to investigate the 

outcome of different TCR engagement thresholds on the in vivo CD8
+
 CTL response and on the 

ability of MuHV-4 to driven the proliferation of latently infected B cells in GCs. 
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Generation and characterization of MuHV-4 recombinants expressing OVA 

or APL derivates linked to M2 

Control of γHV latent infection is notorious complex. γHV colonize multiple cell types and infected 

cells can have distinct patterns of viral gene expression. Moreover, γHV have developed several 

strategies to subvert host immune surveillance in order to amplify the pool of latently infected cells 

and achieve long-term persistence. Evasion of immune recognition is further accomplished with 

transcriptional silencing during latency, which additionally restricts the pool of possible CD8+ CTL 

targets. Thus, a major challenge consists in understanding the key determinants for efficient CD8+ 

CTL control of virus-driven lymphoproliferation. EBV LMP2A, KSHV K1 and MuHV-4 M2, are 

latently expressed functional homologues that modulate B cell signaling and represent potential 

CD8+ CTL targets. Additionally, all show evidence of amino acid sequence diversity, consistent 

with immune selection. Therefore, amino acid variations in epitope sequences that affect MHC 

class I binding or CD8+ T cell functional avidity may have a major impact on in vivo infection 

control and, consequently, on host colonization.  

To identify for a single latently expressed epitope how MHC class I binding and CD8+ T cell 

functional avidity affect in vivo CD8+ CTL control of γHV-driven lymphoproliferation, the well 

characterized H2Kb-restricted epitope comprising amino acid residues 257-264 of ovalbumin 

(OVA) or derived altered peptide ligands (APLs) were selected for expression from MuHV-4 M2 

C-terminus. Q4, V4, G4, R4 and E1 APLs were selected since their biological properties have 

been extensively documented previously, namely their TCR affinity (Alam et al., 1999; Alam et 

al., 1996; Rosette et al., 2001), the fate they induce in thymocyte development (positive vs 

negative selection) (Daniels et al., 2006; Hogquist et al., 1994; Jameson et al., 1994) and their 

capacity to activate CD8+ T cells in the periphery (Denton et al., 2011; Hommel and Hodgkin, 

2007; Jameson et al., 1993; Zehn et al., 2009). As shown in Table 2.1 the group includes strong 

agonists, weak and very weak agonists and peptides that exhibit antagonist activity. This strategy 

allowed the generation of a very well-defined model epitope with the kinetics and copy number of 

a known endogenous epitope. The choice of an H2b haplotype renders the endogenous H2Kd-

restricted M284-92 epitope unrecognised by CD8+ T cells of C57BL/6 (H2b) mice, making possible 

to analyse the impact of OVA or APLs as single epitopes on the control of MuHV-4-induced 

lymphoproliferation. 

In this chapter OVA and APLs were first characterized for MHC class I binding and TCR functional 

avidity. Next, each epitope was introduced at the MuHV-4 M2 C-terminus and the engineered 

MuHV-4 epitope recombinants were analysed and characterized. 
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Table 2.1. Biological properties of OVA and APLs selected to generate MuHV-4 epitope 
recombinants. 
 

 

 

 

2.1. Characterization of altered peptide ligands by MHC class I binding 

OVA is known to bind to H2Kb with high affinity (Kd 4.1nm) (Matsumura et al., 1992). To compare 

the ability of OVA and APLs to bind MHC class I a H2Kb stabilization assay was performed on 

TAP-deficient RMA-S cells (Schumacher et al., 1990) using graded doses of each peptide (Figure 

2.1, panel A). This experiment was performed by Dr Sofia Marques in our laboratory. 

The mutant mouse lymphoma cell line RMA-S has a defect in class I assembly and expresses 

markedly reduced levels of empty class I molecules at the cell surface (Karre et al., 1986; 

Ljunggren and Karre, 1985; Powis et al., 1991). Cell surface assemble of class I molecules on 

RMA-S is stabilized both by incubation with peptide (Townsend et al., 1989) and by reduction of 

the temperature from 37ºC to 26ºC (Ljunggren et al., 1990). Therefore, RMA-S cells were first 

incubated overnight at 26°C to increase the level of empty surface H-2Kb molecules. Then, RMA-

S cells were loaded with graded concentrations of OVA and APL soluble peptides for 2h at 26°C 

and subsequently transferred to 37ºC to destroy empty H2Kb molecules (Schumacher et al., 

1990). The mean fluorescence intensity of H2Kb-specific staining on peptide-pulsed RMA-S cells 

was analysed by flow cytometry and the half-maximum effective concentration (EC50) values 

required for surface H2Kb stabilization were calculated for OVA and APL peptides from the 

constructed sigmoidal dose-response curves.  

The concentration of OVA peptide required for inducing an half-maximum stabilization of H2Kb 

was 40 nM, which is in close agreement with previous published data (Chen et al., 1994). The 

selected APLs Q4, V4, G4 and R4 were able to stabilize Kb cell surface expression to a similar 

degree as the native OVA peptide (EC50 within 2-fold) (Figure 2.1, panels A and B). This result is 

consistent with residue 4 being an important TCR contact residue and, consequently solvent-

exposed according to the H2Kb-OVA complex crystal structure (Fremont et al., 1995; Jameson 

Peptide Sequence 
TCR affinity 

Kd (µM)a 
Thymocyte selectionb 

Mature CD8+ T cell 
activationc 

OVA SIINFEKL 6.5 Negative Strong agonist 

Q4 SIIQFEKL n.d. Negative Weak agonist 

V4 SIIVFEKL n.d. Positive Very weak agonist 

G4 SIIGFEKL 10 Positive Very weak agonist 

E1 EIINFEKL 22.6 Positive Partial agonist/ antagonist 

R4 SIIRFEKL 57.1 Positive Antagonist 

n.d.; not determined. 
aAlam et al., 1999; Alam et al., 1996; Rosette et al., 2001. 
bDaniels et al., 2006; Hogquist et al., 1994; Jameson et al., 1994. 
cDenton et al., 2011; Hommel and Hodgkin, 2007; Hogquist et al., 1994; Jameson et., 1993; Zhen et al., 

2009. 
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and Bevan, 1992). For E1 peptide to achieve equivalent stabilization of H2Kb a 6-fold higher 

peptide concentration was required (Figure 2.1, panel B). This result is in conformity with this 

residue being only partly exposed (Fremont et al., 1995) and with structural and biophysical 

analysis demonstrating decreased epitope stability for E1 (Denton et al., 2011). As expected, 

mutation of one anchor residue (leucine 8 to an alanine, A8 peptide) resulted in decreased surface 

H2Kb stabilization. A8 required approximately 60-fold more peptide comparing to OVA (Figure 

2.1, panel B). Finally, H2Kb stabilization was completely lost when the two main anchor residues 

(phenylalanine 5 and leucine 8) were both mutated to alanines (A5A8 peptide) (Figure 2.1, panels 

A and B).    

In agreement with published data (Denton et al., 2011; Zehn et al., 2009), all APLs were able to 

stabilize H2Kb cell surface expression on RMA-S cells similarly to the OVA peptide, with the 

exception of E1 for which a 6-fold higher concentration of peptide was required to achieve 

equivalent stabilization. 

 
 

2.2. Characterization of altered peptide ligands by TCR functional avidity 

The functional avidity of OT-I cells for OVA and each APL was determined by ex vivo stimulation 

of CD8+ T cells purified from OT-I mice with graded peptide doses. CD8+ T cells from OT-I mice 

carry a transgenic TCR designed to recognize ovalbumin residues 257-264 (OVA) in the context 

of H2Kb (Hogquist et al., 1994). Dose response curves of the capacity of each APL to stimulate 

IFNγ production in OT-I cells are shown (Figure 2.1, panel C). The concentration required for 

each peptide to achieve a half-maximum IFNγ response (EC50) in OT-I cells is indicated (Figure 

2.1, panel D). A detailed description of the experiment can be found in Material and Methods, 

section 9.2.11.1. 

As expected, APLs differed in their potency for stimulating OT-I cells, showing a clear hierarchy 

in dose-response, with OVA˃Q4˃V4˃G4˃E1˃R4. The original OT-I ligand, OVA, was the most 

potent in stimulating OT-I cells followed by Q4, for which a 14-fold higher concentration of peptide 

was required for equivalent IFNγ production. V4 and G4 required 3,760-fold and 198,000-fold 

higher concentrations of peptide, respectively. E1 exhibited the lowest functional avidity and R4 

was not capable of stimulating IFNγ production by OT-I cells, which is in agreement with this APL 

as being described as an antagonist towards OT-I cells (Hogquist et al., 1994; Jameson et al., 

1993).    

Thus, the results obtained demonstrate that OT-I cells exhibit a hierarchy of functional avidities 

for the selected APLs, that match the reported TCR affinity and ability of each APL to support 

CD8+ T cell activation (Table 2.1).  
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Figure 2.1. Characterization of APLs by MHC class I binding and TCR functional avidity. (A) The 

capacity of OVA and individual APLs to stabilize surface H2Kb on TAP-deficient RMA-S cells was determined 

using graded doses of each peptide. The mean fluorescence intensity of Kb-specific staining on peptide-

pulsed RMA-S cells was obtained by flow cytometry. Shown is the percentage of maximum surface H2Kb 

stabilization for each peptide. (B) The half-maximum effective concentration (EC50) values required for 

surface H2Kb stabilization were calculated for OVA and APLs from the sigmoidal dose-response curves 

using the GraphPad Prism software. EC50 APL/OVA values represent the ratio of the concentration of each 

APL divided by the concentration of native OVA peptide required for a half-maximum surface H-2Kb 

stabilization. (A) and (B) were determined by Dr Sofia Marques in our laboratory. Data show results obtained 

in three independent experiments. (C) Functional avidity of OT-I cells for OVA and APL peptides was 

determined by constructing dose-response curves of the capacity of each peptide to stimulate IFNγ 

production in CD8+ T cells purified from OT-I mice. (D)  EC50 values required for inducing a half-maximum 

IFNγ response in OT-I cells and EC50 APL/OVA rations were determined as before. Data were reproducible 

over four independent experiments performed in duplicates each time. 

 

 

 

Peptide EC50 (µM) EC50 APL/OVA 

OVA 0.040 1.0 
Q4 0.030 0.8 
V4 0.063 1.6 
G4 0.034 0.9 
R4 0.056 1.4 
E1 0.235 5.9 
A8 2.466 61.7 
A5A8 ------ ------ 

Peptide EC50 (µM) EC50 APL/OVA 

OVA 1.82E-05 1.00E+00 

Q4 2.43E-04 1.35E+01 

V4 6.85E-02 3.76E+03 

G4 3.61E+00 1.98E+05 

E1 7.78E+00 4.27E+05 

R4 ------ ------ 
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2.3. Generation of MuHV-4 recombinants expressing OVA or derived APLs 

linked to M2 

Each of the previously characterized epitopes was then introduced at the MuHV-4 M2 C-terminus 

(Figure 2.2, panel A).  This strategy ensures expression of the introduced epitopes during latency 

without compromising M2 function, as shown before (Marques et al., 2008). 

MuHV-4 recombinants were generated using a previously described methodology (Adler et al., 

2000), which utilizes MuHV-4 cloned as a bacterial artificial chromosome (BAC). This technique 

allows the maintenance of the viral genome as a BAC in Escherichia coli and site-directed 

mutagenesis of the genome by homologous recombination (Adler et al., 2003). MuHV-4 

recombinants expressing epitopes with comparable H2Kb binding were also engineered with a 

yellow fluorescent protein (YFP) reporter construct to facilitate, based on YFP expression, 

tracking of infected cells, phenotypic analysis of infected cell populations and quantification of 

infection, by flow cytometry (Collins et al., 2009).  The generation and initial characterization of 

these recombinant viruses are described in detail in Materials and Methods, section 9.2.5. Briefly, 

verification of the introduced epitopes was carried out by restriction enzyme digestion and 

sequencing across the M2 ORF in the BAC vector. The genomic structure and integrity of 

generated viruses was verified by examination of restriction enzyme digestion profiles of E. coli-

derived BAC DNA. 

Infectious viruses were reconstituted by transfection of BAC DNA into BHK-21 fibroblasts. Since 

MuHV-4 containing BAC sequences is attenuated in vivo compared to the wild type (WT) (Adler 

et al., 2001), these sequences were removed by propagating the viruses in fibroblasts expressing 

Cre recombinase. BAC sequences are flanked by loxP sites and Cre recombinase expression 

from the cellular genome allows efficient excision of the BAC sequences during cellular growth.  

Viral genome integrity in the region subjected to homologous recombination was further analysed 

by PCRs across the HindIII-E region in plaque-purified viral DNA (Figure 2.2, panels B and C and 

Figure 2.3, panels A and B). The stability of the introduced epitopes was checked in viruses 

recovered from lytically infected BHK-21 cells or latently infected spleens, by sequencing the M2 

gene in viral high molecular height (HMW) DNA extracted from BHK-21 or from at least four 

different mice, respectively. This analysis confirmed the retention of the introduced epitopes 

following in vitro and in vivo infection. 
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A 

MuHV-4 

Recombinants 
Epitope Sequence 

vOVA M2 - SIINFEKL 

vQ4 M2 - SIIQFEKL 

vV4 M2 - SIIVFEKL 

vG4 M2 - SIIGFEKL 

vR4 M2 - SIIRFEKL 

vE1 M2 - EIINFEKL 

vA8 M2 - SIINFEKA 

B 

 
 

C 

 
 

 

Figure 2.2. Construction and verification of the genomic integrity of MuHV-4 recombinants 

expressing OVA or APLs linked to M2. (A) MuHV-4 recombinant viruses were generated to express the 

well characterized H2Kb-restricted OVA257-264 epitope or derived APLs from the M2 C-terminus. Amino acid 

sequences of the introduced epitopes are shown. Blue residues denote single amino acid alterations 

introduced in native OVA epitope. (B) Schematic representation of the MuHV-4 genome and in particular of 

the HindIII-E region. ORFs are represented as shaded arrows and the eight viral tRNAs as small arrow 

heads. The fifteen miRNAs are shown. Amplicon genomic coordinates for PCRs performed across the 

HindIII-E region are indicated. (C) PCR analysis of recombinant viral DNA to confirm genome integrity in the 

HindIII-E region. High molecular weight DNA was purified from lytically infected BHK-21 cells. Expected size 

for each PCR is shown. PCR products were electrophoresed on a 0.8% agarose gel and stained with gel 

red. Markers consisting of a 1 Kb Plus DNA ladder (Invitrogen) are shown to the left of each virus. 
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Figure 2.3. Generation and characterization of YFP-expressing MuHV-4 epitope recombinants.  H2Kb-

restricted OVA257-264 epitope or APL derivates were introduced in fusion with the M2 C-terminus of YFP-

expressing MuHV-4. (A-B) PCR analysis of recombinant viral DNA to confirm genome integrity in the region 

subjected to homologous recombination during YFP BAC mutagenesis in E.coli. (A) Schematic 

representation of the MuHV-4 genome and in particular of the HindIII-E region. ORFs are represented as 

shaded arrows and the eight viral tRNAs and 15 miRNAs are shown. Amplicon genomic coordinates for 

PCRs performed across the HindIII-E region are indicated. (B) High molecular weight DNA extracted from 

MuHV-4 lytically infected BHK-21 fibroblasts (5 PFU/cell) was checked by PCR for genome integrity in the 

HindIII-E region. Expected size for each PCR is shown. PCR products were electrophoresed on a 0.8% 

agarose gel and stained with gel red. Markers consisting of a 1 Kb Plus DNA ladder (Invitrogen) are shown 

to the left of each virus. (C) H2d BALB/c mice were intranasally inoculated with 104 PFU of YFP-expressing 

MuHV-4 (vWT) or YFP-expressing MuHV-4 epitope recombinants. At 14 days p.i., spleens were removed, 

single cell splenocyte suspensions were prepared and latent infection in each sample was quantified by ex 

vivo reactivation assay (closed symbols). Pre-formed infectious viruses were analysed by plaque assay 

(open symbols). Each point represents the titre of an individual mouse. Horizontal bars show arithmetic 

means. The dashed horizontal line indicates the limit of detection of the assay. Latent loads of YFP-
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expressing MuHV-4 epitope recombinants were not significantly different from those of vWT (p>0.05, by 

ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). No pre-formed infectious viruses 

were detected for any of the viruses analysed. 

 

 

2.4. MuHV-4 epitope recombinants display normal replication in vitro and in 

vivo 

In vitro lytic replication kinetics for each of the engineered epitope recombinants was compared 

to that of the WT virus by constructing multi-step growth curves in permissive BHK-21 cells (Figure 

2.4, panel A). Each recombinant virus showed equivalent in vitro growth kinetics. 

The course of MuHV-4 infection upon intranasal inoculation is characterized by the establishment 

of a productive infection in alveolar epithelial cells that peaks at around 4-7 days and is then 

resolved to undetectable levels by 10 to 12 days post-infection (p.i.) (Sunil-Chandra et al., 1992a). 

In vivo acute phase replication kinetics was determined for each MuHV-4 recombinant virus and 

compared to that of the WT virus in lung tissue of infected C57BL/6 mice (Figure 2.4, panel B). 

Following intranasal inoculation of C57BL/6 mice, lungs were removed at 4, 7 and 11 days p.i., 

subjected to freeze-thawing to disrupt cells, and the titre of infectious virus was determined in 

lung homogenates by plaque assay. All viruses showed identical in vivo replication kinetics in the 

lungs of infected mice, with peak titers at 4-7 days p.i. and clearance by day 11.  

These results demonstrate that introducing an epitope at the M2 C-terminus does not affect the 

ability of MuHV-4 recombinants to replicate in vitro or in vivo, as previously reported (Marques et 

al., 2008). Additionally, obtained results are in agreement with previous studies demonstrating 

that M2 is dispensable for lytic replication in vitro and for normal acute phase replication kinetics 

in lung tissue following intranasal infection of mice (Jacoby et al., 2002; Macrae et al., 2003; Simas 

et al., 2004). 
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Figure 2.4. MuHV-4 epitope recombinants display normal in vitro and in vivo replication kinetics. (A) 

Multi-step growth curves were constructed for vWT and for the indicated recombinant viruses by infection of 

BHK-21 cells at low multiplicity (0.01 PFU/cell). At the indicated times post-infection (p.i.), samples were 

harvested, freeze-thawed and virus titres were determined by plaque assay on monolayers of BHK-21 cells. 

In vitro lytic replication kinetics of the recombinant viruses were not significant different from vWT (p>0.05, 

by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). (B) C57BL/6 (H2b) mice were 

intranasally infected with 104 PFU of the indicated viruses and in vivo virus replication in lungs was quantified 

by plaque assay. Each point shows the titre of an individual mouse. Horizontal lines indicate arithmetic 

means. The dashed horizontal line represents the limit of detection of the assay. No MuHV-4 recombinant 

showed a deficit relative to vWT (p>0.05, using ordinary one-way ANOVA followed by Tukey’s multiple 

comparisons test). 
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2.5. MuHV-4 epitope recombinants establish normal latency in H2d mice 

Lytic replication in the lung is followed by dissemination to lymphoid tissue, namely lymph nodes 

and the spleen, where MuHV-4 establishes latent infection. Latent infection in the spleen is 

characterized by proliferation of infected B cells and consequent amplification of latent virus, 

peaking around 14 days p.i., and decreasing quickly thereafter to reach low but steady state levels 

of latency, that persist and remain stable throughout the entire life of the host (Cardin et al., 1996; 

Flano et al., 2003; Marques et al., 2003; Simas and Efstathiou, 1998; Sunil-Chandra et al., 1992a). 

Introduction of an H2Kb-restricted epitope in M2 is not expected to impact on the ability of MuHV-

4 to establish latency in H2d mice. Therefore, to analyse the ability of the engineered recombinants 

to establish latent infection, BALB/c (H2d) mice were infected intranasally with the WT virus or 

MuHV-4 recombinants expressing OVA or APLs, and the latent load in the spleen was determined 

by quantification of ex vivo reactivation competent viruses by infectious centre assay.  

Infectious centre assay is a well-established assay in which single cell suspensions are prepared 

from the harvested spleens and co-cultured with permissive fibroblast cells. The presence of 

latent virus in the splenocyte population is revealed by the observation of cytophatic effect (cpe) 

(plaques of cell lysis) on fibroblast monolayers. Unless preformed infectious virus are present at 

the time of harvest, the cpe can only result from viral reactivation from latency. Thus, to confirm 

that the results obtained for each virus reflect truly latent infection, spleen samples must also be 

analysed for the presence of pre-formed infectious viruses. To this end, replicate samples are 

subjected to freeze-thawing to disrupt the cells and, consequently, any possibility of reactivation 

from latency, without inactivating pre-formed infectious virus. Replicating viruses are then 

detected by incubation with permissive cells, which are subsequently analysed for the presence 

of cpe. 

MuHV-4 epitope recombinants were evaluated at day 14 p.i. for their ability to establish and 

expand latent infection in the spleen. All recombinant viruses were capable of normal latency 

establishment in BALB/c (H2d) mice, as demonstrated by equivalent splenic infectious centre 

assay titres (Figure 2.3, panel C and Figure 2.5). Furthermore, no pre-formed infectious viruses 

could be detected for any of the viruses analysed, indicating that splenic infection was only latent. 

These results confirmed that introducing an H2Kb-restricted epitope in M2 did not impact on M2 

latency associated functions and, thus, on the outcome of latent infection in BALB/c (H2d) mice, 

given that all MuHV-4 recombinants established normal levels of splenic latency.  
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Figure 2.5. MuHV-4 epitope recombinants establish normal latency in BALB/c (H2d) mice. BALB/c 

(H2d) mice were intranasally inoculated with 104 PFU of the indicated viruses. At 14 days p.i., spleens were 

removed, single cell splenocyte suspensions were prepared and latent infection in each sample was 

quantified by ex vivo reactivation assay (closed symbols). Pre-formed infectious viruses were analysed by 

plaque assay (open symbols). Each point represents the titre of an individual mouse. Horizontal bars show 

arithmetic means. The dashed horizontal line indicates the limit of detection of the assay. Latent loads of 

MuHV-4 recombinants expressing OVA or APLs were not significantly different from vWT (p>0.05, by 

ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). No pre-formed infectious viruses 

could be detected for any of the viruses analysed. 

 

 

In summary, in this chapter MuHV-4 recombinants were engineered to express the well 

characterized H2Kb-restricted OVA epitope or derived APLs from the M2 C-terminus. APLs Q4, 

V4, G4 and R4 were able to stabilize H2Kb cell surface expression on RMA-S cells to a similar 

degree as native OVA, while E1 required 6-fold more peptide to achieve equivalent H2Kb 

stabilization. Additionally, all APLs differed in their potency for stimulating OT-I cells and showed 

a clear hierarchy in dose-response, with OVA˃Q4˃V4˃G4˃E1˃R4. The engineered MuHV-4 

epitope recombinants showed an otherwise intact M2 locus, normal in vitro growth, equivalent in 

vivo lytic replication kinetics in the lungs of intranasally infected C57BL/6 (H2b) mice and normal 

latency establishment in the spleens of BALB/c (H2d) mice. Therefore, H2Kb-restricted epitopes 

were introduced at the M2 C-terminus, to ensure latent epitope expression, without causing any 

in vitro or in vivo replication defect in the engineered MuHV-4 recombinants. 
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MHC class I binding by a latently expressed epitope  

impairs host colonization 

Experiments were set up to address how MHC class I binding by a latently expressed M2-linked 

epitope translates to in vivo recognition and in vivo control of MuHV-4-driven lymphoproliferation. 

Thus, C57BL/6 mice infected with the engineered MuHV-4 epitope recombinants were analysed 

during the establishment and maintenance of latency. Three independent, although 

complementary assays were performed. Ex vivo explant co-culture assays were performed in 

total splenocytes to evaluate the ability of the viruses to reactivate from latency. Limiting dilution 

combined with real time PCR to detect viral DNA-positive cells were applied to determine the 

frequency of infection of total splenocytes or of flow cytometrically purified splenic GC B cells. 

The latter constitute the major acute latency reservoir, are essential for amplification of the latently 

infected cell pool, and to gain access to the long-term latency reservoir of resting memory B cells. 

Finally, the presence of latently infected cells within splenic follicles was monitored by in situ 

hybridization in spleen sections using a probe specific for MuHV-4 tRNAs and miRNAs. 

 

3.1. Expression of H2Kb binding epitopes attenuates MuHV-4-driven 

lymphopholiferation 

To assess the impact of H2Kb-restricted latent epitope expression on MuHV-4-driven 

lymphoproliferation, C57BL/6 (H2b) mice were intranasally inoculated with WT virus and MuHV-4 

epitope recombinants, and the latent load in the spleen was assessed by ex vivo reactivation 

assay. All viruses were evaluated, at day 7, 11, 14 and 21 p.i., for their ability to establish and 

expand a latent load in the spleen, and at day 50 p.i. for their ability to maintain long-term 

persistence. The results obtained are shown in Figure 3.1. 

As expected, infection of mice with WT virus resulted in a peak of latency amplification at day 14 

p.i. that subsided thereafter to reach by day 50 p.i. low long-term latency levels. In contrast, 

infection with MuHV-4 recombinants expressing OVA or APLs resulted in attenuation of any virus 

expressing an H2Kb binding epitope. Splenic latency was established at day 11, but then was 

cleared rather than amplified by days 14-21 p.i.. This was characterized by an approximately 

1000-fold reduction in the number of infectious centres at day 14 p.i. when compared with the WT 

virus. Interestingly vE1, which expresses an epitope with 6-fold lower EC50 for H2Kb stabilization 

(Figure 2.1, panels A and B), showed an intermediate phenotype. vE1 established wild type 

splenic latency levels at day 11 p.i., followed by a gradual reduction in latent loads instead of 

latent expansion. This virus showed an approximately 100-fold reduction in the number of 

infectious centres at day 14 p.i. in comparison with the WT virus. In contrast vA8, in which epitope 

presentation was severely compromised by mutating one anchor residue, was able to establish 
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splenic latency levels undistinguishable from those of the epitope-null WT virus. This result 

indicates that the difference in latent loads of MuHV-4 epitope recombinant viruses were due to 

in vivo recognition of the H2Kb-restricted M2 derived epitopes. 

Thus, H2Kb binding by a M2 derived latently expressed epitope severely compromised the ability 

of MuHV-4 to drive the amplification of the latently infected cell pool in spleens of C57BL/6 mice. 

Remarkably, a 6-fold reduction in H2Kb binding gave an intermediate latent phenotype.  

 

 

Figure 3.1. Expression of H2Kb binding epitopes attenuates MuHV-4-driven lymphoproliferation. 

C57BL/6 mice were intranasally infected with 104 PFU of vWT or MuHV-4 recombinants expressing the 

indicated epitopes. At the indicated days p.i. the latent load in spleens was determined by ex vivo reactivation 

assay (closed symbols) and pre-formed infectious viruses were quantified by plaque assay (open symbols). 

Each point represents the titre of an individual mouse. Horizontal bars indicate arithmetic means. The 

dashed horizontal line represents the limit of detection of the assay. At day 14 p.i., vOVA, vQ4, vV4, vG4, 

vR4 and vE1 latent loads were significantly below those of vWT (p<0.05, by two-tailed unpaired t-test). vA8 

latency loads were not significantly different from vWT (p=0.07). 

 

 

 

 

 

 



MHC class I binding imparis host colonization 

73 

3.2. H2Kb binding by latency-associated epitopes compromises both acute 

MuHV-4-induced lymphoproliferation and long-term persistence 

Not every latently infected cell necessarily reactivates its virus ex vivo and this becomes more 

evident at long-term. Therefore, the ex vivo reactivation assay was complemented with 

quantification of the frequency of viral DNA-positive total splenocytes, as a second measure of 

infected cell frequency. This was performed by Dr Sofia Marques in our laboratory by limiting 

dilution followed by real time PCR as originally described in (Marques et al., 2003).  

C57BL/6 mice intranasally infected with the different viruses were analysed during establishment 

and maintenance of latency, at 14 and 50 days p.i., respectively. Total splenocytes were 

subjected to 2-fold serial dilutions, with 8 replicates per dilution, and lysed. Cell lysates were then 

analysed by real time PCR for the presence of viral genomes, using the fluorescent TaqMan 

methodology with primers and probe specific for the M9 ORF. Details of this methodology can be 

found in Materials and Methods, section 9.2.9. 

The results obtained are in agreement with results from ex vivo reactivation assay (Figure 3.1). 

At the peak of latency amplification, day 14 p.i., the frequency of vOVA, vQ4, vV4, vG4 and vR4 

DNA-positive cells was markedly reduced (˃100-fold reduction) in comparison with vWT or vA8, 

which showed equivalent frequencies of infection (Figure 3.2 and Table 3.1). vE1 showed the 

previously reported intermediate phenotype. Moreover, the incapability of vOVA, vQ4, vV4, vG4 

and vR4 to amplify latency also resulted in a severe deficit of virus persistence at day 50 p.i., 

when compared to vWT or vA8 (Figure 3.2 and Table 3.1). Despite the strongly decreased acute 

latent load, vE1 displayed a normal long-term frequency of latently infected cells (Figure 3.2 and 

Table 3.1). Indeed, the frequency of vE1 DNA-positive cells at 50 days p.i. was close to the 

frequency of vWT and vA8.  

 
Figure 3.2. H2Kb binding by latency-associated epitopes compromises acute MuHV-4-driven 

lymphoproliferation and long-term persistence. C57BL/6 mice were intranasally inoculated with 104 PFU 

of the indicated viruses. At 14 and 50 days p.i. spleens were dissected and the frequency of cells positive 

for viral genome was determined in total splenocytes by limiting dilution followed by real time PCR. Data 

were obtained from pools of 4 or 5 spleens per group. Bars represent the frequency of viral DNA positive 

cells with 95% confidence intervals. This experiment was performed by Dr Sofia Marques in our laboratory. 
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Table 3.1. Frequency of MuHV-4 latent infection in total splenocytesa of C57BL/6 mice. 
 

 

 

These results demonstrate that strong H2Kb binding by a latently expressed epitope not only 

impaired acute MuHV-4-driven lymphoproliferation but also caused a severe deficit in long-term 

persistence. Interestingly, H2Kb binding by the weaker E1 epitope affected acute latency 

amplification without compromising long-term latent loads. Thus, a weaker MHC class I binding 

epitope allowed some immune control during acute virus-driven lymphoproliferation, but not in the 

long-term. 

 

 

 

 

 

Virus Day p.i. Reciprocal frequencyb of viral DNA+ cells (95% CI) 

vWT 14 296  (179-856) 

 50 12,770  (7,900-33,288) 

vOVA 14 121,005  (75,230-309,065) 

 50 517,114  (316,845-1,405,472) 

vQ4 14 51,426  (32,333-125,586) 

 50 id ≥1,149,446c 

vV4 14 92,857  (57,599-239,405) 

 50 id ≥1,053,659c 

vG4 14 59,253  (37,537-140,588) 

 50 id ≥1,053,659c 

vR4 14 47,755  (29,622-123,123) 

 50 id ≥1,264,391c 

vE1 14 12,576  (7,445-40,375) 

 50 17,810  (11,400-40,677) 

vA8 14 307  (212-962) 

 50 8462  (4970-28,436) 

 

a Data were obtained from pools of 4 to 5 spleens. 
b Frequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI). 
c Estimated based upon less than 3 different dilution sets. 

id; indeterminable. 

This experiment was performed by Dr Sofia Marques in our laboratory. 
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3.3. Strong MHC class I binding abolishes MuHV-4-driven lymphoproliferation 

in GC B cells 

MuHV-4 colonizes multiple cell types during the establishment of acute latent infection in the 

spleen. However, the main target of MuHV-4 latent infection are undoubtedly B lymphocytes 

(Flano et al., 2000; Marques et al., 2003). Analysis of different splenic B cell subpopulations 

demonstrated that GC B cells constitute the main viral reservoir during the establishment of 

latency and that these cells also connect most directly to the long-term latency reservoir of resting 

memory B cells (Flano et al., 2002; Kim et al., 2003; Marques et al., 2003). To understand better 

the relationship between acute and long-term latent loads, the frequency of virus genome-positive 

GC B cells was determined by limiting dilution combined with real time PCR. 

