
UNIVERSIDADE DE LISBOA

Faculdade de Ciências

Departamento de Informática

MOBILE SYSTEM-WIDE ASSISTIVE
TECHNOLOGY

André Filipe Pereira Rodrigues

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA

Especialização em Sistemas de Informação

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA

Faculdade de Ciências

Departamento de Informática

MOBILE SYSTEM-WIDE ASSISTIVE
TECHNOLOGY

André Filipe Pereira Rodrigues

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA

Especialização em Sistemas de Informação

Trabalho orientado pelo Prof. Doutor Tiago Guerreiro

2014

Acknowledgements

In one year my life turned upside down. From the student that relies on his parents

for tuition and support, to the researcher, part-time teacher, student and independent

individual. I would like to thank first are foremost my thesis adviser Doctor Professor

Tiago Guerreiro for taking me under his wing and guiding me through this journey that

is the master degree. My family for supporting me throughout the years, by providing

stability and the opportunity to pursue my desires. They were always a motivational force

in my life and will always be. I own them my drive to accomplish any goals I set out to.

To Ana my girlfriend that accompanied me throughout my academic journey for being

there whenever I needed. I thank her for making me growth for giving me the occasional

motivational “slap” that I needed and for dragging me out of the house ever so often. To

my colleagues that through the year check up on me and help me with my academic

pursuits. Five years ago I made a choice to enrol in FCUL and I do not regret a moment

of it. A thank you to the institution for being the perfect place for my first five years of

my academic course. Thank you to the Lasige research group that received me with open

arms and provided me with the tools and opportunities to succeed. To the friends that

went out of their way to check up on me and help me clear up my head and enjoy myself

over the year. Last but not least, to the Fundação Raquel and Martin Sain, in particular to

Dr. Carlos Bastardo, Miguel and his parents for without them this work would not be

possible.

To my parents.

Resumo

Hoje em dia o uso do telemóvel é fundamental em diversos aspetos da nossa vida.

Tornou-se uma ferramenta essencial para a comunicação, convívio, consulta de

informação e até mesmo para o entretenimento. Os telemóveis tornaram-se mais do que

simples ferramentas para fazer chamadas e receber mensagens. Eles são os nossos

assistentes pessoais, são a forma como nos mantemos em contacto com os nossos amigos

e colegas, e muito mais.

Infelizmente, os sistemas operativos destes dispositivos ainda apresentam muitas

debilidades em termos de acessibilidade. No entanto, as suas capacidades representam

uma enorme oportunidade na criação de tecnologias assistivas. Os sistemas operativos

móveis não são suficientemente adaptáveis e configuráveis para pessoas com múltiplas

deficiências poderem usufruir deles. Na verdade, nas últimas versões dos sistemas

operativos móveis mais populares (iOS e Android) tem sido feito um esforço para incluir

mais opções de acessibilidade. No, entanto ainda não são o suficiente para suportar todo

o tipo de necessidades.

Uma das abordagens possíveis para permitir o uso das aplicações por pessoas com

deficiências passa pela criação de aplicações acessíveis. No entanto, esta abordagem não

é escalável e enfrenta graves problemas. Ao fazermos apenas a aplicação acessível

estamos a limitar o utilizador a apenas essa aplicação, em vez de estarmos a criar as

ferramentas que permitem o controlo e acesso total do sistema á semelhança de um

utilizador sem deficiência. Estas aplicações têm usualmente preços elevados, justificados

pelo longo desenvolvimento em tecnologias que não serão usadas pelas massas. O

problema das aplicações acessíveis é a especificidade da aplicação. Quando tornamos

uma aplicação acessível a utilizadores cegos não estamos a torná-la acessível a

utilizadores com deficiências motoras. O problema cresce quando começamos a ter em

consideração utilizadores com múltiplas deficiências. A nível aplicacional é

extremamente dispendioso criar uma aplicação acessível a utilizadores com múltiplas

II

deficiências. A preocupação é: ao tornamos uma aplicação acessível vamos torná-la

acessível a que conjunto de deficiências ou pessoas? Devido à enorme variedade de

requisitos de acessibilidade, é necessário todo um sistema configurável e adaptável.

Existem muitos estudos na área das tecnologias assistivas, a maioria delas tem

como foco a acessibilidade do Desktop. É fundamental para a integração de pessoas com

algum tipo de deficiência o acesso a um computador. Hoje em dia é necessário mais do

que isso, é também necessário permitir o acesso ao telemóvel. Os smartphones têm

imensas possibilidades de uso como tecnologias assistivas. Podem permitir desde o

acesso á internet, ao controlo de uma cadeira de rodas, ou até ser um controlo remoto do

ambiente em volta do individuo (televisão, ar condicionado, eletrodomésticos, etc).

Atualmente, se desenvolvermos periféricos com o objetivo de controlar um

smartphone vamos deparar-nos com uma enorme quantidade de restrições. Para

desenvolver tecnologias assistivas realmente usáveis e abrangentes, é necessário ter

acesso a dois níveis de controlo, nível aplicacional e nível de sistema. No entanto, nos

dispositivos móveis não temos acesso ao nível de sistema, apenas os produtores do

Sistema Operativo (SO) o têm. É necessário criar uma camada intermédia que consiga de

alguma forma ter acesso a informações de sistema de forma a possibilitar um controlo

preciso e fino sobre todos os eventos de entrada e saída de dados.

Esta dissertação encontrou motivação no caso do Miguel. Miguel é um individuo

com múltiplas deficiências que enfrenta severas dificuldades para interagir com o seu

telemóvel. O trabalho desenvolvido foi em grande parte motivado pelas dificuldades

diárias que ele enfrenta em manter-se socialmente ativo e com o maior nível de

independência possível. Com as tecnologias atuais, o Miguel está debilitado e não

consegue usufruir de todas as capacidades do seu dispositivo. Assim, estabelecemos

como objetivos criar uma tecnologia que permitisse: controlo total a nível de sistema dos

mecanismos de entrada; desenvolvimento ágil de tecnologias assistivas; suporte a

utilização de tecnologias assistivas externas; criação de soluções extensíveis e adaptáveis;

controlo sobre o conteúdo e navegação a nível de sistema.

Nesta tese apresentamos SWAT, uma biblioteca extensível e adaptável que

permite o acesso ao nível de sistema aos conteúdos e à informação dos eventos de entrada.

A biblioteca foi desenvolvida para Android e providencia uma plataforma estável sobre

III

a qual é possível estender e adaptar as suas capacidades. Com SWAT, os programadores

têm a possibilidade de aceder a eventos de baixo nível e a funcionalidades que não teriam

de outra forma. Este controlo permite superar as barreiras impostas pelo tradicional

sistema operativo móvel e abre as portas à criação de tecnologias assistivas mais

adaptáveis e baratas. A Biblioteca possui uma API (Interface de Programação de

Aplicações) simples que providencia tudo o que é necessário para um fácil acesso a estas

funcionalidades.

Esta tese tem como principais contribuições:

 Biblioteca SWAT: permite a criação de tecnologias assistivas de forma rápida e

eficaz, com controlo sobre o conteúdo e eventos de entrada de baixo nível.

 Macros assistivas: uma aplicação que permite gravar e reproduzir macros num

sistema operativo móvel;

 Logger: um mecanismo de gravação a nível de sistema;

 Auto-Nav: um protótipo aplicacional que permite varrimento automático das

opções disponíveis num telemóvel de forma a permitir o acesso via interruptor;

 Leitor de ecrã multi-toque: um leitor de ecrã que permite feedback auditivo de

vários pontos em simultâneo.

Com o objetivo de validar a biblioteca criada, apresentamos dois casos de estudo onde

reportamos duas aplicações criadas recorrendo à mesma. A primeira tem como foco o

caso do Miguel, um utilizador com múltipla deficiência. À data da introdução desta nova

aplicação o Miguel apenas conseguia aceder a uma aplicação desenhada especificamente

para ele e nada mais. Neste caso de estudo reportamos a tecnologia desenvolvida para

permitir ao Miguel aceder a qualquer aplicação do sistema assim como uma avaliação

informal com ele e os seus pais. No segundo caso de estudo validamos a biblioteca pela

criação de um leitor de ecrã multi-toque a nível de sistema. Foi feito um estudo com 30

utilizadores cegos numa tarefa de entrada de texto onde resultados foram analisados e

reportados. Os resultados obtidos sugerem que pessoas cegas podem beneficiar de

interfaces que aproveitem de forma mais eficiente os ecrãs multi-toque e que aproximem

o seu uso do já realizado em interfaces físicas (teclado tradicional).

Com este trabalho, demonstramos as limitações impostas pelos sistemas operativos

móveis na área de tecnologias assistivas. Desenvolvemos uma Biblioteca para dar

resposta a estas restrições providenciando uma base de trabalho para futuras aplicações e

tecnologias assistivas. Com os casos de estudo, mostrámos as capacidades do sistema

IV

desenvolvido. SWAT é uma biblioteca prometedora oriunda deste trabalho e começa a

ter ramificações nesta e outras áreas de desenvolvimento.

Palavras-chave: Acessibilidade, “System-wide”, Tecnologias, Assistivas, Telemóvel

V

Abstract

Mobile devices are a fundamental tool in different aspects of our lives. In the last

decade, we have witnessed an explosion of the capabilities of our mobile devices. With

these improvements, they became more valuable to us than the old house phones. They

no longer serve only the purpose of making/receiving calls and text messages. They are

our personal assistant, our way to connect to the social media, our multimedia

entertainment and much more. Indeed, they are also, and increasingly more so, the

prevalent communication artifact at one’s disposal. Mobile operating systems have

evolved to provide increasing accessibility capabilities. However, mobile application

developers are still restricted to deploy custom-made accessible applications or to extend

limited and stereotyped accessibility services. In current mobile devices if we develop an

external peripheral to control the device we will face several restrictions since there is not

a system-wide service that a developer can access to create its own input method. A

regular user has the ability to navigate and explore the device without limitations. In order

to truly give disabled people the same features as other users have, we need to create a

system-wide accessibility service that allows users to freely navigate and interact with

their devices. Motivated by the limitations described above we set out to provide more

control over the system input and output mechanisms to allow the creation of powerful

system wide assistive technologies. We developed SWAT (System-wide Assistive

Technologies) for the Android platform. To validate our system we performed one case

study with a multi-impaired person and another one with 30 blind users. Results showed

that SWAT enabled the creation of application tailored to their needs and thus fostering

their inclusion.

Keywords: Mobile Accessibility, Assistive Technologies, Extensible, Framework, I/O.

VI

VII

Content

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Mobile Accessibility ... 2

1.3 Mobile System-Wide Assistive Technologies .. 5

1.4 Contributions .. 7

1.5 Publications .. 7

1.6 Document Overview ... 8

Chapter 2 Related Work... 9

2.1 Assistive Technologies ... 9

2.2 Control interfaces ... 10

2.2.1 Touch ... 11

2.2.2 Speech ... 12

2.2.3 Switches and keyboard .. 12

2.3 Adaptable Interfaces ... 12

2.4 Mobile accessibility solutions .. 13

2.4.1 iOS Accessibility ... 14

2.4.2 Android.. 15

2.5 Interaction Logging .. 17

2.6 Discussion ... 18

Chapter 3 Enabling Mobile System-Wide AT ... 21

3.1 Use Case Scenarios ... 21

3.2 Android Operating System ... 23

3.3 SWAT ... 25

3.3.1 System Requirements .. 25

3.3.2 System Architecture .. 26

3.3.3 Specific Components: ... 32

3.3.4 Native features... 37

VIII

3.3.5 Using SWAT ... 40

Chapter 4 Multi Impairment Case Study ... 45

4.1 Previous solution: Easy Phone ... 45

4.2 Our solution: Auto-Nav .. 46

4.2.1 Navigation ... 46

4.2.2 Notifications .. 47

4.2.3 Call management ... 47

4.2.4 Text-Entry ... 47

4.2.5 Filtering ... 48

4.2.6 Assistive Macros ... 48

4.3 Leveraging SWAT .. 49

4.3.1 Content .. 49

4.3.2 IO input ... 50

4.3.3 External Control .. 50

4.3.4 Notifications .. 50

4.3.5 Control Interface ... 50

4.3.6 SWAT Keyboard ... 51

4.4 Case Study .. 51

4.4.1 Procedure ... 51

4.4.2 Tasks.. 53

4.4.3 First Session .. 53

4.4.4 Second Session .. 55

4.5 Conclusion and Future directions ... 56

Chapter 5 SWAT Screen Reader ... 59

5.1 SWAT Reader .. 60

5.1.1 Limitations .. 62

5.1.2 Leveraging SWAT .. 64

5.2 Study – Bi-Manual text entry evaluation .. 66

5.2.1 Approach ... 67

IX

5.2.2 Evaluation.. 68

5.2.3 Participants .. 68

5.2.4 Apparatus .. 69

5.2.5 Procedure ... 69

5.2.6 Design and Analysis .. 71

5.2.7 Results ... 71

5.2.8 Discussion ... 76

5.3 Conclusion and Future Directions .. 76

Chapter 6 Conclusions ... 79

6.1 Other Applications .. 81

6.2 Limitations .. 81

6.3 Future Prospects ... 82

Chapter 7 Bibliography .. 83

Appendix – Tutorials .. 87

7.1 Adapt Tutorial .. 87

7.2 Content Tutorial .. 88

7.3 IOReceiver Interface Tutorial ... 89

7.4 Receivers Tutorial... 90

7.5 Wi-fi Control Tutorial .. 91

X

XI

Figure List
Fig. 1 - Switches ... 10

Fig. 2 - iOS accessibility settings .. 14

Fig. 3 - Mobile Accessibility app .. 16

Fig. 4 Tecla Overlay ... 16

Fig. 5 - Android Architecture .. 23

Fig. 6 - Talk Back accessibility service .. 24

Fig. 7 -SWAT package View .. 26

Fig. 8 - Core Controller preview ... 28

Fig. 9 - SWAT Accessibility Service .. 29

Fig. 10 - Content Update Sequence Diagram ... 29

Fig. 11 - Control Devices Architecture ... 31

Fig. 12 – Starting the monitoring process ... 31

Fig. 13 - Monitoring sequence .. 32

Fig. 14 - Raw data ... 32

Fig. 15 - Touch Recognizer... 33

Fig. 16 - SWAT Keyboard .. 34

Fig. 17 - SWAT Observers ... 34

Fig. 18- Control Interface.. 36

Fig. 19 - Logger class .. 37

Fig. 20 - Macro Architecture... 39

Fig. 21 - Macro recording process .. 40

Fig. 22 - Service preference configuration ... 41

Fig. 23 - On receive SWAT init .. 41

Fig. 24 - Initialising the Touch Controller .. 42

Fig. 25- Using the TPR ... 42

Fig. 26 - Handle touch .. 43

Fig. 27- Auto-Nav system ... 46

Fig. 28- Auto Nav Implementation ... 49

file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611001
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611002
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611003
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611004
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611005
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611006
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611007
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611008
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611009
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611010
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611011
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611012
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611013
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611014
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611015
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611016
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611017
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611018
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611019
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611020
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611021
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611022
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611023
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611025
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611027
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611028

XII

Fig. 29 - Miguel interacting with a smartphone with a mouse controller working as

a single switch. ... 52

Fig. 30 - Home screen ... 53

Fig. 31 - SWAT Reader implementation .. 64

Fig. 32 – Touch recognition process ... 64

Fig. 33 - Text entry application ... 66

Fig. 34 - User experience with QWERTY text entry method on a touch device ... 68

Fig. 35- User experience with QWERTY text-entry method 69

Fig. 36 - Words per Minute ... 71

Fig. 37- Words per minute evolution .. 72

Fig. 38 - MSD Error Rate.. 72

Fig. 39 - Average time with 1 or 2 active points... 73

Fig. 40 - Number of active touches in the multi touch session 73

Fig. 41 - Number of active touches in a multi touch session 74

Fig. 42 - Touch distribution 1 ... 74

Fig. 43 - Touch distribution 2 ... 74

Fig. 44 - Debriefing questionnaire .. 75

file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611029
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611029
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611030
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611031
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611032
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611033
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611034
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611035
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611036
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611037
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611038
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611039
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611040
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611041
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611042
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611043
file:///C:/Users/andre/Dropbox/mSWAT_Andre_Rodrigues/tese/TESE_SWAT_rev.docx%23_Toc397611044

1

Chapter 1 Introduction

Mobile devices are a fundamental tool in different aspects of our lives. In the last

decade, we have witnessed an explosion of the capabilities of our mobile devices. With

these improvements, they became more valuable to us than the old house phones. They

no longer serve only the purpose of making/receiving calls and text messages. They are

our personal assistant, our way to connect to the social media, our multimedia

entertainment and much more. Indeed, they are also, and increasingly more so, the

prevalent communication artifact at one’s disposal.

1.1 Motivation

In the latest years we have witnessed the growth of the market share of smartphones.

From the 6 billion mobile subscriptions worldwide, 1 billion are smartphones and it was

estimated that in 2013 1 billion smartphones were sold, meaning that one-third of the

mobile subscriptions are smartphones1 (i.e. sold devices normally replace old ones).

Users are greatly empowered when they have full access to such device. Being

deprived of such commodity can have a negative impact in ones’ social life. This is an

extremely important factor especially if we focus on users with some kind of impairment.

Conversely, acquiring access to such devices can empower their users in so many ways

going beyond the frontiers of the device (e.g., controlling other devices).

