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Nota prévia

A escrita desta tese de mestrado encontra-se em língua Inglesa uma vez que esta é a língua

científica  universal.  Por  esta  razão,  o  conhecimento  e  treino  da  sua  escrita  e  gramática

revestem-se  de  uma  importância  acrescida  para  quem  tenciona  seguir  uma  carreira  em

investigação científica. A escrita da presente tese nesta língua representa assim um exercício

apropriado que poder-se-á revelar proveitoso no futuro.

No decorrer deste mestrado foram reunidas as condições para a escrita de artigos científicos

baseados nos  resultados  aqui  obtidos.  Esta  foi  a  razão pela  qual  esta  tese  foi  escrita  em

formato de publicação científica. Desta forma, visa-se acelerar o processo de elaboração dos

manuscritos e suas subsequentes publicações. Como os resultados aqui obtidos têm de ser

complementados  com  as  subsequentes  validações  biológicas  dos  dados  de  expressão

genética, o manuscrito encontra-se escrito de acordo com as instruções para autores de uma

das revistas de referência da área: “Molecular Ecology”. No entanto, para facilitar a leitura,

as figuras e tabelas foram incluídas ao longo do texto.

As  referências  bibliográficas  da  Introdução  Geral  foram também elaboradas  segundo  os

parâmetros da revista científica internacional, “Molecular Ecology”. Trata-se de uma revista

relevante com um sistema de citações cómodo para a leitura de textos de revisão científica.

Adicionando o seu elevado fator de impacto na sociedade científica, pareceu apropriada a

escolha desta revista como referência para a apresentação da bibliografia.
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Resumo

O  café  é  um  dos  produtos  mais  comercializados  no  mundo,  com  extrema  importância

económica e social, influenciando milhões de pessoas que dependem direta ou indiretamente

desta  indústria.  No  entanto,  a  cultura  do  café  é  extremamente  afetada  por  agentes

patogénicos, nomeadamente fungos. Colletotrichum kahawae Waller and Bridge é um desses

agentes, sendo responsável pela antracnose dos frutos verdes do cafeeiro, conhecida como

“Coffee Berry Disease”. Esta doença afeta a espécie  Coffea arabica  L., a espécie de maior

importância  no  mercado,  apresentando  os  maiores  volumes  de  produção.  Atualmente,  a

antracnose  dos  frutos  verdes  do  cafeeiro  incide  sobretudo  em  zonas  de  alta  altitude,

encontrando-se confinada ao continente africano. Contudo tal não significa que não se possa

dispersar para outras zonas de cultivo onde as condições de desenvolvimento, tanto para a

planta  como  para  o  fungo,  sejam favoráveis.  Foram desenvolvidas  várias  estratégias  de

melhoramento para o combate à doença, levando ao desenvolvimento de algumas variedades

resistentes no Quénia. Apesar de já serem atualmente conhecidos vários genótipos com um

carácter de resistência a esta doença, as bases genéticas e moleculares da mesma são ainda

desconhecidas.  Com  o  intuito  de  compreender  as  bases  subjacentes  ao  processo  de

resistência, recorreu-se à sequenciação comparativa do transcriptoma de dois genótipos de

cafeeiro, um susceptível (Caturra) e outro resistente (Catimor 88) durante as primeiras horas

de interação de C. kahawae, através da plataforma Illumina. A análise destes dados visou a

identificação  de  genes  diferencialmente  expressos,  envolvidos  na  resistência  da  planta  à

doença.  Os  dados  desta  sequenciação  foram  previamente  analisados  pela  empresa  ARK

genomics  (UK),  embora  utilizando  softwares  e  parâmetros  padronizados,  normalmente

aplicados para todo o tipo de análises deste género, desde bactérias a plantas. Com o objetivo

de melhorar e aprofundar a análise, foi desenvolvida uma nova análise customizada, que aqui

se apresenta, em comparação com a análise anterior. Várias ferramentas e abordagens foram

aplicadas nesta nova análise, tendo em conta a inexistência de um geno ma de referência.

Neste trabalho foi possível identificar vários problemas e cuidados a ter desde o tratamento

das “reads”, até ao cálculo de diferenças de expressão, bem como simples diferenças entre

softwares. Neste novo estudo de expressão teve-se ainda em conta análises comparativas a

diferentes   níveis   que  não  tinham  sido  efetuadas  na  análise  anterior.  A anotação  de

“unigenes”  diferencialmente  expressos  indica  uma  tendência  para  categorias  funcionais
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diretamente  relacionadas  com  a  produção  de  energia,  envolvida  no  crescimento  e

desenvolvimento da planta, e com processos já identificados como envolvidos na resposta de

defesa  a  agentes  patogénicos   tais  como  o  metabolismo  de  açucares  ou  a  biosíntese  de

fenilalanina e fenilpropanoides. 

De um modo geral, os objetivos deste trabalho foram cumpridos, tendo-se desenvolvido uma

linha de análise que permitiu uma melhor e mais adequada exploração dos dados gerados  por

sequenciação de transcriptoma. Espera-se assim que os resultados obtidos venha a contribuir

para o aumento do conhecimento científico sobre a resposta de defesa por parte da planta,

gerando  informações  úteis  para  o  estabelecimento  de  programas  de  melhoramento  que

apoiem a produção sustentável de uma cultura tão relevante a nível económico e social.

Por outro lado, espera-se que este trabalho mostre a necessidade de uma análise cuidada de

dados de “next generation sequencing”, em especial dados resultantes da sequenciação de

RNA, tecnologia ainda bastante  recente e sem um processo universalmente aceite  para a

análise correta dos dados gerados.

Palavras-Chave: Cafeeiro.;  Antracnose  dos  frutos  verdes  ;  Mecanismos  de  defesa;

Assemblagem do Transcriptoma; Expressão diferencial; Análise comparativa
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Abstract

Coffee is one of the most traded products in the world, with extremely social and economic

importance,  and millions  of people who depend directly or indirectly on it.  Coffee berry

disease (CBD), caused by the fungus Colletotrichum kahawae Waller & Bridge, is considered

the biggest threat to Arabica coffee production in Africa at high altitude. In Coffea arabica L.

plantations, CBD can cause up to 20-50% of crop losses, reaching 80% in years of severe

epidemics if chemical control is not applied. In order to control this disease, several coffee

improvement  strategies  were  developed  which  leaded  to  the  selection  of  few  hybrid

commercial resistant varieties in Kenya. Therefore, breeding for coffee resistance remains a

powerful strategy to fight CBD, in an economic and sustainable manner. With the purpose of

gaining some insights on coffee resistance process, a RNA Illumina sequencing approach was

used  to  characterize  the  transcriptional  profile  of  two  coffee  genotypes,  respectively

susceptible (Caturra) and resistant (Catimor 88) to C. kahawae, during the early stages of the

infection process. The differential expression analysis of this data aimed to identify genes

putatively involved in the resistance process. Although a previous analysis was made by the

sequencing company ARK genomics (UK), this  was only based on non-specific methods

generally applied to a wide range of organisms. To improve the analysis and consequently the

results obtained, a new approach was taken aiming to produce a more customized workflow.

Comparatively with the previous analysis, the present approach showed some improvement

regarding the  transcriptome assembly quality  and size,  or  the  level  of  confidence  of  the

differential  expression results,  despite  the  CPU and RAM limitations.  It  was  possible  to

account for additional comparative analyses for the differential expression assessment and to

identify the enriched functional categories representing the differential expressed unigenes.

Regarding the biological results, the resistant genotype showed a high effective response to

the infection while the susceptible genotype showed an early stress-leaded response by the

infection. The KOG and KEGG annotation of the differential expressed unigenes, was able to

identify two main domains: plant development and defense response.  It is expected that the

results obtained here will contribute to increase the scientific knowledge on the plant defense

response  ,  generating  useful  information  able  to  guide  the  establishment  of  breeding

programs that support sustainable production. 
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Moreover,  it  is  expected  that  this  study  show  the  necessity  of  careful  analysis  of  next

generation sequencing data, especially when dealing with recent methods like RNA-seq, for

which there is no clear consensus about the best analysis practices.

Keywords: Coffee plant; Anthracnose; Plant Defense mechanisms; Transcriptome assembly;

Differential expression; Comparative analyses 
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Chapter I



I. General introduction

Coffee is one of the most valuable agricultural products in the world, and one of the greatest

economic  income  generators  for  several  developing  countries  where  a  considerable

percentage  of  the  population  depends  on  coffee-related  activities  such  as  production,

processing, transport and commercialization. The worlds' consumption of coffee is constantly

growing, which makes the coffee industry prosperous. Nevertheless, recurrent rock bottom

prices cause immense hardship both to countries where coffee is a key economic activity, and

to the farmers involved in coffee production. The origin of this situation lies on the oscillation

of prices due to the current imbalance between supply and demand. Meanwhile, the costs of

production, transport, machinery and disease control continue to grow. The subsequent effects

force the coffee farmers to economize and this has often led to a reduction in the use of

agricultural inputs necessary for optimal coffee production. On the other hand, the occurrence

of major severe diseases is one of the main limiting factors of coffee production. Coffee berry

disease (CBD) caused by the fungus Colletotrichum kahawae Waller and Bridge, is the most

devastating threat to Coffea arabica L. production in Africa at high altitude, and its dispersal

to Latin America and Asia represents a serious concern. This pathogen is a highly destructive

specialist  that  infects  expanding  green  berries,  leading  to  their  premature  dropping  and

mummification. Despite the existence of effective methods for CBD control such as chemical

control, their prices and the application procedures can be too high and complex especially

for  small  producers.  Thus,  the  utilization  of  methods  such  as  the  cultivation  of  disease

resistant varieties seems to  be the most reliable way to manage disease control. In order to

accomplish  long-lasting  resistance  using  breeding  strategies,  a  better  knowledge  of  the

molecular  bases  of  coffee  resistance  is  essential,  so  that  a  sustainable  system of  coffee

production can be created.

Deep transcriptome sequencing studies are becoming more and more common, presenting

inumerous advantages towards the unprecedent amount of knowledge that can generate, but

the bioinformatics analysis of the data is still a major limitation. RNA-Seq analysis is mostly

used for expression studies, and is suitable for the understanding of transcriptomic dynamics

between conditions.
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In the present work, a RNA-seq comparative analysis was made between a susceptible and a

resistant genotype of coffee when infected with C.  kahawae,  with the aim of identifying

genes potentially involved in the resistance response. Before presenting this work, a brief

introduction  is  made  on  the  host,  Coffea  spp.,  the  pathogen  C.  kahawae and  the  plant-

pathogen  interaction  in  order  to  highlight  the  most  relevant  aspects  of  the  pathosystem

studied. It is also presented a little introduction to the NGS technology, methods of analysis

and software used.
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1. The Host – Coffee Plants 

1.1. General Characteristics

Coffee  plants  belong  to  the  genus  Coffea from the  Rubiaceae  family. This  classification

encounters 103 described species, with the most economically relevant species belonging to

the  subgenus Coffea,  including the  three  species  that  are  commercially  explored:  Coffea

arabica  L. (Arabica  coffee),

Coffea  canephora   Pierre  ex

A.Froehner  (Robusta  coffee)

and Coffea liberica Hiern with

a marginal expression in total

coffee production, grown only

at  a  regional  scale  (Bridson

1994; Davis 2003; Davis et al.

2006).

Coffea  spp.  are  evergreen,

glossy-leaved  shrubs  or  trees

5–10 m high from tropical and

sub-tropical  forest  habitats.

Native  of  the  African

continent,  Coffea  spp.  occur

mostly  in  humid,  evergreen

forests,  but  their  habitat  also

includes  other  forest  types

(Waller  et al. 2007) The three

commercially  relevant  species

are better  adapted to different

kinds of forests: C. arabica need cool and humid environmental conditions at high altitudes,

while  C.canephora  and  C.  liberica are  usually  found  in  humid  and  relatively  warmer

environments,  typical  of  the lowlands  (Wrigley 1988;  Lashermes & Anthony 2007).  The

natural distribution of Coffea spp. is represented in Figure 1. Coffee plants features include

elliptical leaves with pointed tips, which occur in pairs. They have short petioles with small

3
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stipules, and domatia (small pits) are present on the undersides of leaves at the junction of the

main veins. Flower clusters are produced in leaf axils. The fruit is a two-seeded drupe with a

fleshy epicarp. The stems exhibit dimorphic branching due to the different development of

two buds that occur, one above the other in each leaf axil of the main stem  (Waller  et al.

2007). 

As common in the family Rubiaceae, most of the species of the genus Coffea are diploid with

2n=22  chromosomes,  except  C.  arabica which  is  allotetraploid  (2n=44  chromosomes),

resulting from a natural hybridization between  C. eugenioides and  C. canephora genomes

(Lashermes et al. 1999). C. arabica is further considered a relatively new species, due to the

lack of differentiation from its parental species (Raina  et al. 1998; Lashermes & Anthony

2007).C. arabica also differs from the other species due to being self-fertile, which is a trait

that is not present in other species (self-incompatible) (Charrier & Berthaud 1985).

C. arabica, is one of the most important species in coffee industry, since the best quality

coffee, with low caffeine content is produced from its fruits, however is highly susceptible to

various diseases.

1.2. History

The history of the coffee plant is not accurate, since it dates back to ancient times, and covers

so many episodes that the version presented here is most likely a mix of facts and fiction that

cannot be easily dissociated from each other.

According to Ferrão, 1993, coffee has its origin in the mountainous area of Abyssinia (actual

Ethiopia) from where it spread to South-East Arabia possibly carried by pilgrims to Mecca,

which used coffee berries for its stimulating effect. These pilgrims later introduced the plant

in India around the 16th or 17th century (Bigger 2006; Ukers 1935), but their cultivation was

known to be first started as early as 575 AD in Yemen  (Anthony  et al. 2002; Topik 2004;

Bigger 2006; Lécolier et al. 2009)

In the 16th century, the Europeans become aware of coffee cultivation and use as beverage,

which  led  to  their  dissemination  around the  colonies  (Anthony  et  al. 2002;  Topik  2004;

Bigger 2006), turning coffee into one of the major sources of income, as it remained until

today. The Dutch were the first to recognize the potential of coffee, and manage to ship a

coffee plant from Yemen to Java  (Ferrão 1993; Topik 2004; Bigger 2006; Ukers 1935). In
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1706 the first coffee plants were received at the Amsterdam botanical gardens, from Java, and

soon they were being shipped to other gardens all around Europe (Ferrão 1993; Topik 2004;

Bigger 2006; Ukers 1935). The French soon started the dispersion along the West Indies,

between 1715 and 1730, introducing coffee into places like the Dominican Republic, Haiti,

Martinique,  Jamaica  and  Reunion  island  (Bigger  2006;  Ukers  1935).  The  dispersion

continued to Central America, including Costa Rica, Cuba, Mexico and Venezuela, due to

Spanish intervention  (Topik 2004; Bigger 2006; Ukers 1935). The Portuguese seems to be

responsible for the introduction of coffee in Brazil, and later on, in other colonies, such as the

African colonies of São Tomé, Mozambique and Cape Verde, on the 17-18th century (Ferrão

1993).  Just  like  Portugal,  other  European  Countries  introduced  coffee  on  their  African

colonies: in the 19th century, the Dutch, established plantations on Gana and the French in the

Ivory Cost (Bigger 2006).

