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Abstract

Deep grammars handle with precision complex grammatical phenomena
and are able to provide a semantic representation of their input sentences
in some logic form amenable to computational processing, making such
grammars desirable for advanced Natural Language Processing tasks.

The robustness of these grammars still has room to be improved. If any
of the words in a sentence is not present in the lexicon of the grammar, i.e. if
it is an out-of-vocabulary (OOV) word, a full parse of that sentence may not
be produced. Given that the occurrence of such words is inevitable, e.g. due
to the property of lexical novelty that is intrinsic to natural languages, deep
grammars need some mechanism to handle OOV words if they are to be
used in applications to analyze unrestricted text.

The aim of this work is thus to investigate ways of improving the handling
of OOV words in deep grammars.

The lexicon of a deep grammar is highly thorough, with words being
assigned extremely detailed linguistic information. Accurately assigning
similarly detailed information to OOV words calls for the development of
novel approaches, since current techniques mostly rely on shallow features
and on a limited window of context, while there are many cases where
the relevant information is to be found in wider linguistic structure and in
long-distance relations.

The solution proposed here consists of a classifier, SVM-TK, that is
placed between the input to the grammar and the grammar itself. This
classifier can take a variety of features and assign to words deep lexical types
which can then be used by the grammar when faced with OOV words. The
classifier is based on support-vector machines which, through the use of
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kernels, allows the seamless use of features encoding linguistic structure in
the classifier.

This dissertation focuses on the HPSG framework, but the method can
be used in any framework where the lexical information can be encoded as a
word tag. As a case study, we take LX-Gram, a computational grammar for
Portuguese, to improve its robustness with respect to OOV verbs. Given
that the subcategorization frame of a word is a substantial part of what is
encoded in an HPSG deep lexical type, the classifier takes graph encoding
grammatical dependencies as features. At runtime, these dependencies are
produced by a probabilistic dependency parser.

The SVM-TK classifier is compared against the state-of-the-art approaches
for OOV handling, which consist of using a standard POS-tagger to assign
lexical types, in essence doing POS-tagging with a highly granular tagset.

Results show that SVM-TK is able to improve on the state-of-the-art,
with the usual data-sparseness bottleneck issues imposing this to happen
when the amount of training data is large enough.

Keywords natural language processing, supertagging, deep computational
grammars, HPSG, out of vocabulary words, robustness



Resumo
(abstract in Portuguese)

As gramáticas de processamento profundo lidam de forma precisa com
fenómenos linguisticos complexos e são capazes de providenciar uma repre-
sentação semântica das frases que lhes são dadas, o que torna tais gramáticas
desejáveis para tarefas avançadas em Processamento de Linguagem Natural.

A robustez destas gramáticas tem ainda espaço para ser melhorada.
Se alguma das palavras numa frase não se encontra presente no léxico da
gramática (em inglês, uma palavra out-of-vocabulary, ou OOV), pode não ser
possível produzir uma análise completa dessa frase. Dado que a ocorrência de
tais palavras é algo inevitável, e.g. devido à novidade lexical que é intrínseca
às línguas naturais, as gramáticas profundas requerem algum mecanismo
que lhes permita lidar com palavras OOV de forma a que possam ser usadas
para análise de texto em aplicações.

O objectivo deste trabalho é então investigar formas de melhor lidar com
palavras OOV numa gramática de processamento profundo.

O léxico de uma gramática profunda é altamente granular, sendo cada
palavra associada com informação linguística extremamente detalhada. Atri-
buir corretamente a palavras OOV informação linguística com o nível de
detalhe adequado requer que se desenvolvam técnicas inovadoras, dado
que as abordagens atuais baseiam-se, na sua maioria, em características
superficiais (shallow features) e em janelas de contexto limitadas, apesar de
haver muitos casos onde a informação relevante se encontra na estrutura
linguística e em relações de longa distância.

A solução proposta neste trabalho consiste num classificador, SVM-TK,
que é colocado entre o input da gramática e a gramática propriamente dita.
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Este classificador aceita uma variedade de features e atribui às palavras tipos
lexicais profundos que podem então ser usado pela gramática sempre que
esta se depare com palavras OOV. O classificador baseia-se em máquinas
de vetores de suporte (support-vector machines). Esta técnica, quando
combinada com o uso de kernels, permite que o classificador use, de forma
transparente, features que codificam estrutura linguística.

Esta dissertação foca-se no enquadramento teórico HPSG, embora o
método proposto possa ser usado em qualquer enquadramento onde a infor-
mação lexical possa ser codificada sob a forma de uma etiqueta atribuída a
uma palavra. Como caso de estudo, usamos a LX-Gram, uma gramatica
computacional para a língua portuguesa, e melhoramos a sua robustez a
verbos OOV. Dado que a grelha de subcategorização de uma palavra é
uma parte substancial daquilo que se encontra codificado num tipo lexical
profundo em HPSG, o classificador usa features baseados em dependências
gramaticais. No momento de execução, estas dependências são produzidas
por um analisador de dependências probabilístico.

O classificador SVM-TK é comparado com o estado-da-arte para a tarefa de
resolução de palavras OOV, que consiste em usar um anotador morfossintá-
tico (POS-tagger) para atribuir tipos lexicais, fazendo, no fundo, anotação
com um conjunto de etiquetas altamente detalhado.

Os resultados mostram que o SVM-TK melhora o estado-da-arte, com os
já habituais problemas de esparssez de dados fazendo com que este efeito seja
notado quando a quantidade de dados de treino é suficientemente grande.

Palavras-chave processamento de linguagem natural, supertagging, gra-
máticas computacionais profundas, HPSG, palavras desconhecidas, robustez
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Chapter 1

Introduction

The field of Natural Language Processing (NLP) is concerned with the
interaction between humans and computers through the use of natural
language, be it in spoken or written form.

Achieving this interaction needs an automatic way of understanding
the meaning conveyed by a natural language expression. Note that, here,
“understanding” is seen as a continuum. Different applications will have
different requirements, and while some application manage to be useful
with only very shallow processing, others need to rely on deeper semantic
representations to fulfill their purpose.

Even within a given application, moving towards a deeper analysis,
i.e. one that produces a semantic representation, may lead to improved
results. For instance, this is a view that has grown in acceptance over the
past few years in Machine Translation, one of the seminal fields in NLP. The
methods that currently achieve the best results mostly try to map from one
language into another at the level of strings, and are seen as having hit a
performance ceiling. Thus, there is a drive towards methods that, in some
way, make use of semantic information.
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1. Introduction

Parsing is one of the fundamental tasks in NLP, and a critical step in many
applications. Much like the applications it supports, parsing also lies on a
continuum ranging from shallower parsing approaches to deep computational
grammars. Accordingly, as applications grow more complex and require
deeper processing, parsing must follow suit.

This Chapter provides a short introduction to the topic of parsing and
motivates the need for a robust handling of out-of-vocabulary words. The
notion of subcategorization frame will then be presented as an introduction
to the more encompassing notion of deep lexical type. This is followed by a
description of LX-Gram, the particular computational grammar that is used
in this work. The Chapter ends with a description of the research goals of
this dissertation.

1.1 Parsing and robustness
Parsing is the task of checking whether a sentence is syntactically correct.
More formally, parsing consists in answering the so-called “membership
problem” for a string of symbols, that is whether such a string is a member
of a given set of strings, which constitute a language.

The language, thus taken as a set of valid sentences, is defined through
a grammar, a finite set of production rules for strings. Note that, while a
grammar is finite, the set of strings it characterizes may be infinite, in which
case the membership problem cannot be reduced to a look-up in a list of
well-formed sentences.

Parsing proceeds by assigning a syntactic analysis to the sentence being
checked. If a full parse is found, the sentence is syntactically correct and
thus a valid member of the language.

Many applications can benefit from parsers that have some degree of
robustness to not fully well-formed input. That is, parsers that, when faced
with input with some level of ungrammaticalness, can nonetheless produce
useful output. The extent of this robustness, and what counts as being an
useful output, depend on the purpose of the application.

For instance, parsers for programming languages are strict and reject
any “sentence” (i.e. program) that is not part of the language. However,
those parsers usually include some sort of recovery mechanism that allows
them to continue processing even when faced with a syntactic error so that
they can provide a more complete analysis of the source code and report on
any additional errors that are found, instead of failing and outright quitting
parsing upon finding the first syntax error.
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1.2. The lexicon and OOV words

Applications for NLP also benefit from being robust. This should come as
no surprise since robustness is an integral feature of the human capability
for language. For instance, written text may contain misspellings or missing
words, while speech is riddled with disfluencies, such as false starts, hesi-
tations and repetitions, but these issues do not generally preclude us from
understanding that text or utterance. In fact, we are mostly unaware of
their presence.

As such, concerning NLP applications, robustness is, more than a matter
of convenience, a fundamental property since the input to those applications
will often be ungrammatical to a certain degree.

Approaches have been studied to tackle these problems, the more common
being (i) shallow parsing and (ii) stochastic methods.

Shallow (or partial) parsing is a family of solutions that hinge on dropping
the requirement that in order for a parse to be successful it should cover the
whole sentence. In partial parsing, the parser returns whatever chunks, i.e.
non-overlapping units, it was able to analyze, forming only a very shallow
structure.

Stochastic (or probabilistic) parsing approaches are typically based on an
underlying context-free grammar whose rules are associated with probability
values. For these approaches, the grammar rules and their probabilities are
usually obtained from a training corpus by counting the number of times a
rule was applied in the sentences of that corpus. Since it is likely that many
grammatical constructions do not occur in the training corpus, these parsing
approaches rely on smoothing techniques that spread a small portion of the
probability mass to rules not seen during training, though they assume that
all rules in the grammar are known (Fouvry, 2003, p. 51). These approaches
gain an intrinsic robustness to not fully grammatical input since they are
often able to find some rules that can be applied, even if they are ones with
low probability, and thus obtain a parse.

These approaches are mostly concerned with robustness regarding the
syntactic structure of the input sentences. The focus of the current work is
on parser robustness to a different type of issue, that of unknown words in
the input sentences.

1.2 The lexicon and OOV words
Most approaches to parsing that build hierarchical phrase structures rely
on context-free parsing algorithms, such as CYK (Younger, 1967), Earley
chart parsing (Earley, 1970), bottom-up left corner parsing (Kay, 1989)
or some variant thereof. There is a great number of parsing methods (see

3



1. Introduction

(Samuelsson and Wirén, 2000) or (Carroll, 2004) for an overview) and all
algorithms require a lexical look-up step that, for each word in the input
sentence, returns all its possible lexical categories by getting all its lexical
entries in the lexicon.

From this it follows that if any of the words in a sentence is not present
in the lexicon, i.e. if it is an out-of-vocabulary (OOV) word, a full parse of
that sentence cannot be produced without further procedures.

An OOV word can result from a simple misspelling, which is a quite
frequent occurrence in manually produced texts due to human error. But
even assuming that the input to the parser is free from spelling errors, given
that novelty is one of the intrinsic characteristics of natural languages, words
that are unknown to the parser will eventually occur. Hence, having a parser
that is able to handle OOV words is of paramount importance if one wishes
to use a grammar to analyze unrestricted texts, in practical applications.

1.3 The problem space
Lexica can vary greatly in terms of the type and richness of the linguistic
information they contain. This issue is central to the problem at stake
since it is tied to the size of the problem space. As an example of the
type of information we may find in a lexicon, we will present the notions of
part-of-speech (POS) and subcategorization frame (SCF).1

A syntactic category, commonly known as part-of-speech, is the result
of generalizations in terms of syntactic behavior. A given POS category
groups expressions that occur with the same syntactic distribution. That
is, an expression with a given POS category can be replaced by any other
expression bearing that same category because such replacement preserves
the grammaticality of the sentence.2

For instance, in Example (1), the expression gato (Eng.: cat) can be
replaced by other expressions, such as cão (Eng.: dog), homem (Eng.: man)
or livro (Eng.: book) while maintaining a grammatically correct sentence,
even if semantically or pragmatically unusual, as in the latter replacement.

(1) O
The

gato
cat

viu
saw

o
the

rato
mouse

To accommodate this generalization, these expressions are said to be nouns,
or to have or belong to the category Noun.

1For the sake of simplicity, we present POS and SCF only. Note, however, that the
lexica we are concerned with in this dissertation include further information (cf. §3.1).

2Modulo satisfying agreement or subcategorization and selection constraints.
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In the same example, viu (Eng.: saw) can be replaced by other words,
such as perseguiu (Eng.: chased) or apanhou (Eng.: caught), a fact that is
generalized by grouping these expressions into the category Verb. However,
a more fine-grained observation will reveal that viu cannot be replaced by
words such as correu (Eng.: ran) or deu (Eng.: gave), though these are also
verbs. This difference in syntactic behavior is captured by the notion of
subcategorization, or valence, in which verbs are seen as imposing certain
requirements and restrictions on the number and type of expressions that
co-occur with them in the same sentence. These expressions are then said
to be arguments of the verb, which under this capacity is said to behave as
a predicator.

For instance, in Example (1), viu can be replaced by apanhou because
both are transitive verbs, i.e. both require two arguments (of the type noun
phrase, in this case). Since the verb correu is intransitive (requires one
argument) it cannot replace viu.

It is important to note that other categories, such as nouns and adjectives,
also have SCFs (see, for instance, the work of Preiss et al. (2007) on acquiring
SCFs for these categories). Nevertheless, the notion of subcategorization is
usually introduced with respect to verbs since the words in this category
tend to display the richest variety of SCFs.

Information contained in the SCF of words is important in imposing
restrictions on what is a well-formed sentence thus preventing the grammar
from describing ungrammatical strings. Also, in many cases, a lexicon
with SCF information is supplemented with information on the frequency
of occurrence of SCFs. This is extremely useful when ranking the many
possible analyses of a sentence according to their likelihood.

The granularity of the restrictions imposed by a SCF can vary. In the
examples above, only the category of the argument is specified, like when
saying that viu requires two arguments of type noun phrase. SCFs can be
more detailed and capture restrictions on features such as admissible case
values, admissible prepositions, etc.

As the detail of the SCF information increases, the lexicon raises increased
challenges. If the lexicon is to be built manually, such added granularity will
increase the time and amount of work required to create the entries, and
what is more crucial, the likelihood of making errors of omission and errors
of commission. If some automatic, machine-learning approach to building
the lexicon is to be adopted, the added detail will raise data-sparseness
issues and increase the likelihood of classification errors.

In any case, the property of novelty of natural languages will not go
away, and the need of robust handling of OOV words remains.
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1. Introduction

Arguments and adjuncts

A SCF encodes restrictions on the number and type of constituents (the
arguments) that are required for a given construction to be grammatical.
Additionally, it is possible for other constituents to be related to a predicator
without them being required by the subcategorization capacity of that
predicator. Such constituents are usually called adjuncts or modifiers, and
are often expressions related to time, location or other circumstances that
are accessory with respect to the type of event described by a predicator.

For instance, note how in Example (2) the modifier ontem (Eng.: yes-
terday) is an optional addition to the sentence and not part of the SCF of
apanhou (Eng.: caught), as illustrated by its absence in (2-b). This contrasts
with (2-c) where the absence of o rato yields an ungrammatical structure,3
thus providing evidence of the status of this expression as an argument of
apanhou.

(2) a. O
The

gato
cat

apanhou
caught

o
the

rato
mouse

ontem
yesterday

b. O
The

gato
cat

apanhou
caught

o
the

rato
mouse

c. *O
The

gato
cat

apanhou
caught

As it often happens with many other empirically-based distinctions, it is not
always a clear-cut case whether a constituent is an argument or an adjunct
and there has even been work in trying to automatically make this decision,
like (Buchholz, 1998, 2002). This discussion is outside the scope of this work.
Here, such decisions are implicit in the grammar and in the corpus being
used, having been made by the experts that developed the grammar and
annotated the corpus.

Subject, direct object, and other grammatical dependencies

Grammatical dependencies describe how words are related in terms of their
grammatical function. In Example (2-a), gato is the subject of apanhou,
rato is the direct object, and ontem is a modifier. As such, grammatical
dependencies are closely related to the SCF of words.