Mobile devices are now coupled with a set of input, output and communication

capabilities that can potentially allow for the adaptation to their users’ capabilities and

needs. Unfortunately, the Operating Systems (OS) of these devices suffer from a lack of

accessibility options. They do not provide enough customizations to allow different types

of disabled people to properly interact with the devices. Mobile operating systems have

1 http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/e, Last visited in 26/08/2014

2

evolved to provide increasing accessibility capabilities. However, mobile application

developers are still restricted to deploy closed custom-made accessible applications or to

extend limited and stereotyped accessibility services. This is especially true when

developing for people with multiple impairments [23].

We already faced a similar problem when the personal computer became a

mainstream technology. Nowadays personal computers are almost fully accessible given

the right set of assistive technologies. The main issue with mobile devices is the lack of

support for the creation of system-wide solutions. The personal computer (PC) already

went through the process of providing system-wide tools that allow assistive technologies

to have full system-wide control over the system. They can, for example, emulate the

mouse and keyboard behaviour in order to control all applications on the desktop. Such

is still not possible in mobile OS.

Studies about mobile accessibility stress its limitations compared with the desktop.

One particular study delves deep into the problem behind it focusing on people with

multiple disabilities [22]. In this study the main problem reported is the lack of

interoperability and extensibility of the mobile OS. Unlike desktop OS, mobile ones only

have system-wide assistive technologies that are created by manufacturers. This means

that developers are only given the chance to develop assistive technologies at an

application level which lacks the proper permissions to take over the input and output

systems. It is argued that mobile OS lack the proper system-wide layer in order to permit

people with multiple disabilities to properly parameterize the device to their specific

needs.

1.2 Mobile Accessibility

Currently there are two major approaches towards mobile accessibility. Creating a

custom-made application or resorting to a system-wide solution. Custom-made

applications seek to replace all the look and feel of the device. This is the case of

applications like Mobile Accessibility2 or the one reported by Nicolau et al [22]. These

types of solutions have the advantage of being tailored specifically for a target audience,

which guarantees to a certain degree an improved user experience to those that fit the

2 http://www.codefactory.es/en/products.asp?id=433, Last visited in 26/08/2014

3

aimed stereotype. However, they lack the extensibility and adaptability to cover users

with a different set of (dis)abilities. By creating a single or a set of applications

specifically designed for a group of users we are consciously neglecting all other users

with different abilities. Developing applications to users with different abilities from

scratch is a costly and time consuming process. Furthermore, in a time where new

applications are available every day, creating custom-made access tools is too restrictive

for the user as novel versions of the access tool are needed every time a new functionality

is desired.

The first steps in mobile accessibility were taken by feature phones, for example,

Nuance Talks3 is a screen reader with zoom option that allows blind and low-vision

impaired individuals to take advantage of the same applications sighted people use. Blind

users had now the opportunity to buy a wide variety of phone models and were no longer

restricted to the expensive custom-based solutions. With the shift from feature phones to

smartphones it is crucial to continue research and development in the accessibility area.

Smartphones provide a different set of challenges then its ancestor. While feature phones

possess physical keys that usually have navigational keys (e.g. up, down) the same cannot

be said about smartphones. The lack of physical cues and navigational keypad are the one

of the first challenges of smartphone accessibility that especially blind users face.

In the quest for mobile accessibility system-wide solutions, the advent of Apple’s

iPhone is a relevant mark. Since the introduction of the system-wide screen reader by

Apple (i.e. VoiceOver4), all the major mobile operating systems have started taking

advantage of the device’s potential and have been coupled with successful accessibility

features (e.g., Zoom3, TalkBack5, Switch Control6, Narrator7). These are all services

developed by the OS developers.

Only a couple of accessibility solutions are not, in fact create by them. As an

example, TeclaAccess is an input method that is able to provide a different navigation

mechanisms (i.e. it allows up/down/left/right navigation scheme paired up with a switch

controller). Despite these solutions success and possible parameterizations, they are

3 http://www.nuance.com/for-individuals/mobile-applications/talks-zooms/index.htm , Last visited in 26/08/2014

4 https://www.apple.com/accessibility/ios/ , Last visited in 26/08/2014
5 http://developer.android.com/design/patterns/accessibi lity.html , Last visited in 26/08/2014

6 http://support.apple.com/kb/HT5886 , Last visited in 26/08/2014
7 http://www.microsoft.com/enable/products/windows8/ , Last visited in 26/08/2014

4

heavily stereotyped making assumptions about their possible users. They tend to focus on

one kind of disability which leads them to neglect users with multiple disabilities.

Other developers are restricted in their approaches towards mobile accessibility.

They can create custom-made solutions that replace the device core applications and have

full control of the system, but by doing so, they limit the device use to those applications.

Unlike the iOS (Apple mobile OS) and Window Phone 8, Android developers are able to

develop Input Methods which relies on making existing applications accessible by

providing different means of navigation and input. Unfortunately they are restricted to

simple types of navigation and do not possess on screen content information. Developers

can also create their own system-wide accessibility services. In Android 4.0+ systems,

one can implement an accessibility service and adapt the way in which the content is

presented to the user. The accessibility services provide the much needed content

information. As an example, TalkBack allows a blind person to painlessly explore the

screen by touching it. Selection is made by double-tapping or split-tapping, or by

releasing the finger from the screen in advanced mode.

Accessibility services can access the onscreen view hierarchy, accessibility events

and perform system wide actions through the accessibility APIs (e.g. back, click on an

icon). They operate in between application and system levels, and by doing so, allow

developers to be aware of system-wide context changes (i.e. changes that trigger

accessibility events). For example, every touch triggers an accessibility event, all the

registered accessibility services will be notified of the event. Through this event we are

able to access all the view objects.

Unfortunately accessibility services still present several drawbacks. One major

issue is they are still largely unexplored. This leads to a lack of support for the creation

of technologies that take full advantage of the services capabilities. Accessibility APIs

are complex and are nothing short of a challenge when trying to develop any kind of

assistive technology. For example, to access the current on screen content, the

accessibility service created will receive an accessibility event. Through this event we are

able to get the source node, through this node we are able to get both its parent and its

children. By navigating through these nodes we are able to create the full hierarchical

view of the screen. This type of information should be easily attained through the APIs

and not through a multiple step process.

5

 Accessibility services are difficult to master and are mostly focused on the

contents presented: the relationship between content and input control is overlooked.

TalkBack provides little control over input. It is mostly a single touch interface with a

handful of pre-conceived gestures that trigger special events. One problem is that the set

of gestures we are able to detect through an accessibility service are predefined. As such,

it restricts the developer options when it comes to input. They are only able to redefine

the command associated with the gesture and not the gesture itself. They have no control

over touch events, they cannot monitor, block or inject them system-wide. Touch events

are only available at an application level for developers which makes it conventionally

impossible to create system-wide solutions that require touch adaptation. For example,

developers are not able to create multi-touch accessibility services at will. As an example,

why should not developers be able to create a multi-touch screen reader? A screen reader

that could simultaneously read multiple selections. Or create a system-wide gesture

recognizer? As another example, although several adaptation models for touch screens

have been devised [3, 5]) these limitations make it impossible for them to be deployed

system-wide in a mobile device.

1.3 Mobile System-Wide Assistive Technologies

Miguel is a multi-impaired users that faces severe limitations when interacting with a

mobile device; his case is reported in Chapter 4. Motivated by his struggle and the

limitations described above we set out to provide more control over the system input and

output mechanisms to allow the creation of powerful system wide assistive technologies.

We developed SWAT (System-wide Assistive Technologies) for the Android platform

due to its open source nature, system wide capabilities and market share. In order to

achieve our goal we focused in creating a Library that would accomplish the following

objectives:

 Full system wide control of input mechanisms (e.g. touch screen);

 Easy and fast development of assistive technologies tailored to the user’s

capabilities and needs;

 External assistive technology support;

 Creation of inexpensive and adaptable solutions;

 Full system wide control over content and navigation;

6

SWAT is a library that aims to be the go to tool for system wide applications with a

special focus on assistive technology development. The struggles of developers when

faced with a situation such as Miguel, where the only solution was the creation of custom

made applications, are no longer. With SWAT, developers are able to access low-level

events and functionalities; this access allows developers to create system wide assistive

technologies that overcome the limitations described in the previous section. Combining

this with a simple to use API greatly improves the development process. SWAT works as

an Accessibility Service in order to have control over current onscreen content.

This is the basis for the creation of system-wide solutions. SWAT is coupled with

some key modules/features that are possible by using the combining power of

accessibility services and low level event information:

 System Wide logging mechanism

o Logging navigation steps - what was touched (e.g.

“Settings/Applications”)

o Logging user interaction - where did the user touched (e.g. “down x:50

y:50”)

 Control Interfaces – provides fundamental navigation mechanisms for the creation

of assistive technologies (i.e. touch icon, highlight icon, navigate to next)

 External Device Control – provides the tools to navigate the device relying on an

external;

 Assistive Macros – recording and automation of user interactions system-wide

These modules will be described in depth the third chapter.

SWAT8 is an Android Library, this enables developers to develop based on the

framework, extending its contributions. We provide a couple of interfaces that ensure full

and easy control of the system. By extending these interfaces developers are able to

customize and adapt their solutions. At its core it is an extensible library that strives to

allow complete control over input and content.

8 https://github.com/AndreFPRodrigues/Mswat , Last visited in 04/09/2014

7

1.4 Contributions

Users are greatly empowered when they have access to smartphone. There is a lack of

system-wide approaches to mobile accessibility due to some severe OS restrictions. More

so the assistive technology field tends to approach accessibility in a disability by disability

case with custom solutions to specific users, this leads to an inflation in cost and the

neglecting of users with multiple disabilities. Our main contributions with this

dissertation are:

 SWAT Library: an extensible library for developers that enables the creation

of solutions with an extreme focus on assistive technology, by proving a finer

control over input and content on a system wide basis. With a simple API that

accelerates the development and the cost effectiveness of integrating and

creating new assistive technologies;

 Assistive Macros: an application rooted in the SWAT library that enables the

recording, reproduction and management of macros on a mobile device. Through

it we can create shortcuts that can overcome accessibility barriers of some

interfaces;

 Logger: a system wide logging mechanism that allows third party developers to

rely on SWAT for all the logging needs. Its system wide capabilities allows the

logging across all application and menus, with the ability to log touches and

context;

 System-Wide Scanning Control Prototype: using SWAT we developed an

auto scanning system that enables a multi impaired user to navigate any and all

applications on a smartphone using an external device;

 Multi-Touch Screen Reader Prototype: using a spatialized audio library [15]

in conjunction with SWAT, we developed a multi-touch screen reader with

simultaneous feedback. It is an exploratory system with multiple layout divisions

and audio feedback options that was used to perform a multi touch text-entry

study on a tablet device;

1.5 Publications

The contributions provided in this dissertation were accepted for publication in one

international peer-reviewed conference:

8

 André Rodrigues, Tiago Guerreiro, “SWAT: Mobile System-Wide Assistive

Technologies”, HCI 2014 - 28th International British Computer Society Human

Computer Interaction Conference, SouthPort, UK, September, 2014 (CORE A

conference)

1.6 Document Overview

Assistive technology has great potential use when coupled with a mobile device. In

this dissertation we focus our attention developing a library that allows the creation of

system wide assistive technologies in mobile devices. In the next chapter we report the

different kind of control interfaces with a closer look at the ones used in the latter chapters.

We review the state of the art of accessibility features of the current top 2 market

shareholders in the mobile device space with a detailed analysis on the Android platform

for which our system was developed. We also report solution in the adaptable interface

and logging interaction fields as groundwork for the system features and discussions that

ensue in the later chapters. The amount of information acquired both at the presentation

and input level along with the capability to simulate and inject events into the OS pave

way for several scenarios where SWAT can be useful for application developers and

researchers. In the fourth chapter we will present SWAT followed by two studies made

possible only through the use of SWAT. This chapter presents the library developed with

a detailed description of its architecture and features, it serves as introduction to

developers who wish to work with SWAT and understand its underlying mechanisms.

From it we understand the baseline from which the two system developed for the studies

spawned. In section 4.4 we present the case of the Multi-Impaired user that motivated this

dissertation. We did a formal evaluation of the system developed that motivated us to

pursue the approach, refine it and use it in different accessibility fields. Chapter 5 we

report the use of SWAT to create an exploratory multi-touch screen reader. The system

was used to evaluate blind user performance in a text-entry task. We conclude with

Chapter 6 where we look how SWAT is being used in other research fields, we discuss

the limitations associated with our approach and outline steps for future research.

http://www.di.fc.ul.pt/~tjvg
http://www.di.fc.ul.pt/~tjvg/amc/mswat/swat.pdf
http://www.di.fc.ul.pt/~tjvg/amc/mswat/swat.pdf

9

Chapter 2 Related Work

Mobile assistive technology is still in its early stages when we compared it with the

desktop one. In this chapter we make a brief introduction to the concept, range and

consequences of assistive technologies. Control interfaces are a fundamental part of these

technologies, as such, we take a closer look at several types namely touch, speech and

switch and how they are being used in the mobile context. We cannot mention assistive

technology and overlook the work done with adaptable interfaces. They are one approach

towards an inclusive design that takes into account user abilities. We then review the state

of the art of accessibility features of iOS and the Android platform. Interaction logging is

a crucial problem of any HCI research, assistive technologies are no different. The

problem grows when we take into account the limitations developers have in logging and

simulating these technologies actions. We conclude the chapter with a discussion of the

current deficiencies of the mobile OS’ and how they can be met.

2.1 Assistive Technologies

Assistive technologies (AT) come is many different sizes and shapes. They can be

everything from a walker or a cane to a computer controlling a wheelchair. AT is a

concept that includes assistive, adaptive and rehabilitation devices. All these devices have

two things in common, they all have the same goal: to promote user independence, self-

esteem and over-all quality of life; and they are aimed at people with some sort of

impairment, either permanent or temporary. These impairments or deficits can be

physical, mental or emotional. There are hundreds of assistive technology devices

available, each has its own purpose and target audience.

The increasing availability of mobile technologies provides a more affordable

assistive technology solution for many people with disabilities. Nowadays mobile devices

are extremely powerful, with them we are able to virtually do everything a personal

computer was able to do a few years ago. The ability to operate a computer is crucial,

especially to people with disabilities. If they can properly control a computer it means

they can do everything a computer allows them to do. Smartphones and tablets are nothing

less than a small powerful computer.

10

When developing an assistive technology that allows disable people to properly

operate a smartphone we are in fact giving them a tool that is a jack of all trades. They

will be able to access the Internet, send/receive calls and text message, access social

networks, listen to music, watch a movie, play games, with the appropriate adaptations,

even use them as environmental controllers around the house or even controllers for a

powered wheelchair. Using a mobile device instead of a PC to provide all this features to

a disable individual has obvious benefits in terms of mobility.

2.2 Control interfaces

“According to (Cook and Hussey, 2002), the human/technology interface is

composed by three elements that contribute to the operation of the device: the control

interface, the selection set and the selection method.” [10]

The control interface is the hardware used to interact with the device (e.g.

keyboard, mouse, switch Fig. 1), the selection set is the list of selectable items while the

selection method or interface scheme is how the user selects using the control interface.

There are two types of interfacing schemes: direct selection and indirect selection.

Direct selection is the one we normally use to interact with an interface. There is a one to

one correspondence between what we input and what it is selected on the screen. Clear

examples of this are the mouse and the keyboard. This method is usually faster and more

accurate than its counterpart. Direct selection relies on the user to properly operate the

control interface in order to be accurate. This poses a problem if an individual has some

sort of physical impairment that inhibits his ability to use the control interface to its full

potential.

Fig. 1 - Switches

11

Indirect selection provide us with alternatives for people that cannot properly

operate a direct selection interface scheme. It relies on techniques such as scanning and

coded access in order to provide the user with all selection alternatives.

Scanning offers a solution to those who are only able to operate a switch. The

selectable items are sequentially focused and can be selected by pressing the switch (i.e.

in a one switch, auto scanning setup). Scanning is an interaction method that mostly

addresses people with severe motor impairments. It can be used across many different

context such as personal computers, mobile devices, and environmental control for smart

homes and ambient intelligence environments [23].

2.2.1 Touch

With the rise of touchscreens different problems and opportunities emerged.

Traditional input methods (e.g. keyboard, mouse, and keypad) require some strength in

order to be operated and provide great precision when handled properly. Due to its

properties, touchscreens are a lot less physically demanding than keypads. However,

touchscreens suffer from a lack of relief, which makes it harder for people to accurately

select their targets, particularly disable people [28]. The accessibility of mobile devices

depends on the correct use of the touchscreen. The touchscreen provides us with a

platform less physically demanding than traditional input methods and opens a door for

new systems that may benefit people with motor disabilities that lack both strength and

control on their upper limbs [14]. Touchscreens lack the physical cues physical keyboards

provide but the lack of a physical input also presents itself as an advantage. If input is not

reliant on physical key it means we can adapt it, as an example, we can personalise

keyboard layout and use classification models to interpret key presses in order to

dynamically adapt to each user’s typing patterns [6]. Part of the problem is to understand

each user’s needs and adapt accordingly. In a study by Guerreiro et al [16] it is showed

“that tetraplegic users are likely to benefit from a better understanding of their abilities

and challenges”. Allowing the customization of input would not only improve

accessibility of simple tasks like navigation but would also have impact on complex ones

like playing a game [17]. As an input method, touchscreens should be customizable and

personalisable. We should be able to adapt and configure its properties across the system.

Currently that is only possible at an application level.

12

2.2.2 Speech

There are two major approaches to speech interfaces, one is to have a speech

recognizer that allow the user to directly select by saying the proper command to that

particular selection. The second it tries to mimic the mouse and/or keyboard [5, 28, 19].