The dissemination and domestication of coffee was thus mainly conducted from the 16 th to

the 19th century and was subjected to an intensive selection of phenotypes,  optimized for

better economic performance (Stukenbrock & McDonald 2008). This new and rapidly created

agro-ecosytem provided genetically uniform populations, ideal as a host for the emergence

and  dispersal  of  plant  pathogens  (Anthony  et  al. 2002).  This  apparent  lack  of  genetic

variation  in  C. arabica crops  makes  them  highly  vulnerable  to  disease  outbreaks  since

virulent pathogen genotypes adapted to a particular host genotype can increase very rapidly

in frequency, quickly generating a degree of host specificity or race specificity rarely seen in

natural ecosystems(Friesen et al. 2006; Butler et al. 2009).

1.3. Production and Commercialization

Nowadays, coffee is one of the world’s most valuable export commodities, ranking second on

the  world  market  after  petroleum  products  and  a  primary  export  of  many  developing

countries that rely, to a greater or lesser extent, on the revenues generated. This means that

any decline  on  coffee  trading  earnings  can  have  major  economic  repercussions  in  those

countries (Davis 2003).

According to the International Coffee Organization, coffee is the world’s most widely traded

tropical  agricultural  commodity, accounting for exports  estimated in US$ 15.4 billion for

2009/10. Coffee also plays an important role at the social level of the producing countries,

due to the high number of jobs provided by this industry. For example, in 2010 the total
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coffee sector employment was estimated at about 26 million people in 52 producing countries

(van Hilten et al. 2011).

Coffee  production  relies  mainly  on  two  species:  Coffea  arabica  (70%)  and  Coffea

canephora (30%) (Davis 2003; Ukers 1935). This distribution of production is related to the

superior cup quality of  C. arabica. C. arabica  is predominantly produced  in Central  and

South America and C. canephora in West Africa and Asia (http://www.ico.org, accessed on

October 16th 2013).

Brazil encounters itself on the top of the list of the world's biggest producer of coffee both in

Arabica  and Robusta  coffee,  followed  by Colombia  for C.  arabica,  and  Vietnam for  C.

canephora (http://www.ico.org, accessed on October 16th 2013).

The coffee industry is prosperous and stable due to the exports of most of the production to

European countries  (Vega  et al. 2003; Waller & Masaba 2006) (for example, in 2010-11,

Brazil consumed 19130000 bags against 29603000 exported) (http://www.ico.org, accessed

on October 16th 2013). Despite that, the coffee crisis is a fact: the oscillation of prices due to

the current imbalance between supply and demand has severe consequences at several levels.

On top of that, coffee diseases can potentially aggravate this crisis, especially major ones,

such as coffee leaf rust and coffee berry disease (Osorio 2002; Vega et al. 2003).

2. Colletotrichum kahawae, the agent of coffee Berry Disease

Coffee Berry disease (CBD) is  an extremely severe disease of  C. arabica caused by the

fungus Colletotrichum kahawae Waller & Bridge resulting in anthracnose of the green fruits.

It is the largest threat to  Coffea arabica production in Africa, to where it is presently still

confined.

The most recent speciation hypothesis showed that Colletotrichum kahawae  emerged from

the  C.  gloeosporioides complex  as  a  specialist  on  Arabica  coffee  (Silva  et  al. 2012),

producing anthracnose symptoms on the green berries,  expressed by dark sunken leasons

leading to their premature dropping or mummification – Coffee Berry Disease.

2.1. Origin and Distribution

Only  in  1993  the  CBD  agent  was  well  characterized  as  a  distinct  species,  based  on

morphological,  cultural  and biochemical  characters,  as Colletotrichum kahawae Waller  &
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Bridge belonging to the Family Glomerellaceae (Waller et al. 1993). 

A few years ago, the C. gloeosporioides species complex was reclassified, and the CBD agent

was then classified as a subspecies of C. kahawae, C. kahawae subsp. kahawae (Weir et al.

2012).

The specific origin of this pathogen and the disease emergence is still a subject of debate.

Nonetheless the first known report goes back to 1922 in two small districts of Kenya, located

at high altitudes, where most of the crops were ruined by a new unknown disease (McDonald

1926; Vermeulen 1970). After that, the disease was described in Angola (1930), Congo RD

(1938),  Mount  Kenya  district  (1939),  and afterwards,  it  rapidly spread  to  almost  all  the

Arabica coffee cultivation areas of Africa  (Nutman & Roberts 1960; Manga 1997). More

recently Silva et al. (2012) in their study hypothesized that C. kahawae emergence may have

taken place in  Angola, as opposed to Kenya.

Currently the disease is confined to the African Continent and is rarely reported below 1600

meters (Manuel et al. 2010). This preference is due to the cooler and wetter conditions of

high altitudes that favor both pathogen and disease development (Vermeulen 1970; Mulinge

1971; Waller & Masaba 2006). However, the spread of the disease is a big concern for non

African  coffee  production  countries  bearing  similar  environmental  conditions,  due  to  the

terrible consequences that it could bring for production. 

2.2. Infection process and disease symptoms:

In the infection process,  C. kahawae uses a hemibiotrophic strategy, which includes a post-

penetrative asymptomatic biotrophy phase, followed by a destructive necrotrophy phase that

culminates  in  the  appearance  of  disease  symptoms  and  the  reproduction  of  the  fungus

(Loureiro  et  al. 2012).  C. kahawae´s  infection starts  with the germination of  the conidia

(asexual spore) and differentiation of melanized apressoria on the plant´s surface, a structure

used by the fungus to penetrate the cuticule (Fig 2) by mechanical pressure, secretion of cutin

degrading enzymes, or a combination of both processes (Chen et al. 2004; Silva et al. 2006).

Following the penetration, the fungus starts to colonize the host tissues: an infection vesicle is

formed from which several other hyphae emerge and grow. This phase involves the transition

of hyphae growth in living cells (biotrophy - which may last 24 to 48 hours after inoculation)

to dead cells (necrotrophy). Finally, a new conidia is formed and emerges from the cuticule,

setting free a new generation of C. kahawae spores (Figure 2) (Silva et al. 2006; Loureiro et
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al. 2012).    

Depending on the  resistant  or  susceptible  response  of  the  coffee  genotype,  two types  of

symptomatology can occur.  Scab lesions are typical of a resistance plant response, which

restricting fungal development, only allows the formation of superficial little black spots . In

this case, the deeper layers of the fruit are not invaded, and the lesion appears stationary, not

affecting the normal development of the green berry (Anthony et al. 2002; Topik 2004). On

the other hand, in susceptible plants the development of Active lesions is observed, starting

as little black spots, which in the presence of good conditions can form dark, sunken, active

lesions  that  rapidly expand and destroy the entire  fruit  (Nutman 1970;  Ntahimpera  et  al.

1999; Schroth et al. 2000).

2.3. Dissemination:

To a properly  C. kahawae spore dispersion, environmental conditions such as temperature,

precipitation and humidity, are crucial because these conditions directly interfere with the

infection process, affecting also the distribution and severity of the disease (Mulinge 1971).

Temperatures  within  the  range  of  17  –  28ºC  are  favorable  for  the  development  of  the

infection,  while  temperatures  outside this  range slow down this  process.  In  addition,  the

maturation stage of the host plant's fruit is also a parameter known to have influence in the

infection process (Nutman & Roberts 1960). 
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Sporulation occurs mainly in already infected berries with high humidity conditions  (Gibbs

1969) and the spread, responsible for new infections, is exclusively dependent on rain, since

the  mucilage  surrounding  the  spores  also  prevents  dispersal  by  wind  (Fitt  et  al. 1989).

Thereby, the spread occurs in a vertical way in the same plant, where the highest twigs infect

the lowest twigs, and, in different plants by rain splash, , but only in short distances (never

more than 1 m)  (Ntahimpera  et al. 1999). Taking into account the high distribution of  C.

kahawae,  there  is,  however,  a  very good  possibility  that  spread  by rain  is  not  the  only

mechanism for the C. kahawae dispersal  (Waller 1972). Human activity and animals could

play also a responsible  part  in  fungus dispersal  (Nutman & Roberts  1960; Schroth  et  al.

2000). 

2.4. Economical impact

CBD is considered one of the main problems to coffee production, with great repercussions

in economics.

In C. arabica plantations, CBD can cause up to 20-50% of crop losses, reaching 80% in years

of severe epidemics if chemical control is not applied (Van der Vossen et al. 1976; Griffiths et

al 1971). This can signify the loss of millions of dollars, especially in countries where coffee

production is almost exclusively restricted to C. arabica such as the case of Ethiopia (Derso

& Waller 2003). The scenario can be even more concerning, if we take in consideration that

in Ethiopia, more than 700,000 families are involved in coffee production and more than 15

million people depend directly or indirectly of coffee (Vega et al. 2010).

The use of chemical control measures can decrease the losses by CBD, but that measures may

account  for  30-40%  of  total  production  costs.  Annual  economic  damage  to C.  arabica

production in Africa, due to crop loss by CBD and cost of chemical control, is estimated at

US$ 300–500 million (Van Der Vossen 2009).

2.5. Control

The  first  attempts  to  control  the  disease  consisted  on  the  application  of  copper  and  or

systemic organic fungicides (Nutman 1970). The application of this treatment, however, not

only caused toxicity problems in the plants and soils, but in other cases was not effective as

the fungicide itself could be mostly washed away (Nutman 1970; Chung et al. 2006; van den

Bosch & Gilligan 2008).
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Currently the main focus for disease control is the development and cultivation of resistant

coffee  varieties  to  CBD,  through  plant  breeding  programs  (Silva  et  al. 2006).  A major

breakthrough for the improvement of coffee breeding programs was the discovery in the late

1950s, of Hibrido de Timor (HDT), a coffee hybrid of  C. arabica and  C. canephora. HDT

was  discovered  in  an  Arabica  coffee  plantation  in  Timor. Initially  was  known for  being

resistant  to  coffee  leaf  rust,  but  later  was  recognized  as  having  some  degrees  of  CBD

resistance too.  In that way, some lines of HDT and Rume Sudan, has been used in breeding

programs as resistance sources  (Wrigley 1988; Varzea 1993; Silva  et al. 2006).  One such

examples, is the commercial variety Ruiru 11 and Catimor 88 in Kenya, which were bred for

resistance to CBD and coffee leaf rust.

3. Coffee – C. kahawae interaction

Plants and pathogens have evolved together in a dynamic system of interaction. While plants

have  the  ability  to  recognize  potential  invading  pathogens,  and  have  developed  several

defense mechanisms; pathogens, at the same time, have developed new infection strategies,

compromising the defense mechanisms of the host, effectively playing an evolutionary “ping-

pong” game. 

There are essentially three reasons for a pathogen not to be able to infect a host, leading to an

incompatible interaction: 

i) The plant is unable to support the niche requirements of the potential pathogen, constituting

a non host (Hammond-Kosack & Jones 1996);

ii)  The  plant  possesses  means  to  confine  successful  infections,  which  are  constitutively

expressed, like structural characteristics that prevent the entrance of micro-organisms or the

presence  of  some  antimicrobial  compounds,  forming  physical  and  chemical  barriers

(Hammond-Kosack & Jones 1996);

iii) Upon recognition of the attack, the plant initiates mechanisms that can keep the invasion

localized,  such  as  structural  alterations  of  the  cell  wall,  production  and  accumulation  of

antimicrobial compounds, deposition of compounds between the plasma membrane and the

cell wall or even cell death at the pathogen's site of penetration, which involves a network of

signal  transduction  and  rapid  activation  of  gene  expression  (Hammond-Kosack  & Jones

1996). In this process, a non-specific first line of plant defense is activated by the recognition

of  common  pathogen  elicitors  (pathogen-associated  molecular  patterns,  PAMPs),  which
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trigger the subsequent responses, such as the production of pathogenesis-related (PR) proteins

(Hammond-Kosack & Jones 1996; Gururani et al. 2012) 

However, pathogens can “bend” these rules, by suppressing host defenses and subsequently

colonizing host tissues, which corresponds to a compatible interaction (susceptibility).

3.1. Coffee resistance mechanisms to C. kahawae

In Arabica coffees resistance mechanisms to  C. kahawae are both preformed and induced,

and operate at different stages of pathogenesis (Gichuru 1997). The coffee berry cuticle could

act as a physical barrier to the penetrating pathogen. Moreover, several investigations on the

occurrence and possible role in CBD resistance of preformed antifungal compounds in the

cuticle have been carried out,  although the chemical nature of these compounds was not

identified (Silva et al. 2006 and references therein).

Resistant coffee genotypes can rapidly initiate a specific defense response to the infection of

C. kahawae,  leaving only a scab lesion on the infection site  (Anthony  et al. 2002; Topik

2004). According to Masaba & van der Vossen (1992), this type of lesion is related with the

formation  of  a  suberin  barrier  under  the  local  of  infection  –  a  mechanic  barrier  to  the

development of the fungus - and the capacity to form layers of suberised cells under the local

of infection. Apparently these mechanisms are dependent on metabolic activity, because when

the fruit is detached from the plant, this capacity of response is completely lost.

Cytological analysis showed that for certain coffee genotypes resistance to  C. kahawae  is

characterized by the restriction of fungal growth associated with the hypersensitive host cell

death  (hypersensitive  response),  accumulation  of  phenolic  compounds,  encasement  of

intracellular  hyphae  with  callose  and  modifications  in  cell  walls  (lignification  and

thickening ) (Silva et al. 2006; Loureiro et al. 2012).

In susceptible plants, some of these responses, such as deposition of callose and phenols are

delayed, not being able to prevent the fungus development and reproduction (Silva  et al.

2006; Loureiro et al. 2012).

Although coffee responses  have been well  described in  a  citological  context,  the  genetic

molecular bases of coffee resistance against  C. kahawae remain unknown. Previous studies

have  identified  some  genes  as  being  involved  in  resistance  mechanism,  however,  their

annotation and characterization has not been possible  (Silva  et al. 2006; van der Vossen &

Walyaro 2009). Thus, it is extremely important to increase the knowledge on the structure of
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the  transcriptome,  through  the  comparison  of  infected  resistant  and  susceptible  coffee

genotypes,  to  get  some  insights  on  the  distinctive  processes  underlying  plant  resistance

response. 

