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Resumo  
Na Natureza os animais ajustam as suas exibições comportamentais de acordo com as 

flutuações diárias no seu ambiente social. Mas de que forma este ambiente social influencia o 

comportamento exibido pelos indivíduos e que alterações acontecem a nível cerebral 

decorrentes destas variações no ambiente social? E, por outro lado, quais os mecanismos 

fisiológicos, moleculares e genéticos na génese destas modificações? 

O comportamento social é um traço ubíquo no Reino Animal, sendo que a maioria dos 

animais vivem (senão na sua totalidade, pelo menos uma parte da sua vida) em ambientes 

sociais. De forma sucinta, podemos definir o comportamento social como o conjunto de ações 

decorrente da interação entre dois ou mais indivíduos, mais commumente da mesma espécie. 

Desta forma, o comportamento social pode ser visto como um fenótipo interativo: pois 

depende em parte das interações localmente estabelecidas com outros indivíduos para a sua 

expressão. O estudo do comportamento, também denominado Etologia, teve ao longo da 

história um papel de destaque, que culminou com a atribuição do Prémio Nobel em Medicina 

e Fisiologia em 1973, para três distintos cientistas, Konrad Lorenz, Niko Tinbergen e  Karl von 

Frisch, pelos seus trabalhos de excelência na área. Estes contribuíram de forma definitiva para 

uma maior compreensão das bases do comportamento social, ao focarem a sua investigação 

em comportamentos familiares ou de grupo, comportamentos agonísticos e de corte, e na 

comunicação entre indivíduos no seio de um grupo. Para Tinbergen, o estudo biológico do 

comportamento animal deve integrar um conjunto de abordagens multi-disciplinares devido 

ao elevado grau de complexidade dos padrões comportamentais exibido pela maior parte das 

espécies. Desta forma, Tinbergen sugere responder a quatro perguntas mutuamente 

exclusivas que exploram as explicações proximais e distais para as causas e origens de 

determinado padrão comportamental (dito de uma forma simplificada: como? e porquê?). As 

questões proximais prendem-se com o estudo dos mecanismos que permitem o indivíduo 

executar determinado comportamento, incluindo mecanismos sensoriais e endócrinos que 
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regulam o comportamento. Como a origem e desenvolvimento destes mecanismos podem ser 

moldados por experiências com o meio social, ou até mesmo aprendidos através da 

observação de conspecíficos, é importante também considerar a ontogenia destes mesmos 

comportamentos. Por outro lado, as questões  distais focam-se na evolução dos mecanismos 

supracitados, mais concretamente tentando perceber a função de determinados 

comportamentos na sobrevivência do indivíduo, e encontrar explicações para a evolução dessa 

mesma função através da sua história filogenética.  

O estudo do comportamento animal assenta no pressuposto que existe uma 

flexibilidade comportamental (mais ou menos) extensa e intrínseca a cada indivíduo, de tal 

forma que o mesmo indíviduo pode expressar comportamentos distintos em resposta a 

ambientes sociais semelhantes, dependendo unicamente do seu meio interno. A expressão de 

comportamentos parece então depender da percepção do indivíduo do seu meio social, da sua 

experiência social prévia e, naturalmente, do seu estado interno. Um indivíduo socialmente 

apto tem de ser capaz de avaliar corretamente o seu ambiente social, ajustando o seu 

comportamento de forma a maximizar o rácio entre custos e benefícios de se envolver numa 

interação, optimizando, desta forma, a sua regulação e distribuição energéticas. A esta 

capacidade dos indivíduos para alterar o seu comportamento em função da informação 

disponível acerca do seu ambiente social chamamos competência social. Este conceito, 

remete-nos novamente para a ideia de flexibilidade comportamental referida no início deste 

paragráfo. Esta plasticidade nas respostas comportamentais pode também ser adaptativa, 

auxiliando os indivíduos a lidarem com desafios inerentes à variabilidade, e por vezes 

imprevisibilidade, do seu ambiente, mas por outro lado pode acarretar custos intrínsecos. Os 

custos associados a esta plasticidade comportamental são mensuráveis quando consideramos, 

por exemplo, genótipos com fenótipos equivalentes em dois ambientes distintos, diferindo 

somente em termos de plasticidade e fitness. Exemplos destes custos prendem-se com a 
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aquisição de informação do ambiente, ou custos de manutenção de mecanismos sensoriais ou 

regulatórios, ou finalmente custos de produção fenotípica.  

Esta plasticidade comportamental depende, naturalmente, de uma plasticidade dos 

circuitos neurais subjacentes ao comportamento social, que é conseguida através de uma 

regulação da expressão génica cerebral. A Social Behavior Network (literalmente, a rede 

(neural) do comportamento social, SBN) integra um conjunto de nódulos neurais responsáveis 

pela regulação de comportamentos sociais (seja agressão, corte ou comportamento parental). 

Inicialmente descrita para mamíferos (e posteriormente alargada para aves e peixes), esta 

rede inclui: o septo lateral, a área pré-óptica, o hipotálamo anterior, o hipotálamo 

ventromedial, a amígdala medial e a substância cinzenta periaquedutal. Em comum estas áreas 

partilham 3 aspectos-chave: (1) estão reciprocamente interconectadas, (2) contêm recetores 

de hormonas gonadais e (3) são ativados, ou têm uma importante função regulatória, em 

resposta a comportamentos sociais. Esta rede parece codificar a informação de uma forma 

dinâmica, de tal forma que determinado perfil comportamental parece ser melhor explicado 

pelo perfil de ativação da rede na sua globalidade, do que pela atividade individual de cada 

nódulo. Conceptualmente, a pluralidade de combinações de ativação dos diferentes nódulos 

possível, parece explicar a diversidade de comportamentos exibida entre espécies e até 

mesmo entre indivíduos.  

Os mecanismos neurais subjacentes à plasticidade comportamental podem então atuar 

de duas formas: (1) provocando alterações estruturais nos circuitos da SBN, o que conduz a 

mudanças comportamentais que ocorrem lentamente, mas que são dramáticas e duradouras; 

(2) ou modulando bioquimicamente a atividade nodal, o que provoca alterações 

comportamentais significativamente mais rápidas, mas transientes e muito mais subtis do que 

no primeiro caso. 

Como foi dito anteriormente, uma consequência direta da ativação destes circuitos 

neurais é um aumento na expressão génica, que a juzante afeta a integração da informação 
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social. Estes mecanismos genéticos parecem exercer lentamente um efeito sobre os circuitos 

neurais existentes, e apesar de não terem um correlato comportamental imediato, estão 

dependentes das experiências do indivíduo com o meio. Actualmente, considera-se que estes 

mecanimos dependentes da atividade neuronal devem-se a três processos: (1) fosforilação de 

proteínas específicas, como o CREB (cAMP response element-binding), que regulam 

determinadas vias de sinalização ou atuam diretamente em immediate-early genes (IEG); estes 

IEG são genes de resposta rápida que são ativados de forma transiente face a um estímulo 

externo, antes mesmo de existir síntese proteica, e que (2) promovem alterações na expressão 

de uma cascata de módulos de genes co-regulados no cérebro; finalmente, (3) a transcrição de 

microRNAs controla a tradução de proteínas sinápticas que, em última instância, modifica o 

estado neurogenómico do cérebro em resposta aos estímulos sociais iniciais. Em suma, a 

ativação de IEG, em resposta a um estímulo externo vai orquestrar a integração das respostas 

genómicas e da informação social disponível, co-regulando conjuntos de genes cuja co-

expressão conduz a uma expressão génica comportamentalmente induzida, e que resulta na 

exibição de diferentes fenótipos sociais. 

Deste modo, diferentes estados neurogenómicos emergem em resposta a diferentes 

estímulos externos, orquestrados por diferentes vias de sinalização na interface entre o 

ambiente e o genótipo do indivíduo. Naturalmente, estas pistas ambientais  são traduzidas em 

informação biológica relevante, enquanto pistas internas, ou de índole fisiológica, são 

integradas simultaneamente com a experiência prévia do indivíduo. As exibições 

comportamentais decorrentes destes processos tendem a ser adaptativas, resultando na 

evolução de estratégias flexíveis, optimizadas para responder às alterações do ambiente social. 

A investigação nesta área do conhecimento tem sofrido avanços metodológicos em anos 

recentes, com o desenvolvimento de novas técnicas genómicas. Estas permitem um estudo 

mais aprofundado do impacto das flutuações no ambiente social no genoma de um indivíduo, 

e têm contribuído de forma definitiva para alimentar o debate do “inato vs. adquirido” (ou 
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“nature vs. nurture”). A possibilidade de estudar alterações da expressão génica ao nível do 

genoma completo (ou parcialmente completo), através de análises trancriptómicas, veio 

cimentar a ideia de um genoma que responde de forma dinâmica aos estímulos externos. 

Adicionalmente, os genes, o comportamento social e o cérebro parecem também 

interconectados, de tal forma que o ambiente social influencia a expressão génica a nível 

cerebral, o que resulta em alterações na expressão de comportamentos; por outro lado, 

variações genéticas podem alterar a função cerebral e também os comportamentos sociais. Ao 

integrarmos o estudo destas alterações genéticas a nível genómico, com conceitos de 

neurobiologia, etologia e biologia evolutiva poderemos compreender melhor o papel da 

plasticidade nesta interação dinâmica entre os genes e o ambiente que esculpe o nosso 

comportamento e o nosso cérebro. 

Os objectivos desta tese são então: (1) por um lado compreender como estímulos 

ambientais podem conduzir a variabilidade fenotípica – estudando como a informação social 

regula a expressão génica em áreas cerebrais relevantes para o comportamento social, que, 

por sua vez, vão ativar respostas neuroendócrinas que promovem alterações no perfil 

comportamental dos indivíduos induzidas pelo meio social onde estão inseridos; (2) por outro 

lado, compreender como estímulos sociais mais simples (como estímulos sensoriais) podem 

modular padrões de expressão génica em zonas cerebrais específicas para o seu 

processamento.   

Como espécies modelo foram utilizadas duas espécies de teleósteos, um dos taxa mais 

diversos e plásticos entre os vertebrados, com mais de 20,000 espécies descritas, que 

englobam uma diversidade de estruturas sociais, sistemas de acasalamento e prestação de 

cuidados parentais única no Reino Animal. Os peixes ósseos oferecem-nos tal riqueza 

fenotípica, que poderão contribuir de forma definitiva para uma melhor compreensão da 

função e evolução da variabilidade dos mecanismos proximais (i.e. cérebro, hormonas e genes) 

envolvidos no comportamento social. Para isto elegemos duas espécies-modelo: o peixe-zebra 
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(Danio rerio) – uma espécie-modelo importante na área da genética, devido à extensa 

anotação do seu genoma e a possibilidade de utilização de organismos mutantes e 

transgénicos; e a tilápia de Moçambique (Oreochromis mossambicus) – uma espécie de 

ciclídeo utilizada como modelo em estudos comportamentais e neuroendócrinos, e que 

apresenta um repertório comportamental invulgarmente extenso e complexo, em que 

estímulos sensoriais multimodais são frequentemente exibidos em diferentes contextos (como 

agressão e corte). 

No primeiro capítulo desta tese foi catalogado o repertório agonístico do peixe-zebra e 

estudadas a estrutura e dinâmica deste tipo de interação (Capítulo I.I). De seguida, indivíduos 

da mesma espécie foram expostos a diferentes interações sociais, cujo desfecho era 

manipulado (e.g. indivíduo vencia ou perdia uma luta), de forma a perceber o impacto destas 

experiências sociais na modulação da expressão de estados neurogenómicos no cérebro 

destes peixes (Capítulo I.II). No segundo capítulo, foi desenvolvido um mapa estereotáxico em 

3 dimensões, do cérebro de O. mossambicus recorrendo a cortes histológicos e imagens de 

ressonâncias magnéticas (Capítulo II.I). Este trabalho possibilitou a localização de áreas de 

interesse estudadas na última secção do Capítulo II, onde se caracterizou o efeito da 

modulação molecular e fisiológica da maquinaria responsável pelo processamento de 

estímulos olfativos em duas áreas cerebrais (bolbos olfativos e palium olfativo). Para tal foram 

utilizados odores representativos de diferentes fenótipos sociais apresentados por ambos os 

sexos nesta espécie, nomeadamente: entre machos dominantes e subordinados e fêmeas 

antes e após a desova. 

 

Palavras-chave: Comportamento Social, Plasticidade, Cérebro, Genómica, Teleósteos 
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Abstract  
Animals continuously fine-tune the expression of social behaviors according to daily 

fluctuations on their social environment. But how does the social environment influence brain 

and behavior and what are the underlying physiologic, molecular and genetic mechanisms? 

Behavioral flexibility depends on neural plasticity of circuits underlying social behavior, 

which is achieved by social regulation of brain gene expression. Different neurogenomic 

states emerge in response to different external stimuli and switches between states are 

orchestrated by signaling pathways interfacing the social environment and the genotype.  

The goal of this thesis is to understand how social environment influences brain genomic 

transcription: (1) during a complex social interaction in zebrafish and (2) after stimulation with 

context-specific social olfactory stimuli in the Mozambique tilapia. 

Zebrafish, Danio rerio, has long been used as a model organism in developmental 

biology and genetics. Despite of their limited behavioral repertoire, the available genetic tools 

make it a promising model for the study of social behavior. In contrast, the Mozambique 

tilapia, Oreochromis mossambicus, has a rich behavioral repertoire in which visual and 

chemical information are conveyed to conspecifics, although having limited brain anatomy 

information and less genetic tools available. 

Our research suggests that the outcome of a single social interaction in zebrafish has 

consequences for subsequent behavior and significant impact on their brain transcriptome. 

These responses to social interactions seem to involve cognitive appraisal of stimuli, since the 

objective structure of the event does not trigger a genomic response but rather the appraisal 

the individual makes of the event. In tilapia, different chemical social cues not only affect 

neural activity of the olfactory epithelium but also elicit specific patterns of gene activation in 

brain areas related to olfactory processing. This reinforces the idea of an extensive 

transcriptional plasticity of teleost genomes, especially in response to rapid changes in social 

environment.  

 

Key-words: Social behavior, Plasticity, Brain, Genomics, Teleost. 
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7  

General Introduction  

 

Why Social Behavior? 
Social behavior is ubiquitous in nature, as the vast majority of animals live partly (or 

fully) in social environments (Komdeur, 2010). In broad terms, social behavior is any behavior 

caused by or affecting another individual, usually of the same species. Thus, it is best described 

as an interacting phenotype: a phenotype that depends at least in part on interactions with 

social partners for its expression (Bshary, 2011).  

The study of social behavior has been of keen interest throughout history and 

ethologists such as Konrad Lorenz, Niko Tinbergen and Karl von Frisch, dedicated part of their 

research to understanding the basis of social behavior, by investigating group and family life, 

fighting, communication, display behaviors and mating. For Tinbergen the biological study of 

behavior, known at the time as Ethology, must integrate several different approaches due to 

its high complexity. To address this, he proposed that we address four mutually exclusive 

questions exploring both proximate and ultimate explanations for the cause and origin of that 

behavioral pattern (Tinbergen, 1963), sometimes known as ‘how’ and ‘why’ questions. 

Proximate questions about behavior ponder on how an individual is able to perform a certain 

activity: what mechanisms within the animal enable it to behave in that way (Tinbergen’s 

Causation, nowadays called Mechanism). The proximate causes of behavior embrace both 

sensory and endocrine mechanisms that regulate behavior, which can be modified by 

individual experience. Consequently, it is important to understand how learning modifies a 

certain behavior and thus the proximate origins of that behavior must be considered as well 

(Tinbergen’s Ontogeny). On the other hand, ultimate questions about behavior focus on why 

animal species evolve proximate systems that allow them to behave in a certain way? In other 

words, the ultimate cause of a behavior must help to understand how that behavior helps the 
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individual to survive and breed (Tinbergen’s Survival Value, also known as Function). Again, if 

we consider the ultimate origin of a given behavioral pattern we have, in essence, to examine 

its evolutionary history by comparing how that behavior varies across a group of closely 

related species (Tinbergen’s Evolution, or Phylogeny) (Tinbergen, 1963). 

Studying social behavior in all these different perspectives could prove as fruitful as time 

consuming; hence, not surprisingly there is still a lack of integrative studies approaching both 

the proximate and ultimate causes of social behavior. Nonetheless, this field of research has 

seen some breakthroughs, in recent years, since the pioneering papers of Hamilton (Hamilton, 

1964) and Maynard Smith and Price (1973), and the landmark syntheses of Wilson (1975) and 

Trivers (1985) on sociobiology and social evolution.  

The study of social behavior has thrived despite of not always following these 

theoretical constructs. The staggering diversity and beautiful complexity of repertoires 

exhibited across taxa in the natural world has always intrigued and fascinated scientists. The 

observation of naturally behaving animals and their unusual complex social lives nurtured new 

theories to explain several social phenomena and also social evolution. For instances, due to 

its particular characteristics, social behavior was used as a rationale to explain the degree of 

cephalization within primate species: according to this theory, species living in social groups 

with more frequent and complex interactions should present larger brains than species living 

in partial or total social isolation – the argument being that different primate species can have 

bigger brains not only to cope with the demands of living in social groups but also to socially 

maneuver and manipulate other individuals (Byrne and Whiten, 1989). In fact, primate social 

systems are seemingly more complex than those of other species and can involve processes 

such as tactical deception and coalition-formation, which are rare or occur only in simpler 

forms in other taxonomic groups (Dunbar, 1998). This hypothesis was in its early stages 

dubbed the Machiavellian Intelligence hypothesis (Byrne and Whiten, 1989), a name that was 
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later replaced by: the Social Brain hypothesis (SBH) (Dunbar, 1998). Although this proposal was 

initially focused on primates, since then several scientists have been attempting to generalize 

it to all vertebrate taxa, as an explanation for brain evolution, with rather inconclusive results. 

Recent analyses suggest that it takes a very different form in other mammals and birds than it 

does in anthropoid primates (Dunbar and Shultz, 2007). In primates there is an apparent 

quantitative relationship between brain size and social group size, i.e., the number of potential 

dyadic relationships (interpreted as one index of social complexity) is proportional to group 

size and correlates with brain size. In other taxonomic groups of social mammals and birds, 

group size does not consistently correlate with brain size (e.g. Beauchamp & Fernández-Juricic 

(2004); Shultz & Dunbar (2007)) rather taking a more qualitative relationship: pairbonded 

species, especially those living in lasting (if not lifelong) monogamous relationships present the 

largest brains when phylogenetic, life history and ecological variables are ruled out (Dunbar 

and Shultz, 2007). Nonetheless, this still reflects the continuous effort linked with cognitive 

demands behind behavioral coordination and synchrony necessary to maintain stable 

pairbonded relationships (Shultz and Dunbar, 2007). A broader interpretation of the SBH 

theory is that socially living individuals face cognitive demands that individuals living in 

isolation do not, and to maintain group cohesion there is a need to coordinate between the 

individual and the group requirements (Dunbar and Shultz, 2007). Thus, ecological problems 

are solved socially and the need for mechanisms that enhance social cohesion drive brain size 

evolution.  

In this theoretical construct, relationships (especially long lasting ones) are still 

cognitively costly and carry functional demands in terms of fitness, which can arise from poor 

mate choice decisions and more immediately from behavioral coordination for example 

(Dunbar, 2009). In this regard, the topic of niche construction should not be overlooked in 

terms of fitness consequences. Niche construction is the process whereby an animal through 

its daily routine, activities, choices, metabolism, etc., modifies its own and/or other ecological 
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niches (Laland and Sterelny, 2006). The most remarkable characteristic of niche construction is 

not the organism-driven modification to its environment but rather the modification of the 

relationship between an organism and its relative niche, a trait that reinforces the active and 

dynamic role of the organism driving evolutionary and co-evolutionary events (Laland and 

Sterelny, 2006). Applying this idea to social behavior, Bergmüller & Taborsky (2010) suggest 

that niche specialization within a social group (social niche specialization) can have a rather 

decisive influence on the way an individual behaves. The authors speculate that behavioral 

responses to a given stimuli within a group are not all alike since individuals tend to adopt a 

consistent behavioral traits, when compared to other individuals in a group, which results from 

adopting a particular social role. This conceptual framework offers an interesting explanation 

about the evolution of animal personality differences between individuals (in a social context) 

emerging from the dynamic effects of social interactions: behavioral consistency avoids 

conflicts deriving from niche overlap (resource-wise, for example), thus choosing behavioral 

strategies that reduce conflict with other members has consequences on their Darwinian 

fitness (Bergmüller and Taborsky, 2010). 

In summary, unlike the interactions with the physical environment, social behavior is a 

special case of interplay between the genome and the environment, where the conspecifics 

represent an environmental factor that can influence and modify the organisms’ gene 

expression and subsequent behaviors. In recent years, several researchers have focused on 

this interaction between the organisms’ behavior and their environment. In fact, the most 

exciting studies of proximate influences on behavior examine the interactions between the 

genome, development and the environment (Bshary, 2011). These findings have reignited the 

spark on the everlasting nature versus nurture debate by emphasizing the role of the 

environment in shaping not only behavioral traits but also activating an array of molecular 

processes which could ultimately lead to individual genomic adjustments.  



 

 

11 General Introduction 

Social Plasticity 
In social species, individuals are expected to fine-tune their behavior according to their 

social context and previous social experiment. A socially apt individual optimizes energy 

allocation by correctly adjusting its social behavior and maximizing the ratio between benefits 

vs. costs involved in engaging in social interactions (Oliveira, 2009). There are numerous 

examples of these social performance attributes, where individuals extract social information 

from the environment (by eavesdropping, for example) in order to efficiently adjust their own 

behavior to the behavior of the group (e.g. dear-enemy and audience effects: (Aires et al., 

2004; Doutrelant et al., 2001; Oliveira et al., 1998), bystander effect: (Oliveira et al., 2001); and 

winner-loser effect: (Oliveira et al., 2009)). This ability is often denominated as social 

competence and is considered a performance trait that has an impact on the Darwinian fitness 

of the individual (Oliveira, 2009). In other words, social competence can be defined as the 

ability of an individual in a given social context to optimize its behavioral exhibits as a function 

of the information given by said social environment (Taborsky and Oliveira, 2012). This concept 

suggests a continuous interaction between the individual and the social environment, in which 

the individual’s behavioral output is dependent on its perception of the social context, its 

previous social experience and its internal state. Consequently, underlying the notion of social 

competence is behavioral plasticity, which enables the same individual to exhibit different 

behavioral elements in response to the same social stimulus, based only on their internal state 

(Oliveira, 2009). It has been shown that these plastic responses can be adaptive, by allowing 

the individuals to cope with the challenges of a variable environment, but similarly they carry 

costs when comparing to the constitutive expression of the trait (Pigliucci, 2001; Pigliucci, 

2005). Plasticity costs are evaluated by comparing the fitness of genotypes with equivalent 

phenotypes, but differing in plasticity and fitness, within two environments (Callahan et al., 

2008). Some examples of plasticity costs may include: information acquisition costs – naturally 

the process of being plastic entails an information acquisition cost (collected from the 

environment) (Sih, 1992); maintenance costs – if a plastic organism requires the maintenance 
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of sensory and regulatory machinery that fixed development does not require (Dewitt et al., 

1998; Tienderen, 1991); production costs – when the cost of producing a given phenotype is 

greater for plastic genotypes than for fixed genotypes producing the same phenotype (Dewitt 

et al., 1998).  

Behavioral plasticity can be better illustrated using the concept of “reaction norm” (RN), 

which is the representation of a given phenotypic trait value in relation to an environmental 

continuum (Fig. 1). In other words, plasticity can be described as a function describing how a 

given phenotype (or behavior) changes over an environmental gradient within a single 

individual, which is characterized by the trait elevation (average level of behavior) and slope 

(behavioral plasticity) (Dingemanse and Wolf, 2010).  

 

 

 

 

 

 

 

Figure 1 – Behavioral reaction norms of four different individuals to the same environmental gradient. 
An example could be the variation in the frequency of grooming 
behavior with social hierarchy. Subject 1 does not seem to modulate its 
behavior according to social hierarchy, whereas subject 2 and 3 increase 
and subject 4 decreases the frequency of grooming when in higher 
social ranks. The absolute value of the slope of each line represents the 
individual behavioral plasticity (subject 1 is less plastic than the 
remainder subjects). Differences in the trait mean represent different 
behavioral profiles (subject 1 grooms less than the others). 
 

(in: Oliveira 2012) 
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At the population level, it is easy to imagine individuals with different RN, but where the 

average individual exhibits limited behavioral plasticity, since it does not express the full range 

of behavioral trait values present in the population (Dingemanse et al., 2010). Genotypes or 

individuals present behavioral plasticity if their RN is non-horizontal. The advantage of using 

the concept of RN to study plasticity is that it incorporates information on how an animal 

behaves on average and how its behavior is modulated over an environmental gradient, 

identifying the precise form of the relationship between response value and environmental 

condition (Dingemanse et al., 2010).  

These notions suggest that a single genotype can be modulated by the social 

environment, resulting in particular phenotypes. But how does a single genome orchestrate 

complex forms of behavior? And what is the role of the social environment on this behavioral 

regulation? Behavior is the organism’s first response to environmental fluctuations, which 

often results in gene expression changes derived from said behavioral interactions. This 

genetic modulation, acting at both the physiological and evolutionary time scales, might 

provide a possible mechanism for how behavioral plasticity might drive rapid behavioral 

evolution through changes in gene regulation (Bell and Robinson, 2011).  