An effective speech-based interaction must provide both support for text entry and cursor

control.

Although a speech-based solution is a valid input mechanism, it is still in many

ways inferior to the traditional keyboard/mouse or to touch input. It is slower than

keyboard input [19] and it is not adequate for navigation-oriented activities if other

control interfaces can be used [25, 26].

Speech provides nowadays a powerful solution for feedback. Text-to-Speech

(TTS) systems are a fundamental part of accessibility. Most smartphones now provide a

TTS system that allows blind users and users that are temporally impaired from looking

at the screen to interact with the device.

2.2.3 Switches and keyboard

When choosing a control interface for people with disabilities, therapists will always

choose the simpler, more conventional solutions with minimal modifications. Using a

conventional keyboard is always the first priority [29]. The problem is most people with

disabilities cannot access a conventional keyboard, being it a physical one or a soft

keyboard (in smartphones), due to lack of coordination or motion range of upper

extremities. To use the keyboard some users require special devices that allow them to

press only one key at a time, switches. Switches are usually pressure activated devices.

Due to the wide variety of user disabilities, switches come in many different ways, they

range from simple button switches to head, foot or even breath controlled ones (e.g.

Physiological). In section 2.4 we will describe mobile technologies that take advantage

of switch interfaces (e.g. HouseMate, Switch Control and TeclaAccess).

2.3 Adaptable Interfaces

Interfaces can be difficult to navigate, especially for users with some kind of

disability. Designing interfaces that are usable and accessible to everyone is a tough

13

challenge. One approach to improve accessibility is to change the underling interface

adapting it to each user.

The variety of individual capabilities among users is massive, especially when we

considering people with multiple disabilities. Due to such variety it is not practical or

scalable to manually design an interface for each [27, 12, and 9]. As such there are

systems that tackle the issue by automatically generating tailored interfaces or adapting

them. In one particular system, the researchers studied if it was better to generate

interfaces based on the users’ preferences or by doing a test to assess their abilities. The

users were 26.4% faster and did less 73% errors on interfaces generated based on their

capabilities. Both forms of generating adaptable interfaces had better results than the

baseline interface [7].

One proposal to improve accessibility of the mobile touchscreen technology is to

create a shared user model to be used across applications and devices. This solution

collects information about the user during application usage and continually updates the

model. The interfaces generated are then created accordingly with the updated model.

Bearing in mind that accessibility needs may change across a session, it is fundamental

to continually collect user interactions. With all the touchscreen data collected it is

possible to calculate optimal properties for objects on a per user basis across screen

locations within the device [20].

Supple [8] is a system developed with the purpose to adapt UI controls on runtime in

order to provide a personalised view of the contents on a pc. The system allows users with

motor impairments to have their interface adapted accordingly with their specific needs.

2.4 Mobile accessibility solutions

Currently, the smartphone market is dominated by Android with a staggering 80%

market share followed by Apple iOS with 14.4% in the third quarter of 20139. The usage

of smartphones by the disabled community has also seen a large increase in the latest

years. This is supported by a series of 4 surveys done about their preferred screen reader.

They were made over a span of nearly 3 and a half years. One of its remarkable findings

9 http://www.idc.com/getdoc.jsp?containerId=prUS24442013 , Last visited in 26/08/2014

14

is the increase from 12% in 2009 to 72% in 2012 in the use of screen readers on a mobile

device10. This data suggests a shift from “feature phones” to smartphones. Feature phones

have a closed OS, it is developed by the manufactures of the device and all of its

functionalities come out of the box. Normally, this type of device does not allow the

creation of third party software. Due to the open creation of third party software in

smartphones, we focused our attention in these devices. In this section, we will discuss

some of the more relevant accessibility functionalities of the iOS and Android due to their

dominating position on the market and a clear trend in the adoption of smartphones.

2.4.1 iOS Accessibility

The iPhone as the first truly successful exclusively touch screen interface faced

many accessibility challenges. Apple, with the advent of the iPhone 3GS model in 2007

made a step forward towards mobile accessibility. It introduced Voiceover, the screen

reader that was previously used exclusive in the Mac OS. Voiceover was more than a

copy from its desktop counterpart, it came with a unique set of touch gestures to control

the mobile interface. Using Voiceover, we can explore the screen by tapping elements or

moving over them, when we do so, audio feedback is provided from the element we

touched. A user can also do flick motions to navigate between next and previous content

without any knowledge of the on screen location of the content. To select an item the user

simply has to double tap the screen. Voiceover was the first accessibility feature

introduced in the iOS. Since then, Apple has continually improved its device with new

features (e.g. Fig. 2). Here are some of the most relevant features:

10 http://webaim.org/projects/screenreadersurvey4/, Last visited in 26/08/2014

Fig. 2 - iOS accessibility settings

15

 Zoom11– it is a built-in magnifier that works system wide, by doing a

double tap with three fingers a user can instantly zoom screen content.

Zoom can be adjusted anywhere from 100 to 500 percent;

 Siri12– it is a speech recognition system that allows you to retrieve and

create information through speech;

 Switch Control13 – allows you to control the OS using a single switch or

multiple switches. It has three basic methods: item scanning (i.e. auto

navigation of the items until the switch is pressed), point scanning (i.e.

crosshair to select a screen location), and manual selection (i.e. manually

navigate items, needs more than a single switch). One of its key features is

the ability to use different switches, from the use of the touch screen as a

switch to the use of external Bluetooth popular switches.

Accessibility in the iOS relies greatly on built-in features. Third party developers are

heavily restricted by the control they can achieve over the system.

2.4.2 Android

Android is an open-source mobile operating system developed by Google.

Android, much like the iOS, provides a couple of built-in accessibility features. One big

difference is the approach towards mobile accessibility. While Apple focused on

providing themselves all the accessibility solutions, the Android OS allows the creation

of accessibility solutions. In Android, accessibility solutions can be designed in one of

two ways: custom made solutions or system-wide solutions that can be divided into

accessibility services or input methods.

11 https://www.apple.com/accessibility/ios/, Last visited in 26/08/2014
12 https://www.apple.com/ios/siri/, Last visited in 26/08/2014
13 http://support.apple.com/kb/HT5886 /, Last visited in 26/08/2014

16

As mentioned in section 1.2, custom made applications seek to replace all the look

and feel of the device. One example of this is a commercial screen access package, Mobile

Accessibility (Fig. 3). It consists of a set of 10 applications that provide an alternative to

Android core applications. It has a screen reader and supports braille displays and input

via several control interfaces (e.g. keyboard, trackball, touch screen gestures).

ClickToPhone is an application that, paired up with HouseMate14 hardware, creates an

accessible solution for physical impaired users to control their mobile devices and the

environment surrounding them. HouseMate is a Bluetooth switch controller and

environmental controller. It communicates the switch presses to the ClickToPhone

application. The ClickToPhone is an Android app that has been custom made for switch

access. Much like Mobile Accessibility, this solution focus on one particular set of users.

Another example of a custom made solution is EasyPhone [22]. The application was

created to enable to performing simple tasks (e.g. make calls, clock, battery) to a user

with multiple disabilities. This study raised several issues of current mobile OS

shortcomings in respect to “system-wide” accessibility options, at both a user and

developer level.

TeclaAccess is an android input method that can be paired with a switch controller

(Tecla Shield) to enable external switch access to Android. “The Tecla Shield DOS™ is

a wireless device that lets you control a smartphone, tablet or computer (PC & Laptop)

using your external switches or the driving controls of your powered wheelchair”.

TeclaAccess provides automatic scanning, manual scanning, inverse scanning,

adjustment of the scanning speed, navigation on-screen keyboard, typing on-screen,

system-wide voice assistance and it is multi-platform. To scan and allow navigation on

14 http://click2go.ie/wp-content/uploads/2013/04/housemate_5pages.pdf, Last visited in 26/08/2014

Fig. 4 Tecla Overlay

Fig. 3 - Mobile

Accessibility app

17

the Android platform Tecla controls the device by emulating a keyboard. Navigation can

be done in four directions through an on screen keyboard overlay (i.e. Fig. 4), it increases

the keyboard capabilities by adding specific functions to access system wide options (e.g.

voice assistance, back). Tecla Shield is a solution that costs 349$15, it allows the use of

all applications on an Android as long as they are prepared to be accessed via keyboard

which, many times, is not the case, while in iOS Tecla Shield can be used as an external

switch.

One Android accessibility service is TalkBack. Originally, TalkBack was a service

that gave audio feedback of the results of the actions performed, notifications and events.

TalkBack was only able to announce results of nodes that gained focus through a

keyboard or a four-way direction pad. With the release of Android 4.0, users saw its

functionality expanded through Explore by Touch. This option of TalkBack allows the

user to explore the contents of the screen in a very similar way as VoiceOver does. A

recent contribution to mobile accessibility was made by the accessibility service

JustSpeak [30]. JustSpeak is a voice control solution that enables non-visual access to the

Android OS. The service creates a set of available voice controls based on the content

descriptions retrieved from the screen application context. It has a speech recognizer that

processes the voice command and matches it with one of the current content descriptions.

One of its novel features is the ability to do multiple commands using a single utterance.

2.5 Interaction Logging

Being able to record interactions system wide is a key feature to provide researchers

with the capabilities to do repeatable HCI evaluations. Input observer [2] is a system that

quietly observes user interaction with a personal computer. The popularity of mobile

technologies and interactions has led to an increase of app development and HCI research

for these devices. Despite the prevalent nature of these technologies, the platforms are

lacking in guidance and tools to support testing and simulation of user interactions. It is

critical to develop a solution that allow the creation of similar systems to WebAnyWhere

ABD [3]. This system permits the recording of accessibility problems at the time user

experience them. This in conjunction with the ability to reproduce the problem can

15 http://komodoopenlab.com/tecla/ , Last Visited in 26/08/2014

18

provide a powerful tool for testing and simulation. Lookback16 is a simple recording

interface that can be installed into developers’ applications. Currently is only available

for iOS and provides developers with the capability of recording the user experience (i.e.

screen capture and recording user reaction through the iPhone camera). There is clearly a

need to reproduce user experiences in mobile settings in order to perform HCI

evaluations.

2.6 Discussion

Mobile accessibility has been improving over the years, with the introduction of

smartphones and tablet devices new challenges and opportunities arouse. For example,

we can take advantage of these devices by creating a multitude of control interfaces or

developing adaptable interface. The iOS and Android both have similar fundamental

accessibility features, like screen readers, speech recognition and zoom. The iOS has great

built-in accessibility features, unfortunately third party developers are heavily restricted

in their control over the system. Custom made applications are the only approach

available to them. However, Android open source nature empowers developers, they are

able to create input methods, accessibility services and also custom made applications.

These third party custom applications aim to replace core system applications like phone,

contacts, calendar, with custom made accessible ones. The key word here is for who?

Depending on the target user group, these applications will be different. These solutions

are costly and time consuming to develop. Input methods although they possess system

wide capabilities they greatly relied on the application being accessible via keyboard

directional pad and also overlook the content that is being navigated. Accessibility

services are a step in the right direction, unfortunately they provided limited control over

input and the relation between content and it is severely overlooked. Navigation and

selection methods should always be customizable in order to address specific user needs

with. Creating system wide control interfaces as a third party developer is a massive

challenged due to all the restrictions.

Adaptive interfaces is one way to improve accessibility. The key is to adapt to every

single different user which could benefit immensely user with disabilities. The answer is

16 https://lookback.io/, Last Visited in 26/08/2014

19

to develop these interfaces automatically with some sort of user ability record.

Unfortunately, current OS only allow the customization of interfaces of your own

developed applications and not across third party or stock ones. Another issue is how to

record user performance on interfaces and adapt accordingly if we cannot have input

control outside our applications. Interaction logging is currently lacking in the mobile

context when we compared to the apparatus and procedures already found on its pc

counterpart. There needs to be a simple way to record and simulate interactions on a

mobile device in order to further the field of HCI research.

20

21

Chapter 3 Enabling Mobile System-Wide AT

The previous chapter review the current state of the art in assistive technologies in a

mobile context. We discuss their shortcomings by analysing the top 2 OS systems of the

markets and reporting their capabilities and deficiencies. In this chapter we will present

SWAT a system wide library that targets the development of assistive technologies. We

describe several use case scenarios that inspired the creation of SWAT. To contextualize

our application we discuss the Android OS architecture and capabilities, since our library

will take advantage of it. We delve into the SWAT library with a detailed view of the

system requirements, architecture, components, features and uses.

3.1 Use Case Scenarios

Miguel was one of the inspirations for this project, he has limited neck movement

and only has residual arm movement. Miguel had an accident that left him blind,

tetraplegic and with a stutter speech.

Miguel wants to send a message.

Miguel is sitting in his chair and wants to contact his friend André. He wishes to send

him a message wishing him good luck for his thesis defence. He is not sure of hour of the

defence and as such he does not want to call and risk interrupt it. He starts by pressing a

switch which enables the auto-scanning of the options on his smartphone, every time a

new option is focused an auditory feedback is provided. He waits for the option Message

to be read to press the switch. He then auto navigates the Message menu and since he has

traded messages with André before he presses the switch when André name is read. Next

he selects the “Write message” and a keyboard is enabled. The keyboard is navigated

automatically and Miguel presses the switch whenever the letter he wants is read. After

writing it he closes the keyboard, navigates to the send message option and completes his

wish.

Miguel’s wants to use a new contact application that his friend told him about.

Miguel friend came over and told him about this great application on the play store

that he is using, that organizes the contacts in a way that is much quicker to access then.

22

Miguel asks his friend to install this application on his phone since this task requires a

little digging and a lot of menu navigation. His friend stops the auto-navigation, gets to

the play store and installs the new application. He then resumes the auto-navigation for

Miguel to try it out. Miguel travels through the menus and selects the new contact

application. The system reads in a row-column scheme the options available on

application. After a week of use Miguel’s feels comfortable using this new application

and his able to quickly navigate the new menus and contact whoever he wishes faster.

Miguel wants to listen to radio on his smartphone.

Miguel is tired of listening to the TV he much prefers to listen to a radio station. He

decides to try the radio application installed on his smartphone. He starts the auto-

navigation and selects the radio application. With the auto-scanning he is able to travel

through different channels and choose a desire station to start playing. After a while he

gets tired and decides he wants to close the radio station and listen to the TV since its

news time. He navigates through all the menus but cannot find the stop or close radio

station. Unfortunately the stop button is embedded in an inaccessible section of the

application. He calls for his mother to try and resolve the issue. Knowingly he might want

to turn the radio on for latter, his mother instead of simply turning of the radio, she records

the action of her stopping the radio. As expected latter on Miguel enables the radio station

again. It is football game time and Miguel wants to stop the radio, since he knows his

mother recorded her action he navigates through the list of recorded actions and selects

the radio off option and is now ready to watch the game.

Miguel’s mother notices he takes a while when he wants to send a message to his

friend Rui.

This week Miguel has a lot of stuff arranged with Rui. Rui is in Portugal for the week

and he is not a usual contact for him. Every day for the whole week Miguel would contact

Rui during the day several times. Miguel’s mother noticed Miguel took a long time to

start writing a message to Rui since he had to go through several screens with many

options. She took his phone, pause the automatic navigation and recorded the whole

process from the home screen until the “write a message to Rui” screen. Miguel had now

an icon on his home screen called “Write to Rui” upon pressing it he would quickly face

23

the task of writing a message, overcoming the otherwise tedious process of getting to this

stage.

3.2 Android Operating System

In order to understand the library developed it is important to have a mental model

of where it is operating. The Android OS consists of different stacked layers, where each

layer provides services to the layer above.

As we can see in Fig. 5 on the top layer we have the Stock Android apps and the third

party developed ones. Both share the same capabilities so any developer can create

applications that serve as an alternative to stock ones or simply design new ones, always

relying on the layers bellow. The System Server layer is composed of the components

that handle applications cycles, manage data sharing between applications and so on. The

Android Runtime layer is where the Dalvik Virtual Machine (e.g. a JVM) runs

applications, this JVM allows multiple instances to be created simultaneous providing

among others: isolation, security and memory management. The Libraries layer consists

of the native Android libraries. These libraries are crucial for the system and some of

them are: OpenGL (e.g. graphical rendering) and SQLite (e.g. database engine). The layer

bellow is the Linux kernel where the Android OS is built upon.

Fig. 5 - Android Architecture

24

“Android is a privilege-separated operating system, in which each application runs

with a distinct system identity”17. The Linux, thereby isolates each application from one

another and from the system itself. Together with a permission system that enforces

restrictions on specific operations, these systems are the core of security in Android. Each

Android application operates in a process sandbox, they can only share data and resources

if they explicitly do it. This sandbox is created across all types of applications developed

being it Java, native or hybrid.

The Android NDK allows developers to create solution that resorts to native-code of

the device. This can be extremely useful since it allows developers to reuse native libraries

not available otherwise. Normally applications that take advantage of such setup are CPU-

intensive ones. Using the Java Native Interface (JNI) we are able to through our Android

Java application interact with native code developed.

Apart from the Activities developers are also able to create Services. A Service is in

fact a component of an application that can perform long-running operation in the

background without relying in a user interface. The Services can run even if the

application that initialize it is out of focus. They can be used to perform network

transitions, perform file I/O among others.

Accessibility Services although they share the tag service they are a different species.