C57BL/6 mice were intranasally infected and at the peak of latency amplification, day 14 p.i., 

spleens were harvested and splenocyte suspensions were prepared and stained with three cell 

surface markers: anti-CD19, anti-CD95 and anti-GL7 T and B cell activation marker. GC B cells 

were flow cytometrically sorted, by enriching for CD19+CD95hiGL7hi cells. Purity of the isolated 

GC B cell population as well as the percentage of representation in total spleen were assessed. 

The purity of the sorted GC B cell population was consistently higher than 96% and corresponded 

to approximately 4-6% of total spleen (Table 3.2). Purified GC B cells were serially 2-fold diluted 

and 8 replicates of each dilution were analysed by real time PCR for the presence of viral 

genomes using a set of primers and probe specific for MuHV-4 M9 gene.  
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Figure 3.3. Strong MHC class I binding suppresses MuHV-4-driven lymphoproliferation in GC B cells. 

C57BL/6 mice were intranasally infected with 104 PFU of the indicated viruses. At 14 days p.i. GC B cells 

(CD19+CD95hiGL7hi) were flow cytometrically purified and frequencies of MuHV-4 DNA-positive cells were 

determined by limiting dilution followed by real time PCR. Purity of sorted population was always ≥96%. Data 

were obtained from pools of 5 spleens per group. Bars represent the frequency of viral DNA-positive cells 

with 95% confidence intervals. 
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Table 3.2. Frequency of MuHV-4 latent infection in GC B cellsa of C57BL/6 mice at day 14 p.i.. 

 

 

During acute latency amplification, at day 14 p.i., the severe latency deficit previously reported for 

vOVA, vQ4, vV4, vG4 and vR4 reflected a marked impairment in the ability of MuHV-4 to drive 

the expansion of latent infection in GC B cells (Figure 3.3 and Table 3.2). This was characterized 

by an approximately 1000-fold lower frequency of virus DNA-positive GC B cells comparatively to 

vWT. The frequency of viral DNA-positive GC B cells of vA8 was equivalent to vWT, and vE1 

presented and intermediate frequency of infection (Figure 3.3 and Table 3.2). The frequency of 

GC B cells infected with vE1 was only approximately 25-fold lower when compared to vWT. Thus, 

vE1 showed a strong acute reduction in viral DNA-positive total splenocytes frequencies with 

relative sparing of GC B cells. 

Hence, strong MHC class I binding by a latently expressed epitope abolished MuHV-4-driven 

lymphoproliferation in GC B cells. A 6-fold decrease in E1 epitope binding to MHC class I allowed 

MuHV-4 to amplify the pool of latently infected GC B cells to some extent, explaining the high 

long-term frequencies of infection. 

 

3.4. Decreased MHC class I binding allows MuHV-4 colonization of splenic 

follicles  

The data of frequencies of infection in GC B cells, during acute virus-driven lymphoproliferation, 

was further supported by addressing the ability of each virus to colonise splenic follicles and 

induce the expansion of latency in GCs by in situ hybridization, using a probe specific for MuHV-

4 tRNAs and miRNAs (Bowden et al., 1997; Pfeffer et al., 2005). These transcripts are abundantly 

Virus Reciprocal frequencyb of viral DNA+ cells (95% CI) % Cellsc % Purityd 

vWT 12  (8-34) 4.63 96.1 

vOVA 35,463  (21,819-94,657) 4.06 96.3 

vQ4 33,847  (19,882-113,738) 3.63 97.6 

vV4 44,687  (23,952-92,597) 4.03 97.4 

vG4 11,092  (7,184-24,318) 5.76 96.0 

vR4 5,016  (3,268-10,785) 5.66 97.5 

vE1 323  (211-687) 4.13 96.5 

vA8 10  (6-25) 4.18 96.6 

 

a Data were obtained from pools of 5 spleens. 
b Frequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI). 

c The percentage of GC B cells from total spleen was estimated by FACS analysis. 
d The purity of sorted cells was determined by FACS analysis. 



MHC class I binding imparis host colonization 

77 

expressed in the GC and constitute an important marker for latency, allowing the analysis of the 

colonization and expansion of latent infection in GCs (Bowden et al., 1997; Simas et al., 1999).  

Mice were infected with vWT or MuHV-4 epitope recombinants and 14 days latter spleens were 

dissected, fixed and paraffin-embedded. Spleen sections were made and processed for in situ 

hybridization with viral tRNA/miRNAs specific riboprobes (details in Materials and Methods, 

section 9.2.10). At least four spleens and six sections per spleen were analysed per virus. Pictures 

of representative spleen sections were taken from each group of animals.  

Mice infected with either vWT or vA8 showed the expected pattern of infection characterized by 

the detection of large clusters of infected cells within GCs, at day 14 p.i., that reflected cellular 

proliferation and, thereby, expansion of the latently infected cell pool (Figure 3.4, panels a and h 

respectively) (Simas et al., 1999). In contrast, vOVA, vQ4, vV4, vG4 and vR4 showed a severe 

impairment in GC colonization and, consequently, abolishment of the proliferation of latently 

infected cells within splenic follicles (Figure 3.4, panels b to f). These results are in agreement 

with the previous data, demonstrating that infection with these recombinant viruses is cleared 

rather than amplified by days 14-21 p.i.. Again, mice infected with vE1 displayed an intermediate 

phenotype, characterized by a reduction both in the number of vmiRNA/vtRNA positive follicles 

and in the number of infected cells within positive follicles in comparison to vWT (Figure 3.4, panel 

g). 

Taken together, these results demonstrate that expression of a strong H2Kb binding epitope 

during latent infection severely impaired host GC colonization. However, small drops in MHC 

class I binding were poorly tolerated, allowing some expansion of latently infected cells in GCs. 

 
 

Figure 3.4. Decreased MHC class I binding allows MuHV-4 colonization of splenic follicles. C57BL/6 

mice were intranasally infected with 104 PFU of the indicated viruses. At 14 days p.i., spleens were dissected 

and processed for in situ hybridization with a viral miRNA/tRNA-specific riboprobe. Representative spleen 

sections from each group of animals are shown. Dark staining indicates cells positive for viral encoded 

miRNA/tRNAs. All sections are magnified at x200 and counter stained with haematoxylin. 
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Overall the results from the three independent but complementary assays used in this chapter, 

ex vivo reactivation assay, limiting dilution combined with real time PCR and in situ hybridization, 

corroborate that in vivo recognition of a single M2-linked epitope allowed control of MuHV-4- 

driven lymphoproliferation. However, control was critically dependent on strong MHC class I 

binding by the latently expressed epitope. That is, strong MHC class I binding abolished MuHV-

4-driven B cell proliferation in GCs and, consequently, severely compromised long-term 

persistence. Nevertheless, a 6-fold reduction in MHC class I binding was sufficient to allow escape 

of latently infected GC B cells and reaching normal long-term latent loads. 
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CD8+ CTL responses to epitopes expressed in latent infection 

The severe impairment in host colonization observed upon infection of C57BL/6 (H2b) mice with 

MuHV-4 recombinants expressing H2Kb-restricted epitopes during latent infection implied that 

latency-specific CD8+ CTL responses were generated towards the introduced M2-linked epitopes. 

Therefore, experiments were set up to detect and evaluate the effector function of epitope-specific 

CD8+ CTL responses. 

 

4.1. Epitope-specific CD8+ T cell responses are generated in vivo in C57BL/6 

mice infected with MuHV-4 epitope recombinants 

C57BL/6 mice were intranasally inoculated with MuHV-4 epitope recombinants and at 11, 14 and 

21 days p.i., spleens were harvested, splenocyte suspensions prepared and epitope-specific 

CD8+ CTL responses were measured in vivo by tetramer staining. 

Class I MHC tetramer reagents are uniquely able to stain CD8+ T cells in an antigen-specific 

fashion (Altman et al., 1996). Using a strategy that temporarily inserts a photocleavable peptide 

into class I MHC molecules, the peptide fragments during exposure to long-wave UV irradiation, 

thus evacuating the peptide binding groove (Toebes et al., 2006). If the emptied MHC molecule 

is subsequently supplied with an epitope of interest, a novel peptide-MHC complex of defined 

specificity is generated in a single step from a common precursor (Toebes et al., 2006). Thus, 

H2Kb epitope-specific tetramers were produced by exchange of conditional ligand for OVA, APLs, 

A8 or a peptide derived from vesicular stomatitis virus (VSV) nucleoprotein (NP) (VSV NP52-59), 

which was used as a control. The generated H2Kb epitope-specific tetramers were subsequently 

used in combination with anti-CD8α to stain freshly isolated splenocytes from infected mice 

(details in Materials and Methods, section 9.2.11.2). 

CD8+ T cell responses specific to vOVA, vQ4, vV4, vG4 and vR4 were detectable, although small 

in magnitude (Figure 4.1, panel A). As expected, responses to vA8 were barely detectable, 

despite vA8 high latent loads, consistently with A8 epitope having one anchor residue mutated. 

In vivo this epitope was probably not produce in sufficient amounts to compensate for its poor 

H2Kb binding (Figure 2.1, panels A and B) and, consequently, was unable to generate an epitope-

specific CD8+ T cell response. Surprisingly vE1, which has an intermediate latent phenotype 

(Figure 3.1) and expresses an epitope with 6-fold lower EC50 for H2Kb stabilization (Figure 2.1, 

panel B), elicited the CD8+ T cell response with the highest magnitude. This result could not be 

ascribed to lytic infection, since in vivo lytic replication in lungs of infected mice was 

indistinguishably high for all viruses (Figure 2.4, panel B). 
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4.2. Epitope-specifc CD8+ T cells display effector function 

The effector function of epitope-specific CD8+ T cells was assessed by analyzing their ability to 

produce IFNγ. Freshly isolated splenocytes from C57BL/6 mice infected with MuHV-4 epitope 

recombinants were analysed by intracellular staining for IFNγ after ex vivo stimulation with the 

corresponding epitope peptide at 11, 14 and 21 days p.i.. Intracellular staining for IFNγ after ex 

vivo stimulation with VSV NP52-59 peptide was also performed for each virus at each time point as 

control.  

The results obtained corroborate the previous data of H2Kb epitope-specific tetramer staining. 

CD8+ T cells specific for vOVA, vQ4, vV4, vG4 and vR4 were capable of producing IFNγ after ex 

vivo stimulation with the corresponding epitope peptide, despite the fact that those viruses elicited 

small CD8+ T cell responses (Figure 4.1, panel B). No IFNγ production could be detected in mice 

infected with vA8, consistently with the lack of vA8-specific CD8+ T cells, demonstrated by H2Kb 

epitope-specific tetramer staining. Again, the largest CD8+ T cell response was elicited by vE1.  
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Figure 4.1. In vivo CD8+ T cell responses to epitopes expressed in latent infection. C57BL/6 mice were 

intranasally inoculated with 104 PFU of MuHV-4 recombinants expressing OVA, APLs or the A8 anchor residue 

mutant. At the indicated times post-infection (p.i.) spleens were removed and epitope-specific CD8+ T cell 

responses were measured. (A) Splenocytes from infected mice were cell surface co-stained with anti-CD8α 

and with an H2Kb tetramer loaded with the VSV NP52-59 peptide (with bars) as a control or the correspondent 

epitope peptide (grey bars). The data show the percentage of tetramer positive cells among CD8+ T cells at 

each time point (arithmetic means ± s.e.m. from 3 independent measurements). (B) The effector function of 

splenic CD8+ T cells was determined by intracellular interferon-gamma (IFNγ) staining of splenocytes after ex 

vivo stimulation with the VSV NP52-59 peptide (with bars) or the correspondent epitope peptide (grey bars). 

Data show the percentage of CD8+ T cells responding to each peptide at the indicated time points (arithmetic 

means ± s.e.m. from 3 independent measurements). *p<0.05, **p<0.01, ****p<0.0001; using a two-tailed 

unpaired t-test. 
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4.3. E1-specific CD8+ T cells exhibit in vivo cytolytic activity despite less 

efficient control of virus-driven lymphoproliferation  

The functionality and effector capacity of vE1-specific CD8+ CTLs was further confirmed and 

compared to that of vOVA- and vA8-specific CD8+ CTLs by an in vivo cytotoxicity assay. 

C57BL/6 mice were intranasally infected with vOVA, vE1 or vA8. Total splenocytes from naïve 

congenic CD45.1 C57BL/6 mice were used as target and control cells. Target cells were pulsed 

with OVA, E1 or A8 peptides and labeled with a high concentration of carboxyfluorescein 

succinimidyl ester (CFSE). Control cells were left unpulsed and were labeled with a low 

concentration of CFSE. At day 10 p.i. 50:50 mixes of target and control cells were then transferred 

intravenously into the previously infected mice (Figure 4.2, panel A). Prepared mixes were also 

transferred into vWT infected C57BL/6 controls to ensure equal transfer. In the next day, spleens 

were dissected from recipient mice, the proportion of CFSEhigh and CFSElow cells among 

transferred CD45.1+ splenocytes was analysed by flow cytometry and the percentage of target 

cell killing determined (detailed description of the assay in Material and Methods, section 

9.2.11.4). 

vE1-specific CD8+ CTLs killed E1-pulsed target cells in vivo (Figure 4.2, panel B) and showed 

target cell elimination comparable to vOVA (Figure 4.2, panel C). As expected, mice infected with 

vWT showed no target cell elimination when transferred with the same mixes. Mice infected with 

vA8 were not capable of in vivo target cell elimination (Figure 4.2 panels B and C) in agreement 

with absence of A8 epitope-specific CD8+ T cell responses in those mice (Figure 4.1). 

Hence, expression of the weaker H2Kb binding E1 epitope allowed the generation of large 

functional E1-specific CD8+ CTL responses, however those CTLs were less efficient at controlling 

virus-driven lymphoproliferation.  
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Figure 4.2. vE1-specific CD8+ T cells exhibit in vivo cytolytic activity comparable to vOVA. C57BL/6 

mice were intranasally inoculated with 104 PFU of the indicated viruses and CTL activity of splenic CD8+ T 

cells was measured in vivo. At day 10 p.i. 2x106 OVA-, E1- or A8-pulsed CD45.1+ splenocytes labeled with 

high concentration of CFSE and 2x106 unpulsed CD45.1+ splenocytes labeled with low concentration of CFSE 

were transferred intravenously into vOVA, vE1 or vA8  infected mice. The same mix of cells was transferred 

into vWT infected mice as internal control. In the next day, the proportion of CFSEhigh and CFSElow cells among 

CD45.1+ cells recovered from the spleen was analysed by FACS. (A) Schematic diagram of the experimental 

setting. (B) Representative FACS plots show the proportions of high and low CFSE-positive cells in indicated 

groups of mice. (C) Bar diagram shows the percentage of target cell killing calculated as described in Materials 

and Methods section 9.2.11.4. For each group three to four mice were analysed and experiments were 

repeated three times. 

 



Latent epitope-specific CD8+ CTL responses 

85 

Taken together, data presented in this chapter demonstrate that the strong impairment of acute 

virus-driven lymphoproliferation, upon infection of C57BL/6 mice with MuHV-4 expressing H2Kb 

binding epitopes, was mediated by functional epitope-specific CD8+ CTL responses. Strong H2Kb 

binding elicited CD8+ CTL responses that, despite small in magnitude, were very efficient at 

controlling acute MuHV-4-induced lymphoproliferation. Interestingly, expression of the weaker 

H2Kb binding E1 epitope elicited the largest CD8+ CTL response. Regardless of the higher 

magnitude of vE1-specific CD8+ CTL response and its capacity of in vivo target cell killing, those 

CD8+ CTLs were less efficient at curtailing MuHV-4 latency amplification. 
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CD8+ CTL functional avidity for a latency associated epitope is a key 

determinant of infection control 

CD8+ CTL control of MuHV-4-driven lymphoproliferation in C57BL/6 mice, through the recognition 

of latently expressed M2-linked OVA, Q4, V4, G4 and R4 epitopes, indicated that in these mice 

there is a TCR repertoire specific for each of these epitope variants. Indeed, all of the APLs 

induced epitope-specific CD8+ T cell responses implying that CD8+ T cell clones could be 

recruited from the naïve repertoire that recognized and responded either to OVA or to an APL. 

Hence, in the context of a polyclonal TCR repertoire the key requirement was the availability of 

an epitope capable of strong MHC class I binding. Nevertheless, the immune response to EBV 

can involve selective and massive expansion of a few dominant clones of CD8+ T cells, that is, 

large oligoclonal or even monoclonal CD8+ CTL expansions (Callan et al., 1996; Hislop et al., 

2007b). In most cases, CD8+ T cell responses to latent cycle antigens are markedly focused on 

a relatively small number of immunodominant viral epitopes (Hislop et al., 2007b). Therefore, to 

investigate the quantitative requirements of CD8+ T cell functional avidity for in vivo control of 

MuHV-4 latent infection, we focused on a mouse model with a single TCR specificity, the well 

characterized OT-I transgenic mice (Clarke et al., 2000; Hogquist et al., 1994). CD8+ T cells from 

OT-I mice express a transgenic TCR designed to recognize OVA257-264 in the context of H2Kb 

(Clarke et al., 2000; Hogquist et al., 1994).  

 

5.1. In vivo infection control correlates with CD8+ CTL functional avidity by 

latency epitope recognition 

OT-I mice were intranasally infected with MuHV-4 expressing OVA or APLs with equivalent H2Kb 

binding (Q4, V4, G4 and R4) and host colonization was examined by quantification of reactivation-

competent virus by infectious centre assay of spleens 9 and 11 days later. For comparative 

purposes OT-I mice were analysed alongside with the epitope-null vWT, to assess the level of 

infection in the absence of epitope recognition. vE1 and vA8 were not utilized since they bind 

H2Kb less efficiently precluding analysis of CD8+ T cell functional avidity because target 

concentrations are different. 

Expression of the original OT-I ligand, OVA, resulted in the lowest infection levels both at 9 and 

11 days p.i.  (Figure 5.1, panel A). Expression of APLs resulted in a subsequent hierarchy of latent 

infection control (OVA˃Q4˃V4˃G4˃R4) that matched their hierarchy of functional avidities and 

not their slightly differences in H2Kb binding (Figure 5.1, panel A). Expression of the antagonist 

R4 epitope allowed no infection control since infectious centre titres were equivalent to those of 

the vWT. Expression of epitopes with decreased functional avidity was also associated with a 

concomitant increase in the titres of pre-formed infectious virus in some mice. Thus, both at 9 and 
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9 days pi 11 days pi

9 days pi 11 days pi

11 days p.i. there was a clear correlation between CD8+ T cell functional avidity and in vivo virus 

control. This was further demonstrated by plotting the functional avidity of OT-I cells for OVA and 

APLs against the latent load established in the spleen of OT-I mice infected with MuHV-4 

recombinants expressing the correspondent epitope (Figure 5.1, panel B). 

These results indicate that variations in CD8+ T cell functional avidity for a latently expressed 

epitope had a profound impact on host control of MuHV-4 latent infection. Moreover, MuHV-4 

splenic latent loads established in OT-I mice correlated with the functional avidity of CD8+ T cells 

for the latently recognized epitope. 
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Figure 5.1. In vivo infection control correlates with CD8+ CTL functional avidity by latency epitope 

recognition. OVA257-specific TCR transgenic (OT-I) mice were intranasally infected with 103 PFU of the 

indicated viruses. (A) At 9 and 11 days p.i., spleens were dissected and splenocytes were titrated for latent 

virus by infectious centre assay (closed symbols). Pre-formed infectious viruses were quantified by plaque 

assay (open symbols). Each circle represents the titre of an individual mouse. Horizontal bars indicate 

arithmetic means. The dashed horizontal line represents the limit of detection of the assay. At 9 days p.i. 

vOVA, vQ4 and vV4 showed significantly less latent infection compared to vWT (vOVA p=0.0014, vQ4 

p=0.0042, vV4 p=0.0087; by Student's two-tailed unpaired t-test). vG4 and vR4 latent infection was not 

significantly different from vWT (vG4 p=0.4631, vR4 p=0.0885). (B) Graphs show the correlation between 

CD8+ T cell functional avidity and splenic latent loads at 9 and 11 days p.i.. The functional avidity of OT-I 

cells for OVA or APLs (Q4, V4 and G4) (data from Figure 2.1, panel D) was plotted against the latent load 

established in spleens of OT-I mice (data from panel A) infected with the correspondent MuHV-4 epitope 

recombinant. Day 9: rs=0.9148, p=0.0435; day 11: rs=0.8977 p=0.0525; according to Pearson’s correlation. 

Data in panel A were obtained in collaboration with Dr Sofia Marques in our laboratory. 
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5.2. Attenuation of MuHV-4 infection by latent epitope recognition is mediated 

by CD8+ CTLs  

To further confirm that immune control of MuHV-4 latent infection was mediated by CD8+ CTLs, 

CD8+ T cells were depleted from infected OT-I mice. Following intranasal infection with each virus, 

CD8+ T cells were depleted by 5 intraperitoneal injections of CD8-specific monoclonal antibody 

(Figure 5.2, panel A). A group of vWT infected OT-I mice was left non-depleted as experimental 

control. At day 11 p.i. mice were sacrificed, spleens were dissected, single cell splenocyte 

suspensions were prepared and stained for CD8α followed by flow cytometry analysis to 

determine the efficacy of depletions, or analysed by ex vivo reactivation assay to determine 

splenic latent titres. 

CD8+ T cell depletions were very effective (Figure 5.2, panel B) and had little effect on infectious 

centres titres of vWT infected mice when compared to those of vWT infected non-depleted mice 

(Figure 5.2, panel C). This result is consistent with the lack of known H2b-restricted MuHV-4 

latency epitopes and with previous published data showing that numbers of acute latently infected 

spleen cells are not significantly higher in CD8-depleted mice (Ehtisham et al., 1993; Stevenson 

et al., 1999c). 

CD8+ T cell depletions reverted splenic latent infection of all MuHV-4 epitope recombinant viruses 

to vWT infection levels (Figure 5.2, panel C), demonstrating that the activity of CD8+ CTLs was 

responsible for the different latent loads established in OT-I mice (Figure 5.1, panel A).  
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Figure 5.2. Attenuation of MuHV-4 infection by latent epitope recognition is mediated by CD8+ CTLs. 

OT-I mice were intranasally infected with the indicated viruses (103 PFU) and CD8+ T cells were depleted 

by intraperitoneal (i.p.) injection of anti-CD8 monoclonal antibody (MAb). At 11 days p.i. spleens were 

removed for analysis. A group of vWT infected OT-I mice was left non-depleted as control. (A) Schematic 

diagram of the experimental setting. (B) Splenocytes were stained for CD8α and analysed by flow cytometry. 

The data show the percentage of CD8+ T cells of total splenocytes (arithmetic means ± s.e.m) in depleted 

mice and control (non-depleted) mice. (C) Splenocytes were titrated for latent infection by explant co-culture 

(closed symbols). Lytic virus were analysed by plaque assay (open symbols). Each symbol represents the 

titre of an individual mouse. Horizontal bars indicate arithmetic means. The dashed horizontal line represents 

the limit of detection of the assay. Data were reproducible over two independent experimental groups. Latent 

loads of the epitope recombinants were not significantly different from vWT latent loads in non-depleted or 

CD8-depleted mice (p>0.05; ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). 

 

 

Overall, the results obtained in this chapter demonstrate that introducing latent CD8+ CTL targets 

where no latency epitope recognition existed before caused a CD8+ CTL-dependent attenuation 

of MuHV-4 latent loads, in proportion to the functional avidity of the expressed epitope for the 

dominant TCR. Thus, CD8+ CTL functional avidity is also a key determinant of immune control of 

MuHV-4 latent infection. 
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CD8+ CTL functional avidity in the context of normalized T cell repertoire 

In the previous chapter OT-I mice provided a useful starting point to address the impact of CD8+ 

CTL functional avidity on in vivo control of MuHV-4 latent infection. However, OT-I mice display a 

limited CD4+ T cell repertoire. The total number of T cells OT-I transgenic mice possess is similar 

to that of non-transgenic littermates, but those transgenic cells are strongly skewed towards the 

CD8+ T cell subset (Clarke et al., 2000). Moreover, several reports indicate that MuHV-4-driven 

activation, proliferation and differentiation of latently infected B cells are dependent on CD4+ T 

cell help (Collins and Speck, 2014; Ehtisham et al., 1993; Kim et al., 2003; Sangster et al., 2000; 

Stevenson and Doherty, 1999). Consequently, in this chapter a strategy developed to understand 

the impact of CD8+ CTL functional avidity in a setting more advantageous to B cell proliferation is 

described.  

  

6.1. OT-I mice exhibit low frequencies of GC B cells that sustain MuHV-4 latent 

infection 

CD4+ T cell help is critical for the generation and maintenance of GCs (Nutt and Tarlinton, 2011; 

Vinuesa et al., 2005). Therefore, OT-I mice were characterized and compared with C57BL/6 mice 

for their capacity to induce GC formation and to sustain MuHV-4-driven lymphoproliferation. To 

this end, OT-I and C57BL/6 mice were intranasally infected with YFP-expressing MuHV-4 

recombinant virus (vYFP) and at the peak of latency amplification, day 14 p.i., splenocytes were 

stained for GC B cells (CD19+CD95hiGL7hi) and analysed by flow cytometry. MuHV-4 infected 

cells were identified based on YFP expression. 

OT-I mice showed an impairment in GC formation in comparison to C57BL/6 mice (Figure 6.1, 

panel A). This was accompanied by a reduction in the frequency of MuHV-4 infected GC B cells 

in OT-I mice when compared to C57BL/6 mice (Figure 6.1, panel B). This result was further 

confirmed by analysing the phenotype of the infected cells. Approximately 50% of MuHV-4 

infected B cells (CD19+ YFP+) in OT-I mice had a GC B cell phenotype (CD19+CD95hiGL7hi) in 

contrast to the characteristic 80% exhibited by C57BL/6 mice (Figure 6.1, panel C). 

Thus, the limited CD4+ T cell repertoire of OT-I mice impaired GC formation and so the ability of 

MuHV-4 to drive B cell proliferation. 
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Figure 6.1. OT-I mice exhibit low frequencies of GC B cells that sustain MuHV-4 latent infection. 

C57BL/6 or OT-I mice were intranasally infected with 103 PFU of YFP-expressing MuHV-4 and at 14 days 

p.i., spleens were dissected, single splenocyte suspensions were prepared and analysed by flow cytometry. 

(A) Frequencies of GC (CD19+CD95hiGL7hi) B cells. (B) Frequency of YFP-positive cells in GC B cells 

evaluated by gating on the CD19+CD95hiGL7hi population. (C) Phenotype of infected cells analysed by 

overlapping GC B cells and YFP-positive B cells FACS plots. Representative FACS plots from individual 

animals are shown (top panels) and compiled percentages are presented in the graphics below. Each point 

represents an individual mouse; 6 mice were analyzed for each experimental condition; grey bars indicate 

the average percentage. 

 

6.2. TCRα-/- mice reconstituted with CD4+ T cells exhibit robust proliferation of 

MuHV-4 infected GC B cells 

To address the importance of CD8+ CTL functional avidity in an environment more favourable to 

MuHV-4-driven B cell proliferation, CD4+ T cells purified from pooled lymph nodes of naïve 

C57BL/6 mice were intravenously transferred into TCRα-/- recipients one day prior to infection 

with YFP-expressing MuHV-4 (Figure 6.2, panel A). TCRα-/- mice are deficient for the αβ TCR 

and so very few CD4+ T cells are found in the periphery (Mombaerts et al., 1992; Philpott et al., 

1992), which severely compromises GC formation in these mice (Figure 6.2, panel B). At day 16 

and 18 p.i. reconstituted TCRα-/- mice were characterized for their ability to sustain GC reactions 

and MuHV-4-induced lymphoproliferation.  

Adoptive transfer of polyclonal CD4+ T cells to subsequently infected TCRα-/- mice led to a robust 

proliferation of GC B cells (Figure 6.2, panels B and C) in which MuHV-4 was able to establish 

latent infection (Figure 6.2, panel D). Moreover, approximately 80% of the infected B cells 

(CD19+YFP+) had a GC phenotype (CD19+CD95hiGL7hi) (Figure 6.2, panel E) similarly to infection 

in C57BL/6 mice (Figure 6.1, panel C). 
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Figure 6.2. TCRα-/- mice reconstituted with CD4+ T cells display robust proliferation of MuHV-4 

infected GC B cells. 2x106 CD4+ T cells purified from pooled lymph nodes of naïve C57BL/6 mice were 

intravenously transferred into age and sex matched TCRα-/- mice one day prior to infection with 103 PFU of 

YFP-expressing MuHV-4 (vYFP). At 16 and 18 days p.i. mice were sacrificed, spleens were dissected and 

single splenocyte suspensions were stained for GC B cells and analysed by flow cytometry. (A) Schematic 

diagram of the experimental setting. (B) Representative FACS plots show the frequency of GC B cells 

(CD19+CD95hiGL7hi) in spleens of the following experimental controls: naïve TCRα-/- mice, naïve TCRα-/- 

mice reconstituted with CD4+ T cells, TCRα-/- mice infected with vYFP and TCRα-/- mice reconstituted with 

CD4+ T cells one day prior to infection with vYFP. (C-E) Spleens of reconstituted TCRα-/- mice infected with 

vYFP were analysed by flow cytometry for (C) frequencies of GC B cells, (D) frequencies of infection in GC 

B cells and (E) phenotype of the infected cells, at 16 and 18 days p.i.. Representative FACS plots from 

individual animals are shown (top panels) and compiled percentages are presented in the graphics below. 

Each point represents an individual mouse; grey bars indicate the average percentage. 

 

Thus, providing polyclonal CD4+ T cells to TCRα-/- mice restored the normal pattern of MuHV-4 

latent infection in GC B cells. 
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6.3. OVA recognition by reconstituted TCRα-/- mice elicits a strong OT-I 

response that suppresses splenic colonization 

To compare the effect of optimal CD8+ T cell recognition with absence of CD8+ T cell control in 

this setting, CD4+ T cells purified from pooled lymph nodes of naïve C57BL/6 mice and OT-I T 

cells obtained from pooled lymph nodes of naïve CD45.1 Rag1-/- OT-I mice were intravenously 

transferred into TCRα-/- recipients one day prior to infection with recombinant MuHV-4 YFP 

expressing the high avidity OVA epitope (vOVA) or the R4 antagonist (vR4) (Figure 6.3, panel A). 

TCRα-/- mice are deficient for the αβ TCR so most CD8+ T cells express the γδ TCR (Mombaerts 

et al., 1992; Philpott et al., 1992). Therefore, reconstituted TCRα-/- mice had polyclonal CD4+ T 

cells and a TCRαβ CD8+ T cell compartment of modest size and restricted to OT-I T cells, so to 

a single CD8+ TCR specificity. 

In vivo kinetics of OT-I T cell expansion were determined at different times p.i. by staining of 

splenic OTI (CD45.1+CD8α+) T cells followed by flow cytometry analysis (Figure 6.3, panel B). 

Infection with vOVA elicited a strong OT-I response that reached maximal levels at day 16 p.i.. 

As expected, infection with vR4 did not cause any increase in OT-I cell numbers during the course 

of viral infection, in agreement with expression of an antagonist ligand for the OT-I TCR. Notably, 

the late kinetics of OT-I expansion induced by vOVA infection were consistent with the expression 

kinetics of a latent antigen. 

CTL function of OT-I cells was analysed by intracellular staining for IFNγ and granzyme B after 

ex vivo stimulation of infected splenocytes with the OVA or R4 peptide at days 12, 14, 16 and 19 

p.i.. vOVA-induced OT-I cell expansion correlated with the acquisition of effector function 

demonstrated by production of IFNγ (Figure 6.2, panel C) and the expression of granzyme B 

(Figure 6.2, panel D). The inability of vR4 to induce OT-I expansion was consistent with the 

absence of IFNγ production and granzyme B expression (Figure 6.2, panels C and D). 

The impact of such CD8+ CTL response differences in the ability of MuHV-4 to colonize the spleen 

and induce the expansion of latency was addressed by quantification of reactivation-competent 

virus by infectious centre assay from day 10 to day 19 p.i.. The strong OT-I response elicited by 

vOVA infection supressed splenic colonization, while absence of CD8+ CTL control allowed vR4 

colonization of the spleen and amplification of latency (Figure 6.3, panel E). 