Recently, methodological advances have contributed to this area, with the development 

of several genomic approaches, which provide the tools to study the impact of fluctuations of 

the social environmental gradient on the individual’s genome, providing new lines of debate 

on the contribution of “nature vs. nurture” (Hofmann, 2003). The possibility of studying 

genome-wide gene expression changes, using transcriptomic analyses, has already shown that 

the genome responds dynamically to external stimuli (Robinson et al., 2008). Reinforcing this 

idea is the notion that genes, social behavior and the brain seem to be interconnected: as the 

social environment influence gene expression at the brain level, which results in changes in the 

behavioral output; but also that genetic variations alter brain function and social behavior 
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(Robinson et al., 2008). By integrating this genomic-wide gene approach, with concepts of 

neurobiology, ethology and evolutionary biology it is possible to better understand the role of 

plasticity on the dynamic interaction between genes and the environment in sculpting brain 

and behavior (Hofmann, 2003). On this note, Oliveira (2012) suggested an integrative 

framework embracing the proximate mechanisms (gene modules, hormones and neural 

circuits) and the ultimate (evolutionary) consequences of social plasticity. As discussed 

previously, for the social context of an individual to promote changes in its behavior, the 

neural network underlying social behavior must exhibit the capacity for neural plasticity in 

order to explain different behavioral outputs, depending on the motivational state of the 

animal and its previous experience, in response to the same inputs (Oliveira, 2009). The neural 

mechanisms underlying this behavioral plasticity can be categorized depending on the time 

scale in which they operate: slow and long lasting motivational changes with dramatic 

behavioral consequences are  usually  due to a structural rewiring of neural circuits; whereas 

fast and transient motivational variations, which reflect smooth changes in the expression of 

behaviors, are usually explained by modulation of existing neural networks via biochemically 

switching different nodes (Zupanc and Lamprecht, 2000). Knowledge regarding these 

proximate mechanisms on the basis of social plasticity seems fundamental to comprehend its 

costs, limits and evolutionary consequences and their contribution to the dynamics of 

selection (Oliveira, 2012). 
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Neural circuits of Social Behavior and Plasticity 
The notion of a changing social environment and consequent behavioral modulation, 

suggests that the neural networks underlying social behavior must also be plastic (Hofmann, 

2003). Newman (1999), proposed an interconnected network of limbic areas that collectively 

regulates all social behaviors in mammals: the Social Behavior Network (SBN). The nodes that 

comprise this network regulate multiple forms of social behavior (e.g. aggression, courtship, 

parental behavior, etc.) and, in mammals, include (Fig.2): the extended medial amygdala 

(meAMY), the lateral septum (LS), the preoptic area (POA), the anterior hypothalamus (AH), 

the ventromedial hypothalamus (VMH) and the periaqueductal gray (PAG/GC) (Newman, 

1999). These nodes fulfill three key criteria: (1) each one is reciprocally interconnected with all 

of the others; (2) they are all populated with neurons that contain gonadal hormone receptors; 

(3) each has been identified as being activated or to have an important regulatory function in 

more than one social behavior (Newman, 1999).  

 

 

 
 
 
 
 
 
 
 
 
Figure 2 – Schematic representation of immediate 
early gene responses within the social behavior 
network following exposure to a same-sex 
conspecific in a songbird species. 
 

(Adapted from: Goodson 2005) 

 

The brain circuitry regulating social behavior in non-mammalian vertebrates is 

extensively similar to those in mammals, as well as, other hodological features and 

ate 
ior 
sex 
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neuropeptide distributions which are likewise very similar across taxa (Goodson, 2005; 

O’Connell and Hofmann, 2011; O’Connell and Hofmann, 2012a). These observations strongly 

suggested that the SBN might be an evolutionarily conserved feature of the vertebrate brain 

and Goodson (2005) described the homologous of the mammals’ SBN in the basal forebrain 

and midbrain of birds and teleost fish by using neuronal markers, proxies of neural activation 

such as Immediate-Early Genes, to measure brain expression of different social behaviors (Fig. 

3), widening the scope of experiments on phenotypic variation to include the extraordinary 

social diversity of teleost fish and songbirds. 

Reproductive behavior is a typical example within the SBN framework due to extensive 

work on the influence of sex steroids on brain and behavior. For instances, in rodents the POA 

has a central role on male sexual behavior (Hull and Dominguez, 2006), while in females the 

lordosis circuit seems to be regulated by the VMH (Malsbury et al., 1977). Additionally, in male 

rats, lesions of the LS facilitate male sexual behavior while inhibiting female sexual behavior 

(Kondo et al., 1990). Besides sexual behavior, also some aspects of parental care seem to be 

regulated by nodes of this network, since lesioning the AH in female rats facilitates maternal 

behavior (Bridges et al., 1999). Other nodes, like the BNST, are involved with not only 

reproductive behavior but also with reinforcing adaptive behaviors by mediating motivational 

behavior (Delfs et al., 2000). Finally, social stimuli are also processed and integrated in parts of 

the network: the amygdalar complex, which includes the meAMY, is involved with sensory 

integration, especially social odor recognition while the PAG/CG plays a role in the expression 

of species-specific behavior (Bharati and Goodson, 2006; Mos et al., 1982), as well as, in the 

context of vocal communication (O’Connell and Hofmann, 2011).  

This network apparently encodes information dynamically, in such a way that is the 

overall profile of activation across different loci that best characterizes a given behavioral 

pattern, rather than the activation of a single node (Oliveira, 2012). Considering this attribute 
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of the SBN, it is possible to hypothesize that different combinations of node activation can give 

rise to an almost infinite repertoire of behaviors and explain some of the behavioral plasticity 

between individuals (personality) and species: at the individual level this can be due to 

temporary variation in node activation weights; at the intraspecific level, genetic and 

epigenetic differences can accommodate different social phenotypes; at the interspecific level, 

evolution can promote fluctuation on weights between nodes (Goodson and Kabelik, 2009). 

 

 

(Adapted from: O’Connell & Hofman 2011) 
 

 

 

 

 

 

Figure 4 – The social decision-making network. 
A: Interactive nodes of the networks regulating social decision-making: 
the social behavior network (left) and mesolimbic reward system (right) 
B: Sagittal view of a teleost brain highlighting the connectivity between 

nodes of the social decision-making circuit 
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However, to be adaptive, social behavior must be reinforcing (or rewarding) in some 

way. Additionally, social decision-making requires stimulus salience to be evaluated prior to an 

adaptive behavioral response can be carried out (O’Connell and Hofmann, 2011).  

Recent literature, strengthened the idea that the reward system, which includes the 

midbrain dopaminergic system, is the neural circuit responsible for evaluating the salience of 

an external stimuli, regulating appetitive behavior (Wickens et al., 2007). O'Connell and 

Hofmann (2011) proposed integrating the SBN, which in conjunction with sex steroids and 

neuropeptide hormones regulates social behavior, and the mesolimbic reward system, which 

evaluates stimuli salience via dopaminergic signaling, in a social decision-making network (Fig. 

4). This larger framework is intimately concerned with regulating and implementing adaptive 

behavioral outputs in response to salient environmental challenges and opportunities and is 

extremely conserved across vertebrates, which suggests that the diversity of social behavior in 

this taxon might be explained by variations on a conserved neural and gene expression 

network (O’Connell and Hofmann, 2012b). Nevertheless, some authors consider that this 

expanded model is still lacking on sufficient data for non-mammalian species in terms of a few 

of the homologies proposed and also some of the SDM components lack supporting social 

behavior data in amphibians, reptiles and fish (Goodson and Kingsbury, 2013).  

Hormone and neuromodulator receptors are expressed in all nodes of these neural 

networks (Caldwell and Young, 2006; Goodson, 2005; Munchrath and Hofmann, 2010; Skuse 

and Gallagher, 2009), allowing a local regulation of their activity by endocrine and 

neuromodulatory means. The two major classes of neuromodulators acting upon social 

behavior are monoamines and neuropeptides. Catecholamines, such as epinephrine 

(adrenaline), norepinephrine (noradrenaline) and dopamine, are produced by the 

hydroxylation and decarboxylation of tyrosine and are usually released in the peripheral and 

central nervous systems during stress (fight-or-flight response). Other monoamines, like 
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serotonin, are known modulators of motivation and aggression in both vertebrates and 

invertebrates, incrementing the relevance of their fundamental role as an evolutionary ancient 

signaling mechanism between motivational states (Kravitz, 2000). Nonapeptides from the 

arginine vasotocin family (AVT/AVP system – vasopressin is the neurohypophysial hormone 

found in most mammals) are regulated by gonadal steroids and have been also documented as 

regulators of social behavior in vertebrates (Goodson and Bass, 2001). In addition, some 

steroid hormones, like estrogen, have been proposed to have a direct nongenomic effect on 

neuronal activity since their production can be modulated by calcium-dependent 

phosphorylation in presynaptic terminals by the aromatization of testosterone (Balthazart et 

al., 2006). In fact, steroid hormones play a major role as indicators of internal states and are 

known to respond to social challenges in many species (Hirschenhauser and Oliveira, 2006; 

Oliveira, 2004) and regulate mechanisms of behavioral plasticity. Reinforcing the importance 

of these molecules on behavioral plasticity, steroid receptors are present in the different 

nodes of the SBN, suggesting their role as neuromodulators (Oliveira, 2009).  

Biochemical switching mechanisms are known to be able to modulate the response of a 

given neural network under similar stimulation regimes. This phenomenon is commonly due to 

the interaction of neuroactive molecules with specific neural circuits, acting on its functional 

properties and resulting in either excitatory or inhibitory states (Oliveira, 2009). These 

molecules typically do not modulate behavior directly and are rather responsible for tuning 

ongoing neural activity in order to stimulate behavior exhibition adapted to a specific context 

(Libersat and Pflueger, 2004). In other words, information seems to be processed in the 

Central Nervous System in two different time frames. In a shorter time frame, at the scale of 

seconds or even milliseconds, action potentials are generated (or not) based on post-synaptic 

integration of excitatory and inhibitory potentials generated in response to an external 

stimulus. The sum of this neuronal activity results in an immediate behavioral response to that 

given stimulus. 



 Neural Mechanisms 

 

20 General Introduction 

Genetic mechanisms of Social Behavior and Plasticity 
A direct consequence of the activation of specific neural circuits is a burst in gene 

expression, which in a larger time frame (between minutes [in the case of mRNA] to hours [in 

the case of proteins]) will also affect neural integration of information (Fig. 5). Unlike in the 

latter case, the effects of these genetic mechanisms are not translated in an immediate 

behavioral correlate but rather in a slow modification of the existent neural circuitry in an 

experience-dependent fashion (e.g. MAPK cascade; Sweatt, 2004; Thomas and Huganir, 2004). 

These socially-driven neuroplasticity biochemical mechanisms are usually due to 3 neuronal-

activity dependent processes (Aubin-Horth and Renn, 2009; Oliveira, 2012; Wolf and Linden, 

2012): (1) specific proteins, like cAMP response element-binding (CREB) are activated (through 

phosphorylation) and either regulate intracellular signaling pathways or act directly on  

immediate-early genes (IEG), which are activated transiently and rapidly in response to 

external stimuli, before any new proteins are synthesized and can encode other transcription 

factors or synaptic proteins; (2) the activation of IEG promotes the change in expression of a 

cascade of co-regulated gene modules in the brain; and finally (3) the transcription of 

microRNAs regulate the translation of synaptic proteins that will ultimately modify the 

neurogenomic state of the brain in response to the initial stimuli. To sum up, IEG activation 

following an external stimuli orchestrate integrated genomic responses to social information, 

co-regulating gene sets, which co-expression leads to behaviorally driven gene expression that 

results in the exhibition of different social phenotypes (Oliveira, 2012). 

Environmental cues processed by the nervous system are translated into relevant 

biological information whereas internal physiological cues and the individual’s prior experience 

are simultaneously integrated. As discussed previously, behavioral actions resulting from this 

process tend to be adaptive, resulting in the evolution of flexible strategies optimized to 

respond to the social environment. 
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Figure 5 – Social plasticity 
mechanisms: 

A: social animals modulate their 
behavior based on previous social 
experiences or by observing others, 
B: valence and salience of this 
information is encoded in specific 
neural networks;  
C: in the nodes (or nuclei) of this 
network, 
D: gene expression profiles are 
affected in response to such external 
changes (generating new 
neurogenomic states) 
E: which is prompted by the 
activation of neuronal activity-
regulated transcription factors (e.g. 
p-CREB) which activates a 
molecular cascade, including the 
regulation of IEG and effector genes 

 

(in: Oliveira 2012) 

 

 

 

Recently, numerous papers in several different taxa have described the influence of 

social environment on the structure and activity of the genome (Robinson et al., 2008). In the 

honey bee (Apis mellifera), data shows that caste differentiation (between workers/queen), a 

key feature in social insects, is shaped by heritable traits but also by fluctuations in the 

regulation of molecular pathways linked to several life-history traits: such as metabolism, 

nutrition, and reproduction (Evans and Wheeler, 2001; Smith et al., 2008). Similarly, 

aggression-related genes in this species are under both inherited and environmental 

influences, which can vary with age, exposure to alarm-cues and the colony environment 



 Neural Mechanisms 

 

22 General Introduction 

(Alaux et al., 2009). In teleosts, the study of gene expression signatures of life history 

transitions has also been a focus of interest: in salmonids, alternative life history traits have 

also been studied profusely and a number of studies show alterations in brain expression 

profiles dependent of alternative reproductive and migratory tactics (Aubin-Horth and Renn, 

2009; Aubin-Horth et al., 2005b) and their interaction with the rearing environment (Aubin-

Horth et al., 2005a). All this data on the impact of the social environment on the genome 

unravels new possibilities concerning how adaptive behavior may evolve.   
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Objectives and thesis structure 
This thesis has as two major goals: (1) on one hand to study how environmental inputs 

may produce phenotypic variation, by studying how social information regulates gene 

expression in brain areas relevant for social behavior that in turn activate integrated 

neuroendocrine responses that promote socially driven changes in behavioral profiles; and (2) 

on the other to understand how discrete social stimuli modulate patterns of gene expression 

across context-specific brain areas within short time scales.  

Teleost fish are the most diverse and plastic taxa in terms of social behavior among 

vertebrates. This taxon includes more than 24,000 described species exhibiting diverse types 

of social organization, mating systems and parental care types (Helfman et al., 1997), offering 

unique opportunities to study both the evolution and the function of the variation in 

proximate mechanisms (i.e. brains, hormones, genes) involved in social behavior. To 

accomplish our objectives we chose two model species of teleost: the zebrafish and the 

Mozambique tilapia. The zebrafish is an established genetic model system with an extensive 

genome annotation database and several other genetic tools available (such as mutants and 

transgenic organisms). Nonetheless, behavioral data for this species was limited and 

behavioral paradigms rarely used outside the context of addiction (Echevarria, 2010; Gerlai et 

al., 2000). On the other hand, the Mozambique tilapia has been used as a model organism in 

behavioral and neuroendocrine studies and presents an extensive behavioral repertoire with 

multimodal signals. Due to the elevated number of social stimuli and the social unpredictability 

of context-based behavior in a semi-natural setting (aquaria) with freely behaving animals we 

decided to use a novel approach, based on olfactory stimulation, which allowed for a finer 

control and measure of socially-driven responses in the brain of the Mozambique tilapia. On 

the down side, information regarding the brain anatomy on this species was scarce. 

In a first set of experiments (Chapter I.I), we characterized the behavioral repertoire of 

the zebrafish, Danio rerio during agonistic interactions and studied the structure and dynamics 
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of these interactions. Subsequently (Chapter I.II), the animals were exposed to different types 

of social interactions, in order to manipulate social experience (winning vs. losing a staged 

fight) and assess how these different social experiences modulated the expression of different 

neurogenomic states in the brain using the zebrafish. 

Secondly, we used the African cichlid fish Oreochromis mossambicus because of its 

complex social behavior that can be replicated in semi-naturalistic conditions in the lab, and 

includes visual and chemical communication. Despite their rich behavioral repertoire, only 

partial information relative to their brain anatomy was available, thus we developed a three-

dimensional stereotaxic atlas of the brain of the Mozambique tilapia using MRI combined with 

a histological map as a guiding reference to label smaller brain nuclei (Chapter II.I). Finally, we 

designed an experiment to understand how different social contexts regulate the molecular 

and physiological machinery operating in specific brain areas (the olfactory bulb and the 

olfactory pallium) (Chapter II.II). The goal of the present study was then to investigate how this 

highly complex social environment can affect gene expression at the brain level.  
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Model Species 

The Zebrafish 
Zebrafish (Danio rerio, Fig. 6) has been widely used as a model organism in 

developmental biology and genetics and in recent years has also been emerging as a new 

neurobehavioral model (Gerlai, 2003; Grunwald and Eisen, 2002; Guo, 2004). The success of 

zebrafish in biomedical research is related to their combination of advantages when compared 

to other already established model systems. When compared to classic invertebrate genetic 

model organisms such as Drosophila melanogaster, or Caenorhabditis elegans, zebrafish is a 

vertebrate and therefore are more closely related to humans. On the other hand, when 

compared to other vertebrate models (e.g., rodents, anurans or songbirds) they are much 

smaller (adults are 3–4 cm long), have a short inter-generation time (3 months), and breed in 

large numbers (hundreds of embryos/female/week), and therefore a large number of animals 

can be easily maintained in a relatively small space, which is a prerequisite for large-scale 

biomedical research. Moreover, zebrafish have transparent embryos that develop externally 

allowing for observation of different structures and systems during development and for early 

genetic manipulation.  

 

 

 

 

 

 

Figure 6 – The Zebrafish, Danio rerio. 
 Female on top and male on the bottom (Adapted from: http://www.aquapage.eu) 
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Finally, mutations in zebrafish produce phenotypes that copy many human disorders 

and several genes are being identified that are evolutionarily conserved and have homologs in 

mammals, including humans (Barbazuk et al., 2000; Lieschke and Currie, 2007; Woods et al., 

2000). Recent studies in zebrafish combining molecular genetics with behavioral analyses have 

allowed the identification of genes involved in neuronal circuits underlying specific behaviors 

and mechanisms involved in neuropathogenesis (Guo, 2004; Sison et al., 2006). Complex 

behaviors that are goal directed (e.g., escape from predators) or emotion-related (e.g., 

aggression, anxiety, and fear) have also started to be characterized in adult zebrafish, and the 

first results suggest conserved regulatory mechanisms with mammals (Norton and Bally-Cuif, 

2010), including shared modulatory neurotransmitter systems (Panula et al., 2006) and 

homologous brain areas (Wullimann and Mueller, 2004). 

 

The Mozambique Tilapia 
The African cichlid fish, Oreochromis mossambicus (Fig. 7), is an established model 

system to study neuroendocrine mechanisms underlying socially mediated behavioral changes. 

The Mozambique tilapia is a maternal mouth-brooder cichlid displaying a lek-breeding system, 

with a highly complex social repertoire which includes multimodal signals such as: visual (e.g. 

Baerends and Baerends-Van Roon, 1950) acoustic (Amorim et al., 2003) and chemical signals 

(Barata et al., 2007). Depending on the social environment, males can exhibit two distinct 

behavioral phenotypes: territorial (T) and non-territorial (NT).  T individuals adopt darker 

colorations and establish breeding territories, digging nests on sandy bottoms to where they 

attract and actively court mates (Oliveira and Almada, 1996; Oliveira and Almada, 1998a). On 

the other hand, NT males present lighter colorations and are non-territorial, often shoaling 

with females, while they wait for their opportunity for social ascension.  In this species, 

changes between these behavioral phenotypes have been shown to activate a cascade of 

molecular processes and a variety of biological pathways which include neuropeptides and 
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steroid hormones (e.g. Oliveira et al., 1996; Almeida et al., 2012; Oliveira and Canário, 2000). 

In addition, it is known that Mozambique tilapia T males are able to store urine in their 

bladders, in contrast to NT, and modulate their rate of urination depending on the social 

environment. An increase in this rate can be seen during agonistic encounters (Barata et al., 

2007) or in the presence of pre-ovulatory (PRE) females (Barata et al., 2008). On the other 

hand, the olfactory potency of the urine measured with electro-olfactogram is different 

between T and NT males (Barata et al., 2008) and PRE and post-ovulatory females (Miranda et 

al., 2005).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – The Mozambique tilapia, Oreochromis mossambicus. 
Female on the left-hand side and male on the right (Adapted from: http://www.aquapage.eu) 

 

Females also express a high degree of behavioral plasticity involving transitions between 

life-history stages, namely during the mouthbrooding phase (Oliveira and Almada, 1998b). 

Sexually active females visit breeding areas and follow courting males to their nests, engage in 

courtship rituals, stimulating the male genital papillae and collect their released sperm to 

ensure the fertilization of the eggs inside the mouth. After spawning, females leave the lek and 

live in isolation in shallow waters for 20-22 days while they mouthbrood the eggs and care for 
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the fry (Bruton and Boltt, 1975; Fryer and Iles, 1972). While mouthbrooding, females postpone 

their next ovulation until the fry are released. During this period, females become also more 

aggressive, defending the brood against predators and conspecifics (Oliveira and Almada, 

1998b). 
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Abstract 
Aggression is a key component of the behavioral repertoire of animals that impacts on 

their Darwinian fitness. The available genetic tools in zebrafish make this species a promising 

vertebrate neurogenetic model for the study of neural circuits underlying aggressive behavior. 

For this purpose, a detailed characterization of the aggressive behavior and its behavioral 

consequences is first needed. In this paper we establish a simple protocol that reliably elicits 

the expression of fighting behavior in zebrafish dyads and characterized it. The agonistic 

behavior expressed during dyadic fighting behavior has a temporal structure, indicating the 

existence of an underlying architecture prone to genetic manipulation. Social interactions have 

consequences for subsequent behavior with a potential fitness impact, which stresses the 

validity of this species for the study of aggression. These effects of experience seem to be 

mediated by different mechanisms in winners and losers. Winners increase the probability of 

winning subsquent fights without changing their fighting behavior, suggesting the existence of 

social status cues. On the other hand, losers decrease the probability of winning subsequent 

fights by decreasing their motivation to escalate fights. Together these results are a first step 

to the development of a quantitative framework for the study of aggressive behavior in 

zebrafish. 
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Introduction 
Zebrafish (Danio rerio) has been widely used as a model organism in developmental 

biology and genetics and in recent years has also been emerging as a new neurobehavioral 

model [1-3]. The success of zebrafish in biomedical research is related to their combination of 

advantages when compared to other already established model systems. When compared to 

classic invertebrate genetic model organisms such as Drosophila melanogaster or 

Caenorhabditis elegans, zebrafish is a vertebrate and therefore are more closely related to 

humans. On the other hand, when compared to other vertebrate models (i.e. rodents) they are 

much smaller (adults are 3–4 cm long), have a short generation time (3 months), and breed in 

large numbers (hundreds of embryos / female / week) and therefore a large number of 

animals can be easily maintained in a relatively small space, which is a pre-requisite for large-

scale biomedical research. Moreover, zebrafish have transparent embryos that develop 

externally allowing for visualization of different structures and systems during development 

and for early genetic manipulation. Finally, mutations in zebrafish produce phenotypes that 

copy many human disorders and several genes are being identified that are evolutionarily 

conserved and have homologs in mammals including humans [4-6]. 

Recent studies in zebrafish combining molecular genetics with behavioral analyses have 

allowed the identification of genes involved in neuronal circuits underlying specific behaviors 

and mechanisms involved in neuropathogenesis [3, 7]. Zebrafish models of brain function and 

disease have started to be developed including insomnia and sleep disturbances [8-10], 

movement disorders [11], autism [12], neurodegenerative diseases [13], cognitive impairment 

during ageing [14], nicotine and alcohol addiction [2, 15, 16, 17]. Complex behaviors that are 

goal-directed (e.g. escape from predators) or emotion-related (e.g. aggression, anxiety and 

fear) have also started to be characterized in adult zebrafish and the first results suggest 

conserved regulatory mechanisms with mammals,18 including shared modulatory 

neurotransmitter systems [13, 19] and homologous brain areas [20]. 
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Aggression serves various adaptive functions, such as the establishment of dominance 

relationships and hierarchies and the competition for key resources such as food, shelter or 

mates and territories [21], and therefore plays a major role in Darwinian fitness. Despite its 

biological relevance and the large body of literature dedicated to the study of aggression there 

is not yet an established vertebrate neurogenetic model organism for its study that would 

allow the use of powerful genetic tools for the dissection of the neural circuits involved, and 

for the understanding of how they are activated by social cues and regulated by humoral 

factors (but see [22] for the development of a neurogenetic model of aggression in fruit flies 

and [23, 24] for previous work on knock-out mice for candidate genes in the serotonergic 

system). For reasons mentioned above zebrafish can play such a role. For that purpose one 

needs first to establish that aggressive behavior is present and has a temporal structure (i.e. its 

sequence is not random, suggesting an underlying regulatory mechanism prone to genetic 

dissection), and that it has consequences for the animals (i.e. subsequent behavior is shaped 

by previous interactions). Since zebrafish is a gregarious species that exhibits shoaling behavior 

in captivity, only recently its aggressive behavior has attracted the interest of researchers. 

Several studies have now demonstrated that both male and female zebrafish exhibit 

aggressive behavior (see [25] and [19] for recent reviews), that stereotyped behavioral 

patterns can be observed and described in detail during agonistic interactions (e.g. [15, 26]), 

that territoriality and dominance hierarchies can be present [27-29] and that neuropeptides 

(i.e. AVT) and steroids are associated with aggressive behavior [30-32]. 

The main goals of this paper are (i) to establish a behavioral paradigm under which male 

zebrafish would consistently express fighting behavior; (ii) to characterize the structure (i.e. 

temporal pattern) of fighting behavior in male dyads; and (iii) to study the effects of social 

experience (i.e. winning/losing effects) on subsequent fights. Together these goals will 

contribute to the establishment of male-male fights in zebrafish as a standardized behavioral 

paradigm for the study of the genetics of aggression. 
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Material and methods 

Subjects and maintenance 
The individuals used in this experiment belong to a F2 generation population bred at 

Instituto Gulbenkian Ciência (IGC), which derived from wild-type (AB) zebrafish (Danio rerio) 

acquired from Zebrafish International Resource Center (ZIRC). Prior to the experiment, animals 

were kept in 8,0L tanks (30x22x15cm) with a sex ratio of 2 females per each male. Fish were 

kept at 26±2oC on a 14D:10L and fed twice daily with freshly hatched brine shrimp, in the 

morning, and with commercial food flakes, in the afternoon. In this study, the average male 

size was 28.1±1.7mm (standard length, SL). 

 

Experimental procedure 
One of the main aims of this study was to establish a reliable behavioral paradigm to 

study aggression in zebrafish. Although mirror image stimulation (MIS) has been widely used 

as an aggression test for zebrafish, it does not elicit the full agonistic repertoire and the brain 

activation pattern and hormonal response associated with MIS differ significantly from those 

triggered by a fight with a live opponent [33-35]. Therefore, we focused on dyadic fights 

between size matched males. Since we wanted to create the simplest situation possible in 

which zebrafish would express their agonistic repertoire, in pilot studies we tested if male 

dyads would fight in the absence of a limited resource (e.g. shelter, mate, food) after a period 

of social isolation. A previous study [30] has already used successfully an isolation-induced 

aggression paradigm with zebrafish, using a social isolation period of 5 days. In our pilot 

studies we have established that 24h of social isolation was enough to promote the consistent 

expression of aggressive behavior in male dyads and this is the behavioral paradigm that we 

have used in this study. 