These dependencies are usually represented as a directed graph, where
the words are nodes, and the arcs are labeled with the grammatical function
between those words (cf. §4.1.2).

3The asterisk is used to mark ungrammatical examples.
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NP → Det N

Det→ o|a

N → gato|gata

(a) without agreement

NP → Detm Nm

NP → Detf Nf

Detm → o
Detf → a
Nm → gato
Nf → gata

(b) with agreement

Figure 1.1: Adding gender agreement to NPs in a CFG

1.4 Deep grammars and HPSG
Deep grammars, also referred to as precision grammars, aim at making
explicit grammatical information about highly detailed linguistic phenomena
and produce complex grammatical representations of their input sentences.
For instance, they are able to analyze long-distance syntactic dependencies
and the grammatical representation they produce typically includes some
sort of logical form that is a representation of the meaning of the input
sentence.

These grammars are sought and applied mainly for those tasks that
demand a rich analysis and a precise judgment of grammaticality. That is
the case, for instance, in linguistic studies, where they are used to implement
and test theories; in giving support to build annotated corpora to be used as
a gold standard; in providing educational feedback for students learning a
language; or in machine translation, among many of the examples of possible
applications.

The simpler grammars used in NLP are supported by an underlying system
of context-free grammar (CFG) rules. A limitation of CFGs is that they
hardly scale as the grammar is enhanced and extended in order to address
more complex and diverse linguistic phenomena.

Compare, for instance, the two tiny CFGs shown in Figure 1.1. The CFG
that does not enforce gender agreement, in (a), has fewer rules. However,
it will also over-generate syntactic analyses, since it accepts NPs where
there is no agreement between the determiner and the noun, which are
ungrammatical in Portuguese, like o gata (Eng.: the-MASC cat-FEM).

In a plain CFG formalism, the only way to introduce such constraints
into the grammar is by increasing the number of non terminal symbols and
rules to account for all grammatical combinations of features (Kaplan, 2004,
§4.2.2). In these ultra-simplistic examples, adding a feature for gender with
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1. Introduction

two possible values, masculine or feminine, as in (b), doubled the number of
NP rules. As more features are added, the amount of grammar rules quickly
becomes unwieldy.

Intuitively, the restrictions imposed by the features that were added are
orthogonal to the syntactic constituency structure and should be factored
out. That is, it should be possible to have a rule simply stating “a NP is
formed by a determiner and a noun (that agree with each other in gender
and number).”

Over the years, a number of powerful grammar formalisms have been
developed to address the limitations of CFG. For instance, Lexical Functional
Grammar (LFG, (Bresnan, 1982)), Generalized Phrase Structure Grammar
(GPSG, (Gazdar et al., 1985)), Tree-Adjoining Grammar (TAG, (Joshi
and Schabes, 1996)), Combinatory Categorial Grammar (CCG, (Steedman,
2000)), and Head-Driven Phrase Structure Grammar (HPSG, (Pollard and
Sag, 1994; Sag and Wasow, 1999)) are grammatical frameworks resorting to
different such description formalisms.

The present work uses an HPSG as the underlying linguistic framework.
However, it is worth noting that the relevance of the results obtained in the
present study is not restricted to this particular framework.

The HPSG formalism will be presented later in §3.1. For the purposes of
this introduction it suffices pointing out that each entry in the lexicon of an
HPSG grammar is associated with a deep lexical type that encodes, among
other information, the SCF of the corresponding word and fully specifies its
grammatical behavior.

1.5 LX-Gram
LX-Gram (Branco and Costa, 2010) is an HPSG deep grammar for Por-
tuguese that is under development at the University of Lisbon, Faculty of
Sciences by NLX—Natural Language and Speech Group of the Department
of Informatics.4

LX-Gram is the flagship resource produced at NLX, and is well-suited
for the goals of the present study due to a number of factors.

The grammar is under continuous development, and in its current state
it already supports a wide range of linguistic phenomena.

Its lexicon, with over 25, 000 entries, is developed under a design principle
of lexicographic exhaustiveness where, for each word in the lexicon, there
are as many entries as there are possible distinct syntactic readings (and
thus, as many deep lexical types) for that word. In its last stable version, it

4LX-Gram is freely available at http://nlx.di.fc.ul.pt/lxgram/.
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contains over 60 morphological rules, 100 schemas (syntax rules), and 850
lexical types. Looking at the main open categories, these types breakdown
into 205 for common nouns, 93 for adjectives and 175 for verbs.

In addition, LX-Gram is distributed together with a companion corpus,
CINTIL DeepBank (Branco et al., 2010), a dataset that is highly reliable
inasmuch as it is one of the very few deep treebanks constructed under the
methodology of double-blind annotation followed by independent adjudica-
tion. The process for building the corpus, as well as the corpus itself, will
be described in further detail in §4.2 and §4.3.

Finally, this grammar is specially well-documented, being released with a
fully-detailed implementation report (Branco and Costa, 2008) that permits
to understand the finer details of the coding of the different linguistic
phenomena and that provides a fully-fledged characterization of the various
dimensions and performance of the grammar.

LX-Gram is being developed in the scope of the Delph-In consortium,
an initiative that brings together developers and grammars for several
languages, and provides a variety of open-source tools to help deep grammar
development.

One such resource is the LinGO Grammar Matrix (Bender et al., 2002),
an open-source kit for the rapid development of grammars that provides a
cross-language seed computational grammar upon which the initial version
of LX-Gram was built.

Grammar coding is supported by the Linguistic Knowledge Builder
(LKB) system (Copestake, 2002), an open-source integrated development
environment for the development of constraint grammars that includes a
graphical interface, debugger and built-in parser.

LKB includes a rather resource-demanding parser. For application
delivery, Delph-In provides the PET parsing system (Callmeier, 2000), which
is much lighter, robust, portable and available as an API for integration into
NLP applications.

Like many other deep computational grammars, LX-Gram uses Minimal
Recursion Semantics (MRS) for the representation of meaning (Copestake
et al., 2005). This format of semantic representation is well defined in the
sense that it is known how to map between MRS representations and formulas
of second-order logic, for which there is a set-theoretic interpretation. MRS
is described in more detail in Chapter 3, page 37.

Deep computational grammars are highly complex and, accordingly, suffer
from issues that affect every intricate piece of software. In particular, given
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that there can be subtle interactions between components, small changes
to a part of the implementation can have far-reaching impact on various
aspects of the grammar, such as its overall coverage, accuracy and efficiency.
To better cope with these issues, evaluation, benchmarking and regression
testing can be handled by the [incr tsdb()] tool (Oepen and Flickinger,
1998).

The latter feature, support for regression testing, is particularly useful
when developing a large grammar since it allows running a newer version
over a previously annotated gold-standard test suite of sentences and au-
tomatically find those analyses that have changed relative to the previous
version of the grammar, as a way of detecting unintended side-effects of an
alteration to the source code.

This is also the tool that supports the manual parse forest disambiguation
process, described in §4.2, that was used to build the companion CINTIL
DeepBank corpus.

Many deep computational grammars integrate a stochastic module for parse
selection that allows ranking the analyses in the parse forest of a given
sentence by their likelihood. Having a ranked list of parses allows, for
instance, to perform a beam search that, during parsing, only keeps the
top-n best candidates; or, at the end of an analysis, to select the top-ranked
parse and return that single result instead of a full parse forest.

For the grammars in the Delph-In family, and LX-Gram is no exception,
the disambiguation module relies on a maximum-entropy model that is able
to integrate the results of a variety of user-defined feature functions that
test for arbitrary structural properties of analyses (Zhang et al., 2007).

LX-Gram resorts to a pre-processing step performed by a pipeline of shallow
processing tools that handle sentence segmentation, tokenization, POS
tagging, morphological analysis, lemmatization and named entity recognition
(Silva, 2007; Nunes, 2007; Martins, 2008; Ferreira et al., 2007).

This pre-processing step allows LX-Gram, in its current state, to already
have some degree of robustness since it can use the POS information assigned
by the shallow tools to handle OOV words. This is achieved by resorting
to generic types. Each POS category is associated with a deep lexical type
which is then assigned to OOV words bearing that POS tag. As such, in
LX-Gram a generic type is better envisioned as being a default type that is
triggered for a given POS category.

Naturally, the generic (or default) type is chosen in a way as to maximize
the likelihood of getting it right, namely by picking for each POS tag the
most frequent deep lexical type under that category. Say, considering all
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verbs to be transitive verbs. While this is the best baseline choice (i.e. the
most frequent type is most often correct), it will nevertheless not offer or
approximate the best solution.

1.6 Goals of the dissertation
Deep processing grammars handle with high precision complex grammatical
phenomena and are able to provide a representation of the semantics of their
input sentences in some logic form amenable to computational processing,
making such grammars desirable for many advanced NLP tasks.

The robustness of such grammars still exhibits a lot of room for im-
provement (Zhang, 2007), a fact that has prevented their wider adoption
in applications. In particular, if not properly addressed, OOV words in the
input prevent a successful analysis of the sentences they occur in. Given
that the occurrence of such words is inevitable due to the novelty that is
intrinsic to natural languages, deep grammars need to have some mechanism
to handle OOV words if they are to be used in applications to analyze
unrestricted text.

Desiderata

The aim of this work is to investigate ways of handling OOV words in a
deep grammar.

Whatever process is used to handle OOV words, it should occur on-the-fly.
That is, it should be possible to incorporate the grammar into a real-time
application that handles unrestricted text (e.g. documents from the Web)
and have that application handle OOV words in a quick and transparent
manner, without requiring lengthy preliminary or offline processing of data.

There are several approaches to tackling the problem of OOV words in
the input (Chapter 2 will cover this in detail).

LX-Gram, for instance, resorts to a common solution by which the input
to the grammar is pre-processed by a stochastic POS tagger. The category
that the tagger assigns to the OOV word is then used to trigger a default
deep lexical type for that category (e.g. all OOV words tagged as verbs are
considered to be transitive verbs). While it is true that the distribution of
deep lexical types is skewed, this all-or-nothing approach still leaves many
OOV words with the wrong type.

Other approaches rely on underspecification, where a POS tagger is again
used to pre-process the input and an OOV word is considered to have every
deep lexical type that lies under the overarching POS category assigned to
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that word. This leads to a much greater degree of ambiguity, which in turn
increases the processing and memory requirements of the parsing process,
increases the number of analyses returned by the grammar and can also
allow it to accept sentences that are ungrammatical as being valid.

In either approach, having the POS category of the OOV word allows
the grammar to proceed with its analysis, but at the cost of increased error
rate or lack of efficiency.

To overcome this issue, a classifier is needed to automatically assign
deep lexical types to OOV words since a type describes all the necessary
grammatical information that allows the grammar to continue parsing
efficiently, just like if the word had been present in the lexicon all along.
Ideally, this classifier should fully eliminate lexical ambiguity by assigning a
single deep lexical type to the OOV word.

Current approaches that assign deep lexical types to words use relatively
shallow features, typically based on n-grams or limited windows of context,
which are not enough to capture some dependencies, namely unbounded long-
distance dependencies, that are relevant when trying to find the lexical type
of a word. More complex models, capable of capturing such dependencies,
must thus be developed, while coping with the data-sparseness that is
inevitable when moving to models with richer features.

The approach that is devised and the classifier that is developed should
also strive to be as agnostic as possible regarding the specific details of the
implementation of the grammar, since these may change as the grammar
evolves and also because, by doing so, the same approach can more easily
be applied to other grammars.

Sketch of the solution

With this in mind, we now provide a rough sketch of the solution that is
proposed, as to provide a guiding thread for this dissertation

This study will be conducted over LX-Gram as the working grammar,
which, as a result, will get improved robustness to OOV words tough, as
mentioned previously, the methodological relevance of the results is not
restricted to this particular grammar or specific to the HPSG framework.

LX-Gram, in its current setup, runs over text that is pre-processed by
a POS-tagger. We replace this POS-tagger by a classifier that assigns a
fully disambiguated deep lexical type to verbs. These types are then used
by the grammar when faced with OOV words. That is, instead of having a
pre-processing step assign POS tags that are then used to trigger a default
type for OOV words, the pre-processing step itself assigns lexical types. This
pre-processing step can be run on-the-fly, setting up a pipeline between the
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classifier and the grammar.
To encode richer linguistic information, beyond n-grams, the classifier will

use features based on linguistic structure, namely grammatical dependencies
graphs, since these closely mirror the SCF information that is a large part of
what is encoded in a deep lexical type. This requires representing structure
as feature vectors for the classifier, which is achieved through the use of
tree kernels. This also requires annotating the input to the classifier with a
dependency parser.

Finally, though not a goal, we use, as much as possible, existing tools
with proven effectiveness.

Summary of goals

The goals of this dissertation are summarized as follows:

• Study efficient methods to handle OOV words in a deep grammar.

• Devise a classifier that is able to assign deep lexical types on-the-fly so
that it can be seamlessly integrated into a working deep grammar. The
classifier should assign a single deep lexical type to each occurrence of
an OOV word, thus freeing the grammar from having to disambiguate
among possible types.

• Make use of structured features to improve the performance of the
classifier by allowing its model to encode information on grammatical
dependencies that cannot be captured when resorting to shallower
features, like n-grams or fixed windows of context.

1.7 Structure of the dissertation
The remainder of this dissertation is structured as follows. Chapter 2 covers
related work, with an emphasis on lexical acquisition and supertagging.

Chapter 3 provides an introduction to the tools and techniques that are
central to our work, namely the HPSG framework and the tree kernels used
in SVM algorithms.

Chapter 4 describes the steps that were required in order to obtain the
datasets that were used for training and evaluating the classifiers for deep
lexical types.

The classifiers are then described and intrinsically evaluated in Chapter 5,
while Chapter 6 reports on an extrinsic evaluation task.

Finally, Chapter 7 concludes with a summary of the main points, and
some remarks on the results and on future work.
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Chapter 2

Background

A productive way of conceptualizing the different approaches to handling
OOV words is in terms of the ambiguity space each of these approaches has
to cope with.

At one end of the ambiguity-resolving range, one finds approaches that
try to discover all the lexical types a given unknown word may occur with,
effectively creating a new lexical entry. However, at run-time, it is still up
to the grammar using the newly acquired lexical entry to work out which of
those lexical types is the correct one for each particular occurrence of that
word.

At the other end of the range are those approaches that assign, typically
on-the-fly at run-time, a single lexical type to a particular occurrence of
an unknown word. Their rationale is not so much to acquire a new lexical
entry and record it in the permanent lexicon, but to allow the grammar to
keep parsing despite the occurrence of OOV words.

Approaches can also be classified in terms of whether they work offline,
typically extracting SCFs from a collection of data; or on-line/on-the-fly,
where one or more SCFs are assigned to tokens as needed.

This Chapter presents some related work, starting with offline approaches
that acquire new lexical entries with a full set of SCFs, and moving towards
on-the-fly approaches that assign a single type.
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Subcat. frame Example
direct object (DO) greet [DO them]
clause know [clause I’ll attend]
DO & clause tell [DO him] [clause he’s a fool]
infinitive hope [inf. to attend]
DO & infinitive want [DO him] [inf. to attend]
DO & indirect object (IO) tell [DO him] [IO the story]

Table 2.1: SCFs recognized by Lerner

2.1 Lexical acquisition
The construction of a hand-crafted lexicon that includes some kind of SCF
information is a resource demanding task. More importantly, by their nature,
hand-coded SCF lexica are inevitably incomplete. They often do not cover
specialized domains, and are slow to incorporate new words (e.g. the verb
to google meaning to search) and new usages of existing words.

The automatic acquisition of SCFs from text is thus a promising approach
for supplementing existing SCF lexica (possibly while they keep being
developed) or for helping to create one from scratch.

2.1.1 The Lerner system
The seminal work by Brent (1991, 1993) introduces the Lerner system.
This system infers the SCF of verbs from raw (untagged) text through
a bootstrapping approach that starts only with the knowledge of func-
tional, closed-class words such as determiners, pronouns, prepositions and
conjunctions. It recognizes the 6 SCFs shown in Table 2.1.

Although nearly two decades old, the Lerner system introduced several
important techniques, like the use of statistical hypothesis testing for filtering
candidate SCFs, that deserve to be covered in some detail.