Hence, in vivo recognition of a high avidity M2-linked epitope allowed optimal latent specific CD8+ 

CTL control of MuHV-4-driven lymphoproliferation.  
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Figure 6.3. In vivo recognition of high avidity M2-linked OVA epitope elicits optimal latent specific 

CD8+ CTL control of MuHV-4 infection in reconstituted TCRα-/- mice. 2x106 CD4+ T cells purified from 
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C57BL/6 lymph nodes and 106 CD45.1 Rag1-/- OT-I cells isolated from pooled lymph nodes of naïve CD45.1 

Rag1-/- OT-I mice were intravenously transferred into age and sex matched TCRα-/- recipients one day prior 

to infection (103 PFU) with recombinant MuHV-4 YFP expressing OVA (vOVA) or R4 (vR4) epitopes. (A) 

Schematic representation depicting the experimental setting. (B) Kinetics of in vivo OT-I cells expansion 

upon infection with vOVA (black bars) or vR4 (grey bars). At the indicated time p.i. the frequency of OT-I 

cells in the spleen was determined by FACS staining of CD45.1+CD8α+ cells (arithmetic means ± s.e.m). (C-

D) Effector function of splenic OT-I cells was determined by analyzing their ability to produce IFNγ and 

express granzyme B. Splenocytes of infected mice were ex vivo stimulated with the OVA (black bars) or R4 

(grey bars) peptides and then stained for (C) intracellular IFNγ or (D) granzyme B. Data show the percentage 

of OT-I cells (CD45.1+CD8α+) responding to peptide at each time point. Representative FACS plots from 

individual animals are shown (left panels) and compiled percentages are presented in the graphics at the 

right (arithmetic means ± s.e.m.). (E) Latent infection in spleens of infected mice was quantified by ex vivo 

reactivation assay (closed circles) and pre-formed infectious viruses were analysed by plaque assay (open 

circles). Each circle represents the titre of an individual mouse. Horizontal bars represent the mean titre per 

group of animals. The dashed horizontal line represents the limit of detection of the assay. For each time 

point groups of 3 to 5 mice were analysed. 

 

 

Globally, the results presented in this chapter demonstrate that reconstituted TCRα-/- mice provide 

a novel and valuable setting to investigate how TCR engagement by a latently expressed epitope 

impacts on MuHV-4-driven B cell proliferation. 

 



 

 

 

 

 

 

 

 

CHAPTER 7 
 

In vivo thresholds of CD8+ CTL engagement regulate 

MuHV-4-driven lymphoproliferation 

 
  



 

 

 



In vivo thresholds of CD8+ CTL engagement 

103 

In vivo thresholds of CD8+ CTL engagement regulate MuHV-4-driven 

lymphoproliferation 

CD8+ CTL functional avidity was previously shown to be an important determinant of MuHV-4 

latent infection control in OT-I mice (Chapter 5). To further understand the quantitative 

requirements of TCR functional avidity for in vivo control of MuHV-4-driven B cell proliferation in 

GCs reconstituted TCRα-/- mice were used. As demonstrated in the previous chapter, these mice 

provide an environment more conducive to MuHV-4-driven lymphoproliferation. Upon intranasal 

infection of mice with MuHV-4 YFP recombinants expressing OVA or APLs, experiments were 

designed first to investigate the outcome of different TCR engagement thresholds on the in vivo 

CD8+ CTL response. Then, the ability of MuHV-4 to driven the proliferation of latently infected 

cells, both in total splenocytes and in GC B cells, was assessed. Thus, in vivo CD8+ CTL 

engagement thresholds were related to the outcome of MuHV-4-driven lymphoproliferation. 

 

7.1. Sub-optimal TCR engagement compromises in vivo CD8+ CTL expansion 

rather than effector function 

The in vivo impact of OT-I TCR engagement by latently expressed OVA or APL epitopes on CD8+ 

T cell expansion, activation and acquisition of effector function was determined in the spleens of 

reconstituted TCRα-/- mice at day 16 p.i.. 

In vivo CD8+ T cell expansion was quantified by flow cytometry analysis of stained OT-I 

(CD45.1+CD8α+TCRβ+) cells in freshly isolated splenocytes (Figure 7.1, panel A). OT-I T cell 

expansion was greatest for vOVA, followed by vQ4 and further reduced for vV4. Infection with 

vG4 and vR4 failed to induce in vivo OT-I cell expansion, similarly to infection with the epitope-

null vWT. Thus, OT-I cell expansion correlated well with the epitope functional avidity measured 

before (Figure 2.1, panels C and D). Namely, the 14-fold reduction in functional avidity of Q4 only 

modestly affected OT-I cell expansion, while the 3,760-fold reduction of V4 caused a more 

pronounced reduction, still without supressing it completely. However, the 198,000-fold reduction 

in functional avidity of G4 caused the CD8+ T cell response to decline to background levels.    

In vivo virus-driven OT-I cell expansion was paralleled by the acquisition of an activation 

phenotype, characterized by increased cell surface expression of CD44 and down regulation of 

CD62L expression (CD44hiCD62Llo phenotype) (Figure 7.1, panel B). Indeed, the different 

expansion profiles of OT-I cells matched the extent of their activation status. Recognition of 

epitopes with higher functional avidity was consistent with the detection of higher percentages of 

CD44hiCD62Llo OT-I cells. By contrast, infection with vG4 and vR4 was associated with 

maintenance of CD62L cell surface expression on OT-I cells, similarly to infection with vWT. 
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Next, the effector function of OT-I cells was analysed by ex vivo stimulation of infected 

splenocytes with the corresponding epitope peptide followed by intracellular staining for IFNγ and 

granzyme B (Figure 7.1, panels C and D respectively). CD8+ T cell responses to vQ4 and vV4 

showed comparable functionally to vOVA. That is, in each situation OT-I cells were capable of 

producing IFNγ and expressing granzyme B following ex vivo peptide stimulation. Responses to 

vG4 and vR4 were hard to evaluate due to reduced OT-I cell numbers. Hence, reducing TCR 

functional avidity affected the overall magnitude of the CD8+ CTL response rather than CTL 

functionality. 

These results are in agreement with previous in vivo studies on how TCR avidity impacts on 

pathogen-specific CD8+ T cell responses. As observed by Zhen and colleagues upon infection of 

mice with recombinant Listeria monocytogenes expression of OVA, Q4 and V4 activates OT-I T 

cells in vivo, but the magnitude of CTL expansion is dictated by the strength of TCR ligation (Zehn 

et al., 2009). Failure of G4 to induce in vivo OT-I cell expansion is consistent with subsequent 

studies using recombinant Influenza A virus expressing the G4 APL that also demonstrated the 

inability of KbG4 to activate naïve OT-I cells and induce CTL effector function following in vivo 

priming, suggesting that this ligand likely falls the minimal threshold required for TCR-mediated 

effective CTL activation under in vivo conditions (Denton et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



In vivo thresholds of CD8+ CTL engagement 

105 

A 

 

 

 

 
 

 

B 

 

 

 

 

 

 

 

C 
 

 

 

 

 

 

D 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Sub-optimal TCR engagement affects the magnitude of in vivo CD8+ CTL expansion rather 

than effector function. Reconstituted TCRα-/- mice (details in Figure 6.3, panel A) were intranasally 

inoculated with 103 PFU of MuHV-4 YFP (vWT) or MuHV-4 YFP recombinants expressing the indicated M2-

linked epitopes. At day 16 p.i. spleens were removed and the frequency, phenotype and effector function of 

transferred OT-I cells was analyzed by flow cytometry. (A) Magnitude of the in vivo OT-I T cell response to 

the indicated viruses. Representative FACS plots from individual animals show the frequency of OT-I 

(CD45.1+ TCRβ+ CD8α+) cells within total CD8+ T cells. vOVA, vQ4 and vV4 induced significant expansion 

of OT-I cells in comparison with vWT (p<0.0001, p<0.0001, p=0.002, respectively; by ordinary one way 

ANOVA followed by Tukey’s multiple comparisons test). vWT, vG4 and vR4 did not significantly increase 

OT-I cell numbers (p˃0.9). (B) The activation phenotype of OT-I cells was determined by analyzing the 

frequency of CD44hiCD62Llo cells gated on the CD45.1+ TCRβ+ CD8α+ population. vOVA, vQ4 and vV4 

induced significantly more OT-I cell activation than vWT (p<0.0001); vG4 and vR4 were not significantly 

different from vWT (p˃0.9). (C-D) The effector function of OT-I cells was determined by analyzing their 

capacity for (C) interferon-gamma (IFNγ) and (D) granzyme B (GrazB) production, by intracellular cytokine 

staining following ex vivo stimulation with OVA or the corresponding APL peptide. The data show the 

percentage of OT-I cells (CD45.1+ TCRβ+ CD8α+) producing (C) IFNγ and (D) GrazB in response to each 

peptide. Histograms show geometric mean fluorescence intensities (MFI) of granzyme B staining relative to 

an antibody isotype control (shaded area).Representative FACS plots from individual animals (left panels) 
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and compiled percentages (right panels) are shown. Each point represents an individual mouse; 4 mice were 

analyzed per group; bars represent the average percentage. 

 

7.2. TCR engagement thresholds determine the outcome of MuHV-4-driven 

lymphoproliferation 

To investigate how the different TCR engagement thresholds, triggered by recognition of latently 

expressed OVA or APLs, affect MuHV-4-driven lymphoproliferation, reconstituted TCRα-/- mice 

were analysed following intranasal infection with MuHV-4 epitope recombinants by ex vivo 

reactivation assay. Analysis was performed during the establishment and expansion of latency 

(16 and 21 days p.i.), always in comparison with vWT.  

OVA expression severely impaired the establishment of latency (Figure 7.2). Both at 16 and 21 

days p.i. latent viruses were below the limit of detection of the infectious centre assay. Q4 

expression caused an equivalent marked suppression of splenic colonization, only marginally less 

than vOVA. V4 expression gave an intermediate phenotype, allowing the establishment and 

amplification of latency, with latent titres significantly below those of the vWT and above those of 

vOVA. vG4 and vR4 established and amplified splenic latency, reaching latent titres equivalent to 

the epitope-null vWT. Infection with vWT, vG4 and vR4 was also associated with a concomitant 

increase in the titres of pre-formed infectious virus. In vivo control of MuHV-4-driven 

lymphoproliferation showed, therefore, a titratable correlation with CD8+ CTL functional avidity 

(Figure 7.3). 

Hence, infection of reconstituted TCRα-/- mice with MuHV-4 epitope recombinants reproduced the 

previous CD8+ CTL-dependent attenuation of latency observed in OT-I mice, in proportion to the 

functional avidity of the latently expressed epitope. 
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Figure 7.2. In vivo thresholds of TCR engagement affect the outcome of MuHV-4-driven 

lymphoproliferation. Reconstituted TCRα-/- mice were intranasally infected with 103 PFU of the indicated 

viruses. At 16 and 21 days p.i. spleens were dissected and titrated for latent virus by ex vivo reactivation 

assay (closed circles). Pre-formed infectious viruses were quantified by plaque assay in frozen/thawed 

splenocyte suspensions (open cicles). Each circle shows the titre of one mouse and the horizontal bar 

represents the mean titre per group of animals. The dashed line indicates the limit of detection of the assay. 

At 16 and 21 days p.i. vOVA, vQ4 and vV4 showed significantly lower latent loads than vWT (d16: vOVA 

p=0.02, vQ4 p=0.02, vV4 p=0.03; d21: vOVA p=0.004, vQ4 p=0.006, vV4 p=0.02; by ordinary one-way 

ANOVA followed by Dunnett’s multiple comparisons test). Latent loads of vG4 and vR4 were not significantly 

different from vWT (d16: vG4 p=0.4, vR4 p=0.4; d21: vG4 p=0.8, vR4 p=1.0). 

 

 

Figure 7.3. In vivo control of MuHV-4-driven lymphoproliferation correlates with CD8+ CTL functional 

avidity. To study the association between CD8+ T cell functional avidity and MuHV-4-driven 

lymphoproliferation, the functional avidity of OT-I cells for OVA or APLs (Q4, V4 and G4) (data from Figure 

2.1, panel D) was plotted against the latent load established in spleens of reconstituted TCRα-/- mice infected 

with the correspondent MuHV-4 epitope recombinant at (A) 16 and (B) 21 days p.i. (data from Figure 7.2). 

Day 16: rs=0.9868, p=0.0066; day 21: rs=0.9899, p=0.0051; according to Pearson’s correlation coefficient. 
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7.3. Sub-optimal CD8+ CTL functional avidity allows MuHV-4-driven 

lymphoproliferation 

As a second measure of virus-driven lymphoproliferation, the frequency of viral genome positive 

cells in total splenocytes was quantified, at 16 and 21 days p.i., by using the previously described 

real time PCR at limiting dilution method. 

The inability of vOVA to amplify latency was corroborated by an approximately 1000-fold 

difference in the frequency of vOVA DNA-positive cells in comparison with vWT at day 21 p.i. 

(Figure 7.4 and Table 7.1). Q4 expression led to a slightly less efficient control of latent infection. 

This was illustrated by an approximately 5-fold higher frequency of vQ4 DNA-positive cells in 

comparison with that of vOVA. vV4 showed an intermediate phenotype, characterized by 

establishment and amplification of viral latency, nevertheless the frequency of virus DNA positive 

splenocytes was approximately 5-fold lower when compared to vWT. Infection with vG4 and vR4 

reproduced the wild type pattern of latent infection observed in these mice. That is, the frequency 

of virus DNA-positive splenocytes was similar to vWT at both time points measured. Thus, the 

frequencies of viral genome-positive cells in total splenocytes supported the results of the ex vivo 

reactivation assay, showing a similar hierarchy of MuHV-4-driven lymphoproliferation control 

(vWT=vG4=vR4˃vV4˃vQ4˃vOVA). 

Notably, while recognition of latently expressed OVA and Q4 epitopes, which have higher 

functional avidity for the dominant TCR, was associated with a decrease in the frequency of 

latently infected cells in the spleen from day 16 to day 21 p.i., reducing TCR functional avidity 

further allowed the establishment and amplification of the latently infected cell pool. Hence, these 

results indicate that there is an in vivo immune threshold of TCR engagement that determines the 

outcome of MuHV-4-induced lymphoproliferation.  

 

Figure 7.4. Sub-optimal TCR engagement allows MuHV-4-driven lymphoproliferation. Reconstituted 

TCRα-/- mice were intranasally infected with 103 PFU of the indicated viruses. At 16 and 21 days p.i. the 

frequency of cells positive for MuHV-4 genome was determined in total splenocytes by limiting dilution 

followed by real time PCR. Data were obtained from pools of 4 to 5 spleens per group. Bars represent the 

frequency of viral DNA-positive cells with 95% confidence intervals. 
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Table 7.1. Frequency of MuHV-4 latent infection in total splenocytesa of reconstituted TCRα-/- mice. 

 

 

7.4. Sub-optimal CD8+ CTL functional avidity allows MuHV-4-driven GC B cell 

proliferation 

To further investigate the impact of CD8+ CTL functional avidity in MuHV-4 ability to drive the 

proliferation of latently infected GC B cells, the frequency of virus genome-positive cells was 

determined in the flow cytometrically purified CD19+CD95hiGL7hi population, as before. 

As expected, the frequency of viral DNA-positive cells for vOVA and vQ4 revealed a severe 

impairment in the ability of MuHV-4 to establish and expand latency in GC B cells (Figure 7.5 and 

Table 7.2). This was characterized by a reduction rather than amplification of the latently infected 

GC B cell pool from day 16 to day 21 p.i.. Infection with vV4, vG4 and vR4 was characterised by 

expansion of latently infected GC B cells with frequencies of viral DNA-positive cells equivalent 

to those of vWT. 

The obtained results were supported by the analysis of YFP expression in GC B cells (Figure 

7.6). These data further corroborate that the latently infected cells expanding in the spleen 

correspond to GC B cells. 

 

Virus Day p.i. Reciprocal frequencyb of viral DNA+ cells (95% CI) 

vWT 16 232  (150-509) 

 21 119 (63-991) 

vOVA 16 11,010  (6,845-28,119) 

 21 id ˃161,924c 

vQ4 16 2,296  (1,442-5,630) 

 21 74,799  (47,030-182,682) 

vV4 16 687  (427-1,755) 

 21 567  (371-1,201) 

vG4 16 231  (139-688) 

 21 152  (99-331) 

vR4 16 257  (150-870) 

 21 211  (134-491) 

 

a Data were obtained from pools of 4 to 5 spleens. 
b Frequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI). 
c Estimated based upon less than 3 different dilution sets. 

id; indeterminable. 
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Figure 7.5. Sub-optimal CD8+ CTL control allows amplification of the pool of latently infected GC B 

cells. Reconstituted TCRα-/- mice were intranasally infected with the indicated viruses and frequencies of 

viral DNA-positive cells in flow cytometrically purified GC B cells (CD19+CD95hiGL7hi) were determined by 

limiting dilution and real time PCR at 16 and 21 days p.i.. Purity of sorted population was always ≥97%. Data 

were obtained from pools of 4 to 5 spleens per group. Bars represent the frequency of viral DNA-positive 

cells with 95% confidence intervals. 

 

 

 
 
Table 7.2. Frequency of MuHV-4 latent infection in GC B cellsa of reconstituted TCRα-/- mice. 
 

 
 

 

Virus Day p.i. Reciprocal frequencyb of viral DNA+ cells (95% CI) % Cellsc % Purityd 

vWT 16 61  (38-158) 3.13 97.3 

 21 4  (3-9) 6.36 97.4 

vOVA 16 41,748  (25,873-108,104) 1.95 97.0 

 21 id >96,432e 4.88 98.4 

vQ4 16 3,042  (1,874-8,064) 3.50 97.0 

 21 29,920  (19,237-67,294) 4.87 97.0 

vV4 16 72  (45-176) 3.00 98.2 

 21 39  (25-84) 8.83 99.0 

vG4 16 72  (45-176) 3.08 97.0 

 21 32  (18-108) 6.68 98.0 

vR4 16 50  (29-167) 2.46 97.4 

 21 16  (9-53) 7.99 97.0 

 

a Data were obtained from pools of 4 to 5 spleens. 
b Frequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI). 
c The percentage of GC B cells from total spleen was estimated by FACS analysis. 
d The purity of sorted cells was determined by FACS analysis. 
e Estimated based upon less than 3 different dilution sets. 

id; indeterminable. 
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Figure 7.6. YFP expression in GC B cells of reconstituted TCRα-/- mice infected with MuHV-4 

recombinants expressing OVA or APLs. TCRα-/- mice were adoptively transferred with polyclonal CD4+ 

T cells and CD45.1 Rag1-/- OT-I cells one day prior to infection (103 PFU) with MuHV-4 YFP (vWT) or 

MuHV-4 YFP recombinants expressing the indicated epitopes. At 16 (A and B) and 21 (C and D) days p.i. 

single cell suspensions were prepared, stained for GC B cells and analysed by flow cytometry. (A and C) 

Frequencies of GC (CD19+CD95hiGL7hi) B cells. (B and D) Frequency of YFP-positive cells in GC B cells. 

FACS plots show data obtained from pools of 4 or 5 spleens per group of animals. 
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Taken together, data presented in this chapter indicate that in vivo immune thresholds of TCR 

engagement affect the outcome of MuHV-4-induced lymphoproliferation. The CD8+ CTL response 

displayed a surprisingly large tolerance for sub-optimal TCR engagement. Reducing CD8+ CTL 

functional avidity compromised viral control through reduced T cell expansion instead of 

differentially affecting CTL effector function. Recognition of the latently expressed OVA epitope 

elicited marked CD8+ CTL expansion and severely impaired MuHV-4-driven lymphoproliferation. 

A 14-fold reduction in functional avidity (vQ4) gave remarkably similar results; a 4,000-fold 

reduction (vV4) gave an intermediate phenotype; and a 200,000-fold reduction (vG4) abolished 

CD8+ CTL control of virus-induced lymphoproliferation. Thus, OT-I TCR engagement by M2-

derived OVA or Q4 was considerably above the threshold required for in vivo viral control and low 

functional avidity allowed MuHV-4-driven lymphoproliferation.  
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General Discussion 

γHVs are worldwide distributed pathogens that despite their oncogenic potential have evolved to 

persist for the lifetime in the human population. γHVs drive the proliferation of latently infected GC 

B cells to achieve long-term persistence in memory B cells in face of host competent immune 

responses (Hislop et al., 2007b; Thorley-Lawson, 2001). Therefore, in the immunocompetent host 

a dynamic interaction between virus-driven B cell proliferation and the host immune response, in 

particular by CD8+ CTLs, produces the observed pattern of lifelong persistence without overt 

disease. However, when the virus-host equilibrium is disrupted γHV can cause severe sometimes 

life-threatening diseases. This is particularly evident in individuals in which CD8+ T cell 

surveillance is ablated or severely compromised, either by iatrogenic immunosuppression during 

transplantation or by chronic HIV-1 infection. In the absence of CD8+ CTL control latently infected 

B cells can proliferate unchecked leading to the development of lymphoproliferative diseases 

(Thorley-Lawson and Gross, 2004). Hence, notwithstanding its benign appearance, EBV is 

aetiologically linked to three B cell malignancies, BL, HL and PTLD, to a subset of T and NK cell 

lymphomas and to an epithelial tumour, NPC (Cesarman, 2014; Kutok and Wang, 2006). KSHV 

is similarly associated to B cell lymphoproliferative diseases, such as PEL and MCD, and to a 

tumour of endothelial origin, KS (Cesarman, 2014; Dittmer and Damania, 2013). The frequency 

of lymphoid malignancies associated with γHV infection and its greater incidence in individuals 

with immunodeficiency, places the proliferation of latently infected cells and their control by CD8+ 

CTLs at the center of γHV pathogenesis. 

Viral latency epitopes that are presented at the surface of latently infected B cells, B cell 

lymphomas or carcinomas provide an immune target and are a focus of current immunotherapies 

and vaccination strategies (Bollard et al., 2012; Elliott et al., 2008; Hui et al., 2013; Long et al., 

2011). However, despite the success of adoptive T cell therapy to prevent and treat EBV-driven 

PTLD, targeting other EBV-associated tumours and developing prophylactic and therapeutic 

vaccines remains a major challenge. Because of the narrow species tropism of human γHVs the 

quantitative determinants of in vivo γHV control by CD8+ CTL remain unclear. An important 

unknown is how far the CD8+ T cell mediated killing that is defined in vitro relates to effective in 

vivo immune protection. Despite extensive studies on the CD8+ T cell response to γHV and the 

identification of many γHV CD8+ CTL targets, the outcome of their engagement in vivo remains 

poorly defined. 

In this thesis, infection of laboratory mouse with MuHV-4 was used as an experimental model to 

identify immune engagement thresholds for effective in vivo CD8+ CTL control of virus-driven B 

cell proliferation. MuHV-4 provides a natural in vivo infection model for dissecting γHV infection 

and immune control, in which viral immune evasion mechanisms are preserved. Importantly, it 

shares with EBV the same strategy of host colonization, that is, it exploits the proliferation of 

latently infected cells in GCs to establish lifelong persistence in memory B cells. Thus, MuHV-4 
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presents as a well-established mouse model of γHV pathogenesis that provides an invaluable 

opportunity to correlate biochemical interactions with in vivo immune control.  

The M2 latency-associated protein encoded by MuHV-4, like EBV LMP2A and KSHV K1, is 

expressed in latently infected B cells and modulates B cell signalling, displaying functional 

homologies with the aforementioned viral proteins (Burkhardt et al., 1992; Caldwell et al., 1998; 

Damania, 2004; Lagunoff et al., 1999; Lee et al., 2005; Lee et al., 1998a). Experiments carried 

out in our laboratory have demonstrated that M2 promotes the assembly of B cell signalling 

complexes downstream of the B cell receptor (Pires de Miranda et al., 2008; Pires de Miranda et 

al., 2013; Rodrigues et al., 2006) and that M2 it is required for efficient entry of latently infected B 

cells into GC reactions in vivo (Simas et al., 2004). It is noteworthy that besides promoting B cell 

activation, proliferation and survival, providing an advantage in the competitive environment of 

the GC, these latent proteins are also themselves a source of CD8+ CTL targets. As with EBV 

LMP2A (Lee et al., 1997; Murray et al., 1992; Rickinson and Moss, 1997; Steven et al., 1996) and 

KSHV K1 (Osman et al., 1999), M2 contains an H2Kd-restricted epitope that is recognized by 

CD8+ T cells from infected H2d mice (Husain et al., 1999; Usherwood et al., 2000). So far, this is 

the only latent epitope identified for MuHV-4. Importantly, recognition of this single latent epitope 

by CD8+ CTLs of BALB/c (H2d) mice was shown to regulate the proliferation of latently infected B 

cells in GCs, during long-term MuHV-4 infection (Marques et al., 2008). Therefore, presentation 

of these latently expressed epitopes at the surface of infected cells and tumours, and their 

potential for recognition by the host CD8+ CTL response have been exploited. LMP2A is a 

candidate vaccine target for NPC (Chen et al., 2008; Hui et al., 2013) and also a potential target 

for prospective CTL-based immunotherapies (Lutzky et al., 2010; Smith et al., 2012). Similar 

efforts have focused on the potential of M2-based vaccination strategies (Hoegh-Petersen et al., 

2009; Usherwood et al., 2001) and of adoptive transfer of M2-specific CTLs (Usherwood et al., 

2000) to improve CD8+ T cell control of MuHV-4 latency, however with limited success. Thus, how 

LMP2A/K1/M2 immune recognition functions in vivo is important to understand. Additionally, all 

these three proteins show evidence of amino acid sequence diversity, consistent with the 

possibility of selection as a result of immune pressure from host CD8+ CTL responses (Marques 

et al., 2008; Stebbing et al., 2003; Wang et al., 2010). The diversity of LMP2A, K1 and M2 

prompted the hypothesis that amino acid variations in epitope sequences that affect epitope 

binding to MHC class I or CD8+ T cell functional avidity are likely to have a major impact on 

immune control of virus-driven B cell proliferation and, thus, on host colonization. 

This thesis set out to investigate in vivo how MHC class I binding and CD8+ T cell functional 

avidity, for a single latently expressed epitope derived from M2, impact on the control of virus-

driven B cell proliferation. The adopted strategy consisted in generating MuHV-4 recombinants 

expressing from the M2 C-terminus the well characterized H2Kb-restricted OVA epitope or derived 

APLs, and characterizing both the CD8+ T cell responses elicited and the ability of MuHV-4 to 

drive B cell proliferation upon infection of mice. MuHV-4 infection of mice presents as a unique 

model to experimentally address this question since long-term virus-driven B cell proliferation in 
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GCs has been shown to be regulated by latent-specific CD8+ CTLs directed towards a single 

epitope derived from M2, in BALB/c (H2d) mice (Marques et al., 2008). Hence, it offers the 

opportunity to relate directly quantitative changes in epitope recognition to the control of virus-

driven B cell proliferation. Furthermore, attaching each epitope to the M2 C-terminus, provides a 

physiological relevant approach to epitope presentation, as it conforms to latent gene expression, 

in striking contrast to the use of exogenous promoters, which are active independently of 

endogenous viral gene expression. Thus, each introduced CD8+ CTL target was expressed with 

the kinetics and copy number of the endogenous M2 epitope.  

All the selected epitopes showed equivalent capacity to stabilize H2Kb cell surface expression on 

TAP deficient RMA-S cells with the exception of E1, for which a 6-fold higher peptide 

concentration was required to achieve equivalent H2Kb stabilization, in agreement with published 

data (Denton et al., 2011). By contrast, OT-I T cells exhibited a broad range of functional avidities 

for the selected epitopes with OVA˃Q4˃V4˃G4˃E1˃R4. Since all CD8+ CTL epitopes introduced 

were H2b-restricted a major prediction was that MuHV-4 epitope recombinants would not be 

attenuated in BALB/c (H2d) mice. This was found to be the case.  

CD8+ T cell control vs evasion: a matter of thresholds 

Upon infection of C57BL/6 (H2b) mice, introduction of a single latently expressed epitope, where 

none existed before, caused a severe CD8+ CTL-dependent suppression of acute MuHV-4-driven 

B cell proliferation in GCs. This result is consistent with the previously reported impact of in vivo 

recognition of the endogenous M2 epitope in BALB/c (H2d) mice (Marques et al., 2008). However, 

while the latter only affected long-term latent loads, OVA or APLs expression in C57BL/6 (H2b) 

mice affected the infection outcome during acute MuHV-4-driven B cell proliferation, when trans-

acting immune evasion operates (Stevenson et al., 2009). These results demonstrate that latent-

specific CD8+ CTL responses can physiologically be attained and show that during acute virus-

driven lymphoproliferation, even though viral evasion is fully operational, it can be overcome by 

CD8+ CTL function. Thus, even with viral evasion some epitope restriction is necessary for MuHV-

4 to amplify the pool of latently infected B cells. The obtained results suggest that viral evasion 

simply raises the threshold for in vivo latent epitope recognition by CD8+ CTLs and demonstrate 

that breaking through is possible with strong epitope presentation. This implies that selection for 

poor latent epitope presentation is even stronger than previously found (Marques et al., 2008). 

The effectiveness of viral immune evasion seems to be partially host-dependent. That is, the 

greater effect of epitope presentation observed in C57BL/6 (H2b) mice possibly reflected 

differences in host susceptibility to immune evasion, as mK3 degrades H2Kb relatively poorly 

(Boname and Stevenson, 2001) and degrades TAP better in H2d than H2b cells (Boname et al., 

2004b). Thus, the extent of virus-driven B cell proliferation seems to reflect an immunological 

battle between viral CD8+ T cell evasion and host CD8+ CTL control, which is partially host 

dependent and determined by thresholds of immune engagement (Figure 8.1). 
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Figure 8.1. Critical MHC class I binding and CD8+ T cell engagement thresholds determine the 

effectiveness of CD8+ CTL control of virus-driven B cell proliferation. A dynamic interplay between viral 

CD8+ T cell evasion and CD8+ cytotoxic T lymphocyte (CTL) function occurs in the infected host. Viral CD8+ 

T cell evasion afforded by mK3 and M3 expression in dendritic cells (DC) and possibly also in B cells 

promotes acute latency amplification. M3 is a secreted chemokine binding protein, which may block effective 

CD8+ T lymphocyte recruitment. mK3 promotes the degradation of MHC class I heavy chains and TAP 

inhibiting antigen presentation to CD8+ T cells. Viral evasion probably raises the threshold for in vivo latent 

epitope recognition by CD8+ CTLs. Hence, effective CD8+ CTL control of latency expansion critically relies 

on overcoming this threshold with strong epitope presentation. Both MHC class I and CD8+ T cell 

engagement by a latent epitope dramatically affect the balance between virus-driven lymphoproliferation 

and CD8+ CTL control. 

 

In vivo thresholds of MHC class I engagement  

In vivo CD8+ CTL control of virus-driven B cell proliferation was critically dependent on strong 

epitope binding to MHC class I. Upon infection of C57BL/6 (H2b) mice with MuHV-4 recombinants 

expressing epitopes that bound strongly to H2Kb, virus-driven B cell proliferation in GCs was 

cleared rather than amplified and long-term persistence was severely compromised (Figure 8.2). 

Slightly differences in H2Kb binding, less than 1.6-fold, had no obvious impact on in vivo CD8+ 

CTL efficacy. However, a 6-fold reduction in H2Kb binding was poorly tolerated, allowing escape 

of latently infected GC B cells and the establishment of normal long-term persistence levels. A 

60-fold reduction completely abolished CD8+ CTL protection. Thus, in vivo M2-linked epitope 

presentation showed very little latitude for sub-optimal MHC class I binding before CD8+ CTL 

control failed. Similar results were obtained in our laboratory upon infection of C57BL/6 (H2b) mice 

with MuHV-4 recombinants expressing from the M2 C-terminus the H2Kb-restricted lytic epitope, 

derived from MuHV-4 ORF8 glycoprotein B (ORF8604-612/Kb), or APLs thereof (Supplementary 
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Figure 1, C. Godinho-Silva unpublished results). This indicates that the drastic suppression of 

acute MuHV-4-driven B cell proliferation did not result from introducing in M2 an unusually strong 

heterologous epitope, since the endogenous ORF8 epitope has been shown to stabilize cell 

surface H2Kb to a similar degree as OVA (EC50 within 2- to 3- fold) (Sehrawat et al., 2012). 