4. RNA-sequencing and data analysis

Studying the transcriptome profile is essential for fully understand the biological pathways

that are active in various physiological conditions or developmental stages (Wang et al. 2009;

Ozsolak & Milos 2010). Knowledge about functional elements of the genome and molecular

specificities of cells and tissues can be retrieved from this type of analysis (Wang et al. 2009;

Martin & Wang 2011). For a long time, the utilization of  the Sanger technology led to a

limited knowledge of the transcriptome, since this technology can only allow sequencing of

limited sets of samples with a high time and resource consumption (Martin & Wang 2011).

Recently,  the  development  of  novel  deep-sequencing  technologies  (Next  generation

sequencing, NGS) opened exciting new approaches to transcriptome profiling (Bohnert et al.

2009).

4.1. NGS technologies

Currently, there are three NGS technologies in major use:  Roche/454 (entering into disuse,

but still viable for a number of goals as proved by many recently published studies, such as

the study of Oak root response to ectomycorrhizal symbiosis establishment (Sebastiana et al.

2014)), Ion torrent, and Illumina  (Mardis 2011; Loman  et al. 2012).Table 1 resumes some

technical specifications of these platforms of next generation sequencing methods.

Roche/454 was the first to achieve commercial success, and uses an alternative sequencing

technology known as pyrosequencing. Although this technology offers long reads (~ 600bp),

which facilitates the assembly step in comparison with other technologies, it cannot interpret

long stretches of the same nucleotides (homopolymers), introducing errors on base calling,

resulting in a low throughput (Mardis 2008, 2011; Metzker 2010; Liu et al. 2012; Loman et

al. 2012).

Like  454,  Ion  Torrent  technology exploits  emulsion  PCR. This  platform is  based  on the

detection of hydrogen ions that are released during the polymerization of DNA (Rothberg et

al. 2011;  Loman  et  al. 2012).  Also,  Ion  Torrent  technology  suffers  from  errors  in

homopolymer  regions  ,  although to  a  lesser  extent,  and produces  shorter  reads  than  454
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technology (up to 400bp). This technology presents lower accuracy but a lower price per

Gigabase, comparatively with IIllumina sequencing (http://  allseq.com, accessed on January

11th 2014; Loman et al. 2012). Despite their reasonable throughput, the main advantage of ion

torrent, relatively to the other sequencing technologies, is the price of the equipment which is

much more cheaper than the others (Quail et al. 2012). 

Table 1 - Technical specifications of Next Generation Sequencing platforms. (http://  allseq.com, accessed on
January 11th 2014;Gilles et al. 2011; Liu et al. 2012; Quail et al. 2012; Loman et al. 2012)

Roche/454
(Titanium)

Ion torrent
(Proton 318 chip v2)

Illumina
(Illumina HiSeq 2000)

Equipment price $500k $50k $654k

Sequencing yield per run 700Mb Up to 2Gb 600Gb

Sequencing cost per Gb ~$10k ~$16 ~$41

Observed raw error rate 1.07% >1% 0.26%

Read length ~600bp Up to 400bp  ~150bp

 Paired-end reads no no yes

Lastly, the Illumina system utilizes a sequencing-by-synthesis  approach in which all  four

nucleotides are added simultaneously to the flow cell channels, along with DNA polymerase,

for  incorporation into the  oligo-primed cluster  fragments.  Illumina,  produces  the shortest

reads  (~150bp, but  it  is  already commercialized equipment  that  can produce reads up to

300bp,  and so,  fragments  of  600bp),  but  yields the best  throughput/cost  relation.  Plus,  it

presents the highest accuracy among the mentioned technologies and is suitable for a large

range of applications, such as mRNA sequencing (RNA-Seq) and whole genome sequencing

(Mardis 2008, 2011; Metzker 2010).

4.2. RNA-Seq

RNA-Seq is a recent method for both mapping transcriptomes and quantifying transcripts,

measuring gene expression, based on the latest developed deep-sequencing technologies.

In general, RNA is converted to a library of cDNA fragments with adapters in both ends.

Each molecule, with or without amplification, is then sequenced in a high-throughput manner

to  obtain  short  sequences  from one  end  (single-end  sequencing)  or  both  ends  (pair-end

sequencing)  (Wang  et al. 2009). In principle, deep-sequencing technology can be used for

RNA-Seq, such as Illumina or Roche 454 systems, which are commonly applied for this
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purpose (Wang et al. 2009).

Although  RNA-Seq is  still  a  technology under  active  development,  it  offers  several  key

advantages over existing technologies. Comparatively with Microarrays (Table 2), RNA-seq

is not limited to identifying transcripts  corresponding to existing genomic sequences.  For

example, Illumina based RNA-seq can be used when no reference genome is available as

reported for  the gene expression analysis of Paulownia infected by Phytoplasma (Paulownia

witches'-broom)  (Mou  et  al. 2013).  This  feature  makes  it  very  attractive  for  non-model

organisms with or without reference genome (Wang et al. 2009). Furthermore, RNA-seq is

particularly useful  for  transcriptome assembly and hence  to  provide  information  on how

exons are connected, and can be used for base variation calling in the transcribed regions.

Other  advantages  of  RNA-seq  relative  to  DNA  microarrays  include:  the  absence  of

background noise caused by unambiguity when mapped against a reference genome, bigger

sensitivity  for  low  and  extremely  high  expression  regions,  and  a  higher  accuracy

(Nagalakshmi  et al. 2010; Xu  et al. 2013). Consequently, the volume of expressed genes

detected are much higher just as the sensitivity of the different degrees of expression. At last,

RNA-seq has shown high levels of accuracy, when confirmed through quantitative real-time

PCR.

Table 2 - Differences between Microarrays and RNA-Seq (adapted from Wang et al., 2009)

Technology Microarray RNA-Seq

Specifications

Resolution Up to 100bp Single base

Throughput High High

Reliance on genomic sequence Yes In some cases

Background noise High Low

Application

Simultaneously map transcribed regions and gene expression Yes Yes 

Dynamic range to quantify gene expression level Up to a few-hundredfold >8,000-fold

Ability to distinguish different isoforms Limited Yes

Ability to distinguish allelic expression Limited Yes

Practical issues

Amount of RNA needed High Low

Cost of mapping transcriptome High Relatively low
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RNA-Seq is the first method that allows the survey of the entire transcriptome in a very high-

throughput  and quantitative  manner,  with  countless  advantages  over  other  methods.  This

method offers both single-base resolution for annotation and ‘digital’ gene expression levels

at the genome scale, often at a much lower cost than microarrays.    

4.3. Data Analysis

Like other deep-sequencing technologies, RNA-seq implies several bioinformatic challenges

including methods and infrastructures to store and process large amounts of data in a fast,

error-free and “less memory consuming” way (Wang et al. 2009; Oshlack et al. 2010). 

The first step of RNA-seq analysis, after “cleaning” the reads, is to map the reads against a

reference  genome,  or  assemble the  reads  all  together  (de novo assembly),  to  unravel  the

structure of  the  transcriptome.  When a reference genome exists,  the assembly process  is

relatively simple: The reads are mapped against the genome (normaly called “backbone”)

originating the transcriptome (Wang et al. 2009; Oshlack et al. 2010). There is a wide choice

of software available for this task, which does not require great computing power or time,

such as Cufflinks  (Garber  et al. 2011). These software make the best use of the reference

genome, reporting isoforms and identifying novel  transcripts.  On the other  hand, when a

reference genome is  missing,  the task becomes much more complicated: the software for

transcriptome  assembly  without  a  “backbone”  (usually  called  de  novo assembly,  as

Velvet/Oases (Schulz et al. 2012) and TransAbyss (Garber et al. 2011))  is time and resource

consuming, and the final result usually entails a high level of redundancy. This redundancy

can be the result of assembly bias, already identified in several de novo assembly programs,

or simply the result of a mixed assembly of different isoforms (due to alternative splicing),

which without a reference, cannot be distinguished (Wang et al. 2009; Oshlack et al. 2010;

Martin & Wang 2011). For reducing this redundancy bias, some software already exists, such

as CD-HIT (Li & Godzik 2006; Surget-Groba & Montoya-Burgos 2010; Miller et al. 2012),

but sometimes it is not sufficient to remove all the redundancy generated. In a study of Pinus

sp. Transcriptome (Parchman et al. 2010), blastx hits were used for redundancy evaluation,

which  unraveled  redundant  genes  when  their  hits  were  the  same.  This  strategy  can  be

imperfect, if several genes do not match with any of the databases sequences, hampering their

redundancy analysis (Parchman et al. 2010).

The next step includes read mapping against the reference genome or  de novo assembled

15



transcriptome,  for expression quantification.  This task can be very difficult,  especially in

large transcriptomes with short  reads (like Illumina sequencing) because reads can match

several locations in the transcriptome/genome (Oshlack et al. 2010). Several solutions have

been proposed, including the assignment of the multi-matched reads based on the number of

reads  mapped,  to  their  neighboring unique sequences  (for  low-copy repetitive sequences)

(Mortazavi et al. 2008), or the assignment of multi-matched reads based  on the probability of

a fragment being derived from a certain transcript, computed by maximum likelihood (Li &

Dewey 2011; Garber et al. 2011). This last method is used in the software RSEM, which uses

Bowtie (Langmead et al. 2009) for read mapping, and relies on this same method to quantify

the expression of different isoforms without a reference genome (Li & Dewey 2011).  On the

other hand, the use of longer reads, such as those obtained with 454 technology, and paired-

end  sequencing  can  help  on  this  multi-matching  problem.  Also,  the  advance  of  the

sequencing technologies may proportionate a bigger read length in the near future (Wang et

al. 2009).

Errors in sequencing or polymorphisms can present other types of mapping problems, besides

ambiguous locations on the genome/transcriptome. Small differences can be overcome by the

software,  which can accommodate one or two base differences. However, resolving large

differences  is  much  harder,  and  will  usually  require  great  genome  annotation  for

polymorphisms and deeper coverage (Wang et al. 2009).

For a proper RNA-seq expression quantification, considerable sequencing depth is needed.

Insufficient  depth  would  result  in  lower  coverage,  which  lead  to  a  less  accurate

quantification, in a method that depends directly on read quantity for accurate results (Wang

et  al. 2009).  In  general,  the larger  the genome,  the more complex the transcriptome and

consequently, more sequencing depth is needed for a decent coverage (Wang et al. 2009). For

simple transcriptomes such as yeast, with no evidence of alternative splicing, 30 million of 35

nucleotide reads are sufficient to observe transcription for most genes on a single condition

(Wilhelm et al. 2008).

Nevertheless,  there  is  no  way  to  better  compute  the  coverage  needed  for  transcriptome

sequencing, as the true number and level of different transcript isoforms is not usually known

and transcription  activity varies  greatly across  the  genome.  However, analyzing different

conditions can further increase coverage (Wang et al. 2009).

Lastly, it is possible to use gene quantification across conditions to obtain their differences
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and  gain  insights  about  gene  regulation,  allowing  differential  gene  expression  analysis

(Garber  et  al. 2011).  RNA-Seq  is  capable  of  capturing  transcriptome  dynamics  across

different  conditions,  times  and  tissues  offering  a  robust  and  accurate  way  to  compute

differentially expressed genes.  For calculating the fold change of genes between conditions,

several packages are available, with different features adapted to different data. For instance,

for  diferentially expressed genes analysis  of  Citrus  reticulata infected vs  not  infected by

Xylella  fastidiosa, Cufflinks-Cuffdiff  was  used  for  mapping,  quantifying  and  comparing

expression levels, based on a reference genome (Rodrigues  et al. 2013); on the other hand,

the  RNA-seq  analysis  of  catfish  (susceptible  and  resistant)  when  infected  with

Flavobacterium columnare, in different time points was made using CLC Genomics Work-

bench, with a reference trancriptome (Peatman et al. 2013). There are some other packages

for expression analysis, mostly R packages, such as EdgeR or Ebseq  (Garber  et al. 2011;

Leng et al. 2013). As it happens with  the remaining software for the bioinformatics analysis,

there is no perfect software for any type of data. Depending on the software,   differential

expressed genes calling (DE calling) can be more restrictive or liberal, be indifferent or work

better  with  higher  number  of  replicates  or  even  perform  better  or  worse  with  the

heterogeneity of the samples (Soneson & Delorenzi 2013; Seyednasrollah et al. 2013). It is

up to the technician to choose the most adequate software for his analysis.

Although  RNA-seq  is  still  a  recent  technology,  its  advantages  over  other  transcriptomic

methods are quite clear. It can be valuable for understanding transcriptomic dynamics across

different  conditions,  where  it  allows  a  robust  comparison  between  them.  The  biggest

challenge of this recent technology is to be able to target more complex transcriptomes in

order to identify and track the expression changes of rare RNA isoforms from all genes, even

without a reference genome (Wang et al. 2009).
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Objectives

The research presented in this Thesis is integrated in project PTDC/AGR-GPL/112217/2009,

“Unravelling defense mechanisms underlying coffee resistance to  Colletotrichum kahawae”

developed at  Centro  de  Investigação das  Ferrugens  do  Cafeeiro/Instituto  de  Investigação

Científica Tropical (CIFC/IICT) and funded by Fundação para a Ciência e Tecnologia (FCT). 

This work was focused on the bioinformatic analysis  of Illumina RNA-seq data obtained

from 24 cDNA libraries representing three key points of two  Coffea spp.-  Colletotrichum

kahawae interaction (compatible vs incompatible), in order to identify coffee genes putatively

involved  in  the  plant  resistance  mechanism and  quantify  differences  in  gene  expression

during the defense response of coffee to C. kahawae.

The present work intends to contribute to a better understanding of the molecular genetic

bases of coffee resistance to C. kahawae as well to increase the available genomic resources

of both the fungus and the plant, which can be used in future studies.

Specifically, this research aimed at:

1 – Assembling a coffee transcriptome to use as basis for gene discovery and expression

analysis, including a plant-fungus separation pipeline.

2 – Analyzing differential gene expression to characterize the defense response of two coffee

genotypes, respectively resistant and susceptible to C. kahawae, during the early stages of the

infection process.