Twenty two male dyads were formed with individuals matched for standard length (size 

difference < 1 mm, which is on average 3,6 % of body size) within each dyad. Subjects were 

individually recognized by fin clips on the extremities of the caudal, dorsal or anal fins, which 
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were conspicuously distinguishable. Each pair was placed in a 700 ml polycarbonate tank (18 x 

10 x 9 cm) visually, but not chemically, isolated by a removable opaque PVC partition and 

allowed to acclimate overnight. After one day in isolation, the opaque divider was removed 

and the fish were left to interact for 30 min, a duration that exceeded the necessary time to 

determine a clear winner of the contest. Following each interaction, the fish were separated 

again by placing back the opaque partition. Behavioral interactions were videotaped and were 

subsequently observed in detail. After this first interaction, both fish were separated into two 

new tanks and paired up with two other fish, matched for size, but with no prior fighting 

experience (i.e. naïve individuals), separated by an opaque partition. After a 1h acclimation 

period, the opaque partitions were removed and the experienced and naïve fish could interact 

for 30 min (see Fig.1). These second interactions were also videotaped for subsequent 

behavioral analysis. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Diagram illustrating the self-selection protocol used to 
test experience effects in the agonistic behavior of male 
zebrafish. During the first interaction, two naïve fish matched for 
size and previously isolated for 24 h are paired up. One hour 
after the resolution of the first interaction, during which each fish 
is kept in social isolation, the winner/loser of the first interaction 
is again paired up against a naïve size-matched opponent.  
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Behavioral observations 
Video recordings (Sony KDL X200, Tokyo, Japan) were analyzed using the software 

Observer XT (Noldus, Wageningen, The Netherlands). An experienced observer analyzed the 

behavioral interactions and identified all agonistic behaviors according to the ethogram 

presented in Table 1 and determined, based on the asymmetry of aggressive behavior (i.e. 

who attacks and who is submissive in the later part of the interaction) the winner and loser of 

each interaction. The ethogram used in this study was build based on ca. 20 h of ad libitum 

observations of male zebrafish fights that have been previously videotaped. Stereotyped 

behavioral patterns that were consistently present in the interactions were described in detail. 

 

Table I. Ethogram of aggressive behavior of male zebrafish during dyadic interactions. 

Frequency, latency and duration of agonistic behavior were registered using a behavior 

sampling with continuous recording (sensu [36]). After detailed scrutiny of behavioral patterns 

exhibited during interactions a switching point in the interaction was identified, where 

symmetric aggressive behaviors (e.g. displaying, circling) gave place to asymmetric ones (e.g. 

attack/flee, chase). This was considered the point at which the resolution of the fight took 

place, and since after the establishment of an asymmetry we have never observed a status 

reversal (i.e. the attacker becoming the attacked), one of the fish clearly could be considered 

the winner of the interaction. Based on this fight resolution point we defined two phases in the 
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fight: (1) a pre-resolution phase; and (2) a post-resolution phase. In the former phase, all 

behaviors from both subjects were quantified until the fight resolution point; in the latter 

phase, due to the consistency of the behavioral patterns exhibited by the fish (i.e. chase/flee, 

bite), only the last 5min of the 30 min sampling were analysed. 

Eleven dyads for which the identity of the fish (i.e. the fin clips) were recognizable in the 

video-images of the three interactions (i.e. first interaction between emerging winner and 

loser, the second interaction  between the previous winner and the naïve male, and the 

second interaction between the previous loser and the naïve male) were used for detailed 

analysis behavioral analyses. The observer had to identify each animal in frames where clips 

were clearly observable and then track each animal individually along the video recording of 

each behavioral trial. When there were doubts on the identity of the fish during the video-

analysis the observer had to reverse the video until an unmistakable image was found and 

then progress again with the analysis. When it was not possible to solve the identity of the 

subjects in a given part of the trial and therefore it was not possible to track individually the 

two opponents along the whole session, these trials were dropped from the analysis.  

For the other dyads in which the identity of the fish could not always be followed in the 

videos, but could be assessed at the beginning and at the end, only the outcome of the fight 

(i.e. identity of the winner and of the loser) and the identity of the initiator of the fight were 

collected. 

 

Statistical analysis 
In order to characterize the structure of the behavioral sequences present in zebrafish 

fights a transition matrix was build indicating the frequency with which each behavioral 

pattern followed and was followed by each other behavior of the zebrafish agonistic repertoire 

within each individual. The diagonal was kept at zero since we considered that each behavior 

pattern could not be followed by itself. This behavior sequence matrix was analysed using a 
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first-order Markov chain analysis to identify non-random transitions between behavioral 

elements (i.e. non-random temporal associations between behavioral patterns37). Only data 

from the first interaction was used for this sequential analysis. These analyses were performed 

using a collection of freeware programming functions developed by Robert Huber (Bowling 

Green State University, OH, U.S.A.) for the analysis of behavioral data (Java Grinders Library 

v.4.0 “Essential Equipment for Ethology”, available on the Internet at 

http://caspar.bgsu.edu/~software/Java/). 

To study the effect of the phase of the fight (pre- vs. post-resolution) and the status of 

the fish (putative winner vs. putative loser) on the expression of different aggressive 

behaviors, the frequency and duration (when appropriate) of each behavior pattern in the first 

interactions was analysed using a repeated measures ANOVA. To study the impact of previous 

experience on subsequent behavior the frequency and duration (when appropriate) of each 

behavior pattern, the latency for the first interaction and fight duration were compared 

between the first interaction (i.e. putative winner vs. putative loser) and each of the two 

second interactions (i.e. prior winner vs. naïve and prior loser vs. naïve), using an ANOVA 

model with the phase of the fight (pre-resolution vs. post-resolution) as a repeated factor and 

status (winner vs. loser) as an independent variable, followed by planned comparisons using 

contrast analysis. Apart from these behavioral variables we have also computed a composite 

measure of fight escalation as follows: (1) Escalation index = overt aggression / overt + 

ritualized aggression = (bite + chase + strike) / (bite + chase + strike) + (display + circle) 

All descriptive and inference statistics were run on the statistical software package 

STATISTICA v. 8.0 (StatSoft 2007). Differences between proportions of second fights won vs. 

lost by previous winners vs. losers of first fights were tested by computing the qui-squared 

value for the resulting 2 x 2 contingency table. All tests were two-tailed and used a significance 

value of p < 0.05. 
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Results 

Agonistic behavior in zebrafish 
The behavioral patterns observed during male-male fights in zebrafish are described in 

Table 1. Dyadic fights among male zebrafish have two distinct phases. The first phase consists 

mainly of mutual assessment behaviors, with fish assessing each other by exhibiting display, 

circle and bite behaviors (see Table 1) in order to determine the other fish’s relative fighting 

ability. This phase starts with the first interaction of the behavioral trial (latency for first 

interaction = 70.6 ± 164.9 ms) and lasts on average for 379.2 ± 331.0 ms, until the first 

chase/flee is observed which marks the point of the resolution of the fight. In the second 

phase, that occurs after the fight’s resolution, all agonistic behaviors are initiated by the 

winner (e.g. bite, chase and strike), while the loser tries to flee and displays submission and 

freezing postures. At the end of fights losers usually stay near the bottom or top of the tank 

adopting a submissive posture. During the 30 min of the behavioral trial, male zebrafish 

displayed agonistic behavioral patterns at a rate of 1.19 behavior/s. Bite was the most 

frequent behavior, representing roughly 65% of all behaviors exhibited (N = 5769 behavioral 

acts) by the fish in the first phase. In the post-resolution phase only the winner of the 

interaction exhibited Bite behavior, but it represented approximately 50% of its behavioral 

output (N = 2842 behavioral acts).  All other behaviors, though less frequent in number, 

represent part of a complex and highly structured behavioral sequence, which characterizes 

zebrafish agonistic behavior. To better understand and describe these sequences, a behavior 

transition matrix was analysed and non-random transitions between behavioral elements were 

identified. This analysis reveals a temporal structure in male zebrafish fights (i.e. behavioral 

sequences are non-random; behavioral sequence matrix X² = 2242.8, p << 0.0001) with 

assessment behaviors (i.e. display and circling) significantly associated with each other and 

with bite that is also then significantly associated with chase and strike that correspond to the 
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asymmetric phase of the fight (Fig. 2). A set of behaviors associated with losing the fight (i.e. 

freeze, flee and retreat) also appear significantly associated among themselves (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 –Temporal structure of fighting behavior in male zebrafish dyads 
using a first-order Markov chain analysis. The size of each box is 
proportional to the relative frequency of occurrence of each behavioral 
pattern. Transitions between behaviors whose frequency is significantly 
higher than chance levels are depicted as arrows, and their size indicates the 
degree of significance. 

 

Temporal dynamics of the fights and early predictors of success 
To further study the effect of the phase of the fight (pre- vs. post-resolution) and the 

status of the fish (putative winner vs. putative loser) on the expression of different aggressive 

behaviors, the frequency and duration (when appropriate) of each behavior pattern and the 
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composed measure escalation index were analysed using a repeated measures ANOVA (Table 

2). 

As expected behaviors associated with mutual assessment were significantly more 

frequent and had a longer duration in the pre-resolution phase of the fight (Table 2) and a 

non-significant trend for an increase in the frequency of Chase, Freeze, Flee and Retreat was 

also observed from the pre- to the post-resolution phase (Table 2). The phase of the fight had 

no main effect on the escalation index. Social status has a main effect on the expression of bite 

and flee, with the former being more frequent in winners and the latter in losers, and on 

escalation index that is higher in winners (Table 2).  

 

Table II. Effect of the phase of the fight (pre- vs. post-resolution) and of fish status 
(winner vs. loser) on the expression of aggressive behaviors. Frequency, duration and 
escalation index were analysed using a repeated measures ANOVA, with the phase of 
the fight as a repeated measure (R1; pre- vs. post-resolution phase) and status 
(winning vs. losing) as an independent variable. Apart from the main effects and the 
interaction between the two factors results of contrast analysis for the winner loser 
comparison in the pre- and post-resolution phases s also given. All significant results 
(p < 0.05) are underlined.  
 
 
 
 
 
 
 
 
 
 
 
 

Note: x ̅ ± SEM = average ± standard error of the mean; F = value of the F statistic. 
 

We have also performed planned comparisons to test if differences in the expression of 

aggressive behavior were already present in the first phase of the fight between individuals 

that subsequently became winners vs. losers. None of these planned comparisons was 

significant for the pre-resolution phase indicating that neither the frequency of any of the 
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behaviors measured in the early stage of the fight nor fighting escalation at this phase are 

good predictors of fight outcome (Table 2).  

On the other hand, similar planned comparisons comparing the frequency of each 

behavior and of fight escalation between winners and losers in the post-resolution phase of 

the fight revealed that winners express significantly more bites and chases and a higher 

escalation index, and losers more flee in the advanced stage of the fight (Table 2). 

Interestingly, the escalation index significantly increased in winners and decreased in losers 

from the pre- to the post-resolution phase (losers: F1,20: 7.19, p < 0.05; winners: F1,20=6.60, p < 

0.05). 

Since fish were matched for standard length within each dyad, size was also not a 

predictor of the fight outcome (SL of winners = 2.804 ± 0.035 mm; SL of losers = 2.800 ± 0.038 

mm, t (1,22) = -0.25,  p = 0.80). Being the first to engage in the interaction, which could be 

seen as a proxy of aggressive motivation, was also similar between individuals that became 

winners and individuals that became losers (6 winners vs. 7 losers, qui-square = 0.077, P = 

0.78). 

 

Experience Effects 
Most of the winners of the first interaction also won the second interaction against a 

naïve individual (85.71%), whereas only a very small percentage of fish that lost the first 

interaction won the second fight  (4.55%), suggesting the presence of both winner and loser 

effects in zebrafish (X2 = 28.7, p < 0.0001; Fig. 3). In order to investigate the behavioral 

mechanisms that may account for these winner/loser effects we investigated the variation in 

motivation and persistence induced by the previous fight, by comparing the first fights [i.e. 

winner vs. loser, (WL)] and second fights [i.e. winner vs. naïve (WN) and loser vs. naïve (LN)]. 
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Figure 3 –Experience effects in zebrafish as indicated by the percentage 
of victories/defeats of previous winners and losers in the second fights. 
Dashed lines indicate the cut-off values for the detection of winner/loser 
effects calculated considering the variation in intrinsic fighting ability 
according to ref. [44] 

 

As a proxy of fighting motivation of the dyad we compared the latency for the first 

interaction between WL and WN and between WL and LN and the identity of the initiator of 

the fight. As a proxy of fighting persistence in the dyads, we compared the latency for the 

resolution of the fight between WL and WN and between WL and LN. Although there is a trend 

for second fights to start sooner than the first fight, no significant differences were found for 

the latency for the first interaction for the planned comparisons described above (N = 11; 

WL/WN: t = 0.74, p = 0.47; WL/LN: t = 1.45, p = 0.17; WN/LN: t = -1.62, p = 0.13; Fig. 4a). There 

was no effect of prior experience on taking the initiative to start the second fight, since 3/11 

previous winners and 3/11 previous losers initiated the second fights. The time needed to 

reach the resolution of the fight tends to be shorter in second fights (Fig.4b), but the 

difference is only significant for the WL vs. LN comparison (t = 2.55; p < 0.05).  
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Figure 4 – Comparison of latency to first attack (a) and fight resolution 
time (b) between the first interaction (winner vs.loser [WL]; dark gray) 
and the second interactions (WN, prior-winner vs. naïve, light gray; LN, 
prior-loser vs. naïve, 
white). 
 
 

Moreover, the time needed for the resolution of the fights in the two second 

interactions is significantly shorter for those involving the previous loser than for those 

involving the previous winner (i.e. WN/LN: t = 2.86; p < 0.05). The escalation index does not 

change significantly in winners between the first and the second fight (ANOVA repeated 
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measures, contrast effect: F1,20 = 0.08, p = 0.77; Fig. 5), but it decreases significantly in losers 

(ANOVA repeated measures, contrast effect: F1,20 = 5.84, p < 0.05; Fig. 5). As a consequence, 

the escalation index of previous winners and previous losers is significantly different in 

subsequent fights against naïve opponents (ANOVA repeated measures, contrast effect: F1,20 = 

9.49, p < 0.01).  

 

 

 

 

 

 

 

 

 

Figure 5 – Comparison of escalation behavior in the pre-resolution phase 
between winners (W, white) and losers (L, black) of the first fight, and 
between the focal males in the second interaction (WN, prior-winner vs. 
naïve, light gray; LN, prior-loser vs naïve, dark gray). * indicates p<0.05; 
** indicates p<0.01. 
 
 

 

Discussion 
In this paper we have described a simple behavioral paradigm under which male 

zebrafish consistently expressed fighting behavior. Dyads of 2 males that have been previously 

isolated for 24h consistently expressed fighting behavior when exposed to each other, even in 

the absence of a limited resource to promote competition, such as food, shelter or a potential 

mate. In a previous study [30], 5 days of social isolation have been used to promote aggression 

in zebrafish. Our study indicates that 24h of social isolation is enough to promote the 

expression of aggressive behavior in zebrafish. Social isolation has been reported to increase 
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aggression in different species including fish (e.g. [38]). Different mechanisms may explain the 

effect of social isolation on aggressiveness, including an increased sensitivity to external stimuli 

that may act as releasers of aggressive behavior, or forgetting prior social experiences that are 

the basis for dominance hierarchies that regulate social interactions in social networks. 

Whatever the mechanisms involved, for the purpose of this study, the key result is that a short 

period of social isolation consistently promoted the expression of aggressive behavior in dyads 

of male zebrafish. So far the study of aggression in zebrafish has mainly used either 

standardized mirror image stimulation tests (e.g. [15, 39-41]) or groups of 3 or more 

individuals (e.g. [27-29], [42-44]). Although the mirror test can be seen as a standardized test 

that elicits heightened aggressive responses [45, 46] it has recently been shown that it triggers 

different hormonal, and brain activation patterns from those elicited by a real opponent ([33-

35] RF Oliveira et al, unpublished data for zebrafish).  Therefore, the use of mirror image 

stimulation as a behavioral paradigm to study aggression should be taken with caution, and 

the use of real opponent fights is advisable, especially when studying the proximate 

mechanism of aggressive behavior. It should also be mentioned here two major technical and 

analytical challenges of analyzing zebrafish aggression that we have faced:  

(1) Due to the high speed with which some of the behavioral patterns are performed by 

the fish a frame-by-frame analysis was recurrently needed; this is very time-consuming and in 

some cases a higher time resolution would have been helpful. In this respect a high-speed 

camera (with image acquisition rates staring at ca. 200 frames per second) would be a major 

improvement when compared to regular video cameras (with acquisition rates of 25 to 30 

frames per second depending on which video signal standard is being used, PAL or NTSC 

respectively). 

(2) The small size of zebrafish is a limitation to the identification of particular individuals 

during behavioral trials either in real time or in video-recordings.   We have used fin clips to 

individually tag subjects. Despite being very efficient to identify individuals in stock tanks this 
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method proved inefficient to identify individuals in the video-recordings, as illustrated by the 

fact that we had to drop the video-analysis of almost 50% of our behavioral trials due to the 

lack of a clear identification of each individual along the whole session. We have recently 

replaced with good results the use of fin clips by fluorescent elastomer tags (Northwest Marine 

Technology Inc. WA, USA) that are implanted beneath transparent or translucent tissue and 

remain externally visible. Although this is a promising solution for individually tagging zebrafish 

in behavioral assays we still have to confirm if the different colors are having an effect on the 

behavior of the fish. 

The qualitative aspects of the behavioral patterns observed in our experiment, are 

consistent with other ethograms previously published for this species (e.g. [25, 28-30]). The 

sequence analysis based on transition matrices of behavioral patterns expressed by each 

contestant allowed to identify a complex and highly structured aggressive behavior in 

zebrafish, indicating that the expression of the different behavioral patterns that make up the 

agonistic repertoire is not random and that there are decision rules underlying their 

expression. This is a particularly relevant finding since it makes aggressive behavior in this 

species suitable for quantitative analysis and allows for the study of the impact of selected 

mutations or other genetically or pharmacologically induced changes in behavior. 

Zebrafish fights lasted for ca. 5 min until a clear asymmetry was established and a clear 

winner and a clear loser could be established. Before fight resolution contestants mainly 

expressed mutual assessment behaviors such as displays and circling, and biting. After the 

resolution point, winners mainly expressed chase and bites and subordinates flee. Biting is 

present in both phases (i.e. before and after resolution but its frequency increases in the post-

resolution phase where physical aggression becomes more frequent. Contrary to other studies 

(e.g. [47]), the initiative to start the interaction was not a good predictor of fight outcome, and 

there was no behavior pattern whose expression in the pre-resolution phase was an indicator 
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of who would win the contest.   Therefore, we have failed to identify a key fight parameter 

used by fish to decide when to give up and retreat from fighting. 

Data presented here on sequential fights shows that a recent victory increases and a 

recent defeat reduces the probability of winning a subsequent fight, suggesting the occurrence 

of winner and loser effects in male zebrafish. This is an important result since it establishes 

that fight outcome has behavioral consequences that may impact in the individuals Darwinian 

fitness.  

Since we have used a self-selection protocol and did not impose winning and losing 

experiences to our focal fish it can be argued that the winner/loser effect observed is due to 

uncontrolled sources of inter-individual variation in intrinsic fighting ability. To control for this 

possibility we have used size matched males, and a posteriori we also controlled for fighting 

motivation by registering which male took the initiative to start the fight. Moreover, we have 

used a null hypothesis against which to test the effects of prior experience that is not 

equiprobability of winning/losing the second encounter, but having prior winners/losers 

winning/losing at least two-thirds of subsequent interactions against a size-matched naïve 

opponent, which is the probability estimated by 48 of a random individual in a population to 

have higher/lower intrinsic fighting ability than neutral opponents. 

Two behavioral mechanisms have been advanced to explain the effects of prior 

experience on future fighting success: (1) changes in self-assessment of fighting ability (i.e. 

resource holding power, sensu 49) induced by the fighting outcome (i.e. perceived increase in 

winners and perceived decrease in losers of own fighting ability); and (2) social cues that signal 

the winner/loser status to conspecifics allowing them to respond differentially to winners vs. 

losers of a previous fight [50-52]. These two mechanisms are not mutually exclusive and 

evidence for both is present in the literature. In support of the former, after a recent win or 

loss individuals change their contest behavior accordingly in standard aggression tests and 

increase the probability of initiating a new fight (see [51] for a review). In support of the latter 
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it is known that fish collect information from observed interactions between third parties and 

that they respond differentially to individuals that they have observed winning/losing a 

previous interaction [53]. Moreover, a number of social cues are known to signal social status. 

For example, both in crayfish and in cichlid fish social dominance is signaled through odorants 

present in the urine [54, 55].  

In our study the likelihood of starting a second fight was not affected by the outcome of 

the first fight (i.e. same numbers of previous winners vs. losers took the initiative to start the 

second fight). On the other hand, the escalation index does not change significantly in winners 

between the first and the second fight, but it decreases in losers so that in second fights 

previous winners express more escalated fighting behavior than previous losers. Similarly the 

fight resolution time decreased in the second fights and was significantly shorter in the LN 

fights than in WN fights. Together these results suggest that the effects of previous experience 

might be different in winners and losers: while escalation decreases in losers in subsequent 

fights suggesting an experience driven change in the self-assessment of their own fighting 

ability, the behavior of winners does not seem to change significantly in the subsequent fight, 

and therefore experience effects in winners may be relying on social cues that signal a recent 

winning that naïve opponents in the second fights are responding to. These cues can be 

behavioral, pheromonal, or other. In another teleost fish (i.e. tilapia, Oreochromis 

mossambicus) it has been recently shown that dominant individuals release more urine than 

subordinates during agonistic encounters and that the urine of dominants can be 

discriminated from that of subordinates at the levels of the olfactory organ with that of the 

dominants eliciting a higher olfactory response [55, 56]. Since in zebrafish olfactory 

communication is also well developed and used in social context (e.g. [57, 58]) it is possible 

that experience-induced changes in social status or motivation to engage in a contest are 

signaled through olfactory cues. 
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The fact that second interactions involving the loser of the first interaction have a short 

latency for the first interaction and a shorter resolution time suggest that the loser effects has 

a higher impact that the winner effect. This is in accordance with the relative magnitude of 

winner and loser effects reported in the literature (for review see [50]). These results are also 

consistent with a heightened decision to retreat in previous losers, an effect that is consistent 

with previous work in other species [59, 60, 61]. An increased likelihood to give up appears to 

be the real explanation for the behavioral changes, however, this is not spelled out specifically. 

In summary, in dyadic fights male zebrafish express highly structured behavior and the 

outcome of these fights have an impact on their subsequent behavior. Given the available 

genetic and genomic tools for this species, these results support the use of zebrafish as a 

neurogenetic model for the study of the neural and hormonal mechanisms of aggressive 

behavior in a vertebrate model.  
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Abstract 
Group living animals must be able to express different behavior profiles depending on 

their social status. This implies that the same genotype may translate into different behavioral 

phenotypes through socially driven differential gene expression. Here we show for the first 

time that what triggers the switch between status-specific neurogenomic states is not the 

objective structure of the social interaction but rather the subjects’ appraisal of its outcome. 

For this purpose we had male zebrafish fight either a real opponent or their own image on a 

mirror. Massive changes in the brain transcriptome were observed in real opponent fighters, 

which experience either a victory or a defeat. In contrast, mirror fighters, which had no 

information on fight outcome despite expressing aggressive behavior, failed to activate a 

neurogenomic response. These results indicate that, even in cognitively simple organisms such 

as zebrafish, neurogenomic responses underlying changes in social status rely on cognitive 

appraisal. 

 

One Sentence Summary  
Cognitive appraisal of fight outcome, rather than mere exposure to a fight, triggers rapid 

changes in brain transcriptome 

 

Main Text 
Dominance hierarchies are ubiquitous in animal groups and play a key role in the 

regulation of social interactions between individuals competing for resources (e.g. potential 
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mates), such that individuals of different social status commonly express different sets of 

behaviors (aka behavioral states) that match their competitive ability. Typically dominant 

individuals express competitive and resource monopolization behaviours (e.g. courtship 

behaviour) that will potentially increase their Darwinian fitness, whereas subordinates refrain 

from direct competition for resources, thus avoiding costly social interactions (e.g. potential 

eviction from the group) in which they would have a low probability of success (1). However, 

this competition avoidance behavior of subordinates is only adaptive if it allows them to gain 

fitness advantages later on, for example by taking over a vacant dominant role. Thus, it is 

important for subordinate individuals to be able to identify opportunities for social ascend and 

to rapidly switch their behavior profile accordingly. 

Despite the well known genetic influences on aggressive behavior (e.g. (2) social status 

depends to a great extent on group composition (i.e. relative competitive ability of group 

members) and on social factors (3, 4) and the same individual must be able to switch between 

different social statuses. Hence, the same genotype must accommodate the expression of 

multiple social phenotypes, and this should be accomplished by socially driven changes in gene 

expression in the brain that would lead to distinct transcriptome profiles across the social 

behavior neural network (aka neurogenomic states, (5, 6) corresponding to the status-specific 

behavioral states mentioned above. Previous studies have established this mapping of socially 

dependent behavioral states onto neurogenomic states (e.g. (4, 7)), and rapid responses to 

social interactions have also been described (8–11). However, the specific cue that signals 

changes in social status and triggers the switch between neurogenomic states has remained 

elusive. There are at least two potential cues of social status readily available in a social 

interaction: (A) the own aggressive behavior expressed by the individual; and (B) the behavior 

expressed by the opponent. Theoretically, animals may use either of these or a combination of 

the two to infer their social status and trigger genomic and behavioural changes accordingly. 

For example, if only sensing its own behavior individuals could trigger a dominant state above 

a certain threshold of expressed aggressiveness; or if only sensing the opponent’s behavior 

they could trigger the dominant state in response to observed submissiveness. However, given 

that social status is not an individual attribute but rather a relational trait, we hypothesized 

that it would be adaptive for an animal to switch its status specific neurogenomic state only 

when faced with reliable information on relative competitive ability in comparison to other 

group members. Thus, we predicted that an assessment of relative fighting ability, which 

incorporates both expressed behavior and perceived behavior of the opponent, must be a 

necessary condition to activate this switch. 