 

Figure 8.2. In vivo MHC class I engagement thresholds critically affect CD8+ CTL control of virus 

driven B cell proliferation. MHC class I binding by the M2-linked OVA epitope, which as a Kd of 4nM for 

H2Kb (Matsumura et al., 1992), elicited small but very effective latent-specific CD8+ cytotoxic T lymphocyte 

(CTL) responses, which suppressed MuHV-4 driven B cell proliferation in GCs and severely compromised 

long-term persistence. A 6-fold reduction in MHC class I binding allowed large latent-specific CD8+ T cell 

responses to develop, however they were less efficient at curtailing virus-driven lymphoproliferation in GCs 

and resulted in normal long-term latent loads. A 60-fold decrease in MHC class I binding abolished CD8+ 

CTL protection. 

 

Evidence of selection for poor epitope presentation – relevance of MHC class I 

engagement  

The drastic impact of strong MHC class I binding by a latent epitope on MuHV-4-driven B cell 

proliferation is in agreement with epidemiological evidence of immune pressure from MHC-

restricted CTL responses for epitope loss, in the latently expressed EBV EBNA3B protein, by 

selective mutation of anchor residues (Burrows et al., 1996; de Campos-Lima et al., 1993; de 

Campos-Lima et al., 1994; Levitsky et al., 1997; Midgley et al., 2003a; Midgley et al., 2003b). The 

sequence of two unusually strong HLA-A11 restricted immunodominant epitopes within EBNA3B 

were described to be often mutated in EBV strains prevalent in highly HLA-A11 positive 
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populations. The changes in the epitope regions altered the amino acid sequence at key anchor 

residues for HLA-A11 binding and rendered the epitopes non-immunogenic in vivo. For KSHV, 

epidemiological evidence also indicates that several functional MHC class I restricted epitopes, 

identified in the most variable region of the latent K1 protein, have been positively selected for 

amino acid diversity (Stebbing et al., 2003). In line with this, comparative studies with closely 

related MuHV-4 viruses revealed that M2 is the most divergent of the four proteins encoded by 

the left end of the viral genome (Hughes et al., 2010), showing a higher frequency of non-

synonymous mutations (1.01) when compared to M1, M3, M4 and ORF4 (0.20-0.27) (Marques et 

al., 2008). Thus, the divergence of the M2 gene in a region of low overall variation may reflect 

strong immune selection. Evidence of strong positive selection for amino acid diversity in EBV 

LMP2A and EBNA3B, KSHV K1 and MuHV-4 M2, which provide important CD8+ CTL targets, 

presumably reflects that less well-recognized viruses establish higher latent loads and therefore 

transmit better to new hosts (Stevenson et al., 2009). Overall, it seems that the long co-evolution 

of γHV with their hosts, under immune pressure from CD8+ CTL responses, has resulted in 

selection for poor epitope presentation. Therefore, it would be interesting to characterize the 

endogenous M2 latent epitope (M284-92/Kd) for MHC class I binding and to compare it with the 

epitopes used in this study. In BALB/c (H2d) mice the M284-92/Kd-specific CD8+ CTL response 

allows MuHV-4 expansion of latency in GC B cells and only thereafter control of the virus-induced 

lymphoproliferation. Thus, MHC class I engagement by the endogenous M2 epitope will probably 

be close to the threshold of vE1. Furthermore, since the effectiveness of viral immune evasion 

seems to be partially host-dependent, it would be interesting to infect H2b/d F1 hybrids (BALB/c x 

C57BL/6) with the MuHV-4 epitope recombinants differing in epitope presentation, and to relate 

the MHC class I binding characteristics of the endogenous M2 epitope and of OVA and APL 

epitopes with the ability of each virus to expand the pool of latently infected B cells in H2b/d F1 

hybrids.  

CD8+ CTL targets 

The precise cellular targets for CD8+ CTL recognition of M2-linked epitopes remain unknown. 

MuHV-4 colonizes the spleen via serial lymphoid/myeloid virus exchange (Frederico et al., 2014) 

and M2 expression has been detected in several B cell subpopulations, but also in dendritic cells 

(Marques et al., 2003). Therefore, CD8+ CTLs could suppress virus-driven B cell proliferation 

indirectly before the onset of lymphoproliferation, by targeting infected myeloid cells, which 

transfer infection to B cells. However, myeloid cells are probably protected by viral evasion (Smith 

et al., 2007; Stevenson et al., 2009). Therefore, another possibility is infected B cells, which are 

a major site of M2 expression (Husain et al., 1999; Marques et al., 2003) and could be directly 

recognized by CD8+ T cells before latency amplification. Finally, the other possibility is 

proliferating GC B cells, consistent with the observation that disrupting CD8+ T cell recognition of 

M2 allows more extensive proliferation of latently infected B cells in GCs of BALB/c mice (Marques 

et al., 2008).  
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Susceptibility to CD8+ CTL attack 

Susceptibility to CD8+ CTL attack during acute virus-driven B cell proliferation varied with the cell 

type. vE1 showed a severe acute reduction in the frequency of latently infected total splenocytes, 

but relative sparing of latently infected GC B cells. This suggests that the latently infected GC B 

cell population may be more protected from CD8+ CTLs. It is possible that viral evasion operating 

at the level of GC B cells makes this population of latently infected cells harder to target. Several 

evidences support this hypothesis. Transcription of both mK3 and M3 has been detected in 

splenic latently infected GC B cells during the acute phase of MuHV-4-driven lymphoproliferation, 

at day 14 p.i. (Marques et al., 2003). mK3 promotes the degradation of MHC class I heavy chains 

(Boname and Stevenson, 2001; Lybarger et al., 2003) and the TAP peptide transporter (Boname 

et al., 2004b). M3 is a secreted protein (van Berkel et al., 1999) that binds chemokines blocking 

chemokine signalling (Jensen et al., 2003; Parry et al., 2000; van Berkel et al., 2000). Although 

mK3 and M3 are transcribed both in the lytic cycle and during latency (Marques et al., 2003), loss 

of mK3 and M3 function has no discernable impact on primary lytic lung infection following 

intranasal inoculation, but causes a CD8-dependent defect in latency-associated 

lymphoproliferation in GCs in vivo (Bridgeman et al., 2001; Stevenson et al., 2002). Therefore, 

mK3 and M3 could protect B cells and in particular GC B cells directly against CD8+ CTL attack. 

On the other hand, extensive interplay between lytic and latent infection could provide indirect 

protection to GC B cells. It has been proposed that mK3 might act by downregulating MHC class 

I-restricted antigen presentation in lytically infected myeloid cells (Smith et al., 2007), which carry 

virus to lymphoid tissue (Frederico et al., 2012) and, once there, express early lytic evasion genes 

such as M3, which binds chemokines and inhibits CD8+ T cell function (Bridgeman et al., 2001; 

Rice et al., 2002). This way, lytic infection of myeloid cells, expressing mK3 and M3, could both 

increase virus seeding to B cells and help to protect indirectly latently infected GC B cells 

(Stevenson et al., 2009).  

Infection of C57BL/6 (H2b) mice with a MuHV-4 recombinant expressing the M2-linked E1 epitope 

but defective for K3, could help clarifying if GC B cells are indeed more protected from CD8+ CTL 

attack through viral evasion. If the proposed hypothesis is correct the frequencies of infection for 

this viral recombinant in GC B cells should be as low as in total splenocytes.  

The relative sparing of vE1+ GC B cells allowed the establishment of normal long-term latent 

loads. This further emphasises the reliance of MuHV-4 on the amplification of the pool of latently 

infected B cells in GCs in order to establish a long-term latent reservoir, and highlights the 

importance of targeting acute latency amplification in order to prevent, or at least minimize, long-

term persistence.  
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Where does CD8+ CTL stimulation come from? 

Interestingly, the rather modest epitope-specific CD8+ CTL responses elicited by MuHV-4 epitope 

recombinants expressing M2-linked OVA, Q4, V4, G4 and R4 epitopes (approximately 1-2% of 

total CD8+ T cells) contrasted with the large E1-specific CD8+ CTL response (approximately 5% 

of total CD8+ T cells). Despite small in magnitude, CD8+ CTL responses elicited by epitopes 

capable of strong MHC class I binding completely supressed MuHV-4-driven GC B cell 

proliferation and severely compromised long-term persistence. This finding is consistent with 

latent epitope presentation downstream of mLANA eliciting similarly low but very effective CD8+ 

CTL responses (approximately 1-2% of total CD8+ T cells), which cause a strong CD8+ CTL-

dependent latency attenuation (Bennett et al., 2005). Surprisingly, despite decreased MHC class 

I binding, vE1 stimulated large, functional specific CD8+ CTL responses, but those CTLs were not 

able to efficiently curtail virus-driven GC B cell proliferation. This suggests that, at least for vE1, 

most CD8+ CTL stimulation comes from a population distinct from the one engaged in B cell 

proliferation. During acute MuHV-4 latent expansion many latently infected GC B cells do not 

make it through to long-term latency, and so a lot may reactivate. Therefore, it is possible that a 

GC-derived B cell population could be stimulating the larger vE1-specific CD8+ T cell response, 

but not GC B cells themselves which, as previously suggested, may be more protected through 

viral evasion, and so harder to target and also incapable of providing CD8+ T cell stimulation. 

However, it remains unclear which cell type(s) are stimulating the small but very efficient epitope-

specific CD8+ CTL responses. During acute MuHV-4-driven lymphoproliferation, latency is 

established preferentially in B cells, specifically in the main proliferative population of GC B cells, 

but also in dendritic cells and macrophages (Flano et al., 2000; Flano et al., 2003; Marques et al., 

2003). M2 expression has been detected in several B cells subpopulations, besides GC B cells, 

and in dendritic cells but not in macrophages (Marques et al., 2003). All these cell types express 

MHC class I molecules at the cell surface and are capable of antigen presentation and mediating 

CD8+ T cell activation. Additionally, expression of the endogenous M2 latency-associated epitope 

(M284-92/Kd) has been detected predominantly in B cells and to a lesser extent in dendritic cells, 

but again not in macrophages (Woodland et al., 2001a); and B cells have been shown to be 

needed for efficient priming of the M284-92/Kd-specific CD8+ T cell response (Usherwood et al., 

2000). Therefore, it is possible that the CD8+ CTL responses towards the M2-linked epitopes can 

be stimulated by the self-renewing population of latently infected B cells, when infection is 

supressed, but also by other infected cell types, when CD8+ T cells fail to abolish latency 

amplification. This suggests that the important population for effective in vivo control and the main 

CD8+ T cell stimulating population do not necessarily match. 

Discrepancy between CD8+ T cell numbers and effective in vivo protection 

The small but very efficient latent-specific CD8+ CTL responses found in this study contrast with 

MuHV-4 large lytic antigen-specific CD8+ T cell responses (Freeman et al., 2010; Gredmark-Russ 

et al., 2008; Stevenson et al., 1999a). The latter clearly do not control latency amplification as 
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priming them fails to prevent it (Liu et al., 1999b; Stevenson et al., 1999b). Likewise, both in 

healthy carriers and in IM large EBV lytic antigen-specific CD8+ T cells are the major expanded 

populations when compared to latent epitope-specific CD8+ T cells (Hislop and Sabbah, 2008). 

An equivalent discrepancy between large T cell numbers and effective immune protection is also 

seen in beta-herpesvirus, in which large CD8+ T cell responses to cytomegalovirus infection are 

not associated with better control (Karrer et al., 2003; Khan et al., 2002). Therefore, it seems that 

large CD8+ T cell expansion reflects a failure to control latency. The results obtained in mice 

infected with vE1 followed the same trend. Those mice showed larger latent CD8+ T cell 

stimulation yet poor control of virus-driven B cell proliferation, suggesting that bigger responses 

come from CD8+ T cells acting too late. 

 In vivo thresholds of CD8+ T cell engagement 

EBV provides a dramatic example of conserved TCR usage within an epitope-specific T cell 

response in humans (Annels et al., 2000; Argaet et al., 1994; Callan et al., 1998a; Miles et al., 

2005b). Therefore, domination by a single TCR prompted the analysis of the impact of varying 

CD8+ T cell functional avidity, for a single latently expressed epitope, on in vivo control of MuHV-

4-driven lymphoproliferation. Two TCR transgenic mouse models were used, OT-I mice and 

reconstituted TCRα-/- mice, both with a single CD8+ TCR specificity for OVA257-264 in the context 

of H2Kb. Once antigen presentation has broken through, CD8+ CTL functional avidity was an 

important determinant of in vivo control of MuHV-4 latent infection. Specifically, for constant MHC 

class I binding, MuHV-4 recombinants expressing OVA or APLs showed a titratable correlation 

between CD8+ CTL functional avidity and in vivo control of virus-driven lymphoproliferation. 

However, this effect was again more evident in total splenocytes, emphasizing the immune 

privilege of GC B cells from acute CD8+ CTL attack. Low CD8+ CTL functional avidity, elicited by 

vV4, gave intermediate infectious centre titres and intermediate frequencies of latently infected 

cells in total splenocytes, with relative sparing of latently infected GC B cells. The CD8+ CTL 

response displayed a surprisingly large tolerance for sub-optimal TCR engagement, with low 

CD8+ T cell functional avidity compromising control of virus-driven lymphoproliferation through 

reduced CTL expansion, rather than differentially affecting CTL effector function. In contrast to 

MHC class I binding, CD8+ CTL control of virus-driven B cell proliferation remained effective 

across a wide range of T cell functional avidities. Specifically, high CD8+ CTL functional avidity 

dramatically suppressed MuHV-4 expansion of latency in GC B cells (Figure 8.3). Reducing CD8+ 

T cell functional avidity 14-fold had little impact on the control of virus-driven B cell proliferation, 

with latently infected cells being cleared rather than amplified. However, while a 4,000-fold 

reduction allowed some CD8+ CTL control of latently infected total splenocytes, MuHV-4 ability to 

expand latency in GC B cells was unaffected. Finally, a 200,000-fold reduction completely 

abrogated CD8+ CTL control of virus-driven B cell proliferation.  Therefore, this aspect of 

recognition was more flexible in the two CD8+ T cell monoclonal mouse models used, and a 

polyclonal CD8+ CTL population could attack any variant epitope so long as its MHC class I 

binding was strong. 
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Figure 8.3. In vivo thresholds of CD8+ T cell engagement by a latently expressed epitope regulate 

virus-driven B cell proliferation. TCR engagement by the M2-linked OVA epitope, for which the OT-I TCR 

has a Kd of 6.5 μM (Alam et al., 1996), abolished virus-driven B cell proliferation in GCs. Reducing CD8+ T 

cell functional avidity affected CTL control through reduced CD8+ T cell expansion. Still, CD8+ CTL control 

remained effective over a broad range of CD8+ T cell functional avidities, showing relatively good tolerance 

for sub-optimal TCR engagement. CD8+ CTL protection started to fail with an epitope with 4,000-fold lower 

CD8+ T cell functional avidity and a 200,000-fold reduction completely abrogated CD8+ CTL control of virus-

driven B cell proliferation. 

 

Major achievements 

In summary, work presented in this thesis demonstrated that a single latently expressed CD8+ 

CTL target allowed acute control of virus-driven B cell proliferation, even with active viral immune 

evasion at play. Both MHC class I binding and CD8+ T cell functional avidity were critical 

determinants of the in vivo control of virus-driven B cell proliferation. Specifically, CD8+ CTL 

control of virus-driven B cell proliferation in GCs was critically dependent on strong epitope 

binding to MHC class I. By contrast, infection control was effective over a broader range of CD8+ 

T cell functional avidities, showing relatively good tolerance for sub-optimal TCR engagement. 

Infection of mice with vOVA illustrated the impact of strong epitope presentation, infection with 

vWT or vA8 that of poor epitope presentation, and OVA APLs covered the range in between, and 

thus allowed the identification of critical MHC class I and CD8+ T cell engagement thresholds for 

the in vivo CD8+ CTL control of virus-driven B cell proliferation. The capacity of MuHV-4 to 

correlate biochemical interactions with in vivo immune function underscores the importance of 

predicting in vivo CTL efficacy from biochemical measures and of establishing quantitative 

guidelines for γHV infection control, with implications for vaccination and anti-cancer 

immunotherapy. 
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Final considerations 

MuHV-4-driven B cell proliferation seems to be finely balanced, within limits set ultimately by the 

host immune system. With restricted latent gene expression and with viral immune evasion raising 

the threshold for in vivo epitope recognition, CD8+ CTL efficacy critically relies on overcoming this 

threshold and on the attack of the appropriate latently infected cell targets. Larger CD8+ CTL 

responses are not necessarily more protective ones. Therefore, extrapolating from CTL numbers 

and in vitro assays alone is not straightforward and does not necessarily translate into effective 

in vivo protection. A fundamental challenge in the control of γHV is to predict in vivo CTL efficacy. 

Proper selection of protective T cell populations and vaccine epitopes will be essential for optimal 

γHV infection control. 

The CD8+ T cell response to γHV has been extensively studied and several viral CD8+ CTL targets 

have been identified. However, a comprehensive understanding of how epitope immune 

engagement functions in vivo and how it translates into effective infection control has been 

lacking. Work presented in this thesis provided a quantitative assessment of how MHC class I 

and CD8+ T cell engagement, by a single latently expressed epitope, impacts on in vivo CD8+ 

CTL control of virus-driven B cell proliferation and, thus, on host colonization. 

MuHV-4 presents as a unique infection model to correlate biochemical interactions with in vivo 

γHV immune control. In this study, infection of mice with MuHV-4 allowed the identification of 

critical epitope binding characteristics for effective in vivo immune control by latent antigen-

specific CD8+ CTLs, highlighting the importance and the potential of predicting in vivo CTL 

efficacy from biochemical measures. This constitutes an important step towards the 

establishment of quantitative guidelines for γHV infection control. 

Defining thresholds of immune engagement for effective in vivo control of γHV-driven B cell 

proliferation is fundamental for the design and development of successful immunotherapies and 

vaccination strategies. 
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Materials and Methods 

9.1. Materials 

9.1.1. General Reagents 

Analytical or molecular biology grade chemicals were obtained from Bio-Rad, Calbiochem, Fluka, 

Invitrogen, Merck, Roche and Sigma. Molecular biology reagents and enzymes were obtained 

from Fermentas, Invitrogen, Promega, New England Biolabs, Roche and Stratagene. Tissue 

culture reagents and supplements were obtained from Gibco BRL. Synthetic oligonucleotides and 

peptides were synthesized from Thermo Scientific.  Antibodies for flow cytometry were obtained 

from BD Pharmingen, Biolegend and eBioscience. H-2Kb tetramers were a kind gift from Dr Hidde 

L. Ploegh (Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 

Cambridge). 

 

9.1.2. Mice 

BALB/cByJ and C57BL/6J mice were purchased from Charles Rivers Laboratories International 

Inc.  

 

B6.SJL-Ptprca Pep3b/BoyJ (CD45.1 C57BL/6) is a congenic strain which carries the differential B 

cell antigen originally designated Ly5.1 and CD45.1. The b allele of Ptprc is normally 

present in the BALB and C57BL inbred strains. 

 

C57BL/6-Tg (TcraTcrb)1100Mjb/J (OT-I) mice contain transgenic inserts for mouse Tcra-V2 and 

Tcrb-V5 genes. The transgenic TCR was designed to recognize ovalbumin residues 257-

264 in the context of H2Kb. 

 

B6.129S7-Rag1tm1Mom/J (Rag1-/-) mice are homozygous for the Rag1tm1Mom mutation and produce 

no mature T cells or B cells (lack all mature lymphocytes i.e., are "non-leaky"). Rag1-/- mice 

have no CD3+ or TCRαβ+ cells. 

 

B6.129S2-Tcratm1Mom/J (TCRα-/-) mice are homozygous for the Tcratm1Mom targeted mutation and 

are deficient in the αβ TCR. 

 

CD45.1 C57BL/6, OT-I, Rag1-/- and TCRα-/- mice were obtained from Jackson Laboratory. 

 

CD45.1 Rag1-/- OT-I mice were obtained by breeding OT-I onto a CD45.1 Rag1-/- background. 

Mice were bred and housed under specific pathogen-free conditions at Instituto de Medicina 

Molecular animal facility, Lisbon, Portugal. 
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9.1.3. Cell lines 

Baby hamster kidney (BHK-21) fibroblast cells were used for growing and titrating viral stocks, in 

vitro growth curves, ex vivo reactivation and plaque assays. 

 

NIH-3T3-CRE cells were kindly provided by Dr Philip Stevenson (Division of Virology, Department 

of Pathology, University of Cambridge) and were used during the construction of MuHV-4 

recombinant viruses, for removing the loxP-flanked BAC cassette. This cell line was 

established by transduction of NIH-3T3 cells with a retrovirus derived from Phoenix-

ecotropic cells transfected with pMSCV-NEO (cre of bacteriophage P1 cloned into the 

EcoRI-XhoI sites of pMSCV-NEO) and selection with 1mg/ml G418 (Stevenson et al., 

2002).  

 

RMA-S cells (mutagenized Rauscher virus-induced T lymphoma cells of mouse origin) were 

kindly provided by Dr Hidde L. Ploegh (Whitehead Institute for Biomedical Research, 

Massachusetts Institute of Technology, Cambridge) and were used for H-2Kb stabilization 

assay and ex vivo stimulation of OT-I cells with OVA and APL peptides. Murine RMA-S cell 

line, was derived from the T lymphoma cell line RMA, and is transporter-associated with 

antigen processing (TAP) deficient (Karre et al., 1986). RMA-S cells have a defect in class 

I assembly and express markedly reduced levels of class I molecules at the cell surface 

(Karre et al., 1986; Ljunggren and Karre, 1985; Powis et al., 1991). 

 

9.1.4. Viruses 

Murid herpesvirus-4 (MuHV-4) used in this study belongs to the strain MHV-68 (murine 

herpesvirus 68) that was originally isolated by Prof. Dr Blaskovic (Blaskovic et al., 1980). Clone 

G2.4 was isolated from virus grown in BHK-21 cells by Dr Stacey Efstathiou (Efstathiou et al., 

1990b). 

 

Wild type virus (vWT) used in animal experiments was derived from a genomic bacterial artificial 

chromosome (BAC) and was a kind gift from Dr Heiko Adler and Dr Ulrich Koszinowski. 

This virus is essentially MHV-68 clone G2.4 but contains a single loxP site (Adler et al., 

2001; Adler et al., 2000). 

 

M2-OVA virus (vOVA) was constructed by Dr Sofia Marques in our laboratory by fusing the H2Kb-

restricted OVA257-264 (SIINFEKL) epitope, derived from chicken ovalbumin, to the C-

terminus of M2. This virus contains a 33 nucleotide insertion immediately downstream of 

M2 last coding codon (nt 4031-4033) followed by a TAA-stop codon. The first six nucleotide 

insertion generated a new HindIII site and codes for a lysine (K) and a leucine (L). The 

following three nucleotides encode an arginine (K) and the next 24 nucleotides correspond 
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to the SIINFEKL epitope coding region. This virus was obtained by mutagenesis of the virus 

genome in E.coli using MuHV-4 BAC pHA3.  

 

M2-Q4 virus (vQ4) was constructed by Dr Marta Alenquer in our laboratory using the same 

strategy employed by Dr Sofia Marques to construct vOVA. It expresses the H2Kb-

restricted OVA APL Q4 (SIIQFEKL) epitope in fusion with the C-terminus of M2. It differs 

from vOVA by a single amino acid residue, asparagine (N) at position 4 of the OVA epitope 

was replaced by a glutamine (Q). 

 

M2-V4 virus (vV4) was engineered by Dr Marta Alenquer in our laboratory by fusing the H2Kb-

restricted OVA APL V4 (SIIVFEKL) epitope to the C-terminus of M2. It contains asparagine 

(N) at position 4 of the OVA epitope replaced by a valine (V). 

 

M2-G4 virus (vG4) was engineered by Dr Sofia Marques and Dr Bruno Frederico in our laboratory. 

It expresses in fusion with the C-terminus of M2 the H2Kb-restricted OVA APL G4 

(SIIGFEKL) epitope. It contains asparagine (N) at position 4 of the OVA epitope substituted 

by a glycine (G).  

 

M2-R4 virus (vR4) was constructed by Dr Sofia Marques and Dr Bruno Frederico in our laboratory 

by fusing the H2Kb-restricted OVA APL R4 (SIIRFEKL) epitope to the C-terminus of M2.  It 

contains the asparagine (N) residue at position 4 of the OVA epitope substituted by an 

arginine (R). 

 

M2-E1 virus (vE1) was engineered by Dr Sofia Marques and Dr Bruno Frederico in our laboratory 

by fusing the H2Kb-restricted OVA APL E1 (EIINFEKL) epitope to the C-terminus of M2. It 

contains the serine (S) residue at position 1 of the OVA epitope replaced by a glutamic acid 

(E).   

 

M2-A8 virus (vA8) was engineered in this study by mutagenesis of the virus genome in E.coli 

using the MuHV-4 bacterial artificial chromosome (BAC) pHA3 (Adler et al., 2000) as 

described in detail in section 9.2.5. It expresses in fusion with the C-terminus of M2 the 

H2Kb-restricted OVA A8 (SIINFEKA) epitope. Leucine (L) at position 8 of the OVA epitope, 

an anchor residue, was replaced by an alanine (A). This virus was engineered using the 

same strategy for construction of the previously described MuHV-4 epitope recombinants. 

 

YFP-expressing MuHV-4 recombinant virus (vYFP) used in animal experiments was derived from 

a genomic bacterial artificial chromosome (BAC) and was a kind gift from Dr Samuel Speck. 

This virus expresses the enhanced yellow fluorescent protein (YFP), driven by the human 

cytomegalovirus (HCMV) immediate-early (IE) promoter and enhancer, from a neutral 

locus in the viral genome located between open reading frames 27 and 29b (Collins et al., 
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2009). The expression cassette is flanked by a chromatin insulator from the human major 

histocompatibility complex II locus, an attempt to prolong YFP expression after the onset 

of latency. This virus allows direct detection of infected cells based on YFP expression and 

phenotypic analysis of the infected cell populations and was used in animal experiments 

with reconstituted TCRα-/- mice. 

 

M2-OVA, -Q4, -V4, -G4 and -R4 expressing MuHV-4 YFP recombinant viruses were engineered 

in this study by mutagenesis of the virus genome in E. coli using the YFP MuHV-4 BAC (Collins 

et al., 2009), as described in detailed in section 9.2.5. These recombinants were used in animal 

experiments with reconstituted TCRα-/- mice to facilitate, based on YFP expression, tracking of 

infected cells, phenotypic analysis of infected cell populations and quantification of infection, by 

flow cytometry. 

 

 

9.1.5.  Bacterial strains 

Plasmids were grown for the general purpose in E. coli strain DH5α (Invitrogen) with the following 

genotype F– Φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17 (rK
–, mK

+) phoA supE44 

λ- thi-1 gyrA96 relA1.  

 

E. coli strain XL10-Gold ultracompetent (Stratagene), genotype Tetr Δ(mcrA)183 Δ(mcrCB-

hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB lacIqZΔM15 Tn10 

(Tetr) Amy Camr], was used to grow shuttle vector derived plasmids. 

 

E. coli strain DH10B (Invitrogen), genotype F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ(ara leu)7697 galU galK λ- rpsL (Strr) nupG, containing the 

MuHV-4 BAC pHA3 (Adler et al., 2000) was provided by Dr Heiko Adler and Dr Ulrich Koszinowski 

and was used for mutagenesis of MuHV-4 BAC pHA3.   

E. coli strain DH10B containing the YFP MuHV-4 BAC was used for mutagenesis of YFP MuHV-

4 BAC. 
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9.1.6. Plasmids 

pSP72-M2flank is a pSP72 (Promega) based plasmid in which the BglII/XhoI MuHV-4 genomic 

fragment (nt 3846 to 5367) was cloned by Dr Sofia Marques. This vector contains the M2 

coding and flanking regions. An engineered HindIII restriction site was introduced 

immediately before the M2 stop codon.   

 

pST76K-SR (shuttle vector) (Adler et al., 2000) was a kind gift from Dr Heiko Adler and Dr Ulrich 

Koszinowski. 

 

HindIII-E shuttle plasmid, constructed by Dr Sofia Marques in our laboratory, is the 6.1 kb HindIII-

E genomic fragment of MuHV-4 (nt 107 to 6261) cloned in the pST76K-SR plasmid. 

 

pHA3 is the MuHV-4 genome cloned as a bacterial artificial chromosome (BAC) (Adler et al., 

2000) and was kindly provided by Dr Heiko Adler and Dr Ulrich Koszinowski. 

 

pEH1.4 is a pBluescript based plasmid containing the 1.4 kb HindIII-EcoRI subfragment of the 

HindIII-E MuHV-4 genomic fragment (nt 107 to 1518) cloned in an antigenomic orientation. 

It contains viral tRNA 1 to 4 and viral miRNA miR-M1-1 to 6, 10 and 11 transcripts. This 

plasmid was used to generate the digoxigenin (DIG)-labelled probe used to detect viral 

tRNA 1 to 4 and viral miRNA miR-M1-1 to 6, 10 and 11 transcripts by in situ hybridization. 

Plasmid was linearized with HindIII and DIG-labelled antisense probes were synthesised 

by in vitro transcription with T7 RNA polymerase via the T7 phage promoter. This plasmid 

was constructed by Dr Rory Bowden (Bowden et al., 1997). 
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9.2. Methods 

9.2.1. Isolation and analysis of nucleic acids 

9.2.1.1. High molecular weight cellular/viral DNA extractions 

High molecular weight (HMW) DNA was extracted from BHK-21 cells infected with a high 

multiplicity of infection (MOI) (5 PFU/cell). To this end 6 cm cell culture dishes of cells with 

cytopathic effect (cpe) were harvested by cell scrapping and centrifuged for 5 min at 1,500 rpm. 

Cell pellet was resuspended in 750 μl of TE lysis buffer (10 mM Tris-HCl pH 8.0, 50 Mm 

ethylenediaminetetraacetic acid (EDTA), 0.5% SDS and 20 µg/ml Proteinase K) and incubated 

overnight at 37ºC. 

DNA samples containing proteins and salts were purified by deproteinization using 

phenol/chloroform extraction and concentrated by ethanol precipitation. Typically, an equal 

volume of TE-buffered phenol:chroloform:isoamyl alcohol (25:24:1) was added to the DNA 

solution, mixed well by vigorous shaking or vortexing, incubated for 5 min at room temperature 

(RT) and centrifuged at 10, 000 rpm in a bench top centrifuge, for 5 min at RT. The upper aqueous 

phase containing DNA was transferred to a clean tube and re-extracted twice with an equal 

volume of chloroform. 

DNA solutions were precipitated using 0.1 volumes of 3M KOAc or NaOAc (pH 5.5) and 2.5 

volumes of 100% ethanol. Samples were gently mixed well, left for 10 min at RT and HMW DNA 

was extracted by spooling onto a glass Pasteur pipette. DNA was washed with cold 70% ethanol, 

left for 10-20 min at RT to air-dry and then resuspended in MiliQ water or TE. 

 

9.2.1.2. Plasmid DNA isolation 

Plasmid DNA was isolated from plasmid-containing E. coli strains (section 9.1.5) grown in Luria 

Bertani (LB) (tryptone 1%, yeast extract 0.5%, NaCl 1%) broth containing the appropriate 

antibiotic(s), using an alkaline lysis method modified accordingly to the scale of the preparation 

and plasmid size. Antibiotics were used at the following concentrations: 100 μg/ml ampicilin, 17 

μg/ml chloramphenicol and 30 μg/ml kanamycin. 