Unlike a simple service, an Accessibility one can be a standalone version or bundled with

a normal application. They were designed to provide alternative navigation feedback to

the end user. An accessibility service has the permission to communicate with the user on

the application’s behalf, it can provide text to speech, or haptic feedback. Starting on API

level 14, the accessibility services can perform actions on behalf of the users (e.g. they

17 http://developer.android.com/guide/topics/security/permissions.html, Last Visited in 26/08/2014

Fig. 6 - Talk Back accessibility

service

25

can change the input method, perform selection). The range of as been expanding actions

(e.g. scrolling list, interacting with text fields) since its methods creating a richer

environment for accessibility developers. Through the accessibility services we are able

query the view hierarchy for more context. Since API level 14 we have the ability to query

the view whenever an AccessibilityEvent that we are listening for is triggered. Through

the event we able to retrieve the UI component that generated it and from it we can gather

its parent, children, bounds, available actions, text and. Android provides information to

the accessibility services mostly through the onAccessibilityEvent() call-back method

that passes an AcessibilityEvent object. This object has information about the event that

was triggered and its UI source, possible events include:

 TYPE_VIEW_CLICKED: represents the event of clicking in a View;

 TYPE_NOTIFICATION_STATE_CHANGED: event showing a

notification;

 TYPE_VIEW_TEXT_CHANGED: triggered when an EditText is changed;

When an accessibility service is developed and installed in a system it must be manually

enabled through the accessibility option on the system settings. Examples of this are

services like TalkBack or JustSpeak.

3.3 SWAT

SWAT is a system wide Android library that empowers the development of assistive

technologies, but due to its capabilities it enables the creation of powerful system wide

services. At its core it provides developers with a control of the system that normally they

would not have at a system level.

3.3.1 System Requirements

The development of this library was preceded by this list of requirements.

 Cross application view Hierarchy access: access view hierarchy across all

applications and system windows;

 Low level input access: enable monitoring, blocking and injecting of all the

system internal devices (e.g. touchscreen, keypad, accelerometer);

 External control of the device: fully control the device through an external

interface;

http://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html#TYPE_VIEW_CLICKED

26

 Easy coupling and development: simple coupling of new control

interfaces;

 Output parameterization: different adaptable output options, namely

sound, TTS and visual;

 Adapting content: the ability to personalize content, independently

ownership of the application across both system and third party ones;

 Adapting input: the ability to in real time monitor input and adapt it, for

instance using touch adaptive models;

 Navigational control: ability to navigate all device applications

programmatically and easily create new navigation methods;

 Perform actions system-wide: be able to perform actions independently

of the current application in focus, action such as back, home, select, scroll,

slide and text-entry;

3.3.2 System Architecture

From reading the section 3.2 we understand the restrictions imposed on the cross

application access and manipulation. SWAT is built upon an accessibility service, as such

it is able to retrieve and disseminate all view hierarchical information.

With the accessibility services we overcome it in regards with content information,

but there is one missing link, input. Through the accessibility services we are able to

Fig. 7 -SWAT package View

27

perform actions directly on content but we have no control over the input created by the

user. Using the Android NDK (i.e. native development kit) in conjunction with a rooted

device SWAT is able to control the internal devices providing a finer control over input

and output. The root allows us to change the permissions of access to the system and

manipulate the internal devices directly by acquiring the input events before they are

process by the respective drivers and later the OS, we are operating in the bottom layer,

the Linux kernel (e.g. Fig. 5). We create an opening in the sandbox protection in order to

manipulate input system-wide. As a library should be, it was developed to be extensible

and adaptable to developer’s needs. All of SWAT components were created to fulfil a

specific need in the development of Assistive Technologies.

SWAT has a BUS like architecture. In Fig. 7 we have an overview of the package

view of SWAT. There are three critical modules to the library: Core Controller, SWAT

Accessibility Service and Internal Device Controller.

Core Controller

The Core Controller handles all communication between the different core

components as well as external ones. All communication with the library is done through

it, in Fig. 8 we can see a part of the architecture behind the CoreController. He is

responsible for gathering information of the other two core modules and disseminate their

information. The HiearchicalService is the main class behind the SWAT Accessibility

module, while the Monitor is the one behind Internal Device Control. The external classes

mostly communicate with SWAT through the available interfaces like the IOReceiver.

The broader range of operation available from highlight(…) (e.g. highlight a specific area

of the screen) to getDevices() (e.g. get the name of all the internal devices by driver) are

perform by making a static call to the Core Controller.

28

SWAT Accessibility Services

This module responsible for gathering information from the Android Accessibility

Services to provide the required view hierarchical of the on screen content. It creates an

internal representation of the on screen content which can be access through the Core

Controller or by the SWAT Content Observer. It is composed of 4 classes (e.g. Fig. 9):

 HierarchicalService: the main class of the service, extends the

accessibility service and handles all the content updates;

 Service Preferences: creates a preference window for the SWAT

Accessibility Service. Through it we are able to enable and disable the

built-in features of SWAT;

 NodeListController: control over an internal representation of the content,

has available a set of navigational operation over the content (e.g.

navNext());

 Node: internal representation of each view hierarchical node;

 AppIcon: internal representation of all the application start icons;

As mentioned before SWAT heavily relies on the information that is able to retrieve

from the accessibility services. SWAT listen to all accessibility events and every time one

is triggered it cross checks it with our internal representation to see if the view hierarchy

was updated. If it was, it updates our internal representation and pushes the update to the

Fig. 8 - Core Controller preview

29

Core Controller which is responsible to propagate it to the registered content observers as

shown in the sequence diagram bellow (Fig. 10).

Our internal representation tends to use content descriptions or names to label the

content, some features can be compromised if android applications do not comply with

accessibility norms. These content nodes created in our internal representation enable us

to navigate the system. It is through the Accessibility services that we are able to click

content programmatically and perform global actions:

Fig. 9 - SWAT Accessibility Service

Fig. 10 - Content Update Sequence Diagram

30

The accessibility events triggered by the Android system provide us with key

information, there are some fundamental events that SWAT uses and they are the Click,

Notification and events that originate from any edit box, they were described in section

3.2 :

 Click - used to track user activity which allows the creation of log mechanisms;

 Notification – listen for notifications, similar to the process shown in Fig. 10, the

notifications are pushed to the CoreController that disseminates it to the

registered Notification Observers;

 Edit Box –we track all events and filter the ones that originate from edit boxes.

Through the accessibility services it is not possible to determine key presses. By

analysing this events we are able to track changes in any non-password edit box

and log the text entry;

Content information is gathered from the Android Accessibility Service and stored in an

ArrayList structure of Nodes (e.g. Fig. 9). The key information present in each node is:

position and bounds, class and package name, description and text, actions (i.e. actions

that we are able to perform on the node, click, scroll, etc), parent and children. Developers

are able to retrieve content information through the use of the Content SWAT Observer

fulfilling the first requirement, cross application view hierarchy access.

Internal Device Controller

Using a rooted device together with the NDK enabled us to surpass normal

permission levels given to developers. Normally we cannot access internal devices states

and listen to events at a low level. To accomplish this we use the NDK in order to be able

to handle the input event nodes. We started with a library that uses JNI (Java Native

Interface) create by Radu Motisan18 that allow us to inject/monitor internal devices. This

library starts by opening the input events nodes of the system, if it does not has permission

18 http://www.pocketmagic.net/2013/01/programmatically-injecting-events-on-android-part-2/#.UiW619Kfjz8/,

Last Visited in 26/08/2014

31

to do, it changes the file permissions resorting to the Shell class. The Shell class is able to

execute shell commands with system level permission.

Through the JNI we are able to create InputDevice instances that correspond to

the internal devices of the system. These are the instances that we manipulate in order to

monitor/inject events into these devices. We expanded this library (e.g. Fig. 11) in order

to accommodate our specific needs. It is now also able to block all events (e.g. block all

touches from being interpret) and specifically for the touchscreen we are able to create a

virtual drive.

 In Fig. 12 we can observe the sequence behind start monitoring the touch device.

As an example, this virtual touchscreen drive can be used to adapt touches in real time,

by blocking the default touchscreen input while monitoring it we are able to inject the

adapted touches into the virtual drive which interprets and performs them. Even though

our presented studies do not use this feature we believe it is a novel and powerful tool for

developers and researches especially in the field of touch models.

Fig. 12 – Starting the monitoring process

Fig. 11 - Control Devices Architecture

32

The Internal Device Controller is the package responsible for all of this plus the

propagation of the events of the monitored devices to the Core Controller which then

pushes the events to the registered observers (e.g. monitoring sequence is shown in Fig.

13). To receive this events outside our library all the developer has to do is implement the

IOReceiver interface and register it. With this module we successfully allowed access to

low level input and provided the ability to adapt it.

3.3.3 Specific Components:

The fundamental components of SWAT were already described, but alone they

accomplish very little. SWAT was coupled with 3 more components to achieve its goals.

Touch Recognizers

We are intercepting low level input before they are process by the system. This

means we get raw data from the sensors (e.g. touch screen, accelerometer) like the one

displayed in Fig. 14 (e.g. input data from the touchscreen that represents a tap).

Fig. 14 - Raw data

Fig. 13 - Monitoring sequence

33

 Although we allow developers to garnish this data, many developers are only

interested in a higher level of knowledge of input. To accommodate all needs we created

the Touch Recognizers. They process this low level events from the touchscreen and

categorize them accordingly (i.e. down/move/up or touched/slide/long press).

These events can vary from touchscreen to touchscreen as such there are several

touch recognizers implemented that can be activated through the preferences of the

service. The package (Fig. 15) is composed by the abstract class TouchRecognizer and

the object that represent a touch input even (e.g. TouchEvent). The recognizers created

extend the abstract class and do a personalized implementation of the method

identifyOnChange(…) to categorize touch in down/move/up.

Feedback

One crucial part of the development of assistive technologies is the feedback

provided back to users. In our library we pre-built two feedback mechanism that

developers can take advantage. SWAT resorts to the Android TTS (i.e. Text to Speech)

to provide audio feedback to the users. The two main feedback types used in the mobile

context are visual and auditory, to cover the first SWAT has a highlight function that

allows to add highlights to a specific region, with a specific colour and transparency using

a simple overlay. With both this mechanism we ensured the output parameterization

we required.

Fig. 15 - Touch Recognizer

34

SWAT Keyboard

Through the accessibility services we are not able to fill text edit boxes, nor can we

simulate key presses. To allow the creation of custom keyboards through SWAT we must

first install a SWAT input method.

This SWAT input method is nothing more than the traditional on screen keyboard,

with one slight difference, it listen for a specific broadcast to write characters/phrases.

After we select this input method as the default one on Android we are ready to create

our own custom keyboard on our SWAT solution. SWAT Keyboard (e.g. Fig. 16) is an

abstract class that can be extended to create our own custom keyboard. To create it we

have to specify the key layout in a row-column scheme (e.g. setKeyboard(…)) and register

the keyboard as the default one for SWAT. We can personalize its behaviour on start,

show, hide and update. By default every keyboard on SWAT possesses a 4 way

navigation scheme to allow an easy pairing with assistive technologies. One example of

such keyboard will be described in the Multi-Impaired case study.

Interfaces:

We have seen all of the SWAT fundamental modules and components, the missing

link is how we can take advantage of the library developed. We created a set of interfaces

that developers are able to extend and implement in order to take full advantage of SWAT.

Fig. 16 - SWAT Keyboard

Fig. 17 - SWAT Observers

35

The SWAT Observers package (e.g. Fig. 17) is composed of three interfaces, Content

Receiver, IO Receiver, and Notifications Receiver. By implement the Observer interfaces

developers are able to get updates of the respective category (i.e. content updates, low

level device events and notifications). The Observers are share the same registration

process but accordingly with their purpose they have different capabilities. Through the

ContentReceiver we are able to acquire all the hierarchical view configuration. Most of

the times we are not interested on the full tree since many nodes serve only to organize

layout (e.g. linear layouts, relative layouts) and contain no real content. To unclutter the

content retrieved in the receiver we created a filtering system for what type of content we

are interested in observer:

 All Content – retrieves all content information available;

 Describable – only nodes with either a description or text are retrieved;

 Clickable – exclusively nodes that are clickable;

 Interactive – nodes that are simultaneous clickable and describable;

To start receiving content updates all developers have to do is implement the Content

Receiver Interface, specify the type of input there are interested by returning the desired

type in getType() method and register the observer. After those simple steps are

completed we are ready to receive content updates. The content is provided in an

ArrayList of Nodes through the onUpdate() method. Since we are able to filter layout

modes it is important to keep track of which regions are scrollable, as such, if there is any

scrollable content on the view hierarchy we add at the end of the array list a node with

the description “scroll” to provide an easy way for developers to be aware of the scrolling

and be able to perform it.

The Notification Observer of all three is the simpler one. Its only purpose is to

provide all the notifications to the developer even if they are not related with their

application (e.g. message notification, alarms). To start receiving all notifications all

developers have to do is implement the NotificationReceiver Interface and register the

observer. Notifications are received in a String format by the onUpdate(notification)

method.

36

The IO Receiver has the same registering process as the previous two. It gets its

update from the onUpdate(…) method which contains the low level input event

information:

When the device monitored is the touchscreen we are able to process this events

using the Touch Recognizers previously described. This observer possesses one extra

method the onTouchReceived(touchType) this allows external sources to send touch types

to be interpret by the IO Receiver. This is usefull when we map touch types to specific

actions, if we develop a switch enabled assistive technology we can use this method to

translate the switch presses to touch types.

Control Interfaces (e.g. Fig. 18) allow developers to navigate through content

programmatically and easy coupling of new interfaces. The Control Interface class is one

of the key elements of SWAT. Much like the SWAT Observers this abstract class is

intended to be extended by developers. It is responsible for all the navigation capabilities

of SWAT. Through it we are able to click, focus, navigate to the next/previous element

and perform global actions like back and home. By extending this class developers have

an easy and fast way to map their assistive technology to a simple navigation mechanism

supported by SWAT. Using the Control Interface in conjunction with the Content

Observer developers can create custom solutions that navigate the content as they see fit.

With this approach we accomplish easy coupling, navigational control and we have the

ability to perform system wide actions.

One example of this is the Multi-Impaired case study. To briefly explain, it gathers

the information from the Content Observer, it filters the desired content and creates a

custom navigation mechanism, when the user selects an option it is through the Control

Interface that the selection is made. Both our case studies use extensively this class. Wi-

Fi Control is another class of this package and it takes advantage of the Control Interface

Fig. 18- Control Interface

37

by extending it. Wi-Fi Control is a server within SWAT that listen for navigation

commands. All the Control Interface capabilities are enable via Wi-Fi, meaning we can

control our device solely through the network. It has an added capability over the typical

Control Interface, we are also able to send touch types to our IO Observers. This feature

was design to simulate touches via Wi-Fi in order to be able to map not only commands

to your assistive technology (e.g. next option, select) but also touches (e.g. touch, slide).

Wifi-Control is both an example of an external controller and a possible implementation

of the Control Interface. With it we created an easy to develop solution for external

control of the device.

3.3.4 Native features

We have reviewed the system capabilities and components. In these sections we

described two native features of SWAT that take advantage of its prowess in the creation

of system-wide solutions.

Logging

We now know that through SWAT we have click events which we can determine

what was clicked. With the Internal Device Controller we are able to monitor the

touchscreen, using the proper Touch Recognizer we can identify the types of touches

performed. With the combination of the two abilities above we developed three types of

logging mechanism:

 Log IO – logs all touch events categorized in down/move/up;

 Log Navigation – logs all the navigation steps, what was clicked (e.g.

applications->settings->Wi-Fi);

 Log Interaction – combination of the two previous loggers, logs all touches

and navigation steps;

Fig. 19 - Logger class

38

SWAT provides this three logging capabilities by default. They can be

enabled/disabled through the service settings activity. Since it might not be optimal to

start logging when the service is first launched, it is possible to start the logging proceed

recurring to a broadcast signal, which means the logging process can be initialized by

another application. The logging process is deeply embedded in the library, while the IO

information it requires can be access from the outside the navigational and keystroke

information cannot. The relevant information to log tends to be very different from

application to application. The Logger (Fig. 19) is a built-in feature that be adapted in one

of two ways. You can activate the mode you require and manually send more information

to the log using registerToLog() or you can extend the Logger class and developed

customized logging mechanisms.

Macros

In our Multi-Impaired case study we soon realized the need for simple and short

commands due to the nature of the navigation. When thinking about a solution we realized

that we had at our disposal all the mechanisms necessary for the creation of macros

system-wide. The Macro module consists of an application that is installed onto the

Android System when SWAT is installed. This part of SWAT is design as a finished

product and it is not intended to be extensible. As such this application targets final users

of any SWAT enabled service/application. Our macros possess two recording modes, you

can either record your navigation steps (e.g. applications -> settings -> Wi-Fi) or you can

record touches (e.g. down x y, move x y…), while recording you can switch at any time

between modes. This allows the creation of complex macros that reproduce touches and

navigation steps.

To create a macro the user has to open the macro application and give a name to start

recording. After doing so the application will close and return to the home screen where

it will start recording. In the top right corner it will show the command bar for macro

recording with functions to stop recording and changing mode. When we end the macro

recording an icon will appear in the home screen with the macro name, by pressing this

icon while the SWAT service is active it will perform the recorded macro.

39

In the background when a macro is being recorded we are in fact listening for click

events in our Accessibility Service (i.e. when in navigation step mode) when one is

triggered we store the source of the click. If we are in touch recording mode we are

monitoring the touch device and storing all the low level events triggered. When the

recording ends the macro is saved to a local file even though it is kept in memory. When

SWAT service is started it loads all the available macros from the local file.