3 – Assessing the differences between a custom and a standard RNA-sequencing data analysis

and subsequently improving and optimizing data analysis towards the achievement of higher

quality results regarding coffee transcriptome assembly and differential gene expression.
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Abstract
Coffee  berry  disease  (CBD),  caused  by  the  fungus  Colletotrichum  kahawae,  is
considered one of the biggest threats to Arabica coffee production, at high altitude, in
Africa. Some coffee genotypes are known to be resistant to CBD, but the molecular
genetic basis of coffee resistance is still unknown. With the purpose of gaining some
insights on coffee resistance process, a RNA Illumina sequencing approach was used
to  characterize  the  transcriptional  profile  of  two  coffee  genotypes,  respectively
resistant (Catimor 88) and susceptible (Caturra) to C. kahawae, during the early stages
of the infection process.  Twenty four cDNA libraries were sequenced and data was
analysed  by ARK-Genomics  (UK)  in  order  to  assess  differential  gene  expression
when  comparing  inoculated  with  control  samples.  Here,  a  de  novo transcriptome
assembly was carried out  with special  care  in  the  inoculated  libraries  for  Coffee-
fungus sequence separation.  A differential expression pipeline was performed using
the de novo assembled coffee transcriptome as reference. Our results were compared
with  ARK  genomics  analysis,  revealing  some  variation  on  the  transcriptome  and
differentially  expressed unigenes,  influenced  by  different  aproaches.  Finally,  our
analysis allowed the identification of genes putatively involved in coffee resistance,
their expression profiles and the pathways in which they are involved.
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1.  Introduction

Coffee is one of the most important commodities in the world economy, accounting

for  a  trade worth of  approximately 16.5 billion dollars  in  2010  (van Hilten  et  al.

2011).  Coffee  growing  countries  are  mainly located  in  Africa,  Central  and  South

America,  and  Asia  where  coffee  production  represents  a  major  income,  but

particularly in Africa, people can depend entirely on this resource for their livelihoods

(Lashermes  &  Anthony  2007).  The  commercial  production  relies  mostly  on  two

species:  Coffea  arabica  L. and  Coffea  canephora   Pierre  ex  A.  Froehner,  which

represent about 70% and 30% of the market supply, respectively (Charrier & Berthaud

1985; Vieira & Andrade 2006). Despite of an increase in coffee production over the

years,  current  production  is  still  insufficient  to  satisfy  the  commercial  demand

(Muñoz et al 2010)

Coffee  berry  disease  (CBD),  caused  by  the  pathogenic  fungus  Colletotrichum

kahawae J.M. Waller  & P.D.  Bridge,  is  one of  the  limiting  factors  of  C. arabica

production. C. kahawae affects several organs of the crop, but major production losses

occur when green berries are infected, leading to the formation of dark sunken lesions

with sporulation, which results in fruit premature dropping and mummification (Silva

et al. 2006; Hindorf & Omondi 2011).

The first report of this disease goes back to 1922, in Kenya, rapidly disseminating

afterwards throughout  Eastern Africa (McDonald 1926; Silva et al. 2006).The disease

has stronger impact at high altitudes (>1700m) and  is still, reportedly, confined to the

African continent. However, at such similar altitudes and under appropriate climatic

conditions, the disease may be able to colonize other continents  (van der Vossen &

Walyaro 2009). 

Currently, chemical control has been successfully applied but its high cost, makes it

unreachable  for  small  scale  producers.  Crop  damages  due  to  CBD,  along  with

chemical  control  costs,  accounts  annually for  a  loss  of  US$ 300–500 millions  in

Arabica coffee production  (van der Vossen & Walyaro 2009).   This severe problem

stimulated the development  of breeding programmes in several  countries  (such as

Kenya,  Ethiopia  and Tanzania)  giving  rise  to  several  resistant  coffee  varieties  for

coffee growers  (Vossen & Walyaro 1980; Silva  et  al. 2006).   In Kenya,  the most

relevant  example  is  the  hybrid  commercial  variety Ruiru  11,  which  was  bred for
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resistance to CBD and coffee leaf rust (Hemileia vastatrix) using lines of the coffee

cultivar  Catimor  as  resistance  sources.  In  resistant  coffee  plants,  ,   several

mechanisms of defense can be observed, both constitutive and induced, working at

different  stages  of  the  infection  (Gichuru  1997):  formation  of  cork  barriers,  early

callose deposition around intracellular hyphae, hypersensitive-like cell death and early

accumulation of phenolic compounds in the cytoplasm and the cell walls (Masaba &

van der Vossen 1992; Silva et al. 2006; Loureiro et al. 2012b). 

Despite  the  insights  gathered  so  far  about  the  cellular  mechanisms  of  pathogen

infection and host resistance, there is still  no information about the molecular and

genetic  basis  of  coffee  resistance  to  CBD.  Gaining new insights  into  the  defense

response of C. Arabica to C. kahawae is of the utmost importance.

RNA-Seq has been successfully used to accurately quantify transcript  levels,  with

potential  advantages  over  microarray-based  methods  (Griffith  et  al. 2010;

Nagalakshmi  et  al. 2010).  Global  gene  expression  analysis  has  emerged  as  an

important tool for studying how organisms, such as plants, respond to stresses, such as

abiotic stress, or biotic stress caused by pathogen infections (Liu et al. 2012; Peatman

et al. 2013). Several studies in other host-pathogen interactions recurring to RNA-seq

approaches,  reported  the  use  of  the  technique  to  perform  de  novo transcriptome

assembly and annotation, estimate expression of specific isoforms and compare gene

expression between a pair of contrasting conditions (Griffith et al. 2010). Successful

results were achieved, being an example the case of Citrus reticulata infected by X.

fastidiosa, in which  expression analysis identified several defense response-related

genes (Rodrigues et al. 2013). Congruent results were found through the sequencing

of  Sorghum infected  by  Bipolaris  sorghicola,  for  which both  plant  and pathogen

transcriptomes  were  analysed,,   identifying  genes  involved  in  the  host  defense

response (Yazawa et al. 2013).

In our study, Illumina RNA-seq data was produced for two interactions of Coffea sp –

C. kahawae (compatible and incompatible, corresponding to susceptible and resistant

coffee  genotypes),  during  the  early  stages  of  infection,  aiming  to  characterize

transcriptional  differences.   A  first  analysis  by  the  sequencing  company  ARK

genomics  (UK) was made with a  pipeline  used for  a  generality of  types  of  data,

including  the  softwares  SOAPdenovo-Trans
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(http://soap.genomics.org.cn/SOAPdenovo-Trans.html,  last  access  April  11th 2014)

and EdgeR  (Robinson  et  al. 2009). However, the  use of  a  standard analysis  with

standard software and parameters may not be perfectly suitable for this data. Yang &

Smith  (2013) have  shown  the  possible  qualities  of  the  unpublished  software

SOAPdenovo-Trans  but  the  use  of  a  well  documented  software,  with  detailed

information, and the ability to test different parameters, adjusting the analysis to our

data, may be preferable (Wilson et al. 2014). On the other hand, EdgeR, developed for

analysis with few replicates, can be too liberal for differential expression assigning

(Soneson & Delorenzi 2013; Seyednasrollah et al. 2013). In addition, the potential of

deeply exploring and getting more revenue from the data, showed the demand for a

different and more focused approach. Therefore, here we report the deployment of a

new expression analysis,  with a  custom workflow, and the subsequent  advantages

provided on result quality. Also, functional categories and metabolic pathways were

identified as putatively involved in coffee resistance to C. kahawae. 

2.  Material and Methods

2.1.  Inoculation of coffee hypocotyls and sampling

Hypocotyls were used as a model material to study CBD because previous studies

have shown a correlation between the pre-selection test on hypocotyls and mature

plant resistance in the field (r=0.73–0.80) (Van der Vossen et al. 1976). Hypocotyls of

the cultivars Catimor 88 (resistant genotype) and Caturra (susceptible genotype) were

inoculated  with  the  C.  kahawae  isolate  Que2  (from  Kenya),  as  described  by

Figueiredo et al. 2013. After inoculation, hypocotyls were vertically placed on plastic

trays containing a wet nylon sponge and sprayed with a conidia suspension (2x106/ml)

(inoculated samples) or with water (mock-inoculated hypocotyls – control samples).

Afterwards, trays were covered with plastic bags and  kept in a Phytotron 750 E at

22ºC in  the  dark  for  24h,  and  then  under  a  photoperiod  of  12  hours  during  the

inoculation time-course.

Hypocotyls  were  harvested  at  24,  48  and  72  hours  post  inoculation  (hpi),

corresponding to different stages of the infection process, as described in Loureiro et

al. 2012a: i) differentiation of melanised appressoria (in both coffee genotypes) at 24

hpi;  ii)  fungal  penetration  and  establishment  of  biotrophic  phase  (susceptible
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genotype)  or  beginning  of  hypersensitive  cell  death  (HR)  and  accumulation  of

phenols  (resistant  genotype)  at  48hpi;  iii)  switch  to  the  necrotrophic  phase

(susceptible genotype) or display of HR and phenols deposition in more that 50% of

infection  sites  (resistant  genotype)  at  72  hpi.  Two independent  experiments  were

conducted and 40 hypocotyls were collected for each coffee genotype (Catimor 88

and Caturra) and time points, both at control and inoculated conditions. Plant material

was immediately frozen in liquid nitrogen and stored at -80ºC.

2.2. Extraction and sequencing

Total RNA was isolated from hypocotyls of all samples with Spectrum™ Plant Total

RNA Kit (Sigma-Aldrich, USA), according to the manufacturer’s instructions. Total

RNA purity and concentration was measured at 260/280 nm and 260/230 nm using a

spectrophotometer (NanoDrop- 1000, Thermo Scientific), while RNA integrity was

verified by gel electrophoresis. mRNA-seq library construction for each independent

sample and replicate (Table 1), in a total of 24,  was performed at ARKs Genomics

(UK) for subsequent 100bp paired-end sequencing on a flow cell composed of 4 lanes

on a Illumina HiSeq2000. 

Table  1  -  List  of  the  cDNA  libraries  produced  with  information  about  the  genotype,  condition
(inoculated  and  control),  time-points  (hpi-hours  post  inoculation),  experimental  replicates  and
respective identification.

Control

Genotype Resistant – Catimor Susceptible - Caturra

Time (hpi) 24 48 72 24 48 72

Exp Replicate I II I II I II I II I II I II

Identification R1C24 R2C24 R1C48 R2C48 R1C72 R2C72 S1C24 S2C24 S1C48 S2C48 S1C72 S2C72

Inoculated

Genotype Resistant - Catimor Susceptible - Caturra

Time (hpi) 24 48 72 24 48 72

Exp Replicate I II I II I II I II I II I II

Identification R1Q24 R2Q24 R1Q48 R2Q48 R1Q72 R2Q72 S1Q24 S2Q24 S1Q48 S2Q48 S1Q72 S2Q72

2.3.  Read processing

Previously to the assembly steps, two approaches of sequence cleaning were taken:

One applying contaminant cleaning, using SeqTrimNext version 2.0.59 (Falgueras et

al. 2010) for the control libraries-derived reads (from this point onwards designated as
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control  reads  for  simplicity),  and  other  excluding  contaminant  cleaning,  using

TrimGalore!  Version0.3.3

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/,  accessed in  March

9th  2013),  for  the  inoculated  libraries-derived  reads  (from  now  on  designated  as

inoculated  reads),  in  order  to  also  retrieve  C.  kahawae´s  sequences.  For  the

subsequent  step  of  transcriptome mapping,  the  inoculated  reads  were  then  further

processed by SeqTrimNext, for contaminant cleaning.

2.4.  Transcriptome assembly and Scaffolding

Two  transcriptome  assemblies  (one  with  the  control  reads  and  another  with  the

inoculated  reads)  were  performed  using  Velvet  version  1.2.08  (Zerbino  & Birney

2008) and Oases version 0.2.08  (Schulz  et al. 2012), with a k-mer value of 31, a

coverage cutoff of 0.377 and a minimum contig length of 200 bp. As a first step, the

transcriptome assembled from the inoculated reads was surveyed for the presence of

fungus sequences.

Afterwards, in order to complete the reference transcriptome, the contigs from the

control reads assembly and the contigs classified as “plant” and “possibly plant” in

the plant-fungus contig identification step (from the transcriptome assembly with the

inoculated reads) were clustered together  using the software CD-HIT-EST version

4.6.0 (Li & Godzik 2006) with a contig identity > 90%.

The  clusters  were  then  scaffolded  with  SSPACE  version  2.0  (Boetzer  et  al.

2011) without extension and a minimal number of read pairs to compute a scaffold of

4.

Due  to  a  highly  repetitive  transcriptome  assembly,  a  redundancy  pipeline  using

blastn's version 2.2.25+ (Camacho et al. 2009) was applied using the two best hits and

the  whole transcriptome as both query and subject (discarding the 1st hit since it is

always a self match), with a minimum e-value of 10 , and an alignment length with⁻⁵

at least half of the length of the query sequence (based on Calduch-Giner et al. 2013).

The scaffolds with the same hits  were grouped as being sufficiently similar to be

considered the same. Only the longest sequence of each group was considered as part

of the final transcriptome. The entire previous process was run two times, until no hits

between different sequences were found. 
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2.5.  Plant-Fungus contig identification

Using  the  transcriptome  assembled  with  the  inoculated  reads  and  skipping  the

contaminant cleaning step, two methods were used to identify the contigs of plant

sequences and the contigs of fungus sequences for subsequent transcript separation: 

a)  Mips-EST3  (Emmersen  et  al. 2007) that  uses  triplet  nucleotide  frequencies  to

classify contigs as plant or fungus;

b) A pipeline based on Fernandez et al. 2012 that uses blastn searches against i) NCBI

coffee  and  fungus  available  sequences  (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/,

downloaded  April  27th 2013);  ii)  the  control  assembled  transcriptome;  and  iii)  3

Colletotrichum genome  databases:C.  gloeosporioides,  C.  graminicola and  C.

higginsianum  (Sequencing  Project,  Broad  Institute  of  Harvard  and  MIT

http://www.broadinstitute.org/, accessed April 20th 2013),  with  a minimum e-

value of 10 ,⁻⁵  to evaluate the probability that each contig has to be considered plant

or fungus.

MIPS-EST3  uses  groups  of  sequences  of  C  arabica and  C.  kahawae properly

identified  for  the  classificator  training.  The  “training”  step  was  performed  using

nucleotide sequences downloaded from NCBI databases. The trained classificator has

a dinucleotide bias distance of genomes of 97.26 which, according to the authors, is

sufficient for a confident separation of the sequences (Emmersen et al. 2007). Finally

the classificator is applied to the transcriptomic contigs and classifies them as either

“plant” or “fungus”. 

The blast pipeline is based on the X value which is calculated by subtracting the mean

score of the best hits against the fungus databases to the mean scores of the best hits

against the coffee databases. This value is then used as a measure of similarity with

coffee and fungus sequences. Thus, the X is used to classify the contigs in “Plant”,

“Fungus” or “Unclassified” categories. Figure 1 shows a scheme of the process.