 

Small scale plasmid preparation 

For small scale plasmid preparations (plasmid minipreps), 2-5 ml of LB broth cultures containing 

the appropriate antibiotic(s) were inoculated from single bacterial colonies and incubated with 

vigorous shaking 12-18h at 37 or 30ºC. Cultures were pelleted by centrifugation for 10 min at 

3,500 rpm. Plasmid DNA was obtained using the Wizard Plus SV Minipreps DNA purification 

System (Promega), by column purification of DNA prepared by alkaline lysis, according to 

manufacturer’s instructions. DNA was eluted in 50 µl of MiliQ water and stored at -20ºC.   
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Medium scale plasmid preparation 

Cultures of plasmid-containing bacteria were prepared by inoculation of 5 ml LB broth cultures 

containing the appropriate antibiotic(s) from single colonies and incubation with shaking 12-18h 

at 37 or 30ºC. Bacteria were sub-cultured 1:500 into 100 ml LB containing the appropriate 

antibiotic(s) and incubated under the same conditions. Bacterial cultures were concentrated by 

centrifugation at 6,000 rpm for 15 min at 4ºC and DNA was obtained using the Qiagen Plasmid 

Midi Kit, following manufacturer’s instructions. DNA was resuspended in 200 µl of MiliQ water and 

stored at -20ºC. 

 

Large scale plasmid preparation 

Cultures of plasmid-containing bacteria were prepared by inoculation of 5 ml LB broth cultures 

containing the appropriate antibiotic(s) from single colonies and incubation with shaking 12-18h 

at 37 or 30ºC. Bacteria were sub-cultured 1:500 into 200 ml LB containing the appropriate 

antibiotic(s) and incubated under the same conditions. Bacterial cultures were pelleted by 

centrifugation at 6,000 rpm for 15 min at 4ºC and DNA was purified using the LFU / Plasmid 

Purification MAXI Kit (JETSTAR), following manufacturer’s instructions. DNA was resuspended 

in 500 µl of MiliQ water and stored at -20ºC. 

 

Small scale BAC plasmid preparation 

For small scale BAC plasmid preparations (BAC plasmid minipreps) 10 ml of LB broth containing 

17 μg/ml chloramphenicol were inoculated from single bacterial colonies and incubated with 

vigorous shaking 12-18h at 37ºC. Bacteria were pelleted by centrifugation at 3,500 rpm for 10 min 

at 4ºC. Pellet was thoroughly resuspended in 200 µl of buffer P1 (50mM Tris-HCl pH 8.0, 10mM 

EDTA; from Quiagen) plus 100 µg/ml RNase A. 300 µl of buffer P2 (200mM NaOH, 1% SDS; 

from Qiagen) were promptly added and the suspension was mixed by gentle inversion and left at 

RT for 5 min. 300 µl of chilled buffer P3 (3.0 M KOAc pH 5.5; from Qiagen)  were added, tubes 

were gently inverted to mix solution, incubated on ice for 15 min and centrifuged for 10 min at 

13,000 rpm and 4ºC. Supernatants were transferred to 2 ml tubes, 1 ml phenol/chloroform (1:1) 

was added and mixed by inversion. Mixture was left 5 min at RT and then centrifuged 10 min at 

13,000 rpm and 4ºC. Aqueous phase was recovered and precipitated with 0.7 volumes of 

isopropanol and left at RT for 5 min. BAC plasmid DNA was pelleted by centrifugation for 20 min 

at 13,000 rpm and 4ºC. Supernatant was discharged and the pellet was washed with 70% ethanol, 

centrifuged another 10 min, drained and air dried. DNA was resuspended in 50 µl of TE (10mM 

Tris, 1mM EDTA, pH 8.0) supplemented with RNase A (10µg/ml)  and stored at 4ºC. 

 

Large scale BAC plasmid preparation 

Confluent cultures of BAC plasmid-containing bacteria were prepared by inoculation of 5 ml LB 

broth cultures supplemented with 17µg/ml chrolamphenicol from single colonies and incubating 

with shaking 12-18h at 37ºC. Bacteria were sub-cultured 1:500 into 500 ml LB chrolamphenicol 

and incubated 12-18h at 37ºC with shaking. Bacteria were pelleted by centrifugation at 5,000 rpm 
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for 15 min at 4ºC. BAC plasmid DNA was isolated using BAC 100 plasmid purification kit 

(Nucleobond), according to manufacturer’s instructions. BAC DNA was resuspended in 100-200 

µl TE (10mM Tris-HCl, 1mM EDTA, pH 8.0) supplemented with RNaseA (10 µg/ml) and stored at 

4ºC. 

 

9.2.1.3. Mouse tail, toe or ear DNA extractions 

Mouse tail, toe or ear were digested by overnight incubation at 55ºC with 100 µl of DirectPCR 

Lysis Reagent (mouse tail) (Viagen Biotec Inc.) supplemented with 0.2-0.4 mg/ml of Proteinase 

K. In the next day Proteinase K was inactivated by heating at 85ºC for 1h. 1 µl of lysate was used 

directly in PCR reactions for mice genotyping (section 9.2.2).   

 

9.2.1.4. Quantification of nucleic acids 

DNA was quantified by UV spectrophotometry using a Nanodrop (ND-1000) spectrophotometer. 

 

9.2.1.5. Restriction digestion 

Restriction endonuclease digestion of plasmids or PCR products was used either to prepare linear 

or insert purified DNA, or to screen DNA for a desired digestion profile or for the presence of 

inserts cloned in expression vectors. Restriction enzyme assays were performed using the 

appropriate restriction endonucleases and correspondent reaction buffers, according to 

manufacturer’s instructions. Volume of the reaction as well as amount of DNA and enzymes used 

depended on purpose of the assay.   

Digestion of plasmids or PCR products for subsequent ligation and cloning was performed for 1-

4h, with 5-10 µg of DNA and 1-10U of restriction endonuclease per µg of DNA, using the 

manufacturer’s recommended conditions in a volume of 50 µl. 

Diagnosis digestion was performed typically with 1 µg of DNA, 1-10 U of restriction endonuclease, 

using manufacturer´s recommended conditions, in a volume of 20 µl for 1-2h. 

Multiple digestions of the same DNA were performed when possible with the same buffer; 

otherwise salt conditions were adjusted for subsequent digestion steps or DNA was re-purified in 

column. Restriction profile and completeness of the digestion were assessed by analytical 

agarose gel electrophoresis. 

 

9.2.1.6. Analysis and isolation of DNA by gel electrophoresis 

Linear DNAs were size fractioned and visualized on agarose gels stained with ethidium bromide, 

gel red (Biotium) or red safe (iNtRON Biotechnology), according to manufacturer’s instructions. 

Gels were prepared using 0.7-2% agarose in 1x TAE (40mM Tris-acetate, 1mM EDTA, pH 8.0). 

DNA samples were mixed with the appropriate volume of DNA loading buffer (10mM EDTA, 5% 

glycerol, 0.025% bromophenol blue and 0.025% xylene cyanol) prior to loading on wells at the 

end of the gel. Samples were electrophoresed at 0.5-5.0 V/cm in 1x TAE buffer. DNA was 
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visualised by UV transillumination. Size of DNA bands was estimated by comparison with linear 

DNA standards of known molecular weight (1 Kb plus DNA ladder, Invitrogen) run along with 

samples. 

Following analysis of DNA by agarose gel electrophoresis, DNA fragments of interest were 

purified by excision of the resolved bands from the gel and recovered on QIAquick gel extraction 

columns (Qiagen), according to manufacturer´s instructions. Typically, DNA was eluted in 50 µl 

of MiliQ water and a fraction of the purified samples (usually 1/10 of the total volume of the eluate) 

was re-run on an agarose gel, in order to check the DNA purification. 

 

9.2.1.7. DNA sequencing 

Integrity of the plasmids constructed in this study was confirmed by sequencing the PCR 

generated inserts. During recombinant virus construction all PCR-derived regions were 

sequenced to confirm the integrity of the introduced epitopes and of the MuHV-4 M2 flanking 

regions in the HindIII-E shuttle plasmid. The stability of the introduced epitopes was checked 

following BAC mutagenesis in E.coli and virus reconstitution in mammalian cells by viral DNA 

sequencing across the M2 ORF in the BAC vector and in HMW DNA extracted from virus infected 

BHK-21 cells, respectively. Recombinant viruses were also sequenced in the region subjected to 

mutagenesis to confirm the retention of the introduced epitopes following in vivo infection. 

DNA was sequenced at STAB VIDA according to the Sanger method and using an automatic 

DNA sequencer (ABI 3730XL). DNA sequences were analysed and compared to sequences 

deposited in the NCBI (National Centre for Biotechnology Information) database using the BioEdit 

Sequence Alignment Editor software.  

 

9.2.2. Polymerase Chain Reaction (PCR)  

Polymerase chain reaction was used in this study for different purposes. 

During construction of recombinant virus the A8 epitope was introduced by PCR in fusion with the 

M2 C-terminus using MuHV-4 genomic DNA as a template (section 9.2.5.1). A flanking primer 

and a mutagenic primer (Table 9.5) were used to obtain the M2 downstream region containing a 

HindIII restriction site followed by the epitope coding region and a stop codon. 

PCR reactions were performed using the high fidelity Pfu DNA polymerase (Promega). PCR 

reaction mixes were prepared in a total volume of 50 µl (made up in sterile MiliQ water) and 

consisted of 300nM of each primer, 1x PCR buffer (Promega), 200 µM of each dNTP, 1U of Pfu 

DNA polymerase (Promega) and <100 ng of template DNA. DNA was amplified on a MyCycler 

thermal cycler (BioRad), under the following conditions: a initial melting step of 95ºC for 2 min 

followed by 25-30 cycles of amplification, composed of denaturation at 95ºC for 30 sec, annealing 

at 55ºC- 57ºC for 30 sec (depending on the optimal annealing temperature for each specific set 

of primers) and extension at 72ºC for 2 min. A final extension step was performed at 72ºC for 10 



Chapter 9 

138 

min. PCR products were analysed by gel electrophoresis (section 9.2.1.6) to assess if products 

had the expected size. 

M2 ORF DNA region was PCR amplified from HMW DNA for subsequent verification of the 

introduced epitopes in recombinant viruses by DNA sequencing. Primers used are specific for M2 

gene and generate a fragment of 834 bp (Table 9.1). 

Genome integrity of the recombinant viruses in the HindIII-E region subjected to homologous 

recombination was analysed by PCR; primers used and size of the amplified fragments are 

represented in Table 9.2, Figure 2.2, panels B and C and Figure 2.3, panels A and B. 

PCR reactions were performed essentially as previously described but using 1U of Taq DNA 

polymerase (Promega) and the corresponding buffer (Promega). 

PCR products were analysed by gel electrophoresis to assess if the products had the expected 

size. PCR products for subsequent sequencing reactions were purified with QIAquick PCR 

purification kit (Qiagen), according to manufacturer´s instructions. 

 

 

Table 9.1. Primers used to amplify M2 gene. 

Oligonucleotide Sequence 
Genomic 

coordinates 
Amplicon 

Upper primer 5’-CTGGCTCTCCTAGGGTTGTAAAA-3’ 3900-3922 
834 

Lower primer 5’-GTGTGGTCGAGACTGGAGGTTC-3’ 4713-4734 

 

 

Table 9.2. Primers used for analysing genome integrity of the recombinant viruses in the HindIII-E 

region. 

PCR Oligonucleotide Sequence 
Genomic 

coordinates 
Amplicon 

1 
Upper primer 5’-TCTCTGGTTCTGCAAAGCTT-3’ 92-111 

1596 
Lower primer 5’-CTTAGGAGGTTACCGCACCT-3’ 1668-1687 

2 
Upper primer 5’-TAAACATGGGCCATTAAAAG-3’ 1970-1989 

2765 
Lower primer 5’-GTGTGGTCGAGACTGGAGGTTC-3’ 4713-4734 

3 
Upper primer 5’-CTGGCTCTCCTAGGGTTGTAAAA-3’ 3900-3922 

2374 
Lower primer 5’-TCCAGCAAGCTTTATCATT-3’ 6254-6273 

4 
Upper primer 5’-TCTCTGGTTCTGCAAAGCTT-3’ 92-111 

4244 
Lower primer 5’-CGTTAAAGTCCCCATGGAAGCC-3’ 4314-4335 

 

 

PCR was also used for genotyping OT-I and CD45.1 Rag1-/- OT-I mice. OT-I positive transgenic 

mice were identified using sets of primers specific for the VDJ region of the transgenic TCRα and 

TCRβ chains (Table 9.3). An additional set of primers was used in parallel as an internal positive 

control. Genotyping of Rag1 deficient strains was performed using the primers described in Table 

9.4. PCR reactions and conditions were performed according to the recommendations of Jackson 

Laboratory. PCR products were analysed by gel electrophoresis. 
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Table 9.3. Primers used for OT-I genotyping. 

Allele Oligonucleotide Sequence Amplicon (bp) 

Tg(Tcra)1100Mjb 
Upper primer 5’-CAGCAGCAGGTGAGACAAAGT-3’ 

300 
Lower primer 5’-GGCTTTATAATTAGCTTGGTCC-3’ 

Tg(Tcrb)1100Mjb 
Upper primer 5’-AAGGTGGAGAGAGACAAAGGATTC-3’ 

300 
Lower primer 5’-TTGAGAGCTGTCTCC-3’ 

Internal positive 
control 

Upper primer 5’-CAAATGTTGCTTGTCTGGTG-3’ 
200 

Lower primer 5’-GTCAGTCGAGTGCACAGTTT-3’ 

 

 

Table 9.4. Primers used for Rag1-/- genotyping. 

Allele Oligonucleotide Sequence Amplicon (bp) 

Rag1tm1Mom 

WT forward primer 5’- GAGGTTCCGCTACGACTCTG-3’ WT: 474 

Mutant forward primer 5’- TGGATGTGGAATGTGTGCGAG-3’ Mutant: 530 

Common reverse primer 5’- CCGGACAAGTTTTTCATCGT-3’ Heterozygote: 474 + 530 

  

9.2.3. Cloning procedures 

9.2.3.1. Cloning of insert into the pSP72-M2flank vector  

Insert was obtained by PCR (section 9.2.2), purified on QIAquick PCR purification column 

(Qiagen), according to manufacturer’s instructions, and digested with BglII and HindIIII restriction 

endonucleases (section 9.2.1.5). Digested insert was then isolated by gel electrophoresis and 

purified from agarose gel using the QIAquick gel Extraction Kit (Qiagen) (section 9.2.1.6). pSP72-

M2flank plasmid contains the BglII/XhoI MuHV-4 genomic fragment (nt 3846 to 5367) in which a 

HindIII restriction site was introduced immediately before the M2 stop codon. This plasmid was 

linearized with BglII (nt 3846) and HindIIII restriction endonucleases, creating compatible 

cohesive ends with the insert. Digested vector was isolated by gel electrophoresis and purified 

from agarose gel using the QIAquick Gel Extraction Kit (Qiagen) (section 9.2.1.6). Prepared insert 

and vector were ligated as described in section 9.2.3.3 and ligations were transformed into E. coli 

DH5α competent cells (section 9.2.3.4). DNA was isolated from colonies by plasmid miniprep 

(section 9.2.1.2) and plasmid structure was screened by restriction analysis with the appropriate 

endonucleases (section 9.2.1.5). 

 

9.2.3.2. Subcloning of insert into the HindIII-E shuttle vector 

The previously described construct was subcloned into a HindIII-E MuHV-4 genomic fragment (nt 

107 to 6261) cloned into the pST76K-SR plasmid by Dr S. Marques. Both plasmids were 

linearized with BlnI (HindIII-E nt 3908) and XhoI (HindIII-E nt 5362) restriction enzymes, creating 

compatible cohesive ends. Digested insert and vector were then isolated by gel electrophoresis 

and purified from agarose gel using the QIAquick Gel Extraction Kit (Qiagen) (section 9.2.1.6). 

Insert and vector were ligated as described in section 9.2.3.3 and ligations were transformed into 

XL10-Gold ultracompetent cells (Stratagene) (section 9.2.3.4). DNA was isolated from colonies 
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by plasmid miniprep (section 9.2.1.2) and plasmid structure was screened by restriction analysis 

with appropriate endonucleases (section 9.2.1.5). 

   

9.2.3.3. DNA ligation 

Digested inserts and vectors were ligated using T4 DNA ligase (Roche Applied Science). 

Approximately 100 ng of vector DNA were ligated with approximately a 1-3 fold excess of insert 

in 20 µl reactions containing 1x ligase buffer (Roche Applied Science) and 1U of T4 DNA ligase 

(Roche Applied Science) (made up in sterile MiliQ water). Cohesive-end ligations were performed 

overnight at 14ºC. 

 

9.2.3.4. Bacterial transformation 

Preparation of chemically competent cells 

Competent E. coli strain DH5α was prepared by the modified H. Inoue method (Inoue et al., 1990). 

Approximately 5 µl of E. coli glycerol stock were inoculated into 10 ml of LB and incubated with 

vigorous shaking 12-18h at 37ºC. 10 ml of the resulting culture were inoculated into 400 ml of 

fresh LB and incubated at 37ºC, 225 rpm. When the bacterial culture reached an optical density 

(OD)600nm of 0.6 the cell culture was cooled on ice. Cells were pelleted by centrifugation at 4,000 

rpm for 15 min at 4ºC. Cell pellet was gently resuspended in 100 ml of ice cold sterile solution A 

(0.03M KCH3COO, 0.05M MnCl2, 0.01M CaCl2, 0.1M KCl and 15% glycerol in sterile MiliQ water). 

Cells were centrifuged at 4,000 rpm for 8 min at 4ºC and resulting pellet was resuspended in 20 

ml of ice cold solution B (0.01M NaMOPS pH 7.0, 0.075M CaCl2, 0.01M KCl and 15% glycerol in 

sterile MiliQ water). 100 µl and 300 µl aliquots were made. Each aliquot was quickly frozen by 

transferring the vials to dry ice immersed in ethanol. Competent cells were stored at -80ºC until 

further use. 

 

Preparation of TSS competent cells 

Competent E. coli strain DH10B containing MuHV-4 BAC or YFP MuHV-4 BAC plasmid, were 

prepared according to the method of (Chung et al., 1989). Briefly, ~5 µl of E. coli glycerol stock 

were inoculated into 5 ml of LB containing 17 μg/ml chloramphenicol and incubated with vigorous 

shaking 12-18h at 37ºC. 1 ml of the fresh overnight bacteria culture was diluted 1/100 into 100 ml 

of LB containing 17 μg/ml chloramphenicol and incubated with vigorous shaking at 37ºC. When 

cells reached an OD600nm of 0.3-0.4 bacterial culture was centrifuged for 10 min at 2,500 rpm and 

4ºC. Cell pellet was kindly resuspended in 1/20 (5 ml) of original volume of ice cold LB. Another 

1/20 (5 ml) of original volume of 2xTSS (1x LB, 20% polyethylene glycol, 10% dimethyl sulfoxide, 

50 mM MgCl2) were added to the cells and 100 µl aliquots were made. Aliquots were quickly 

frozen by transferring the vials to dry ice immersed in ethanol. Competent cells were stored at -

80ºC until further use. 
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Transformation of competent cells 

Competent E.coli were transformed by the heat shock method. Competent cells were incubated 

on ice for 30 min with 100 ng of plasmid DNA or 10 µl of ligation mix. Cells were heat shocked for 

45 sec at 42ºC and subsequently chilled on ice for 2 min. 800 µl of SOC medium (2% tryptone, 

0.5% yeast extract, 10mM NaCl, 2.5mM MgCl2, 10mM MgSO4, 20mM glucose) were added to 

each vial and cells were incubated for 1 h at 37 or 30ºC, with vigorous shaking. Cells were then 

spread onto LB agar plates containing the appropriate antibiotic(s) and incubated at 37 or 30ºC, 

overnight or until colonies were visible. Ampicilin was used at 100 μg/ml ampicilin, 

chloramphenicol at 17 μg/ml and kanamycin at 30 μg/ml. 

When using XL10-Gold ultracompetent cells (Stratagene) 4 µl of β-Mercaptoethanol mix provided 

with the kit were added to each aliquot of cells and incubated on ice for 10 min before adding the 

DNA. 

 

9.2.4. Cell culture and transfections 

9.2.4.1. Media and culture conditions 

BHK-21 cells were cultured in Glasgow's modified Eagle's medium (GMEM) supplemented with 

10% foetal calf serum, 2 mM L-glutamine, 100 U/ml of penicillin and streptomycin and 10% 

tryptose phosphate broth. 

NIH-3T3-CRE cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented 

with 10% foetal calf serum, 2 mM L-glutamine, 100 U/ml of penicillin and streptomycin. 

RMA-S cells were grown in RPMI 1640 medium supplemented with 10% foetal calf serum, 2mM 

L-glutamine and 100 U/ml of penicillin and streptomycin.  

All cell cultures were grown in a humidified tissue culture incubator at 37ºC under 5% CO2. 

 

9.2.4.2. Isolation and purification of OT-I cells 

OT-I cells were obtained and purified from spleens of naïve OT-I mice. Briefly, spleens were 

collected into 5 ml of complete RPMI and kept on ice until mechanical disruption to obtain single 

splenocyte suspensions. Cell debris was removed by filtering through a 100 µm cell strainer and 

red blood cells were lysed by incubation with red blood cell lysis buffer (154mM ammonium 

chloride, 14mM sodium hydrogen carbonate, 1mM EDTA pH7.3) for 5 min on ice. Cell 

suspensions were washed, resuspended in ice-cold sterile MACS buffer (0.5% bovine serum 

albumine and 2mM EDTA in PBS pH 7.2) and filtered through a 40 µm cell strainer. OT-I cells 

were purified by depletion of indirect magnetically labeled non-CD8α+ T cells (negative selection) 

using mouse CD8α+ T cell isolation kit (MACS, Miltenyi Biotech), according to manufacturer’s 

instructions. The purity of the enriched CD8α+ T cell population was evaluated by flow cytometry 

and was consistently ˃97%. Purified splenic OT-I cells were used for determining OVA and APLs 

stimulatory potency (section 9.2.11.1). 
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9.2.4.3. Isolation of CD45.1 Rag1-/- OT-I cells 

CD45.1 Rag1-/- OT-I T cells were obtained from naïve CD45.1 Rag1-/- OT-I mice pooled lymph 

nodes (superficial and deep cervicals, axillary, brachial, mesenteric, renal, inguinal, lumbar and 

caudal). Briefly, pooled lymph nodes were collected into complete RPMI and kept on ice until 

mechanical disruption to obtain single lymphocyte suspensions. Cell debris was removed by 

filtering through a 100 µm cell strainer and residual red blood cells were lysed by incubation with 

red blood cell lysis buffer (154mM ammonium chloride, 14mM sodium hydrogen carbonate, 1mM 

EDTA pH7.3) for 5 min on ice. Lymphocyte suspension was washed, resuspended in ice-cold 

PBS and filtered through a 40 µm cell strainer. An aliquot of 10 µl of the obtained lymphocyte 

suspension was mixed with equal volume of trypan blue (Lonza), transferred to a haemacytometer 

and the total number of viable lymphocytes was determined by microscopy. CD45.1 Rag1-/- OT-I 

T cells were kept on ice until adoptive transfer to TCRα-/- recipient mice (section 9.2.6.2). 

 

9.2.4.4. Isolation and purification of CD4+ T cells 

CD4+ T cells were obtained and purified from pooled lymph nodes (superficial and deep cervicals, 

axillary, brachial, mesenteric, renal, inguinal, lumbar and caudal) of naïve C57BL/6 mice. Lymph 

nodes were prepared essentially as previously described (section 9.2.4.3). CD4+ T cells were 

purified by depletion of indirect magnetically labeled non-CD4+ T cells (negative selection) using 

mouse CD4+ T cell isolation kit (MACS, Miltenyi Biotech), according to manufacturer’s 

instructions. Purity of the enriched CD4+ T cell population was evaluated by flow cytometry and 

was consistently ˃97%. Total number of viable CD4+ T cells was determined by trypan blue 

staining. CD4+ T cells were maintained in PBS, on ice, until adoptive transfer to TCRα-/- recipient 

mice (section 9.2.6.2). 

 

9.2.4.5. Transfection of BHK-21 cells 

BHK-21 cells were transiently transfected using FuGENE 6 or X-tremeGENE HP DNA 

transfection reagent from Roche Applied Science, according to manufacturer’s instruction. Briefly, 

in the day before the transfection 106 BHK-21 cells were plated in 6 cm dishes and grown to semi-

confluence. 

When using FuGENE 6, 3 µl of FuGENE 6 DNA reagent were added to 300 µl of non-

supplemented GMEM, gently mixed and incubated for 5 min at RT. 1 µg of BAC DNA was added 

to the solution, gently mixed and incubated at RT for 15-45 min. 

When using X-tremeGENE HP, 1 µg of BAC DNA was added to 500 µl of non-supplemented 

GMEM and gently mixed.  2 µl of X-tremeGENE HP were subsequently added and the mix was 

incubated for 15 min at RT. 

The obtained solution was drop wise added to semi-confluent cultures and cells were incubated 

in a tissue culture incubator at 37ºC with 5% CO2, until approximately 50% cpe was visible (3-5 

days). 
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9.2.5. Recombinant viruses construction 

MuHV-4 recombinants and YFP-expressing MuHV-4 recombinants were derived from a BAC-

cloned MuHV-4 pHA3 (Adler et al., 2001; Adler et al., 2000) and a BAC-cloned YFP MuHV-4 

(Collins et al., 2009), respectively. Site-directed mutagenesis of MuHV-4-BAC genome was 

performed by homologous recombination in E. coli, using a two step replacement procedure 

(Adler et al., 2003). Viral progeny was reconstituted by transfection of the recombinant BAC 

plasmid into eukaryotic cells. 

 

9.2.5.1. Shuttle vector cloning 

The first step in the generation of recombinant viruses is the construction of a recombinant 

plasmid (shuttle plasmid) containing the desired epitope flanked by sequences homologous to 

the integration site (2 to 3 kb on each side). 

OVA A8 epitope was introduced by PCR (section 9.2.2) in fusion with the M2 C-terminus using 

MuHV-4 genomic DNA as a template. Briefly, the M2 downstream region (genomic coordinates 

3805-4027) containing a HindIII restriction site followed by the epitope coding region and a stop 

codon was PCR amplified using the primers described in Table 9.5 (Figure 9.1). The obtained 

PCR product was inserted downstream of M2 in pSP72-M2flank plasmid, containing BglII/XhoI 

MuHV-4 genomic fragment (nt 3846-5367), using the genomic BglII (nt 3846) and the engineered 

HindIII (nt 4028) restriction sites, thereby attaching the epitope to the M2 C-terminus (section 

9.2.3.1). Obtained construct was then subcloned into a HindIII-E MuHV-4 genomic fragment 

(Efstathiou et al., 1990b) cloned in the pST76K-SR shuttle plasmid (Adler et al., 2001), using 

genomic BlnI (nt 3908) and XhoI (nt 5362) restriction sites (section 9.2.3.2) (Figure 9.1). PCR-

derived region was sequenced to confirm the integrity of the introduced epitope and of the MuHV-

4 M2 flanking region (section 9.2.1.7). 

 

 

Table 9.5. Primers used to introduce the A8 epitope at the MuHV-4 M2 C-terminus.  

Virus Oligonucleotide Sequence 
Genomic 

coordinatesa 

vA8 

Upper primer AAAGAATTCCTTTACCAGCACTCACT 3805-3821 

Mutagenic primer 
AAAAAGCTTAGGAGTATAATCAACTTTGAAAAAGCCTAA
CAGTGAAGGTGCTAACGCAGAA 4006-4027 

 

Engineered HindIII restriction site is underlined. 

OVA A8 epitope coding region is in bold. 

Stop codon is in bold and underlined.  
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9.2.5.2. BAC mutagenesis in E.coli 

Recombinant shuttle plasmids were transformed into E. coli strain DH10B containing MuHV-4 

BAC or YFP MuHV-4 BAC. Bacteria were plated on LB plates containing kanamycin (shuttle 

plasmid resistance marker) and chloramphenicol (BAC plasmid resistance marker) and incubated 

overnight at 30ºC, due to the temperature-sensitive replication mode of the shuttle vector. The 

shuttle plasmid encodes the recA protein which promotes complete integration of the shuttle 

plasmid into the viral BAC genome by homologous recombination (Adler et al., 2003). Bacteria 

containing the cointegrate were selected by incubation overnight at 43ºC on LB plates containing 

kanamycin and chloramphenicol. Clones were replated on LB plates containing chloramphenicol 

and grown for one day at 30ºC. Under these conditions cointegrates can spontaneously resolve 

by homologous recombination (bacteria are recA+ at 30ºC) to either wild type or mutant BAC 

plasmid. Bacteria harbouring resolved cointegrates were selected by replating on LB plates 

containing chloramphenicol and 5% sucrose (counterselection against SacB encoded by the 

shuttle plasmid) and grown at 30ºC (selection for sucrose-resistance works best at 30ºC). Finally, 

colonies were plated in parallel on kanamycin and chloramphenicol containing LB plates and 

grown overnight at 37ºC. BAC plasmids from chloramphenicol-resistant kanamycin-sensitive 

clones were isolated by small or large scale BAC plasmid preparations (section 9.2.1.2) and 

characterized by HindIII restriction digestion of BAC DNA to identify the mutant clones (sections 

9.2.1.5). The structure and integrity of the viral genome was verified by digestion of BAC DNA 

with BamHI and EcoRI restriction enzymes and analysis of the resulting restriction patterns by 

agarose gel electrophoresis (section 9.2.1.6). YFP MuHV-4 BAC DNA was also digested with 

ApaI to confirm the present of the YFP cassette. 

 

9.2.5.3. Virus reconstitution 

Recombinant BAC DNA was transfected into BHK-21 cells using FuGENE 6 or X-tremeGENE 

HP DNA transfection reagent (section 9.2.4.5). When approximately 50% cpe was visible, cells 

and media were harvested and subjected to a freeze-thawing cycle to disrupt the cells. 1 ml 

aliquots were made and stored at -80ºC until further use. The obtained viral aliquots constituted 

the BAC + virus master stock. 

 

9.2.5.4. Removal of BAC sequences 

NIH-3T3-CRE cells were infected with the obtained BAC+ master stock (section 9.2.7.1) to remove 

the loxP-flanked BAC cassette. The obtained BAC+/- master stock was then subjected to limiting 

dilution in NIH-3T3-CRE cells to obtain the BAC- master stock. Briefly, 102 PFU of BAC+/- were 

mixed with 106 NIH-3T3-CRE cells and shaken at 37ºC for 1 h in 10 ml of complete DMEM. 100 

µl of mixture were added to each well of a 96-well plate. Cells were incubated in a humidified 

tissue culture incubator at 37ºC under 5% CO2 until cpe was visible. Wells containing GFP- 

plaques (BAC-) were selected. Cells from selected wells were resuspended in culture supernatant 

and transferred to a 1.5 ml tube. Half of the obtained suspension was stored at -80ºC while the  
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Figure 9.1. Schematic representation of the construction of a recombinant shuttle plasmid. The 

epitope was introduced by PCR at the M2 C-terminus. In the first step the M2 downstream region containing 

a HindIII restriction site followed by the epitope coding region and a stop codon were PCR amplified to attach 

the epitope to the M2 C-terminus. PCR product was inserted downstream of a HindIII/XhoI MuHV-4 genomic 

fragment in pSP72-M2flank, using a genomic BglII site and the engineered HindIII. The construct was then 

digested with BlnI and XhoI and inserted into the HindIII-E shuttle vector. Blue cross denotes the introduced 

epitope. 
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other half was added to 106 NIH-3T3-CRE cells in 1 ml of complete DMEM and incubated for 1 h 

at 37ºC with shaking. Cells were plated in a 6-well cell culture plate in 4 ml of complete DMEM 

and incubated at 37ºC until viral plaques appear. Viral plaques were analysed by fluorescence 

microscopy and, if GFP negative, cells and media were harvested by cell scrapping and 

centrifuged at 1,500 rpm for 10 min. Pellet was resuspended in 1 ml supernatant and freeze-

thawed. 200 µl aliquots were made and constituted the recombinant virus master stock. 

 

9.2.5.5. Analysis of the stability of the introduced epitopes following in vivo 

infection 

Spleens were dissected from mice at 14 days post-infection and single splenocyte suspension 

were obtained (section 9.2.7.5). Approximately 5x106 splenocytes were added to 5x105 BHK-21 

cells in 5 ml of complete GMEM and mixed by inversion. The suspension was plated out in 6 cm 

cell culture dishes and incubated at 37ºC with 5% CO2 in a humidified incubator. When cpe was 

visible cells were harvested, HMW DNA was extracted from infected cells (section 9.2.1.1) and 

used as a template for a PCR to amplify the M2 gene (section 9.2.2). PCR products were 

sequenced to analyse the retention of the introduced epitopes following in vivo infection (section 

9.2.1.7). 