When a macro is clicked to run, the service starts the macro application (e.g. the

RunMacro activity) which quickly informs through the Core Controller which macro

should be executed. The macro execution is handled according to the recording mode,

when in navigation steps, it first tries to click on the current step (e.g. applications) if it

cannot find it, it begins to scroll (if scroll is available) until it finds or until it meets defined

threshold. When in touch mode, the touches are reproduced with the same time intervals

in between. Examples of use will be presented in the Multi-Impaired case study. The

macro system is a complex part of SWAT that relies on multiple components to function,

the 4 classes shown in Fig. 20 are the ones that are exclusively devise to support the macro

feature:

 MacroManagment – responsible for handling the recording and loading;

 TouchMonitor – monitors and records the IO events during the macro

creation process;

 RunMacro – this activity has two launch modes, when launched from the

application menu it allows the user to start the macro creation process, when

it is launched from one of the macro icons it starts the correspondent macro

execution;

Fig. 20 - Macro Architecture

40

 Touch – representation of a low level input from the touchscreen, it is used

to reproduce touches upon the macro execution;

The process of recording and reproducing the navigational steps is handled by the ones

above in conjunction with the HierarchicalService (e.g. monitors and reproduces the

navigation steps), the Feedback (e.g. handles the macro recording buttons), Monitor (e.g.

monitors and reproduces the IO Events) and finally the CoreController that is responsible

for the communication between all parties to ensure the proper recording and execution

of the macros. Fig. 21 represents the sequence diagram that illustrates the complex

process of initializing the macro recording process.

3.3.5 Using SWAT

SWAT as a library is intended to be used by others. During its development we found

several motivated colleagues in its capabilities. To support the further development of our

platform we made it available through a repository in GitHub19 and created simple

tutorials for each interface. To illustrate how simple it is to use SWAT we present the

Control Interface tutorial.

The ControlInterface class provides developers with the fundamentals methods to

create an interfacing scheme. By extending this class developers have access to the

following methods:

 navNext() – navigates to the next content node on the screen;

 navPrev() - navigates to the previous content node on the screen;

 selectCurrent() – clicks on the current focused node;

19 https://github.com/AndreFPRodrigues/Mswat, Last Visited in 26/08/2014

Fig. 21 - Macro recording process

https://github.com/AndreFPRodrigues/Mswat

41

 clickNode(description) – clicks the node with the correspondent description;

 focusIndex(index) – focus the node;

 highlighIndex(index) – highlights the content index;

 clearHighlights() – clears all highlights;

 home() – performs the global action go home;

 back() – performs the global action back;

Through these methods developers can easily create and manipulate navigation system

wide. To demonstrate how to use it, in this tutorial we will develop a simple control

interface that will take advantage of this class and the IO Receiver mentioned in another

tutorial. We will create a simple control interface that will select a node when we tap the

screen and will go to the next node if we slide. To do so we create a class TouchController

that extends ControlInterface and implements IOReceiver:

We want this the control interface to be initialised when the SWAT finishes its

start-up process and we want to ensure only one control interface is initialise.

 To be able to select the TouchController as our control interface we must first

add it to the service preferences. To do so in the res/values/arrays.xml (e.g. Fig. 22) we

add an item to the “mode” and “modeValues” array. We add the description of the control

interface “Simple Navigation” and the value “touchController”.

Now the simple navigation is available to be selected in the accessibility service

preference. We must select it as the active control interface when we test our project. The

control interface can be initialised when SWAT finishes its start-up, we simply need to

implement the onReceive() from the BroadCastReceiver and ensure that our interface is

Fig. 22 - Service preference configuration

Fig. 23 - On receive SWAT init

42

the select one by checking the Intent extras (e.g. Fig. 23). With this we are in position to

create our own control interface (e.g. Fig. 24).

1. We start by registering the IO Receiver (e.g. the IO Receiver tutorial is available

in the attachments);

2. In this control interface we want to react to the users touches so we need to

monitor and recognize them. As such we start the monitoring process and we

retrieve the active Touch Pattern Recognizer (e.g. TPR, it can be selected in the

service preference accordingly to the device touchscreen driver);

3. We intercept and block the touchscreen input from being process by the OS;

4. We activate the auto highlight function to get visual feedback of the item in focus;

Fig. 24 - Initialising the Touch Controller

All that is left is to recognize the touches and react accordingly. In the onUpdateIO() (e.g.

) we call the TPR and wait until one type of touch is recognized. Since we only want to

recognize slides and taps we will use the method identifyOnRelease().

When a type of touch is recognized we send it to handleTouch(type). This method uses

Fig. 25- Using the TPR

43

the most basic functions of the Control Interface (i.e. navNext(), selectCurrent()).

Fig. 26 - Handle touch

We just finished creating a new control interface for our smartphone using the SWAT

library. This is but one of many of the available SWAT tutorials, they are:

 Observers – since all Observers share a common structure it explains the

common characteristics (registering, onUpdate, triggering the register

mechanism);

 Content Observer - shows how to set the type of content desired and what

time of information is retrieved from the onUpdate method;

 IO Observer- detailed tutorial on how to monitor the touchscreen, how to

select the desired internal device to monitor and how to discover available

devices;

 Wi-Fi Control – explains how to set a connection to the server and lists the

available commands;

 Touch Adapter – demonstrates how to use SWAT to create a virtual touch

device and reroute touches from the default touch device to our created one;

In our GitHub repository all of these tutorials are accompanied by the sample code of

each feature. In the attachments of this dissertation you can find all of the tutorials created.

44

45

Chapter 4 Multi Impairment Case Study

Users with disabilities face a tough choice when opting for the assistive

technology that enables them to control their smartphone. As mentioned before they can

either go with a custom-made choice which limits their available applications and features

or they can use system-wide accessibility services that can only serve a very specific kind

of user, which in most cases are the blind. We came across Miguel, a multi impaired user

that has limit control over his mobile device. His case was reported in a previous study

[22] in which they provided him with half of the solution to his problem which will

discuss in section 4.1.1. To solve this issue we developed a system using SWAT that

enables Miguel to control all of the mobile OS. Miguel is a 31 year old that suffered an

accident at the age of 21 that left him blind and tetraplegic. The accident also cause a

speech impairment that makes Miguel stutter. Unfortunately due to this stutter voice

recognition is not an option since his speech patterns are anything but consistent. He is

not able to operate a keyboard or any kind of pointer, he only has residual arm and neck

movement. This residual arm movement allows Miguel to control a single switch with

the proper arm support. With Miguel in mind we created a system that allows him to have

more control over his mobile device which results in a tremendous increase in the amount

of features Miguel is able to resort to. We developed this system to empower Miguel and

his caregivers. Our solution enables his caregivers to have an active role in the adaptation

of the system.

4.1 Previous solution: Easy Phone

Miguel current solution is EasyPhone, a custom-made application developed and

reported in [22]. This application applies an auditory automatic scanning of the available

options, which are: battery, clock, received messages, contacts. Using a mouse has a

switch he is able to select the option and navigate the sub-menus until he accomplish his

desired task. With it he has easy access to most common phone operations. Yet it was not

enough, he wants to be able to do more, he wants to send messages, select a radio station,

set an alarm clock, in short Miguel is an individual that strives independence in everything

he can. His current solution is not scalable, every time Miguel desires a new feature, this

feature as to be built from the ground up. Another issue with this custom-made application

is its lack of adaptability to future requirements. As such it is important for the system to

46

allow personalization to accommodate these changes. Bear in mind that due to his

disabilities Miguel has to navigate all option through an automatic auditory scanning,

being able to adjust the order of the menus or to create shortcuts can have a tremendous

impact in the system usability.

4.2 Our solution: Auto-Nav

Our main goal with our system was to provide Miguel with a way to navigate the

Android OS and the applications therein. It was fundamental that he could perform at the

very least the same actions that he could with EasyPhone. We developed a system that is

able to access onscreen content and control how it is navigated. In this section we report

the components of our solution: navigation, notification, call management, filtering and

assistive macros mechanisms. Not all Android applications are accessible and our

solution relies on the onscreen content descriptions and text to navigate and give

feedback. Many market applications do not follow the guidelines to support accessibility

services (e.g. buttons without descriptions). Furthermore, some applications do provide

descriptions but are too cumbersome for a non-visual scanning interaction. To deal with

both these issues, we devised the concept of Assistive Macros, enabling caregivers to

record macros for common actions on the smartphone making them available to Miguel.

Macros can be a partial solution to these problems. In applications that are not accessible

or have steps that are not accessible, a macro can be created to performs these steps for

the user.

4.2.1 Navigation

 Bearing in mind Miguel’s abilities, we adapted interaction to an auditory

scanning paradigm (e.g. Fig. 27) (row-column) operated with a single switch.

Fig. 27- Auto-Nav system

47

The auditory scanning when reading a row it reads its first item and “row” right

afterwards to identify that row has more items (e.g. “Messages Row). Miguel has then

the opportunity to click the switch to select an option in a configurable time period. If a

click is made in a row with more than one option then all the options are scanned one by

one, if only one item is available it is select on the row click. All clicks produce an

auditory feedback to confirm selection. Our solution also handles miss-clicks by ignoring

those that are not made within a minimal configurable time interval. At the beginning of

every set of options (e.g., a new screen), a back option is presented to allow the user to

quickly correct navigation mistakes. This row-columns layouts are created according to

the content information retrieved from SWAT, this means the layouts are dependent on

each item description, name and bounding boxes. To start navigating Miguel simply has

to click the switch, after doing so all available rows are navigated once, then the system

enters a standby mode where to start navigating again he has to press the switch again. If

enough time has passed in the standby mode when Miguel resumes the navigation the

system will first return to the home screen (e.g. starting point for navigation).

4.2.2 Notifications

The system also handles notifications (e.g. messages, missed calls, application

notifications) when they are triggered the system stops navigating and reads the content

of the notification. If the notification is received when the system is on standby, the next

time the switch is pressed the notification is read.

4.2.3 Call management

It was important to simplify answering and terminating calls, if Miguel had to

navigate all available rows to answer/terminate a call it would be a hassle and could

prevent him from answer in time. As such when a call is received the phone rings and the

caller id is read if Miguel presses the switch he answers the call. The system by default

sets to speaker mode so Miguel can be heard, to terminate the call Miguel simply has to

press the switch again.

4.2.4 Text-Entry

As part of the system we created a similar keyboard to NavTap [11], a keyboard

built for non-visual usage. The keyboard is divided in six columns where the alphabet is

48

indexed by vowel meaning which row starts with a vowel and has all the following letters

of the alphabet until the next vowel. The biggest difference to NavTap is exploration. The

exploration of the keyboard is done using the same row-column auto scanning technique

used in the navigation of system. When an edit text box is pressed our keyboard is enabled

and the scanning starts to be only of the keyboard until it is closed. At the beginning of

each scan the option to close the keyboard is presented, when select our system resumes

the navigation of the on screen content.

4.2.5 Filtering

In an automatic auditory scanning technique where the navigation times are long

it can be fundamental to restrict the available options to improve performance. We

developed a simple filter that allows Miguel’s care givers when starting the system can

select which options should be hidden in the home screen. The home screen can be

cluttered with undesirable widgets, applications or even default items (e.g. Google search,

voice search) filtering out this options in the first navigation screen can drastically

improve the experience.

4.2.6 Assistive Macros

We developed the Assistive Macros application to empower both Miguel and his

caregivers by allowing him to perform a complex command with only one selection and

his caregivers by giving them the ability to actively participate in the optimization of the

system The caregivers are able to disable the auto navigation mechanism temporarily in

order to create and manage the macros. To create a macro the caregivers had to start the

recording macro application and name the macro, then the app would return to the home

screen where it starts recording. To record the macro the caregivers had to reproduce the

actions they wanted the macro to perform. The macro recording mechanism has two

modes, one which records the navigation steps and another which records touches as

mention in section 3.3.4 When recording a menu is presented in the top right corner that

allows users to change the recording mode. This two modes are needed to overcome the

lack of accessibility in some applications. If a button does not possess a description we

cannot record a navigation step and reproduce it because the button has no identity, and

if a button has no description or name it means the scanning technique will also not be

able to reach it. By providing the ability to record touch coordinates we ensure all

49

applications can be accessed through our macros, assuming the inaccessible options do

not change coordinates. To finish recording on the top right side an option is presented to

end the process. The macro will then appear in the home screen which allows Miguel to

easily and quickly access it. Since the navigation is done accordingly to the position of

the icons on the screen the caregivers are able to rearrange the icon order to optimize the

scanning. To delete a macro all they had to do is remove the icon from the home screen.

Since the macro reproduction is a process and it is not instantaneous it is important to

provide the appropriate feedback to let Miguel know the status of the reproduction. When

Miguel selects a macro he receives an auditory feedback and when the macro finishes he

receives another to inform him that he can start navigating again.

4.3 Leveraging SWAT

Using SWAT as a library enables us to implement key interfaces to create Auto-Nav.

We implemented the three Observer interfaces from SWAT (Fig. 28).

4.3.1 Content

The Content Observer is the vital observer of the system. After implementing the

interface and registering the observer every time the on screen content is updated our

system receives an update. This update contains a list of all screen content which contains

the fundamental information of content name/description, type of content (e.g. scrollable

content) and bounding boxes. When this update is receive all the content is process and

through analysing the bounding boxes and a row-column layout is generated. After this

tree is generated Auto-Nav is then able to navigate it until another update is receive, these

updates are primarily triggered by selections that cause the screen to update. The filter

discuss in section 4.2.5 is based on this content, when a list of content match the exact

list that the filter is supposed to operate upon, the filter is activated and hides the

undesired options.

Fig. 28- Auto Nav Implementation

50

4.3.2 IO input

Through the IO Observer Interface we are able to monitor all screen touches. Doing

so we are able to transform the touch screen into a switch, we block all touches from

reaching the OS while still monitoring them. Monitoring this touch events enable us to

perform actions, in this case the click, when a type of touch event is recognized. We can

control and transform multiple taps and complex gestures into a single selecting action.

Miguel cannot reliably interact with the touch screen, with it in mind the IO Observer can

also listen to touch events that can be injected by the SWAT system. This means we can

simulate touches using this interface and allow Miguel to interact with the system with

any kind of input device. In Miguel case this turn out to be a mouse that acted like a

switch.

4.3.3 External Control

Due to hardware limitations the mouse was not recognized by the smartphone. To

enable Miguel to use the mouse in this particular smartphone we resorted to the Wi-Fi

Control module from SWAT. Using this module we are able to send touches that are then

forward to our IO Observer. We developed a simple java application that established a

connection via TCP to our SWAT Wi-Fi server and listened to mouse clicks, when a click

was detect it was sent to SWAT. In other words, we connect a standard mouse to a pc

connect to our smartphone, whenever a click was detect it was forwarded to SWAT on

our smartphone which was interpreted by our IO Observer which acted accordingly.

4.3.4 Notifications

With the Notification Observer we were able to create our system wide notification

alert that was discuss in section 3.3.2 To do so we simply register the observer and when

an update is received it is process by Auto-Nav system to provide the auditory feedback

to Miguel.

4.3.5 Control Interface

 Our system extends the Control Interface abstract class mentioned in section 3.3.2 , doing

so we are able to perform three fundamental actions with only a single command (e.g.

back, home and click node). The click node method allows us to click a node by providing

51

his description. All this calls are processed by the SWAT library and the appropriate

command is executed (e.g. a click node might not be a selection, it might be a scroll action

when the node select is the “scroll” node).

4.3.6 SWAT Keyboard

To allow Miguel to write a message we resorted to the SWAT keyboard described

in section 0. . When a touch is detect in an edit text box the AutoNavKeyboard which

extends the SWAT Keyboard is called. This keyboard has the layout described in section

4.4.1 4.2.4 , to accommodate Miguel needs it has a built in automatic scanning system

equal to the one provided for the core system. For the keyboard to react to the commands

in the same way the system does it also implements the IO Receiver. When the keyboard

is active the touches are ignored by the elementary module of the Auto-Nav system and

are only processed by it. Implementing the navigation module of the keyboard separate

to all other layout navigations allow us to personalize and adapt the navigation

independently of the rest of the system (e.g. scanning speed, navigation mechanisms

between rows).

4.4 Case Study

This system uses most of what SWAT has to offer, in this next section we report the

case study of Miguel using Auto-Nav. Even though Miguel strives for independence he

is cautious about new approaches for two reasons, he is afraid to lose the same level of

comfort of his previous solution and to not be able to use new solutions. Knowingly we

started by ensuring Miguel that what we had for him to try was a prototype and not an

immediate replacement for EasyPhone. Only when the system is proven stable and with

his approval will we change his current permanent solution.

4.4.1 Procedure

We had the opportunity to test our system with Miguel (e.g. Fig. 29) across two

sessions, one of about one hour and a second one of about one and a half hour. After each

session we discussed with Miguel and his caregivers their experience and thoughts on the

system. We recorded the audio of both sessions to collect the reactions and comments to

the system. Miguel is already very familiar with EasyPhone as such we used it extensively

as a comparison to our system to be easier to understand.

52

Firstly we explained to him the thought process behind our new system and how it

was different from EasyPhone and what that meant. We explained that EasyPhone was

tailored specifically for him and what he was accessing were menus that did not existed

in the wild, in any other application or phone. We talk about the consequences of such

design process and how adding new features presented a difficult task.