Since Lerner runs over text that is untagged, it relies on a set of local
morphosyntactic cues to find potential verbs. For instance, using the fact
that, in English, verbs can occur with or without the -ing suffix, it collects
words that exhibit this alternation. The resulting list is further filtered by
additional heuristics, such as one based on the knowledge that a verb is
unlikely to immediately follow a preposition or a determiner.

After the filtering steps, each entry in the remaining list of candidate
verbs is then assigned a SCF. To achieve this, the words to the right of the
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verb are matched against a set of patterns, or context cues, one for each
SCF. For instance, a particular occurrence of a candidate verb is recorded as
being a transitive verb—having a direct object and no other arguments—if
it is followed by a pronoun (e.g. me, you, it) and a coordinating conjunction
(e.g. when, before, while). In the end, the lexicon entry that is acquired for
a particular verb bears all the SCFs that verb was seen occurring given the
corpus available.

Hypothesis testing

The verb-finding heuristics and context cues outlined above are prone to
be affected by “noisy” input data and are bound to produce mistakes.
Accordingly, the assignment of an occurrence of verb V to a particular SCF
cannot be taken as definitive proof that V occurs with that SCF. Instead, it
should only be seen as a piece of evidence to be taken into account by some
sort of statistical filtering technique.

For this, Brent (1993) makes use of the statistical technique of hypothesis
testing. A null-hypothesis is formed whereupon it is postulated that there
is no relationship between certain phenomena. The available data is then
analyzed in order to check if it contradicts the null-hypothesis within a
certain confidence level.

The hypothesis testing method works as follows. The occurrence of
mismatches in assigning a verb to a SCF can be thought of as a random
process where a verb V has a non-zero probability of co-occurring with cues
for frame S even when V does not in fact bear that frame.

Following (Brent, 1993), if V occurs with a subcategorization frame S,
it is described as a +S verb; otherwise it is described as a −S verb.

Given S, the model treats each verb V as a biased coin flip (thus yielding
binomial frequency data). Specifically, a verb V is accepted to be +S
by assuming it is −S (the null-hypothesis). If this null-hypothesis was
true, the observed patterns of co-occurrence of V with context cues for S
would be extremely unlikely. The verb V is thus taken as +S in case the
null-hypothesis does not hold.

If a coin has probability p of flipping heads, and it is flipped n times, the
probability of it coming up heads exactly m times is given by the well-known
binomial distribution:

P (m,n, p) = n!
m! (n−m)! × p

m(1− p)n−m (2.1)

From this it follows that the probability of that same coin coming up
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head m or more times (m+) can be calculated by the following summation:

P (m+, n, p) =
n∑

i=m
P (i, n, p) (2.2)

To use this, we must be able to estimate the error rate, π−s, that gives
the probability of a verb being followed by a cue for frame S even though it
does not bear that frame.

For some fixed N , the first N occurrences of all verbs that occur N
or more times are tested against a frame S. From this it is possible to
determine a series of Hi values, with 1 ≤ i ≤ N , where Hi is the number of
distinct verbs that occur with cues for S exactly i times out of N .

There will be some j0 value that marks the boundary between −S and
+S verbs. That is, most of the −S verbs will occur j0 times or fewer with
cues for frame S. Given the binomial nature of the experience, the Hi values
for i ≤ j0 should follow a roughly binomial distribution.

Error rate estimation then consists of testing a series of values, 1 ≤ j ≤ N ,
to find the j for which the Hi values with i ≤ j better fit a binomial
distribution.

Having the estimate for the error rate, it is simply a matter of substituting
it for p in Equation (2.2). If at least m out of n occurrences of V are followed
by a cue for S, and if P (m+, n, π−s) is small,1 then it is unlikely that V is a
−S verb, leading to the rejection of the null-hypothesis and accepting V as
+S.

Evaluation is performed over a dataset of 193 distinct verbs that are
chosen at random from the Brown Corpus, a balanced corpus of American
English with ca. 1 million words. The output of Lerner is compared with
the judgments of a single human judge.

Performance is measured in terms of precision and recall. These are
calculated from the following metrics: true positives (tp), verbs judged to
be +S by both Lerner and the human judge; false positives (fp), verbs
judged to be +S by Lerner alone; true negatives (tn), verbs judged to be
−S by both; and false negatives (fn), verbs judged −S by Lerner that
the human judged as +S. The formulas for precision (p) and recall (r) are
as follows:

p = tp

tp+ fp
r = tp

tp+ fn
(2.3)

1A value of 5% is traditionally used. That is, P (m+, n, π−s) ≤ 0.05. A smaller
threshold increases the confidence with which the null-hypothesis is rejected.
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Hypothesis testing is performed with a 0.02 threshold and a value of
N = 100 is used for error rate estimation. Lerner achieves 96% precision
and 60% recall.

2.1.2 After Lerner
Several subsequent works on lexical acquisition have built upon the base
concepts introduced in Lerner.

Manning (1993) uses a similar approach but improves on the heuristics
that are used to find candidate verbs and assign them to SCFs. Candidate
verbs are found by running a POS tagger over the raw text. A finite-state
parser then runs over the POS tagged text and the SCFs are extracted from
its output. The set of SCF types that are recognizable by the system is
increased from 6 to 19.

The program was run over a month of New Your Times newswire text,
which totaled roughly 4 million words. From this corpus it was able to
acquire 4, 900 SCFs for 3, 104 verbs (an average of 1.6 SCFs per verb). Lower
bounds for type precision and recall were determined by acquiring SCFs for
a sample of 40 verbs randomly chosen from a dictionary of 2, 000 common
verbs. The system achieved 90% type precision and 43% type recall.

In (Briscoe and Carroll, 1997), the authors introduce a system that recognizes
a total of 160 SCF types, a large increase over the number of SCFs considered
by previous systems. An important new feature is that, in addition to
assigning SCFs to verbs, their system is able to rank those SCFs according
to their relative frequency. Like in the previous systems, hypothesis testing
is used to select reliable SCFs.

The system was tested by acquiring SCFs for a set of 14 randomly chosen
verbs. The corpus—which totaled 70, 000 words—used for the extraction of
SCFs was built by choosing all sentences containing an occurrence of one of
those 14 verbs—up to a maximum of 1, 000 for each verb—from a collection
of corpora. Type precision and recall are, respectively, 66% and 36%.

Though hypothesis testing was widely used, it suffered from well-known
problems that were even acknowledged in the original paper (Brent, 1993,
§4.2). Among other issues, the method is unreliable for low frequency SCFs.

This lead to several works that focus on improving the hypothesis selec-
tion process itself. Particularly important is the work by Korhonen (2002),
where verbs are semantically grouped according to their WordNet (Miller,
1995) senses to allow for back-off estimates that are semantically motivated.
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Korhonen finds that the use of semantic information, via WordNet senses,
improves the ability of the system to assign SCFs. Namely, the system is
tested on a set of 75 verbs for which the correct SCF is known. To 30 of
those, the system is unable to assign a semantic class, and achieves 78% type
precision and 59% type recall. To the remaining 45 verbs the system is able
to assign a semantic class, improving performance to 87% type precision
and 71% type recall.

As it happens with many other areas of NLP, most of the existing body of
work has targeted the English language. Portuguese, in particular, has had
very little research work done concerning SCF acquisition.

Marques and Lopes (1998) follow an unsupervised approach that clusters
400 frequent verbs into just two SCF classes: transitive and intransitive. It
uses a simple log-linear model and a small window of context with words
and their POS categories. An automatically POS-tagged corpus of newswire
text with 9.3 million tokens is used for SCF extraction. The classification
that was obtained was evaluated against a dictionary, for 89% precision and
97% recall.

Agustini (2006) also follows an unsupervised approach for acquiring SCFs
for verbs, nouns and adjectives. Given a word, its SCFs are inferred from
text and described extensionally, as the set of words that that word selects
for (or is selected by). No quantitative results are presented for the lexical
acquisition task.

2.1.3 Deep lexical acquisition
In many works, the acquisition of a lexicon for a deep processing grammar
is seen as a task apart from “plain” lexical acquisition given that a deep
grammar requires a lexicon with much richer linguist information. In
particular, deep lexical acquisition (DLA) tries to acquire lexical information
that includes–and often goes beyond—information on SCFs. This Section
covers previous work on lexical acquisition that specifically addresses deep
grammars.

Dedicated classifier

Baldwin (2005) tackles DLA for the English Resource Grammar (ERG), an
HPSG for English (Flickinger, 2000). He uses an approach that bootstraps
from a seed lexicon. The rationale being that, by resorting to a measure of
word and context similarity, an unknown word is assigned the lexical types
of the known word—from the seed lexicon—it is most similar to.
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The inventory of lexical types to be assigned was formed by identifying
all open-class types with at least 10 lexical entries in the ERG lexicon which,
in the version of the ERG used by Baldwin at the time, amounted to 110
lexical types (viz. 28 nouns, 39 verbs, 17 adjectives and 26 adverbs).2

Being a lexicon meant for a deep grammar, these types embody richer
information than simple POS tags. For instance, in ERG the type n_intr_le
indicates an intransitive countable noun.

Lexical types are assigned to words via a suite of 110 binary classifiers,
one for each type, running in parallel. Each word receives the lexical types
corresponding to each classifier that gives a positive answer. When every
classifier returns a negative answer there is a fall-back to a majority-class
classifier that assigns the most likely lexical type for that word class. Note
that this assumes that the POS of the unknown word—noun, verb, adjective
or adverb—is known.

Baldwin experiments with features of varying complexity, weighing better
classifier accuracy against the requirement for a training dataset with a
richer and harder to obtain annotation. For instance, one of the simpler
models requires only a POS tagged corpus for training and uses features
such as word and POS windows with a width of 9 tokens; while the most
advanced model requires a training corpus tagged with dependency relations
and includes the head-word and modifiers as features.

Evaluation is performed over three corpora (viz. Brown corpus, Wall
Street Journal and the the British National Corpus) as to assess the impact of
corpus size. Using 10-fold cross evaluation, the acquired lexica are compared
against the 5, 675 open-class lexical items in the ERG lexicon. From all the
methods that were tested, the one that used features from a shallow syntactic
chunker achieved the best result, with 64% type f-score (the harmonic mean
of type precision and type recall).

Leaving it to the grammar

Deep grammars, as a consequence of their precise description of grammatical
phenomena and due to the ambiguity that is inherent to natural languages,
are capable of producing, for a single sentence, many valid analyses (the parse
forest). Though all the analyses in the parse forest are correct according
to the grammar, some are more plausible than others. Thus, recent deep
grammars include a disambiguation component that allows ranking the
parses in the parse forest by their likelihood. This component can be

2Naturally, this means that lexical types with less that 10 entries in the seed lexicon
cannot be learned or assigned. This is justified by the assumption that most unknown
words will correspond to one of the high-frequency lexical types.
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based on heuristic rules that encode a preference or, more commonly, on a
statistical model that has been trained over manually disambiguated data.

Van de Cruys (2006) takes advantage of this feature to perform lexical
acquisition by allowing the grammar—in that case, the Alpino grammar for
Dutch—be the tool in charge of assigning lexical types to unknown words.

The method works roughly as follows: The Alpino parser is applied to a
set of sentences that contain the unknown word. The crucial insight of the
method is that the parser starts by assigning a universal type—in practice, all
possible open category types—to the unknown word, similarly to what was
done by Fouvry (2003). Despite the occurrence of this highly underspecified
word, with 340 possible tags, the disambiguation model in Alpino will allow
the parser to eventually find the best parse and, consequently, the best
lexical type to assign to that word. After applying the parser to a large
enough number of sentences, a set of lexical types will have been identified
as being the correct types for the unknown word.

This method achieved a type f-score of 75% when evaluated over 50, 000
sentences containing words that had been purposely removed from the
lexicon of Alpino in order to make them unknown to the grammar.

The main problem with this approach is that the universal types, due to
their very nature, give much leeway to the grammar, which will likely license
many readings that, though grammatically possible, are wrong readings
for the unknown word. Another downside is that the additional ambiguity
introduced by universal types is likely to lead to greater time and memory
requirements for parsing, which would be unsuitable for the on-the-fly OOV
handling that is a goal of this work.

2.2 Assigning types on-the-fly
The techniques reviewed so far for acquiring lexicon entries work offline,
over a training corpus, looking for unknown words, assigning them a set of
SCFs and incorporating the result into the lexicon as new entries.

However, ultimately, such approaches can only acquire the lexicon entries
for the unknown words that are present in the training corpus. Thus, any
system that is constantly exposed to new text, e.g. when parsing text from
the Web, will eventually come across some unknown word that has not yet
been acquired.

Moreover, such words must be dealt with on-the-fly, since it is unlikely
that the system can afford to wait until it has accumulated enough occur-
rences of the unknown word to be able to apply any one of the offline lexicon
acquisition methods.
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(a) transitive
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NP(wh)↓

(b) object extraction

Figure 2.1: Some elementary structures for likes in LTAG

2.2.1 Supertagging
POS tagging is a task that relies only on local information (e.g. the word
itself and a small window of context around it) to achieve a limited form of
syntactic disambiguation (Manning and Schütze, 1999, Ch. 10). As such,
POS tags are commonly assigned prior to parsing as a way of reducing
parsing ambiguity by restricting words to a certain syntactic category. Less
ambiguity leads to a greatly reduced search space and, as a consequence,
much faster parsing.

Supertagging, first introduced by Bangalore and Joshi (1994), can be
seen as a natural extension of this idea to a richer tagset, in particular to
one that includes information on subcategorization frames, suited to the
level of linguistic detail required by a deep grammar.

In (Bangalore and Joshi, 1994) supertagging was associated with the
Lexicalized Tree Adjoining Grammar (LTAG) formalism. As the name
indicates, this is a lexicalized grammar, like HPSG, but in LTAG each lexical
item is associated with one or more trees, the elementary structures. These
structures localize information on dependencies, even long-range ones, by
requiring that all and only the dependents be present in the structure. The
LTAG formalism then uses two tree rewriting operations—substitution and
adjoining—to combine the various elementary structures into a final tree.3

Figure 2.1 shows some of the elementary structure for the verb likes.
Note how the structure explicitly contains slots, marked by a down arrow,
where to plug-in, via the substitution operator, the elementary structures of
the NP arguments of the transitive verb.

The supertagger in (Bangalore and Joshi, 1994) assigns an elementary

3See (Joshi, 2004) for an introduction to the LTAG formalism.
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structure to each word using a simple trigram hidden Markov model. The
data for training was obtained by taking the sentences of length under 15
words in the Wall Street Journal together with some other minor corpora,
and parsing them with XTAG, a wide-coverage grammar for English based
on LTAG. In addition, and due to data-sparseness, POS tags were used in
training instead of words.

Evaluation was performed over 100 held-out sentences from the Wall
Street Journal. For a tagset of 365 elementary trees, this supertagger
achieved 68% accuracy.

In a later experiment, Bangalore and Joshi improve the supertagger by
smoothing model parameters and adding additional training data (Banga-
lore and Joshi, 1999). The larger dataset was obtained by extending the
corpus from the previous experiment with Penn Treebank parses that were
automatically converted to LTAG. The automatic conversion process relied
on several heuristics and, though it is not perfect, the authors found that the
problematic issues concerning the conversion process were far outweighed
by the gains in accuracy that come from the increase in training data.

The improved supertagger increased accuracy to 92% (Bangalore and
Joshi, 1999). The supertagger can also assign the n-best tags, which increases
the chances of it assigning the correct supertag at the cost of leaving more
unresolved ambiguity. With 3-best tagging, it achieved 97% accuracy.

A maximum entropy supertagger was used by Clark and Curran (2003,
2004, 2007) for a Combinatory Categorial Grammar (CCG). This formalism
uses a set of logical combinators to manipulate linguistic constructions.
For our purposes here, it matters only that lexical items receive complex
tags that describe the constituents they require to create a well-formed
construction. For instance, the transitive verb likes will be assigned the tag
(S\NP)/NP, meaning that it is a functor that receives an NP argument to
its right and returns S\NP which, in turn, is a functor that accepts an NP
argument to its left and returns a sentence, S.