 

9.2.6. Animal experiments 

9.2.6.1. Ethics statement  

This study was carried out in strict accordance with the recommendations of the Portuguese 

official Veterinary Directorate, which complies with the Portuguese Law (Portaria 1005/92). The 

Portuguese Experiments on Animal Act strictly comply with the European Guideline 86/609/EEC 

and follow the FELASA (Federation of European Laboratory Animal Science Associations) 

guidelines and recommendations concerning laboratory animal welfare. Animal experiments were 

approved by the Portuguese official veterinary department for welfare licensing under the protocol 

number AEC_2010_017_PS_Rdt_General and the IMM Animal Ethics Committee. 

 

9.2.6.2. Adoptive transfers  

CD45.1 Rag1-/- OT-I T cells and purified CD4+ T cells were adoptively transferred to TCRα-/- 

transgenic mice. CD45.1 Rag1-/- OT-I cells were obtained from pooled lymph nodes of naïve 

CD45.1 Rag1-/- OT-I mice (section 9.2.4.3).  CD4+ T cells were isolated and purified from pooled 

lymph nodes of naïve C57BL/6 mice (section 9.2.4.4). 106 CD45.1 Rag1-/- OT-I cells and 2x106 

CD4+ T cells were adoptively transferred into age and sex matched TCRα-/- recipients, via tail vein 

injection in 200 µl of PBS, one day prior to virus infection. 
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9.2.6.3. Mice infection 

Female BALB/c and C57BL/6 mice (Charles Rivers Laboratories International Inc) were delivered 

to Instituto de Medicina Molecular animal facility at least three days before infections with virus 

were carried out. 6- to 8-week old female BALB/c and C57BL/6 mice were inoculated intranasally 

with 104 PFU of MuHV-4 or MuHV-4 recombinants. OT-I and TCRα-/- mice were breed and housed 

at Instituto de Medicina Molecular. 8- to 12-week old, male or female, OT-I and reconstituted 

TCRα-/- mice (section 9.2.6.2) were intranasally inoculated with 103 PFU of virus. All virus 

inoculations were performed in 20 µl of PBS under the effect of light isofluorane anaesthesia. At 

different time points after infection, mice were sacrificed by CO2 inhalation or cervical dislocation, 

lungs or spleens were removed and processed for subsequent analysis. 

 

9.2.6.4. CD8+ T cell depletions 

MuHV-4 infected OT-I mice were depleted of CD8+ T cells by 5 intraperitoneal injections of 200 

µg monoclonal antibody YTS 169.4, in 200 µl of PBS (Cobbold et al., 1984). Splenocytes from 

control or depleted mice were stained with anti-CD8α (53-6.7) (BD Pharmingen) (section 9.2.8.1) 

and analysed on a LRS Fortessa (BD Biosciences) (section 9.2.8.3). 

 

9.2.7. Virus Assays 

9.2.7.1. Virus infection of cells 

Cells were seeded in tissue culture flasks or plates and grown to semi-confluence for low 

multiplicity of infection or to confluence for high multiplicity of infection. Cell monolayers were 

adsorbed with virus suspension in 10% of the final appropriate culture medium for 1h at 37ºC, 

then covered with the remaining 90% of medium and incubated for the appropriate time. 

 

9.2.7.2. Virus working stocks 

Virus working stocks were grown by low multiplicity infection of BHK-21 cells (0.001 PFU/cell) in 

175cm2 culture flasks. When approximately 50% cpe was visible (3-5 days), cells and 

supernatants were transferred to 50 ml tubes and centrifuged at 1,500 rpm for 10 min at 4ºC. Cell-

associated virus was resuspended in 2 ml of fresh complete GMEM medium, subjected to freeze-

thawing, and kept at -80ºC in 200 µl aliquots. Supernatant-associated virus was centrifuged at 

15,000 rpm for 2 h at 4ºC and pellet was resuspended in 2 ml of fresh medium. 100 µl aliquots 

were made and stored at -80ºC. Virus titres were determined in duplicates by suspension assay. 

 

9.2.7.3. In vitro multi-step growth curves 

Low multiplicity growth curves were performed on confluent cell monolayers in 24-well plates. 

One day prior to infection 5x104 BHK-21 cells were plated per well in a 24 well plate. BHK-21 cells 

were infected at MOI of 0.01 PFU/cell, in 200 µl of complete GMEM, and virus was allowed to 
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adsorb for 1 h at 37ºC. Cells were washed in PBS and 1 ml of fresh complete GMEM was added. 

At each time point after infection, cells and supernatants were harvested, subjected to freeze-

thawing and kept at -80ºC. Virus titres were determined by suspension assay for duplicate plates. 

 

9.2.7.4. Plaque assay (suspension assay) 

Virus stocks, in vitro multi-step growth curves and infectious virus in the lung and spleen of 

infected mice were titrated by plaque assay (or suspension assay).  

Lungs and spleens were dissected into 15 ml tubes containing 5 ml of complete GMEM and frozen 

at -80ºC. Thawed lungs were homogenized in a glass homogenizer and frozen at -80ºC. Tissue 

homogenates, previously subjected to freeze-thawing to disrupt cells, were 10-fold serial diluted 

in 1ml of complete GMEM. 5x105 BHK-21 cells were added to the serial 10-fold dilutions of virus 

suspensions in 1 ml of complete GMEM and adsorbed for 1 h at 37ºC with shaking. 3 ml of 

complete GMEM were added and then the suspension was plated out into 6 cm cell culture 

dishes. After 4 days incubation at 37ºC with 5% CO2 in a humidified incubator, cell monolayers 

were fixed with 10% formaldehyde in phosphate-buffered saline (PBS) and stained with 0.1% 

toluidine blue. Viral plaques were counted using a magnifier lenses (Olympus SZ51 zoom stereo 

microscope) and virus titres were calculated from the number of viral plaques on duplicate dishes.  

  

9.2.7.5. Infectious centre assay  

Spleens were dissected from mice into 5 ml of complete GMEM and kept on ice during the 

procedure. Single cell suspensions were obtained by mechanical disruption and cell debris was 

removed by filtering through a 100 µl cell strainer. Cells were pelleted by centrifugation at 1,200 

rpm for 5 min at 4ºC. Red blood cells were lysed by incubation with 1 ml of red blood cell lysis 

buffer (154mM ammonium chloride, 14mM sodium hydrogen carbonate, 1mM EDTA pH7.3) for 5 

min on ice. 5 ml of complete GMEM were added, cells were centrifuged and resuspended in 5 ml 

of fresh medium. Cell suspensions were 10-fold serial diluted and 5x105 BHK-21 cells were 

added. Final volume was made up to 5 ml with complete GMEM, suspension was mixed by 

inversion and plated out in 6 cm cell culture dishes. Assays were incubated for 5 days at 37ºC in 

a humidified incubator with 5% CO2. Cell monolayers were fixed with 10% formaldehyde in PBS 

and stained with 0.1% toluidine blue. Viral plaques were counted using an Olympus SZ51 zoom 

stereo microscope and infectious centres were determined from duplicate dishes. 
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9.2.8. Flow cytometry 

9.2.8.1. Staining of splenocytes  

Spleens were dissected from mice into 5 ml 2% FCS in PBS and kept on ice until mechanical 

disruption to obtain single splenocyte suspensions. Cell debris was removed by filtering through 

a 100 µl cell strainer. Red blood cells were lysed by incubation with red blood cell lysis buffer for 

5 min on ice. Cell suspensions were washed with 2% FCS in PBS and blocked by incubation with 

anti-CD16/32 (2.4G2) (BD Pharmingen) for 10 min at 4ºC. Splenocytes were stained by 

incubation for 30 min, at 4ºC, in the dark, with the appropriated antibodies diluted in PBS with 2% 

FCS (Table 9.6). Unbound antibodies were removed by washing twice with 2% FCS in PBS. For 

biotinylated antibodies, additional 20 min incubation with streptavidin was performed. MuHV-4 

infected cells were identified based on YFP expression. Cells were resuspended in PBS with 2% 

FCS and flow analysed (section 9.2.8.3). 

 

Table 9.6. List of antibodies used in flow cytometry analysis. 

Antigen Clone Company 

CD19 1D3 

BD Pharmingen 
CD95 Jo2 

CD8α 53-6.7 

IFNγ XMG1.2 

CD45.1 A20 

Biolegend 
CD45.2 104 

CD44 IM7 

CD62L MEL-14 

GL7 GL7 

EBioscience 

H2Kb AF6-88.5.5.3 

TCRβ H57-597 

GranzymeB NGZB 

IgG2ak eBR2a 

 

 

9.2.8.2. Purification of germinal centre B cell populations 

Single cell suspensions of 4-5 pooled spleens stained with anti-CD19 (1D3) APC-H7 (BD 

Pharmingen), anti-CD95 (Jo2) PE (BD Pharmingen) and anti-GL7 T and B cell activation marker 

(GL7) eFluor660 (eBioscience) were enriched for the germinal centre B cell population 

CD19+CD95hiGL7hi using a BD FACSAria Flow Cytometer (BD Biosciences). Cells were 

recovered into 50% FCS in PBS and kept on ice until further use. 

 

9.2.8.3. Flow cytometry analysis 

Total splenocytes, lymph node cells or enriched cell populations were analysed on a LSR 

Fortessa (BD Biosciences), using FACSDiva software (BD Biosciences) for acquisition and 

FlowJo (Tree Star, Inc.) for analysis. 
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9.2.9. Limiting dilution analysis of infected splenocytes  

 

Total single cell splenocyte suspensions or FACS-purified GC B cells (section 9.2.8.2) were 2-

fold serial diluted in 2% FCS in PBS and 8 replicates were made per dilution. Cells were lysed by 

incubation in lysis buffer (10 mM Tris-HCl pH 8.3, 0.45% Tween-20, 0.45% NP-40, 3 mM MgCl2, 

50 mM KCl and 0.5mg/ml Proteinase K) at 37ºC overnight. In the next day Proteinase K was 

inactivated by incubation at 95ºC for 5 min. Samples were analysed by real time PCR (section 

9.2.9.2) with primer/probe sets specific for M9. For each dilution, the number of negative PCR 

reactions, corresponding to a failure to obtain an amplification curve during the PCR cycles, was 

determined. 

 

9.2.9.1. Statistical analysis of limiting dilution assay 

Statistical analysis of limiting dilution assay to estimate the frequency of virus DNA+ cells was 

performed according to the method developed by Dr Sofia Marques (Marques et al., 2003). 

The frequency of virus DNA+ cells (f) was calculated according to the single-hit Poison Model 

(SHPM) by maximum likelihood estimation (Bonnefoix et al., 2001). This model assumes that one 

limiting cell of one cell subset is necessary and sufficient for generating a positive response. 

To evaluate the fit of the SHPM to our limiting dilution experiments, a method developed by 

Bonnefoix et al., (2001) was employed. This method consists in modelling the limiting dilution data 

according to the linear log-log regression model fitting the SHPM �−��������μ�	
 = log��	 +
log ���	
, where μ� is the theoretical fraction of negative wells and �� is the number of cells plated 

in each replicate well) and checking this model by an appropriate slope test (Bonnefoix et al., 

2001). 

Being f the frequency of virus DNA+ cells, the maximum likelihood of f is the value of f that 

maximizes the following function: 

 

log(L) = ∑ ���� � ��!
��!���!���!	� + �� log���	 +  ��� − ��	log �1 − �� 	! �"#  

 

Where log(L) is the natural logarithm of the likelihood function L, ��  is given by  

�� = exp�−���	 according to the SHPM. ' is the number of groups of replicate PCR reactions, 

numbered (=1,2,3,…,k; �� is the number of replicate reactions and �� is the number of observed 

negative PCR reactions. 

The standard error of f was calculated as the square root of the negative reciprocal of the second 

derivate of log(L): 

 

SE(f) =) *#
+,-./ �0	 12,⁄  

 

The 95% confidence interval (CI) of f was calculated as 95% CI(f) = f ± 1.96SE(f). 
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9.2.9.2. Real time PCR 

Real time PCR was performed on a Rotor Gene 6000 (Corbett Life Science) according to 

manufacturer’s instructions, using the fluorescent Taqman methodology. Primer/probe sets 

specific for MuHV-4 M9 gene were used (Table 9.7). Reactions were performed in a final volume 

of 25 µl, containing 2.5 µl of cell lysate, 200 µM of each primer, 300 µM of probe, 1x Platinum 

Quantitative PCR SuperMix-UDG (Invitrogen), 5 mM of MgCl2 and 1x Rox reference dye. 

Samples were subjected to a melting step of 95ºC for 10 min followed by 40 cycles of 15 s at 

95ºC and 1 min at 60ºC. Real time PCR results were analysed on the Rotor Gene 6000 software. 

 

Table 9.7. Primers and probe specific to M9 gene used to detect MuHV-4 DNA. 

Oligonucleotide Sequence Genomic coordinatesa 

Upper primer 5’-GCCACGGTGGCCCTCTA-3’ 94176-94192 

Lower primer 5’-CAGGCCTCCCTCCCTTTG-3’ 94140-94157 

Probe 5’-6-FAM-CTTCTGTTGATCTTCC-MGB-3’b 94159-94174 

aAccording to GenBank accession no NC_001826. 
bOligonucleotide with fluorophore (6FAM) and quencher (MGB) covalently attached to the 5´- and 3´-ends, 

respectively. 

 

 

9.2.10. In situ hybridization (ISH) 

9.2.10.1. Generation of digoxigenin UTP-labelled riboprobes 

Riboprobe used in this study was in vitro transcribed from pEH1.4 plasmid using the digoxigenin 

(DIG) RNA labeling kit T7/SP6 (Roche Applied Science), according to manufacturer´s 

instructions. Briefly, 1 µg of HindIII-linearized plasmid was transcribed in a 20 µl reaction 

containing 2 µl of 10x transcription buffer, 2 µl of 10x NTP labeling mixture, 1 µl of Protector 

RNase inhibitor and 2 µl of T7 RNA polymerase. After 2 h incubation at 37ºC template DNA was 

removed by addition of 2 µl of DNase and incubation for 15 min at 37ºC. Reaction was stopped 

by adding 2 ml of 0.2 M EDTA (pH8.0). 

RNA was precipitated by addition of 2.5 µl of 4 M LiCl and 75 µl of ice-cold 100% ethanol, and 

incubation at -80ºC for at least 30 min. RNA was centrifuged at 13,000 rpm and 4ºC for 15 min, 

supernatant was discarded and pellet was washed with 50 µl of ice-cold 70% ethanol. Pellet was 

resuspended in 100 µl MiliQ water and incubated for 30 min at 37ºC. 20 µl aliquots were made 

and stored at -80ºC until required. 

Concentration of labelled RNA was analysed by spot test assay, according to instructions 

provided in the DIG RNA labelling kit manual (Roche Applied Science).  
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9.2.10.2. Preparation of tissue for ISH 

Spleens for ISH were dissected from groups of mice and fixed in 10% formalin, overnight at RT. 

Spleens were then embedded in paraffin in the Histology Service located in the Histology facilities 

of the Histology Institute of Faculdade de Medicina de Lisboa. Serial 5 µm sections were cut on 

a Minot Microtome Leica RM 2145 and mounted on Superfrost Plus slides (Menzel-Glaser). 

 

9.2.10.3. In situ hybridization 

In situ hybridization was performed as described by J. P. Simas et al. (1999). Sections were 

dewaxed in xylene for 20 min, rehydrated through graded ethanol solutions: 100% for 5 min, 90%, 

70% and 50% for 2 min each and finally PBS for 5 min. Sections were then fixed in 0.1% v/v 

glutaraldehyde in PBS for 30 min at 4ºC, washed twice in PBS for 5 min and then digested with 

100 µg/ml of Proteinase K in 20 mM Tris pH 7.5 and 2 mM CaCl2 in dH2O for 8-10 min at 37ºC. 

Sections were rinsed in PBS for 2 min at RT, re-fixed in 0.1% v/v glutaraldehyde for 15 min at 

4ºC, rinsed in PBS again for 2 min at RT, then acetylated with fresh 0.25% v/v acetic anhydride 

in 0.1 M triethanolamine pH 8.0 while being stirred for 10 min at RT. Sections were washed in 2x 

saline sodium citrate (SSC) (300 mM NaCl and 30 mM Tri-sodium-citrate) for 5 min at 4ºC before 

being dehydrated through graded ethanol (50% to 100%) and left to air dry. 

For 100 µl of probe mix, 2 µl of DIG-labelled riboprobe were mixed with 50 µl of deionised 

formamide, 5 µl of sonicated salmon sperm (10 mg/ml) and 5 µl of tRNA (10 mg/ml). Mix was 

denatured by heating for 5 min at 80ºC and then quenched on ice. 20 µl of 5x hybridization buffer, 

1 µl of DTT (100 mM) and 100 U of Protector RNase inhibitor were added with MiliQ water to a 

final volume of 100 µl. 30 µl of probe mix were added to each section, covered with parafilm and 

incubated overnight at 55ºC on a humidified incubator. 

After hybridization, probes were washed in 2x SSC and 10 mM Tris pH 7.5 for 15 min at RT with 

stirring and then in 0.1x SSC and 10 mM Tris pH 7.5 for additional 15 min. The stringency wash 

was performed in 30% deionised formamide, 0.1x SSC and 10 mM Tris pH 7.5, for 30 min, at 

58ºC. Finally sections were rinsed in 0.1x SSC and 10 mM Tris pH 7.5 for 5 min at RT with stirring. 

Hybridized probe was detected with alkaline phosphatase (AP)-conjugated anti-DIG antibody 

(Roche Applied Science). Sections were rinsed for 5 min, while stirring, in buffer 1 (100 mM Tris 

pH 7.5 and 150 mM NaCl in dH2O), then blocked by incubation in blocking buffer (1% Boehringer 

Blocking Reagent, Roche, in buffer 1) for 30 min at RT. Sections were then dried around the 

edges and incubated with 100 µl anti-DIG-AP antibody (1:500 in blocking buffer) for 1 h at RT in 

a humidified chamber. Unbound antibody was removed by washing twice with buffer 1 for 15 min 

at RT. 

Bound antibody was revealed by colorimetric detection with NBT. Sections were rinsed in buffer 

3 (100 mM Tris pH 9.5, 100 mM NaCl and 50 mM MgCl2 in dH2O) for 10 min at RT. Colour 

development was performed in the dark by incubation of sections with NBT and X-Phos (Roche) 

in buffer 3 for at least 2 h. Reaction was stopped by rising with dH2O. Sections were counter 

stained with 10% Mayer´s Haemalum, rinsed in tap H2O and mounted with Aquatex (Merck).  
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9.2.11. T cell assays 

9.2.11.1. OVA and APLs stimulatory potency  

To measure the ex vivo stimulation of naïve OT-I cells by OVA and derived APL peptides, OT-I 

cells were isolated and purified from spleens of naïve OT-I mice (section 9.2.4.2). TAP deficient 

RMA-S cells were used as antigen presenting cells to ensure equivalent peptide/MHC class I 

numbers. 106/ml RMA-S cells were first incubated overnight at 26ºC with 5% CO2 in a humidified 

incubator, to increase the level of empty surface H2Kb molecules. In the next day, cells were 

counted and 2.5x105 cells/ml were irradiated for 12 min 33 seg with 7500 rads in a Gammacell 

3000 Elan Irradiator. 100 µl of RMA-S cells were plated per well of a round bottom 96 well-plate, 

then loaded with titrated doses of soluble OVA and APL peptides (Thermo Scientific) in 50 µl and 

incubated at 26ºC in complete RPMI supplemented with 1x non-essential amino acids, 1x sodium 

piruvate, 1x hepes and 1 x 2-mercaptoethanol. 5x104 purified OT-I cells were then added to 

2.5x104 peptide-loaded RMA-S cells and incubated for 72 h at 37ºC with 5% CO2 in a humidified 

tissue culture incubator. At the end of the incubation period culture supernatants were harvested 

and frozen at -20ºC until further analysis. IFNγ levels were measured in the culture supernatants 

by ELISA using the DuoSet ELISA development kit (R&D Systems), according to manufacturer’s 

instructions. The data obtained were analysed and fit to sigmoidal dose-response curves and the 

EC50 values for half-maximum response concentrations were calculated using GraphPad Prism 

software. 

 
 
9.2.11.2. Tetramer staining  

Tetramer staining was performed with H-2Kb tetramers, a kind gift from Dr Hidde L. Ploegh, 

produced by exchange of conditional ligand for SIINFEKL (OVA257-264), SIIQFEKL (Q4), SIIVFEKL 

(V4), SIIGFEKL (G4), SIIRFEKL (R4), EIINFEKL (E1), SIINFEKA (A8) or RGYVYQGL (VSV NP52-

59) peptides (Thermo Scientific). 

 

Class I MHC peptide exchange 

1 µg of tetramer was diluted to 50 µl of RPMI without phenol red and supplemented with 10% 

FCS, 2mM L-glutamine and 100 U/ml of penicillin and streptomycin. The solution was deposited 

in a 96-well plate (round bottom) and 10 µg of peptide was added. The plate was placed (without 

the lid) in a flat bucket on ice, with aluminium foil underneath the plate, and UV cross linked two 

times, rotating the plate 90º in between, 7.5 min each time. Irradiation was performed in a 

Stratalinker 2400 UV cross-linker equipped with 365-nm UV lamps at an ≈ 10- to 20-cm distance 

from the UV source. After 1 h of incubation on ice and in the dark, the plate was centrifuged 3,000 

x g for 20 min to remove any aggregates, and 50 µl of the supernatant was transferred into a new 

96-well plate. 
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Tetramer staining 

Splenocytes were distributed over a round bottom 96-well plate (2x106 in 50 µl per well) containing 

freshly prepared MHC tetramers and anti-CD8α (53-6.7) (BD Pharmingen) (50 µl per well) and 

were incubated for 45 min at 4ºC in the dark. Cells were washed twice with ice-cold PBS and 

fixed with 0.5% formaldehyde in PBS, overnight at 4ºC in the dark. In the next day cells were 

transferred to FACS tubes and flow analysed. 

 
 

9.2.11.3. Ex vivo stimulation and intracellular cytokine staining 

Freshly isolated splenocytes (2x106) obtained from infected mice were stimulated in 96-well 

round-bottom plates, for 5h at 37ºC and 5% CO2, with 10 µg/ml peptide (OVA, APLs, A8 or VSV 

NP52-59), 10 U/ml recombinant murine IL-2 (PeproTech) and 10 µg/ml Brefeldin A, in RPMI 1640 

medium supplemented with 10% FCS, 2mM glutamine, 100 U/ml penicillin and streptomycin and 

50 µM 2-mercaptoethanol (200 µl per well). 

At the end of the incubation period cell surface staining followed by intracellular cytokine staining 

was performed. Briefly, cells were washed with 2% FCS in PBS (200 µl per well), blocked with 

anti-CD16/32 (2.4G2) (BD Pharmingen) for 15 minutes at 4ºC (40 µl per well) and cell surface 

stained by addition of 10 µl of anti-CD8α (53-6.7) (BD Pharmingen) or anti-CD8α and anti-CD45.1 

(A20) (Biolegend) (for detection of OT-I cells) in PBS with 2% FCS. Cells were incubated for 30 

min at 4ºC in the dark. After incubation, cells were fixed and permeabilized with Fix/Perm solution 

(Foxp3 staining buffer set, eBioscience) (100 µl per well) for 30 minutes at 4ºC, washed once with 

PERM buffer (Foxp3 staining buffer set, eBioscience) (100 µl per well) and blocked again by 15 

min incubation with anti-CD16/32 diluted in PERM buffer (40 µl per well). Cells were then 

intracellular stained by addition of 10 µl of anti-IFNγ (XMG1.2) (BD Pharmingen), anti-Granzyme 

B (NGZB) or anti-IgG2ak Isotype control (eBioscience) in PERM buffer. Following 30 min 

incubation at 4ºC in the dark cells were washed twice with PERM buffer (100 µl per well) and 

resuspended in PBS with 2% FCS. Samples were collected and flow analysed on a LSR Fortessa 

(BD Biosciences). 

 
 
9.2.11.4. In vivo cytotoxicity assay 

Preparation of splenocytes 

Total splenocytes from naïve congenic CD45.1 C57BL/6 mice were used as target and control 

cells. Spleens were pooled from CD45.1 C57BL/6 mice into 5 ml of complete RPMI and kept on 

ice until mechanical disruption to obtain single splenocyte suspensions. Cell debris was removed 

by filtering through a 100 µm cell strainer. Red blood cells were lysed by incubation with red blood 

cell lysis buffer for 5 min on ice. Cell suspensions were washed, resuspended in RPMI and filtered 

through a 100 µm cell strainer. An aliquot of 10 µl of the obtained cell suspension was transferred 

to an haemacytometer and the total number of splenocytes was determined by microscopy. 
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Peptide pulsing of splenocytes 

2x106 splenocytes/ml were incubated with 1 µM of SIINFEKL (OVA), EIINFEKL (E1) or A8 

(SIINFEKA) peptides (Thermo Scientific), for 1 h at 37ºC, in pre-warmed RPMI. Control 

splenocytes were left unpulsed. Cells were washed in RPMI without FCS and maintained at 

2x106/ml. 

 

CFSE labeling 

Target peptide-pulsed cells were labeled with a high (1µM) concentration of carboxyfluorescein 

succinimidyl ester (CFSE) (Molecular Probes). Control unpulsed cells were labeled with a low 

(0.1µM) concentration of CFSE. CFSE labeling was performed for 10 min at 37ºC in pre-warmed 

RPMI without FCS. At the end of the incubation period cells were immediately washed once with 

ice-cold complete RPMI, three times with ice-cold PBS and filtered through a 40 µm cell strainer. 

The total number of viable splenocytes was determined for each condition by trypan blue staining 

followed by microscopy analysis. 2x106 targets and equal numbers of control cells (50:50 mixes 

of CFSEhi and CFSElo cells) were prepared in 200 µl of ice-cold PBS. An aliquot of 10 µl from 

each mix was used for subsequent flow cytometry analysis of prepared mixes (section 9.2.8.1). 

 
Adoptive transfer and analysis 

Mixes were injected intravenously into the tail vein of vWT infected C57BL/6 controls to ensure 

equal transfer, and vOVA, vE1 or vA8 infected mice. In the next day splenocytes were harvested 

from recipient mice and the proportion of CFSEhi and CFSElo cells among transferred CD45.1+ 

splenocytes was analysed by flow cytometry (section 9.2.8.1). Dead cells were excluded by 

addition of propidium iodide (Sigma) to each sample immediately before acquisition.   

Target cell killing was calculated as: 

 

% target cell killing = 100 - � �% 6789:;  % 6789<�⁄ 	 �= >?@ �=2ABCA1 BD=CEDFG
�% 6789:;  % 6789<�⁄ 	 �= >HIJ,   >9# DE >JL �=2ABCA1 M�BA� x 100 

 

 

9.2.12. H2Kb stabilization assay 

Stabilization of H2Kb was determined using TAP-deficient RMA-S cells. RMA-S cells at 

exponential phase (1x106 cells/ml) were collected, washed with RPMI 1640 and cultured for 16 h 

at 26 °C in RPMI 1640 to allow empty MHC class I molecules to accumulate on the cell surface. 

Cells (4–5x105 cells per well of a round bottom 96 well-plate) were then washed with RPMI 1640 

and incubated with 4-fold serial dilutions of synthetic peptides (starting at  10-5 M) for 2h at 26ºC 

with 5% CO2, and subsequently incubated for an additional 2h at 37ºC to destroy empty cell 

surface H2Kb molecules. After incubation, cells were washed once and incubated on ice for 30 

min with anti-H2Kb (AF6-88.5.5.3) (eBioscience) followed by PerCP anti-mouse antibody as 

secondary reagent. Stained cells were fixed with 1% paraformaldehyde and analysed by flow 

cytometry. The stabilizing effect of the peptides was determined as mean fluorescence intensity 
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(MFI) using FlowJo software. The data obtained was then analysed, expressed as the percentage 

of maximum surface H2Kb stabilization and fit to sigmoidal dose-response curves using GraphPad 

Prism software. The half-maximum effective concentration (EC50) values required for surface 

H2Kb stabilization were obtained from the constructed sigmoidal dose-response curves. 

 

9.2.13. Statistical analysis 

Data comparisons between groups were performed by unpaired two-tailed Student t-test or 

ordinary one-way ANOVA as appropriate. Mean values, s.e.m. and statistics were calculated with 

GraphPad Prism software. 
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Supplementary Figure 1. Expression of the endogenous MuHV-4 ORF8 epitope or APL derivates 

during latency impairs virus-driven lymphoproliferation. (A) MuHV-4 recombinant viruses were 

generated to express from the M2 C-terminus the H2Kb-restricted epitope comprising amino acid residues 

604-612 of MuHV-4 ORF8 glycoprotein B (ORF8604-612/Kb) or APL derivates. Amino acid sequences 

introduced in each recombinant virus are presented. Blue residues denote amino acid alterations introduced 

into native ORF8 epitope. Amino acid substitutions in vA4, vA6 and vD6 comprise residues important for 

binding to the TCR, while vA9 contains a replacement in an anchor residue, as determined by ability to 

induce IFNγ production by activated ORF8 transnuclear CD8+ T cells and H2Kb stabilization on RMA-S, 

respectively (Sehrawat et al., 2012). MuHV-4 recombinant viruses were engineered by Diana Fontinha under 

the supervision of Dr Sofia marques in our laboratory. (B) Multi-step growth curves of recombinant viruses 

in BHK-21 cells infected at low multiplicity (0.01 PFU per cell). At the indicated times post-infection, samples 

were harvested, freeze-thawed and virus titres were determined by plaque assay on monolayers of BHK-21 

cells. In vitro lytic replication kinetics of the recombinant viruses were not significantly different from vWT 

(p˃0.05, by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). (C) Virus replication 

in lungs of intranasally infected (104 PFU) C57BL/6 (H2b) mice was quantified by plaque assay at the 

indicated days p.i.. No MuHV-4 recombinant showed a deficit relative to vWT (p˃0.05, using ordinary one-

way ANOVA followed by Dunnett’s multiple comparisons test). (D) Latent infection in spleens of intranasally 

infected (104 PFU) BALB/c (H2d) mice was determined by ex vivo reactivation assay (closed symbols) at 14 

days p.i.. Pre-formed infectious viruses were analysed by plaque assay (open symbols). Latent loads of 

MuHV-4 recombinants expressing the ORF8 epitope or APLs were not significantly different to vWT (p˃0.05, 

by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). (E) Latent load in spleens of 

C57BL/6 (H2b) mice at day 14 p.i. was quantified by ex vivo reactivation assay (closed symbols) and pre-

form infectious virus was measured by plaque assay (open symbols). vORF8, vA4, vA6 and vD6 latent loads 

were significantly below those of vWT (p=0.0047, for each comparison using two-tailed unpaired t-test). vA9 

latent loads were not significantly different from vWT (p=0.3407). In panels C, D and E each point represents 

the titre of an individual mouse, horizontal bars show arithmetic means and the dashed horizontal line 

indicates the limit of detection of the assay. 
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Abstract

Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore
depend on MHC class I-restricted epitope presentation. Many epitopes are described for c-herpesviruses and form a basis
for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for
epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a
latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking
MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I
binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional
avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell
proliferation.
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Introduction

The gamma-herpesviruses (cHVs) infect .90% of humans and

cause diseases including nasopharyngeal carcinoma, African

Burkitt’s lymphoma and Kaposi’s Sarcoma. Their colonization

of circulating memory B cells is crucial to persistence and hence to

disease ontogeny. Viral latency gene expression in B cells provides

an immune target [1] that has been exploited to prevent

lymphoproliferative disease in acutely immunodeficient patients

by T cell transfer [2]. However, extending this approach to

established cancers and developing related vaccines have proved

difficult. A significant problem is that the narrow species tropisms

of human cHVs severely restrict in vivo analysis, and hence an

understanding of how empirical therapies such as adoptive T cell

transfer work.