 After establishing the limits of his current system we introduced him to ours. It was

imperative that Miguel understood that with our system we would actually be using

applications that anyone can use with their smartphone. This was important for two

reasons:

 Making sure Miguel understood that some navigation limitations/problems

are cause not by our system but by how each of these applications layouts

are designed and that our system only allows him to freely navigate them;

 To ensure Miguel realizes the potential of allowing him to use applications

that were not designed specifically for him, now he could use almost any

application available;

We explained how the selection method was the same but now he actually had to

navigate in a row-column basis. Every task we asked Miguel to do had a brief explanation

of the steps he had to take to accomplish them, after that we let Miguel freely navigate

the system while guiding him, in each window, by telling him which was the option that

would allow him to perform his goal.

Fig. 29 - Miguel interacting with a

smartphone with a mouse controller working

as a single switch.

53

4.4.2 Tasks

In the first session we focused on tasks that he was already able to perform with

his custom made solution or that were very similar:

 Navigate the home screen (e.g. similar to the navigation of the menu of

EasyPhone);

 Select an option and perform a back operation;

 Navigating contacts;

 Making/receiving phone calls;

 Reading messages;

In the second session we wanted to observe if Miguel was able to take advantage of the

new features of the system that he asked for:

 Write a message “ola como estas” (e.g. hello how are you);

 Use the radio application;

 Create a macro for the radio application;

 Use a macro;

4.4.3 First Session

In the first session, we focused on making Miguel familiar with the system. We asked

Miguel to try the system and navigate the home screen where the layout only contained

one tem per column in four of the five rows as shown in Fig. 30 (e.g. [Back], [15:30],

[Mensag], [aContacts], [Applications], [Google Search, Voice Search]). His first task was

to simply select one of the items on the home screen and then select the back option.

Miguel was able to do with no difficulties.

Fig. 30 - Home screen

54

The next one was to perform a call. To do so Miguel had to select the “aContacts”

application and had to do four selections to complete the task. He had to select the last

row that contained the option from “A/Z” which opened a menu with four rows of letters

order alphabetically. Afterwards he had to select the letter that corresponded to the first

letter of the person he was asked to call, then a menu with all contacts that start by that

letter opened were he could select the contact. After opening the desire contact

information, when the number of the contact was read he could press to perform the call,

which he did. He was able to speak with the person and then terminate the call. Miguel

showed no difficulties in the navigation mechanism except for the need to know

beforehand where the option he was looking for was. Since it was Miguel first experience

with the menu of this application we had to specify in which row the option was available.

It was noticeable and even suggested by him that he could benefit from some label

adjustments: since Miguel was navigating ordinary applications some labels were

abbreviated (e.g. Favs meaning favourites, the first option of the last row of the aContacts

application).

We proceeded with the tasks that are triggered not by Miguel but by a third person

(e.g. receiving calls/messages). Both these tasks had a brief explanation of what happens

in each case and both of them presented no issue for him.

He then asked how he could consult the message again and we explained the steps

required to do so. When he reached the message the last option read on that screen was

“write message”, he immediately select the option and smiled. Miguel was anxious to try

writing messages, so in our first session we introduced him to the layout of our keyboard

and asked him to write a simple “hello how are you”. He was able to write the message

and was thrilled with the possibility to send messages. However we noticed some

difficulties in grasping the layout of the keyboard he consistently asked in which row the

desired letter was.

 In the post session comments he showed great interest in the ability to control more

of the system, he added “EasyPhone is a simpler system but with more limitations and I

can adapt fast to this new one”. He referred again the desire to adapt some labels in order

to adapt faster and that the keyboard navigation could be easier if the layout was different.

55

4.4.4 Second Session

In our second session, we asked him to write the same message but now we explained

the steps needed to send the message. Now more agile with the system Miguel took less

time and assistance to accomplish the task. He showed again some adversity against the

keyboard layout.

 This second session greatly involved his caregivers in order to test the creation and

reproduction of Assistive Macros. Has discuss in section 4.2 some applications can be

inaccessible even through our system to Miguel. Such a case is the radio application

installed in the device which was a special request from Miguel. This particular

application allowed Miguel to navigate between different stations and select the one he

wanted, he could start listening to the station but he could not stop. Getting to the stations

could also represent a challenge since it is a multiple steps process through multiple

menus that have loading times that deteriorate the navigation experience. For this reasons

we choose this application as a target for our Assistive Macros proof of concept.

We asked Miguel’s mother to now have an active role in the study. Firstly we

explained her how she could pause the system in order to interact with the smartphone

has a normal user (e.g. using the volume down key to stop it and again to resume it). Since

she had no previous experience with touchscreens we briefly explained how to interact

with the smartphone (e.g. slide gesture, taps). We guided her step by step on how to reach

the Assistive Macro application. Upon reaching it we explained to her and to Miguel that

she was creating a shortcut that he could take in order to accomplish an action that

required multiple complex steps or even steps that he could not take with the system. First

she named the macro radio and then we guided her on the steps to reach the radio

application and select the list of stations. She then finished the recording and went back

to the home screen.

Miguel task was to use the shortcut to get to the radio station list, which he did

successfully. After selecting the station curiosity took over and Miguel explored the radio

application menus. We explained what each menu meant has he navigated through then

and that one key feature was missing, the stop action.

We pre-recorded the stop macro of the radio application and we had it available on

the second home screen. To illustrate how Miguel’s caregivers could optimize his

56

navigation we asked his mother to pause the system and rearrange the home screen menus.

To do so we explained how she could move icons on the home screen (e.g. long press)

and that she could rearrange everything and even delete options (e.g. we had a dummy

icon which we asked her to delete). After rearranging the icons Miguel had one row on

the home screen with the radio and the stop option. He then proceeded to stop the radio

station.

Both Miguel and his caregivers showed interest in this concept to such ends as

writing a pre-recorded message, or go to a set of contacts (i.e. contacts that start with a

“t”). Reinforcing the positive feeling about the macros, the mother said “We never know

what we need until we try it”. She showed great interest in experimenting with the

application “After learning the basics we start to feel comfortable to explore new things”

referring to how she would try to create different macros for different applications.

4.5 Conclusion and Future directions

One possible endeavour the Assistive Macro application might face is the lack of

confidence Miguel has in the ability of his caregivers to handle the smartphone, “I do not

know if I will let you mess with the system”. To this end we have to make sure Miguel’s

caregivers feel comfortable and confident in using the system while ensuring the system

is stable. Improving the recording and management of macros is one step in the right

direction to improve trust. Due to the nature of navigating ordinary applications a problem

we discovered is the ambiguity of some names and description that make the system have

a higher learning curve. To overcome this issue we can develop a “Tag Adapter”. Similar

to how the Assistive Macro process we can create an application that Miguel caregivers

can access and select existing tags (e.g. tags/names/description) that were previously

navigated and attribute a corresponding name. So the next time Miguel was faced with

the option “Favs” the system would read “Favourites”.

The lack of descriptions is one of the big problems in accessibility. Recurring to

Assistive Macros we involved his caregivers in the optimization and usability of the

system. With it we overcame barriers that not a single accessibility service can overcome,

the lack of respect for the accessibility guidelines by most applications. This system was

only made possible by using the SWAT library, it used most of its key features to allow

system-wide access. With this we have made the first steps in proving the SWAT

57

capabilities and range of applications. Even though this system is focused around

Miguel’s needs SWAT is an agnostic library that can be used to create system wide

assistive technologies that are adapted to any kind of disability. In this case study we have

shown how SWAT can be used to create an system wide assistive technology to enable a

multi-impaired user to have full access to his smartphone by giving him the tools to

interact with ordinary smartphone applications.

58

59

Chapter 5 SWAT Screen Reader

Touch screens are now common technology in our everyday life, from tablets and

smartphones to public kiosks. It is therefore fundamental to understand how touch screen-

based interfaces can be used by people with visual impairments. When interacting with

touch screen interfaces, sighted users have the ability to quickly perceive what on screen

options are available and where is there location. A visually impaired user has to go

through all options using a screen reader to understand what is available. Due to the lack

of tactile cues it can be hard to understand where the options are spatially, users have to

rely on accessibility features such as Explore by Touch from TalkBack. As expected this

is a time consuming process that requires significantly more time for non-sighted users.

Touch screens have become more powerful over the years and now allow up to

10 touch points. Unfortunately the top accessibility features for the blind (e.g. VoiceOver

and TalkBack) only take advantage of its potential in the form of pre determine gestures

that can be mapped to specific actions. It gets worse when we realize that when these

services are active, users are restricted to use single touch input. If a user wants to write

a message quickly and presses two keys simultaneously only one is read through the

system and the other touch point is simply ignored. We are creating barriers and disabling

devices capabilities instead of taking advantage of their potential, essentially we are

crippling the device use for no benefit.

 The use of touch screen is usually a visually intensive task, when we rely on

accessibility services like TalkBack to translate these interfaces for blind users they need

a good spatial ability and/or cognitive capabilities in order to memorize items locations

[24]. This is especially true when users are presented with on screen keyboards. The lack

of tactile feedback makes multi touch text-entry on a virtual keyboard a challenge [1], the

problem is exacerbated when users are visually impaired. The system developed enables

a visually impaired user to explore the screen using a similar technique to Touch to

Explore (e.g. dragging the finger across the screen while the content is read aloud) but

with multi touch and simultaneous spatialized auditory feedback. In this chapter we will

discuss the system developed using SWAT and a study conducted where visually

impaired users were asked to write using a single and a multi touch technique that took

advantage of our system on a Tablet device.

60

5.1 SWAT Reader

To explore the notion of simultaneous spatialized auditory feedback we developed

an Android system recurring to SWAT. The result is a prototype bi-touch screen touch

reader similar to TouchToExplore with multi touch and spatial capabilities. Even though

our system was developed for all Android devices our focus is on Tablets devices where

the spatial recognition problem is amplified in comparison with the smartphone.

To spatialized the sound we relied on a sound framework [15] available on pc. In

order to test our solution the system connected to the sound framework (that was running

on a pc) via TCP/IP. Since the auditory feedback has a focus on the spatial position of the

content the system is intended to be used with headphones. The system would send the

desired text to be read aloud and what was its desire spatial position (i.e. the spatial

position was define by angle and distance to the listener). This framework allow us to

spatialized pre-recorded sound in real time, as such all the text read by our system was

previously generated (e.g. all the letters, home screen options).

Our system is only a prototype of what an actual multi touch screen reader should

be. We focused on creating a system that would allow us to explore a multitude of

input/output solutions and perform a laboratory study. In order for the users to perceived

simultaneous auditory feedback it was crucial to distinguish between several audio

sources. In [4] we can verify that users can benefit from listening to different frequencies

and from different positions.

With this in mind there was an important issue to address: how to spatialize the

auditory feedback to translate the position of the content with simultaneous feedback?

Burdened by this question we explored 5 different modes:

 2 Way – we divide the screen in two region (e.g. left and right), when the

content is read its position determines if he either is spatialized to the left of

the listener or to the right;

 3 Way – same solution as above with one more region (e.g. front) where the

content in the middle of the screen is spatialized in front of the listener;

 Auto Column – by analysing the content we divide it into columns, the

number of columns varies with the perceived number of columns the interface

displays. We then divide the number of columns by the 180 degrees in front

61

of the listener and then each text is then is read accordingly to their

position/column on the screen;

 Set Column – we divide the screen into a set x amount of columns, the content

is then attributed one accordingly to their position on the screen. It has a sub-

mode for testing purposes where we can manually assign text descriptions to

a specific column;

 Finger to Ear – the idea behind this mode is to associate a finger to a

particular region (e.g. left hand finger always read aloud to the left of the

listener). The implemented version of this mode gives the first pointer is read

to the right of the listener and the second one is read to the left;

In all the modes we only use the spatial position 180 degrees in front of the user, since

the user is interacting with the device in front of him there was no reason to spatially use

the 180 degrees on the back. To further differentiate between audio sources we used two

voices in every mode one male and other female where the male voice displays low

frequency levels and the female the opposite.

The voices could be used in a multitude of ways but we choose to use them to

distinguish between contact points. In every mode the first point is read with a male voice,

from thereon while the finger is not lifted all the content is read with it. The second contact

point is read with a female voice, from thereon all content read with that finger is read in

it. In short the first finger on screen is read in male voice and the second one is female if

the first one is still on screen. All modes support multi-touch interaction but due to the

cognitive load generated by simultaneous auditory feedback we restricted the system to a

two pointers interaction. In all of the modes there were 3 available selection methods:

 On Up – upon lifting the finger the user selects the content that was last read

with that contact point;

 Double Tap – when a finger is lifted the content last read with it is focused,

by double tapping close to the focused item a selection is made. Take notice

that since we are using a bi-touch approach two items can be focused at the

same time, therefore the distance to the focused item is taken into account, it

can also discard the double tap if the distance to the focused item is to great;

 Split Tap – to select an item the user rest a finger on it and taps in the vicinity

using a second/third finger. The second/third tap must be performed closest to

the desired selection target;

62

Every selection mode shares the same property of overlooking the physical bounds of the

items. When any of the selection actions are performed the last read item is activated even

if the pointer is already off the target, making selection easier and not restricted to

bounding boxes. If the user drags the finger of the device in the On Up selection no action

is executed. Since we have an experimental system the confirmation feedback of all

selections is simply a beep. In every mode when the user enters the bounding box of an

item that item is read aloud, if the user rests the finger on the content after the option has

been read if he performs a move type action the content is reread. This makes it easier for

users to reread any option without losing the content in focus. Since we provide

simultaneous auditory feedback we wanted to ensure no the information did not overlap

to unperceived gibberish. Using only two simultaneous audio sources associated with

each independent pointer we ensure at most only two sounds are being played. As an

example if the user drags a finger across the screen through two options and he passes

through the second one without the first one being completely read the system will stop

the first one and start reading the second one. The only simultaneous audio sources the

system allows is one from each contact point.

We used a part of the system developed to conduct a study on single and multi-

touch text entry input on a Tablet device. In it we focused on the Set Column mode with

only the On Up selection available. To perform the study we tooled our system

specifically for it, several parameters and features were added that will be described in

the next sections.

5.1.1 Limitations

Currently the system relies on an available pc sound framework, as such the

system is not truly mobile since we are relying on the pc output to provide feedback. We

pre-recorded all the available items in our tests with the desired voice, as such the system

is not a fully functional screen reader it is only a testing prototype. To create a functional

screen reader we would have to create a Text-To-Speech that would be able to spatialize

the given text and have multiple voice options, but such was not the purpose of this

endeavour.

If we look at the first two modes presented they are very similar and only provide

users with a distinction between left/right or left/front/right which in most cases will not

63

provide the depth necessary to be a relevant cue since it will only serves to help localize

our finger in relation with the screen.

The Auto Column method unlike the previous two is able to distinguish between

items with an undetermined set of columns that are translated to degrees. By setting the

number of columns automatically the difference between two adjacent columns will get

diluted when the number of columns rises which can lead to weaker spatial cues since no

difference between adjacent columns is perceived.

The Set Columns resolves this issue by pre defining the number of columns

available. Both column methods have to deal with the issue of skewed content, for

example a keyboard does not have perfectly align columns, which can lead to an unnatural

column division.

All of the modes above rely heavily on the position of the content, this presents

an issue when the content presented is large enough to occupy multiple regions of the

define space, in our system we use the centre point of the content to attribute it to a

column/region.

The Finger To Ear does not rely on the position of the content but it neglects to

give any spatial cues to its position, it serves only the purpose of facilitating the distinction

between what is read by which of our touches. Another issue with this method is that

ideally every time I use a finger from my left hand it should always be attributed to the

same region, unfortunately today smartphones are not able to distinguish between fingers

or hands as such we have to rely on the methodology of the first contact is the right/left

one.

This is an issue that is presented in every mode in a different feature, the different

voices (e.g. male/female) should not be attributed to the first/second pointer they should

be attributed to which finger the user is currently using. Unfortunately the limitations of

the device do not allow us to create this correspondence to easily distinguish between

touches. One possible solution would be to attribute the voice accordingly with which

side of the screen is first touched (i.e. if the user touched to the left side of the screen it

was probably the left hand finger and as such it should be the woman/man voice until

lifted) but this raises its own issues when the user presses with his right hand finger to the

far left of the device. There is no proven correct approach and has such we adopted the

first contact is a male voice, second contact it is a woman’s.

64

5.1.2 Leveraging SWAT

Using SWAT as a library enable us to create our prototype screen reader system

wide. Our system (SWAT Reader) implements SWAT IO Observer and extends the

Control Interface (Fig. 31).

The IO Observer is the fundamental feature of SWAT that allow us to create a

screen reader. After implementing the interface and registering the observer we select

which device we want to monitor, in this case the touchscreen. Since we want to modify

how the user interacts with the device through SWAT we block all touches from being

interpret by the OS. Since we are reading touches directly from the device we have to

process the low-level events to translate them into touch types. SWAT possesses two

Touch Recognizers able to process different types of multi-touch protocols20. These

Recognizers are able to process the events and categorized them in one of two ways:

down/move/up or tap/longPress/slide.

In SWAT Reader we are interested in using the traditional categorization of

down/move/up. By selecting the appropriate Recognizer in the SWAT accessibility

services preferences activity we can invoke him in our system. When we receive a touch

event we forward it to the active Touch Recognizer from SWAT that returns us 4 possible

touch types results (Fig. 32), down/move/up or undefined. We are receiving events one

at a time and each event is composed by type, code, value and timestamp, for example

the event with code 53 it’s the code for the x coordinate so if the value is 100 that is the

20 https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt, Last vistited

03/09/2014

Fig. 31 - SWAT Reader implementation

Fig. 32 – Touch recognition process

65

x value. When processing these events only when a synchronization event code is

received does the system recognizes a touch type, until them all previous calls to the

recognizer return undefined since the touch is not fully defined yet. When a touch is

recognized our Reader processes it accordingly. If the touch recognized is a Down or

Move and it is the first or second contact point our system asks SWAT what is underneath

those screen coordinates; SWAT answers and the system forwards the text to the Sound

Framework with the appropriate play parameters calculated from the activated feedback

mode. All the Move and Down touches change the focused item, our system keeps track

of two focused items at any time from the last two independent contact points. When an

Up action is performed the system checks which of the two focused items is closer to the

Up coordinates and if it respects the distance threshold the item is selected.