The set of 409 lexical categories to be assigned was selected by taking
those categories that occur at least 10 times in sections 02–21 of CCGBank,
a version of Penn Treebank automatically annotated by CCG.

Evaluation was performed over section 00 of CCGBank, and achieved
92% accuracy.

As with the LTAG supertagger, assigning more than one tag can greatly
increase accuracy. However, instead of setting a fixed n-best number of
tags—which might be to low, or too high, depending on the case at hand—
the CCG supertagger assigns all tags with a likelihood within a factor β of
the best tag. A value for β as small as 0.1, which results in an average of
1.4 tags per word, is enough to boost accuracy up to 97%.
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Supertagging in HPSG

There has been some work on using supertagging together with the HPSG
framework. As with other works on supertagging, it is mostly concerned
with restricting the parser search space in order to increase parsing efficiency,
and not specifically with the handling of OOV words.

In HPSG,4 each entry in the lexicon of the grammar is associated with a
deep lexical type, which roughly corresponds to a LTAG elementary tree or
a CCG category (Dridan, 2009, §2.3.3 and §4.1). These deep lexical types
are the tags assigned by an HPSG supertagger.

Prins and van Noord (2003) present an HMM-based supertagger for the
Alpino Dutch grammar. An interesting feature of their approach is that the
supertagger is trained over the output of the parser itself, thus avoiding the
need for a hand-annotated dataset.

The supertagger was trained over 2 million sentences of newspaper text
parsed by Alpino. A gold standard was created by having Alpino choose
the best parse for a set of 600 sentences. The supertagger, when assigning a
single tag (from a tagset with 2, 392 tags), achieves a token accuracy close
to 95%.

It is not clear to what extent these results can be affected by some sort of
bias in the disambiguation module of Alpino, given that both the sequence
of lexical types in the training dataset and in the gold standard are taken
from the best parse produced by Alpino.

Matsuzaki et al. (2007) use a supertagger with the Enju grammar for
English. The novelty in their work comes from the use of a CFG to filter
the tag sequences produced by the supertagger before running the HPSG
parser. In this approach, a CFG approximation of the HPSG is created.
The key property of this approximation is that the language it recognizes is
a superset of the parsable supertag sequences. Hence, if the CFG is unable
to parse a sequence, that sequence can be safely discarded, thus further
reducing the amount of sequences the HPSG parser has to deal with.

The provided evaluation is mostly concerned with showing the improve-
ment in parsing speed. Nevertheless, the quality of the supertagging process
can be inferred from the accuracy of the parse results, which achieved a
labeled precision and recall for predicate-argument relations of 90% and
86%, respectively, over 2, 300 sentences with up to 100 words in section 23
of the Penn Treebank.

Blunsom (2007, §7) focuses on a supertagging approach to deep lexi-
cal acquisition for HPSG. Though an offline approach, it can be trivially
extended to run on-the-fly.

4The HPSG framework will be presented later in §3.1.
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A supertagger with a tagset of 615 lexical types was trained over 10, 000
sentences and tested over 1, 798 test sentences from the treebank associated
with ERG. It achieves an accuracy of 91% per token, though it drops to
41% when evaluating only over unknown words.

Also for the ERG, Dridan (2009, §5) tests two supertaggers, one induced
using the TnT POS tagger (Brants, 2000) and the other using the C&C
supertagger (Clark and Curran, 2003, 2004, 2007), over different datasets
that vary in genre and size. For the sake of brevity, we only reference the
results that were obtained by running TnT over a dataset of 814 sentences
of tourism data.

Dridan experiments with various tag granularities in order to find a
balance between tag expressiveness and tag predictability. For instance,
assigning only POS—a tagset with only 13 tags—is the easiest task, with
97% accuracy, while a highly granular supertag formed by the lexical type
concatenated with any selectional restriction present in the lexical entry
increases the number of possible tags to 803, with accuracy dropping to
91%. There is a noticeable impact in accuracy, which drops to 31%, when
we look only at performance over unknown words while assigning the highly
granular supertags.

2.2.2 A remark on parse disambiguation

Before moving on to the next Chapter, it is important to note that having
a process that handles OOV words by automatically assigning deep lexical
types to them cannot be the be-all and end-all of grammatical disambiguation.
This is clearly highlighted in a study performed, again over the ERG, by
Toutanova et al. (2002).

In that study, the authors concluded that lexical information accounts
for roughly half of the grammatical ambiguity. They show that, even if
deep lexical types are perfectly assigned by an oracle supertagger, the
disambiguation module of the ERG only picks the correct parse as its first
choice for 55% of the sentences. That is, for the remaining sentences, the
correct parse ends up in a rank other than first.

This places an upper-bound on the extent of grammatical disambiguation
that is possible thanks to lexical information alone. However, the current
study is primarily concerned with the accuracy in assigning deep lexical
types, not with whether the top-ranked parse that is eventually output
by the grammar is the correct one (nonetheless, grammar disambiguation
performance is measured and results are presented in §5.7).
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2.3 Summary
Most of the initial work related with the handling of OOV words was
concerned with off-line lexical acquisition where a process extracts the SCFs
of a word from a corpus in order to add new entries to a lexicon. Recent
work has tackled supertagging, sometimes on-the-fly, though mostly with
the purpose of speeding up the parser by reducing its search space. Many
different approaches and tools were covered in this Section. Table 2.2 is
an attempt to summarize this disparate information. Precision and recall
scores, when applicable, are combined into an f-score.

27



2. Background

reference description
Brent (1993) . . . . . . . . . . . . . . . . hypothesis testing; 5 SCFs;

74% f-score
Manning (1993) . . . . . . . . . . . . . hypothesis testing; 19 SCFs;

58% f-score
Briscoe and Carroll (1997) . . . hypothesis testing; 160 SCFs;

ranking of SCFs;
47% f-score

Korhonen (2002) . . . . . . . . . . . . hypothesis testing; semantic
grouping of verbs;
78% f-score for verbs with a
semantic class

Marques and Lopes (1998) . . . clusters verbs into two SCFs;
93% f-score

Agustini (2006) . . . . . . . . . . . . . . SCFs as a set of related words;
no quantitative results

Baldwin (2005) . . . . . . . . . . . . . . 110 lexical types; set of dedi-
cated pointwise classifiers;
64% f-score

Van de Cruys (2006) . . . . . . . . grammar disambiguation mod-
ule resolves a universal type;
75% f-score

Bangalore and Joshi (1999) . . supertagging; 365 tags;
92% accuracy for 1-best tag

Clark and Curran (2004) . . . . supertagging; 409 categories;
92% accuracy

Prins and van Noord (2003) . supertagger; 2, 392 tags;
trained over grammar output;
95% accuracy

Matsuzaki et al. (2007) . . . . . . supertagger; CFG post-filter;
88% f-score (pred-arg rela-
tions)

Blunsom (2007) . . . . . . . . . . . . . supertagger; 615 types;
91% accuracy

Dridan (2009) . . . . . . . . . . . . . . . supertagger; 803 tags;
TnT: 91% accuracy

Table 2.2: Summary of related work
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Chapter 3

Techniques and Tools

This Chapter provides a short introduction to the tools and techniques that
are more central to this work.

The first Section provides a quick primer on the HPSG framework. The
second Section introduces support-vector machines and discusses how tree
kernels can be applied to allow a classifier to use structured features.

3.1 Head-Driven Phrase Structure Grammar
This Section provides a short introduction to the main concepts in the HPSG
framework being used. For a detailed account of the underlying theory, see
(Pollard and Sag, 1994) and (Sag and Wasow, 1999), among others.

HPSG resorts to a constraint-based description formalism that relies
on typed feature structures whose properties make it very amenable to
computational implementation. A typed feature structure is a directed
acyclic graph (DAG) where each node is labeled with a type and arcs are
labeled with features. An equivalent representation is the attribute-value
matrix (AVM) notation, which will be used throughout this work, since it is
more readable than a DAG, specially for large feature structures. Figure 3.1
shows an example of both representations for the same structure.

An AVM represents a set of attributes, each associated with a value.
This value can itself be an AVM, allowing for unlimited nesting of feature
structures.
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(a) directed acyclic graph



type

attribute1 value1

attribute2 value2

. . . . . .
attributen valuen


(b) attribute-value matrix

Figure 3.1: Typed feature structure

Each feature structure is assigned a type,1 which are organized in an
inheritance hierarchy, with a unique top node, where a given type inherits
the properties of all the types that are more general than (i.e. subsume) it.
Roughly speaking, these types state what attributes are present in a feature
structure, as well as the allowable types for the values of those attributes.

To better explain how the unification mechanism and the type hierarchy
work, the following examples will refer to the toy grammar that is presented
in (Copestake, 2002, p. 50).

This grammar defines a syn-struc type, which simply states that any
feature structure of that type must have a categ attribute, with values of
type cat, and a numagr attribute, with values of type agr. These three
types, syn-struc, cat and agr, all inherit from the unique top node, *top*.

The type word is defined as a syn-struc that has an additional attribute
orth of type string. More specific types of word are also defined, such
as sg-word and pl-word, for singular and plural words, respectively. These
types inherit from word and enforce a more specific type for the value of
the numagr attribute.

Finally, a phrase type is defined as being a syn-struc with an args
attribute with a list value.2

Figure 3.2 summarizes these definitions while Figure 3.3 shows the
resulting type hierarchy tree.

Note that some types, namely the ones shown in the right-hand side of
Figure 3.2 (e.g. det or sg), do not place any constraints on the content of

1More recent HPSG terminology uses the term “sort” instead of “type”, but here I
will keep using the latter.

2Lists are also represented as feature structures through the use of a recursive
definition, where a list is a first element followed by a possibly empty list. However, to
simplify notation, they are often represented using angled brackets.

30



3.1. Head-Driven Phrase Structure Grammar

syn-struc ≡


*top*

categ cat
numagr agr


word ≡

syn-struc
orth string


sg-word ≡

word
numagr sg


pl-word ≡

word
numagr pl


phrase ≡

syn-struc
args list



cat ≡
[
*top*

]
det ≡

[
cat
]

n ≡
[
cat
]

np ≡
[
cat
]

agr ≡
[
*top*

]
sg ≡

[
agr
]

pl ≡
[
agr
]

Figure 3.2: Type definitions for toy grammar

*top*

cat

npndet

agr

plsg

syn-struct

phraseword

pl-wordsg-word

Figure 3.3: Type hierarchy for toy grammar

the feature structure they typify. They are used as placeholders and serve
only to indicate the set of acceptable values of a feature.

The grammar lexicon is built using the subtypes of word. Given that
much of the information about a word can be inferred from its type, only
the word-specific information needs to be explicitly specified in the lexical
entry. For this toy grammar, this information is just the orthographic form
(orth) and the grammatical category (categ) of the word.

For instance, as shown in Figure 3.4, the lexicon entry “dog” is entered
into the lexicon as being of the sg-word type and having, as word-specific
data, the “dog” orthographic form and the noun category. There are few
important remarks regarding this example.

First, it is important not to confuse the name of the lexicon entry with
the orthographic form of the word. The fact that, in this case, the name
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the ≡


word

orth “the”
categ det



this ≡


sg-word

orth “this”
categ det



these ≡


pl-word

orth “these”
categ det



fish ≡


word

orth “fish”
categ n



dog ≡


sg-word

orth “dog”
categ n



dogs ≡


pl-word

orth “dogs”
categ n


Figure 3.4: Lexicon for toy grammar

of the lexical entry is equal to the value of the orth attribute might at
first blush make it seem like that feature is useless. Note, however, that
the word “dog” is also a transitive verb (cf. to follow, track, pursue). To
handle that, a larger grammar, with a more extensive lexicon, would require
two separate lexical entries—say, a “dog/1” entry for the noun reading and
a “dog/2” entry for the verb reading—with different values for categ but
with the same value for the orth attribute.

Second, note how the lexical entries for “the” and “fish” do not specify
whether the word is singular or plural. Instead, both inherit directly from
the word type and, consequently, from syn-struct, giving them a numarg
attribute with the agr value (which subsumes both sg and pl). In such cases,
a value is said to be underspecified.

Lastly, in this toy grammar, one has to explicitly create entries for
all the inflectional variants of a word, e.g. “dog” and “dogs”. Not only
is this unwieldy, in particular for words with rich inflection (like verbs
in Portuguese), it is also redundant since it misses important linguistic
generalizations. In a non-toy grammar, this issue is resolved through the use
of morphological rules, which allow having in the lexicon only the entry for
the lemma of a word and, from it, obtaining all the corresponding inflected
forms, while changing the values of the attributes accordingly. For the sake
of simplicity, these rules will not be covered here. See (Copestake, 2002,
§5.2) for more.
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phrase

categ np
numagr 1

args
〈

word

categ det
numagr 1

,

word

categ n
numagr 1


〉


Figure 3.5: Feature structure for an NP rule

So far it might be difficult to find the motivation for such a complex approach
and understand why it is useful. The advantage of using an hierarchy of
types becomes clearer when one tries to model more complex phenomena
and when features structures are combined with each other.

Feature structures are combined through unification. This operation
takes two feature structures and merges the information present in each
of them into a single feature structure as long as there are no conflicting
attribute-value pairs. More formally, the unification of F1 and F2 is the
most general feature structure that is subsumed by both F1 and F2, if it
exists.

HPSG is a highly lexicalized grammar framework, which means that
most of the linguistic information is placed in the lexicon. The grammar
rules, called schemas, are usually few in number and encode very general
linguistic principles.

For instance, retaking the motivating example of the CFG in Figure 1.1,
a rule for noun phrases that states that these are formed by a determiner and
a noun that must agree with each other can be defined in a straightforward
manner, as shown in Figure 3.5.

In more detail, this rule defines a noun phrase as being a subtype of
phrase, with all that such a type inheritance entails,3 that is formed from two
constituents, the first being a determiner and the second a noun. That is, the
args list represents what would be the right-hand side in the corresponding
CFG rule, NP→ Det N.

Features that are marked with matching tags, viz. the 1 tags in the
example, are unified. That is, more than simply being features with matching
values, they must be the same feature structure. This concept is clearer
when looking at the DAG representation of a feature structure, where feature

3That is, a phrase is a syn-struct that has an args attribute with a list value. In
turn, being a syn-struct also means that it has a categ attribute with a cat value and a
numagr attribute with an agr value.
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phrase

categ np
numagr sg

args
〈

word

orth “the”
categ det
numagr sg

,

word

orth “dog”
categ n
numagr sg


〉


Figure 3.6: Feature structure for the NP “the dog”

co-indexation is explicitly represented through the use of reentrancy, i.e.
having several paths that lead to the same node.

In the current example, the practical outcome of co-indexing these
features is that it ensures that the determiner and the noun that form a
noun phrase must agree, and that the resulting noun phrase will also display
that same value for its numagr attribute.

Figure 3.6 shows the feature structure for the noun phrase “the dog”.
Note that the numagr attributes of “the” and “dog” can be unified since
agr subsumes sg. As stated before, the result is the most general feature
that is subsumed by both, which, in this case, is sg.

The manner in which subcategorization constraints are handled is also
illustrative of the descriptive power of this framework. To exemplify this,
we must move onto richer feature structures for describing words.

Under this richer representation, words have in their feature structure an
attribute (here, cat) that encapsulates syntactic information. This typically
contains a head attribute whose value is the syntactic category of the word
(noun, verb, preposition, etc.) and, crucially, an attribute (here, subcat)
whose value lists the grammatical arguments required by that word, i.e. its
subcategorization frame. Two examples are shown in Figure 3.7.4

For instance, an intransitive verb like walks has a subcat list with a
single element whose cat|head attribute has a value of type np, while a
transitive verb like sees enforces a subcat list with two elements, both with
cat|head attributes whose values are noun phrases.