Finally, the results of the two methods were crossed and the contigs were separated

into  5  categories:  Plant or  Fungus when  the  results  of  the  two  methods  were

concordant,  Potentially  plant or  Potentially  fungus when the blast  pipeline lacked

classification and uncategorized when the results of both methods were contradictory. 
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2.6.  Read mapping, expression quantification and differential expression 
analysis

For the read mapping and expression quantification, both the transcriptome previously

assembled  and  the  coffee  ESTs from  a  454  assembly  (Santos  2011) were  used,

separately, as reference. The program used for this task was Rsem version 1.2.10 (Li

& Dewey 2011). This software runs Bowtie version 0.12.7 (Langmead et al. 2009) for

the different libraries separately, to find all the possible alignments, with a maximum

of 3 mismatches per read. 

For differential  expression estimations,  the R package from Bioconductor,  EBSeq

version 1.1.5 (Leng et al. 2013) was used. Only unigenes with a posterior probability

of being differentially expressed (PPDE) > 0.95 and a -1.0 ≥ log2 fold change ≥1.0

were considered as such.

2.7.  Sequence Annotation

De novo functional annotation of the coffee transcriptome was obtained by similarity

using Rapsearch2  (Zhao  et  al. 2012),  Blast2GO  (Conesa  et  al. 2005) and custom

made scripts.  Rapsearch2 was used to  search against  functional  proteins from the

KOG  (euKaryotic  Orthologous  Groups)  database  which  is  a  component  of  the

Clusters of Orthologous Groups (COG) database (Tatusov et al. 2003), restricted by
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Figure  1  –  Schematic  diagram  of  the  blastn's  pipeline  for  the  Plant-Fungus  contig  identification.
Nucleotide blast was performed against each of the databases, mean score and X value calculated, and
finally the contigs were classified as Plant, fungus or unclassified.



Arabidopsis thaliana sequences and an E-value <  10⁻⁵. Additionally, for the Gene

Ontology (GO) annotation,  Rapsearch2 similarity searches  were  locally conducted

against  non-redundant  (“nr”)  peptide  database   (ftp://ftp.ncbi.nlm.nih.gov/blast/db/

downloaded at November 26, 2013, including all “nr” GenBank CDS translations +

PDB + SwissProt  +  PIR+PRF).  Rapsearch2  search  was  carried  out  using  default

parameters and an E-value < 10⁻⁵. The outputs were then converted to XML format

which  is  similar  to  the  Blastx  output,  with  an  in-house  developed  script

Rapsearch2XML (https://github.com/Nymeria8/Rapsearch2Xml, last  access May 6th

2014). The output was then used in the Blast2GO software for functional annotation

using   GO terms.  Further,  KEGG  (Kyoto  Encyclopedia  of  Genes  and  Genomes)

(Kanehisa et al. 2008) pathways were assigned to the assembled sequences using also

the Blast2Go software.  

2.8.  Ark Genomics Workflow

The ARK Genomics analysis used the inoculated and control quality trimmed reads

for  a  transcriptome assembly, using the software  SOAPdenovo-Trans  version 1.01

with a k-mer of 21. The reads were them mapped back to the assembled transcriptome

and separately to the group of coffee ESTs from the 454 assembly (Santos 2011). This

task  was  performed  by  BWA  version  0.6.2.   (Li  &  Durbin  2009) Potentially

differentially expressed genes were identified using R package EdgeR version 2.13.0,

and filtered by  -1.0 ≥ log2 fold change ≥1.0 and a  p-value ≤ 0.05.

3.  Results

In this study, an analysis of RNA-seq data was performed to assess the process of

coffee  defense  to  C.  kahawae.  With  the  lack  of  a  reference  genome,  a  reference

transcriptome was de novo assembled to use as base for the expression quantification.

To get  some  insights  on  the  plant  reaction  to  the  infection,  three  different  data

comparisons were made: Control vs infected, time-point vs time-point and infected

resistant  vs  infected  susceptible.  Differentially  expressed  transcripts  were  then

annotated  using  GO,  KOG and KEGG annotations  and the  profiles  of  expression

categorized. Lastly, a EST based differential expression analysis was used to compare

the current and ARK genomics analysis.

28



3.1. Transcriptome assembly

Sequencing of the 24 libraries generated a total of 1,552,057,070 paired-end reads of

100bp. After the cleaning steps, it was possible to recover 1,540,810,726 paired-end

reads of variable size: 65,734,996 inoculated reads and 888,075,730 control reads. 

Due to  the  lack  of  a  coffee  reference  genome for  subsequent  read  mapping,  and

aiming to separate all the available fungus information, two independent assemblies

were performed: one for a reference transcriptome construction using only control

reads,  and  the  other  for  plant-fungus  sequence  separation  using  the  inoculated

reads(Table 2). 

This  step produced 614041 contigs with an average length of 1056.56 bp for  the

coffee transcriptome, and 656839 contigs with an average length of 1092.40bp for the

plant-fungus transcriptome.

The coffee transcriptome clustering step   using the already assembled contigs, and

also the sequences considered as “plant” and “potentially plant” in the plant-fungus

sequence identification step (section 3.2 of results), with a minimum size restriction of

200bp. This resulted on a total of 284482 contigs, with an average length of 1470.43

bp, and a N50 of 2285. Finally, all the contigs were scaffolded, resulting in a total of

283928 scaffolds.

Due to RAM restrictions at our bioinformatics facility (178Gb), the only k-mer value

that  was possible  to  use was 31,  which led  to  a  higher  level  of  redundancy than

expected. This finding led to the inclusion of an extra step for redundancy cleaning,

using a Blast pipeline. This step was repeated twice, which drastically decreased the

redundancy, and consequently the length of the resulting transcriptome. At the end , a

final set of 65759 unigenes was obtained, with an average length of 1398.64 bp. 

3.2   Plant-fungus sequence identification

Combining the results from the two methods used for plant-fungus identification, the

contigs were assigned to 5 different categories as follows:   plant/fungus when both

methods  classified  the  contig  as  such;  Potentially  plant/fungus,  when  the  blast

pipeline result was  inconclusive but the MIPS – EST3 method was conclusive; and

Unclassified when the results of the two methods were discordant. 
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Table 2 - Summary of  de novo assembly results of Illumina sequence data from Coffea  sp. (Coffee
transcriptome assembly and Plant-Fungus Transcriptome assembly)

Assembly Steps Contigs N50 % > 1kbp Max. 

length(bp)

Average 

length(bp)

Coffee Transcriptome

Oases Contigs 614041 1897 37.93 14662 1056.56

Clustering 284482 2285 52.51 14662 1470.43

Scaffolding 283928 2288 52.83 14662 1459.75

Redundancy cleaning step 1 83940 2598 50.45 14662 1509.95

Redundancy cleaning step 2 65759 2623 44.30 14662 1398.64

Plant-Fungus Transcriptome

Oases Contigs 656839 1980 39.19 13181 1092.40

Clustering 209580 2220 51.24 13181 1410.75

From the  positive  identification  provided  by both  methods,  198036  contigs  were

considered as “plant” and 653 were considered as “fungus”. From the inconclusive

classification,  8564 and 119 were respectively considered as “Potentially plant” or

“Potentially  fungus”,  while  2208 contigs  were  not  classified  due  to  contradictory

results presented by both methods (Table 3). The unclassified category may include

not only contigs that failed to be properly classified, but also contaminant sequences,

which are neither from Coffea spp. nor from C. kahawae.

Table 3 - Plant-fungus contig identification summary. 

Classified Potentially classified Unclassified

Plant 198036 8564
2208

Fungus 653 119

3.4   Transcriptome sequence annotation

 The  KOG  annotation  against  Arabidopsis  thaliana database  revealed  23252

annotations (35.36% of  the  transcriptome)  divided  by 6  categories:  “metabolism”

(6.91%),  “celular  processes  and  signaling”(9.49%),  “information  storage  and

processing”  (6.07%),  “other  function”  (3.83%),  “unknown  function”  (1.85%)  and
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“general  prediction  only”  (7.22%)  (Figure  S1).  From the  65759  unigenes  of  the

transcriptome, 20335 were annotated using GO-terms, which represents  30.92% of

the transcriptome. These annotations are distributed in 3 main GO domains, with a

total of 83398 GO terms. Of these assigned GO terms, “Biological Process” was the

predominant domain with 43.80%, followed by “Molecular Function”  with 30.75%

and “Cellular Component” with 25.44% (Figure 2). The KEGG annotation was also

performed and only 5.85% of the transcriptome (3850 unigenes)  was successfully

identified  in  a  total  of  136  metabolic  pathways  (Figure  S2).  Predominantly

represented pathways are “purine metabolism” with 553 unigenes, “starch and sucrose

metabolism” with 368 and “phenilalanine metabolism” with 205.
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percentage relatively to the total of the transcriptome unigenes. The classification are displayed in three
main categories: cellular component, molecular function and biological process.



3.5  Differential expression analysis

3.5.1  Within genotypes

Differential  expression analysis  by comparison of  inoculated with control  samples

(including the 3 time points) was carried out for both susceptible and resistant coffee

genotypes (Table 4).

From the  total  differential  expression  analysis  ,  1713 unigenes  were identified  as

differential expressed. A predominance of unigenes being differentially expressed in

the  resistant  genotype  (1617  vs  567  unigenes)  was  observed,  as  well  as  a

predominance  of  upregulated  unigenes.  Consequently,  a  higher  number  of  shared

upregulated unigenes among both genotypes was found. It was possible to see the

number of differentially expressed unigenes rising with time. For example, at  24 hpi

a  total  of  238  and  25  unigenes  were  differentially  expressed  in resistant  and

susceptible samples, respectively, while at the 72 hpi the number of unigenes raised to

1423 and 622. For the resistant genotype,  27 unigenes were found to be expressed

only at 24 hpi, and 845 at 72 hpi. At 48 hpi, both susceptible and resistant genotypes

did not show unigenes expressed uniquely on that time-points. 

Table 4 - Number of differentially expressed unigenes at the 3 sampled time-points of the inoculated
resistant and susceptible genotypes relative to the control. Shared category indicates the number of
differentially expressed genes in both genotypes. Values inside brackets correspond to  unigenes only
expressed in a respective time-point. Values indicate unigenes passing cutoff values of -1.0 ≥ log2 fold
change ≥1.0 and PPDE > 0.95 

24h 48h 72h Total

       Up regulated

Resistant 228(18) 671 (0) 1169 (610) 1320

Susceptible 22(8) 517 (0) 520 (235) 526

Shared 3 371 14

      Down regulated

Resistant 10 (9) 52(0) 254 (235) 297

Susceptible 3(2) 38(0) 102 (94) 41

Shared 0 3 1
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3.5.2  Between time-points

Furthermore, to compare different infection time points per genotype, resistant and

susceptible inoculated libraries were used: 24hpi vs 48hpi, 24hpi vs 72hpi and 48hpi

vs  72hpi  for  each  of  the  genotypes.  A total  of  521  unigenes  were  considered

differentially expressed, with a predominance of upregulated unigenes.  The results

showed a higher number of differentially expressed unigenes between time points 24h

and 72h comparatively with the other two pairs of conditions (Table 5). As in the

comparison between control and inoculated, the resistant genotype presented a higher

number of differentially expressed unigenes, with 397 against 176 unigenes for the

susceptible genotype.

Table 5 - Statistics of differentially expressed unigenes between time points, for the two inoculated
genotypes. Values indicate unigenes passing cutoff values of -1.0 ≥ log2 fold change ≥1.0 and PPDE >
0.95

Susceptible Resistant

48h over 24h

             Upregulated 67 82

             Downregulated 10 37

Shared with 72h over 48h 14 4

Shared with 72h over 24h 2 13

             Total 77 119

72h over 48h

             Upregulated 20 75

             Downregulated 14 5

Shared with 72h over 24h 8 12

             Total 34 80

72h over 24h

             Upregulated 68 198

             Downregulated 21 50

Shared by the 3 comparisons 0 1

             Total 89 248

3.5.3  Between genotypes

To recover a larger level of information from the data,  an additional analysis  was

conducted  from  directly  comparing  differences  in  expression  profiles  between
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resistant  and  susceptible  inoculated  genotypes,  at  24  hpi,  48  hpi  and  72  hpi.

Designating the susceptible genotype as the “control” group, comparisons between

the  two genotypes  in  each time  point  were  performed (Figure  3).  A total  of  699

unigenes were classified as differentially expressed for at least one time point. At 24

hpi the number of unigenes differentially expressed in the two genotypes is the most

similar comparatively with the other times points: 124 unigenes for the susceptible

and  145 for  the  resistant. In  contrast,  the  susceptible  genotype  showed  a  pike  of

expression at 48 hpi (214 unigenes), and decreasing at 72 hpi (189 unigenes), while

the  expression  of  the  resistant  genotype,  relatively  to  the  susceptible  genotype,

increased with time – at 48 hpi, 156 unigenes and at 72 hpi 229 unigenes.

3.6  Annotation and expression profiles of the differential expressed unigenes

To obtain a general perspective of the biological processes influenced by the infection

of  Colletotrichum kahawae,  we selected the KOG and KEGG annotations  for the

unigenes identified as differentially expressed against their control. From the KOG
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Figure 3 - Statistics of differentially expressed unigenes between resistant and susceptible genotypes at
the  three time points. Resistant > Susceptible indicates number of unigenes with significantly higher
expression  in  resistant  samples  relative  to  susceptible  samples,  and  vice-versa  for  Resistant  <
Susceptible. Values indicate unigenes passing cutoff values of -1.0 ≥ log2 fold change ≥1.0 and PPDE
> 0.95



annotation, 24 KOG categories were assign to 1224 differentially expressed unigenes

(49.18% of the total differentially expressed unigenes). A high percentage of unigenes

was  assign  to  non  descriptive  categories:  37.34%  unigenes  in  “other  functions”,

“Function unknown” and “General function only”.  The category represented with a

larger  number  of  unigenes  was  “Cellular  processes  and Signalling”  with  28.02%,

followed by “Metabolism” with 26.39% and “Information storing and processing”

with 8.25%. Dividing the annotations by pair of comparisons (Figure 4, S3, S4), it

was  possible  to  identify  the  category  “signal  transduction  mechanisms”  well

represented in all the comparisons. At 24 hpi, the resistant genotype showed a higher

amount of identified categories, including  “defense mechanisms”. At 48 hpi and 72

hpi, there were few differences between the susceptible and the resistant genotype

annotations,  where   “signal  transduction  mechanisms”  and  “posttranslational

modification, protein turnover, chaperones” were the most represented categories.