Immune recognition can be assayed in vitro; but while Epstein-

Barr virus (EBV) latency gene products drive autonomous B cell

proliferation in vitro, most in vivo infected cells are resting memory B

cells that have passed though lymphoid germinal centers (GCs) [3].

This makes difficult in vitro analysis of in vivo immune control. One

way to make progress is to study related viruses that are

experimentally more accessible. Probably the best characterized

is Murid Herpesvirus-4 (MuHV-4, archetypal strain MHV-68) [4–

6]. MuHV-4 is more closely related to the Kaposi’s Sarcoma-

associated Herpesvirus (KSHV) than to EBV [7]. However it

shares many features of host colonization with EBV, for example it

exploits lymphoid GCs to establish persistence in circulating

memory B cells [8–10]. Therefore it can be used to reveal

fundamental mechanisms of cHV/host interaction.

MuHV-4 studies have shown that cHV-driven lymphoprolifer-

ation occurs in complex lesions incorporating T cell evasion and

infected cells with distinct patterns of viral gene expression [10]. In

addition to cis-acting T cell evasion during episome maintenance

[11,12], EBV inhibits the transporter associated with antigen

processing (TAP) via BNLF2a [13–15] and MHC class I export to

the cell surface via BILF1 [16,17]; KSHV degrades MHC class I

and other immune receptors via K3 and K5 [18]; and MuHV-4

degrades MHC class I and TAP via MK3 [19–21]. Disrupting

MK3 impairs virus-driven lymphoproliferation [22].

The cHVs also evade immune recognition during latency by

expressing few CTL targets. However a gene that modulates

signaling through the B cell receptor - M2 in MuHV-4 [23–26],

LMP-2A in EBV [27] and K1 in KSHV [28] - is expressed more

widely than growth program genes [3], and shows protein

sequence diversity [29–33] consistent with immune selection.

More directly, the presence of an H2Kd binding epitope in M2

[34,35] significantly reduces long-term MuHV-4 latent loads in

BALB/c mice [29]. Therefore despite viral evasion, CTL help to

regulate long-term infection [36,37], and CTL recognition of M2/

K1/LMP-2A, which in EBV may extend also to EBNA3A/B/C
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[38,39], provides a potential point of attack. LMP-2A is also a

candidate vaccine target for nasopharyngeal carcinoma [40].

Thus, how M2/K1/LMP-2A recognition works in vivo is

important to understand.

CTL effector capacity broadly correlates with functional avidity,

as determined by the capacity of T cell receptor (TcR) engagement

to trigger CTL proliferation, cytokine production and target cell

lysis at limiting antigen dose [41]. Therefore with limited cHV

protein expression during latency, peptide affinity for MHC class I

and TcR functional avidity are likely to be crucial for immune

control. The diversity of LMP-2A, K1 and M2 prompted us to

analyze in vivo the consequences of varying MHC class I binding

and TcR functional avidity for a single epitope derived from M2.

These parameters affected dramatically the control of virus-driven

lymphoproliferation, even in the context of immune evasion. The

capacity of MuHV-4 to correlate biochemical interactions with in

vivo immune function allowed us to establish quantitative

guidelines for infection control.

Results

Characterization of altered peptide ligands (APLs) by
MHC class I binding and TcR functional avidity

To understand the CTL recognition requirements for cHV

infection control, we expressed from MuHV-4 a well-character-

ized, H2Kb-restricted epitope comprising amino acid residues

257–264 of ovalbumin (OVA), or APL derivatives (Figure 1A).

OVA binds to H2Kb with high affinity (KD = 4.1 nM) [42]. We

compared OVA and APL binding by H2Kb stabilization on TAP-

deficient RMA/S cells (Figure 1B) [43]. The OVA concentration

giving 50% maximal stabilization (EC50) was 40 nM, in close

agreement with published data [44]. APLs Q4, V4, G4 and R4

were similar to OVA (EC50 within 2-fold), consistent with residue

4 being solvent-exposed in the H2Kb-peptide complex [45]. E1

required 6-fold more peptide for equivalent H2Kb stabilization,

consistent with this residue being only partly exposed; A8, which

has a mutated anchor residue, required 10-fold more peptide

again; and the control peptide A5A8, with 2 mutated anchor

residues, gave no significant stabilization. The H2Kb/OVA/b2M

complex has an estimated half-life of 8 h [44]. Its stability is

determined primarily by the peptide off-rate, so the E1 complex is

likely to have a half-life of approximately 1.3 h.

We assessed the functional avidity of the H2Kb-OVA-specific

TcR of OT-I [46] for each APL by ex vivo stimulation of CD8+ T

cells from OT-I mice with graded peptide doses (Figure 1C).

There was a clear hierarchy in dose-response, with OVA.Q4 (14-

fold).V4 (a further 279-fold).G4 (53-fold further still), consistent

with published data [47]. The R4 antagonist peptide [48,49] gave

no stimulation. As predicted E1 and A8, which have lower MHC

class I binding, generated the lowest dose-responses.

Generation of MuHV-4 recombinants expressing OVA or
APLs linked to M2

We next introduced each epitope at the MuHV-4 M2 C-

terminus to ensure expression in latency without compromising

M2 function [29]. CTL recognition of an endogenous M2 epitope

reduces long-term MuHV-4 latent loads in H2d mice [29]. The

lack of an endogenous H2b-restricted M2 epitope therefore

allowed us to introduce new targets in a context where this is

known to be important. Each recombinant virus was also made

with a yellow fluorescent protein (YFP) reporter construct [50] to

aid infection tracking (Figure S1). Correct epitope insertion and

assembly of the surrounding genome were demonstrated by PCR

of plaque-purified viral DNA (Figure 1D). Each recombinant virus

showed equivalent in vitro growth (Figure 1E), equivalent lytic

replication in the lungs of intranasally (i.n.) infected C57BL/6

mice (Figure 1F) - with peak titers at 4–7 days post-inoculation and

clearance by day 11 - and normal latency establishment in H2d

BALB/c mice - with equivalent splenic infectious center assay

titers 14 days after i.n. inoculation (Figure 1G). Therefore none

showed a replication defect independent of H2b-restricted latent

epitope expression.

MHC class I binding by a latency-associated epitope
impairs host colonization

We then tested latency establishment in H2b mice. Infectious

center assays (Figure 2A) showed attenuation of any virus with an

H2Kb binding epitope attached to M2 (vOVA, vQ4, vV4, vG4,

vR4): splenic infection was established at day 11, but then cleared

rather than amplified by days 14–21. In contrast, the virus

expressing a poorly binding epitope (vA8) was indistinguishable

from the epitope-negative wild-type (vWT). Interestingly vE1,

which expresses an epitope with 6-fold lower EC50 for H2Kb

stabilization (Figure 1B), showed an intermediate phenotype with

normal titers at day 11 followed by a gradual reduction.

Not every latently infected cell necessarily reactivates its virus ex

vivo. We therefore used PCR of viral DNA at limiting dilution

(Figure 2B; Table 1) as a second measure of infected cell

frequency. We looked at the peak of latent infection (14 days

post-inoculation) and at the steady state (50 days). These results

supported the infectious centre assays: vOVA, vQ4, vV4, vG4 and

vR4 were all markedly attenuated (.100-fold reduction); vA8 was

equivalent to vWT; and vE1 showed an intermediate phenotype,

with strongly decreased acute titers but long-term titers close to

vA8 and vWT. MuHV-4-specific CTL responses peak at 14–21

days post-infection [51]. Thus a weakly binding latent epitope (E1)

allowed some control when CTL responses were at their peak, but

not in the long-term when CTL responses decrease in size.

MuHV-4 colonizes multiple cell types in acutely infected

spleens. Many are B cells, which change in phenotype as they

pass through germinal centers; others are myeloid cells. The main

proliferating population is GC B cells, and these also connect most

directly to the long-term latency reservoir of resting memory B

cells [9,10]. Therefore to understand better the relationship

between acute and long-term viral loads, we measured viral

genome prevalence in flow cytometrically sorted GC B cells

(Figure 2C; Table 2). They showed marked reductions for vOVA,

vQ4, vV4, vG4 and vR4, equivalent frequencies for vA8 and

Author Summary

Chronic viral infections cause huge morbidity and mortal-
ity worldwide. c-herpesviruses provide an example rele-
vant to all human demographics, causing, inter alia,
Hodgkin’s disease, Burkitt’s lymphoma, Kaposi’s Sarcoma,
and nasopharyngeal carcinoma. The proliferation of
latently infected B cells and their control by CD8+ T cells
are central to pathogenesis. Although many viral T cell
targets have been identified in vitro, the functional impact
of their engagement in vivo remains ill-defined. With the
well-established Murid Herpesvirus-4 infection model, we
used a range of recombinant viruses to define functional
thresholds for the engagement of a latently expressed viral
epitope. These data advance significantly our understand-
ing of how the immune system must function to control c-
herpesvirus infection, with implications for vaccination and
anti-cancer immunotherapy.
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vWT, and intermediate frequencies for vE1. These data were

further supported by in situ hybridization for latently expressed

viral tRNA/miRNA homologs [29] (Figure 2D), which showed

abundant GC infection by vWT and vA8, severely impaired

infection by vOVA, vQ4, vV4, vG4 and vR4, and intermediate

infection by vE1. Therefore susceptibility to CTL attack during

acute lymphoproliferation varied with cell type, and the relative

sparing of vE1+ GC B cells appeared to allow high long-term viral

loads.

CTL responses to epitopes expressed in latent infection
We measured epitope-specific CTL responses with H2Kb-

peptide tetramers (Figure 2E) and by staining for intracellular IFN-

c after ex vivo stimulation (Figure 2F). Responses to vA8 were

uniformly low despite high viral loads, presumably because this

epitope was not produced in sufficient amounts to compensate for

its poor H2Kb binding. Responses to vOVA, vQ4, vV4, vG4 and

vR4 were detectable, although small compared to those reported

for lytic antigens [51]. Surprisingly, the largest CTL response was

elicited by the intermediate phenotype virus, vE1. This could not

be explained by lytic infection, since this was high in lungs for all

viruses (Figure 1F).

We confirmed the functionality of vE1-specific CTL by in vivo

killing of CFSE-labelled, peptide-exposed targets (Figure 2G,H):

vE1-induced CTL showed target cell elimination comparable to

vOVA, whereas mice infected with vWT or vA8 showed none.

Therefore the relatively weak H2Kb binding of E1 was sufficient to

stimulate large, functional CTL responses, but not for those CTL

to curtail efficiently virus-driven lymphoproliferation. This result

suggested that at least for vE1, most CTL stimulation comes from

a population distinct from that engaged in lymphoproliferation.

CTL functional avidity also determines infection control
by latency epitope recognition

The capacity of C57BL/6 mice to control MuHV-4-driven

lymphoproliferation through the recognition of latently expressed

OVA, Q4, V4, G4 or R4 indicated that the key requirement in a

polyclonal TcR setting is the availability of an epitope capable of

strong MHC class I binding: T cells from the naive repertoire

could recognize either OVA or an APL. However responses to

EBV can involve oligoclonal or even monoclonal CTL expansions

[52–54]. Therefore to understand better the quantitative require-

ments of TcR functional avidity for in vivo cHV control, we

focussed on the well-characterized OT-I TcR (Figure 3).

We first infected OT-I mice with MuHV-4 expressing OVA or

APLs with comparable H2Kb binding (Q4, V4, G4, R4), and

measured host colonization by infectious center assay of spleens 9

and 11 days later (Figure 3A). vE1 and vA8 were not utilized since

they bind MHC class I less efficiently precluding analysis of T cell

functional avidity because target concentrations are different.

There was a clear correlation between CTL functional avidity

(Figure 1C) and in vivo virus control. The antagonist epitope (R4)

allowed no control - titers were equivalent to those of the epitope-

negative vWT; the others showed a hierarchy of control (OVA.

Q4.V4.G4) that matched exactly their hierarchy of functional

avidity (and not their minor differences in H2Kb binding). Low

titers of pre-formed infectious virus were found in some mice, but

generally in proportion to their latent titers, consistent with

reactivation of a fixed fraction of the latent viral load; we saw no

evidence that M2-associated epitope presentation created a

significant new lytic CTL target.

To confirm that the immune control was by CTL, we treated

mice with a depleting, CD8-specific mAb from the time of

infection (Figure 3B–D). Each virus then reached equivalent titers

to the wild-type. While the depletions were highly effective

(Figure 3C), they had little effect on the day 11 spleen titers of

vWT (Figure 3D). This result was consistent with previous

publications [36,55] and with the lack of known H2b-restricted

MuHV-4 latency epitopes. Thus, introducing latent epitope

recognition caused new, CD8-dependent virus attenuation in

proportion to the functional avidity of that epitope for the

dominant TcR.

CTL functional avidity in the context of normalized T cell
repertoire

OT-I mice provided a useful starting point for in vivo analysis of

single TcR function. However their limited CD4+ T cell repertoire

impairs GC formation and so the ability of MuHV-4 to drive B

cell proliferation. Hence, to define the impact of TcR functional

avidity in an environment more conducive to lymphoproliferation,

we adoptively transferred lymphocytes from Rag-12/2OT-I mice

and purified CD4+ T cells from C57BL/6 mice into TcRa2/2

recipients (Figure 4A). Thus the reconstituted mice had polyclonal

CD4+ T cells and a TcRab+CD8+ T cell compartment of modest

size that was restricted to OT-I cells. (Most CD8+ T cells of

TcRa2/2 mice are TcRcd+TcRab2.) Infecting these with vWT

led to a robust proliferation of infected GC B cells (Figure S2 and

S3). Infecting them with vOVA elicited a strong OT-I response

(Figure 4B) and suppression of splenic colonization (Figure 4C); by

contrast vR4, which expressed an antagonist epitope, elicited no

OT-I response and reached high titers (Figure 4C). Therefore

these mice provided a new and informative window onto how TcR

engagement by a latency epitope affects virus-driven lymphopro-

liferation.

Figure 1. Characterization of APLs by MHC class I binding and TcR functional avidity, and generation of MuHV-4 recombinants
expressing OVA or APLs linked to M2. (A) Amino acid sequences used to generate MuHV-4 recombinants. Blue residues denote amino acid
alterations introduced into native OVA. (B) Capacity of OVA and APL peptides to stabilize H2Kb on TAP deficient RMA/S cells. Half-maximum effective
concentration (EC50) values were calculated from dose-response curves. The experiment was repeated 3 times. (C) Functional avidities of OT-I CTL for
OVA and APL peptides were determined by IFNc production. EC50 and APL/OVA EC50 ratios are shown. This experiment was repeated in duplicates 4
times (D) PCR analysis of recombinant viral DNA to confirm genome integrity in the HinDIII-E region, with schematic representation of the MuHV-4
genome, amplicon genomic co-ordinates and predicted PCR product sizes. (E) Multi-step growth curves of viruses in BHK-21 (0.01 PFU/cell). Virus
titres were determined by plaque assay. In vitro lytic replication kinetics of the recombinant viruses were not significant different from vWT (p.0.05,
by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). (F) Virus replication in lungs of i.n. infected C57BL/6 (H2b) mice was
quantified by plaque assay. No MuHV-4 recombinant showed a deficit relative to vWT (p.0.05, using ordinary one-way ANOVA followed by Tukey’s
multiple comparisons test). (G) Latent infection in spleens of BALB/c (H2d) mice was determined by explant co-culture assay (closed symbols) at 14
days post-infection. Pre-formed infectious virus were measured by plaque assay (open symbols). Latent loads of MuHV-4 recombinants expressing
OVA or APLs were not significantly different to vWT (p.0.05, by ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). In
panels F and G each point shows the titre of 1 mouse, horizontal lines show arithmetic means and dashed horizontal lines indicate the detection limit
of the assay.
doi:10.1371/journal.ppat.1004220.g001
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Sub-optimal CTL functional avidity still allows control of
virus-driven lymphoproliferation

We then infected reconstituted mice with MuHV-4 expressing

OVA or APLs (Figure 5). At day 16 post-infection OT-I T cell

expansion was greatest for vOVA, reduced for vQ4, reduced

further for vV4, and close to background for vG4 and vR4

(Figure 5A). Thus it correlated well with the epitope functional

avidity measured in Figure 1C (OVA.Q4.V4.G4.R4).

Specifically, the 14-fold avidity reduction of Q4 only modestly

reduced CTL cell expansion, and the 4000-fold reduction of V4

caused further reduction but still did not ablate it entirely. The

CTL response declined to background only when the avidity was

reduced 200,000-fold (G4). Therefore the immune response

showed a surprisingly large tolerance for sub-optimal TcR

engagement.

Similar results were obtained for OT-I T cell activation (loss of

CD62L, Figure 5B). We analyzed CTL function further by

intracellular staining for IFN-c (Figure 5C) and Granzyme B

(Figure 5D) after ex vivo stimulation with the corresponding peptide

epitope. The responses to vG4 and vR4 were hard to assess due to

low CTL numbers; but those to vQ4 and vV4 showed comparable

functionality to vOVA. (Note that the peptide concentration used

was only just sufficient for maximal stimulation by V4 in

Figure 1C) Therefore there was no sign of vQ4 and vV4 eliciting

CTL responses that were functionally impaired (or functionally

enhanced); they simply elicited responses that were smaller.

Virus titers (Figure 5E) were reduced markedly by OVA

expression, only marginally less by Q4, and not significantly by G4

or R4. V4 expression gave an intermediate phenotype, with titers

significantly below those of the vWT control and significantly

above those of vOVA. The frequencies of viral DNA+ cells in

spleens (Figure 5F and Table S1) showed a similar hierarchy

(vWT = vG4 = vR4.vV4.vQ4.vOVA). The viral DNA+ fre-

quencies of flow cytometrically sorted GC B cells (Figure 5G and

Table 3) showed less discrimination. Nonetheless the trends were

similar, and these results were further corroborated by analysis of

YFP expression in GC B cells (Figure S4). Therefore high

functional avidity (vOVA) gave marked CTL expansion and low

virus titers; a 14-fold avidity reduction (vQ4) have remarkably

similar results; a 200,000-fold avidity reduction abolished virus

control (vG4); and a 4000-fold reduction gave an intermediate

phenotype (vV4). OT-I TcR engagement by M2-derived OVA

was therefore considerably above the threshold required for in vivo

viral control, and low functional avidity compromised viral control

via reduced CTL expansion, rather than by differentially affecting

CTL effector function.

Discussion

Gamma-herpesvirus epitope recognition by CTL has been

studied extensively [1,54], but ours is the first quantitative

assessment of how epitope/MHC class I/TcR complex formation

affects host colonization. Where no latency epitope expression

existed, introducing one led to a profound, CTL-dependent

suppression of virus-driven lymphoproliferation. This was consis-

tent with the impact of endogenous epitope presentation in H2d

mice [29]. The latter affected only long-term viral loads; OVA

expression in H2b mice also conferred susceptibility to CTL during

acute lymphoproliferation, when trans-acting immune evasion

operates [1]. This greater effect of epitope presentation possibly

reflected differences in host susceptibility to immune evasion: the

MuHV-4 K3 degrades H2Kb relatively poorly [19] and degrades

TAP better in H2d than H2b cells [20].

The precise cellular targets for CD8+ T cell recognition of M2-

linked epitopes remain unknown. One possibility is proliferating

germinal centre B cells, as B cells are a major site of M2 expression

Figure 2. MHC class I binding by a latency-associated epitope impairs host colonization. C57BL/6 mice were infected i.n. with 104 PFU of
the indicated viruses. (A) The latent load in spleens was determined by explant co-culture assay (closed symbols) and pre-formed infectious virus was
quantified by plaque assay (open symbols). Each point shows the titre of 1 mouse, horizontal lines arithmetic means and dashed horizontal line limit
of detection of assay. At day 14, vOVA, vQ4, vV4, vG4, vR4 and vE1 latent loads were significantly below vWT (p,0.05, by two-tailed unpaired t-test).
vA8 latency loads were not significantly different from vWT (p = 0.07). (B–C) Reciprocal frequencies of viral DNA+ cells in (B) total splenocytes or (C) GC
B cells. Bars represent the frequency of viral DNA+ cells with 95% confidence intervals. (D) Representative spleen sections showing dark stained
latently infected cells by in situ hybridization. (E) % tetramer positive CD8+ T cells at each time point from spleens (arithmetic mean +/2 SEM of 3
independent assays). * p,0.05, ** p,0.01, **** p,0.0001; using a two-tailed unpaired t-test. (F) Functional capacity of splenic CTL determined by
intracellular interferon-gamma staining after ex vivo stimulation. Data show % CD8+ T cells responding to each peptide (arithmetic mean +/2 SEM of
3 independent assays). * p,0.05, ** p,0.01; using a two-tailed unpaired t-test. (G–H) In vivo CTL activity at 11 days post-infection. (G) At day 10 post-
infection 50:50 mixes consisting of 26106 unpulsed CD45.1+ CFSElo splenocytes and 26106 OVA-, E1- or A8-pulsed CD45.1+ CFSEhi splenocytes were
transferred intravenously into vOVA, vE1 or vA8 infected C57BL/6 mice. The same mix of cells was transferred into vWT infected mice C57BL/6 as
internal control. In the next day, the proportion of CFSEhi and CFSElo cells among CD45.1+ cells recovered from the spleen was analysed by FACS.
Representative FACS plots showing % of unpulsed CD45.1+ CFSElo and OVA-, E1, or A8-pulsed CD45.1+ CFSEhi splenocytes. (H) % target cell killing.
Three to four mice were analyzed per group, and experiments repeated three times.
doi:10.1371/journal.ppat.1004220.g002

Table 1. Reciprocal frequency of MuHV-4 infection in total
splenocytesa of C57BL/6 mice.

Virus Day p.i. Reciprocal frequencyb of viral DNA+ cells (95% CI)

vWT 14 296 (179–856)

50 12,770 (7,900–33,288)

vOVA 14 121,005 (75,230–309,065)

50 517,114 (316,845–1,405,472)

vQ4 14 51,426 (32,333–125,586)

50 id $1,149,446c

vV4 14 92,857 (57,599–239,405)

50 id $1,053,659c

vG4 14 59,253 (37,537–140,588)

50 id $1,053,659c

vR4 14 47,755 (29,622–123,123)

50 id $1,264,391c

vE1 14 12,576 (7,445–40,375)

50 17,810 (11,400–40,677)

vA8 14 307 (212–962)

50 8462 (4970–28,436)

aData were obtained from pools of 4 to 5 spleens.
bFrequencies were calculated by limiting-dilution analysis with 95% confidence
intervals (CI).
cEstimated based upon less than 3 different dilution sets.
id; indeterminable.
doi:10.1371/journal.ppat.1004220.t001
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[10,34]. Infected B cells could also be recognized before the onset

of proliferation; and as myeloid cells transfer infection to B cells

[56], CD8+ T cells could also suppress lymphoproliferation

indirectly, by targeting infected myeloid cells [1].

A key point for physiologically relevant epitope presentation is

that it conforms to normal latent gene expression. Exogenous

promoters such as HCMV IE1 show activity independent of

endogenous viral gene expression [57] and this can lead to

attenuation [58]. Previous analysis of endogenous M2 epitope [29]

established its importance for determining the different long-term

latent loads of H2d and H2b mice. Here, to identify presentation

thresholds, we made use of the well-characterized SIINFEKL

epitope, attaching it to a neutral region of M2 (its C-terminus).

This allowed the generation of a very well-defined model epitope

with the kinetics and copy number of a known endogenous

epitope. Epitope presentation varies with MHC class I genotype.

C57BL/6 mice have only 2 MHC class I molecules and appear

not to recognize an endogenous M2 epitope. In this context, M2-

SIINFEKL illustrated the impact of strong epitope presentation,

and wild-type M2 (or M2-vA8) that of poor epitope presentation.

The SIINFEKL variants covered the range between, and so

allowed us to identify functional recognition thresholds.

Small differences (,1.6-fold) in H2Kb epitope binding had no

obvious impact on in vivo CTL efficacy, but a 60-fold reduction

abolished protection and a 6-fold reduction showed a partial

phenotype. Thus, M2-linked epitope presentation left little room

for sub-optimal MHC class I binding. By contrast when H2Kb

binding was maintained, reducing TcR functional avidity 14-fold

had little effect, reducing it 200,000-fold abolished control, and

reducing it 4,000-fold gave an intermediate phenotype. Therefore

this aspect of recognition was more flexible even for monoclonal,

Rag-12/2 CTL, and a polyclonal population could attack any

epitope so long as its MHC class I binding was strong.

In complex viral infections, larger CTL responses are not

necessarily more effective responses. These parameters can

correlate: MuHV-4 lacking its K3 evasion gene elicits more

CTL and achieves lower titers [22]; and our reconstituted mice

showed a correlation between more CTL and less virus. But as

with latent epitope presentation downstream of ORF73 [11],

OVA-specific CTL responses that completely suppressed lympho-

proliferation were small compared to lytic epitope responses [51];

and mice infected with vE1 made large epitope-specific responses

yet showed poor virus control. We hypothesize that CTL can be

stimulated by the key, self-renewing population of infected B cells,

when infection is suppressed, but also by infected cells less

important to host colonization, when large responses may achieve

little. Crucially, viral evasion may make the self-renewing

population harder to target. Thus, vE1 showed a strong acute

reduction in total viral DNA+ cell frequencies, but relative sparing

of GC B cells and consequently high long-term virus loads. A

position 1 mutation also impairs the control by Rag-12/2OT-I

mice of MuHV-4 expressing OVA from an HCMV IE1 promoter

[59]. However such mice lack B cells or CD4+ T cells, and without

CD4+ T cells MuHV-4 causes a lethal, chronic lytic infection even

with a strong, polyclonal CTL response [60,61]. Our reconstituted

mice maintained both virus-driven lymphoproliferation and

infection control without outgrowth of CTL escape mutants.

Thus we could relate directly quantitative changes in epitope

recognition to the control of lymphoproliferation.

An important task with EBV is to predict in vivo CTL efficacy.

Extrapolating from CTL numbers and in vitro assays alone is

clearly problematic. For example, large responses to lytic epitopes

in infectious mononucleosis [54] could be interpreted as impor-

tant, or simply as poor latency epitope recognition when better

recognition might preclude large lytic responses and avoid

symptoms. The precise relatedness of EBV memory B cell

colonization via GCs to MuHV-4 memory B cell colonization

via GCs is unknown. But all cHVs have evolved to colonize

lymphocytes with maximal efficiency, within limits set ultimately

by the immune system, so similar quantitative thresholds would

not be surprising. Our data therefore have important general

implications for cHV-specific CTL function, and for predicting in

vivo CTL efficacy from biochemical measures.

Materials and Methods

Ethics statement
The study accorded with the Portuguese official Veterinary

Directorate (Portaria 1005/92), European Guideline 86/609/

EEC, and Federation of European Laboratory Animal Science

Associations guidelines on laboratory animal welfare. It was

approved by the Portuguese official veterinary department for

welfare licensing (protocol AEC_2010_017_PS_Rdt_General) and

by the IMM Animal Ethics Committee.

Mice
CD45.1 C57BL/6, OT-I, Rag-12/2 and TcRa2/2 mice were

obtained from Jackson Laboratories. CD45.1 Rag-12/2 OT-I

Table 2. Reciprocal frequency of MuHV-4 infection in GC B cellsa of C57BL/6 mice at 14 days post-infection.

Virus Reciprocal frequencyb of viral DNA+ cells (95% CI) % Cellsc % Purityd

vWT 12 (8–34) 4.63 96.1

vOVA 35,463 (21,819–94,657) 4.06 96.3

vQ4 33,847 (19,882–113,738) 3.63 97.6

vV4 44,687 (23,952–92,597) 4.03 97.4

vG4 11,092 (7,184–24,318) 5.76 96.0

vR4 5,016 (3,268–10,785) 5.66 97.5

vE1 323 (211–687) 4.13 96.5

vA8 10 (6–25) 4.18 96.6

aData were obtained from pools of 5 spleens.
bFrequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI).
cThe percentage of GC B cells from total spleen was estimated by FACS analysis.
dThe purity of sorted cells was determined by FACS analysis.
doi:10.1371/journal.ppat.1004220.t002
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Figure 3. CTL functional avidity also determines infection control by latently expressed epitope recognition. (A) OT-I mice were
infected i.n. (103 PFU). Splenocytes were titrated for latent virus by explant co-culture (closed circles) and for pre-formed infectious virus by plaque
assay (open circles). At 9 days vOVA, vQ4 and vV4 showed significantly less latent infection compared to vWT (vOVA p = 0.0014, vQ4 p = 0.004, vV4
p = 0.009; by Student’s 2-tailed unpaired t-test). vG4 and vR4 latent infections were not significantly different to vWT (vG4 p = 0.46, vR4 p = 0.09).
Graphs show the correlation between TcR functional avidity (determined in Figure 1C) and splenic latent load (day 9: p = 0.04, rs = 0.91; day 11
p = 0.05, rs = 0.90; according to Pearson’s correlation). (B) CD8 T+ cells were depleted from i.n. infected OT-I mice by intraperitoneal injection of anti-
CD8 monoclonal antibody (MAb). (B) Schematic diagram of the experimental setting. (C) Data show the percentage of CD8+ T cells of total
splenocytes (arithmetic mean +/2 SEM) in control (non-depleted) and depleted mice. (D) Spleens were titrated for latent (closed circles) and lytic
(open circles) infection. Latent loads of the epitope recombinants were not significantly different to vWT latent loads in CD8-depleted mice (p.0.05;
ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test). Data were reproduced in two independent experiments. Each point
shows the titre of 1 mouse, horizontal lines arithmetic means and dashed lines the limit of detection of the assay.
doi:10.1371/journal.ppat.1004220.g003
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mice were obtained by breeding OT-I onto a CD45.1 Rag-12/2

background. C57BL/6 and BALB/c mice were purchased

from Charles River Laboratories. All mice were housed under

specific pathogen-free conditions at the Instituto de Medicina

Molecular and used when 6–12 weeks old. For adoptive transfers

to TcRa2/2 mice, CD4+ T cells were purified by negative

selection from pooled lymph nodes of naı̈ve C57BL/6 mice using

the CD4+ T cell isolation kit (Miltenyi Biotech). OT-I T cells were

obtained from pooled lymph nodes of naı̈ve CD45.1 Rag-12/2

OT-I mice. 26106 CD4+ T cells and 106 CD45.1 Rag-12/2 OT-I

T cells were adoptively transferred to TcRa2/2 recipients via tail

vein injection one day prior to infection.

Generation of recombinant viruses
MuHV-4 recombinants were generated from BAC-cloned viral

genomes [29]. OVA and APL epitopes were introduced by PCR

at the M2 C-terminus. Briefly, the M2 downstream region

(genomic co-ordinates 3846-4029) containing a HindIII restriction

site followed by the epitope coding region and a stop codon were

PCR amplified (Table S2) to attach each epitope to the M2 C-

terminus. The PCR products were inserted downstream of a

HinDIII/XhoI MuHV-4 genomic fragment (nt 4029–5362) in

pSP72 (Promega), using a genomic BglII site (nt 3846) and the

engineered HinDIII (nt 4029) restriction site. The constructs were

then subcloned into a HinDIII-E MuHV-4 genomic fragment in

the pST76K-SR shuttle plasmid, using genomic BlnI (nt 3908) and

XhoI (nt 5362) restriction sites. All PCR-derived regions were

sequenced to confirm the integrity of the introduced epitopes and

the M2 flanking region. Each recombinant HinDIII-E shuttle

plasmid was transformed into E.coli carrying the wild type MuHV-

4 BAC (pHA3) or a YFP+ BAC [50] obtained from Dr Samuel

Speck (Emory Vaccine Center, Atlanta). Following multi-step

selection, recombinant BAC clones were identified by restriction

digestion with HinDIII. The integrity of each BAC was confirmed

by digestion with BamHI and EcoRI. All viruses were reconstituted

by transfecting BAC DNA into BHK-21 cells using FuGENE 6 or

X-tremeGENE HP (Roche Applied Science). The loxP-flanked

BAC cassette was then removed by viral passage through NIH-

3T3-CRE cells and limiting dilution cloning. The integrity of each

reconstituted virus was checked by PCR of viral DNA across the

HinDIII-E region and DNA sequencing across M2.