Having placed the subcategorization information into the lexical entry,
the schema for verb phrase rules can then be quite generic. For instance,
Figure 3.8 shows a feature structure for a VP rule. Its args list forces

4The cat|head notation is short for a head feature inside a cat feature.
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walks ≡



word

orth “walks”

cat

head v

subcat
〈[

cat |head np
]〉




sees ≡



word

orth “sees”

cat

head v

subcat
〈[

cat |head np
]
,
[
cat |head np

]〉



Figure 3.7: Lexicon with SCFs


cat

[
head vp

]

args
〈

1 ,

cat
head v
subcat

〈
1 , 2

〉
, 2

〉


Figure 3.8: Feature structure for a VP rule

three elements, the second one being a verb with a two-element subcat list
(hence, a transitive verb). The co-indexed features ensure that the first and
third elements in the args list of the VP must unify with the constraints
imposed by the verb.

In the examples just shown, each lexicon entry explicitly states the SCF
of the corresponding word. In an actual grammar, this redundancy would
be factored out of the lexicon and the corresponding restrictions encoded
into the type hierarchy by creating sub-types of word that enforce a specific
value for their subcat attribute, such as a verb_np lexical type which states
that the word is an intransitive verb with a single NP argument.

As shown in Figure 3.9, placing this information in the type hierarchy
allows grouping under a single lexical type all words with the same SCF,
leaving just the word-specific information in the lexical entry, which in these
examples amounts only to the orth attribute.

Beyond SCFs

For the sake of simplicity, we have been focusing mostly on the lexical
information that represents the SCF, but it is important to again note that
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verb_np ≡


word

cat

head v

subcat
〈[

cat |head np
]〉



walks ≡
verb_np
orth “walks”

 sings ≡
verb_np
orth “sings”


Figure 3.9: Encoding the SCF in the lexical type

the deep lexical type encodes a great deal of information not related to the
SCF. To illustrate this, we now take a quick look at some examples from
the lexicon of LX-Gram.

The lexicographers that build the lexicon of LX-Gram work with a
spreadsheet-like database that has one entry per line, with the lexical
information given in various columns. The database of verbs, for instance,
has 11 columns in addition to the ones that encode SCF information. These
columns store information on verb properties like the following:

• Is the verb passivizable? A true/false value that indicates whether the
verb can form passive constructions. For instance, the verb to see is
passivizable while to arrive is not.

(1) a. Passivizable: ver (Eng.: to see)
(i) O

the
gato
cat

viu
saw

o
the

pássaro
bird

(ii) The
the

pássaro
bird

foi
was

visto
seen

pelo
by-the

gato
cat

b. Not passivizable: chegar (Eng.: to arrive)
(i) O

the
correio
mail

chegou
arrived

(ii) *O
the

correio
mail

foi
was

chegado
arrived

• Does the verb need the “se” inherent clitic? This has three possible
values: obligatory, optional or not allowed.

(2) a. Obligatory: suicidar (Eng.: to suicide)
(i) *Ele

he
suicidou
suicided
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(ii) Ele
he

suicidou-se
suicided-SE

“He commited suicide”
b. Optional: derreter (Eng.: to melt)

(i) A
the

manteiga
butter

derreteu
melted

(ii) The
the

butter
butter

derreteu-se
melted-SE

c. Not allowed: sorrir (Eng.: to smile)
(i) Ele

he
sorriu
smiled

(ii) *Ele
he

sorriu-se
smiled-SE

• What is the referential opacity of the verb? This property is related
to the semantic interpretation of the verb. It can have two values,
transparent and opaque. The difference will be explained through the
following scenario: Say that John mistakenly believes that Antonio
Salieri is the composer of Requiem (the actual composer is Mozart).
With a transparent verb, like to see, the statement “John saw Mozart”
implies “John saw the composer of Requiem”. However, with an opaque
verb, like believe, the implication is not valid. For instance, “John
believes that Mozart arrived” does not imply “John believes that the
composer of Requiem arrived” since John mistakenly believes that
Salieri is the composer.

These properties, and many more (cf. Appendix B), are specified for
each verb entry. The different combinations of the values of such properties
are then encoded as a deep lexical type known to LX-Gram. Note that the
name of the deep lexical type is simply a string given to a node in the type
hierarchy. Nevertheless, adhering to good programming practices means
that the name should ideally be meaningful.

Representing semantics

The ultimate result of deep analysis is a semantic representation of the
meaning of a sentence. This can be done in several ways, but Minimal
Recursion Semantics (MRS) (Copestake et al., 2005) is very popular among
grammars in the HPSG framework.
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Take, for instance, the classic example of the sentence “Every man loves a
woman”. There are two readings for this sentence, which differ in the scope
of the quantifiers, and can be represented in first-order logic as follows:

∀x
(
man(x)→ ∃y

(
woman(y) ∧ love(x, y)

))
(3.1)

∃y
(
woman(y) ∧ ∀x

(
man(x)→ love(x, y)

))
(3.2)

In (3.1), the universal quantifier has the wider scope (i.e. “every man loves
a possibly different woman”), while in (3.2) it is the existencial quantifier
that outscopes the universal quantifier (i.e. “there is a woman that is loved
by all men”).

First-order logic allows us to express properties of objects. With it we can
express set membership, like in man(x), or relations between objects, like
in love(x, y), but natural languages have many expressions that serve to
quantify which cannot be symbolized in terms of a logic restricted to the
first-order quantifiers ∀ and ∃ , the classical example being “most” (Barwise
and Cooper, 1981).

The usual way of handling this is to use second-order logic, where
relations can have relations as arguments, and generalize quantifiers as
relations between two sets, viz. restrictor and scope, with a common bound
variable. In this approach, the representations corresponding to the readings
shown in (3.1) and (3.2) are, respectively:

every
(
x,man(x), a

(
y,woman(y), love(x, y)

))
(3.3)

a
(
y,woman(y), every

(
x,man(x), love(x, y)

))
(3.4)

MRS uses generalized quantifiers in a flat representation where there is no
embedding of predicates. Instead, each predicate is assigned a unique handle
and these handles are used as arguments of the generalized quantifiers. The
MRS representations corresponding to the readings shown in (3.3) and (3.4)
are, respectively:

h1: man(x), h2: woman(y), h3: love(x, y),
h4: every(x, h1, h5), h5: a(y, h2, h3)

(3.5)

h1: man(x), h2: woman(y), h3: love(x, y),
h4: every(x, h1, h3), h5: a(y, h2, h4)

(3.6)
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Note that the only difference between the two readings, in terms of their
MRS representation, is in the handles that are used as the third argument
(scope) of the predicates for the generalized quantifiers. As such, a single
MRS representation that leaves these handles unbounded can stand for both
readings:

h1: man(x), h2: woman(y), h3: love(x, y),
h4: every(x, h1, h6), h5: a(y, h2, h7)

(3.7)

The MRS in (3.7) leaves scope underspecified since h6 and h7 do not
refer to any predicate. However, it is possible to assign different values to
these handles in order to obtain the various possible readings. The first
reading is obtained by taking h6 = h5 and h7 = h3, while taking h6 = h3
and h7 = h4 gives the second reading.5

3.2 SVM and tree kernels
The support-vector machine (SVM) is a well known and widely used su-
pervised discriminative machine-learning algorithm for linear binary classi-
fication. It is part of the family of kernel-based methods where a general
purpose learning algorithm is coupled with a problem-specific kernel function
(Cristianini and Shawe-Taylor, 2000).

This Section provides a short introduction to the main concepts behind
these classifiers, with a particular focus on how they can be applied to
structured features through the use of tree kernels.

Being a linear binary classifier, an SVM separates instances into two sets
using a linear hyperplane. Instances that fall on one “side” of this plane are
classified as being positive, while the remaining instances are classified as
being negative.

The hyperplane that separates the instances is described by a vector w,
orthogonal to the plane, and a parameter b, the bias, such that x lies on
the hyperplane when 〈w,x〉+ b = 0, where 〈w,x〉 is the dot product6 of w
and x. As such, the SVM classification function can be formalized as shown
in (3.8), the result of which is either 1 or −1, depending on which “side” of
the hyperplane instance x falls on.

5Resolving handles is subject to some constraints: all arguments must be specified
and a predicate must fill at most one argument position.

6Recall that 〈a,b〉 =
∑n

i=1 aibi = a1b1 + a2b2 + · · ·+ anbn for a,b ∈ Rn.
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Figure 3.10: Maximum margin hyperplane

fw,b(x) = sign
(
〈w,x〉+ b

)
(3.8)

There are many possible hyperplanes that separate the positive from
the negative instances. SVM finds the hyperplane that gives the maximum
margin, the margin being the distance from the hyperplane to the nearest
positive and negative instances, as shown in Figure 3.10. The justification
for this choice is that, by picking the maximum margin, the classification
boundary thus created is more likely to generalize well to future data.

The training data for SVM are pairs of the form (xi, yi), where xi is
a vector in Rn and yi ∈ {−1,+1} is a label that indicates whether xi is
a positive or a negative instance. The optimization problem can thus be
formulated as follows:

min
w,b

1
2‖w‖

2

subject to:
〈w,xi〉+ b ≥ +1 when yi = +1
〈w,xi〉+ b ≤ −1 when yi = −1

(3.9)

That is, we must maximize7 the margin between hyperplanes H+ and
H−, the supporting hyperplanes, subject to the constraints that all positive

7The distance between the planes is proportional to the reciprocal of ‖w‖2. Thus,
maximizing the margin is equivalent to minimizing ‖w‖2.
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instances fall on the positive side of H+, and conversely that all negative
instances fall on the negative side of H−. This also means that no instances
fall between the supporting planes H+ and H−.

A graphical representation of this is given in Figure 3.11(a). Intuitively,
the parallel planes H+ and H− are pushed apart until they touch the
instances. The instances that end up on the supporting hyperplanes are
called the support vectors (highlighted with a circle in the figure), and they
are particularly important because the solution depends only on them.

The optimization problem (3.9) has a dual form, formulated as follows:

min
α

1
2
∑
i,j

‖p+ − p−‖2

where:
p+ =

∑
i

αixi for yi = +1, p− =
∑
i

αixi for yi = −1

subject to:∑
i

αi = 1 for yi = +1,
∑
i

αi = 1 for yi = −1, αi ≥ 0

(3.10)

A graphical representation of this is given in Figure 3.11(b). Intuitively,
we take the convex hulls that enclose each of the two sets of instances and
find the points p+ and p−, one on each hull, that are closest to each other.
The separating hyperplane we seek is the one that bisects the line connecting
p+ and p−.

The optimization problem in (3.10) can be rewritten as follows:

min
α

1
2
∑
i,j

αiαjyiyj 〈xi,xj〉 −
∑
i

αi

subject to:∑
i

αiyi = 0, αi ≥ 0
(3.11)

The dual form of the optimization problem has much simpler constraints
and, more importantly, the training instances xi appear only in the dot
product, as the rewritten form in (3.11) shows. This allows applying an
SVM to problems that are not linearly separable, as we will see next.

Being limited to a linear separating hyperplane severely restricts the class
of problems to which SVM classifiers can be applied since, in many cases,
the two sets of points formed by the positive and negative instances cannot
be neatly bisected by a hyperplane.
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(a) supporting hyperplanes (b) convex hull

Figure 3.11: Two ways of finding the maximum margin hyperplane

Instead of changing the algorithm, SVM methods tackle this limitation
by modifying the data. Data that are not linearly separable are mapped into
a new space, usually of much higher dimension, where they can be linearly
separated. This is done by extending the original input space with additional
dimensions that are obtained through a non-linear transformation. Then,
finding a linear separation in this extended space corresponds to finding a
non-linear separation in the original input space.

Take, for instance, a problem in R2 that requires a circular boundary
to separate the positive from the negative instances, a task that clearly
cannot be handled by a linear function. However, it is possible to perform a
non-linear transformation that maps points in the original two dimensional
space into points in a space with five dimensions, φ : R2 7→ R5, in the manner
shown in (3.12) (viz. the possible products of the two input features).

φ ((x, y)) = (x, y, xy, x2, y2) (3.12)

A linear hyperplane in this mapped R5 feature space corresponds to a
quadratic boundary in the input R2 space.

Recalling now the dual form shown in (3.11), note that the training data
(i.e. the vectors xi and xj) are involved in the optimization problem only
as part of the dot product in the objective function. If the vectors were to
be mapped, this dot product is the only place that would be affected and,
after mapping, would appear as 〈φ (xi) , φ (xj)〉. This allows the application
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of a kernel, which is a function that, for some mappings and under certain
conditions, can give the dot product of two mapped points without explicitly
knowing the mapping function, as shown in Equation (3.13).

ker(a1, a2) = 〈φ (a1) , φ (a2)〉 (3.13)

Clearly the difficulty lies in defining an adequate mapping and in proving
that the conditions that allow applying a kernel hold for the problem at
hand. Nevertheless, the kernel property is so surprising at first glance that
it is typically referred to as the kernel “trick” or, as Bennett and Campbell
(2000, p. 4) put it, “mathematically rigorous magic”.

For the current work, the machine-learning algorithm is to be applied to
discrete tree-like structures that encode richer linguistic information, such
as syntactic constituency or grammatical dependencies. A suitable kernel
for such a task is the tree kernel introduced by Collins and Duffy (2002),
which is discussed below.

3.2.1 An introductory example
We begin with a short example from the field of text categorization. Although
it does not use tree kernels, it provides some notions that will be used later
for the tree kernel.

To use an algorithm like SVM for a text categorization task, we need
to first represent documents as (numeric) feature vectors. A simple way of
doing this is to consider that a document, D, can be described by a vector
that counts the occurrences of the words that form the document (for a
concrete example see, for instance, (Joachims, 1998)).

To do this, we start by enumerating all words that occur in the training
data. The mapping function, φ, represents a document D as a large sparse
vector where the number in the i-th position corresponds to the number of
occurrences of the i-th word in that document. For instance:

φ (D) = (0, 3, 0, . . . , 0, 5, 0, 2, 0, . . . , 0, 1, 0, . . . , 0, 2, 0)

Under this representation, the dot product between the mapping of two
documents, 〈φ (D1) , φ (D2)〉, can be seen as providing a rough measure of
their similarity.

3.2.2 The tree kernel
The tree kernel function described here was introduced in (Collins and Duffy,
2002). The underlying idea is that, just like a text can be represented by the
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Figure 3.12: A tree and some of its subtrees

words that form it, a tree can be described by all the subtrees that occur in
it, as illustrated in Figure 3.12.

This representation starts by enumerating all the subtrees that are found
in the training data. A tree, T , is then represented by a huge sparse vector
where the number in the i-th position stands for the number of occurrences
of the i-th subtree in T .

Similarly to what happens in the text categorization example, under
this representation the dot product of two trees can be seen as giving some
measure of their similarity. However, explicitly calculating such an operation
is prohibitively expensive due to the extremely high number of dimensions
involved. Fortunately, the explicit calculation of the dot product can be
replaced by a rather simple kernel function that just needs to look at the
subtrees that form each tree, as presented next.

Building the tree kernel function

Here we provide a sketch, based on what is presented in (Collins and Duffy,
2002), of how the tree kernel function is obtained.

Start by implicitly enumerating all subtrees that occur in the training
data: 1, . . . , n. Define hi(T ) as being the number of occurrences of the i-th
subtree in tree T . From this it follows that the vector representation of trees
we wish to obtain is given by φ (T ) = (h1(T ), h2(T ), . . . , hn(T )).

To obtain this mapping, we begin by defining Ii(n), a helper indicator
function, which is calculated as shown below.

Ii(n) =

1 if subtree i is rooted at node n
0 otherwise

(3.14)
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From this it follows that hi(Tk) = ∑
n∈Nk

Ii(n), where Nk is the set of
nodes of tree Tk. That is, hi(Tk), the number of occurrences of the i-th
subtree in tree Tk can be calculated by summing the indicator function of
that particular subtree for all the nodes in Tk.

The dot product between the mapping of two trees can be written in
terms of hi and, consequently, in terms of the indicator function defined
previously:

〈φ (T1) , φ (T2)〉 =
∑
i

hi(T1)hi(T2) =
∑

n1∈N1
n2∈N2

∑
i

Ii(n1)Ii(n2) (3.15)

The outer summation can be seen as going through every pair of nodes
from trees T1 and T2, while the inner summation counts the number of
common subtrees rooted at those nodes. To simplify the notation, we
rewrite the inner summation as C(n1, n2) = ∑

i Ii(n1)Ii(n2), which leads to
the following definition for the kernel function.

ker(T1, T2) = 〈φ (T1) , φ (T2)〉 =
∑

n1∈N1
n2∈N2

C(n1, n2) (3.16)

That is, the kernel function corresponds to summing the value C(n1, n2)
for every possible node pairing of the two trees being compared. This
function can be defined recursively as shown in (3.17).