The  KEGG  annotation  included  33  of  the  total  differentially  expressed  unigenes

which were assigned to 100 different pathways. Observing the annotations of the pairs

of comparisons, it was possible to identify different categories as mainly represented.

In the resistant genotype comparisons, the pathways involved with phenylalanine and

phenylpropaniod biosynthesis and metabolism, are the most representative, while in

the susceptible genotype, “Starch and sucrose metabolism” is the most representative

pathway, independently of the time-point (Figure 5, S5, S6).  

35



36

Figure 4 - KOG annotation of the unigenes identified as DE in the susceptible and resistant genotypes
comparison between control and inoculated at 72hpi. The annotations are divided by 3 main categories:
CPS  -  "Cellular  processes  and  signalling";  ISP  -  "Information  storage  and  processing";  MET  –
"Metabolism".The percentage of unigenes is relatively to the total of differentially expressed unigenes of
each comparison.



For  the  differentially  expressed  unigenes  identified  between  genotypes,  a  GO

annotation was made to identify categories of interest (Figure 6).   Defense related

categories were selected with the aim of excluding the bias that could be introduced

by comparing different genotypes. A reduced number of unigenes were annotated in

defense  related  categories,  with a  total  of  64 unigenes,  39 more expressed in  the

susceptible genotype and 25 more expressed in the resistant genotype. “Response to

stimulus” is the most representative category for both genotypes, especially at 72 hpi,

with  6  and 10 unigenes  for  susceptible  and resistant,  respectively. The categories

“response to stress” and “response to reactive oxygen species” appeared represented

at 48 hpi for the susceptible genotype, but only at 72 hpi for the resistant genotype. In

both  genotypes  the  category  “response  to  other  organism”  is  only  represented  at

72hpi. 

To study the differentially expressed unigenes over the time-course,  14 profiles of

expression were identifiedusing comparisons between control and inoculated samples

(Figure 7). 

These profiles involve different groups of time points, depending on the presence or

absence  of  the  unigenes  as  differentially  expressed.  In  this  way, the  profiles  can

include the three time points (24 hpi, 48 hpi and 72 hpi) or just two of them (24 hpi

and 48 hpi, 24 hpi and 72 hpi or 48 hpi and 72 hpi). Differences in expression were

evaluated  using  fold  change  logarithm values:  when the  differences  between fold

change logarithm of two time-points was higher than one, it was assumed that the two

time-points have differences of expression; otherwise, they are considered as stably

expressed. So, the differences of expression showed in the different profiles do not

correspond to absolute values but to comparisons between the fold changes along the

three time-points.

The  results  showed  a  majority  of  upregulated  unigenes,  that  stayed  upregulated

besides  the  differences  of  expression  over  time.  The  same  was  verified  for  the

downregulated unigenes, with the exception of the differentially expressed unigenes

of  the susceptible  genotype of the n)  profile,  which shifts  from downregulated to

upregulated in the time course.
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Figure 5 - KEGG annotation of the unigenes identified as DE in the susceptible and resistant genotypes
comparison between control and inoculated at 48hpi.The percentage of unigenes is relatively to the total of
differentially expressed unigenes of each comparison.  



Unigenes identified with a three time points expression profile were few, especially

for the susceptible genotype. Among theses, the profile a) (stable over the three times)

was the most representative for the susceptible genotype with four unigenes. On the

other  hand,  the  resistant  genotype  was  mainly  represented  by  f)  (increases  the

expression from 24 to 48 hpi, and then stabilizes at 72 hpi). The expression profiles

with unigenes only at 24 and 48 hpi are reduced, where g) presents three and five

unigenes for the susceptible and resistant genotypes, respectively, and h) with one for

each genotype.  The profiles accounting only two time-points were identified as the

most common, with the profiles  i) (stable at 48 and 72 hpi) and j) (increases from 48

hpi to 72 hpi) as the most representatives of all. The expression profile i)  presented

265 for the susceptible genotype and 434 unigenes for the resistant genotype. The

expression profiles with absent values at 48hpi (l), m) and n) were poorly represented

with  a  total  of  two  and 22 unigenes  for  the susceptible  and resistant  genotypes,

respectively. 
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Figure 6 - GO annotation of the unigenes identified as differentially expressed between genotypes in the
3 time-points. Only categories of interest are represented. The unigenes at the left of the axis are more
expressed in the susceptible genotype, and at the right of the axis the unigenes more expressed at the
resistant genotype
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Figure 7 - Profiles of expression identified in the comparisons between control and inoculated samples in
the two genotypes. Each coloured line represents a different profile of expression along the 3 times of
inoculation. The dashed lines represents unigenes only differentially expressed at 24 and 72 hpi.  At the
right side we can see the number of unigenes upregulated (arrow up) and downregulated (arrow down) per
profile and genotype. The asterisk represents the unigene that shifted from downregulated to upregulated in
the time course  The unigenes were considered up and down regulated in relation to the previous time point
if  the difference between fold change ≥1.0.



To associate these profiles to different biological processes, the most relevant ones

were selected, and the corresponding unigenes organized by their KOG and KEGG

annotations.

In the KOG annotation (Figure 8) for the stable profile a), the unigenes of the resistant

genotype were annotated in the categories “Signal transduction mechanisms” 
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Figure 8 - KOG annotations by profile of expression for the resistant and susceptible genotypes. The
percentage of unigenes is  relatively to the total of differentially expressed unigenes of the susceptible
comparisons –  Control  vs  Inoculated.  Three  categories  are  represented:  MET -  Metabolism,  ISP -
Information Storing and Processing, CPS - Cellular Processes and Signaling.

Figure  8  -  KOG  annotations  by  profile  of  expression  for  the  resistant  and  susceptible  genotypes.  The
percentage  of  unigenes  is   relatively  to  the  total  of  differentially  expressed  unigenes  of  the  susceptible
comparisons – Control vs Inoculated. Three categories are represented: MET - Metabolism, ISP - Information
Storing and Processing, CPS - Cellular Processes and Signaling.



“Posttranslational  modification,  protein  turnover,chaperones”  and  “Defense

mechanisms” while  the susceptible genotype, only had annotations in the categories

“Transcription” and “Posttranslational modification, protein turnover,chaperones”.

The  profile  e),  only  represented  in  the  resistant  genotype,  was  associated  to  the

categories  “Signal  transduction  mechanisms”  and  “Secondary  metabolites

biosynthesis, transport and catabolism”. Also, the profile i), which is similar between

genotypes,  presented  two  categories  as  most  represented:  “Signal  transduction

mechanisms” and “Posttranslational modification, protein turnover,chaperones”. The

j) and k) profiles, for the susceptible genotype, were associated to categories related

with the production of energy, while for the resistant genotype  the j) profile, showed

also “signaling transduction mechanisms” associated.

The KEGG annotation  revealed  that  in  the  susceptible  genotype  the  differentially

expressed unigenes mostly belong to categories related with energy production, such

as  “Amino  sugar  and  nucleotide  sugar  metabolism”  and  “Starch  and  sucrose

metabolism”  (Figure  S7a).  In  the  resistant  genotype,  in  addition  to  the  above

categories, pathways related with phenylpropanoid and phenylalanine are represented

(Figure S7b).

3.7  Workflow comparisons 

The ARK genomics assembly made with the software SOAPdenovo-trans resulted on

62579 contigs with an average length of 785.31bp (Table 6). Comparing this with our

assembly (velvet/oases step of assembly), it was possible to see an increase on the

amount of information retrieved, both in the total number of contigs and in the size of

these contigs (614041 contigs, with N50 of 1897 and an average length of 1056.56

bp).  Consequently, our  transcriptome presents  a  higher  percentage of contigs  with

more than 1000 bp. 

Table 6 – Statistics of the ARK genomics assembly made with the software SOAPdenovo-trans.

Contigs N50 % > 1000bp Maximum length(bp) Average length(bp)

62579 1838 28.33 11462 785.31

To evaluate the difference between the workflows of the current and ARK genomics

approaches, the differential expression analysis using the coffee ESTs  as base, was
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used  to  take  off  the  bias  introduced  by  the  different  transcriptomes  used.  After

submiting the coffee ESTs to the blast redundancy pipeline (used in our assembly to

eliminate  highly  similar  sequences),  it  was  possible  to  identify  a  high  level  of

redundancy. So, the use of the ESTs as reference in the two approaches allowed only

comparisons of the mapping, quantification and differential expression steps and was

not used for biological purposes.

The results of the current and ARK genomics differential expression analysis based on

the ESTs are resumed in Table 7. A total of  2565 ESTs was identified as differentially

expressed in the current analysis, while the ARK Genomics analysis  identified 3634

ESTs.

Table 7- Statistics of differentially expressed ESTs of the current and ARK genomics analysis at the 3
sampled  time-points  of  the  control  vs  inoculated  comparisons.  Cut-off  values  of  -1.0  ≥  log2  fold
change ≥1.0 and PPDE > 0.95 for the current analysis and a p-value ≤ 0.05 for the previous analysis.

Current analysis ARK genomics Analysis

24h 48h 72h Total 24h 48h 72h Total

       Up regulated

Resistant 114 828 1376 1715 537 1317 2184 2388

Susceptible 25 575 670 927 492 1060 1353 1490

      Down regulated

Resistant 118 107 339 519 39 320 672 897

Susceptible 17 76 176 239 15 87 269 316

The differentially expressed ESTs of the two analysis were crossed. Figure 9 resumes

the results of these comparisons using Venn's diagrams. A total of 1631 ESTs were

shared by the two analyses at least at one of the comparisons. The number of shared

differential  expressed  ESTs is  consistent  at  48  and 72 hpi  in  the  susceptible  and

resistant comparisons. At 24 hpi, the number of shared ESTs is reduced or absent, in

the susceptible and resistant comparisons, respectively. 

Also,  to  evaluate  the  differences  between  the  softwares  used  for  differential

expression analysis, all differentially expressed ESTs common to both analyses were

considered. Then, the ESTs with more than 2 degrees of fold change of difference

between  analyses  (the  minimum difference  between  considering  an  up  and  down

regulated EST) were selected. From this selection, only one EST had a contradictory
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result (up or down regulated depending on the analysis), but several others had values

of fold change highly dissimilar. To evaluate fold change calculation differences and

its statistical support, the counts from the ARK genomics analysis were used with the

package of differential  expression used in the current analysis.  From the 46 ESTs

selected, only 17 were statistical validated by EBSeq, and the fold changes were very

dissimilar (Table S1).

4. Discussion

Despite all the previous studies regarding the defense mechanisms of Coffee to  C.

kahawae,  there are very few insights on the molecular and genetic basis of coffee

resistance. With the aim of unravelling these mechanisms, an RNA-seq approach was

taken to  study coffee  resistance  vs  susceptible  response  in  the  early stages  of  C.

kahawae  infection.  The  data  was  analysed  by  the  sequencing  company   ARK

genomics, but to take the best revenue of the data,  a new analysis, adjusted to data

specifications, was made. In addition, the two approaches were compared taking into

account not only the results but the entire workflow.. The results, including expression
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Figure 9 - Comparison of the results obtained from the ARK genomics analysis (A) and the current
analysis (C), using as common base the EST sequences. The top line corresponds to Susceptible control
vs inoculated at (a)24h (b)48h (c)72h. The bottom line corresponds to Resistant control vs inoculated at
(d) 24h (e)48h (f)72h. This selection only considered ESTs with -1.0 ≥ log2 fold change ≥1.0. For the
current analysis the cut-off was made by a PPDE > 0.95, and for the ARK genomics analysis a p-value
≤ 0.05.



profiles  and unigene  annotation,  were  analysed  to  unravel  some of  the  biological

bases possibly involved in the defense response.

4.1 – Workflow overview and comparison

High-throughput  automated sequencing has enabled an exponential  growth rate  of

sequencing data. This requires an increasing sequence quality and reliability in order

to avoid database contamination with artefactual sequences (Falgueras et al. 2010).  In

this way, the preparation of NGS data before every analysis is crucial. Otherwise, the

bad quality of the reads or the presence of contaminated reads, can compromise the

downstream  analysis,  leading  to  inaccurate  results  (Seluja  et  al. 1999;  Coker  &

Davies 2004). Therefore, in the  analysis developed in our work, the presence of such

artifacts were taken into account and properly cleaned.

However, in comparison,  the ARK genomics analysis used reads only with quality

based trimming. Contigs beginning with the same sequence of nucleotides – adapters

– are an example of the lack of read proper pre-processing  in the ARK Genomics

transcriptome. The reads were also not subjected to a contaminant survey, which in a

case like this, where we have libraries sequenced from plants purposely contaminated

with  fungus,  is  particularly  important.  Thus,  one  of  the  differences  between

transcriptomes  relies  on   read  cleaning.  Besides  that,  differences  between  the

parameters  used,  could  also  have  influenced  the  differences  between  the

transcriptomes obtained, since the two different softwares of assembly are based in

the same algorithm – Bruijn Graphs – and so are discarded as a bias source (Schulz et

al. 2012; http://soap.genomics.org.cn/SOAPdenovo-Trans.html last access April 11th

2014). Poorly  optimized assembly parameters, can lead to less effective use of the

data. The most important parameter in de Bruijn graph assemblers is the hash length,

or k-mer length (Schulz  et al. 2012). The perfect value for this parameter marks a

trade-off between sensitivity and specificity: longer k-mers bring more specificity but

lower coverage,  while smaller k-mers allows locating more overlapping sequences

(i.e. higher sensitivity) while increasing the number of ambiguous repeats (Zerbino &

Birney  2008).  In  other  words,  an  assembly  with  a  small  k-mer  increases  the

probability of two reads assembly together which results in longer, but less contigs,

whereas  an  assembly  with  a  large  k-mer  decreases  that  same  probability  which
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produce more, but shorter contigs. However, due to the complexity of the assembly

process, the size and quantity of contigs are not directly proportional to the size of the

k-mers used, and can drift according to the data. 

When comparing the two assemblies, it is possible to speculate about the k-mer value

used in  the ARK genomics  assembly (k-mer=21).  This  value seems to  be  a  poor

choice, because it does not result in more neither in bigger contigs than those obtained

with the present Velvet/Oases assembly. Regardless, the present assemblies (both for

transcriptome reconstruction and for sequence identification), might not also have the

perfect k-mer value, due to our RAM restrictions.  Another method usually applied in

these  cases  is  the  multiple  k-mer  assembly  (Surget-Groba  &  Montoya-Burgos

2010).This  method consists  in  assembling the data  with different k-mers  and then

merge them into one, non-redundant transcriptome (Surget-Groba & Montoya-Burgos

2010).  This strategy is based on the theory that the assemblies with longer k-mer

values perform best on high expression genes, but poorly on low expression genes

(Surget-Groba & Montoya-Burgos 2010). So, merging the different assemblies would

cover genes at different expression levels  (Surget-Groba & Montoya-Burgos 2010;

Schulz et al. 2012), as applied in the assembly of Nicotiana benthamiana (Nakasugi

et al. 2013) or Sphenodon punctatus (Miller et al. 2012).