Cell culture and viruses
Murine RMA/S cells were cultured in RPMI 1640 with 10%

fetal calf serum, 2 mM glutamine and 100 U/ml penicillin and

100 mg/ml streptomycin. NIH-3T3 (ATCC)-CRE cells [22] were

grown in Dulbecco’s modified Eagle’s medium (DMEM) with 10%

fetal calf serum, 2 mM glutamine, 100 U/ml penicillin and

100 mg/ml streptomycin. Baby hamster kidney fibroblast cells

(BHK-21, ATCC) were cultured in Glasgow’s modified Eagle’s

medium (GMEM) supplemented as above plus 10% tryptose

phosphate broth. To prepare viral stocks, low multiplicity

infections (0.001 PFU per cell) of NIH-3T3-CRE or BHK-21

cells were harvested after 4 days and titrated by plaque assay [29].

H2Kb stabilization assay and OVA/APLs stimulatory
potency

H2Kb stabilization was determined with TAP-deficient RMA/S

cells. These were incubated overnight at 26uC to promote the

export of empty H2Kb complexes, then loaded with graded

concentrations of OVA or APL peptides (Thermo Scientific) for

2 h at 26uC and subsequently transferred to 37uC for 2 h to

Figure 4. vOVA infection of TCRa2/2 mice reconstituted with CD4+/OT-I T cells elicits a strong OT-I response and suppression of
splenic colonization. CD4+ T cells from C57BL/6 lymph nodes and OT-I T cells from CD45.1 Rag-12/2 OT-I lymph nodes were intravenously
transferred to TcRa2/2 mice one day prior to infection with vOVA or vR4 (103 PFU). (A) Schematic diagram of the experimental setting. (B) Kinetics of
in vivo OT-I CTL expansion in spleens of mice infected with vOVA (black bars) or vR4 (grey bars) determined by FACS staining of CD45.1+CD8a+ cells
(arithmetic mean +/2 SEM). (C) Latent infection in spleens was quantified by explant co-culture assay (closed circles) and pre-formed infectious virus
by plaque assay (open circles). Each circle shows the titre of 1 mouse. Horizontal bars show arithmetic means. The dashed line shows the limit of
detection of the assay.
doi:10.1371/journal.ppat.1004220.g004
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destabilize empty MHC molecules [43]. The cells were then

washed twice, stained with anti-H2Kb (AF6-88.5.5.3, eBioscience),

and analysed on a LSR Fortessa (BD Biosciences). Mean

fluorescence intensities were determined with FlowJo (Tree Star).

To measure the ex vivo stimulation of naı̈ve OT-I T cells by OVA

and APLs, CD8+ T cells from the spleens of naı̈ve OT-I mice were

purified by negative selection (CD8+ T cell isolation kit, Miltenyi

Biotech); for equivalent peptide/MHC class I numbers, irradiated

(7500 rads) RMA/S cells were loaded with different peptides at

26uC, then incubated at 37uC; and 56104 OT-I T cells were

cultured with 2.56104 RMA/S cells for 72 h at 37uC. IFNc levels

in culture supernatants were measured by ELISA (DuoSet ELISA

development kit, R&D Systems). The data were fitted to sigmoidal

dose-response curves and EC50 values calculated using GraphPad

Prism.

In vivo infections and virus assays
Groups of 6- to 8-week old BALB/c and C57BL/6 mice were

inoculated i.n. with 104 PFU of MuHV-4. 8- to 12-week old OT-I

and TCRa2/2 mice were inoculated i.n. with 103 PFU of

MuHV-4. All virus inoculations were in 20 ml of PBS under

isofluorane anaesthesia. At different days post-infection lungs or

spleens were removed and processed for subsequent analysis.

Titres of infectious virus were determined by plaque assay of

freeze-thawed lung or spleen homogenates using BHK-21 cells.

Latent virus loads were quantified by explant co-culture of

splenocytes with BHK-21 cells. Plates were incubated for 4 (plaque

assay) or 5 (explant co-culture assay) days, then fixed with 4%

formaldehyde and stained with 0.1% toluidine blue. Viral plaques

were counted with a plate microscope. The frequency of MuHV-4

genome-positive cells was determined by limiting dilution com-

bined with real time PCR [10]. Splenocytes were pooled from 4–5

mice. GC B cells (CD19+CD95hiGL7hi) were purified from pools

of 4 or 5 spleens using a BD FACSAria Flow Cytometer (BD

Biosciences). Cells were serially two-fold diluted and eight

replicates of each dilution were analysed by real time PCR (Rotor

Gene 6000, Corbett Life Science). The primer/probe sets were

specific for the MuHV-4 M9 gene (59 primer: GCCA-

CGGTGGCCCTCTA; 39 primer: CAGGCCTCCCTCCCTT-

TG; probe: 6-FAM-CTTCTGTTGATCTTCC-MGB). Samples

Figure 5. Suboptimal CTL functional avidity still allows control of virus-driven lymphoproliferation. Reconstituted TcRa2/2 mice
(described in Figure 4A). were i.n. infected. (A–D) At 16 days the frequency, phenotype and effector function of transferred OT-I T cells was analyzed
by flow cytometry. (A) Representative FACS plots from individual animals show the frequency of OT-I (CD45.1+TcRb+CD8a+) cells within total CD8+ T
cells. vOVA, vQ4 and vV4 induced significant expansion of OT-I cells in comparison with vWT (p,0.0001, p,0.0001, p = 0.002, respectively; by
ordinary one-way ANOVA followed by Tukey’s multiple comparisons test). vWT, vG4 and vR4 did not significantly increase OT-I cell numbers (p.0.9).
(B) The activation phenotype of OT-I cells was determined by staining he CD45.1+TcRb+CD8a+ population for CD44 and CD62L. vOVA, vQ4 and vV4
induced significantly more OT-I cell activation than vWT (p,0.0001); vG4 and vR4 were not significantly different from vWT (p.0.9). (C–D) The
effector function of OT-I cells was determined as % CD45.1+TcRb+CD8a+ cells producing (C) IFN-c and (D) granzyme B by intracellular cytokine
staining following ex vivo stimulation with OVA or the corresponding APL peptide. Histograms show geometric mean fluorescence intensities of
granzyme B staining relative to an antibody isotype control (shaded area). Representative FACS plots from individual animals (left panels) and
compiled percentages (right panels) are shown. Each point shows 1 mouse; 4 mice were analyzed per group; the bars shows means. *** p,0.001,
**** p,0.0001; using Student’s 2-tailed unpaired t-test. (E) At 16 and 21 days, spleens were titrated for latent virus (closed circles) and infectious virus
(open circles). Each circle shows the titre of 1 mouse and the horizontal bars show means. The dashed line shows the limit of detection of the assay.
At 16 and 21 days vOVA, vQ4 and vV4 showed significantly lower latent loads than vWT (d16: vOVA p = 0.02, vQ4 p = 0.02, vV4 p = 0.03; d21: vOVA
p = 0.004, vQ4 p = 0.006, vV4 p = 0.02; by ordinary one-way ANOVA and Dunnett’s multiple comparisons test). Latent loads of vG4 and vR4 were not
significantly different from vWT (d16: vG4 p = 0.4, vR4 p = 0.4; d21: vG4 p = 0.8, vR4 p = 1.0). (F–G) Reciprocal frequencies of viral DNA+ cells in (F) total
splenocytes and (G) purified GC B cells. Bars show frequencies of viral DNA-positive cells with 95% confidence intervals.
doi:10.1371/journal.ppat.1004220.g005

Table 3. Reciprocal frequency of MuHV-4 infection in GC B cellsa of reconstituted TCRa2/2 mice.

Virus Day p.i. Reciprocal frequencyb of viral DNA+ cells (95% CI) % Cellsc % Purityd

vWT 16 61 (38–158) 3.13 97.3

21 4 (3–9) 6.36 97.4

vOVA 16 41,748 (25,873–108,104) 1.95 97.0

21 id .96,432e 4.88 98.4

vQ4 16 3,042 (1,874–8,064) 3.50 97.0

21 29,920 (19,237–67,294) 4.87 97.0

vV4 16 72 (45–176) 3.00 98.2

21 39 (25–84) 8.83 99.0

vG4 16 72 (45–176) 3.08 97.0

21 32 (18–108) 6.68 98.0

vR4 16 50 (29–167) 2.46 97.4

21 16 (9–53) 7.99 97.0

aData were obtained from pools of 4 to 5 spleens.
bFrequencies were calculated by limiting-dilution analysis with 95% confidence intervals (CI).
cThe percentage of GC B cells from total spleen was estimated by FACS analysis.
dThe purity of sorted cells was determined by FACS analysis.
eEstimated based upon less than 3 different dilution sets.
id; indeterminable.
doi:10.1371/journal.ppat.1004220.t003
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were subjected to a melting step of 95uC for 10 min followed by 40

cycles of 15 s at 95uC and 1 min at 60uC. Real-time PCR data

was analysed on the Rotor Gene 6000 software. The purity of

sorted populations was always .96%. In situ hybridization with a

digoxigenin-labelled riboprobe encompassing MuHV-4 vtRNAs

1–4 and microRNAs 1–6 was performed on formalin-fixed,

paraffin-embedded spleen sections [29], using probes generated by

T7 transcription of pEH1.4.

In vivo cytotoxicity assay
Splenocytes from naı̈ve CD45.1 C57BL/6 mice were used as

targets and controls. Targets were pulsed with 1 mM OVA, E1 or

A8 peptides for 1 h at 37uC, then labeled with 1 mM carboxy-

fluorescein succinimidyl ester (CFSE) (Molecular Probes). Controls

were left unpulsed and labeled with 0.1 mM CFSE. Cells were

washed three times then injected intravenously as a 50:50 mix of

CFSEhi and CFSElo cells (46106) into mice infected with vWT,

vOVA, vE1 or vA8. The same mixes were injected intravenously

into vWT infected C57BL/6 controls to ensure equal transfer. On

the next day splenocytes were harvested and the proportion of

CFSEhi and CFSElo cells among CD45.1 splenocytes was analysed

by FACS. Target cell killing was calculated as (% CFSElo/%

CFSEhi), with % = 1002(ratio in vWT infected/ratio in vOVA,

vE1 or vA8 infected)6100.

CD8+ T cell depletions
MuHV-4 infected OT-I mice were depleted of CD8+ T cells by

5 intraperitoneal injections of 200 mg monoclonal antibody YTS

169.4. Splenocytes from control or depleted mice were stained

with anti-CD8a (53-6.7) (BD Pharmingen) and analysed on a LSR

Fortessa (BD Biosciences).

Ex vivo stimulation and intracellular cytokine staining
Splenocytes (26106) from infected mice were stimulated for 5 h

at 37uC with 10 mg/ml peptide (OVA, APLs or VSV NP52-59) in

RPMI 1640/10% fetal calf serum/2 mM glutamine/100 U/ml

penicillin/100 mg/ml streptomycin/50 mM 2-mercaptoethanol/

10 U/ml recombinant murine IL-2 (PeproTech)/10 mg/ml Bre-

feldin A. Cells were then washed, blocked with anti-CD16/32

(2.4G2) (BD Pharmingen), surface stained with anti-CD8a 6 anti-

CD45.1 (for OT-I T cells), fixed and permeabilized with Foxp3

staining buffer (eBioscience) and stained with anti-IFNc (XMG1.2)

(BD Pharmingen), anti-Granzyme B (NGZB) or anti-IgG2ak

Isotype control (eBioscience). Samples were analysed on a LSR

Fortessa (BD Biosciences).

Flow cytometry
Splenocytes were treated with red blood cell lysis buffer, blocked

with anti-CD16/32 (2.4G2, BD Pharmingen, 10 min), and stained

at 4uC in PBS/2% FCS 30 minutes: anti-CD95 (Jo2), anti-CD19

(1D3), anti-CD8a (53-6.7), anti-IFNc (XMG1.2) (BD Pharmin-

gen); anti-CD45.1 (A20), anti-CD45.2 (104), anti-CD44 (IM7),

anti-CD62L (MEL-14) (Biolegend); anti-GL7 (GL7), anti-H2Kb

(AF6-88.5.5.3), anti-TCRb (H57-597), anti-GranzymeB (NGZB),

anti-IgG2ak Iso control (eBR2a) (eBioscience). For biotinylated

antibodies, an additional 20 minutes incubation with streptavidin

was performed. MuHV-4 infected cells were identified by YFP

expression. H2Kb tetramers conjugated to PE were a kind gift

from Dr Hidde L. Ploegh (Whitehead Institute for Biomedical

Research, Massachusetts Institute of Technology, Cambridge).

Conditional ligand was exchanged for SIINFEKL (OVA),

SIIQFEKL (Q4), SIIVFEKL (V4), SIIGFEKL (G4), SIIRFEKL

(R4), EIINFEKL (E1) or RGYVYQGL (VSV NP52-59) peptides

(Thermo Scientific). Streptavidin-APC or -PerCP (BD Pharmin-

gen) was used to reveal biotinylated antibodies. Samples were

acquired on a LSR Fortessa using DIVA (BD Biosciences) and

analysed with FlowJo (Tree Star, Inc.).

Statistical analysis
Data comparisons between groups were performed by an

unpaired two-tailed t-test or ordinary one-way ANOVA as

appropriate. Mean +/2 SEM and statistics were calculated with

GraphPad Prism Software. For limiting dilution analysis 95%

confidence intervals were determined as described [10].

PCR primers
Primers used for attaching each epitope to MuHV-4 M2 C-

terminus are detailed in supplemental Table S2.

Supporting Information

Figure S1 Characterization of MuHV-4 YFP recombi-
nants expressing OVA or APLs linked to M2. (A) PCR

analysis of recombinant viral DNA to confirm genome integrity in

the HinDIII-E region. High molecular weight DNA was purified

from lytically infected BHK-21 cells. A schematic representation of

the MuHV-4 genome, amplicon genomic coordinates and

expected size for each PCR product are shown. (B) Latent

infection in spleens of intranasally infected (104 PFU) BALB/c

(H2d) mice was quantified by explant co-culture assay (closed

symbols) at day 14 post-infection. Pre-formed infectious virus was

measured by plaque assay (open symbols). Latent loads of MuHV-

4 YFP recombinants expressing OVA or APLs were not

significantly different from MuHV-4 YFP (vWT) (p.0.05, by

ordinary one-way ANOVA followed by Dunnett’s multiple

comparisons test). Each point shows the titre of 1 mouse,

horizontal lines indicate arithmetic means and the dashed

horizontal line the limit of detection of the assay. Data were

reproduced in two independent experiments. (C) Phenotype of

infected cells (YFP expressing cells) was analysed by FACS, by

overlapping GC (CD19+CD95hiGL7hi) B cells and YFP+ B cells

FACS plots. Representative FACS plots from individual animals

are shown. Five animals were analysed per group and data were

reproduced in two independent experiments.

(TIF)

Figure S2 Reconstitution of TCRa2/2 mice with CD4+ T
cells leads to robust GC reactions upon MuHV-4
infection. 26106 CD4+ T cells purified from pooled lymph nodes

of naı̈ve C57BL/6 mice were intravenously transferred into age and

sex matched TCRa2/2 mice one day prior to infection with

103 PFU of MuHV-4 YFP (vWT). At 14 days post-infection mice

were sacrificed, spleens were dissected and single splenocyte

suspensions were stained for GC B cells and analysed by FACS.

(A) Schematic diagram of the experimental setting. (B) Represen-

tative FACS plots show the frequency of GC (CD19+CD95hiGL7hi)

B cells in spleens of the following experimental controls: non-

transferred naı̈ve TCRa2/2 mice, CD4-transferred naı̈ve

TCRa2/2 mice, non-transferred TCRa2/2 mice infected with

vWT, CD4-transferred TCRa2/2 mice infected with vWT, and

CD4 and OT-I T cells co-transferred TCRa2/2 mice infected with

vWT. Four mice were analysed per group and data were

reproduced in two independent experiments.

(TIF)

Figure S3 TCRa2/2 mice reconstituted with CD4+ and
OT-I T cells show robust proliferation of MuHV-4
infected GC B cells. CD4+ T cells from C57BL/6 lymph
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nodes and OT-I T cells from CD45.1 Rag-12/2 OT-I mice

lymph nodes were intravenously transferred to TCRa2/2 mice 1

day prior to infection with MuHV-4 YFP (103 PFU). (A)

Schematic diagram of the experimental setting. (B) Frequencies

of GC (CD19+CD95hiGL7hi) B cells. (C) Frequency of YFP+ cells

in GC B cells. (D) Phenotype of infected cells analyzed by

overlapping GC B cells and YFP+ B cells FACS plots.

Representative FACS plots from individual animals are shown

(top panels) and compiled percentages are presented in the

graphics below. Each point represents an individual mouse; grey

bars indicate the average percentage.

(TIF)

Figure S4 YFP expression in GC B cells of reconstituted
TCRa2/2 mice infected with MuHV-4 recombinants
expressing OVA or APLs. TCRa2/2 mice were adoptively

transferred with polyclonal CD4+ T cells and CD45.1 Rag12/2

OT-I cells one day prior to infection (103 PFU) with MuHV-4

YFP (vWT) or MuHV-4 YFP expressing the indicated epitopes. At

16 (A and B) and 21 (C and D) days post-infection spleens were

removed and analysed by FACS. (A and C) Frequencies of GC

(CD19+CD95hiGL7hi) B cells. (B and D) Frequency of YFP+ cells

in GC B cells. FACS plots show data obtained from pools of 4 or 5

spleens per group of animals.

(TIF)

Table S1 Reciprocal frequency of MuHV-4 infection in
total splenocytesa of reconstituted TCRa2/2 mice.

(DOC)

Table S2 Primers used for attaching each epitope to
MuHV-4 M2 C-terminus.

(DOC)
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Maternal retinoids control type 3 innate lymphoid
cells and set the offspring immunity
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The impact of nutritional status during fetal life on the overall health
of adults has been recognized1; however, dietary effects on the devel-
oping immune system are largely unknown. Development of second-
ary lymphoid organs occurs during embryogenesis and is considered
to be developmentally programmed2,3. Secondary lymphoid organ
formation depends on a subset of type 3 innate lymphoid cells (ILC3)
named lymphoid tissue inducer (LTi) cells2–5. Here we show that mouse
fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) sig-
nalling in utero, which pre-sets the immune fitness in adulthood.
We found that embryonic lymphoid organs contain ILC progenitors
that differentiate locally into mature LTi cells. Local LTi cell differ-
entiation was controlled by maternal retinoid intake and fetal RA
signalling acting in a haematopoietic cell-autonomous manner. RA
controlled LTi cell maturation upstream of the transcription factor
RORct. Accordingly, enforced expression of Rorgt restored matu-
ration of LTi cells with impaired RA signalling, whereas RA recep-
tors directly regulated the Rorgt locus. Finally, we established that
maternal levels of dietary retinoids control the size of secondary lym-
phoid organs and the efficiency of immune responses in the adult
offspring. Our results reveal a molecular link between maternal
nutrients and the formation of immune structures required for resis-
tance to infection in the offspring.

Haematopoietic cells that initially colonize secondary lymphoid organ
(SLO) sites include CD32c-Kit1IL-7Ra2a4b71CD11c1CD42 lym-
phoid tissue initiator (LTin) cells and the prototypical member of type
3 ILCs, LTi cells2–7. Although most LTi cells express CD4, this is a late
event in LTi differentiation and not all RORct1 LTi cells express this
marker5,6,8,9. Thus, we proposed that CD32IL-7Ra1a4b71ID21c-Kit1

CD11c2CD42 ILCs (hereafter called ILC4neg cells) receive local cues
giving rise to ID21RORct1CD41 LTi cells (LTi4) within developing
SLOs. Notably, enteric ILC4neg cells include mainly ID21RORct1CD42

LTi cells (LTi0) but also a small fraction of ID21RORct2CD42 pre-
cursors with LTi cell potential (hereafter called pre-ILC cells)9. In con-
trast, nearly 100% of lymph node ILC4neg cells are LTi0 cells (Extended
Data Fig. 1a, b). Analysis of embryonic day 12.5 (E12.5) guts revealed
that ILC4neg cells are the only appreciable IL-7Ra1 colonizing cells
(Fig. 1a, b). Accordingly, non-cycling mature Sca12 LTi4 cells increased
throughout development, seemingly at the expense of Sca11 ILC4neg

cells (Fig. 1a–c and Extended Data Fig. 1c). Further evidence that ILC4neg

cells differentiate locally was provided by organ cultures and trans-
plantation of E12.5 intestines. Despite absence of fetal liver output in
these settings, LTi4 cells increased with time at the expense of local
ILC4neg cells (Fig. 1d, e). Furthermore, in E14.5 Rorgt2/2 embryos,
ILC4neg cells were attracted to the intestine and lymph nodes, support-
ing initial anlagen colonization by these cells (Extended Data Fig. 1d, e).

Notably, RA stimulation of E13.5 lymph node cells showed increased
frequency of LTi4 cells and reduction of ILC4neg cells, indicating that
differentiation of LTi4 cells is regulated by RA (Fig. 1f). To confirm the
effect of RA in LTi differentiation in vivo, pregnant mice received a RA-
enriched diet starting at E10.5. Supplementation of RA increased the
proportion of LTi4 cells in the embryo, to the detriment of ILC4neg cells
(Fig. 1f). In agreement with this finding, provision of the RA signalling
inhibitor BMS493 to pregnant female mice resulted in a decrease of
fetal LTi4 cells despite normal frequency of fetal liver progenitors and
enteric haematopoietic cells (Fig. 1f and Extended Data Fig. 1f). Con-
sequently, despite normal embryo size, BMS493 administration led to a
reduction in lymph node dimensions and Peyer’s patch developmental
failure (Fig. 1g–i and Extended Data Fig. 1g). Collectively, our data indi-
cate that maternal retinoids control LTi cell differentiation within devel-
oping SLOs.

RA is a vitamin A metabolite that controls early vertebrate develop-
ment, some immune processes in adulthood, and has been shown to
mediate CXCL13 expression in fetal mesenchymal cells10–16. RA binds
to heterodimers formed by the RA receptors (RARs) and retinoid X
receptors (RXRs), which bind DNA RA response elements (RAREs)11.
To address putative RA cell-autonomous responses, we assessed RAR
and RXR expression in E15.5 ILC4neg, LTi4 and LTin cells. RARs and
RXRs were predominantly expressed by ILC4neg and LTi4 cells, whereas
LTin cells expressed these molecules at lower levels (Fig. 2a). RA stimu-
lation revealed that only ILC4neg and LTi4 cells respond robustly, as
shown by Rarb upregulation (Fig. 2b)16. Together, these data indicate
that impaired SLO development in BMS493-treated mice might be the
consequence of RA signal ablation in LTi cells. To test this hypothesis
we used a lineage-targeted model to block RA signalling. We used a
mouse line in which a truncated form of the RARa gene was knocked
into the ROSA26 locus preceded by a triple polyadenylation signal
flanked by two loxP sites (ROSA26-RARa403). This line was bred to
Vav-iCre mice that in contrast to other tested Cre lines ensured Cre
activity in fetal LTin, ILC4neg and LTi4 cells (Extended Data Fig. 2a–d)17,18.
Despite normal frequencies of fetal liver precursors, and SLO LTin,
ILC4neg and LTi0 cells, Vav-iCre/ROSA26-RARa403 embryos (Rar mice)
revealed a dose-dependent reduction of LTi4 cells (Fig. 2c, d and Extended
Data Fig. 3a–f). To assess whether the differentiation potential of ILC4neg

cells is controlled by RA thresholds, we cultured purified ILC4neg cells
from Rar heterozygous (RarHet), homozygous (RarHom) and wild-type
littermate control mice. Whereas wild-type ILC4neg cells upregulated
pro-inflammatory cytokines and chemokines and gave rise to LTi4 cells
in vitro, these were impaired proportionally to the degree of RA signal-
ling abrogation in ILC4neg cells (Fig. 2e, f and Extended Data Fig. 3g).
Finally, despite normal frequency of colonizing ILC4neg cells (Fig. 2d),
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NS, not significant.
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haematopoietic cell-autonomous impairment of RA responses resulted
in severely diminished fetal lymph node size and reduced number of
minute Peyer’s patches (Fig. 2g, h and Extended Data Fig. 3h). Our data
indicate that LTi cell differentiation is controlled by cell-autonomous
RA signalling in developing SLOs.

Previous reports have identified key LTi cell regulators2. Mice mutant
for the transcription factors ID2 and RORct lack LTi cells and do not
develop SLOs19,20. Runx1, Tox and Notch1 were also implicated in LTi
cell maturation9,21–23. We found that whereas most LTi-related genes
were normally expressed in RarHom and RarHet ILC4neg and LTi4 cells,
Runx1 was increased and Rorgt was reduced (Fig. 3a and Extended Data
Fig. 4a–d). Expression of pro-inflammatory genes was also reduced in
RarHom and RarHet ILC4neg and LTi4 cells (Fig. 3a and Extended Data
Fig. 4b–d). The marked reduction of Rorgt expression suggested that
RA could provide ILC4neg cells with signals leading to Rorgt regulation.
Accordingly, RA stimulation of ILC4neg cells resulted in Rorgt upre-
gulation whereas most other transcription factors were unperturbed,
notably Runx1 (Fig. 3b). In agreement, BMS493 inhibited RA-induced
Rorgt expression, and efficient block of RORct by digoxin prevented
RA-induced differentiation of ILC4neg cells into LTi4 cells, while cell
viability was unaffected (Fig. 3c and Extended Data Fig. 5a–c). To test
further whether RA-induced LTi maturation requires RORct, we deter-
mined if differentiation of RAR dominant-negative ILC4neg cells is
restored by enforced Rorgt expression. Retroviral transduction of Rorgt
revealed that RAR dominant-negative ILC4neg cells restored high levels
of pro-inflammatory genes and reacquired their potential to differen-
tiate towards LTi4 cells (Fig. 3d–f). Further evidence that RA can directly
regulate Rorgt expression was provided by computational analysis of
potential RARE sites and chromatin immunoprecipitation (ChIP) with
pan-RAR and RXR antibodies. RA stimulation resulted in increased
binding of RAR and RXR upstream and within the Rorgt locus (Fig. 3g, h
and Extended Data Table 1). To analyse the role of these sites we intro-
duced the RARE C (25,478 Rorg transcription start site (TSS)), E
(21,800 Rorg TSS) and G (21,619 Rorgt TSS) half-sites in a luciferase
reporter vector. Mutations in these sites resulted in significant reduc-
tion of the regulatory function of these elements as measured by lucif-
erase activity (Fig. 3i). Thus, cell-autonomous RA signalling provides
LTi cells with critical differentiation signals via direct regulation of Rorgt.

Our data indicate that mature LTi cell numbers regulate the size of
SLO primordia and may determine lymphoid organ size in adulthood24.
RarHet adult mice had reduced SLOs and lymphocyte numbers when
compared to their wild-type littermate controls (Fig. 4a, b and Extended
Data Fig. 6a, b). In agreement, mice that received a vitamin-A-deficient
(VAD) diet throughout life had reduced lymphoid organ size when com-
pared to vitamin-A-control mice (VAC) (Fig. 4c). However, because
RarHet and VAD lymphocytes are continuously exposed to altered levels
of RA signals, it is possible that SLO size might be a consequence of
altered lymphocyte pools12–15. To clarify this issue, we provided preg-
nant mice with a vitamin-A-high (VAH), VAD or VAC diet and switched
all diets to the same VAC diet after birth. At 10 weeks of age mice that
were exposed to a VAH diet exclusively in utero had larger SLOs, whereas
mice exposed to a VAD diet had small SLOs when compared to VAC
control mice (Fig. 4d). Notably, provision of variable vitamin A diet levels
exclusively after birth no longer controlled SLO size (Extended Data
Fig. 6c, d). Additional evidence that RA determines SLO size in early
life was provided by transplantation of CD45.1 wild-type bone marrow
into lethally irradiated RarHet (WTRRarHet) or wild-type (WTRWT)
CD45.2 littermate control hosts at 2 weeks of age (Fig. 4e). Thus, we
generated mice that pre- and perinatally received low input of RA sig-
nals in haematopoietic cells, but that on transplantation harbour a normal
wild-type haematopoietic system. WTRRarHet mice, which received
low RA cues in utero, exhibited small SLOs when compared to their
WTRWT counterparts at 8 weeks after transplantation (Fig. 4f, g and
Extended Data Fig. 6e, f). This phenotype also revealed reduced lym-
phocyte numbers, albeit normal SLO organization and similar haema-
topoietic cell reconstitution (Fig. 4h and Extended Data Figs 6f and 7a–d).
In agreement, dendritic cells from WTRRarHet or WTRWT chimaeras
had similar capacity to activate lymphocytes (Extended Data Fig. 7e, f).

Our data indicate that available RA in utero regulates the size of lym-
phocyte pools in the offspring, with possible consequences on their adap-
tive immune responses. To test this hypothesis, WTRRarHet or WTRWT
chimaeras were infected intranasally with murid herpesvirus-4, result-
ing in acute lung infection. Analysis of draining intrathoracic lymph
nodes revealed reduced expansion but normal frequency of CD81 T
cells specific for the viral epitopes ORF61 and ORF75c in WTRRarHet

mice (Fig. 4i and Extended Data Fig. 8a–c). Consequently, whereas
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Figure 3 | RA controls LTi cells via RORct. a, E15.5 ILC4neg cells. Data
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WTRWT chimaeras efficiently cleared lytic virus by day 10, high viral
titres were still detected in WTRRarHet chimaeras 14 days after infec-
tion (Fig. 4j)25. Thus, a deficit of RA signals within haematopoietic cells
in early life results in small SLOs and poor capacity to control infection.

Defining the requirements that control SLO development is essen-
tial to understand how immunity may be regulated. We now show that
RA controls LTi cells, regulating LTi pro-inflammatory genes and the
frequency of LTi4 cells (Extended Data Fig. 9). RA operates in a cell-
autonomous fashion, via RORct, although additional factors regulate
Rorgt in ILC3s.

SLO development has been considered to be developmentally pro-
grammed; we now show that formation of these structures can be also
controlled by dietary signals. Thus, in addition to the established impact
of dietary plant-derived chemicals in postnatal immune cells, our work
reveals dietary retinoids as key regulators of pre-natal ILCs with a lifelong
impact on adult lymphoid organ size26–28. It was previously shown that
complete absence of lymphoid organs leads to long-life virus persistence29.
Our data reveal that the efficiency of adaptive immune responses to
infection and possibly to other immune insults may be pre-tuned in
early life through dietary signals from maternal origin.

We report here that cell-autonomous RA signalling is a key axis for
Rorgt expression and LTi cell differentiation within developing SLOs.
Similarly, RA may also be important after birth in infection and chronic
inflammatory diseases30. Lineage-targeted strategies will be central to
elucidate the contribution of dietary retinoids in these outcomes.

METHODS SUMMARY
Mice were maintained at Instituto de Medicina Molecular (IMM) or VU Univer-
sity Medical Centre according to national and international guidelines. Bone marrow
cells were isolated from 8-week-old C57BL/6 CD45.1 mice and injected intravenously
into 2-week-old lethally irradiated CD45.2 ROSA26-RARa403Het (WTRRarHet)
or wild-type littermate controls (WTRWT). C57BL/6 female mice received either
vitamin-A-deficient (VAD), with no vitamin A (vitamin free casein), vitamin-A-
high (VAH, 25,000 IU kg21) or vitamin-A-control (VAC, 4,000 IU kg21) diets. Reti-
noic acid was provided to pregnant mice from E10.5 until they were euthanized.
Quantitative real-time PCR with reverse transcription (RT–PCR) was performed
as previously described6,7,10. Computational analysis was performed with TESS.
DNA–protein complexes were immunoprecipitated using antibodies against mouse
pan-RAR, pan-RXR or control IgG.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Figure 4 | Retinoid levels in utero determine the offspring resistance to
infection. a, Adult axillary (Axi), brachial (Bra) and inguinal (Ing) peripheral
lymph nodes (PLN). n 5 6. b, Peyer’s patch area and follicle number per Peyer’s
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VAH, n 5 40; VAD, n 5 63. e, Transplantation scheme. f, Chimaeric lymph

nodes. Scale bar: 1 mm. g, Dimensions of chimaeric lymph nodes. n 5 6.
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