C(n1, n2) =
0 if n1 6= n2

1 if n1 = n2, preterminals∏nc(n1)
j=1

(
1 + C

(
ch(n1, j), ch(n2, j)

))
if n1 = n2, phrasal

(3.17)

where nc(n) is the number of children of node n and ch(n, j) is the j-th
child of n. The notation n1 = n2 is short for stating that both nodes have
the same production rule (e.g. both are S→ NP VP). Conversely, n1 6= n2
states that the production rules of nodes n1 and n2 are different.

Here lies the step that makes the computation tractable: The sum∑
i Ii(n1)Ii(n2) is calculated over the set of all subtrees, but this has been

rewritten as C(n1, n2), which only needs to look at the nodes of the two
trees being compared.
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n1

ch(n1,2)

. . .

ch(n1,1)
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n2

ch(n2,2)

. . .

ch(n2,1)

. . .

Figure 3.13: Comparing two binary trees

We still need to show that C(n1, n2) works as intended and does indeed
count the number of common subtrees rooted at n1 and n2. To see that this
is so, we will go through each possible case in turn.

The first two cases are trivial: When the productions are different,
the number of common subtrees rooted at n1 and n2 is 0, since the root
productions themselves are different; and when both nodes are preterminals
with the same category, there is only 1 subtree in common, namely the
preterminal node itself.

The third case, the recursive step, is more complex and thus calls for a
more detailed explanation. Its formula is repeated in (3.18).

C(n1, n2) =
nc(n1)∏
j=1

(
1 + C

(
ch(n1, j), ch(n2, j)

))
(3.18)

The common subtrees between n1 and n2 are found by taking the pro-
duction rule rooted at those nodes and choosing, for each child j, only the
child node itself or any of the common subtrees rooted at that child.

Take, for instance, the case shown in Figure 3.13, where two binary
branches are being compared. The result of the calculation of the recursive
step is shown in (3.19). The number of common subtrees between n1 and
n2 corresponds to the sum of the following values: 1, from taking only the
root production; C1, from taking any of the subtrees common to the first
children, and no subtrees from the second children; C2, from the converse
of the previous case; and finally C1C2, from taking any of the subtrees
common to the first children combined with any of the subtrees common to
the second children.

C(n1, n2) =(
1 + C

(
ch(n1, 1), ch(n2, 1)

)
︸ ︷︷ ︸

C1

)
×
(

1 + C
(
ch(n1, 2), ch(n2, 2)

)
︸ ︷︷ ︸

C2

)
=

1 + C1 + C2 + C1C2 (3.19)
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Kernel methods are quite powerful and flexible. For instance, Collins and
Duffy (2002) further refine this tree kernel by adding a decay factor that
downweights the effect of large fragments, and it is possible, through minor
alterations to how C(n1, n2) is defined, to obtain a variant that allows partial
productions. For more on this, see (Moschitti, 2006).

3.3 Summary
This Chapter provided a quick and simple overview of the tools that are
central to this work and of the theory behind them.

The first Section covered the main features of HPSG that are relevant for
the current work. Naturally, this is not the place for an in-depth explanation
of this framework, so the examples provided were quite simple and barely
scratch the surface of the potential of HPSG. In a wide-coverage, non-
toy grammar, like LX-Gram, the rule schemas are very general and are
an attempt at encoding actual linguistic universals, valid across human
languages. In addition, the lexicon for such grammars is extremely detailed,
with entries that encode highly granular SCF constrains, and beyond.

However, for the purposes of this dissertation, the most important fact
to retain from this introduction is that the linguistic information that
characterizes the grammatical behavior of words is fully specified in the
HPSG lexical types themselves. As shown in Figure 3.9, the lexical entry of
the word only includes the word-specific information, such as its orthographic
form, phonology, etc. That is, knowing the lexical type of a word is enough
to fully determine the restrictions that are relevant to the grammar.

The second Section provided an overview to the basic ideas behind
support-vector machines. It also introduced tree kernels and a sketch of
the proof that shows that the kernel function that was obtained calculates
the dot product in a feature space where each tree is represented by all its
subtrees.
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Chapter 4

Datasets

The present work aims at adding robustness to a deep grammar by increasing
its coverage with respect to OOV words, which will be assigned lexical types
on-the-fly. The approach that we are pursuing allows us to envisage the
type of language resources that are needed.

To be able to use supervised machine learning approaches, one needs
linguistically interpreted datasets in order to estimate the relevant stochastic
parameters and, at a later step, evaluate the performance of the resulting
solution. These datasets will vary greatly in complexity depending on the
level of linguistic annotation they contain. Related work (cf. Chapter 2)
can clue us into the kind of datasets that are useful, namely a POS-tagged
corpus, a constituency treebank and a dependency treebank are all bound
to include potentially useful features for the task at hand. In all cases, the
datasets must also include information on the lexical types of words, given
that this is the information we wish to eventually learn to assign.

This Chapter addresses the organization of the various annotated datasets.
It starts with a quick overview of two important linguistic representations,
syntactic constituency and grammatical dependencies. This is followed by
an introduction to grammar-supported treebanking, which is the method
used to build the core dataset, CINTIL DeepBank, from an initial corpus,
CINTIL. Then, it covers the extraction of vistas and describes the datasets
that result from that process. Finally, the Chapter addresses an assessment
of dataset quality carried out via training of data-driven parsers.
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4.1 Overview of linguistic representations
This Section provides a short introduction to the linguistic representations
that will be used ahead, namely syntactic constituency and grammatical
dependencies.

4.1.1 Syntactic constituency
The observation and study of language allows inferring regularities and
patterns from how words combine with other words. The formation of
syntactic constituents is one such regularity.

In a sequence of words, w1w2w3, if the subsequence w1w2 has a higher level
of aggregation than w1w2w3 or w2w3, the sequence w1w2 is considered to form
a constituent of w1w2w3, of which w1 and w2 are themselves constituents.

The contrasting levels of aggregation are determined through the appli-
cation of empirical linguistic tests which rely on grammatical intuitions or
judgments on syntactic well-formedness. These empirical tests are based on
carefully designed minimal pairs of sequences. To test a putative constituent,
these minimal pairs are constructed, for instance, by means of replacing a
sequence by another (see (Kim and Sells, 2008, §2.3) for some other common
tests). For example, in the sentence “The cat jumped”, the first two words
can be replaced by “it”, resulting in “It jumped”, which empirically supports
the claim that “The cat” is a constituent of the whole sentence, while “cat
jumped” is not.

A syntactic category is a set of constituents with identical syntactic dis-
tribution, that is constituents whose replacement by each other constituents
of the same category preserves the syntactic well-formedness of larger ex-
pressions they are constituents of, modulo other relational constraints such
as morphosyntactic agreement, for instance.

A constituent is represented by enclosing the relevant sequence in brackets
or, in an alternative but equivalent notation, by forming a one level deep
tree whose leaves are w1 and w2 and the top node stands for the whole
constituent.

4.1.2 Grammatical dependency
Grammatical dependency is an alternative view on how words are combined
that resorts to the lexical subcategorization properties of the words.

A given grammatical function (e.g. subject, direct object, etc.) results
from an abstraction over complements or modifiers of different predicates.
It permits to categorize complements, or modifiers, with similar constraints
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Figure 4.1: Constituency tree and dependency graph

on their realization, such as category, case, agreement, canonical word order,
inflection paradigm, etc. As before, these can be determined through the
application of empirical tests, like testing for subject-verb agreement (see
(Kim and Sells, 2008, §3.2) for some more typical tests).

In an utterance, a word wb depends on word wa when the occurrence of
wb in its specific position is made possible by the occurrence of wa. In such
case, it is considered to exist a grammatical dependency relation from the
word wb, the dependent element, to the word wa, the governor element of
the dependency.

Dependency relations can be depicted as graphs whose nodes are words
and whose directed arcs establish a connection from governors to their
dependent words. An example of a constituency tree and a dependency
graph for the same sentence are shown in Figure 4.1.

4.2 Grammar-supported treebanking
Annotated corpora are key resources for NLP. Not only are they important
materials for researchers investigating linguistic phenomena, they also allow
one to automatically obtain data-driven models of language and evaluate
the tools thus produced.

Annotating corpora with human-verified linguistic information is a time-
consuming, painstaking and often error-prone task. Early datasets for
NLP, like the well-known Penn Treebank (Marcus et al., 1993) or the
NEGRA corpus (Skut et al., 1997), were built with the help of automatic
annotation tools that were used to provide a preliminary annotation which
was then manually corrected. Performing such corrections purely by hand
can introduce formatting errors since manual changes may easily be ill-
formed (e.g. misspelled categories, forgetting to close a bracket, etc). As
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such, the manual correction task itself is often performed with the support
of a software tool that ensures that at least the linguistic information is well
formed (see, for instance, the works of Marcus et al. (1993) or Brants and
Plaehn (2000)).

As the linguistic information one wishes to include in a corpus grows
in complexity, the direct manual correction of automatically generated
annotation becomes increasingly hard to adopt since the human annotator,
even with the help of supporting software tools, has to keep track of too
much interconnected information.

To address this issue, approaches to corpus annotation have come to
rely on the support of an auxiliary deep processing grammar as a way of
producing rich annotation that is consistent over its morphological, syntactic
and semantic layers. Two examples of such an approach are (Dipper, 2000),
using an LFG framework, and (Oepen et al., 2002), under HPSG.

This grammar-supported approach to corpus annotation consists in using
a deep processing computational grammar to produce all possible analyses
for a given sentence. What is then asked of the human annotator is to
consider the output of the grammar and select the correct parse among all
those that were returned. In such a setup, the task of the human reviewer
can be better envisaged as being one of manual disambiguation instead of
manual annotation.

Due to the inherent ambiguity of natural language, the parse forest that
results from the grammar producing all possible analyses for a sentence may
very well include hundreds of trees. Manually examining each individual
tree in the parse forest in search for the correct one would prove unfeasible.

To tackle this issue, grammar-supported approaches typically rely on
discriminants, as proposed by Carter (1997) for the TreeBanker system.

A discriminant is a binary property that can be used to distinguish
between competing analyses. That is, a property that holds for some of
the analyses but not for others. These discriminants can be automatically
associated to the parse forest, yielding a set of binary decisions that allow
to unambiguously specify a single analysis from the parse forest.

For instance, PP-attachment is a common source of structural ambiguity,
where a PP (prepositional phrase) constituent may validly attach to more
than one node in the parse tree. A discriminant would state whether the PP
attaches to a given constituent. Choosing that discriminant as being valid
automatically prunes from the parse forest all parses where the attachment
of that PP is different, while marking the discriminant as invalid discard all
trees where the PP is attached to that same constituent.

By using this approach, one does not need to examine each individual
tree in the parse forest to get to the correct parse. A supporting workbench
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makes available a set of discriminants, which are far fewer in number than
the amount of trees in the parse forest. The human disambiguator can then
go through this shorter list, marking the discriminants as valid or invalid, in
order to gradually prune the forest down to a single parse.

The discriminant-based method of disambiguation can be further op-
timized by having the software automatically propagate decisions. For
instance, when a particular analysis is discarded due to a manual choice by
the human disambiguator, all discriminants that are true for that analysis
can be automatically marked as being invalid. The practical upside of this is
that, in most cases, only a subset of the discriminants needs to be manually
marked in order to reduce the parse forest down to a single analysis, further
reducing the amount of effort required.

For such an approach to work, it must be supported by a workbench
that generates the discriminants and handles the pruning of the parse forest
in a manner that is unobtrusive for the human annotator. For datasets in
the HPSG family, this can be done using the [incr tsdb()] tool (Oepen
and Flickinger, 1998). Besides providing an interface for the disambiguation
process described above, this tool integrates functionality for benchmarking,
profiling and testing the grammar over test suites.

4.2.1 Dynamic treebanks
The grammar-supported approach to treebanking can clearly reduce the
amount of effort required to produce annotated sentences. It has another
advantage that might not be obvious at first sight: It allows the development
and maintenance of treebanks that are dynamic, in the sense described in
(Oepen et al., 2004) and (Branco et al., 2009).

Even data that is already annotated may require an update to conform
to new versions of the grammar. Having to re-annotate all of the existing
corpora, even with the help of a grammar, becomes increasingly hard and,
more than that, since changes to the grammar rarely invalidate previous
analyses, much of the re-annotation work would ultimately result in picking
the same parses as before.

The grammar-supported approach also mitigates this issue because,
strictly speaking, it does not explicitly store the analysis picked by the
annotator. Instead, it stores the individual discriminant decisions that lead
to that analysis being chosen. Re-annotating a corpus with a new version
of the grammar can then be as simple as automatically replaying those
stored choices to obtain the correct analysis. Then, only the few sentences
whose parse forests eventually do not contain the tree previously picked are
brought to the attention of the human annotators.
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4.3 CINTIL DeepBank
The dataset used in this work is CINTIL DeepBank (Branco et al., 2010).
It is being developed according to the process outlined in the previous
Section by using the LX-Gram deep linguistic grammar (Branco and Costa,
2008, 2010) to automatically provide the parse forest and [incr tsdb()]
to support the manual discriminant-based disambiguation process.

It is worth of note that, for this dataset, we have adopted a method of
double-blind disambiguation followed by adjudication, widely adopted in the
literature as the one that may best ensure the reliability of the data produced.
In this setup, two human annotators work independently pruning the parse
forest returned by the grammar. If both annotators agree on the choice of
an analysis, that analysis is added to the dataset. When the annotators
disagree on what is the preferred analysis, a third human annotator, the
adjudicator, is brought in to decide which analysis will be added to the
dataset, if any (the adjudicator is free to choose a third analysis, rejecting
the ones chosen by either annotator).

Having more than one annotator working over the same data allows the
calculation of inter-annotator agreement (ITA) metrics, which provide a
measure of the consistency of the annotation process and of the reliability
of the resulting dataset, with values above 0.8 considered to be reliable.

The ITA metric that is used looks at inter-annotator agreement over
individual discriminant decisions. However, due to the sheer number of
discriminants involved in pruning the parse forest of a single sentence, and to
the fact that some discriminants are automatically flagged by the supporting
annotation tool, the classic ITA metric had to be adapted for this particular
task. For CINTIL DeepBank, under this adapted metric, the annotators
achieved an ITA score of 0.86 (Castro, 2011).

This method of corpus annotation is resource-consuming, both in terms of
human effort (three people are needed) and in terms of time (an adjudication
round is required), but it allows a stricter quality control of the dataset
being produced.

Both the grammar and the dataset continue under active development,
following the approach of dynamic treebanking described earlier. The figures
reported here are relative to the current stable version (v3).

The text is a 5, 422 sentence corpus containing sentences taken from
newspaper articles (4, 644, or 86%) and sentences used for regression testing1

of the grammar (778, or 14%).
1Sentences for regression testing are usually short and purposely built by the grammar

developer to target specific linguistic phenomena. They are used to test if changes or

54



4.3. CINTIL DeepBank

<s> Maria/PNM[B-PER] Vitória/PNM[I-PER]
tem/TER/V#pi-3s[O] razão/RAZÃO/CN#fs[O] ./PNT[O] </s>

Figure 4.2: Snippet of CINTIL Corpus

Due to the way it was built, the dataset only contains those sentences
that the supporting grammar is able to parse. There are 52, 193 tokens
in the dataset, which gives an average sentence length of 9.6 tokens. The
sentences for regression testing are typically shorter, with an average length
of 7.1 tokens. In the newspaper portion of the dataset each sentence has on
average 10.0 tokens.

4.3.1 The underlying CINTIL corpus
CINTIL DeepBank, regression sentences aside, was built by running LX-Gram
over the sentences in CINTIL Corpus (Barreto et al., 2006) and manually
disambiguating its output.