By extending the SWAT Control Interface we are able to select items by their text

description, making selection a one line command. The system was developed to explore

multi-touch screen reader and perform a laboratory study, particular in the text-entry case

study it was necessary to log all possible information. The relevant information to log

was all IO Events in conjunction to what was read/wrote when touch types were

recognized. To do so we relied to SWAT fundamental logging mechanism (Log IO) and

logged custom messages about the relevant information (e.g. “0 d 355 534 9597

1400749930582”, “Wrote:r”).

The SWAT Reader is only made possible through the use of the SWAT library,

by blocking the OS from processing the touches we are able to process then and react to

them accordingly making it possible to create a multi-touch system-wide screen reader

prototype. It relies heavily on the IO Observer and takes advantage of the Logging and

Control Interface capabilities. In the next section we report a study performed using the

system on a text-entry task.

66

5.2 Study – Bi-Manual text entry evaluation

Touch based devices present users with a great opportunities and Tablet devices

are no different. Touchscreen devices constant evolution amplify the interaction

possibilities, thus increasing the visual demands imposed to their users. This results in

limited access and slower content exploration, as well as greater difficulties to memorize

and understand the screen spatial layout.

Text-entry stands not only as one of the most common tasks performed with these

devices, but it is also one of the most visually demanding. Standard QWERTY keyboards

remain the dominant method and the one provided by mainstream accessibility solutions.

However, previous studies have shown that text-entry in smartphones is still slow

compared to what sighted people experience [24]. In contrast, there is little knowledge

about blind people’s usage of QWERTY keyboards in tablet devices. Actually, their

dimensions are more similar to a physical QWERTY keyboard, which may empower a

similar use and therefore enable users to transfer their previous knowledge. We propose

a solution that takes advantage of bi-manual interaction in a Tablet device resembling the

use of a physical QWERTY keyboard. We set out to investigate if given similar

capabilities to a physical keyboard would the users have a bi-manual interaction and

would we observe a performance improvement. To do so we used the SWAT Reader and

created a test application that suited our needs.

The application (e.g. Fig. 33) was composed by a text entry box and 27 buttons

that represented each letter of the alphabet plus the space bar. The buttons were positioned

in the same position the default virtual keyboard displays them. This application also

Fig. 33 - Text entry application

67

handled the experiment logs (e.g. target phrase, transcribed phrase, time). A java

application was created to control the flow of the experience and was connected with the

application via TCP/IP. We added to SWAT Reader a single touch mode that initially

used the double tap selection similar to VoiceOver text-entry. On this mode only the male

voice is presented and the buttons do not have a spatialized auditory feedback.

5.2.1 Approach

We conducted a preliminary study with five users to examine the audio feedback,

and target selection methods of the bi-manual system. In our first design the selection

method available was Double Tap. However, we consistently observed that character

selection by releasing the finger on the key to be the assumed and preferred solution by

the participants, therefore we opted to support this method exclusively. Releasing the

finger to write is the default writing mode on the Android TalkBack service and it is

available also on the iOS VoiceOver under the flag “Expert Mode”.

During our preliminary study users struggled with repositioning the finger since

lifting it would write a character. To tackle the issue after receiving audio feedback for a

character, users have 2 seconds to insert that character by lifting their finger. This allows

users to have both fingers on the screen and lift any of them off to reposition quickly

without inserting an undesired letter. To prevent users from inserting characters in error

from a quick tap on a key, we introduced a 200ms delay between insertions. These

threshold values were reached empirically through analysis of the interaction log, where

we observed multiple miss inputs of this nature by users with no previous touchscreen

experience, which rendered the phrase unreadable.

The QWERTY keyboard does not have the keys perfectly align in a column row

fashion, they are skewed. The first row has 10 columns while the second one has 9 and

the last one 7 if we only count the 26 letters of the alphabet. Since we wished to give the

users a good grasp of where they were on the keyboard it was fundamental to give more

than a 3 way division of the space. To conduct our study we used the auditory feedback

mode Set Column. Using the Set Column we defined the number of columns to 10 and

its using sub-mode we manually attributed each letter to the desired column. When asked

to drag the finger across a row from left to right users noticed the difference between them

and how the sound was shifting. We pre-recorded all the letters and the space bar sounds

68

in both a high frequency voice (woman) and a low frequency one (male). In the single

touch only the male voice was used.

5.2.2 Evaluation

With the preliminary study completed and our parameters sorted into their final

form we set out to evaluate visually impaired users performance with the bi-manual

approach on a tablet device using the single text-entry method as a basis for comparison.

To our knowledge there are no comprehensive studies on blind user’s performance on a

QWERTY text-entry method on tablet devices. Nor any attempt with simultaneous audio

feedback with multi-touch input has been reported. In detail, we aim to answer the

following research questions:

 How a visually impaired user performs using a QWERTY text-entry method

on a Tablet device?

 Do users take advantage of the bi-manual input?

 Can multi-touch input with simultaneous audio feedback improve user

performance?

5.2.3 Participants

We conducted the study with 39 blind participants (with light perception at most)

recruited mainly from a formation centre for the visually impaired. Of the 39 participants

only 30 were taken into account for this study. From the other 9 showed severe difficulties

interacting with a touch device and were not able to write a readable string of their name

with either method after 10 minutes of practice.

22

1 2 2 3

0

5

10

15

20

25

1 2 3 4 5N
u

m
b

er
 o

f
u

se
rs

From no experience to highly
experienced

User experience with
QWERTY on a touch device

Fig. 34 - User experience with QWERTY text entry method on

a touch device

69

The 30 participants group was composed of 6 females and 24 males, with ages

ranging from 22 to 65 (M=45, SD=11).

All participants completed a background questionnaire and self-assessed their

experience with the following technologies: QWERTY text-entry on touch devices (1:No

Experience to 5:Highly Experienced), five (16%) graded themselves with experience

above three; 23 (74%) reported no previous experience with touchscreen devices(e.g. Fig.

34); and 15 (48%) regarded themselves as highly experienced with QWERTY text-entry

on physical keyboards(e.g. Fig. 35).

5.2.4 Apparatus

We used a Samsung Galaxy Tab2 with a multi-touch 10.1 capacitive touchscreen.

The device was fixed to a table and connected to a laptop computer via WI-FI connection

to relay user interactions, and enable the research to monitor and control the evaluation

stimuli. Ozone Onda ST over-the-ear headphones were used to provide audio feedback to

the participants, running the spatialized auditory feedback sound framework previously

discussed.

5.2.5 Procedure

The study comprised one session that was conducted within a training centre for

visually-impaired people, to evaluate with two text-entry interface conditions. The

session took approximately 45 minutes and included: an oral questionnaire about

demographic data and touchscreen proficiency and a text-entry task. Moreover, we

explained that the purpose of the study was to understand and test two approaches for

text-entry in Tablet devices. In the evaluation session, the participants tried one of two

0
2

4

9

15

0

5

10

15

20

1 2 3 4 5

N
u

m
b

er
 o

f
u

se
rs

From no experience to highly
experienced

User experience with
QWERTY

Fig. 35- User experience with QWERTY text-entry

method

70

different conditions: one of the currently used methods and our Multi Touch (Bi-Manual)

approach. Participants were assigned randomly to one of the conditions. After which they

were given a 10 minute practice with the system, here the researcher explained how the

condition behaved. The participants were encouraged to perform a simple text-entry task

such as typing their name, this allowed them to become familiar with touchscreen

interactions, the systems auditory confirmation of characters and key selection. During

this period the user was guided through several tasks:

 Find the letter “A”;

 Find the letter “L”;

 Write the letter “A”;

 Write any letter;

 Perform a space;

 Write your name;

These tasks were common to both methods, the letters the participants were asked to write

and find changed from subject to subject. In the Bi-Manual method the user’s started by

performing the tasks with 1 finger for the first 3 tasks after which they were instructed to

use both hands to perform the rest. In this method we also asked users to drag their finger

across a row of the keyboard in order to understand the spatialization of sound that was

taken place. We explained how the simultaneous (including voice differences) and

spatialized feedback works.

 During the actual text-entry evaluation the participants completed five trials, the

order of these were again counterbalanced across the participants. All of the phrases were

comprised of five words, with an average word size of 4.48 characters. These phrases

were gathered from a written language corpus, having at least a 0.97 correlation with the

language. For each trial the researcher would read aloud the stimulus phrase, then the

participant would repeat the phrase back to the researcher to ensure they understood what

was said. The participants were instructed to write the sentences as fast and as accurate

as they could. In the Bi-Manual method while we emphasised the use of simultaneous

contact the participant was not obliged to do so. The participant would then attempt to

type the phrase using the current interface condition, error correction was disabled during

these trials to ensure that all errors and typing behaviours were captured. Once the

participant finished all five trials they were asked to complete an oral questionnaire to

obtain subjective opinions regarding the interface condition.

71

5.2.6 Design and Analysis

This study used a 30 between-subjects design with one independent variable:

interface condition. Phrases were randomized for each interface condition and the

participants completed all trials: 5 phrases x 1 interface condition x 30 participants = 150

trials. We analyse the users’ performance in terms of both text-entry speed (words per

minute - WPM) and accuracy (MSD Error Rate). We used a keyboard matrix based on

the Manhattan distances between keys; in which we account for keyboard row offsets.

Using this matrix we calculate the precision of the user precision (e.g. how far from his

final target did he land in each insertion). We applied Shapiro-Wilk normality test to

observed values in all dependent values. Parametric test were applied for normally-

distributed variables and non-parametric test otherwise.

5.2.7 Results

The goal of this study was to understand user performance using a QWERTY

keyboard on a tablet device with a bi-manual method. We start by analysing the different

performance metrics of each method.

Performance

Fig. 36 shows the WPM scores per condition. A Mann-Whitney U test revealed

that users did not wrote significantly more WPM with the Bi-Manual (M = 3.00,

SD=1.17) interface than in the Uni-Manual (M= 2.38, SD 0.82) one (U = 75.0, z = -1.25,

p = .124).

This suggests that touchscreen novice users are able to take advantage of two

simultaneous interaction points and match the results of a Uni-Manual interaction.

2.38
3

0

1

2

3

4

1 2

W
P

M

Words per Minute

Fig. 36 - Words per Minute

72

In Fig. 37 we can observe the evolution of the means of the WPM across the 5

phrases where we can notice a slight edge in the Multi touch method across all phrases.

The difference between methods in the first phrase showed not to be statistically

significant. We found the precision to be significantly higher (U=61.00, z=-2.12,

p=0.034) in the Bi-Manual (M=1.59, SD=0.98) interface than the Uni-Manual (M=2.29,

SD=0.98) when we performed a Mann-Whitney U test.

A Mann-Whitney U test showed that there were no differences in the MSD Error

Rate (e.g. Fig. 38) between Uni-Manual (M=9.95, SD=6.54) and Bi-Manual (M =11.52,

SD=3.90) conditions (U = 74.0, z = -1.58, p = .114). This result highlights the fact that

Bi-Manual interface input comes at no cost regarding the error rate.

Users needed to travel between fewer keys with the Bi-manual condition

(M=2.36, SD=0.66) than with the Uni-manual (M=2.97, SD=0.96) one (U = 62.00, z = -

2.079, p = .038). This result suggests that users were able to leverage their two-handed

interaction in physical QWERTY keyboards, which gave them a greater understanding

of spatial key locations.

Fig. 38 - MSD Error Rate

9.95% 11.52%

0%

5%

10%

15%

20%

25%

Single Multi

MSD Error Rate

1.78
2.31 2.29

2.67

2.83

2.45

2.93
3.12 3.23

3.24

0

0.5

1

1.5

2

2.5

3

3.5

Phrase 1 Phrase 2 Phrase 3 Phrase 4 Phrase 5

Words per minute evolution

Single Multi

Fig. 37- Words per minute evolution

73

Strategies

Fig. 39 represents the average time the user spent in the multi touch method with

one or two contact points on screen. The users spent an average of 503 (M=503.37, SD=

231.89) seconds using one contact point and 128 using 2 (M=127.72, SD=135.42),

ranging from users that spent 5 seconds using 2 contact points to 661 seconds.

Not every user took advantage of the Multi Touch method, some spent 5 seconds

of their session with 2 contact points while others spent 10 minutes.

There are clearly two types of user in the Multi Touch session as we can see from

Fig. 40 and Fig. 41 where we can see the number of contact points that are active across

the session. The first one shows a user that took advantage of the multiple touches while

the second one only used one contact point at a time. Different participants used different

techniques when it came to the Multi Touch session.

503.37

127.72

0

100

200

300

400

500

600

1 Point 2 Point

Se
co

n
d

s

Average time with 1 or 2 active points

Fig. 39 - Average time with 1 or 2 active points

Fig. 40 - Number of active touches in the multi touch session

74

If we look at Fig. 42 and Fig. 43 we are seeing all the contacts performed that

triggered a reading character, in blue we see the second contact point and in red a single

contact point.

The user from Fig. 42 clearly used both contact points anywhere on the screen,

when searching for a character he would start from the either the left or right side of the

screen but never the centre (e.g. if he did we would notice a significant larger grouping

of points in the centre of the screen).

Fig. 41 - Number of active touches in a multi touch session

Fig. 42 - Touch distribution 1

Fig. 43 - Touch distribution 2

75

The user Fig. 43 had a completely different approach. He used a single contact

point whenever he wanted to write a letter from the right side, when he wanted to write a

letter from the left side he used 2 contact points.

Opinions

After each session we performed a brief questionnaire. This questionnaire was

composed of two statements to classify using a seven-point Likert scale.

The first statement asked participants to grade how easy it was to use the method

from 1- very hard to 7-very easy. The second asked how fast they thought the method

was from 1- very slow to 7-very fast. In Fig. 44 we can see there is little discrepancy

between methods. Since the data did not follow a normal distribution we applied a Mann-

Whitney U test. . No significant different was found in the easiness statement (U =119.00,

z = -.301, p = .791) nor with the quickness one (U =129.00, z = -.729, p = .498).

There seems to be a precision advantage in writing using the Multi Touch method

even when it did not translate in a WPM significant difference. One possible reason is as

a participant commented “I can use the second finger to localize myself on the keyboard,

like a physical cue” this individual started by finding the “f” and “j” of the keyboard

before he started writing (e.g. the “f” and “j” possess physical cues on a physical keyboard

to help blind users positioning) or as another said “one point is a guide while the other

writes”. Another pointed out that he could “rest his finger on screen” instead of being

obliged to never touch the screen with the second finger.

Fig. 44 - Debriefing questionnaire

5.07 4.88 4.79
4.38

0

1

2

3

4

5

6

7

1 2 3 4

Debriefing Questionnaire

76

5.2.8 Discussion

Our first study goal was achieved, we report blind user’s performance using a

QWERTY text-entry method on a Tablet device. Participants achieved a mean of 2.4

WPM with the Single method and a 9.95% MSD Error Rate. There is no speed or

accuracy difference between the two methods, even though multi has a 3 WPM and an

11.5% MSD Error Rate average. However, there is a precision significant discrepancy

between the two, the Multi Touch approach is more precise with a lower value of M=1.59

to the M=2.29 of the Uni-Manual interface. From Fig. 37 we observe an improvement

across the phrases with a slight edge in favour of the Multi Touch method that proved to

not be statistically significant. To further understand the influence of this factor we

analysed the number of words read. Again a significant difference was found.

These results lead us to postulate that users that use the Multi Touch method have a

better grasp of the keyboard and perform a more ideal navigation traveling through less

characters. We found that some users take advantage of a two contact point solution,

solidifying the need for a deeper personalization of screen readers. We argue that even if

the second contact point is not used to perform character insertion it provides a cue to the

keyboard layout and overhaul size. The second contact point in conjunction with the

spatialized auditory feedback provide users with a deeper understanding of their

surroundings.

5.3 Conclusion and Future Directions

There is no reason why multi touch text-entry with screen readers is not allowed. We

are creating restrictions where only options should exist. If a user prefers a method over

the other he should just be able to enable/disable as he pleases. In this study we explored

text-entry with a QWERTY keyboard and simultaneous spatialized auditory feedback.

Although we explored a QWERTY input method there are other possible text-entry

techniques where the multi touch with multiple audio sources might be successfully

implemented. We focused on text-entry but multiple input with simultaneous audio

feedback can be applied to many other tasks and we wish to do so in the future. The work

on the simultaneous audio sources techniques is not complete, and although we decided

to use the set column method there are other models that can be implemented and their

exploration is another possible venue to proceed this line of investigation.

77

From a developer stand point the OS heavily restricts the control over input/output

as we have mentioned before, SWAT overcomes those restrictions and allow for the

creation and exploration of solutions such as the one presented in this study. Using SWAT

we can proceed with this work and explore ideas for a spatialized screen reader, more

specifically, we can create a system to explore text and not options. The development of

this assistive technology would not be possible without recurring to the SWAT library.

In this chapter we shown another application of SWAT in a completely different scenario

of the assistive technology field, proving its usefulness and range of application.