Currently, it is known that de novo transcriptome assemblies entail a certain level of

redundancy, due  to  the  assembly of  different  isoforms of  the  same gene  or  even

potential sequence variations among individuals  (Duan  et al. 2012). Plus, since the

plant  sequences  and  those  considered  potentially   plant,  from  the  plant/fungus

sequence identification step, were joined together to take the maximum information

possible from the data, and the k-mer value was not ideal, the redundancy level of the

transcriptome  increased.  In  this  case,  it  is  usual  to  take  a  clustering  step,  which

removes contigs with a high similarity, keeping the longer contigs. Since this step was

not sufficient, leaving behind several redundant contigs, the redundancy blast pipeline

was used. In the absence of a reference genome, it is practically impossible to separate

redundancy introduced by the assembly and the presence of different isoforms. In this

way, some of these redundancy steps could have compromised the actual composition

and size of the transcriptome. Also, the selection of the longer contigs as the most

representatives,  could  lead to  the same conclusions.  To overcome this  problem, a
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reference genome would had to be available, where we could map the reads back to it,

identifying the real isoforms and excluding the redundancy.

The study of  Vitis vinifera  transcriptome, one of the closest species to  Coffea spp.

with a genome assembled, showed a de novo transcriptome assembly with only one k-

mer  (41),  which  resulted  in  106670  contigs  after  a  simple  step  of  redundancy

cleaning.  After  mapping  the  contigs  against  the  reference  genome,  the  reference

transcriptome was reduced to 60075 contigs (Venturini et al. 2013). This confirms the

common existence of redundant contigs in the assembly which were discarded with

the utilization of the reference genome. Despite the absence of a reference genome for

Coffea spp. to confirm the current results, the approximated  statistical results of both

coffee  and  grapevine  transcriptomes  suggests  the  good  quality  of  the  present

assembly.

Due to the differences between the two transcriptome assemblies highlighted above, it

is impossible to compare directly the results of differentially expressed transcripts. So,

an analysis of differential expressed ESTs was made, to compare with the results of

the ARK genomics analysis which used the same ESTs as  reference. 

In addition to differences related with software and parameters used, and probably

also due to a lack of proper pre-processing in the ARK genomics analysis, as shown

above, differences between the read mapping softwares could also have influenced the

results.  Comparisons  between  read  alignment  softwares  showed  little  differences

between BWA (used for mapping in the  ARK genomics analysis) and Bowtie (used in

the current analysis) making the differences of each one negligible (Bao et al. 2011;

Ruffalo et al. 2011). In this case, what seems to make all the difference between the

two mappings is the RSEM algorithm. RSEM takes into account the uncertainty of

mapping, especially when we are dealing with small reads, which can be mapped in

several places. The idea is to allow RSEM to decide which alignments are most likely

to be correct, rather than giving the aligner this responsibility. RSEM receive all the

possible alignments for each read from Bowtie and uses a model based on maximum

likeliwood to calculate  the  probability of  a  read belonging to  a  certain  transcript,

giving a more accurate estimation of expression  (Li & Dewey 2011). This could be

especially important if we take into account the redundancy of the reference ESTs.

The  estimation  of  expression  by RSEM may have  dilute  the  expression  of  some
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redundant transcripts, and so, influenced their counting and consequently the number

of differential expressed ESTs (Hiller et al. 2009; Trapnell et al. 2012).

Besides that, the differential expression software could be involved in the differences

detected  between analyses.  Both EdgeR,  the software  used in  the ARK genomics

analysis,  and  EBSeq  used  in  the  current  analysis,  assume  a  negative  binomial

distribution of the data. EdgeR was developed to enable analysis of experiments with

small numbers of replicates applying an empirical Bayes procedure to moderate the

degree  of  overdispersion  across  genes  (Robinson  et  al. 2009),  whereas  EBSeq

estimates the posterior likelihoods of differential and equal expression by the aid of

empirical Bayesian methods  (Leng  et al. 2013). According to  Seyednasrollah  et al.

2013,  the  different  methods  of  normalization  and  parameters  used  in  different

software have little or no influence in the final results. Whereby, the influence of such

topics will be discarded.

Comparing the results of the commonly assign  differentially expressed ESTs it was

possible to conclude that EdgeR is somehow liberal on DE calling, corroborating the

results  of  other  studies  (Soneson & Delorenzi  2013;  Seyednasrollah  et  al. 2013).

EBSeq seems to be more conservative as it is possible to see when the counts from the

Ark genomics analysis are used with EBSeq, where only 17 of the 46 ESTs tested,

passed the false discovery rate cutoff (PPDE > 0.95). This difference may be related

with EdgeR problem with outliers. In the presence of outliers (i.e. values extremely

high or low in both replicates or just one replicate) EdgeR become much more liberal,

both in fold change and p-value calculation (Soneson & Delorenzi 2013). On the other

hand,  EBSeq  have  a  more  restrictive  DE calling,  independent  of  the  number  of

replicates (as much as possible),  and unaffected by outliers (Soneson & Delorenzi

2013).  Besides  that,  EBSeq  is  much  more  user  friendly,  especially  when  used

together with RSEM.

In the study of a pathosystem, such as Coffee – C. kahawae, both the pathogen and

the host are of extreme importance. In this way, the use of deep-sequencing to study

the pathosystem can retrieve data ffrom both players of the interaction. In the ARK

genomics analysis, the genetic information of the fungus was not recovered, unlike

the current analysis.
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4.2. Plant-Fungus Separation

Previous studies showed the successful separation of genetic information from a plant

and pathogen when an infected host is sequenced (Sebastiana et al. 2009; Fernandez

et al. 2012; Zhuang et al. 2012)

Two methods were used for plant-fungus contig identification, using the Plant-fungus

transcriptome: MIPS-EST3 and a blast pipeline. Based in concordant results provided

by both  methods  ,  198036  plant  contigs  and 653 fungus  contigs  were  identified,

however  2208  contigs  remained  unclassified  as  both  methods  gave  contradictory

results.  The blast search of this pipeline was made using a reduced number of  C.

kahawae and other Colletotrichum species sequences. Thus, it is possible that several

fungus sequences did not get a hit due to the reduced database information available.

The same may have occurred relatively to the plant sequences. Some of the contigs

assembled  in  the  plant-fungus  transcriptome  may  not  exist  in  the  control

transcriptome, and so, no homologies were found. On the other hand, EST3 method

does  not  account  for  the existence  of  other  contaminants  beyond the  C. kahawae

itself. As the assembly for this pipeline was made with non  cleaned reads (to make

sure that we were not losing any of the fungus genetic information for the assembly,

which could lead to poor separation of sequences due to missassemblies of the fungal

data) the presence of other commune contaminants is possible. Thus, as EST3 can

only classify sequences as fungus or plant, some of its classifications can be incorrect

or missing. The previous arguments reinforce the necessity of using the two methods,

and the two concordant results to clearly identify sequence origin.

4.3. Differential expression analysis

Great differences between the susceptible and resistant genotypes responses to the

fungal infection were identified, both in number of differentially expressed unigenes

and the functional categories to which they belong.

Comparisons  between  time-points  and  control  vs  inoculated  showed  more

differentially  expressed  unigenes  in  the  resistant  genotype,  relatively  to  the

susceptible genotype.  Such is  admissible considering a probable higher number of

processes that must be activated by the resistant genotype to stop the fungal growth.
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These results are corroborated by other studies with plant-pathogen interactions, such

as Pinus monticola -  Cronartium ribicola (Liu et al. 2013), where 562 differentially

expressed genes were found in the compatible interaction and 789 in the incompatible

interaction.

Between control and inoculated samples, the absence of unigenes expressed only at

48  hpi,  in  both  genotypes  suggests  the  continuity  of  the  response  to  the  fungus

infection, since the differential expressed unigenes at 48hpi were already activated at

24hpi or were still activated at 72hpi. The distribution of the unigenes by the profiles,

corroborates this idea of continuity, since in both genotypes, the most representative

of them included the time-points 48hpi and 72hpi.

Also,  the predominance of differently expressed unigenes  at  72 hpi,  and the high

representativeness of the j) profile (increases from 48hpi to 72hpi)  may correspond to

the switch from the biotrophic to the necrotrophic phase in the susceptible genotype,

and to the accumulation of phenols and display of HR in 50% of infection sites in the

resistant genotype (Loureiro et al. 2012a). This stimulates a more intense response for

both  resistant  and  susceptible  genotypes,  which  explains  the  higher  activation  at

72hpi.

The characterization of  the  differentially expressed unigenes  by KOG and KEGG

annotations,  made  by time-point  and  genotype  or  by  expression  profile,  revealed

relevant categories related to the plant-fungus interaction.

The KOG annotation in all comparisons presented in this study,  may be considered

incomplete  due  to  the  great  percentage  of  annotations  being  inconclusive  (other

functions, function unknown and general function prediction only). This is a common

fact occuring in several other studies that include plant sequence annotation, such as

the transcriptome study of Youngia japonica (Peng et al. 2014), or the transcriptomic

analysis of Paulownia infected by Paulownia witches'-broom  Phytoplasma  (Mou  et

al. 2013), reflecting the yet low coverage of gene databases regardless of the high

advances on knowledge obtained in the last few years.

The  categories  “Signal  transduction  mechanisms”  and  “Post-translational

modification, protein turnover, chaperones” are consistently the most representative of

the differentially expressed unigenes between control and inoculated samples. These

two categories are indicative  that coffee  is transcriptionally very active during the
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infection  of C.  kahawae,  triggering  several  signalling mechanisms  and  increasing

protein biosynthesis. Other study on the  interaction of coffee with leaf rust (Hemileia

vastatrix),  showed  in  the  KOG  annotation,  the  same  categories  as  the  most

representative (Fernandez et al. 2012) . This may suggest that these two categories are

related with a general defense response of coffee to pathogen infection, since infection

takes place in different plant tissues. .

On the other hand, the annotation of the different profiles, unraveled differences on

these same categories. For the resistant genotype, the “Post-translational modification,

protein turnover, chaperones” and “Signal transduction mechanisms” categories are

represented  in  stable  and  increased  along  time  profiles,  while  in  the  susceptible

genotype,  these  only  appear  in  the  stable  profiles.  This  may  indicate  a  different

triggering and activation pattern of the infection response by the resistant genotype.

The KEGG annotation sustain this idea, since the phenylalanine and phenylpropanoid

pathways are mainly represented in the resistant genotype (control vs inoculated), and

covers all the sampled time-points. Also, stable and “expression increasing” profiles

show  a  predominance  of  these  pathways  in  the  resistant  genotype,  while  in  the

susceptible  genotype,  all  the  profile  categories  are  related  with  plant  growth  and

development . Phenylalanine and phenylpropanoid pathways are known to be related

with  the  defense  response  in  different  pathosystems,  namely  in  tobacco  -

Phytophthora  megasperma,  or  coffee  - Hemileia  vastatrix,  since  enzymes  like

phenylalanine  ammonia-lyase(PAL)  are  activated   in  the early  stages  of  these

interactions,  (Dixon & Paiva 1995; Dorey  et al. 1997; Silva  et al. 2002). PAL was

already identified as having an important  role in resistance,  being involved in the

production  of  several  compounds  associated  with  fungal  invasion,  like

phenylpropanoids and suberin or other phenolic compounds normally deposited in the

host  cell  walls  at  the  point  of  fungal  invasion  (Silva  et  al. 2006).  PAL was  also

implicated  in  the  production  of  salicylic  acid,  another  defense-related  compound

(Mauch-Mani & Slusarenko 1996; Silva  et al. 2006) In coffee, studies revealed an

early increase of PAL and SA, associated with the resistance response to H.vastatrix

(Silva et al. 2002, Sa et al. 2014).

“Amino sugar and nucleotide sugar metabolism ”and “starch and sucrose metabolism”

are  well  known  for  being  directly  related  with  biosynthesis  and  metabolism  of
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nucleotides of fundamental importance in plant growth and development  (Winter &

Huber  2000;  Stasolla  et  al. 2003).  The  representativeness  of  these  categories  are

justified by the model used in this study (hypocotyls), which is a structure in constant

growth and development.

Using both inoculated genotypes as a pair of conditions for differential expression

analysis  allowed  the  comparisons  of  level  of  expression  between  resistant  and

susceptible inoculated libraries, giving us the idea of the unigenes more expressed in

each genotype instead of the unigenes that are down or upregulated relatively to the

control. 

Since  in  this  step the comparison was made between two different  genotypes,  an

exhaustive  comparison  between  them  could  lead  to  false  conclusions,  since  the

differences  of  expression  could  not  be  related  to  the  plant  reaction  to  the  fungus

infection but rather to genotype-specific responses. By selecting the categories related

with  defense,  we intended  to  focus  on  the  conditions  that  were  varied  (pathogen

infection), minimizing the differences  derived from other causes.

Analyzing the patterns of the defense-related unigenes, it was possible to see a higher

and early response to the infection by the susceptible genotype. Also, the categories

related with reactive oxygen species  (Van Breusegem & Dat 2006) and response to

stress  indicates that the cell at 48 hpi is still reacting , while the resistant genotype

only  reacts  in  a  similar  way  at  72hpi  Vargas  et  al.  (2012)  showed  that  in  the

interaction  of  the  hemibiotrophic  fungus  Colletotricum graminicola  with  maize,  a

strong induction of defense mechanisms occurs at early stages of infection. Moreover,

these authors hypothesized that the switch to necrotrophic growth (occurring in our

pathosystem at 72 hpi) enables the fungus to evade the effects of the plant immune

system and allows for full fungal pathogenicity (Vargas et al. 2012). Allied to this, a

KEGG annotation of the same unigenes was made, and the pathways of phenylalanine

and phenilpropanoid were only identified in the resistant genotype, showing that these

compounds may have a main role in resistance.   Previous studies on transcriptional

responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant

(V. riparia)  grapevine species  showed a similar  profile,  where  about  75% of the

transcripts  were more strongly expressed in  V. vinifera  and about 25% were more

strongly expressed in  V. riparia. Also, the resistant genotype showed to have more
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specific transcripts that were absent in the susceptible genotype (Polesani et al. 2010).