The sentences in CINTIL Corpus were annotated with a variety of
shallow morphosyntactic information by manually correcting the annotation
produced by LX-Suite, a set of shallow processing tools for Portuguese (Silva,
2007; Nunes, 2007; Martins, 2008; Ferreira et al., 2007). The annotation
consists of paragraph and sentence boundaries, part-of-speech categories,
lemmas2 for words from the open classes, inflection features (e.g. gender
and number), and information on named entities boundaries and type (i.e.
whether the entity is a person, location, etc).

An example showing the annotation format used in CINTIL may be seen
in Figure 4.2 (Eng.: Maria Vitória is right). Sentence boundaries are given
by <s> markup tags and token boundaries by white spaces. The POS tag
is appended to the token, separated by a slash (e.g. PNM for proper name).
When applicable, the lemma is placed between the word and the POS tag,
between slashes (e.g. TER as the lemma of tem). Inflection features, when
applicable, are placed after the POS tag separated by a hash mark (e.g.
pi-3s for present indicative, 3rd person singular). Lastly, information on
named entities is placed between square brackets and appended to the token.
It follows the IOB scheme used, for instance, in the CoNLL 2002 shared
task for named-entity recognition (Tjong Kim Sang, 2002): B (for Begin)
marks a token that begins a named-entity (i.e. its first token); I (for Inside)

extensions to the grammar “break” any previous functionality.
2The lemma, also called dictionary form, is the base, non-inflected form of the word.

This is typically the infinitive for verbs and the masculine singular for nouns and adjectives,
when available.
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Figure 4.3: Example of a fully-fledged HPSG representation

marks tokens inside an entity (i.e. any token other than the first); and O
(for Outside) marks tokens that do not belong to any entity. The type of
the named entity is appended to the boundary mark (e.g. PER for person,
LOC for location, ORG for organization, etc).

4.4 Extracting vistas
A concern that may be voiced regarding deep datasets like CINTIL DeepBank
is that they are too theory-centric and that the linguistic information they
store is found in a format that is too theory-specific and hard to access.

If, for instance, one only wishes to work with the constituency structure
of the sentence, the full deep representation is too unwieldy. The image
in Figure 4.3 helps to illustrate the problem. It shows the fully-fledged
grammatical representation, under the HPSG framework, for the rather
simple sentence Todos os computadores têm um disco (Eng.: All computers
have a disk).3

3The printout is in a 6 pt font. The arm and hand holding a pen are there just to
give a sense of the size of the grammatical representation.
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Thus, it is desirable to have a procedure for extracting vistas (Silva et al.,
2012). That is, subsets of the information contained in the full dataset,
such as text annotated only with part-of-speech tags, constituency trees or
grammatical dependency graphs.

To address this, we developed a tool, lkb2standard, to extract normal-
ized trees from the files exported by [incr tsdb()], which are files that
contain fully-fledged HPSG grammatical representations for the correspond-
ing sentences.

Trees are used to represent constituency relations. The normalized trees
produced by lkb2standard are decorated with extra information that is
not related to constituency. Namely, grammatical dependency and semantic
role tags are added to some phrasal nodes. Such extended treebanks are
commonly called PropBanks.

The vistas that are extracted are mainly used in two scenarios. On the
one hand, as a resource for linguist studies, mainly oriented towards being
looked at by a human. On the other hand, as a dataset for training and
evaluating machine-learning algorithms. These different purposes lead to
some differences in what is included in the vista. The discussion that follows
will draw attention to these differences where they are relevant.

4.4.1 CINTIL PropBank

The PropBank is a dataset similar to what is described in (Kingsbury and
Palmer, 2003) in that it consists of a layer of semantic role annotation that
is added to phrases in the syntactic structure of the sentence. The format
of these extended nodes in CINTIL PropBank is C-GF-SR, where C is the
constituency tag, GF corresponds to the grammatical function and SR is
the semantic role.

The first issue that arises when trying to obtain a standard representation
for grammatical structures is that there is no such thing as an universally
accepted normalized representation. This, however, is not the focus of the
present work. For a detailed account of the design decisions that motivate
the tree extraction, see (Branco et al., 2011b).

The vista extraction procedure consists of several steps, each having to
deal with non-trivial issues. As it turns out, many of these steps rely on
features that are specific to LX-Gram (e.g. the names of certain grammar
rules), which prevents the tool from being immediately applicable to the
output of other deep grammars. Nevertheless, a description of the main
steps, and of the problems that were found, will certainly be of help to
others trying to tackle the same task for their grammars.
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Figure 4.4: Derivation tree and exported tree from [incr tsdb()]

Retrieving the exported tree

The deep grammatical representation of a sentence that is exported by
[incr tsdb()] at the end of the manual disambiguation process includes,
alongside the full AVM, the derivation tree, which is a structure that encodes
the rules that were used by the grammar during the analysis of that sentence
and the order in which they were applied. The representation also includes
a second tree which has the same structure as the derivation tree, but where
the rule names have been replaced by syntactic categories through a mapping
defined by the grammar creator. It is this second tree, which will be called
exported tree, that is taken by lkb2standard as the starting point for the
vista extraction procedure. Figure 4.4 shows these two trees. For the sake
of readability, only a sentence snippet is shown.

Tokenization

Given that CINTIL Corpus contains information not present in the deep
dataset that has been created by the grammar (e.g. information on the type
of named entities), we want it to be possible to incorporate the data from
the annotated sentences in CINTIL Corpus into the vistas extracted from
CINTIL DeepBank. Moreover, due to the inner workings of [incr tsdb()],
the leafs in the trees are all converted to lowercase and truncated to the
first 30 characters. The most straightforward way of fixing these issues is to
replace each leaf by the corresponding token from the sentence.

For this procedures to work, leafs and tokens must be aligned. There is
not a one-to-one correspondence between the leafs in the tree exported from
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Maria/PNM[B-PER] Vitória/PNM[I-PER]
tem/TER/V#pi-3s[O] razão/RAZÃO/CN#fs[O] ./PNT[O]

Figure 4.5: Exported tree and annotated sentence

the DeepBank and the tokens in the sentence in the corpus due to different
criteria for tokenization used by the grammar and in the annotation of the
corpus.

The reason for this misalignment between leafs and tokens is twofold:
(i) the tree may have leafs for multi-word named entities that correspond to
several tokens in the sentence; and (ii) in the tree, punctuation symbols are
still attached to words, while they are found tokenized (i.e. detached from
words) in the sentences of the corpus.

Figure 4.5 shows a short sentence (Eng.: Maria Vitória is right) from the
corpus and, above it, the corresponding exported tree to better illustrate
the mismatch between the number of leafs (3) in the tree and the number
of tokens (5) in the sentence.

Multi-word named entities. Figure 4.6 shows an example of how multi-
word named entity leafs are handled. Note that assigning constituency
structure and correct categories to the words forming it is outside the scope
of the lkb2standard tool. Accordingly, the entity in (a) is simply split into
a set of nodes, one per word, all at the same depth and having the same
category that the named entity had, as seen in (b).

When the vista is being extracted for the purpose of linguistic studies,
the nodes are expanded only as a temporary transformation to allow aligning
leafs and tokens and thus incorporate data from CINTIL into the treebank.
After this information is merged into the treebank, the expansion is undone
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Figure 4.6: Multi-word named entities

so that the multi-word entity appears as a single node in the final normalized
tree, shown in (c).

Punctuation. The purpose of the tokenization stage is only to obtain a
one-to-one correspondence between the leafs in the tree and the tokens in
the sentence. Accordingly, punctuation symbols are detached from words
and placed in a newly created sister node. The process of moving the
punctuation symbols to their correct position in the final normalized tree
merits a slightly more detailed explanation and is addressed further ahead.

Feature bundles

With the leafs in the exported tree aligned one-to-one with the tokens in
the sentence from the corpus, the tool can easily copy the information from
those tokens over to the treebank as feature bundles that are appended to
the leaf nodes.

Since one of the intended purposes for extracting the vistas is to use them
to train a classifier that assigns deep lexical types, this information must
also be extracted and included in the feature bundles. However, the deep
lexical type of each word is not found in CINTIL, in the exported tree, or
even in the derivation tree. The deep lexical type information in DeepBank
can only be explicitly found in the full AVM representation, which is an
unwieldy data structure.

A more practical way of accessing the deep lexical type of each word
is through the derivation tree. The pre-terminal nodes of the derivation
tree bear the name of the lexical rule that was applied to the word. The
rule name can then be mapped to a lexical type by using the lexicon of the
grammar.

Figure 4.7 shows an example taken from LX-Gram. The word jantar
can be a noun (Eng.: dinner) or a verb (Eng.: dine) and, accordingly, has
two separate entries in the lexicon. The pre-terminal node above the word
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. . .

JANTAR_1_NOUN

jantar

(a) derivation tree

jantar_1_noun ≡
noun-common-uninfl-count_or_mass-0comps-lex u

[
. . .
]

. . .
jantar_1_verb ≡
verb-external-dir_trans-no_pass-no_part-lex u

[
. . .
]

(b) lexical entries

Figure 4.7: Mapping derivation rules to lexical types

vinho/CN:VINHO:ms:O:noun-common-masc-0comps-lex

Figure 4.8: A leaf with its full feature bundle

in the derivation tree indicates the grammar rule that was applied for that
word which, in this example, is JANTAR_1_NOUN. The corresponding
lexicon entry is then used to map the rule name into a lexical type (in this
case, noun-common-uninfl-count_or_mass-0comps-lex).

With the full feature bundle, the leafs of the resulting normalized tree
look like the example shown in Figure 4.8.

Note that the full feature bundles will not be shown in the remaining
examples for the sake of readability.

Moving punctuation

Punctuation symbols were detached from words and placed in a temporary
position. The present step is concerned with deciding where in the final
normalized tree to place the node with the detached punctuation symbol
since its final position will depend on the syntactic construction the symbol
is a part of.

Coordination is represented as a recursive tree structure where several
constituents of the same type are combined together. Usually, a comma is
used to separate each constituent, except for the last one which is delimited
by an explicit conjunction, such as e (Eng.: and), ou (Eng.: or), etc.

As the example in Figure 4.9 shows, the comma is initially attached to
the final word in a constituent of the enumeration. After being detached
from the word, it is placed in a new node (PNT) which is in an adjunction
to the node to the right.

Appositions inside NPs are delimited by commas. This is made explicit
in the tree by having the apposition in a sub-tree that is itself delimited by
a pair of matching punctuation nodes. An example is shown in Figure 4.10.
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Figure 4.9: Coordination
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Figure 4.10: Apposition

Parenthetical structures and quoted expressions are represented in a similar
way. These are also the only situations where ternary nodes are used.

In all other cases, such as for instance sentence-ending punctuation or
topicalization, punctuation is raised as far as possible without crossing
constituent boundaries.

Collapsing unary chains

In the exported tree, the syntactic representation contains chains of unary
nodes with the same label. As mentioned above, this happens because the
exported constituency tree mirrors the structure of the derivation tree. Each
node in these chains corresponds to the application of a unary morphological
rule (recall the example from Figure 4.4 and see (Copestake, 2002, Section 5.2)
for more on such rules).
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Figure 4.11: Unary chains

For instance, the unary chain of three N nodes that dominates the
word computadores (Eng.: computers) in Figure 4.11(a) corresponds, from
the bottom up, to the application of the following morphological rules:
computador (the rule for the lexical entry of the word), masc-nominal
(flags a feature that marks the word as having gender inflection) and pl-
nominal (flags a feature that marks the word as having number inflection).

The various nodes in these unary chains do not represent an actual
difference in syntactic constituency, and are thus collapsed into a single node
in the final tree, as seen in Figure 4.11(b).

Adding phonetically null items

For the purpose of linguistic studies, nodes corresponding to null sub-
jects (*NULL*), null heads (*ELLIPSIS*), traces of constituents (*GAP*) and
“tough” objects (*TOUGH*) are explicitly added to the final tree. There are a
number of aspects concerning this step that are worth pointing out.

Pattern matching over the constituency tree is not enough to always
detect nodes for phonetically null items. Instead, to do that, one must look
at the derivation tree, since the relevant information can be found in the
name of the rule used by the grammar.

At this stage of processing, the constituency tree and the derivation
tree—which at the start of the extraction process are isomorphic—do not
have matching structures any longer, since the constituency tree has been
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Figure 4.12: Null subjects and null heads

altered (viz. by moving punctuation and by collapsing unary chains). This
issue was overcome by decorating the nodes in the exported constituency
tree with the relevant information taken from the derivation tree while both
structures are still isomorphic. In the previous pages and Figures, these node
decorations have been omitted from the examples for the sake of clarity.

With the syntactic tree decorated, adding tree branches representing null
subjects and null heads is quite straightforward.

Null subjects are found by looking for nodes in the constituency tree
annotated with SNS tags, which are the way the grammar categorizes a
sentence with a null subject. To properly assign a semantic role, the tool
still needs to look at the corresponding node in the derivation tree, since
the rule name indicates whether the missing NP-SJ node is an expletive
(no semantic role), a passive construction (ARG2), a causative alternation
(ARGA) or falls under the default case (ARG1).

Null heads are found by searching the derivation tree for certain rule
names (or, more precisely, finding the relevant decorated node in the con-
stituency tree). The rule name not only indicates the category of the missing
head (i.e. whether it is nominal or verbal) but also whether it is the left or
right child of the node.

Figure 4.12 shows an example of a parse tree with a null ARG1 subject
and an elided nominal head as the right child of the NP-C node.
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Figure 4.13: Traces and co-indexation

Nodes with a trace constituent are decorated by looking in the derivation
tree for a rule that indicates the extraction of a constituent and marking the
corresponding node in the constituency tree. The rule name also indicates
whether the extracted constituent is on the left or on the right side of the
node. The category of the extracted constituent is given by the usual HPSG
slash notation, where a node labeled with X/Y indicates a constituent of
type X with a missing constituent of type Y.

When adding the trace, it suffices searching for the decorated node and
add the *GAP* node as its left of right child, depending on the marking. In
addition, the trace is explicitly co-indexed with the displaced node by affixing
the same index number to the trace and to the corresponding displaced
constituent, as shown in Figure 4.13.

The displaced node, the AP-PRD Mais satisfeito, is found by following
the path of slashed constituents from the trace up to the topmost slash,
which is the sister node of the displaced node.

When the sister of the topmost slash is not of the expected category,
indicated to the right of the slash, it signals a “tough” construction, and
the trace node is marked with *TOUGH*, as shown in Figure 4.14.

We note again that information concerning phonetically null items is added
only when the vista is to be used for linguistic studies. When the vista is to
be used to train, say, a probabilistic parser, the nodes for phonetically null
items are left out since they correspond, by definition, to items that will not
overtly occur in the input of that parser.

Extending semantic role annotation

The semantic role information that is added to some nodes is at a different
abstraction level than the constituency information conveyed by the tree
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Figure 4.14: “Tough” constructions

structure. In particular, some roles are related to some constituent other
than the one they are attached to.

This is the case in the context of complex predicates, such as modals,
auxiliaries and raising verbs. In such cases, the semantic role tag of the
subject node is suffixed with “cp” (for complex predicate). Anticausative
constructions are handled in a similar way, but using “ac” as a suffix to the
role tag.

For instance, the tree snippet in Figure 4.15 indicates that, though the
NP is the subject of the topmost VP, it is the ARG1 of the head verb of the
complex predicate poderão começar.

Arguments of control verbs are handled in a similar yet not fully identical
manner. In LX-Gram the information that allows one to determine whether
the verb at hand is a subject, direct object or indirect object control verb is
found in the lexical type of the verb, and not on the derivation rule that
it triggers. So, to get at this information, the grammar lexicon had to be
used to map the derivation rule for the lexical entry of a word (i.e. the
pre-terminal node in the derivation tree) into the corresponding lexical type.