 

 

63 Cognitive appraisal of fight outcome triggers rapid changes in brain transcriptome 

Here we used zebrafish to test this hypothesis by manipulating their perception of fight 

outcome and assessing its effects on the brain transcriptome profile. For this purpose we 

compared, using a genome-wide microarray gene chip, the neurogenomic response to social 

interactions between fish that fought a real opponent and fish that fought their own image on 

a mirror. Fish do not recognize themselves on a mirror and attack their own image as if it is an 

intruder (12). Mirror fights usually elicit similar levels of aggressive behavior to those of real 

opponent fights (13), but since submissive behavior is never expressed by one of the 

opponents (i.e. the mirror image replicates the behavior of the focal fish) the former have no 

outcome and the expression of aggressiveness is decoupled from the experience of winning or 

losing a fight. Size matched male zebrafish were socially isolated for 5 days before being 

exposed to a short term (aprox. 30 min) social interaction which consisted either in a mirror 

fight or in a real opponent fight. Aggressive behavior was quantified and the identity of the 

winner and the loser of the real opponent fights were noted. A reference group remained in 

social isolation and did not experience any social interaction. Therefore, the experimental 

manipulations generated 4 phenotypes regarding social experience: mirror fighters (M), 

winners of a real opponent fight (W), losers of a real opponent fight  (L); and socially isolated 

fish (I). These 4 phenotypes differed among themselves in the combination of behavior 

expressed and behavior perceived in the opponent: W expressed aggressive behavior and 

perceived submissive behavior in the opponent; L expressed submissive behavior and 

perceived aggressive behavior in the opponent; and M expressed aggressive behavior but also 

perceived aggressive behavior in the opponent (Fig.1). Therefore, the following predictions can 

be generated: 

(1) If only behavioral feedback from opponent would be relevant, then M fish should 

have a response profile similar to that of L; 

(2) If only the individuals own behavioral expression would be relevant, then M fish 

should have a response profile similar to that of W; 

(3) If only the comparison between perceived behavior of the opponent with the 

expressed behavior (or any other self measure of own competitive ability) would be relevant, 

then M fish should not activate a response because in mirror interactions they equal each 

other, and therefore no change in social status would be experienced by the subject. 
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Figure 1 – Behavioural paradigm used to promote different 
social experiences in zebrafish. (A) Experimental set-up used to 
promote the four social experiences: (left panel) control group 
(no social interaction); (middle panel) mirror elicited fight 
(animals fought their own image on the mirror) and (right panel) 
real opponent fights (animals fought a real opponent and 
experienced a victory or a defeat), (B)  Behavioural profiles of 
each social phenotype (i.e. socially isolated, mirror fighters, 
winner and losers) as illustrated by the frequency of aggressive 
and submissive behaviors (average ± S.E.M.; N=3 for each 
condition) expressed in the last 10 min of each type of social 
treatment. 

 

Contrasting each social treatment (i.e. W, L or M) with the reference group (i.e. I) 

revealed 210 differentially expressed genes across all social experiences. Real opponent 

interactions elicited 197 differentially expressed genes in losers and 87 differentially expressed 

genes in winners, of which 64 were differentially expressed both in winners and losers (Fig. 

2A). Thus, there were 133 genes associated with switching social status towards subordinate, 

23 genes associated with becoming dominant and 64 genes associated with fighting. Among 

these socially regulated genes the ones with the highest fold-changes included activity-

dependent immediate early genes (e.g. c-fos; early growth response 2, egr-2), neural plasticity 

genes [e.g. brain-derived neurotrophic factor, bdnf; neuronal Per Arnt Sim (PAS) domain 

protein 4, npas4], genes involved in immune function (e.g. suppressor of cytokine signaling 3a, 

B-cell translocation gene 2, jun B proto-oncogene) and genes involved in hormone metabolism 

(e.g. nuclear receptor subfamily 4, group A, member 1) (Fig. 2A; see supplementary material 

Table S1 for complete list of differentially expressed genes). Of particular interest was the 
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differential expression of bdnf and of npas4 since both regulate experience-dependent 

synaptic plasticity and memory formation. Bdnf is a neurotrophic factor involved in neuronal 

differentiation and survival and in synaptic plasticity mechanisms underlying learning and 

memory (14); npas4 has been recently involved in the regulation of the formation of 

GABAergic inhibitory synapses (15) and on the formation of contextual memory in the 

hippocampus (16). A gene ontology (GO) analysis of these differentially expressed genes 

indicated that they were not randomly distributed across the genome but were clustered in 

functional units in relation to molecular function, biological processes, or cellular component 

(see supplementary material Table S2 for significant enrichment scores of GO terms).  

 
 
 
 
 
 

 
 
 

Figure 2 – Venn diagram and 
hierarchical cluster of socially 
regulated genes after a fight. A) 
Venn diagram showing the 
relationship between social status 
(winners [pink] and losers [ blue]) 
and the number of differentially 
expressed  genes. This diagram 
also indicates some of the genes 
that respond exclusively to the 
fight (purple), genes that were 
common between the two social 
statuses.  Some examples of these 
genes are highlighted in the Venn 
diagram box. Information 
regarding the direction of this 
regulation is given by the arrows: 
upregulated:�; downregulated: �. 
B) The hierarchical clustering 
represents significantly different 
expressed genes (P<0.01) with 
confidence values of cluster nodes 
calculated using bootstrapping. 
The heatmap (blue – down-
regulated, yellow – up-regulated) 
shows estimated gene expression 
levels for each social phenotype 
elicited: isolation (yellow); mirror 
(green); winners (red) and losers 
(blue). 
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Similarly, a signaling pathway analysis, using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) as reference, showed a significant enrichment (i.e. more differentially 

expressed genes than would be expected by chance) of the mitogen-activated protein kinases 

(aka MAPK) signaling pathway (-3.9% of genes of enriched pathway; Benjamini adjusted p-

value <0.05). Together, these results indicate that short-term interactions that induce changes 

in social status trigger activity-dependent gene pathways involved in neural plasticity. 

In contrast, and in accordance with our hypothesis, mirror fights did not elicit a single 

differentially expressed gene. This result should be interpreted with caution. Since we were 

analyzing a large data set with 14,900 probes we have used a false discovery rate of 10% to 

control for false positives. Therefore, the lack of response of mirror fighters at the 

transcriptome level does not mean that they would not show any differential gene expression 

if tested univariately (e.g. using a candidate gene approach), but rather that the fold change of 

putatively differentially expressed genes in mirror fighters was below the threshold for 

distinguishing them from baseline gene expression levels found in the reference group. 

Nevertheless, the fact that mirror fighters showed a different pattern of gene activation from 

either those of winners or losers supports our hypothesis that cognitive appraisal of the fight 

outcome is necessary to induce major changes in the brain transcriptome which are potentially 

associated with the observed change in social state (i.e. becoming dominant/ subordinate). It 

should be stressed here the consistency of the transcriptome profiles induced by each social 

experience as revealed by the hierarchical cluster analysis of individuals according to their 

gene expression data (Fig. 2B). Indeed, all individuals from each social treatment were grouped 

together in individual clusters and higher order clusters subsequently grouped the cluster of 

the winners together with that of the losers, and the cluster of the mirror fighters with that of 

the socially isolated individuals. This indicates that the brain transcriptome profile of zebrafish 

closely reflects their recent acute social experiences. 

The divergent changes in the brain transcriptome profile observed here between 

winners and losers of real opponent fights nicely match the socially driven changes in 

behavioral state that have been described previously for zebrafish, according to which winners 

of a single interaction significantly increase their probability of winning a subsequent 

interaction (winner effect), whereas losers decrease this probability (loser effect) (17). 

Therefore, the rapid changes in gene expression in the brain related to neural plasticity are 

closely associated with the shift between behavioural states characteristic of different social 

status. 
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The broader implication of our results is that cognitive appraisal, which has been seen as 

a complex cognitive ability (18), may also be playing a key role in the way animals, such as 

zebrafish, so far considered “simple minded” process and respond to environmental cues. This 

opens the way for a paradigm shift that would see model organisms with simpler nervous 

systems, which so far have only been used to study simple forms of associative learning (19), 

amenable for the study of more complex cognitive abilities (20), which can be themselves 

based on simpler computational abilities than initially thought. 
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Supplementary Materials 

Materials and Methods:  

Subjects and maintenance 
Zebrafish (Danio rerio) used in this experiment were wild-type (AB) acquired from 

Zebrafish International Resource Center (ZIRC). Prior to the experiment, fish were kept in 40L 
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tanks (50x30x35cm), in a 1:1 sex ratio, at 26 ± 2oC and on a 14D:10L photoperiod. Fish were 

fed twice a day with freshly hatched brine shrimp in the morning and commercial food flakes 

in the afternoon. Average fish size used was 27.1±1.7 mm (standard length, SL). 

 

Behavioural assays 
We used a modified version of an isolation-induced aggression paradigm (17), which is 

known to increase aggressive behaviour prolonging the fight decision time. In brief, fish were 

isolated five days prior to the social interaction. To test for the effects of the interaction 

outcome two other groups were used: a social isolation group and a mirror elicited aggression 

group.  

Twenty-four adult males, matched for standard length (size difference < 2 mm), were 

exposed to one of four experimental social experiences: winning the interaction, losing the 

interaction, an unsolved interaction (mirror fight) or experience no interaction (reference 

group). Fish were always tested in pairs, to control for spurious effects of putative chemical 

communication that would otherwise only be present in fighting dyads. Each pair was placed in 

a 700 ml polycarbonate breeding tank (18x10x9 mm) isolated visually, but not chemically, by a 

removable opaque PVC partition for 5 consecutive days. After this period, the opaque divider 

was removed in all conditions, which allowed: contact between the two conspecifics in the 

fighting dyads; contact with the mirror in the mirror fighting treatment; and to control for 

stress induced just by the movement of the partition in the isolation group. In the real 

oponnent treatment fight duration was set to 15 min after the interaction was solved (i.e. a 

clear winner and loser phenotype emerged). Given that fight resolution time varied from 

interaction to interaction, average total interaction time in real opponent fights was 

36.3±3.6min (mean±SEM). The duration of the other social treatments (mirror; isolation) was 

thus set to 30 min, such that all social treatments had a similar duration. 

 

Tissue processing, RNA extraction & Gene Expression 
Immediately after the social interactions fish were killed with a lethal dose of MS-222 

(1000-1500 mg/l) and decapitated. Brains were rapidly collected  to 500 μl  of Quiazol (Qiagen) 

and stored at -80ºC until further processing. Total RNA was extracted according to the 

manufacturer’s instructions (RNeasy Lipid Tissue Mini Kit, Qiagen). . RNA was then treated with 

DNase (RNase-free DNase set, Qiagen) to remove possible contaminations with genomic DNA 

and concentration and purity was estimated by spectrophotometric absorbance in a NanoDrop 
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ND-1000 UV-Vis Spectrophotometer (Nano-Drop Technologies). Total extracted RNA was kept 

at -80°C until processing. 

 

Target Synthesis and Hybridization to Affymetrix GeneChips 
RNA was processed for use on Affymetrix (Santa Clara, CA, USA) GeneChip Zebrafish 

Genome Arrays, according to the manufacturer’s GeneChip 3’ IVT Express kit user’s manual. In 

brief, 100 ng of total RNA containing spiked in Poly-A RNA controls was used in a reverse 

transcription reaction (GeneChip 3’ IVT Express Kit; Affymetrix) to generate first-strand cDNA. 

After second-strand synthesis, double-stranded cDNA was used in a 16h in vitro transcription 

(IVT) reaction to generate aRNA (GeneChip 3’ IVT Express Kit; Affymetrix). Size distribution of 

the aRNA and fragmented aRNA, respectively, was assessed using an Agilent 2100 Bioanalyzer 

with a RNA 6000 Nano Assay; 15 μg of fragmented aRNA was used in a 250-μl hybridization 

cocktail containing added hybridization controls. 200 μl of mixture was hybridized on arrays for 

16 h at 45°C. Standard post hybridization wash and double-stain protocols (FS450_0004; 

GeneChip HWS kit, Affymetrix) were used on an Affymetrix GeneChip Fluidics Station 450. 

Arrays were scanned on an Affymetrix GeneChip scanner 3000 7G. 

 

GeneChip Data Analysis 
Scanned arrays were analyzed first with Affymetrix Expression Console software to 

obtain Absent/Present calls and to assure that all quality parameters were in the 

recommended range. Subsequent analysis was carried out with Partek Genomics Suite v. 6.6 

(Partek Incorporated, St. Louis, MO). A two-way ANOVA (p-value < 0.01) was used to identify 

genes differently expressed taking into account batch effects (i.e. date of the microarray 

processing) and social treatment, after a contrast analysis between the reference group 

(Isolation) and the target groups (winner, loser, or mirror). To correct for multiple testing we 

only considered differently expressed genes after a cut-off using a false discovery rate of 10% 

and a minimal fold change of 1.1.  Finally, hierarchical clustering of our phenotypes according 

to gene expression was calculated using Euclidean distances as a dissimilarity measure. 

 

Annotation and gene ontology analysis 
Gene annotation was obtained primarily from the Partek Genomics Suite software. For 

genes that were not annotated in the Partek software we blasted them against a locally 
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installed NCBI nr database (non-redundant protein database, release 2011_11) using BLASTx 

(v. 2.2.26) with an E-value cut-off of  10-5 , a word size of 2 and the DLOSUM62 matrix. Gene 

ontology (GO) analysis was also conducted using the Partek Genomics Suite v. 6.6, and the 

enrichment score was used to rank the most significant gene groups in the following 

categories: biological processes, cellular components and molecular functions (Table S2). 

Within each gene group we also access gene regulation (i.e. number of genes that were being 

up or down regulated in the group). 

 

Confirmatory Real-time PCR 
In order to validate the microarray data, the expression of the differentially expressed 

genes with the higher fold-changes was independently quantified by quantitative RT-PCR. The 

total RNA samples (also used for microarrays hybridizations) were quantified in the NanoDrop 

and 1-5 μg were reverse transcribed into cDNA. The synthesized cDNA (1μl) was subsequently 

used for quantitative PCR (QPCR). QPCR reactions (25μl) were run in a Stratagene MX3000p 

thermocycler in triplicate with Stratagene's SYBR green QRT-PCR Master Mix (Stratagene, 

Spain) and primers at 0.5 μM. Thermocycling conditions were equal for all reactions and were 

as follows: 5 min at 95º C, 40 cycles of 95ºC for 30 s, specific annealing temperature for each 

primer for 30 s and 72 ºC for 30 s. After PCR, a melting curve program from 55 to 95ºC with 

0.5º C change in 10s intervals was applied and the presence of a single reaction product in 

each tube was confirmed. qPCR was conducted in triplicate for each individual sample and the 

expression of the target genes normalized to the expression of 18S to account for variations in 

total RNA levels between samples. Specific primer sequences (Table S3) were designed based 

on RNA sequences available in the zebrafish genome database (ZFIN) on Primer 3 (Premier 

Biosoft International, Palo Alto, CA, USA) tested for quality in the FastPCR 5.4., and PCR 

product sequenced to confirm the amplicon. Raw fluorescence data was submitted to PCR 

Miner (http://www.miner.ewindup.info/Version2; (21)) to calculate reaction efficiencies and 

cycle thresholds from individual wells during the reaction. For each sample, the mean CT of 

18S and the target genes was calculated, and the relative initial template concentration (R0) 

determined from 1/1(1+E)^CT (21). The relative mRNA expression was thus given by the ratio 

between the target gene and 18S R0s. In order to have the same magnitude effects of 

microarray analysis the fold change expression for each gene was calculated. All tested genes 

yielded similar patterns of relative expression across treatments as the ones obtained from the 

microarray data (Fig. S1). 
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Behavioural analysis 
Video recordings (Sony KDL X200, Tokyo, Japan) were analysed using the software 

Observer XT (Noldus, Wageningen, The Netherlands). An experienced observer analysed the 

behavioral interactions according to the zebrafish ethogram (17). Behaviours were divided into 

aggressive (bite, chase, strike) and submissive (freeze and flee),. Because we were only 

interested in the behavioural output resulting from the social interaction, we only analyse the 

pos-resolution phase of the fight where different social phenotypes (winners, losers) can be 

clearly identified. For the behavioural analysis of mirror fights and social isolation, the tlast 10 

min of the behavioural trial were also observed. Due to the small sample size no inference 

statistics were computed and only descriptive data is presented. However, statistical validation 

of behavioural differences between the social treatments presented here in the same 

behavioural paradigm have been previously reported (13). 
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Genes Description Accession number Winner Loser
npas4 neuronal PAS domain protein 4 NM_001045321 12,206 17,777

fos v-fos FBJ murine osteosarcoma viral oncogene homolog NM_205569 6,590 9,569
fos v-fos FBJ murine osteosarcoma viral oncogene homolog NM_205569 5,821 7,723

socs3a suppressor of cytokine signaling 3a NM_199950 5,616 6,819
nr4a1 nuclear receptor subfamily 4, group A, member 1 NM_001002173 5,117 5,842

fos v-fos FBJ murine osteosarcoma viral oncogene homolog NM_205569 3,969 5,698
ier1 early growth response protein 1 NM_001114453 3,442 5,533
ier2 immediate early response 2 NM_001142583 2,827 4,702
fos v-fos FBJ murine osteosarcoma viral oncogene homolog NM_205569 3,156 3,910

btg2 B-cell translocation gene 2 NM_130922 2,834 3,650
junb jun B proto-oncogene NM_213556 2,427 3,174

egr2b early growth response 2b NM_130997 2,301 2,907
egr2a early growth response 2a NM_183341 - 2,645

dhrs12 dehydrogenase/reductase (SDR family) member 12 NM_001076557 - -2,608
plk2 polo-like kinase 2 (Drosophila) NM_001099245 - 2,431

CH73-21G5.3 novel protein similar to hairy-related 4.2 XM_001920839 - -2,323
mycn v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) NM_212614 -2,419 -2,209
klf7l Kruppel-like factor 7 (ubiquitous), like NM_001044766 - -2,038
jdp2 Jun dimerization protein 2 NM_001002493 - 2,022

dusp5 dual specificity phosphatase 5 NM_212565 - 1,958
hirip5 / rhag HIRA interacting protein 5 NM_001122708 - -1,935

dusp1 dual specificity phosphatase 1 NM_213067 - 1,900
pim1 proto-oncogene serine/threonine-protein kinase pim-1 NM_001077391 1,682 1,892

cyp2j21 cytochrome P450, family 2, subfamily J, polypeptide 21 NM_201511 - -1,886
nnt nicotinamide nucleotide transhydrogenase NM_214756 - -1,834

dlg1 discs, large (Drosophila) homolog 1 NM_199526 - 1,807
cebp1 CCAAT/enhancer binding protein 1 NM_131837 - -1,780
bdnf brain-derived neurotrophic factor NM_131595 1,621 1,759

nat15 N-acetyltransferase 15 (GCN5-related, putative) NM_001082872 - -1,744
zgc:123170 translin NM_001025452 - -1,735
zgc:152990 solute carrier family 20, member 2 NM_001077546 - -1,725

lyricl lyric-like NM_001007135 - -1,699
hmga1a high mobility group AT-hook 1a NM_213168 -1,812 -1,670

zgc:66430 testis-specific protein, Y-encoded-like 1 NM_200055 - -1,646
foxn4 forkhead box N4 NM_131099 - 1,630
otx1 orthodenticle homolog 1 NM_131250 - -1,621

lancl1 LanC antibiotic synthetase component C-like 1 (bacterial) NM_001009891 -1,493 -1,607
adh8a Alcohol dehydrogenase 8a NM_001001946 -1,604 -1,561

rlf rearranged L-myc fusion XM_685832 -1,292 -1,547
zfp161 zinc finger protein 161 homolog (mouse) NM_213536 - -1,542
tcea2 transcription elongation factor A (SII), 2 NM_200986 - -1,536
nfyc nuclear transcription factor Y, gamma NM_199639 - -1,535
snx1 sorting nexin 1 NM_001128671 - -1,524

lmo7a LIM domain only 7a NM_001128231 - 1,521
slc6a19a solute carrier family 6 (neurotransmitter transporter), member 19a XM_001921802 - 1,518

itpkc inositol 1,4,5-trisphosphate 3-kinase C XM_681366 - -1,503
zdhhc15b zinc finger, DHHC domain containing 15b NM_001077781 - -1,496

magt1 magnesium transporter 1 NM_199700 -1,468 -1,495
si:dkeyp-110e4.6 Novel protein similar to vertebrate phospholipase D family, member 4 XM_681654 - 1,492

fkrp Fukutin related protein NM_001042689 - -1,491
dpf2l D4, zinc and double PHD fingers family 2, like NM_212696 - -1,489
ier5 immediate early response 5 NM_001007197 - 1,484
lztr1 leucine-zipper-like transcription regulator 1 NM_001080605 - -1,484

slc25a25 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 25 NM_213257 1,524 1,473
sdad1 SDA1 domain containing 1 NM_173230 - -1,465

or102-3 odorant receptor, family C, subfamily 102, member 3 NM_001039624 - 1,462
mc5rb melanocortin 5b receptor NM_173280 - 1,461
fscn1 fascin homolog 1, actin-bundling protein (Strongylo-centrotus purpuratus) NM_001076560 - -1,452

ccdc53 coiled-coil domain containing 53 NM_200173 - -1,450
slc38a7 solute carrier family 38, member 7 NM_001003648 - -1,413

fgb fibrinogen, B beta polypeptide NM_212774 - 1,412
mettl5 methyltransferase like 5 NM_001005949 - -1,409

opn1mw2 opsin 1 (cone pigments), medium-wave-sensitive, 2 NM_182891 - 1,402

Fold change

Table SI. List of significantly regulated genes after a fight. Description and accession 
number for each gene with a fold change greater than 1.1 are presented in descending order.  
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Genes Description Accession number Winner Loser
cxxc5 CXXC finger 5 XM_681066 - -1,402

zgc:64076 dehydrogenase/reductase (SDR family) NM_213150 - 1,398
dhrs13 dehydrogenase/reductase (SDR family) member 13 NM_001007424 - 1,396

gpr137bb G protein-coupled receptor 137bb NM_001002691 - 1,391
hmga1a high mobility group AT-hook 1a NM_213168 -1,452 -1,388

zgc:73210 lysophospholipase II NM_200749 - -1,385
LOC100003487 similar to F-box only protein 34 XM_001337704 - -1,378

zgc:153084 polynucleotide kinase 3'-phosphatase NM_001077578 - 1,371
rab5a RAB5A, member RAS oncogene family NM_201485 - -1,371
maea macrophage erythroblast attacher NM_199549 - -1,367

ddx26b DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 26B NM_200434 - 1,365
LOC555852 similar to cAMP-dependent protein kinase inhibitor alpha XR_045027 - -1,363

hmx3 homeo box (H6 family) 3 NM_131634 - -1,358
arglu1b Arginine and glutamate rich 1b NM_200162 1,357 -1,354
mchr1a melanin-concentrating hormone receptor 1a XM_001343108 - 1,332
hnrnpk novel rhamnose binding lectin NM_001100404 - 1,325
trim55b tripartite motif-containing 55b NM_001039982 - 1,323
ubxn4 Danio rerio UBX domain protein 4 XM_001918881 - 1,323
arl3l2 ADP-ribosylation factor-like 3, like 2 NM_200719 - 1,321
mespb mesoderm posterior b NM_131552 - 1,319

zgc:101663 alpha-1,3-mannosyl-glycoprotein-4-beta-N-acetylglucosa-minyltransferase C NM_001007437 - 1,313
cnrip1a cannabinoid receptor interacting protein 1a NM_001003607 -1,285 -1,312

rims2 regulating synaptic membrane exocytosis 2 XM_688008 1,398 1,308
ergic2 ERGIC and golgi 2 NM_200407 - -1,302
KNTC1 kinetochore associated 1 XM_681266 - 1,301

atp6v1b2 ATPase, H+ transporting, lysosomal V1 subunit B2 NM_182879 - -1,300
zgc:77744 poly (ADP-ribose) polymerase family, member 16 NM_212906 - -1,300

elf2a E74-like factor 2a (ets domain transcription factor) NM_001004116 -1,307 -1,296
myhz1.1 myosin, heavy polypeptide 1.1, skeletal muscle NM_001115089 - 1,287

scd stearoyl-CoA desaturase (delta-9-desaturase) NM_198815 - 1,286
LOC561122 similar to X-linked neuroligin 4 XM_684526 - -1,285

adipor1a adiponectin receptor 1a NM_001002467 -1,232 -1,280
picalml phosphatidylinositol binding clathrin assembly protein, like NM_001003741 - 1,279

six9 sine oculis homeobox homolog 9 XM_684623 - 1,275
cldn10l claudin 10 like NM_131771 - 1,274
cx39.9 connexin 39.9 NM_212826 1,400 1,270
phb2 Prohibitin 2 NM_199681 - -1,262

atp6v0c ATPase, H+ transporting, lysosomal, V0 subunit c NM_001105136 - -1,259
cdca5 cell division cycle associated 5 NM_001100947 - 1,257
otx5 orthodenticle homolog 5 NM_181331 - 1,242

nup43 nucleoporin 43 NM_212892 - 1,239
hoxa10b homeo box A10b NM_131155 1,257 1,233

Tnni2 / tnni2a.4 fast muscle troponin I / troponin I, skeletal, fast 2a.4 NM_001009901 1,346 1,229
clybl citrate lyase beta-like NM_001037416 - -1,228

ap2b1 adaptor-related protein complex 2, beta 1 subunit NM_199919 - -1,222
rnf40 ring finger protein 40 NM_001005778 - -1,209
pcnt1 pericentrin 1 NM_001003625 - 1,205

LOC555630 mitochondrial ribonuclease P protein 3-like XM_678197 - 1,203
slc27a2 solute carrier family 27 (fatty acid transporter) member 2 NM_001025299 - 1,196

LOC796252 chemokine CXL-C24a NM_001115062 - 1,188
osgepl1 O-sialoglycoprotein endopeptidase-like 1 NM_001005301 - 1,187
rap2ip Rap2 interacting protein NM_200149 -1,194 -1,184
ppp2cb protein phosphatase 2, catalytic subunit, beta isoform NM_213293 - 1,179
phf16 PHD finger protein 16 NM_201652 - -1,173
tfip11 tuftelin interacting protein 11 NM_001002721 1,165 1,151

wu:fc54b10 MON1 homolog B (yeast) XM_001922150 1,168 1,142
LOC100000433 hypothetical protein LOC100000433 XM_001340605 - 1,109