78

79

Chapter 6 Conclusions

Mobile devices have become a crucial tool in our everyday lives. There has been

a shift from the dated feature phones to the powerful smartphones even among the

disabled community. It is therefore fundamental to provide users with the proper tools to

interact with this and other mobile devices like a tablet. Unfortunately mobile OS make

a lot of assumptions about their end user and do a poor job supporting the creating of

assistive technology by third party developers. We cannot deny the effort that has been

made in the latest years by OS developers to include out of the box with accessibility

features. They are a great step in the right direction but it is not enough.

Adaptability and extensibility are the key to provide a multitude of different users

with a usable interface. Current OS do not fully support this endeavour due to their

restrictions on the control developers can achieve over the system core input and output

parameters.

In this work we presented the current interaction techniques of assistive

technologies and state of mobile assistive technologies applications, ranging from the

custom made to the pre-built in. We identified the issues of the current OS approach and

defined a clear objective of what our system aimed to provide. SWAT was created to

provide more control over the system output and input mechanisms. More specifically we

wanted to access to on screen content and the view hierarchy and we wished to be able to

control touch events system wide.

SWAT was developed and accomplished all of its predefined goals. We developed

an extensible and adaptable library that allowed the creation of two very different assistive

technologies. The SWAT library was presented and carefully described in detail in

Chapter 3.

In Chapter 4 we presented the first assistive technology created and the inspiration

of this thesis. The case study of Miguel a multi-impairment individual that strives for

independence and wants to be able to control as much about his life as he possible can.

The new system made only possible by SWAT allowed Miguel to quickly use new

functionalities without the need to custom develop a suitable application. On top of what

was accomplished by a previous custom made application Miguel is now able to send

messages and select a radio station using applications available on the market to everyone.

80

These applications are not adapted to Miguel and without SWAT Miguel would not be

able to interact with them. SWAT enables him to use default Android applications and

even overcome some of their accessibility problems using the Macro system of SWAT.

Even though only the radio and the messaging application were tested SWAT gives

control of the full system to Miguel, he is now able to navigate all the menus of the

Android OS. In this chapter we present the system developed using SWAT, we describe

a pre-built application of SWAT the Assistive Macro application and its applications in

Miguel’s case. A case study is described that consisted of two sessions with Miguel. This

Chapter was a step in the right direction to substantiate the adaptability and extensibility

of the library. This is not a closed chapter, we intend to continue our work to provide

Miguel with a final form of the SWAT system to allow a stable use that has the proper

tools to handle the accessibility problems that some applications present.

In Chapter 5 we present the second assistive technology developed using SWAT.

This one was not intended as a final product but as an exploratory system of simultaneous

auditory spatialized feedback in touch devices. This system could eventually become a

multi touch screen reader. First we described the system enumerating all of its

functionalities. With it we performed a study on the QWERTY text-entry method on a

tablet device. This study showed that a multi-touch text-entry with simultaneous

spatialized auditory feedback can have an impact in the user performance. More

specifically a first time user will benefit from using a multi touch method, the user will

grasp the layout of the keyboard quicker leading to a better performance by optimizing

navigation. The study is presented in great detail, for this thesis purposes we showed

another application of SWAT, this time in the realm of screen readers and text-entry. In

this chapter we shown SWAT allows a faster development of exploratory systems. The

developer bypasses the logging mechanism and allows SWAT to manage it speeding the

development process. The study was perform in a laboratory setting and as such the

application used was a custom-developed one, but nothing prevents SWAT Reader from

being used system wide.

Throughout this work we have shown the systems we developed made only

possible by SWAT and presented then each in a study. Although we believe SWAT to be

a fundamental tool to report the deficiencies of the current OS’s and what can be

accomplished when we bypass their restraints, we believe mobile OS’s should give

developers a deeper control over the system to allow the creation of such technologies.

81

SWAT had an extreme focus on assistives technologies (as the name implies) but the

reality is that SWAT has other venues where it can contribute.

6.1 Other Applications

SWAT was created with the intention to be used by others. We developed has a

library and to support a development community to take advantage of it we created a few

tutorials to introduce a new developer to it. To date, SWAT has been used in two very

distinct areas by other developers and others have also shown interest in it. A testing

system was explored by one developer using SWAT to perform scripts similar to

monkeyrunner21. The intent of the system was to perform a set of actions and measure

the approximate time it takes to load an application. The project is currently on hold due

to the accessibility issues the target application presented.

One collaboration resulted in the creation of a system by the name AURIC. This

system uses SWAT touch monitoring capabilities to record user interactions. More

specifically AURIC detects if an intruder has unblocked your smartphone and starts

recording the interaction taking place by taking screenshots of your interactions and

snapshots using the front camera while recording all the touches. The smartphone owner

can then check the AURIC application and see the intrusion, the system reproduces it

with all the touches and screenshots in conjunction with the snapshots taken with the front

camera. Furthermore a wizard-of-Oz mode was developed using SWAT Wifi to allow the

control of the detection of intrusion via Wifi for user testing purposes.

6.2 Limitations

SWAT relies on a rooted Android device with an API level of 14 or above. SWAT

is still in its infancy and as such it can have unidentified issues. Since the library overrides

the system drivers when we monitor//block/inject touches we have to be aware of the

touch screen capabilities and protocol. Since different devices possess different touch

screens and consequently different drivers this can present an issue on the scalability of

SWAT. We currently have tested we over 5 different types of devices and came across

two different methods, unfortunately all the devices were Samsung. Although this is

21 http://developer.android.com/tools/help/monkeyrunner_concepts.html

82

currently a limitation we can certainly adapt to new models as we need. The system

heavily relies on the accessibility services consequently we rely on the respect for the

accessibility norms the applications have. Unfortunately many applications bluntly ignore

accessibility standards and good practices, we have developed tools to overcome some of

this barriers but not all of them. Rooting a smartphone compromises some of its built in

security as such this poses a risk, ideally SWAT as proven to OS’s developers the need

to provide this control and is now up to then to do so without endangering the end user.

6.3 Future Prospects

SWAT is still in its infancy and as shown over the course of this project to be a

promising library with applications in many different fields. SWAT can be used to create

a variety of assistive technologies, we only explored two on this thesis but we intend to

pursue this subject. The two system presented using SWAT are definitely not on their

final form, further development will be done to accommodate all Miguel’s needs in the

system present in Chapter 4 and new venues will be explored with the one in Chapter 5.

Another possible prospect is the detection of touch patterns, the automation of actions

and the detection/adaptation/correction of miss inputs. The library is currently public

domain and can be used by anyone. We hope to create a developer community that relies

on our tool to further progress the research in the different fields.

83

Chapter 7 Bibliography

[1] Bachl, Stefan, et al. "Challenges for designing the user experience of multi-touch

interfaces." Proc. Workshop on Engineering Patterns for Multi-Touch Interfaces. 2010.

[2] Bergman, Eric, and Earl Johnson. "Towards accessible human-computer

interaction." Advances in human-computer interaction 5.1 (1995).

[3] Bigham, Jeffrey P., Jeremy T. Brudvik, and Bernie Zhang. "Accessibility by

demonstration: enabling end users to guide developers to web accessibility

solutions." Proceedings of the 12th international ACM SIGACCESS conference on Computers

and accessibility. ACM, 2010.

[4] Cherry, E. C. 1953. Some experiments on the recognition of speech, with one and with

two ears. The Journal of the acoustical society of America, 25(5), 975-979

[5] Dai, Liwei, et al. "Speech-based cursor control: a study of grid-based solutions." ACM

SIGACCESS Accessibility and Computing. No. 77-78. ACM, 2004.

 [6] Findlater, Leah, and Jacob Wobbrock. "Personalized input: improving ten-finger

touchscreen typing through automatic adaptation." Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. ACM, 2012.

[7] Gajos, Krzysztof Z., Jacob O. Wobbrock, and Daniel S. Weld. "Improving the

performance of motor-impaired users with automatically-generated, ability-based

interfaces." Proceedings of the SIGCHI conference on Human Factors in Computing Systems.

ACM, 2008.

[8] Gajos, Krzysztof, and Daniel S. Weld. "SUPPLE: automatically generating user

interfaces." Proceedings of the 9th international conference on Intelligent user interfaces. ACM,

2004.

[9] Guerreiro, T., Nicolau, H., Jorge, J. and Gonçalves, D.. 2010. Assessing mobile touch

interfaces for tetraplegics. In Proceedings of the 12th international conference on Human

computer interaction with mobile devices and services (MobileHCI '10). ACM, New York, NY,

USA, 31-34.

84

[10] Guerreiro, Tiago, and Joaquim Jorge. "Assistive technologies for spinal cord injured

individuals: Electromyographic mobile accessibility." Proceedings of GW 2007, 7th International

Workshop on Gesture in Human-Computer Interaction and Simulation. 2007.

[11] Guerreiro, Tiago, et al. "NavTap: a long term study with excluded blind

users."Proceedings of the 11th international ACM SIGACCESS conference on Computers and

accessibility. ACM, 2009.

[12] Hwang, Faustina, et al. "Mouse movements of motion-impaired users: a submovement

analysis." ACM SIGACCESS Accessibility and Computing. No. 77-78. ACM, 2004.

[13] Igarashi, Takeo, and John F. Hughes. "Voice as sound: using non-verbal voice input for

interactive control." Proceedings of the 14th annual ACM symposium on User interface software

and technology. ACM, 2001.

[14] Jacob, Robert JK. "What is the next generation of human-computer

interaction?." CHI'06 Extended Abstracts on Human Factors in Computing Systems. ACM, 2006.

[15] João Guerreiro and Daniel Gonçalves. Text-to-Speeches: Evaluating the Perception of

Concurrent Speech by Blind People. In Proceedings of the 16th International ACM SIGACCESS

Conference on Computers and Accessibility. Rochester, USA, 2014

[16] Keates, Simeon, et al. "User models and user physical capability." User Modeling and

User-Adapted Interaction 12.2-3 (2002): 139-169.

[17] Kim, Yoojin, et al. "Surveying the Accessibility of Mobile Touchscreen Games for

Persons with Motor Impairments: A Preliminary Analysis."

[18] Manaris, Bill Z., Valanne MacGyvers, and Michail G. Lagoudakis. "Universal Access

to Mobile Computing Devices through Speech Input." FLAIRS Conference. 1999.

[19] Manaris, Bill, Valanne Macgyvers, and Michail Lagoudakis. "A Listening Keyboard

for Users with Motor Impairments—A Usability Study." International Journal of Speech

Technology 5.4 (2002): 371-388.

[20] Montague, Kyle, Vicki L. Hanson, and Andy Cobley. "Designing for individuals: usable

touch-screen interaction through shared user models." Proceedings of the 14th international ACM

SIGACCESS conference on Computers and accessibility. ACM, 2012.

[21] Myers, Brad A., et al. "Using handhelds to help people with motor impairments."

Proceedings of the fifth international ACM conference on Assistive technologies. ACM, 2002.

85

[22] Nicolau, H., Guerreiro, J., & Guerreiro, T. (2014). Stressing the Boundaries of Mobile

Accessibility. arXiv preprint arXiv:1402.1001.

[23] Ntoa, S., Margetis, G., Antona, M., & Stephanidis, C. Scanning-Based Interaction

Techniques for Motor Impaired Users.

[24] Oliveira, João, et al. "Blind people and mobile touch-based text-entry: acknowledging

the need for different flavors." The proceedings of the 13th international ACM SIGACCESS

conference on Computers and accessibility. ACM, 2011.

[25] Oviatt, Sharon, et al. "Designing the user interface for multimodal speech and pen-based

gesture applications: state-of-the-art systems and future research directions." Human-computer

interaction 15.4 (2000): 263-322.

[26] Oviatt, Sharon. "Multimodal interactive maps: Designing for human performance."

Human-Computer Interaction 12.1 (1997): 93-129.[27] Ryall, Kathy, et al. "Experiences with and

observations of direct-touch tabletops." Horizontal Interactive Human-Computer Systems, 2006.

TableTop 2006. First IEEE International Workshop on. IEEE, 2006.

[28] Sears, Andrew, et al. "When computers fade: Pervasive computing and situationally-

induced impairments and disabilities." HCI International. Vol. 2. No. 03. 2003.

[29] Wu, Ting-Fang, et al. "Computer access assessment for persons with physical

disabilities: A guide to assistive technology interventions." Computers helping people with

special needs. Springer Berlin Heidelberg, 2002. 204-211.

[30] Yu Zhong, T. V. Raman, Casey Burkhardt, Fadi Biadsy, and Jeffrey P. Bigham. 2014.

JustSpeak: enabling universal voice control on Android. In Proceedings of the 11th Web for All

Conference (W4A '14). ACM, New York, NY, USA

86

87

Appendix – Tutorials

For the code of every tutorial please visit us on github

https://github.com/AndreFPRodrigues/SWAT_Lib

7.1 Adapt Tutorial

Using SWAT developers are able to monitor/block/inject events into the system
internal devices. In this tutorial we will show how you can create a virtual
touch device. We will in real-time block and adapt the touches sent to the
touchscreen device.
To do so we:
1. Create a class that implements the IOReceiver interface

2. Extend the broadCastReceiver class and check for the SWAT init intent
(check tutorial on IOReceiver)

3. Start monitoring the touchscreen

4. Block the touchscreen

5. Create the virtual drive and select the protocol*

6. On the onUpdateIO method, create the desired adaptation and call

You can try the tutorial at tutorials.adapt.TouchAdapter.
*You have to use the same protocol the default driver of your touchscreen is
using. To do so print the messages received in the onUpdateIO and figure out
to which of the protocols it corresponds. Bellow there is a link to the
protocols documentation.
https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt
This are some of the codes that will be received in the onUpdateIO for the
touchscreen:

To check the possible types and codes of all events go to Mswat/jni/input.h

88

7.2 Content Tutorial

Content receiver provides information about the current screen contents in
the form of an ArrayList<Node>. Each node has a describable node of the
screen and each node possesses the following information:
 Bounds in parent and in screen

 Class and package name

 Description and Text

 Actions

 Parent

Children

An example of a content receiver is available in tutorials.receivers.

89

7.3 IOReceiver Interface Tutorial

This tutorial shows how you can use the IOReceiver interface.
IOReceiver interface is meant to allow users to get updates on the desired
monitored internal device (touchscreen , keypad, ...)
To receive the updates you need to:
1. Create a class that implements the mswat.interface.IOReceiver
2. Implement the interface methods

a. registerIOReceiver – this method is meant to register the
IOReceiver in the system. To do so use

b. onUpdateIO(device, type, code, value, timestamp) – this method will
receive all the IO updates from the system. Where device is the id of
the monitor device and the rest are the raw values provided from the
device.
c. onTouchReceived(type) – implement this method if you want to allow
control over wifi. It receives the type of touches available to send
over wifi. (Touch types are defined in mswat.touch.TouchRecognizer)

3. When you start the registering process is up to you; In this example we
will start when the mswat finish the calibration process. Mswat broadcasts a
init signal when it finish the calibration/initialisation process

a. To do so start by extending the class BroadCastReceiver
b. Implement the class method and check for the mswat init signal
c. When the signal is received register the IOReceiver
d. Now make sure you register the broadcastReceiver in your Android
manifest

4. Now you will receive all the IO updates of all the monitored devices.

By default no devices are being monitored as such you will also need to start
the monitoring process when you register the IOReceiver. To do so you have 2
options:

Call CoreController.monitorTouch() after registering the IO receiver,
if the purpose is to monitor the touchscreen

Manually select the device to monitor

To manually select the device SWAT provides two key methods

CoreController.getDevices() – returns a String array of the devices

CoreController.commandIO(command, index, state) – using the command
CoreController.MONITOR_DEV we can select the desired monitor device by giving
its index and desired monitoring state (true/false).

In this short example we select the device that contains keypad in its name
to be monitored.

You can try this example at tutorials/IOReceiverTutorial.

90

7.4 Receivers Tutorial

There are three types of receivers in SWAT:
Content receiver – receives updates of the current content of the

screen;

Notification receiver – receives all notifications;

IO receiver – allows you to monitor any system internal device;

These interfaces are available in mswat.interfaces. These interfaces share a
common structure.
To receive updates you need to:
1. Create a class that implements one of the interfaces in mswat.interface
2. Implement the interface methods
a. register[type]Receiver– this method is meant to register the receiver in
the system. To do so use “CoreController.register[type](this);” as shown in
the figure bellow;

b. onUpdate[type] – this method will receive all the updates from the system.
Depending on the type of receiver.

91

7.5 Wi-fi Control Tutorial

Through Wifi Control we can use all the control interfaces methods plus
simulate types of touches.
To do so:
1. Check Wi-Fi control in the accessibility service configuration

2. Create a TCP connection through port 6000

3. Send message in the format [type],[arg0]

The supported messages are:
 navNext

navPrev

select

focus,[index]

touch,[type of touch*]

autoHighlight

home

back

clickAt,[description]

*The touch method is used to allow developers to send types of touches to
their SWAT controllers that do not require coordinates, only types of touches
like the example given in the tutorial TouchController. The types of touches
are:
0 – down

1 – move

2 – up

3 – double click

4 – split tap

5 – tap

6 – slide

7 – long press

3. When you start the registering process is up to you; In this example we
will start when the mswat finish the calibration process. Mswat broadcasts a
init signal when it finish the calibration/initialisation process
a. To do so start by extending the class BroadCastReceiver
b. Implement the class method and check for the mswat init signal
c. When the signal is received register the receiver as shown in the example
d. Now make sure you register the broadcastReceiver in your Android manifest
4. Now you will receive all the updates

We provide you with an example of each receiver in the tutorials package.

Also each receiver has a correspondent pdf with some additional information

specific to the receiver.