5.  Conclusions

RNA-seq data analysis for differential expression is still a technique in development,

and so, there is no ideal method or tool for all the analyses. The lack of a reference

genome, make the task even more difficult: transcriptome assembly entails several

problems, such as redundancy and the need of high computer power. In the mapping

phase, the use of short reads can lead to miss-mappings if measures are not taken into

account.  Additionally,  several  software  were  developed  for  differential  expression

analysis, with more restrictive or more liberal parameters for differential expression

calling. However, there is no clear consensus about the best practices yet: it is up to

the  user  to  choose  the  software  more  adapted  to  their  data  and  purpose.  The

comparison  of  the  current  and  ARK  genomics  analysis  showed,  not  only  the

importance  of  an  appropriate  data  treatment  but  also  the  differences  between  the

results  when taking different  approaches.   The use of  appropriate  parameters  and

software and the control between multiple phases  is of the utmost importance in a

proper bioinformatics analysis. Relatively to the biological results, new insights were

provided relatively to the differences of expression associated to coffee  susceptibility

and resistance responses. The resistant genotype showed a more intense response of

gene expression to the infection. A peak of expression at 72hpi was identified for both

genotypes, possibly related with the the  switch from the biotrophic to necrotrophic

phase in the susceptible genotype and the accumulation of phenols and display of HR

in  50%  of  infection  sites  in  the  resistant  genotype.  Annotation  of  diffentially

expressed  transcripts  showed  a  high  biological  transcriptomic activity  of  both

genotypes  and  functional  categories  already  identified  as  related  with  defense

response , such as phenylalanine and phenilpropanoid biosynthesis  which were only

identified in the resistant response to C. kahawae. Also, the resistant genotype showed

a higher  effective  response  to  infection  in  all  the  time points  and the  susceptible

genotype an early stress-leaded response to the infection. Through this study, the first

steps were taken into the better  understanding of coffee resistance to C. kahawae,

potentially applicable to similar pathosystems. Further analysis is needed to obtain

more biochemical and metabolic information from the results.
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Supplementary material
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Figure S1 - KOG annotation of the transcriptome. The representativity of each term is showed by the percentage of the total transcriptome.
The terms are divided in three major categories: CPS – Cellular process and signalling; ISP – Information storage and processing; MET -
metabolism
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Figure S2 – Top 50 KEGG annotation of the transcriptome.
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Figure S3 - KOG annotation of the differentially expressed unigenes of the comparisons between control and
inoculated at 24hpi for both genotypes  . The representativity of each term is showed by the percentage of the
total transcriptome. The terms are divided in three major categories: CPS – Cellular process and signalling; ISP
– Information storage and processing; MET - Metabolism



62

Figure S4 - KOG annotation of the differentially expressed unigenes of the comparisons between control and
inoculated at 24hpi for both genotypes . The representativity of each term is showed by the percentage of the
total transcriptome. The terms are divided in three major categories: CPS – Cellular process and signalling; ISP
– Information storage and processing; MET - Metabolism
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Figure S5 - KEGG annotation of the differentially expressed unigenes of the comparisons between control 
and inoculated at 24hpi for both genotypes . The representativity of each term is showed by the percentage of 
the total transcriptome.
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Figure S6 - KEGG annotation of the differentially expressed unigenes of the comparisons between control
and inoculated at 72hpi for both genotypes . The representativity of each term is showed by the percentage
of the total transcriptome.
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Figure S7a – KEGG annotation per profile of the susceptible genotype. The percentage of unigenes is  relatively to the total of differentially expressed unigenes of the susceptible
comparisons – Control vs Inoculated
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Figure S7b – KEGG annotation per profile of the resistant genotype. The percentage of unigenes is  relatively to the total of differentially expressed unigenes of the susceptible
comparisons – Control vs Inoculated



Table S1 - Comparison of the current and ARK genomics analysis.
Condition EST Current analysis ARK genomics 

analysis
Current analysis read counts ARK genomics analysis read counts ARK genomics 

analysis read 
counts + Ebseq 
analysis

PPDE Log2FC p-value Log2FC 1 C 2C 1Q 2Q 1 C 2C 1Q 2Q PPDE Log2FC

RCRQ48 Ca_HDT832-2_M05513 1.000 1.757 0.000 3.764 155.830 465.480 256.760 734.170 46.000 132.000 310.000 851.000 1.000 2.279

RCRQ48 Ca_HDT832-2_M08666 1.000 -1.527 0.000 -3.878 97.400 781.040 48.760 16.600 8.000 32.000 1.000 0.000 1.000 -5.743

RCRQ48 Ca_HDT832-2_M11179 1.000 2.918 0.000 4.921 3.000 2.000 15.000 20.000 3.000 9.000 51.000 79.000 0.000 0.791

RCRQ48 Ca_HDT832-2_M14285 1.000 3.690 0.000 1.433 1.980 18.120 19.620 75.470 69.000 413.000 186.000 284.000 0.986 -1.415

RCRQ48 Ca_HDT832-2_M54300 1.000 1.999 0.000 28.887 124.430 1989.350 610.840 1447.800 0.000 0.000 8.000 24.000 0.000 2.818

RCRQ48 Ca_HDT832-2_M54550 1.000 2.402 0.001 4.953 4.130 32.220 15.170 52.080 0.000 1.000 0.000 11.000 0.720 0.613

RCRQ48 Ca_HDT832-2_M54599 1.000 5.229 0.000 3.210 0.000 42.430 104.960 208.790 1.000 7.000 7.000 19.000 0.000 0.400

RCRQ48 Ca_HDT832-2_M55940 0.998 3.921 0.000 7.020 0.000 1.350 0.000 26.010 0.000 1.000 0.000 49.000 0.854 2.444

RCRQ48 Ca_HDT832-2_M57320 0.998 2.401 0.000 4.607 1.680 5.010 3.130 21.270 0.000 3.000 9.000 16.000 0.000 0.651

RCRQ72 Ca_H147-1_N00621 1.000 1.947 0.000 4.144 13.000 38.820 87.050 80.980 4.000 9.000 117.000 74.000 0.665 1.290

RCRQ72 Ca_H147-1_N00912 0.998 2.844 0.000 30.016 3.000 2.000 24.060 12.950 0.000 0.000 36.000 27.000 0.000 4.481

RCRQ72 Ca_H147-1_N03343 0.987 4.345 0.000 6.739 0.970 1.000 30.000 26.020 2.000 0.000 123.000 54.000 0.000 3.129

RCRQ72 Ca_HDT832-2_M00373 1.000 1.259 0.000 3.310 1660.100 2706.000 4604.210 4086.080 198.000 333.000 2021.000 2404.000 0.593 1.455

RCRQ72 Ca_HDT832-2_M00447 0.997 2.963 0.000 6.220 356.150 391.940 3116.550 1710.210 40.000 42.000 3168.000 1904.000 1.000 3.200

RCRQ72 Ca_HDT832-2_M04739 1.000 4.440 0.000 6.603 6.630 3.280 126.220 78.690 0.000 1.000 42.000 40.000 0.978 3.478

RCRQ72 Ca_HDT832-2_M11179 1.000 4.984 0.000 8.481 1.000 1.000 38.000 52.000 1.000 0.000 158.000 143.000 0.997 4.603

RCRQ72 Ca_HDT832-2_M14285 1.000 4.578 0.000 1.682 2.090 8.970 120.510 123.500 141.000 138.000 339.000 424.000 0.979 -0.959

RCRQ72 Ca_HDT832-2_M14990 1.000 -7.299 0.000 -1.568 139.260 75.220 0.000 0.000 167.000 234.000 63.000 50.000 1.000 -4.501

RCRQ72 Ca_HDT832-2_M15595 1.000 5.806 0.002 -3.080 0.000 0.000 12.520 54.220 10.000 10.000 2.000 0.000 1.000 -4.733

RCRQ72 Ca_HDT832-2_M22730 1.000 3.895 0.000 7.214 1.250 0.890 15.540 28.470 1.000 0.000 30.000 99.000 0.955 3.216

RCRQ72 Ca_HDT832-2_M24255 1.000 4.781 0.000 1.486 0.000 3.160 50.860 50.340 49.000 48.000 122.000 107.000 0.991 -1.564

RCRQ72 Ca_HDT832-2_M25152 1.000 6.437 0.000 32.482 0.000 0.000 50.000 50.010 0.000 0.000 172.000 178.000 0.007 5.748

RCRQ72 Ca_HDT832-2_M32644 1.000 3.798 0.000 1.762 2.510 4.820 46.290 54.130 23.000 23.000 47.000 87.000 0.982 -1.361
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RCRQ72 Ca_HDT832-2_M33411 1.000 6.473 0.000 3.970 0.000 0.000 51.000 51.620 15.000 17.000 213.000 210.000 0.750 0.919

RCRQ72 Ca_HDT832-2_M37463 0.959 2.747 0.000 5.779 1.000 2.000 15.880 7.000 0.000 3.000 76.000 62.000 0.927 3.089

RCRQ72 Ca_HDT832-2_M42026 1.000 4.741 0.000 28.891 0.000 3.210 53.560 45.460 0.000 0.000 16.000 13.000 0.000 3.425

RCRQ72 Ca_HDT832-2_M53490 1.000 1.492 0.000 3.755 488.090 467.430 1282.800 965.530 61.000 70.000 933.000 531.000 0.303 0.766

RCRQ72 Ca_HDT832-2_M53657 1.000 5.058 0.000 29.649 80.890 146.830 3276.490 3066.630 0.000 0.000 13.000 37.000 0.000 3.979

RCRQ72 Ca_HDT832-2_M54300 1.000 1.758 0.000 30.193 391.230 602.890 1312.100 1511.710 0.000 0.000 43.000 28.000 0.000 1.374

RCRQ72 Ca_HDT832-2_M54599 1.000 5.844 0.000 3.282 3.080 9.190 385.740 254.370 1.000 3.000 14.000 19.000 0.000 2.134

RCRQ72 Ca_HDT832-2_M55019 1.000 2.004 0.000 4.196 21.010 25.250 67.560 93.250 13.000 24.000 250.000 324.000 0.953 2.523

SCSQ48 Ca_H147-1_N06250 1.000 5.681 0.000 1.701 0.000 0.000 27.980 37.020 42.000 70.000 218.000 223.000 0.898 -0.721

SCSQ48 Ca_HDT832-2_M00373 1.000 1.384 0.000 3.845 1135.900 1130.370 3621.220 3500.840 54.000 99.000 1393.000 1262.000 0.304 0.336

SCSQ48 Ca_HDT832-2_M05513 1.000 2.786 0.000 4.789 44.630 81.230 494.910 501.500 7.000 11.000 262.000 339.000 0.270 -0.007

SCSQ48 Ca_HDT832-2_M14285 1.000 3.784 0.000 1.416 2.000 4.240 42.760 69.280 35.000 64.000 169.000 151.000 1.000 -2.509

SCSQ48 Ca_HDT832-2_M42971 0.996 4.054 0.000 1.706 0.000 1.000 12.060 24.040 13.000 27.000 65.000 91.000 0.000 -0.719

SCSQ48 Ca_HDT832-2_M50633 1.000 4.011 0.000 1.741 10.610 22.780 264.120 355.920 2.000 12.000 25.000 31.000 0.000 -0.428

SCSQ48 Ca_HDT832-2_M54300 1.000 1.226 0.000 28.573 306.890 295.560 994.780 719.540 0.000 0.000 10.000 8.000 0.000 3.380

SCSQ48 Ca_HDT832-2_M55019 1.000 2.378 0.000 4.768 6.000 24.110 87.610 85.600 2.000 9.000 186.000 176.000 1.000 1.233

SCSQ72 Ca_H147-1_N06250 0.990 4.167 0.000 1.965 0.000 3.000 12.000 69.490 66.000 52.000 94.000 316.000 0.596 -1.260

SCSQ72 Ca_HDT832-2_M05918 1.000 5.731 0.000 7.889 1.000 0.000 30.400 69.460 1.000 0.000 65.000 135.000 1.000 3.896

SCSQ72 Ca_HDT832-2_M08452 1.000 5.083 0.000 2.602 84.480 59.580 822.590 3686.270 4.000 1.000 3.000 23.000 0.656 -0.892

SCSQ72 Ca_HDT832-2_M25116 0.958 3.730 0.000 29.392 1.310 0.000 4.440 25.080 0.000 0.000 4.000 20.000 0.000 2.960

SCSQ72 Ca_HDT832-2_M25152 1.000 6.279 0.000 32.258 0.000 0.000 28.600 59.540 0.000 0.000 55.000 119.000 1.000 6.853

SCSQ72 Ca_HDT832-2_M54300 1.000 1.708 0.000 5.343 429.410 248.660 528.730 1365.580 1.000 0.000 5.000 30.000 0.000 4.665

SCSQ72 Ca_HDT832-2_M54599 1.000 4.922 0.001 28.410 10.460 11.000 156.050 471.200 0.000 0.000 2.000 10.000 0.000 -0.764
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Chapter III



Concluding Remarks

CBD is a disease of hard and expensive control with a high economic and social impact. It

was already recognized that  a  durable  control  of  this  disease has  to  come from a  better

knowledge about the pathogen infection process and the plant's resistance mechanisms. As

such, there is a need for a continued effort on studying the host-pathogen relationship. 

Joining different research fields  to unravel the molecular mechanisms of coffee resistance,

like informatics and molecular biology, can lead to significant advances on the knowledge

needed to implement strategies towards the improvement of coffee resistance durability to

CBD, taking into account  the environmental  needs  and the development  of  a  sustainable

coffee economy.

Currently,  with  the  constant  innovation  in  NGS  and  the  large  and  complex  choices  of

methods and  analysis software, it is difficult to keep up with the best approaches to address

the problems that still arise. Actually, with recent  methods like RNA-seq, there is still no

consensus about the best practices of analysis for all kinds of data. Therefore, it is up to the

user to adjust and keep track of the quality of analysis, in order to bring  the best possible

approximation of the data  to reality.

In this work, the importance of such care is evidenced by the comparison of two different

analysis of the same data. It was shown that the indiscriminate use of a standard approach

independently  of  the  data  source  can  lead  to  not  so  realistic  results.  In  addition,  it  was

possible to recognize the importance of proper computational power. Insufficient CPU and

RAM power can be a limiting factor, restricting the analysis possibilities. 

Furthermore,  it  was  possible  to  infer  the  different  proprieties  of  two  methods  for  host-

pathogen sequence separation. Neither of the methods was perfect for sequence separation,

especially if  the presence of contaminants other than the pathogen could not be excluded.

Ideally, the use of more than one method for separation is advised.

Finally, a first look at the annotation results, already showed unigenes differentially expressed

related  with pathways  involved in  defense  responses  and the recognition  of  the different

reactions  of susceptible  and resistant  genotypes  to  fungus infection.  A closer  look to  the

results, will lead to new relevant knowledge able to support and improve coffee breeding for

resistance to CBD.
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