LOC794813 similar to Latrophilin-2 precursor (Calcium-independent x-latrotoxin receptor) XM_001334799 - 1,106
ak2 adenylate kinase 2 NM_212596 -1,453 -

nsa2 NSA2 ribosome biogenesis homolog (S. cerevisiae) NM_199568 -1,436 -
vps4b vacuolar protein sorting 4b (yeast) NM_200906 -1,429 -

LOC564494 similar to Histone H4 replacement CG3379-PC XM_687827 1,413 -
mpv17 MpV17 transgene, murine homolog, glomerulo-sclerosis NM_201165 1,400 -

caprin1b cell cycle associated protein 1b NM_213068 -1,376 -
dkey-18f23.10 cyclin T1 XM_682036 1,361 -
DKEY-79C1.2 novel protein similar to praja family protein NM_001105116 -1,334 -

rpl7a ribosomal protein L7a NM_200047 -1,292 -
atp1b2a ATPase, Na+/K+ transporting, beta 2a polypeptide NM_131669 1,286 -

Fold change
 

(continued) 
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Gene group Function Condition
Enrichment 

score
Enrichment 

p-value
Genes in 
the group

total # genes 
in group

% genes 
in group 

UP Down GO ID

Proton transport Biological process Loser  7.38679 0.000619379 3 10 23.0769 3 0 15992
Regulation of transcription, DNA-dependent Biological process Loser  5.64758 0.00352604 18 655 2.67459 7 14 6355
ATP hydrolysis coupled proton transport Biological process Loser  3.83867 0.0215222 2 15 11.7647 2 0 15991
G-protein coupled receptor protein signaling pathway Biological process Loser  3.81177 0.022109 5 114 4.20168 1 4 7186
Dephosphorylation Biological process Loser  3.46778 0.0311861 3 48 5.88235 0 3 16311
Myelination of posterior lateral line nerve axons Biological process Loser  3.21941 0.0399788 1 2 33.3333 0 1 48932
Cortical actin cytoskeleton organization Biological process Loser  3.21941 0.0399788 1 2 33.3333 0 1 30866
DNA damage response, detection of DNA damage Biological process Loser  3.21941 0.0399788 1 2 33.3333 0 1 42769
Magnesium ion transport Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 15693
Histone H4-K5 acetylation Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 43981
Histone H4-K8 acetylation Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 43982
Histone H4-K12 acetylation Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 43983
Cellular response to gamma radiation Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 71480
Amino acid transport Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 6865
Transcription elongation, DNA-dependent Biological process Loser  3.21941 0.0399788 1 2 33.3333 1 0 6354
Mitotic sister chromatid cohesion Biological process Loser  3.21941 0.0399788 1 2 33.3333 0 1 7064
Nup107-160 complex Cellular Component Loser  5.34018 0.00479499 2 6 25 0 2 31080
Nucleus Cellular Component Loser  4.85945 0.00775473 30 1419 2.07039 13 20 5634
Fibrinogen complex Cellular Component Loser  3.21941 0.0399788 1 2 33.3333 0 1 5577
Histone acetyltransferase complex Cellular Component Loser  3.21941 0.0399788 1 2 33.3333 1 0 123
Clathrin coat Cellular Component Loser  3.21941 0.0399788 1 2 33.3333 0 1 30118
Proton-transporting two-sector ATPase complex Cellular Component Loser  3.21941 0.0399788 1 2 33.3333 0 1 16469
Sequence-specific DNA binding Molecular function Loser  9.52456 7.30E-05 15 340 4.22535 7 11 43565
Sequence-specific DNA binding transcription factor activity Molecular function Loser  8.46923 0.000209826 16 419 3.67816 6 13 3700
Protein dimerization activity Molecular function Loser  6.22975 0.00196994 4 36 10 5 2 46983
DNA binding Molecular function Loser  6.02211 0.00242456 19 685 2.69886 8 14 3677
Zinc ion binding Molecular function Loser  5.67957 0.00341503 18 653 2.68256 10 8 8270
MAP kinase tyrosine/serine/threonine phosphatase activity Molecular function Loser  5.61905 0.00362809 2 5 28.5714 2 0 17017
Hydrogen ion transporting ATP synthase activity, rotational 
mechanism

Molecular function Loser  4.69145 0.00917338 2 9 18.1818 0 2 46933

Protein tyrosine/serine/threonine phosphatase activity Molecular function Loser  3.35244 0.0349989 2 20 9.09091 0 2 8138
Alcohol dehydrogenase (NAD) activity Molecular function Loser  3.21941 0.0399788 1 2 33.3333 1 0 4022
Regulation of transcription, DNA-dependent Biological process Winner 7.66551 0.000468719 11 662 1.63447 3 10 6355
Myelination of posterior lateral line nerve axons Biological process Winner 4.15849 0.0156311 1 2 33.3333 0 1 48932
Magnesium ion transport Biological process Winner 4.15849 0.0156311 1 2 33.3333 1 0 15693
Intracellular cholesterol transport Biological process Winner 4.15849 0.0156311 1 2 33.3333 1 0 32367
Rhombomere boundary formation Biological process Winner 3.87336 0.0207885 1 3 25 0 1 21654
Nucleotide phosphorylation Biological process Winner 3.87336 0.0207885 1 3 25 46939
Mitotic chromosome condensation Biological process Winner 3.65276 0.0259195 1 4 20 1 0 7076
Cilium morphogenesis Biological process Winner 3.32138 0.0361031 1 6 14.2857 0 1 60271
Histone H2A acetylation Biological process Winner 3.32138 0.0361031 1 6 14.2857 0 1 43968
SMAD protein signal transduction Biological process Winner 3.19039 0.0411559 1 7 12.5 0 4 60395
Histone H4 acetylation Biological process Winner 3.19039 0.0411559 1 7 12.5 0 1 43967
Nucleus Cellular Component Winner 4.45023 0.0116759 14 1435 0.966184 4 13 5634
Prefoldin complex Cellular Component Winner 3.65276 0.0259195 1 4 20 1 0 16272
NuA4 histone acetyltransferase complex Cellular Component Winner 3.32138 0.0361031 1 6 14.2857 0 1 35267
DNA-directed RNA polymerase II, core complex Cellular Component Winner 3.32138 0.0361031 1 6 14.2857 1 0 5665
Late endosome Cellular Component Winner 3.19039 0.0411559 1 7 12.5 0 1 5770
Mitochondrial intermembrane space Cellular Component Winner 3.19039 0.0411559 1 7 12.5 5758
Sequence-specific DNA binding transcription factor activity Molecular function Winner 8.0624 0.000315169 9 426 2.06897 3 9 3700
DNA binding Molecular function Winner 7.28001 0.000689182 11 693 1.5625 3 11 3677
Sequence-specific DNA binding Molecular function Winner 4.64428 0.00961644 6 349 1.69014 2 7 43565
Alcohol dehydrogenase (NAD) activity Molecular function Winner 4.15849 0.0156311 1 2 33.3333 1 0 4022
Protein dimerization activity Molecular function Winner 3.99643 0.0183812 2 38 5 0 5 46983
Phosphotransferase activity, phosphate group as acceptor Molecular function Winner 3.87336 0.0207885 1 3 25 16776
Nucleotide kinase activity Molecular function Winner 3.65276 0.0259195 1 4 20 19201
Nucleobase-containing compound kinase activity Molecular function Winner 3.65276 0.0259195 1 4 20 19205
Adenylate kinase activity Molecular function Winner 3.65276 0.0259195 1 4 20 4017
Low-density lipoprotein particle receptor binding Molecular function Winner 3.32138 0.0361031 1 6 14.2857 1 0 50750
R-SMAD binding Molecular function Winner 3.19039 0.0411559 1 7 12.5 0 4 70412
Protein phosphatase binding Molecular function Winner 3.19039 0.0411559 1 7 12.5 1 0 19903
Histone acetyltransferase activity Molecular function Winner 3.07514 0.046183 1 8 11.1111 0 1 4402

Regulation

Table S2. Gene Ontology analysis of regulated genes. Several functions express significantly 
enriched scores in all three GO vocabularies (molecular function, biological process and 
cellular location) in both winners and losers. Enrichment score, p-value, number of genes in 
the group and gene regulation (up or down) are given for each gene group.   

 



 

 

76 Simões et al., 2014 (submitted)
 

 

Table S3. Primer sequences used for real-time PCR validation  

 

 

 

Figure S1. Comparison between the expression levels of differentially 

expressed genes with high fold-changes in the microarrays with their 

expression in confirmatory quantitative RT-PCR (qPCR). Black bars = 

qPCR; checkered bars = microarray technique (mean±SEM). 
 

External Databases 
The microarray data reported in this paper were archived in OMNIBUS with the 

reference number GSE56549: 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=oloncqgujnehpef&acc=GSE56549). 
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Chapter II – How a simple social stimulus can modulate the 
transcriptome of specific brain regions of the Mozambique 
tilapia? 
 

 (i) A Three-Dimensional Stereotaxic MRI Brain Atlas of the Cichlid Fish 
Oreochromis mossambicus 

José M. Simões, Magda C. Teles,  
Rui F. Oliveira, Annemie Van der Linden, Marleen Verhoye  

(2012) PLoS ONE, doi:10.1371/journal.pone.0044086 
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A three-dimensional stereotaxic MRI brain atlas of the cichlid fish 
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Abstract 
The African cichlid Oreochromis mossambicus (Mozambique tilapia), has been used as a 

model system in a wide range of behavioral and neurobiological studies. The increasing 

number of genetic tools available for this species, together with the emerging interest in its 

use for neurobiological studies, increased the need for an accurate hodological mapping of the 

tilapia brain to supplement the available histological data. The goal of our study was to 

elaborate a three-dimensional, high-resolution digital atlas using magnetic resonance imaging, 

supported by Nissl staining. Resulting images were viewed and analysed in all orientations 

(transverse, sagittal, and horizontal) and manually labelled to reveal structures in the olfactory 

bulb, telencephalon, diencephalon, optic tectum, and cerebellum. This high resolution tilapia 

brain atlas is expected to become a very useful tool for neuroscientists using this fish model 

and will certainly expand their use in future studies regarding the central nervous system. 
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Introduction 
Cichlid fish are one of the most successful taxa in vertebrate evolution. With over 3,000 

species described so far, the family Cichlidae is the most species-rich family of vertebrates 

offering a scope of phenotypic and behavioral variation amenable to comparative analysis that 

makes them a popular model for evolutionary studies (e.g. [1-6]). Cichlid fish also present a 

wide variation, within closely related species, of their social behavior, ranging from territorial 

to shoaling species, and of their mating and parental care systems, including monogamous and 

polygamous breeding and paternal, biparental and maternal mouth-brooding or substrate-

brooding species (e.g. [1,6,7]). The complexity and plasticity of their social behavior are also 

remarkable(e.g. cooperative breeding, [8]; for a review of social plasticity in cichlid fish see [9] 

and of their cognitive abilities (e.g. transitive inference in the social domain, [10]), and 

recently, the impact of social complexity (i.e. dimension of social groups and existence of long-

term relationships) on brain evolution in cichlids has been demonstrated [11-13]. Thus, cichlid 

fish offer a superb opportunity to study the neural and endocrine mechanisms underlying 

social plasticity and complexity and their evolution. In this regard, two African species have 

been mainly used in laboratory studies, the haplochromine Astatotilapia burtoni (e.g. 

[10,14,15]) and the tilapiine Oreochromis mossambicus (e.g. [9,16-18]). This evo-mecho 

approach requires the identification and precise coordinates of relevant brain areas in a three-

dimensional space, which would allow their precise measurement and manipulation (e.g. 

experimental lesions, micro-injections) for gain and loss of function studies. However, to the 

best of our knowledge, only partial 2D brain atlases based on histological sections are available 

for these species or for any other cichlid species [19-23]. 

In the last two decades the use of magnetic resonance imaging (MRI) to develop digital 

atlases was initiated with accurate human brain atlases (e.g. [24,25]), but has been extended 

to non-human animals with a particular focus on mammals (e.g. mouse lemur, [26]; 

nemestrina monkey, [27]; mouse, [28]; rat, [29]; Rhesus macaque, [30]; marmoset monkey, 
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[31]). The progressive technological developments of high-magnetic field MRI techniques also 

allowed imaging smaller animals, without losing resolution, such as the zebrafinch [32], the 

zebrafish [33], and the canary [34]. The three-dimensional and digital nature of MRI brain 

atlases offers more visualization and computational power when compared to classical 2D 

atlases. Although MRI atlases have a lower resolution than histological atlases they present 

numerous relevant advantages related with processing and analysis of relevant CNS structures:  

histological atlases use paraffin- or parlodion-embedded techniques which can cause tissue 

shrinkage during the dehydration and processing steps; after sectioning, the rehydration and 

staining methods are very hard to reproduce accurately from section to section; MRI-atlases 

are superior when analysing and measuring volumes of longer structures (like axon tracts and 

cranial nerves) due to its three dimensional nature, allowing a complete overview of the 

studied structure [35]. Thus, MRI neuroimage databases will have a crucial role in 

disseminating information about brain structure and function, not only in terms of the 

accurate description of species-specific brain features but also as a tool for comparative 

studies [36]. 

Here, we present the first three-dimensional stereotaxic atlas of the brain of a highly 

social cichlid fish (Mozambique tilapia, Oreochromis mossambicus) using MRI combined with a 

histological map as a guiding reference to label smaller brain nuclei, therefore relating the soft 

tissue contrast obtained with MRI with the cytoarchitectonic information provided by 

histology. 

 

Results  
Here we present the first three-dimensional brain atlas for a cichlid fish species with 

complex social behavior. The Mozambique tilapia 3D brain atlas is made available online at 

www.ispa.pt/ui/uie/ibbg/TilapiaBrainAtlas enabling the navigation through the whole brain. 

MRI data are provided in raw, Amira and Analyse formats, which will allow users to 

visualize the atlas as well as the delineations of brain nuclei using the software Amira, but also 
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other image visualization platforms, e.g. MRICro. CT images of the skull and the skull 

delineation are also provided at the same location. 

By using MRI in combination with classic histology, we developed a detailed three-

dimensional atlas of the Mozambique tilapia brain, depicting several major and minor brain 

structures.  Using T2-weighted and Nissl staining images in parallel for corresponding brain 

sections, a total of 54 brain structures (see Table 1) have been identified at an isotropic 

resolution of 50μm. Our sequence and specimen preparation, which included Dotarem as a 

paramagnetic contrast agent, enhanced the differentiation between regions in MRI images 

based on density, size and shape of neuronal cells. Thus, the depiction of nuclei in MRI images, 

is not much different from that using classic histology, since it is also possible to identify 

different tissue textures based on image contrast and pixel density pattern and position 

differences, to identify different cell agglomerations and nuclei. In contrast with classic paper 

histology atlases it is also possible to scroll readily between sections which provides critical 

insight when delimiting nuclei. Finally, with MRI one can label nuclei not only in a transverse 

perspective but simultaneously in all three dimensions. Nevertheless, the delineation of each 

nucleus was further supported by comparing MRI images to corresponding Nissl stained 

histological sections (Fig. 1). Therefore, all minor brain regions labelled on each MRI image, 

were subsequently rectified and confirmed using this comparative methodology. Although 

most structures are more conspicuous and detailed regarding cell morphology on the Nissl 

stained slides, they are nonetheless identifiable on the MRI images.  

 Three-dimensional rendering of the delineated structures has been computed using 

Amira, and the rendering images of the whole brain depicting major brain divisions as well as 

the 54 delineated nuclei are provided in Fig. 2. These images provide a good approximation of 

the shape of each structure and allow an easy estimation of the relative volume of each 

nucleus (Table 1). 
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Table I – List of brain macroareas and tracts identified, as well as, all 
minor brain divisions, their abbreviation and chromatic identification on 
the 3D MRI reconstruction. 
 

Major Brain 
Divisions Structures Abbreviations Colour 

Telencephalon 

anterior subdivision of the dorsomedial telencephalon DMa   
anterior part of the dorsal telencephalon DA   
anterior subdivision of the dorsolateral telencephalon DLa   
granular layer of the olfactory bulb BOgra   
glomerular layer of the olfactory bulb BOgl  
dorsal part of the dorsal subdivision of the dorsomedial telencephalon DMdd   
dorsal subdivision of the dosolateral telencephalon DLd   
posterior subdivision of the dorsolateral telencephalon DLp   
posterior part of dorsal telencephalon Dp   
ventral subdivision of the dorsolateral telencephalon DLv   
dorsal division of the dorsal telencephalon DD   
ventral subdivision of the ventral part of the dorsomedial telencephalon DMvv   
dorsal part of the ventral subdivision of the dorsomedial telencephalon DMvd   
ventral part of the dorsal subdivision of the dorsomedial telencephalon DMdv   
medial part of the ventral subdivision of the ventral telencephalon VVm   
dorsal part of the ventral telencephalon Vd   
supracommissural part of the ventral telencephalon Vs   

Diencephalon 

anterior part of the periventricular preoptic nucleus PPa   
posterior part of the periventricular preoptic nucleus PPp   
anterior thalamic nucleus A   
glomerular nucleus G  
nucleus anterior tuberis TA  
dorsolateral subdivision of the hypothalamus ILdl  
ventromedial subdivision of the inferior lobe of the hypothalamus Ilvm  
ventromedial thalamic nucleus VM  
inferior subdivision of the torus lateralis TLAi  
torus lateralis TLa  
dorsal subdivision of nucleus diffusus lateralis of the inferior lobe DFld  
nucleus diffusus lateralis of the inferior lobe DFl  
ventral subdivision nucleus diffusus lateralis of the inferior lobe DFlv  
nucleus diffusus medialis of the inferior lobe DFm  
central posterior thalamic nucleus CP   
lateral part of nucleus recessi lateralis nRLl  
periventricular nucleus of the posterior tuberculum TPP  
dorsal posterior thalamic nucleus DP  
central nucleus of the inferior lobe CE  
corpus mamillare CM  
nucleus recessi lateralis RL  

Mesencephalon 

optic tectum TeO  
optic tectum layer 1 TeO layer 1   
torus semicircularis TS  
torus longitudinalis TL  

Rombencephalon 

eminentia granularis EG  
molecular layer of the lateral part of the valvula cerebelli Val mol  
granular layer of the lateral part of valvula cerebelli Val gra  
molecular layer of the medial part of the valvula cerebelli Vam mol  
central gray GC  
crista cerebellaris CC  
molecular layer mol  
molecular layer of corpus cerebelli Ccemol  
granular layer of corpus cerebelli Ccegra  

 tractus opticus ventralis oTv  
Tracts tractus opticus tO  

 olfactory tract tolf  
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Using the intrinsic three-axis nature of MRI-based atlases, we established a stereotaxic 

coordinate system. The centre x, y, and z coordinates for each structure can be found in Table 

2. As a zero point of the reference frame, we propose the intersection between the mid-

sagittal and the mid-horizontal planes and the anterior commissure (AC). The latter, can be 

easily identifiable both on MRI and Nissl histology images, and the Y/Z (rostral/caudal and 

dorsal/ventral) axis passing through this point corresponds to the reference axis often used by 

electrophysiologists. 

 Choosing an internal rather than an external landmark system was motivated by the 

fact that the shape of the fish’s head may vary between sexes (males exhibit a concave dorsal 

head profile) and between adult and juvenile animals. Nonetheless, this approach will allow 

neurobiologists to accurately pinpoint different specific brain regions, when implanting 

cannulas or doing electrophysiology recordings. To facilitate these experimental 

methodologies we also imaged an entire tilapia head, where it is possible to visualize the 

relative position of the brain regarding its neighbouring structures (available online). 

We have also collected computerized tomography (CT) images that provide relevant 

information concerning the bony structure protecting and surrounding the brain. Using the 

Amira software, a three dimensional representation of this CT information has been registered 

with the MRI data set and a superimposed image of both data sets is illustrated in Fig. 3. This 

approach allows the integration of all collected information, which provides spatial 

coordinates regarding structures in the brain and around it. 
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Fig. 1 – Comparison between Nissl 
stained histology sections (a) and MRI 
sections (b). On the left hand side is 
represented the olfactory bulbs and the 
beginning of the telencephalon. On the 
middle, we can see the end part of the 
optic tectum and diencephalon. Finally, 
on the right side is portrayed the 
cerebellum. 
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Table II – List of smaller brain divisions organized by major areas and 
edifying their volume and x, y and z coordinates. The coordinates of the 
structures were considered with respect to the origin at anterior 
commissure (in mm). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Major Brain Divisions Structures Volume 
(mm3) Center X Center Y Center Z 

Telencephalon 

DMa  0,197 0,432 -1,522 0,419 
DA  0,579 1,323 -1,110 1,098 
DLa  1,143 1,539 -0,954 -0,165 
BOgra  0,248 0,480 -1,328 -0,543 
BOgl 0,507 0,501 -1,155 -0,824 
DMdd  2,223 0,762 -0,440 1,916 
DLd  0,793 2,001 -0,615 0,970 
DLp  0,614 1,876 0,274 0,301 
Dp  0,706 1,261 0,464 -0,017 
DLv  0,269 2,160 -0,766 0,448 
DD  0,360 1,502 0,298 1,391 
DMvv  0,809 0,256 -0,333 1,049 
DMvd  0,252 0,181 0,198 1,693 
DMdv  0,607 0,797 0,278 1,402 
VVm  0,040 0,103 -0,509 -0,107 
Vd  0,050 0,186 -0,582 0,439 
Vs  0,018 0,155 -0,122 0,206 

Diencephalon 

PPa  0,280 0,130 0,553 -0,598 
PPp  0,017 0,070 1,693 -0,677 
A  0,049 0,142 1,698 0,150 
G 0,264 0,915 2,508 -0,934 
TA 0,239 1,356 -0,167 0,901 
ILdl 0,092 1,096 2,108 -2,181 
ILvm 0,017 0,108 1,696 -0,330 
VM 0,030 1,844 1,901 -1,286 
TLAi 0,168 1,897 1,988 -0,879 
TLA 0,257 1,861 2,721 -1,610 
DFld 0,856 1,476 3,626 -1,660 
DFl 0,262 1,484 2,705 -2,111 
DFlv 0,573 0,335 3,621 -1,534 
DFm 0,053 0,304 1,981 -0,071 
CP  0,138 0,982 2,711 -1,821 
nRLl 0,029 0,118 1,919 -0,541 
TPP 0,029 0,179 1,988 0,230 
DP 0,405 0,899 3,596 -1,126 
CE 0,124 0,358 2,605 -1,614 
CM 0,240 1,356 -0,167 0,901 
RL 0,072 1,001 2,652 -1,810 

Mesencephalon 

TeO 5,418 1,676 2,554 1,134 
TeO (layer 1)  1,841 1,661 2,734 1,241 
TS 0,449 1,387 2,817 0,752 
TL 0,145 0,226 2,404 1,003 

Rombencephalon 
 

EG 0,537 1,223 4,815 0,877 
Valmol 0,230 0,566 3,252 1,368 
Valgra 0,479 0,617 3,128 1,009 
Vammol 0,126 0,071 3,272 0,793 
GC 0,340 0,250 4,772 0,074 
CC 1,139 0,726 6,063 0,620 
mol 1,149 0,491 5,299 1,295 
CCemol 2,605 0,533 4,977 2,467 
CCegra 2,554 0,265 4,973 2,082 

Tracts 
tOv 0,433 1,660 2,062 -0,377 
tO 1,641 0,961 0,649 -0,933 
tolf 0,125 0,212 -2,111 -0,888 
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Discussion 
Three-dimensional brain atlases have an enormous potential as gateways for navigating, 

accessing, and visualizing neuroscientific data [37]. An increasing number of recently published 

3D MRI based brain atlases for emerging model organisms (e.g. zebrafinch [32], zebrafish [33] 

and canary [34]) highlight the advantages of using the MRI technique, despite their lower 

resolution when compared to classic histology and putative problems related with adjusting 

contrast and signal-to-noise ratio. These advantages are three-fold. First, digital MRI brain 

atlases, unlike classic histology sections, are not affected by shrinkage and physical distortions 

during sectioning and embedding of post-mortem brains.  

 

 

 

 

 

 

 

Fig. 2 – Rendering of the whole brain, depicting the major areas (a, b, c) as well as all the 
54 delineated structures (d, e, f). Three different angles are presented to maximize the 
number of brain regions per image: (a), (d) right view; (b), (e) partial frontal view; (c), (f) 
left view. In the first row of images   it is possible to define six major areas: telencephalon 
(red), olfactory bulbs (pink) and part of the olfactory tracts (purple), optic tectum (brown) 
and part of the optic tracts (light blue), diencephalon (orange), cerebellum (yellow) and the 
brain stem (blue). For a complete list of the small nuclei identified and the color code for 
the remaining images see Table I. 

 

Thus, this technique provides a more precise way of processing neuroanatomical data, 

generating very precise stereotaxic coordinates, which can be used in electrophysiology and 

neuropharmacological studies. Second, and despite being limited by their resolution and 

contrast, MRI histology surpass the methodological constraints of classic histological sectioning 

techniques when analyzing complex structures [38]. It allows the morphological examination 
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of anatomical brain structures in a three-dimensional space, the direct visualization of shapes 

and volumes of different brain structures, and a computerized sectioning of complex 

structures at arbitrary angles [32]. To ensure a rapid progress in this area, it will require 

increasing contribution of neuroinformatics, akin to the growing role of bioinformatics in other 

areas of biology. Finally, digital MRI atlases can be very useful tools to make generalizations 

about localization of various brain regions, their function and spatial structure at both the 

macroscopic and microscopic levels and to allow the comparison between different species. 

 

 

 

 

 

 

 

Fig. 3 – Overlap of MRI brain images (blue) with CT head data (light 
grey) in the Amira environment. (a) depicts a 3D reconstruction of the 
tilapia head based on the CT data set overlaid with a 3D tilapia brain. (b) 
and (c) show 2D sections of the head CT (sagittal and transverse views, 
respectively) and the tilapia’s brain position in those perspectives. 

 

In this paper we have managed to identify 54 brain nuclei in the brain of the 

Mozambique tilapia, which represents only roughly 30 % of the brain areas that have been 

identified in the available 2D brain atlases for this species [21,22]; where ca. 170 distinct 

structures have been described). The obvious reduction in the number of identifiable nuclei, 

due to the limitations in resolution characteristic of using the MRI technique, is surpassed by 

the neuroanatomical advantage of visualizing, in the same brain, volumes and shapes of 

different nuclei in a three dimensional space and to be able to determine their location based 

on a more precise coordinate system. Consequently, this provides a powerful tool for 
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neuroscientists to better calculate the ideal orientation of the brain for electrophysiological 

recordings, stereotactic injections or brain sectioning [32]. The combined use of histological 

and MRI images allows a better understanding of the spatial relationships of different brain 

structures by linking the resolution provided by the  cytoarchitectural detail of classic 

histology, with the 3-D representations provided by the MRI technique (e.g. [31,34]). 

A comparison between our 3D MRI atlas to that of zebrafish [33] shows that here we can 

distinguish a larger number of telencephalic and diencephalic nuclei but a lower number of the 

smaller nuclei located in more caudal areas (e.g. rhombencephalon,  brain stem). These 

structures are clearly identifiable in the histological sections, but very hard to delimitate 

precisely in our MRI sections. This is due to the fact that we have used a less powerful MRI 

scanner than the one used for zebrafish (i.e. a 9.4 T that allowed an isotropic resolution of 50 

μm in tilapia vs. a 16.4 T that allowed an isotropic resolution of 10 μm in zebrafish). Thus, the 

availability of more potent MRI scanners in the near future will play a pivotal role in the 

development of higher resolution 3D brain atlases for small model organisms. 

Although cichlid species are excellent models for comparative social neuroscience 

studies, given the complexity and diversity of their social systems described above, the data 

published so far has used very gross neuroanatomical measures [11-13] and detailed 

neuroanatomical data is currently only partially available for two species [telencephalon and 

diencephalon of  Astatotilapia burtoni: 19, 23; and whole brain of O. mossambicus: 21 and this 

paper]. A comparison of forebrain of these two species shows a very similar organization that 

is typical of percomorphs. The dorsal telencephalon of both species is divided into three highly 

elaborated (i.e. with many identifiable cell groups) areas, dorsolateral (Dl), dorsomedial (Dm) 

and dorsocentral (Dc), and two more uniform dorsal (Dd) and posterior areas (Dp). The 

subdivisions within each of these areas do not always match between the two species but at 

present it is difficult to understand to what extent these differences in nomenclature reflect 

real cytoarchitectural differences or different interpretations among authors. Future studies 
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using genetic markers may help to solve these divergencies. Two cell groups are clearly 

identified in both cichlid species that have not been described before in other teleost species: 

a granular zone in Dld (named Dl-g in A. burtoni) and Dcm (named Dm-2 in A. burtoni) (see 

sections 3/24 to 5/24 on the accompaining website to this paper). Once more, future studies 

are needed to establish the function of these cell groups that may represent specializations of 

the cichlid telencephalon. At the level of the ventral telencephalon the main cell groups 

described for other teleosts were also found in both species: ventral (Vv), dorsal (Vd) and 

supracommissural (Vs) nucleus. The diencephalon is also highly conserved in both species, with 

minor differences between the two species. In the hypothalamus, the diffuse nucleus of the 

inferior lobe in tilapia is preceded by the dorsolateral subdivion of the inferior lobe (ILdl), 

which will further subdivide in the dorsal and ventral subdivision of nucleus difusus lateralis of 

the inferior lobe, DFld and  DFlv respectively. In contrast, in A. burtoni the diffuse nucleus of 

the inferior lobe (Dn) is located anatomically at the same positions of ILdl and no further 

divisions occur [19]. Also in the posterior tuberculum, the mammillary body lies ventrally to 

the preglomerular commissural nucleus (PGCn) in A. burtoni whereas in tilapia this structure is 

located ventral to the Nucleus of the posterior tuberculum (TP). In conclusion, although the 

three-dimensional brain atlas of tilapia presented here cannot be used accurately with other 

cichlid species, it offers a detailed description of a cichlid brain which, given the similarities 

described above between the two cichlid species studied so far, can be used with caution as a 

reference guide for investigators starting to work in other cichlid models. 

In summary, the high resolution 3D brain atlas presented here is expected to become a 

very useful tool for neuroscientists already using tilapia as a model organism and will 

contribute to make this species more usable in future studies of the central nervous system. As 

a first step in this direction we have created a free access website for the tilapia 3D brain atlas 

and we are developing the tools that will allow the annotation by authorized visitors of the 

available online brain atlas with multiple information (e.g. distribution of different receptors, 
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neurotransmitters and neuropeptides; gene expression patterns; adult cell proliferation areas 

and newborn cell migration routes; etc.). 

 

Materials and methods 
 

Specimen Preparation 
To collect MRI images, two males and two females (standard length: 10.7±1.8 mm) were 

perfused transcardially, first with a phosphate-buffered saline solution (PB 0.2 M), to clear the 

vasculature, followed by a solution of Paraformaldehyde (2 %) in Dotarem® (1 %), to fix the 

tissue with a paramagnetic MR contrast agent. The fish were postfixed in a mixture of 

PFA/Dotarem for 5 days. The day before imaging, the brains of three fish were removed from 

the skull and transferred to a polypropylene tube filled with Fluorinert®, a proton-free 

susceptibility-matching fluid and scanned with the highest resolution to enable a further 

identification of brain nuclei (Brain Imaging). The other perfused fish (N=1 adult male) was 

scanned to stereologically study the brain’s position inside the head and skull (Head Imaging). 

Although three data sets were registered to create a model tilapia brain unfortunately, due to 

technical issues, the quality of the registration was limited in comparison to individual data 

sets and therefore, we have used a single dataset from an adult male. However, it should be 

stressed that the three scanned brains were visually compared, to ascertain the 

representativity of the data set shown, and no differences were observed. 

This study was performed in strict accordance with the recommendations of the 

Direcção Geral de Veterinária, the Portuguese National Authority for Animal Health, and the 

protocol was approved by their ethics committee (Permit Number: 0420/000/000/2007). All 

surgery was performed under MS222 anesthesia, and every effort was made to minimize 

suffering. 
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Histological data 
For the histology, four adult tilapia (2 males and 2 females; standard length: 9.6±1.1 

mm) were perfused using a similar protocol to the one described above but without the MR 

contrast agent. After perfusion, the brains were removed from the skull, post-fixed for 1h in 

PFA (2 %) and transferred to a formalin solution (10 % buffer).  After fixation, brains were 

dehydrated (Leica TP1020) and embedded in paraffin before they were cut in transverse 

sections at 10 μm and mounted serially on glass slides.  The sections were then deparaffinised 

for 10 min at 70ºC, rehydrated and stained with a Nissl staining protocol. Finally, the sections 

were dehydrated and coverslipped with DPX mounting medium (Merck). Since there were no 

obvious sex differences in brain anatomy the histology figures used here represent the brain of 

an adult male, which is consistent with all other figures shown. 

 

MR image acquisition 
Brain Imaging - MRI scanning was performed on a 9.4T horizontal bore Magnetic 

Resonance Imaging system (Bruker BioSpin MRI GmbH, Ettlingen, Germany) using the standard 

Bruker cross coil setup, being a quadrature transmit volume coil (inner diameter 72 mm) and a 

quadrature receive surface coil, designed for mice brain. Horizontal images of the Tilapia brain 

were acquired using a fat-suppressed T2-weighted three-dimensional RARE sequence with the 

following parameters: acquisition bandwidth of 33 kHz, TE/TR=30/350 ms, echo train length=2, 

8 averages, a field of view of (13.5×8×10) mm3 and an acquisition matrix of (270×160×200), 

resulting in a nominal spatial resolution of (50×50×50) μm3. The total acquisition time was 12.6 

hours. 

Head Imaging - Images were acquired using the same MRI equipment, using the same 

quadrature volume coil both for transmission and receiving. For the whole head imaging was 

used a fat-suppressed T2-weighted three-dimensional RARE sequence with the following 

parameters: acquisition bandwidth of 50 kHz, TE/TR=26/350 ms, echo train length=2, 4 

averages, a field of view of (80×40×30) mm3 and an acquisition matrix of (400x200x150), 
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resulting in a nominal spatial resolution of (200×200×200) μm3. The total acquisition time was 

5.8 h. 

 

CT acquisition 
In order to acquire images of the skull, the whole head of a perfused adult male was also 

scanned with an X-ray micro-CT system (Skyscan 1076, Belgium, focal spot size of 5μm, energy 

range of 20–100 keV). An image data with matrix (1649×2448×372) and resolution of 

(18×18×18) μm3 was achieved.  

 

Image post-processing 
Brain and nuclei delineation was done manually using Amira software (Mercury 

Computers Systems, USA). Segmentation was done slice-by-slice in a transverse perspective 

and posteriorly confirmed systematically in the two other orthogonal views (axial and sagittal). 

Major brain subdivisions (Telencephalon, Diencephalon, Mesencephalon, Rhombencephalon) 

were first delineated, followed by structures which presented more distinct boundaries (e.g. 

olfactory bulbs, optic tectum and corpus cerebellis), which helped identifying smaller nuclei. In 

addition, histology sections were used as reference for the location and boundaries of smaller 

structures. Histology sections were digitised, juxtaposed to MRI images and together analysed 

in order to more precisely delineate all nuclei. Nuclei which did not present clear contrast 

differences/boundaries in the MRI were not considered, despite being histologically 

identifiable.  

Nuclei volume measurements were calculated using the Material Statistics function in 

the Amira software. Uploading the MRI and nuclei delimitation data with the free software 

MRIcro, using the same procedures described by Poirier et al. [32], allowed to extract the 

stereotaxic coordinates for each nuclei. 
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Co-registration of CT images to the MRI brain atlas was performed with Amira, by an 

affine transformation of the CT data – down-sampled to (70×70×70) μm3 – to the MRI. 

 

Neuroanatomical analysis 
There is a rich tradition in comparative neuroanatomy of fish that has prompted the 

emergence of different nomenclatures for brain structures of ray-finned fishes (e.g. [39-44]. In 

this paper we adopted the nomenclature used by [21] in the previously published 2D brain 

atlas of this species. This nomenclature follows the scheme proposed by [42] and [43], but 

introduces new terms that reflect some peculiarities of the cichlid brain. 
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Abstract 
Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression 

of their social behavior to the daily changes in social life and to transitions between life-history 

stages, and such ability impacts on their Darwinian fitness. This behavioral plasticity may be 

achieved either by rewiring or by biochemically switching nodes of the neural network 

underlying the social behavior in response to perceived social information. Independently of 

which type of proximate mechanism underlies social plasticity, at the neuromolecular level it 

must rely on social regulation of gene expression, such that different neurogenomic states 

emerge in response to different social stimuli and the switches between states are 
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orchestrated by signaling pathways that interface the social environment and the genotype. In 

here we test this hypothesis by characterizing the changes in the brain profile of gene 

expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. 

This species has a rich repertoire of social behaviors during which both visual and chemical 

information are conveyed to conspecifics. Particularly, dominant males increase their urination 

frequency during agonist encounters and during courtship to convey chemical information 

reflecting their dominance status. The recording of the electro-olfactogram showed that the 

olfactory epithelium discerns olfactory information from dominant and subordinate males as 

well as from pre- and post-spawning females. We used custom-made microarrays to perform a 

genome-scale analysis of the brain molecular systems involved in processing olfactory stimuli. 

Our results show that different olfactory stimuli from conspecifics’ have a major impact 

in the brain transcriptome, with different chemical social cues eliciting specific patterns of 

gene expression in the brain. These results confirm the role of rapid changes in gene 

expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce 

the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to 

rapid changes in their social environment.  

 

Background 
Group living animals have to adjust the expression of social behavior to the nuances of 

daily social life and to transitions between life-history stages, and their ability to do so impacts 

on their Darwinian fitness (Oliveira, 2009). This socially driven behavioral plasticity suggests 

that social information should trigger changes in brain neurogenomic states that underlie 

different behavioral repertoires. Thus, reprogramming the functional genome in response to 

the social environment allows an animal to switch between adaptive behavioral states (Harris 

and Hofmann, 2014; Renn and Schumer, 2013). Gene expression profiling enables the study of 

this dynamic relationship between genotype and behavior (Hofmann, 2003) and to unveil the 
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genetic networks behind complex behaviors. In addition, the development of whole-genome 

sequencing, microarrays and other genomic resources for non-traditional model organisms, 

but with complex social repertoires, has provided relevant insights on how complex genotypes 

are translated to produce meaningful behaviors (Robinson et al., 2005; Robinson et al., 2008).  

In recent years an increasing number of studies has described the influence of social 

environment and of social interactions on genome structure and on transcriptional and neural 

activity (Robinson et al., 2008). For example, caste differentiation (between workers/queen) in 

the honey bee (Apis mellifera), a key feature in eusocial insects, is influenced not only by 

heritable traits but also by variations in the regulation of molecular pathways linked with 

several life-history traits, such as nutrition, metabolism, and reproduction (Evans and Wheeler, 

2001; Smith et al., 2008). The activity of aggression-related genes in this species also seems to 

be under both inherited and environmental influences, varying with age, exposure to alarm-

cues and depending on colony environment (Alaux et al., 2009). The study of gene expression 

signatures of life history transitions has also been a focus in teleost fishes. For example, life 

history traits of salmonids have also been addressed in a number of studies showing variation 

in brain expression profiles related with alternative reproductive and migratory tactics (Aubin-

Horth and Renn, 2009; Aubin-Horth et al., 2005b) and their interaction with the rearing 

environment (Aubin-Horth et al., 2005a). All the results on the impact of the social 

environment on genome activity highlight new possibilities concerning how social stimuli, as 

well as more complex interactions between conspecifics, can influence and shape gene 

translation into producing appropriate behavioral responses, according to external and 

internal cues and also to the animals’ past experience. 

Most of the studies discussed above characterize fixed and irreversible behavioral 

phenotypes, which correspond to switches between “static” neurogenomic states. But the 

interaction between the genome and the environment is also expected to be present in 

shorter time frames and to be reversible in order to accommodate labile and transient changes 
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in behavioral states in order for flexible adaptive behavior to evolve (Bell and Robinson, 2011; 

Wong and Hofmann, 2010). Behaviorally, a single interaction may have consequences for the 

performance of the individuals and the outcome of future interactions (e.g. winner and loser 

effects of agonistic interactions, Lehner et al., 2011; female mate choice, Cummings et al., 

2008), but its impact on the neurogenomic state of the individuals has been scarcely 

characterized. However, during a social interaction social information is available and 

potentially exchanged through a multitude of sensory channels, which makes it difficult to 

isolate the relevant cues that trigger a response and to characterize the specific responses to 

these cues. Thus, studying simple social signals in a single sensory channel is a promising 

approach to start exploring the way specific social information drives genomic responses. 

Following this approach, in the current study we characterize the transcriptomic response to 

social odors in two olfactory brain regions of male Mozambique Tilapia, Oreochromis 

mossambicus. This African cichlid fish is an established model system in the study of 

neuroendocrine mechanisms underlying socially mediated behavioral changes (for a review 

see Oliveira (2009), in which the importance of chemical signaling of male social status has 

been described (e.g. Barata et al., 2007; Barata et al., 2008) and the olfactory system, from 

sensory epithelium to bulbar and extrabulbar projections, has been well characterized (Uchida 

et al., 2005), which allows for the identification of regions of interest in the brain. 

 

Synopsis of the Mozambique Tilapia mating system and chemical communication  
The Mozambique tilapia is an African maternal mouth-brooder cichlid displaying a lek-

breeding system, with a highly complex and multimodal social repertoire, including visual (e.g. 

(Baerends and Baerends-Van Roon, 1950)), acoustic (Amorim et al., 2003) and chemical signals 

(e.g. Barata et al., 2007, Barata, Fine et al. 2008). Depending on the social environment, males 

can exhibit two distinct behavioral phenotypes: dominants (DOM) and subordinate (SUB).  

DOM individuals adopt a typical velvet black coloration and establish breeding territories on 
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the bottom, where they dig nests to which they attract females using courtship displays 

(Oliveira and Almada, 1998a; Oliveira et al., 1996). SUB males present a pale silver coloration 

and either move around among the breeding territories of DOM males or shoal together with 

females, while they wait for their opportunity for social ascension. Sneaking fertilization 

attempts by SUB males have also been reported (Oliveira and Almada, 1998a). Changes 

between these social phenotypes have been shown to activate a cascade of molecular 

processes and a variety of neuroendocrine pathways which include neuropeptides and steroid 

hormones (Almeida et al., 2012; Oliveira and Canário, 2000; Oliveira et al., 1996). Ovulated 

females visit male breeding arenas when ready to spawn and follow courting males to their 

nests, engage in courtship rituals, and collect the fertilized eggs into their mouths. After 

spawning, females leave the male leks and live in nursery areas located in shallow water while 

they mouthbrood the eggs and care for the fry (Bruton and Boltt, 1975; Fryer and Iles, 1972). 

During this period, females become also more aggressive, defending the brood against 

predators and conspecifics (Oliveira and Almada, 1998b). 

Male tilapia store urine in their bladders which they use to signal social rank during 

agonistic interactions with other males or in the presence of pre-ovulatory females (Barata et 

al., 2007).  Furthermore, males are able to modulate their rate of urination depending on the 

social environment. An increase of males’ urination rate is observed during agonistic 

encounters (Barata et al., 2007) or in the presence of pre-ovulatory females (Barata et al., 

2008). Furthermore, both the volume of stored urine and its olfactory potency, as measured 

by electro-olfactogram (EOG) recordings, is higher in DOM than in SUB males (Barata, Hubbard 

et al. 2007; Barata et al., 2008). On the other hand, females do not store urine and have a 

higher frequency of urination (Keller-Costa et al., 2012; Miranda et al., 2005). Additionally, 

females have smaller kidneys, smaller urinary bladders and the urothelial thickness of the 

inner surface of the bladder is also smaller than in males (Keller-Costa et al., 2012). Finally, the 
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odor of pre-ovulatory females elicits higher amplitude EOG responses in males than that of 

post-ovulatory females (Miranda et al., 2005).  

The specific goal of the present study is to characterize how different social odors that 

convey specific information about male social status (DOM vs. SUB) and female reproductive 

state (pre-ovulatory, PRE  vs. post-ovulatory, POST) regulate gene expression profiles in 

specific brain areas known to be involved in the processing of olfactory information: the 

olfactory bulb and the olfactory pallium. To accomplish this, we used a cDNA microarray 

platform, developed for another cichlid species (A. burtoni), that contains many known 

candidate genes in addition to ca. 19,000 cichlid cDNAs (Renn et al., 2004; Salzburger et al., 

2008).  

 

Materials and methods 

Housing 
Mozambique tilapia were housed at ISPA – Instituto Universitário, Lisboa, Portugal  in 

mixed-sex groups which were kept in tanks with gravel substrate, which promotes nest digging 

by males and the establishment of territories and social hierarchies, at a temperature of 26 ± 

2◦C and a 12L:12D photoperiod. Fish were fed twice daily with commercial cichlid sticks. 

 

Stimuli collection 
In different tanks, stable social groups of 10 individuals (5 males and 5 females) were left 

undisturbed for 5 to 8 weeks. During this period, territories were established and spawning 

occurred naturally. Five minute behavioral observations of each individual were done every 

other day and male social status and behavior was noted. 

 Different sampling approaches were used to collect social odors for each sex due to 

the intrinsic biological differences between them. Given that male tilapia store urine in their 

bladders, urine was collected in males by a smooth anterior-posterior massage of the 
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abdominal region following a procedure previously described (Oliveira et al. 1996). Urine from 

3 males was pooled according to social status (DOM or SUB). Since it is very difficult to collect 

urine from females, female conditioned water was used instead. For this purpose females 

were isolated in 20-L glass tanks with dechlorinated tap water (at 27°C) for 4h (according to 

Miranda et al. (2005). This conditioned water was divided in two groups of 3 females each, 

designated as either PRE or POST, depending on the sampling point being either the day prior 

to their predicted ovulation day or 1-2 days after they have spawned, respectively. Female 

reproductive stage was determined by systematic observations of their behavior, abdomen 

profile and genital papilla. All samples (both female conditioned-water samples and male urine 

samples) were then subjected to a fractionation procedure similar to the one described in 

Frade et al. (2002). 

 

Electro-olfactogram (EOG) and brain microdissection 
In order to characterize the responses elicited by the stimuli used in this experiment, 

EOGs were recorded in 33 dominant male tilapia (body mass = 182 ± 34 g) using a similar 

protocol to that described in Miranda et al. (2005). Briefly, each male was anaesthetized by 

immersion in water containing 100 mg l–1 MS-222 (Pharmaq, Norway) and immobilized with an 

intramuscular injection of gallamine triethiodide (3 mg kg–1 in 0.9% saline). Immobilized fish 

were then placed in a purpose-built V-clamp and aerated, via a mouthpiece, with water 

containing 50 mg l–1 MS-222. The right-side olfactory rosette was exposed by removal of the 

ring of cartilage surrounding the nostril and continuously irrigated with dechlorinated, 

charcoal-filtered water via a gravity-fed system (6 ml min–1). The EOG was recorded using the 

software Axoscope (Axon Instruments, Inc., Foster City, CA, USA). The peak amplitude of the 

EOG was measured, blank-subtracted and normalized (using the response to the ‘standard’ 10–

5 mol l–1 L-serine) as described by Frade et al. (2002). Blanks and standards were run twice, in 

the beginning and end of the recording period. 
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Each fish was exposed to a single olfactory stimulus, introduced into the continuous 

water flow via a three-way valve, for 5 s with 10 s intervals for a period of 45 min. This 

frequency of stimulation allowed for olfactory neurons to return to a baseline state before the 

next stimulation; also a pulsatile olfactory stimulation reflects the rate of urine pulses by males 

during social interactions (Barata et al., 2007; Miranda et al., 2005). After the olfactory 

stimulation, males were killed by decapitation, and the brains were rapidly dissected, 

embedded in Tissue-Tek® OCT™ Compound, and stored at -80°C before being sectioned 

coronally (200 μm) in a temperature-controlled (-18°C) cryostat. The olfactory bulbs (OB) and 

the putative olfactory pallium (area Dp – posterior part of the dorsal telencephalon) were then 

microdissected from the appropriate sections using a 27G gauge micropunch cannula 

(Carpenter et al., 2009).  

 

Microarray analysis 
Total RNA was extracted from both microdissected brain areas (OB and Dp) according to 

a standard Trizol protocol (Invitrogen) and subjected to one round of RNA amplification using 

Message Amp II kit (Invitrogen). Amplified RNA was analyzed for quantity and quality on the 

Bioanalyzer 2100 (Agilent) using the Agilent Total RNA Nano Chip assay.  Samples from blank 

stimulations (control) collected from 8 different individuals (for both areas) were pooled and 

aliquoted to be used as reference in a reference based array design (see Table I and Supp. Fig. 

1). mRNA (500 ng) from each experimental sample or reference were reverse transcribed using 

SuperScript II (Invitrogen) and labeled according to Renn et al. (2004). Following this reverse 

transcription, RNA was hydrolyzed and purified before being dye-coupled with Cy3 or Cy5 

post-labeling Reactive Dye Pack (Amersham). A reference and experimental sample were 

competitively hybridized at 65oC overnight to a 19K A. burtoni cDNA microarray (GEO platform 

GPL6416) constructed from brain-specific and mixed tissue libraries representing a total of 

17,712 cichlid-specific features (Renn et al., 2004; Salzburger et al., 2008). This platform has 
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previously been shown to give biologically meaningful results in heterologous hybridizations 

using other cichlid species from the genus Oreochromis (Renn et al., 2004). Finally, microarrays 

were scanned with an Axon 4000B scanner (Axon Instruments) using Genepix 4.0 software 

(Axon Instruments). Array features were visually inspected individually and features with poor 

quality, that is, with a signal intensity smaller than twice the standard deviation above 

background, or displaying irregularities or potentially erroneous artifacts were excluded. 

 

 

 

 

 

 

 

 

 

Supp. Fig. 1 – Hybridization design of control and reference samples. Brain samples from 
blank stimulations (control) collected from 8 different individuals (for both areas) were 
pooled and aliquoted to be used as reference in a reference based array design. mRNA (500 
ng) from each experimental sample or reference were reverse transcribed and RNA was 
hydrolyzed and purified before being dye-coupled with Cy3 or Cy5. A reference and 
experimental sample were competitively hybridized overnight. 

 

Statistical analysis 
Data were processed using the LIMMA software package (v3.12.0; (Smyth, 2005) in R 

(v2.15.0; the R Foundation for Statistical Computing, 2012).  Background-subtracted mean 

intensities were calculated using the minimum method and further normalized using within-

array loess normalization. After this normalization step, Bayesian analysis was used to 

calculate gene expression levels using the ratios of intensities measured. Finally, to compare 

between expression profiles for the different olfactory stimulations, unsupervised hierarchical 
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clustering analysis were done using the hclust function in R/Bioconductor. The heatmap 

function in the package gplots was used to visualize clusters of gene expression, where only 

significantly expressed genes (P<0.01) across conditions were clustered. The consensus tree 

and confidence values were calculated via bootstrapping datasets, based on the Euclidian 

distanced matrix obtained for each of the 1000 permuted gene expression profile datasets. 

Regarding the functional annotation of ESTs, we considered a library already compiled 

for another cichlid species, A. burtoni, and used Cytoscape (v.2.8, Smoot et al. (2011)) with the 

BiNGO plugin (Biological Network Gene Ontology tool, Maere et al. (2005) for the calculation 

of under- and over-represented GO terms and reported uncorrected hypergeometric p-values. 

 

Results and Discussion 

Olfactory stimulation 
The overall patterns of response to social odors measured with EOG recordings (Fig. 1) 

were similar to those previously reported for this species (Barata et al., 2007; Barata et al., 

2008; Miranda et al., 2005). The mean normalized EOG amplitude evoked by subordinate male 

urine at a dilution of 1:10000 was significantly smaller (0.25±0.06; N=7) than that elicited by 

urine samples of dominant males (0.93±0.10; N=7; P<0.01; Fig. 1). Furthermore, the mean of 

normalized responses to water extracts from PRE females at a dilution of 1:1000 (0.79±0.13; 

N=6) was significantly higher than that from POST females (0.28±0.10; N=6, P<0.01; Fig. 1).  

Our results show that T and PRE stimuli elicited greater responses than SUB or POST 

stimuli, suggesting that males can discriminate social status and reproductive state of social 

partners based on olfactory cues alone. The chemical nature of the active odorants which 

allow for these discriminations is still unknown. Nonetheless, recent work suggests that males 

can assess a rival’s fighting ability based on the olfactory information present in their urine 

(Keller-Costa et al., 2012), which might enable them to avoid time consuming and energetically 

costly escalated fights (Ros et al., 2006) and thus stabilize social hierarchies (Keller-Costa et al., 
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2012).  Thus, the EOG responses measured in the sensory neurons at the olfactory rosette 

suggest that they are well adapted to discriminate between urinary odorants of different male 

social status, which might contribute to reduce aggression and escalation of fights in a social 

context. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Olfactory responses of male tilapia to different stimuli. On the left hand-side, 
typical electro-olfactograms (EOGs) recorded in response to different stimuli: in blue – 
controls for normalization – serine (S) and blank (B); in pink – male urine (1:10000) – from 
dominant (DOM) and subordinate (SUB) males; in light green – extracts of female water 
(1:1000) – from pre-ovulatory (PRE) and post-ovulatory (POST) females. On the top-half 
on right hand side, normalized EOG amplitudes (mean ± SEM) elicited by all stimuli: S 
(N=6); B (N=7); DOM (N=7); SUB (N=7); PRE (N=6); POST (N=6); after 45min of 
stimulation (*P< 0.05). On the bottom-half, a depiction of the tilapia’s olfactory rosette 
(40x) and the apparatus for olfactory stimulation and electrophysiological recording of 
olfactory evoked potentials. 

 

Moreover, males seem to be able to discriminate between females in different stages of 

their reproductive cycle, probably due to specific odorants released into the water by PRE 

females, as previously suggested for this species (Miranda et al., 2005). 
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Analysis of gene expression profiles 
Analysis of OB and Dp gene expression revealed hundreds of differently expressed genes 

after stimulation with any of the four different social stimuli (Table 1). Considering the initial 

more than 19K unique expressed sequence tags (ESTs) included in the analysis, over 72% 

hybridized with our samples (i.e. presented a signal- to-noise ratio above threshold) in both OB 

and Dp, confirming the usefulness of heterologous hybridization. A Bayesian analysis of gene 

expression levels (Townsend and Hartl, 2002) revealed that  211 of the surveyed genes in the 

OB showed significant differences among the 4 olfactory stimuli, whereas in Dp only 87 genes 

were differentially expressed (p<0.01; Fig. 2). No genes were found to be up- or down-

regulated simultaneously in both regions, suggesting that region specific molecular processes 

are activated by olfactory stimulation and neural transmission. Another interesting 

observation concerning the number of differently expressed genes in each of these two 

olfactory processing centers was that at the first relay station, OB, the comparison between 

male and female cues seems to elicit a considerable surplus of gene regulatory activity, with 

more than 500 genes being differently expressed (Table 2). However, at the olfactory pallium 

(Dp) this number decreases substantially and the comparison between PRE and POST females 

emerges with almost 200 differently expressed genes (Table 2).  

Table 1 –List of all significantly expressed genes organized by each one of the four 
olfactory phenotypes compared for both brain areas tested (P<0.01). Number of features 
annotated considered for the Gene Ontology analysis. Finally, the sample size considered 
for each phenotype, each comparison and each area sampled. DOM- dominant male urine; 
SUB- subordinate male urine; PRE- pre-ovulatory female water extract; POST- post-
ovulatory female water extract. 
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A hierarchical cluster of these differently expressed genes in the OB and Dp revealed 

interesting patterns of neuromolecular activity. In both brain regions, the transcriptional 

response of males exposed to DOM male urine was most similar to that of males exposed to 

POST female water extract, and the transcriptional response to SUB male urine was most 

similar to the response to PRE female water extract (Fig 2).  

The evidence for olfactory discrimination among stimuli in both brain regions reinforces 

the idea of a functional organization of the fish olfactory system with parallel pathways flowing 

from the sensory epithelia via the olfactory bulb into the pallium, conveying specific odor 

information (Hamdani and Døving, 2007; Kermen et al., 2013). Furthermore, the different 

brain regions seem to preferentially process certain stimuli, with sex differences in odors being 

mainly processed at OB and subsequent odor differentiation within each sex being processed 

at Dp.  Cummings et al. (2008) concluded that these neuromolecular consequences drive 

behavioral responses in the context of female mate choice in swordtails. Unlike olfactory cues 

in our experiments, female choice in this species activated a suite of genes in response to 

classes of social stimuli: specific pathways were either up- or down-regulated when females 

were exposed to males or to other females. From an ecological point a view, these surprisingly 

similar transcriptional responses of the OB and Dp to SUB males and PRE females might be 

explained by the distinctive information conveyed by each behavioral phenotype and by 

shared valence and salience of their odors. It is possible that chemical signals emitted by SUB 

males are feminized, which would help to explain why DOM males are occasionally observed 

to direct courtship behavior towards SUB males (Oliveira and Almada, 1998a). SUB males and 

PRE females shoal together and share the same body coloration. When courted by DOM males 

SUB males exhibit female-like behaviors, which include following the DOM male to the 

spawning pit and getting involved in the full spawning sequence (Oliveira and Almada, 1998a). 
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Figure 2 – Unsupervised hierarchical bootstrapped 
clustering of significantly different expressed genes (p<0.01) for all four olfactory stimuli 
and both brain areas sampled (OB and Dp). On the top right, a sagittal view of a tilapia’s 
brain cut by two lines (green and violet) representing the location of the coronal cuts 
depicted just below illustrating the areas sampled (OB and Dp; nissl stained slices, 10 μm). 
On the heatmaps, blue represents significantly downregulated genes, yellow upregulated 
genes and black intermediate levels of expression. Confidence values of cluster nodes were 
calculated using bootstrapping (1000 permutations with resampling). Olfactory stimuli used 
in theis study:  DOM- dominant male urine; SUB- subordinate male urine; PRE- pre-
ovulatory female water extract; POST- post-ovulatory female water extract. Brain regions 
analyzed: olfactory bulb (OB), green box; posterior part of the dorsal telencephalon (Dp), 
purple box. 

 

This behavior allows SUB males to remain inside the breeding aggregations in order to 

try sneaking egg fertilizations (Oliveira and Almada, 1998a). Despite having mature testis 

(Oliveira and Almada, 1998c) SUB males present lower androgen levels (Oliveira et al., 1996), 

lower expression of secondary sex characters (Oliveira and Almada, 1998c) and undergo 

androgen-dependent morphological changes in the urinary bladder and urine storage capacity, 
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reducing its volume to a more female-like size (Keller-Costa et al., 2012), which may also affect 

the composition of their urine.  

The similarity between the gene expression patterns elicited by DOM male and POST 

olfactory signals is more difficult to explain. Both social phenotypes are usually territorial and 

display higher number of aggressive displays (Oliveira and Almada, 1998b; Ros et al., 2006), 

which might explain some similarities in chemical information. Other possible similarities of 

the odor bouquet released by these two groups could be related to the starvation period these 

fish experience or the high metabolic rates needed to endure a continuous effort like 

territorial defense or production of the egg batch that has just been released by POST females 

(Renn et al., 2009; Ros et al., 2006). 

The comparison between transcriptional profiles of males stimulated with social 

olfactory cues with the electrophysiological data gathered from the same males but at the 

level of the olfactory epithelium also raises some interesting points. In our data the olfactory 

epithelium is more sensitive to DOM male and PRE female olfactory information but 

discrimination between the sexes does not seem possible (Fig.1). However, at the level of the 

OB the gene expression profiles suggest that males have the relevant information available 

that allows them to discriminate between the sexes (Fig. 1 and Fig. 3) reinforcing the 

importance of olfaction in African cichlids, which in other fish species also plays a major role in 

intra-specific communication (Sorensen, 1992), including social recognition (Gerlach et al., 

2008).  
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Figure 3 – Hierarchical clustering of significantly different expressed genes (P<0.01) for 
the comparison of three pairs of olfactory cues in both brain areas sampled (OB and Dp). 
Green box: olfactory bulb (OB) expression; purple box: posterior part of the dorsal 
telencephalon (Dp). Left panels: comparison of female (symbol) and male (symbol) cues 
independent of status or condition; middle pannels, comparison of pre- (PRE) and post- 
(POST) ovulatory female cues; right pannels:  comparison of dominant and subordinate 
male cues. The heatmaps (blue – down-regulated, yellow – up-regulated) show estimated 
gene expression levels. Confidence values of cluster nodes were calculated using 
bootstrapping. 

 

GO analysis  
Our GO annotation scheme allowed for a categorization of a plethora of differentially 

expressed genes in molecular functions, biological processes and cellular components (Fig. 4), 

as well as, providing information about under- and over-representation of each category. In all 

comparisons analyzed (DOM male vs. SUB male vs. PRE female vs. POST female odors; male vs. 
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female odors; PRE vs. POST female odors; and DOM male vs. SUB male odors), GO terms could 

be applied to more than 55% of the regulated features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Gene Ontology (GO) analysis summary for each one of the four olfactory 
comparisons made for both brain areas. Statistically under-represented categories are shown 
in blue and over-represented in red. The different GO vocabularies are shown separately: 
cellular component, biological process and molecular function; along with the P-values 
(uncorrected results of the hypergeometric test) and GO names and numbers (according to 
200605 releases). DOM- dominant male urine; SUB- subordinate male urine; PRE- pre-
ovulatory female water extract; POST- post-ovulatory female water extract. 

 

Although the results of GO analyses can be difficult to interpret, they provide a 

framework for developing novel hypotheses that could potentially enlighten new approaches 

to the molecular underpinnings of socially regulated brain function (Renn et al., 2008). 
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Interestingly, the functional categories expressing enriched pathways with extreme over- and 

under-representation are also more numerous for the distinction between males and females 

in the OB, and rather scarce for the same comparison at the Dp level. In the latter, the number 

of enriched GO terms is smaller and more evenly distributed among the remaining 

comparisons (DOM vs. SUB male odor and PRE vs. POST female odor). This suggests that 

already at the OB level, the first relay station in the olfactory circuit, information on the sex of 

a nearby conspecific might be filtered out, which in a social interaction would be reinforced by 

visual cues ascertaining this information and triggering the appropriate behavioral response.  

 

Candidate genes 
Besides activating specific molecular pathways, a number of the candidate genes are 

also significantly expressed in one of the two brain areas sampled from dominant males 

stimulated with different social odors in this experiment. Somatotropin, a member of the 

Growth Hormone (GH) family, is significantly up-regulated in the OB (Table 2) in response to 

either the odor of a DOM male or the odor of females (either PRE or POST). On the other hand, 

in Dp somatostatin, a known GH production inhibitor, is down-regulated after stimulation with 

DOM scent. Regulation of these members of the GH signaling are usually related to differential 

growth, a characteristically plastic trait in cichlids in response to changes in the social 

environment (Hofmann et al., 1999). Somatostatin is known to play an important role in the 

complex interplay between social behavior and somatic growth in cichlid fishes (Trainor and 

Hofmann, 2007) managing the allocation of energetic resources between reproduction and 

growth (Hofmann and Fernald, 2000). Somatostatin down-regulation only in response to the 

presence of an odor cue of a potentially threatening high-ranked male along with the up-

regulation of somatotropin, suggests the preparation for the physical strain involved in an 

approaching agonistic interaction.  
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Table 2 – Gene Ontology (GO) analysis summary for each one of the four olfactory 
comparisons made for both brain areas. Statistically under-represented categories are shown 
in blue and over-represented in red. The different GO vocabularies are shown separately: 
cellular component, biological process and molecular function; along with the P-values 
(uncorrected results of the hypergeometric test) and List of all significantly regulated 
candidate genes for each one of the four olfactory comparisons made for both brain areas, 
organized according to presumed functional categories. Red arrows represent down-
regulated genes and green arrows up-regulated genes (double arrows indicate increased 
extent of regulation) extracted from previously shown heatmaps.  

Other candidate genes were also up-regulated in stimulated dominant males, such as: 

brain aromatase in the OB and gonadotropin-releasing hormone (GnRH1) and pro-

opiomelanocortin (pomc) in Dp. The up-regulation of GnRH1 after an olfactory stimulation 

with SUB male odor reinforces the idea of a putative feminization of their urine discussed 

above, since GnRH integrates the animal’s internal physiological state with incoming external 

cues to regulate reproduction in males. In cichlid fish, reproductive status influences the 

regulation of this neuropeptide and seasonal fluctuations of GnRH receptor levels in the brain 

can modulate olfactory processing, regulating the animal’s plasticity in olfactory 

responsiveness (Maruska and Fernald, 2010). Although it is not known if the Mozambique 

tilapia has GnRH receptors in Dp, a close relative species (Nile tilapia, Oreochromis niloticus), 
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presents receptors at both OB and Dp (Gopurappilly et al., 2013; Soga et al., 2005). 

Interestingly, GnRH up-regulation in an extra-hypothalamic area, like Dp, can also be found in 

rats, where GnRH mRNA is also present both in the olfactory piriform cortex (homolog of Dp) 

and in the olfactory bulb (Choi et al., 1994).  

egr-1 and cytochrome c oxidase (COx) were both down-regulated in OB of males 

stimulated with male social odor when compared with female social odor. Both genes are 

known markers of neural activity (Poirier et al., 2008; Wong-Riley, 1989) and the regulation of 

egr-1 appears to have a pivotal role in recruiting specific neural pathways required for long-

term memory processes (Poirier et al., 2008). egr-1-deficient mice seem to be unable to form 

long-term memories in behavioral tasks, such as olfactory discrimination, while their short-

term memory and early-LTP remain intact (Jones et al., 2001). In zebrafish, egr-1 activity seems 

to be involved in imprinting processes in early life stages and later in kin recognition, especially 

in the OB, since rather low basal expression levels are found in the Dp (Kress and Wullimann, 

2012). In summary, egr-1 down-regulation in the OB of DOM males in response to olfactory 

cues of male conspecifics, suggests a possible role of olfactory modulation on memory 

consolidation of social odors. Despite variation in its activity have been found to correlate with 

olfactory stimulations in different taxa (Déglise et al., 2003; Dorman and Moulin, 2002; Wong-

Riley, 1989), little is known about COx modulation with olfactory social stimuli. In another 

cichlid species, Astatotilapia burtoni, when males were presented with visual and olfactory 

signals, both stimuli were needed for an androgen response in an intruder challenge paradigm 

but chemical stimulation alone did not induce c-Fos induction, another marker of neuronal 

activity (Hoffman et al., 1993), in the brain (O’Connell et al., 2013). 

 

Conclusions 
The approach we have used in the present study allows for a transcriptome-scale 

analysis of the molecular systems regulated by social olfactory experience. Investigating the 
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proximate mechanisms underlying olfactory stimulation allowed for the characterization of 

different genomic profiles elicited in DOM males. DOM males stimulated with different acute 

social cues exhibited at the more peripheral olfactory epithelium some degree of 

discrimination between stimuli. Nonetheless, at the brain olfactory processing centers, specific 

transcript patterns of activation were elicited suggesting that the olfactory system can 

discriminate social status and reproductive condition, as well as, its sex based solely on its 

chemical signature. Our findings also underscore the extensive transcriptional plasticity of the 

cichlid genome in response to the social environment and reinforces the importance of 

uncovering the molecular and cellular factors and constraints governing olfactory function. 

Additionally, our results also reinforce the impact of the social environment, even in short-

term interactions, in the modulation of molecular switches that orchestrate signaling pathways 

in the brain. These measurable changes in brain genome, correspond to different 

neurogenomic states which in turn are expected to modulate and optimize the behavioral 

output expressed by the fish according to each social context (Oliveira, 2012). In summary, 

social odor-driven changes in brain transcriptome may provide a mechanism by which animals 

adjust their behavior to perceived changes in the social environment. Further studies focusing 

on the neuroplasticity responsible for the adaptive social behavior exhibited by cichlids might 

shed some light on the rapid evolution and diversification of this teleost family in the Great 

African lakes. 
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General discussion  
One of the major goals of this thesis was to investigate how social information 

influences the molecular cascades behind gene expression that modulate the production of 

meaningful behaviors in teleost fish. Previous literature focused on characterizing the 

fluctuations in the expression of specific candidate genes and/or their products (e.g. Almeida 

et al., 2012; Greenwood et al., 2008; Maruska et al., 2013; Trainor and Hofmann, 2007) or at 

the genome level (Aubin-Horth et al., 2005b; Pollen et al., 2007; Renn et al., 2004) according to 

a multitude of social environments. Cummings et al. (2008) concluded that these 

neuromolecular changes can occur even in a simple mate choice context. Based on these 

evidences we hypothesized that the functional genome might be more dynamic than 

previously thought and respond to a single social interaction and even to discrete social 

stimuli, such as a chemical signal. Despite the growing interest on understanding the molecular 

pathways behind complex behaviors the impact of social interactions at the genome level has 

been scarcely research in most taxa (e.g. Cummings et al., 2008).  

In this discussion we highlighted the most important findings of this thesis and discussed 

its results regarding the existing literature on neurogenomics and behavioral and social 

plasticity. The final section concerns with future perspectives regarding the broached subjects. 

 

Characterization of aggressive behavior in zebrafish 
Aggressive behaviors are a pivotal component of the behavioral repertoire of animals. 

They serve numerous adaptive functions, including the establishment of dominance 

hierarchies and the competition for basic resources such as food, shelter or mates and 

territories. Zebrafish are a promising vertebrate neurogenetic model for the study of neural 

circuits underlying aggressive behavior and in the first section of Chapter I we described and 

quantified meaningful patterns of aggressive behaviour and their consequences in subsequent 
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interactions in order to develop a quantitative framework for the study of aggressive behavior 

in zebrafish. 

Aggression can be defined as any overt behavior that produces aversive or noxious 

stimuli or harm to another organism (Olivier and Young, 2002). In zebrafish, like in most 

species, overt aggression is always preceded by an assessment stage, where opponents use 

ritualized displays before aggression escalates. These ritualized displays have been interpreted 

as means of assessment of fighting abilities between conspecifics, thereby preventing fight 

escalation and reducing the risk of physical damage (Maynard Smith and Price, 1973; Ros et al., 

2006). In fact, agonistic interactions in this species seem to fit into a temporal structure that 

can be characterized in order to predict the probability of the subsequent behavior.  This 

temporal architecture seems to follow the aforementioned idea of an assessment early stage, 

with a high frequency of agonistic displays, followed by an escalation and resolution stages, 

where winners and losers emerge. 

But in these bouts, experience in prior contests might be fundamental, since it may 

provide information about potential costs of future contests (Hsu et al., 2011). Our data on 

sequential fights showed that a recent victory increases the probability of winning a 

subsequent interaction and, on the other hand, a recent defeat reduces the chance of 

emerging as a winner in a future fight. This interesting data set suggested the occurrence of 

winner and loser effects in male zebrafish, establishing that in this species fight outcome had 

behavioural consequences that may impact in the individuals Darwinian fitness. These effects 

of experience, coupled with other fighting asymmetries, like body size or prior residence, 

influence the establishment of dominance hierarchies (Oliveira et al., 2009).  

Winner and loser effects are not uncommon in the Animal Kingdom but usually the scale 

of loser effects is higher and frequently lasts longer than winner effects (Hsu et al., 2006; Rutte 

et al., 2006). Our data reinforced this notion, by emphasizing that these effects of experience 

might be mediated by different mechanisms in winners and losers. Zebrafish that won an 
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interaction increased the probability of winning a subsequent fight with a naïf individual 

without changing their fighting behavior. This finding suggested that some variation in the 

animal’s internal state occurred although it was not reflected on its behavioral expression. 

Losers also significantly decreased the probability of winning subsequent fights by decreasing 

their motivation to escalate fights shown by an increase in the latency to the first attack and a 

decrease in the fight decision time after a loss. 

One way to explain the effects of prior experience in subsequent fighting performance is 

to consider that putatively it influences social cues used to signal status to other conspecifics. 

This in turn would result in a biased response from their opponent (depending if they are 

fighting a winner or a loser) since fish are known to gather information from observing 

conspecific interactions (Grosenick et al., 2007; Oliveira et al., 1998; Oliveira et al., 2001). If 

these social cues are being driven by the individual’s social environment there should be 

regulation of brain gene expression to orchestrate these phenotypical changes (Bell and 

Robinson, 2011; Robinson et al., 2008; and see second part of Chapter I where we further 

explore this in zebrafish). Chemical signals are arguably the best candidates, as social cues, to 

convey this information to conspecifics about previous fighting experiences. Male pheromones 

in zebrafish are known to regulate reproductive success in females (Gerlach, 2006), but in 

other species of fish, male pheromones are known to also signal dominance (Barata et al., 

2007; Maruska and Fernald, 2012; Miranda et al., 2005; Todd et al., 1967; Waas and Colgan, 

1992; see second part of Chapter II where we study how these chemical social cues modulate 

gene expression in the Mozambique tilapia).Nonetheless, despite the ubiquity of winner and 

loser effects throughout the animal kingdom and its crucial influence on social structures, the 

ultimate and proximate causes for their existence remain unknown (Rutte et al., 2006). 
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Changes in brain transcriptome in fighting zebrafish 
After the fights are resolved changes occur in the behavioural pattern expressed by 

zebrafish and ultimately winners display a different set of behaviors (chases, bites and strikes) 

when compared to losers (freezing and fleeing) (Oliveira et al., 2011). These changes in 

behavioral performance usually match the individuals’ competitive ability or at least their 

assessment of it as the fight progresses. As social hierarchies are built and shaped, individuals 

must be able to readily switch between different social ranks (Oliveira, 2009), which 

consequently translates in an update of their behavioral displays. Underlying these behavioral 

states should be a genotype able to accommodate the expression of these multiple social 

phenotypes. These socially driven brain changes usually are accomplished by variations in the 

regulation of key genes, or rather genes involved in specific key signaling pathways. This gene 

regulated cascade of events results in distinct transcriptome profiles (neurogenomic states) 

reflecting the individuals’ status-specific behavioral states (Wong and Hofmann, 2010). Thus, it 

is possible to describe singular neurogenomic patterns elicited by socially dependent 

behavioral states. 

During a social interaction internal and external cues must be assessed in order to 

evaluate the costs vs. benefits of pursuing or ceasing the interaction (Hsu et al., 2011). The 

individual’s assessment of the situation will influence the outcome of the fight which will later 

result in the gain or loss of social status. However, the specific set of internal and external cues 

used for this evaluation are still unknown. This appraisal will result in changes in social status 

and trigger the switch between the aforementioned neurogenomic states. In the second part 

of Chapter I we hypothesized that zebrafish cognitively appraised their fighting performance in 

relation to that of their opponent in order activate this switch between internal states. Internal 

cues such as previous fighting experience, overall condition, energy reserves and in essence 

the expressed behavior by the individual as the fight develops must be compared with external 

cues regarding information conveyed by the opponent (mostly visual or chemical information) 
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and their perceived fighting ability. In order to test this idea we exposed zebrafish to a mirror 

fight (i.e. fighting their own image on a mirror) and compared the elicited genomic profile with 

those of fish that experienced either a victory or a defeat. 

When facing a mirror image (which zebrafish are unable to distinguish from a real fish 

and readily attack) behavioral feedback from the opponent matched the individual’s displays 

and no clear winner or loser emerged and therefore no change in social status is experienced 

by the subject (Oliveira et al., 2005). Indeed our genomic data showed that mirror fights did 

not elicit a single differentially expressed gene, supporting this notion that cognitive appraisal 

of the fight outcome is necessary to induce major changes in the brain transcriptome.  

On the other hand, transcriptomic profiles of winners and losers presented striking 

differences in comparison to the other social experiences (mirrors and socially isolated fish). A 

single short-time social interaction was sufficient to elicit a rather large number of genes being 

up- and down-regulated in response to these social stimuli. As mentioned before the scale of 

loser effects is thought to be greater than winner’s (Hsu et al., 2009) and indeed in the brain of 

zebrafish that lost a short-time interaction the number of significantly regulated genes was 

larger. After a single interaction, some genes were being differently expressed in both 

individual’s (fighting regulated genes – 30% of the total number of regulated genes) but the 

majority was specific for fish that experienced a defeat (60%). These social interactions which 

induced changes in social status also triggered activity-dependent gene pathways involved in 

neural plasticity, such as activity-dependent immediate early genes and genes related to 

learning and memory (e.g. bdnf, npas4). bdnf has been implicated in the differentiation and 

survival of neurons, as well, as an important regulator of synaptic plasticity mechanisms 

underlying learning and memory in adults (Cunha et al., 2010). This increased activity of genes 

related to memory formation, suggests that relevant information is probably being stored: 

related with the fight outcome, but also probably related with the fighting ability of the 

opponent. Additionally, a gene ontology analysis revealed that MAPK signaling pathway is 
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being significantly expressed. MAPK seem to have a role in the differentiation of specific cell 

types and regulate the proliferation of others, but are also involved in distinct forms of 

synaptic plasticity (Thomas and Huganir, 2004). We can argue that this regulated pathway may 

also indicate that these short-term interactions which induced changes in social status also 

triggered activity-dependent gene pathways involved in neural plasticity. 

Taking into account all these evidences, may also help to better understand how a single 

interaction has effects in the performance of individuals in subsequent interactions in both 

winners and losers (Oliveira et al., 2011). In summary, our findings suggested that the brain 

transcriptome profile of zebrafish closely reflected their recent acute social experiences and 

that shifts between behavioural states characteristic of different social status were 

accompanied by rapid changes in gene expression in the brain and the cognitive appraisal that 

the individual makes of its social environment seemed to be a key factor to trigger these 

cascades of events. 

 

Brain atlas of the Mozambique tilapia 
Just like zebrafish, the African cichlid Oreochromis mossambicus has been used as a 

model system in a wide range of behavioural and neurobiological studies. Their remarkable 

social behavior, full of complex and plastic traits, multisensory signals used during both 

courtship and agonistic encounters makes them a suitable candidate for the study of social 

plasticity and behavior.  Mozambique tilapia behavior has been extensively investigated in the 

past (e.g. Oliveira and Almada, 1998a; Oliveira and Almada, 1998b), along with their behavioral 

endocrinology (e.g. Oliveira and Almada, 1998c; Oliveira and Canário, 2000; Oliveira et al., 

2001) and more recently  the increasing number of genetic tools available for this species has 

provided with some insights about social regulation of gene expression (e.g. Almeida et al., 

2012). 
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As one of the goals of this thesis was to understand how gene expression in brain areas 

relevant for social behavior promote socially driven changes in behavioral profiles, it was of 

key importance to develop an accurate hodological mapping of the tilapia brain to supplement 

the available histological data.  

Three-dimensional brain atlases have a massive potential as gateways for navigating, 

accessing, and visualizing neuroscientific data (Essen, 2002) and present some advantages over 

established histological methods (see Chapter II, section I). Using magnetic resonance imaging, 

supported by Nissl stained brain slices, we developed a 3D high-resolution digital atlas of the 

Mozambique tilapia brain. The resulting images can be browsed and analyzed in horizontal, 

coronal and sagittal views and are freely available online at: 

http://www.ispa.pt/ui/uie/ibbg/TilapiaBrainAtlas/index.html. All bigger brain divisions were 

manually labeled, such as the olfactory bulb, telencephalon, diencephalon, optic tectum, and 

cerebellum. In addition, a number of smaller but relevant structures or nuclei were also 

labeled, using our histological data as a reference guide, amounting to over 50 identified 

structures in total. Using appropriate software we also made a three dimensional 

reconstruction of the whole brain which enriches the value of this data set. This high 

resolution tilapia brain atlas is expected to become a very useful tool for neuroscientists using 

this fish model and will certainly expand their use in future studies regarding the central 

nervous system, but most importantly, it was a stepping stone to identify and localize the 

neural circuits underlying olfactory processing in the Mozambique tilapia, which will be the 

subject of our next experiment. 

 

Social odors induce rapid neuromolecular changes in the Mozambique 
tilapia 

Similarly to zebrafish, tilapias also exhibit structured fights and depending on their social 

environment males can express two distinct behavioral phenotypes: dominants and 

subordinates. In this species visual displays during agonistic interactions are accompanied by 
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chemical cues via the urine, which conveys information regarding the males’ social status 

(Barata et al., 2007). Analogous cues are also elicited by females to signal their sexual maturity 

(Miranda et al., 2005). As mentioned above changes between behavioral phenotypes activates 

a cascade of molecular processes and a variety of neuroendocrine pathways (e.g. Renn et al., 

2008). In the second part of Chapter II, we tried to manipulate the fish’s perception of its social 

environment using chemical signals in order to elicit the emergence of context-specific 

neurogenomic states and to investigate the proximate mechanisms underlying olfactory 

stimulation.  

To characterize the changes in the brain’s internal state in response to social odors of 

both male and female phenotypes we combined physiological and genomic approaches. We 

measured electrophysiological responses of the olfactory epithelium and posteriorly 

microdissected specific olfactory processing brain regions to hybridize with a heterologous 

microarray platform (Renn et al., 2004). Our electrophysiological recordings reinforce the 

previous notion that males can discriminate social status and reproductive state of social 

partners based on olfactory cues alone (Barata et al., 2007; Miranda et al., 2005). On the other 

hand, at the neurogenomic level, all four olfactory stimuli from conspecific males and females 

had a major impact in the brain transcriptome, with different chemical social cues eliciting 

specific patterns of gene expression in the brain. Thus, the olfactory system of male tilapias 

seems to be able to discriminate the social status and reproductive condition, as well as, the 

sex of their conspecifics based solely on their chemical signature. In goldfish, males also 

regulate brain gene expression when stimulated with putative sex pheromones of pre- and 

post-ovulatory females (Lado et al., 2013). Although none of the differently expressed genes in 

goldfish males match the ones in tilapia males exposed to similar stimuli in our study, this 

might be due to differences in sampled brain regions the tissue (telencephalon vs. OB and Dp) 

and duration of exposure to the stimuli (6h vs. 45min). Interestingly these authors also 
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collected milt from males exposed to these stimuli and concluded that changes are happening 

in the brain and body of the fish (Lado et al., 2013), as in preparation for a social interaction. 

Our analysis also included a gene ontology analysis which suggested than information 

regarding the sex of the emitter can already be discriminated at the first relay station in the 

olfactory circuit. Finally, a number of candidate genes were also significantly regulated, 

suggesting that the animal’s begin preparations in an anticipatory fashion according to stimuli 

emerging from their social environment. The evidence for olfactory discrimination among 

stimuli in both brain olfactory processing regions in our study supports the prevalent 

hypothesis of a functional organization of the fish olfactory system (Hamdani and Døving, 

2007). Olfactory information flows from the sensory epithelia in the periphery reaching the 

brain through the olfactory nerves and progressing through the olfactory bulbs into the 

olfactory pallium (and other regions, see Miyasaka et al. (2014)), conveying specific odor 

information (Hamdani and Døving, 2007; Kermen et al., 2013). The neurogenomic patterns 

elicited by these cues suggested that fish could discriminate between conspecifics probably by 

analyzing distinctive information conveyed in these cues and further assigning valence and 

salience to them. If either in the presence of feminized or potentially threatening or aggressive 

olfactory signatures a swift switch between neurogenomic states would probably elicit the 

appropriate expression of behaviors in each particular context. In fact, each particular 

neurogenomic states is likely modulating and optimizing the individual’s behavior according to 

each particular social context.  

In summary, the results of this final study underscored once again the extensive 

transcriptional plasticity of fish’s genome in response to the social environment and 

emphasized the importance of pursuing the study of the nature of these biochemical switches 

which orchestrate the translation of social stimuli into neuroendocrine signals and ultimately 

guide adaptative behavior. 

 



  

 

138 General discusion 

Concluding remarks 
The ability of fish neural networks to adapt and respond to their social environment is a 

notable display of plasticity. The specific neural plasticity unveiled in these studies, in response 

to simple agonistic interactions and even to simpler chemical social stimuli is a remarkable 

feature. Influenced by social stimuli, neural networks adjust gene regulated pathways in order 

to adjust the individual’s behavior expression. The next sections explore how the social 

environment shapes the behavior expressed by individuals in social groups, the brain 

structures which, across several taxa, are used to process these social stimuli and, finally, how 

these nuances in the social environment ultimately drive brain gene expression to fine-tune 

behavioral expression. 

 

Behavior 
Social behavior is ubiquitous in nature and widespread across several taxa, including bacteria 

where cooperating and cheating behaviors can occur (Dunny et al., 2008). Animals must 

continuously integrate information from their internal and external environments in order to 

correctly adjust their behavior according to daily events. Usually these behaviors are directed 

to obtain or defend resources (such as food, shelter or mates) or to avoid danger (such as 

predators) and, more often than not, take place in social environments. These social 

environments, with whom an individual frequently (if not always) interacts, shape its 

behavioral expression. In several species, defending resources usually implies some sort of 

direct or indirect aggression. In fruitflies, Drosophila melanogaster, males have evolved 

elaborate and structured aggressive displays in defense of females and territories (Chen et al., 

2002; Dow and Schilcher, 1975). These complex aggressive displays, which are comprised of a 

repertoire of 7 different behaviors, present a clear temporal structure much like the one 

reported for zebrafish (Chapter I). These displays intend to avoid a rapid escalation to overt 

aggression, which often leads to serious injuries. Thus, this temporal structure might be 
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advantageous for individuals to acquire increasingly detailed information about their 

opponent’s fighting abilities (Chen et al., 2002) and ultimately decide whether to continue to 

fight or flight. In male song sparrows, Melospiza melodia, territorial defense is firstly 

performed in the form of vocalizations, which advertise male readiness to mate during their 

breeding season. Nonetheless, depending on the type of song the males are singing it is 

possible to predict the outcome of the interaction (fight or flight) since their song performance 

also signals aggressive escalation (Searcy and Beecher, 2009).  

These interactions with the social environment have consequences not only in terms of 

injuries resulting from these conflicts but often reflect on behavior as well. As discussed 

earlier, winning or losing a social interaction affects how a zebrafish performs in future fights. 

Social experience can then modulate the outcome of these interactions such that winners 

increase the probability to win again and losers will more likely lose again (Rutte et al., 2006). 

In fruitflies bred specifically to present a hyperaggressive phenotype by selecting winners of 

fights (males tend to initiate fights sooner and retaliate more frequently), after a lost 

interaction males lose for a second time against a socially naïve individual (Penn et al., 2010).  

In teleost fish, there are several examples of these influences of social experience in 

future behavior. For instances, in a mangrove North American endemic species, Rivulus 

marmoratus, fighting experience seems to be fundamental to determine winners, but only in 

non-escalated fights (Hsu and Wolf, 2001). Similarly, prior experience in swordtails, 

Xiphophorus helleri, has a definite impact on the probability of winning the next fight 

(Beaugrand et al., 1991) unless it’s a highly escalated fight (Franck and Ribowski, 1989). A 

recent study with another mangrove species, the killifish Kryptolebias marmoratus explored 

how multiple experiences might affect future behavior. In natural settings, like these 

mangroves, social interactions can occur in quick succession and the performance of an animal 

is likely to be influenced by other experiences recently acquired. In this species, multiple 

experiences can reinforce each other (mostly in losing experiences), but the way they are 
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integrated to influence behavior is dependent on the individual’s perceived fighting ability (Hsu 

et al., 2013). As if seen earlier, in zebrafish a single interaction can also have profound effects 

in the performance in future bouts. 

These aggressive displays are central to the establishment and maintenance of 

dominance hierarchies, since the outcome of conflicts is a main factor determining dominance 

status. Dominance usually translates to better access to some of the critical resources 

aforementioned and a higher rank within these hierarchies reflects on the success of an 

individual (Sloman and Armstrong, 2002). Both model species of fish explored in this thesis 

establish these dominance hierarchies (Oliveira and Almada, 1996a; Oliveira and Almada, 

1996b; Paull et al., 2010). Nonetheless, the study of these intricate social relations is better 

understood in cichlid fish. Lekking cichlid species, like the Mozambique tilapia, have to 

continuously engage in social interactions to establish territories within breeding arenas where 

males aggregate and build nests to attract mates. In these species, individuals can advertise 

their social dominance by conspicuously changing their body coloration (Baerends and 

Baerends-Van Roon, 1950; Fernald, 1976). Males can rapidly switch between social states 

depending on their success in these aggressive encounters. Chemical signals usually reinforce 

these visual exhibitions in cichlids and dominant males also modulate their rate of urination in 

the presence of rival males or potential mates (Barata et al., 2007; Barata et al., 2008; Maruska 

and Fernald, 2012). These phenotypical changes signal to conspecifics about the condition of 

the dominant male, but at the same time also signal physiological changes related with social 

status occurring internally. Studies in several cichlid species, firstly characterized how 

hormones, like androgens, might be playing a role orchestrating these changes and shaping 

aggressive behaviors (Fernald, 1976; Oliveira and Canário, 2000). Interestingly this myriad of 

cues available in the social environment of cichlids can be used by conspecifics to infer the 

relative strength of rivals before engaging in costly interactions (Grosenick et al., 2007; Oliveira 
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et al., 2001). As discussed previously in Chapter II, chemical cues seem to be sufficient to 

trigger these social assessment mechanisms and infer social status. 

In sum, the behavior of an individual seems to be continuously shaped by interactions 

with their social environment. In dyad fights in zebrafish, cues about the opponent’s fighting 

ability seem to be integrated with the fish’s own ability to influence the outcome of these 

contests. In turn, winning or losing an interaction has consequences in the expression of future 

behavior and in some species, like tilapia, can even determine social status. These changes in 

behavior, can be perceived by other conspecifics, which integrate readily available social 

information (like chemical signals) to modulate their own behavioral outputs. 

 

Brain 
Previous studies suggest that the appraisal of these social interactions and stimuli should be 

processed in a set of limbic and cortical areas, the SBN (Newman, 1999). Social stimuli are 

detected by the peripheral nervous system which fires burst of actions potentials on sensory 

neurons that via the cranial nerves potentiate a set of neurons in the brain leading to a 

biochemical cascade of gene regulated signaling pathways (as seen in Chapter II). But surely 

the brain not only processes rather simple chemical, visual or acoustic/tactile cues, it should be 

able to integrate this information with previous experience to correctly evaluate the salience 

of the stimuli in order to express meaningful behavior.  

The SBN is comprised of a series of 6 core nodes which are involved in the regulation of 

multiple forms of social behavior, are reciprocally connected, and contain sex steroid hormone 

receptors. A combination of insights from developmental studies, tract tracing and 

neurochemistry was used to expand this SBN (initially proposed for mammals) and identify 

putative brain homologies across different taxa (Goodson, 2005; Newman, 1999; O’Connell 

and Hofmann, 2011). The nodes that make up this network are the lateral septum (LS), 

preoptic area (POA), ventromedial hypothalamus (VMH), anterior hypothalamus (AH), the 
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periaqueductal gray/central gray (PAG/ CG), the medial amygdala (meAMY), and bed nucleus 

of the stria terminalis (BNST). Identifying homologies between the teleost telencephalon and 

other vertebrates is especially challenging since the neural tube of fish during development 

suffers an eversion, rather than an invagination (Wullimann and Mueller, 2004).  

Half of these mammalian nodes (POA, meAMY and BNST) seem to be activated in 

response to aggressive stimuli in teleost fish (Goodson, 2005; O’Connell and Hofmann, 2011). 

The POA is known in mammals to mediate not only aggression, but also sexual behavior and 

maternal care. Lesions in this region in rats are known to decrease male aggression (Albert et 

al., 1986) and stimulation usually tends to increase their sexual behavior (Malsbury, 1971; 

Malsbury et al., 1977). In teleosts, this region appears to be functionally and hodologically 

similar (it is also known as POA) and lies in the hypothalamus, dorsally to the optic tract and 

alongside the third ventricle. The role of the POA seems to be highly conserved throughout 

vertebrate evolution and in teleosts it also plays an important role in aggression, sexual 

behavior and parental care (O’Connell and Hofmann, 2011).  

The meAMY and the BNST in mammals share a wide network of connectivity with the 

hypothalamus (Dong et al., 2001). Both these areas are known to play a decisive role in 

mediating aggression and reproductive behavior in mammals and the body of literature 

dedicated to these areas is quite extensive (e.g. Coccaro et al., 2007; Miczek et al., 1974; 

Shaikh et al., 1986; Vochteloo and Koolhaas, 1987). For example, the meAMY has a crucial role 

in social odor recognition, since it receives massive projections from odor processing areas, 

like the vomeronasal organ (see Petrulis (2009) for a review of these neural mechanisms in 

Syrian hamsters, Mesocricetus auratus). In this species, agonistic encounters also increase 

immediate early gene induction in the BNST (Kollack and Newman, 1992). Developmental, 

neurochemical, and hodological data points to the supracommissural part of the ventral 

pallium (Vs) as the putative homolog of both meAMY and BNST in teleosts. In weakly electric 

fish, Eigenmannia virescens, stimulation of the POA will increase evoked courtship signals of 
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males (Wong, 2000). Similarly, in the bluegill (Lepomis macrochirus) and in red salmon 

(Oncorhynchus nerka) electrical stimulation of the POA and Vs will not only increase courtship 

behavior but also increment aggression (Demski and Knigge, 1971; Satou et al., 1984), whereas 

lesions in the same areas in the male killfish (Fundulus heteroclitus) will result in decreased 

spawning behavior (Macey et al., 1974). 

Contrarily to the volume of information available for the Mozambique tilapia, several 

brain atlas are accessible for zebrafish (you can find a shortlist to some of these tools here: 

https://zfin.org/zf_info/anatomy/dict/sum.html) which include histological data (Wullimann et 

al., 1996) but also MRI and 3D reconstructions (Ullmann et al., 2010).  

 

Genes 
Most living systems share a set of macromolecules (nucleic acids, amino acids) for the 

storage, transfer and utilization of information, which is considered strong evidence for a 

common origin of life on Earth. But it also suggests that throughout evolutionary history, 

animals developed a series of mechanisms sharing the same set of building blocks.  

Aggressive behavior is a complex quantitative trait, with population variations that could 

be attributable to multiple interacting loci with individually small effects, whose expression is 

dependent on the social environment (Edwards et al., 2006). Internal mechanisms 

coordinating the expression of these behaviors are remarkably conserved across species. For 

instances, a great focus of research is spent in understanding the conserved actions of 

hormones, in particular sex steroid hormones, as well, as neurohypophysial hormones in the 

regulation of aggression (Adkins-Regan, 2009; Insel et al., 1993). In zebrafish, estrogens are 

known to affect the dynamics of male-male aggression (Colman et al., 2009), whereas, in 

tilapias androgen circulating levels reflect dominance status (Oliveira et al., 1996). Recent 

studies in both species, suggest that the vasotocinergic system (vasotocin is the teleost 

homologue of vasopressin in mammals) may play a role in shaping dominant-subordinate 
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relationships and agonistic behavior (Almeida et al., 2012; Larson et al., 2006). Likewise, the 

role of cathecolaminergic systems in modulating aggressive behavior has been addressed 

across a wide range of animals (Bell and Hepper, 1987). Dopaminergic and serotonergic 

activity, for example, increase in the telencephalon of zebrafish after winning a contest (Teles 

et al., 2013).  

All these regulatory mechanisms which are known to modulate aggressive behavior, like 

dysfunction of the biogenic amine systems, represent a small portion of the complex genetic 

architecture underlying social behavior. Interestingly, it has become increasingly evident 

especially with the development of genomic tools, that the activity of entire sets of genes and 

signaling pathways might be conserved across species (Machado et al., 2009; Smith et al., 

2008).  

Fruitflies are an interesting model species to better understand the genetic basis of 

aggression. As discussed previously, they display elaborately structured aggressive behaviors 

and, more importantly, were among the first organisms used for genetic analysis (only 4 

chromosomes) and its genome is fully sequenced (Adams et al., 2000). In this species, the 

fruitless gene was thought to be involved in specifying sex differences in aggression and 

dominance. Sex-specific splicing of this gene can influence, for example, how a fly fights by 

encoding for sex-specific male/female aggressive behaviors: fruitless gene male mutants can 

present female-like behavior and vice-versa (Vrontou et al., 2006). Fruitless could also play a 

critical role in determining who a fly fights with and whether dominance relationships are 

formed. Despite this, a whole-genome expression profile of genetically divergent lines of 

fruitflies, selected for increased or decreased aggression, revealed several novel genes 

implicated in aggression, emphasizing how functional genomics can complement classical 

forward genetic screens in traditional genetic model systems. Aggressive behavior across 

populations can be explained in part by genetic differences (Hoffmann, 1988). In honeybees, 

hereditary differences in aggression are quite famous between the African subspecies, Apis 
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mellifera scutellata, and the Africanized “killer” bee, which are far more aggressive relative to 

the European subspecies (Hunt et al., 2007; Zayed and Robinson, 2012). A brain gene 

expression analysis associated with aggression in Africanized and European bees, reported 

hundreds of differently expressed genes, more specifically between soldier bees, followed by 

guards and then foragers (Alaux et al., 2009). Interestingly, the same set of genes, which are 

up-regulated in the highly aggressive soldiers of Africanized bees are up-regulated in European 

bees when exposed to an alarm pheromone (which triggers aggressive responses in defense of 

the colony) (Alaux et al., 2009). Hypothetically, these small variations in specific pathways, via 

gene regulation in space and time, can result in phenotypical novelties that may give rise to 

new lineages of aggressive bees in the course of evolution.  

Genomic studies with the cichlid fish, Astatotilapia burtoni, have given vital 

contributions into the genomic regulation of social dominance behavior in a social context. 

Behaviorally this species is very similar to the Mozambique tilapia (in terms of genome there is 

also some similarity and for the second study of Chapter II a cDNA microarray platform 

developed for this species was used). In A. burtoni, microarray analysis showed that dominant 

males express higher levels of neuroendocrine-associated genes, like vasotocin and prolactin, 

when compared to subordinate males (Renn et al., 2008). Subordinate males of this species 

with an opportunity for social ascension also present a rapid genomic response. In preoptic 

GnRH neurons there is an increase in the induction of the IEG egr-1, as well as, the regulation 

of sex steroid receptors and steroidogenic acute regulatory proteins, which regulates androgen 

production (Burmeister et al., 2005; Maruska et al., 2013). In both studies presented here, IEG 

expression was regulated after social interactions, reinforcing their role as orchestrators of an 

integrated genomic response to social information by co-regulating different gene sets 

(Oliveira, 2012).  

In a recent study in zebrafish, the expression profiles of specific target genes associated 

with aggressive behaviors were examined to unravel the neurophysiological basis of 
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aggression in this species (Filby et al., 2010). Much like expected, substantial differences in 

gene expression profiles were found mainly in the telencephalon and hypothalamus of 

dominant and subordinate males. This evidence fits nicely with all the aforementioned 

genomic studies pointing out the difference genomic profile of dominants and subordinates 

(Burmeister et al., 2005; Renn et al., 2008; Schunter et al., 2014) and both studies presented 

here. Nonetheless, in this study through the use of an integrated approach, combining gene 

expression profiling, behavioural analyses and pharmacological manipulations it was possible 

to identify candidate genes and pathways that modulate aggression in fish. The gene modules 

studied by these authors included the hypothalamo-neurohypophysial system, serotonin, 

somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal 

and histamine pathways (a novel finding outside mammals) (Filby et al., 2010).  

We also reported several genes that are known to regulate aggression and sexual 

behavior, aromatase (an enzyme that mediates brain conversion of androgens into estrogens) 

had lower expression in losing zebrafish and when male tilapia were stimulated with male 

scent. Contrasting this result, Filby et al. (2010) reported an increase in the expression of 

dominant females but no changes are reported for males (though isolation conditions prior to 

the contests are somewhat different between the two experiments which should be taking 

into account when comparing this types of behavioral data). Aromatase has also been 

reported to be differentially expressed between dominant and sneaker males and females of 

the blenniioid Tripterygion delaisi (Schunter et al., 2014) and to have a lower expression in 

castrated males of Salmo salar than in non-castrated males (Mayer et al., 1991). In Salaria 

pavo aromatase activity seems also to be suppressed in sneaker males and elevated in nesting 

Bourgeois males (Gonçalves et al., 2008). This higher conversion of androgens into estrogens in 

the brain of dominant males suggests that aromatase is a key enzyme promoting aggression 

males through actions in the preoptic area (Huffman et al., 2013). 
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GnRH was originally identified because of its essential role in the regulation of 

reproduction in all vertebrates. In Oreochromis niloticus, GnRH neuronal systems interact with 

olfactory pathways at the olfactory rosette modulating nest-building behavior in this species 

(Uchida et al., 2005). In the Mozambique tilapia, GnRH is also regulated when males are in the 

chemical vicinity of other males. In A. burtoni nonetheless, reproductive states are also being 

socially regulated by GnRH, such that dominant males have larger testes and more mature 

sperm than subordinate males (Francis et al., 1993). Despite no changes in GnRH were found 

in our study with zebrafish, other studies with this species reported GnRH increased activity in 

dominant males (Filby et al., 2010).   

Finally, somatostatin which is usually known as growth hormone-inhibiting hormone 

because of its role in growth, has been we shown to also plays a role in controlling social 

behavior, namely aggression (Trainor and Hofmann, 2006; Trainor and Hofmann, 2007). In A. 

burtoni, pharmacological manipulations using somatostatin antagonists increased aggressive 

behavior in a dose-dependent fashion while an agonist decreased aggression. In our 

microarray experiment with the Mozambique tilapia, somatostatin increased when males were 

in the olfactory vicinity of another dominant male, similar to what was reported in A. burtoni 

(Hofmann and Fernald, 2000). Once again in our studies with zebrafish, this gene was not 

significantly regulated, but other studies report that is also one of the genes being 

overexpressed in dominants (Filby et al., 2010). Thus, somatostatin may also function to 

contain energetically costly processes such as somatic growth and aggressive behavior in 

teleost fish (Trainor and Hofmann, 2006). 

In sum, the results in Chapter I suggest that a rather complex network of genes and 

molecular cascades might be responsible for the expression of a given number of adaptive 

behaviors in response to cues from the individual’s social environment. On the other hand, 

results from Chapter II further explore how these different stimuli from the social environment 

can regulate specific gene modules, probably to coordinate the appropriate expression of 



  

 

148 General discusion 

behaviors in response to each social stimulus. These studies demonstrate that brain gene 

expression is closely linked with behavior, that changes in brain gene expression mediate 

changes in behavior, and that the association between specific genes and behavior exists over 

multiple timescales, from physiological to evolutionary. 

 

Future perspectives 
The correct appraisal of the surrounding conditions is fundamental in social contexts, 

where aggressive behavior is common and can often lead to serious injuries and death, but 

also to identify opportunities (such as reproduction, access to resources, flee from predators, 

etc.). To survive an individual must accommodate these external stimuli along with relevant 

internal information to display context-appropriate behavioral responses. As in Chapter I our 

study only included a whole brain analysis, which might account for some of the differences 

with other studies, we only have a general idea that brain neurons are responding to these 

cues. Future research should focus on what happens in specific brain nodes of the SBN in 

response to certain social stimuli. More specifically what areas of the brain are responsible for 

appraising the social context and ultimately orchestrate the appropriate output. Probably a 

great number of areas and an even greater number of genes are simultaneously being 

activated and a global view of the brain in nonetheless needed to fully understand this 

network. Nowadays, with recent developments and widespread usefulness of genomic tools it 

is financially viable to monitor an even greater number of areas and also increase the sample 

size. Microdissection tools have also been updated and currently is possible to use laser 

dissection microscopes to more precisely collect brain tissue (e.g. O’Connell and Hofmann, 

2012b). These advances promise new avenues to better understand the interaction between 

the genotype and the environment.  

Additionally we can further test the aforementioned hypothesis that zebrafish appraise 

its own fighting ability against that of its opponent. This could be approached by manipulating 
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both internal and external social cues of the subject. Internal cues can experimentally be 

altered using a combination of castration and hormone replacement for androgens, 

pharmacological manipulations of vasotocin or use the microdialysis technique to alter 

cathecolaminergic systems. External stimuli can be manipulated very easily in fish since 

chemical stimuli alone convey information about social rank (Chapter II). 

Another interesting approach is to explore the available genetic tools in zebrafish, such 

as transgenic (GAL4-UAS) and mutant individuals. The possibility of knocking out key target 

genes or to test fish lacking diffuse neuro-modulatory systems might help us understand the 

regulatory mechanisms behind cognitive appraisal of a given social context in zebrafish. Or, 

ultimately, to genetically engineer and control social behavior under the control of a heat-

shock promoter whose expression could be turned on or off at different temperatures, for 

example, and used to express different behavioral traits using transgene methods (Shoji and 

Sato-Maeda, 2008). 
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