Figure 4.16 shows an example, where the NP As crianças is the argument
of the subject control verb querem and also of the embedded verb dormir.4

4The argument of a subject, direct object and indirect object control verb is marked,
respectively, with ARG11, ARG21 and ARG31.
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S

VP

VP-C-ARG1

PP-M-TMP

a qualquer momento

VP

PP-C-ARG1

a cair

V

começar

V

poderão

NP-SJ-ARG1cp

as cotações

Figure 4.15: Complex predicate

S

VP

V-C-ARG2

dormir

V’

V

querem

ADV-M-ADV

não

NP-SJ-ARG11

As crianças

Figure 4.16: Control verbs

4.4.2 CINTIL TreeBank
Having extracted the PropBank vista, the TreeBank vista is straightforward
to obtain by simply discarding all information on grammatical function and
semantic roles, leaving only the lexical and phrasal constituency information
in the nodes of the tree. That is, on each node annotated with a tag in the
form C-GF-SR, the GF and SR fields are dropped, leaving only C.

4.4.3 CINTIL DependencyBank
Instead of giving a tree structure describing syntactic constituency, depen-
dency parsing directly relates pairs of words by a grammatical function
(i.e. SJ for subject, DO for direct object, M for modifier, etc).

It is important to note again that this information is expected to be
particularly useful for the task of handling OOV words, since the dependents
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XP

ZP-F

. . . . . . . . .

YP

. . . . . . . . .

Figure 4.17: Extracting dependencies from PropBank

of a word are closely related to the SCF of that word.
The tool that extracts the dependency trees, propbank2dependency,

was partly implemented by me (cf. Branco et al., 2010). As such, for the
sake of completeness, a quick overview of how it works is given here. For
details on the design options concerning the grammatical dependencies and
on the corresponding dataset, CINTIL DependencyBank, see (Branco et al.,
2011a).

Instead of going back to the DeepBank in order to extract the Depen-
dencyBank vista, we use the PropBank as an intermediate representation
since it has already gone through an extensive normalization process. This
is possible given that the normalized trees that form CINTIL PropBank
have more than just information on syntactic constituency. The nodes in
the trees also include information on grammatical function in tags that are
attached to some constituency nodes (e.g. SJ for subject, DO for direct object,
etc). This gives us a nice way to extract a dependency dataset from the
PropBank.

Though there are a few cases that must be handled separately, the
general case can be summarized as follows: Given that CINTIL PropBank
adheres to an X-bar representation, phrasal nodes will have two children,
one of which will be marked with a grammatical function. The (head of the)
child that is marked is dependent on the (head of the) other child under
that grammatical function. The head of the phrasal node is the head of the
unmarked child.

For instance, the tree fragment shown in Figure 4.17 yields a dependency
triple where ZP depends on YP under relation F. The head of XP is the
head of YP.

This dataset thus produced is called CINTIL DependencyBank, and it
follows the CoNLL format (Nivre et al., 2007a): Sentences are separated by
a blank line; one token per line, with several tab-separated fields, such as
lemma, POS and head. Figure 4.18 shows the CoNLL representation of the
sentence in Example (1).5

5Note that some CoNLL fields that are not relevant for the current task were omitted
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id form lemma pos feat. head rel

1 A _ DA fs 2 SP
2 educação EDUCAÇÃO CN fs 4 SJ-ARG1
3 não _ ADV _ 4 M-ADV
4 tem TER V pi-3s 0 ROOT
5 regras REGRA CN fp 4 DO-ARG2
6 rígidas RÍGIDO ADJ fp 5 M-PRED
7 . _ PNT _ 4 PUNCT

Figure 4.18: CoNLL format (abridged)

a educação não tem regras ŕıgidas .
the education not has rigid rules .

SP
SJ-ARG1

M-ADV DO-ARG2 M-PRED

PUNCTROOT

Figure 4.19: Dependency graph

(1) A
The

educação
education

não
not

tem
has

regras
rules

rígidas
rigid

.

.
“Education does not have rigid rules.”

The lemma, POS and inflection features of each token are straightforward
to obtain from the feature bundles in the PropBank. The last two fields
encode the dependency relation for the token at hand. Namely, head is the
id of the head token and rel is the name of the relation. Figure 4.19 shows
these dependencies graphically.

4.5 Assessing dataset quality with parsers
One of the main concerns when designing a dataset is whether the chosen
representation is consistent and provides the expected account of the various
linguistic phenomena. However, this metric is hard to assess directly since
there is no gold representation to compare against.6

An approach is to use the dataset as a resource, viz. as training data for
a machine learning tool, and evaluate the performance of the resulting tool
in comparison to similar tools trained over similar datasets. In a way, this
resorts to performing an extrinsic evaluation of the dataset by taking the
from the example for the sake of clarity.

6Or, more precisely, it is that very same gold representation one is trying to obtain.
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performance of a data-driven tool trained on that dataset as proxy for a
direct assessment of dataset consistency and quality.

This Section reports on the training of several data-driven parsers over
the vistas that were extracted.

4.5.1 Constituency parsers
Having extracted CINTIL TreeBank, the normalized constituency treebank
vista described previously, probabilistic parsers where then induced over
that dataset.

The initial experiment was done as part of a study (Silva et al., 2010a)
that assessed the suitability of available Portuguese treebanks and existing
parser inducing tools for producing a state-of-the-art constituency parser
for Portuguese. A guiding principle in that study was that the parsers
should be created out-of-the-box. That is, the induced parsers should not
be specifically tuned for Portuguese. The reason for this was twofold:

• Each probabilistic parser has a great deal of adjustable parameters,
both for training and for parsing. Also, it is often possible to fine-tune
the parser by adding code to handle language-specific cases (e.g. head-
finding rules, heuristics for handling unknown words, etc). Fine-tuning
would be done differently in each case, making it harder to perform a
comparative assessment of parser inducing tools and resulting parsers.
For instance, worse performance by any of the parsers could easily
be caused by having a bad implementation of the language-specific
tuning procedures, and not by the parser algorithm proper. Running
the parsers out-of-the-box sidesteps these issues.

• It is to be expected that any kind of language-specific fine-tuning
would improve—or at least not worsen—the performance of the parser.
Running the parsers out-of-the-box is a quick way of getting a lower
bound on the level of performance that it is possible to achieve.

There exist many freely-available software packages that in the past, and
over several studies, have been used to induce state-of-the-art constituency
parsers. Though they have been used mostly for English, the approaches are
generally language-independent. After an overview of the existing packages,
the following were found to be good candidates for inducing a parser for
Portuguese:

Bikel (Bikel, 2002) is a head-driven statistical parsing engine. It is language-
independent and highly configurable due to its use of language packages.
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These are modules (Java code) that encapsulate all the methods that
are specific to a language or treebank format.

Stanford (Klein and Manning, 2003) is a factored parser. This means that
it resorts to separate models, one for phrase-structure and one for
lexical dependencies, which are then factored together to generate the
final tree. This parser also allows adding language-specific functionality
by extending some of its (Java) classes.

Berkeley (Petrov et al., 2006) automatically creates a base X-bar gram-
mar from the training dataset through a binarization procedure that
introduces branching X-bar nodes to ensure that every node has at
most two children. This base grammar is then iteratively refined by
splitting and merging non-terminal symbols.

Evaluation followed a standard 10-fold cross-validation methodology,
iteratively training over a random 90% of the treebank and evaluating
the resulting parser over the 10% not used for training, repeating this 10
times, and averaging the results. The following metrics were computed and
averaged over every fold:

Parseval is a classic metric for bracketing correctness, widely used since its
introduction in (Black et al., 1991). A slight variant is used that also
takes into account whether the constituent label is correct (Magerman,
1995). This metric provides labeled recall and labeled precision, which
are rolled together into a single f-score value.7

Evalb is similar to Parseval, in that it is also a metric of bracketing cor-
rectness that provides labeled recall and labeled precision. The main
difference between the two metrics is that Evalb counts terminal and
pre-terminal nodes separately from the remaining phrasal nodes, which
are referred to as the roof of the tree (Emms, 2008). This allows for a
separate measure of part-of-speech (POS) accuracy, i.e. the accuracy
in labeling pre-terminal nodes, while bracketing correctness refers only
to the roof of the tree.

LeafAncestor is not so widely used as the two other metrics, but Sampson
and Babarczy (2003) argue that it mirrors more closely our intuitive
notions of parsing accuracy. Instead of measuring bracketing correct-
ness, this metric checks the lineage—the sequence of constituents that
connect a node to the root of the tree—of each terminal element. The

7F-score is the harmonic mean of precision and recall: f = 2pr
p+r
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fParseval fEvalb POS acc. LeafAnc.
Bikel 85.16% 73.48% 90.26% 90.49%
Stanford 88.69% 79.63% 94.48% 92.06%
Berkeley 89.55% 81.60% 92.74% 94.16%

Table 4.1: Out-of-the-box constituency parser performance for v2

strings representing the lineages of a same token in two different parses
can then be compared using a variant of string edit distance. The
overall score is the average of the lineage scores.

Each parser package was used to induce a model over CINTIL TreeBank,
as extracted from DeepBank by lkb2standard. At the time of the study
reported in (Silva et al., 2010a), the current stable version of CINTIL
DeepBank (v3) was still under development, so the stable version at that
time (v2), which contains 1, 204 parses, was used instead.

Table 4.1 summarizes the results that were obtained.8 It shows the
labeled Parseval f-score (fParseval), the separate bracketing and POS accuracy
scores given by Evalb (fEvalb and POS acc.), and the LeafAncestor score
(LeafAnc.).

These values fall below what has been consistently achieved by the best
parsers for English, which tend to score above 85% of bracketing correctness
under the Evalb metric (Petrov et al., 2006),9 but they were nevertheless
quite encouraging because they were obtained with a very small dataset and
with out-of-the-box parsers. Moreover, to the best of our knowledge, these
were at the time the best published results for the probabilistic parsing of
Portuguese (Silva et al., 2010a,b).

The results obtained were thus a strong indicator that the treebank has
a very high quality. This claim is given credence by the fact that Wing and
Baldridge (2006) induced a finely-tuned Bikel parser over a different, larger
(9, 374 sentences) Portuguese treebank, and got a worse Parseval score of
63.2%. The fact that, in that study, the authors used a treebank that was
manually annotated without thorough annotation guidelines and without

8In (Silva et al., 2010a) several variants of the treebank are tested. The scores
presented here correspond to the “NE-joined” variant, where multi-word named entities
are represented as single leafs.

9The original Parseval metric has largely been deprecated. Current studies, when
presenting a parseval score, are in fact using the Evalb roof bracketing correctness.
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fParseval fEvalb POS acc. LeafAnc.
Stanford 89.63% 80.36% 96.68% 92.27%
Berkeley 88.37% 81.69% 92.91% 93.26%

Table 4.2: Out-of-the-box constituency parser performance for v3

following double blind annotation with adjudication is a likely explanation
for the lower performance.

With the more recent version (v3) of the dataset reaching 5, 422 parses, the
same tests were run to obtain updated scores, choosing only the two parsers
that had achieved the best scores and maintaining the same experimental
methodology. These are summarized in Table 4.2.

There is a slight across-the-board improvement, though it is not as large
as one might expect. The likely explanation for this lies in the composition
of the corpus. As mentioned in §4.3, part of the sentences in the corpus are
used for regression testing. These amount to 14% of the v3 dataset, but
formed a much larger relative portion of the corpus in the previous version.
Since the sentences used in regression testing tend to be short, the v3 corpus
can be seen as having proportionally fewer easy cases.

The results remain promising given that they were obtained using only
out-of-the-box parsers and the current version of the treebank, tough larger
than the previous one, is still much smaller than, for instance, Penn Treebank,
which is commonly used to obtain constituency parsers for English that fall
in the 85%–90% range. As such, the results again argue for the high quality
of the dataset.

4.5.2 Dependency parsers

The CINTIL DependencyBank vista can also be extrinsically evaluated by
using available software packages that, in other studies, have shown to have
the potential to create data-driven parsers with state-of-the-art performance.
For this, the following tools were used:

MSTParser (McDonald et al., 2005) is based on a two-stage method that
starts by assigning an unlabeled dependency structure according to
a large-margin discriminative model. In the second stage, a separate
sequence classifier assigns labels to the dependencies.
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UAS LAS
MSTParser 94.50% 88.59%
MaltParser 93.81% 87.54%

Table 4.3: Out-of-the-box dependency parser performance for v3

MaltParser (Nivre et al., 2007b) is a generic parsing framework formed by
three components: a parsing algorithm working over state transitions;
a feature vector representation of the parser state; and a classifier that,
given a parser state, chooses a parser action. The tool allows changing
any of these three components.

Evaluation again follows a 10-fold cross-validation methodology, but in
this case only two metrics are calculated: The unlabeled attachment score
(UAS) gives the accuracy in determining that two words are related through
a dependency relation, while the labeled attachment score (LAS) measures
the same but also takes into account whether the label of the relation type
was correctly assigned. The latter is, naturally, always equal or lower to the
former.

Each parser package was run out-of-the-box over the 5, 422 sentences in the
extracted CINTIL DependencyBank vista. Table 4.3 summarizes the UAS
and LAS scores that were obtained.

The results are quite good, in line with what has been reported for
other languages, despite the small dataset and having placed no effort in
fine-tuning the parsers.10

As with the constituency parsers from the preceding section, the results
from this extrinsic evaluation using dependency parsers indicate that the
dataset is of standard quality.

4.6 Summary
This Chapter covered the work that went into the preparation of the datasets
that will support the training and evaluation of the classifiers for deep lexical
types that will be presented next.

10MaltParser can be optimized with little effort through the use of the MaltOptimizer
tool (Ballesteros and Nivre, 2012), which automatically runs and evaluates the parser
under different settings. With this, MaltParser gets 94.74% UAS and 88.24% LAS, which
are similar to the scores achieved by MSTParser.
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After an overview of the two main representations of relevance, syntac-
tic constituency and grammatical dependencies, the grammar-supported
method of treebanking was introduced. This method allows the creation
of linguistically rich, accurate and consistent datasets, of which CINTIL
DeepBank is an example.

Such deep datasets are highly complex and, for many applications,
the representation is too unwieldy. This motivated the creation of a tool
for extracting vistas, i.e. subsets of the information contained in those
datasets. With this tool, a “standartized” X-bar vista was obtained, CINTIL
PropBank, from which, in turn, two additional vistas were extracted. One
for syntactic constituency, CINTIL TreeBank, and the other for grammatical
dependencies, CINTIL DependencyBank.

The quality of these extracted vistas was evaluated extrinsically, by
inducing probabilistic parsers over them. These parsers obtained very good
results, on a par with state-of-the-art scores reported for other languages, a
fact that argues for the reliability of the datasets.
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Chapter 5

Deep Lexical
Ambiguity Resolution

This Chapter covers the experiments carried out in order to obtain and
intrinsically evaluate classifiers that assign deep lexical types. It starts with
a few remarks on the evaluation methodology that is used throughout the
work. The following Section reports on initial exploratory experiments whose
results guided subsequent research. The subsequent two Sections, §5.3 and
§5.4, present and evaluate the approaches that were followed to build the
classifiers. These are then further evaluated, over automatically predicted
features in §5.5, over extended datasets in §5.6 and, in §5.7, compared
against using the disambiguation module of the grammar itself. Finally, in
§5.8 the classifiers are used also with an English grammar and dataset.

5.1 Evaluation methodology
When choosing an evaluation methodology, an important concern is to
ensure that the datasets used for training and for evaluation are disjoint
to allow measuring how well the model that was induced generalizes to
previously unseen data.

For large-enough corpora, one can usually afford to simply put aside a
portion of the data for testing and use the remainder for training. This is the
usual approach with studies that use, for instance, the Penn Treebank, where,
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for the sake of comparability, the same section of the corpus is typically
used for evaluation by different studies. When the corpus is not so large, as
it happens here with the CINTIL DeepBank, a major concern is making the
most of the available data. The usual way of pursuing this is through n-fold
cross-validation.

We opted for the common approach of taking n = 10, where the corpus
is split into 10 equally-sized disjoint parts, the folds. Each fold is used to
evaluate a classifier trained over the remaining 90% of the corpus and the 10
individual results are averaged. In this way, not only is each training phase
able to use most (90%) of the data, as the totality of the corpus ends up
being used for evaluation. All this while maintaining a separation between
the data used for training and for evaluation.

The remaining decision then hinges on how to split the folds, which
can be, for instance, (i) contiguous portions or (ii) randomly selected. The
dataset is composed of a set of sentences created for regression testing of
the grammar, followed by sentences from newspaper articles. Given this
sharp divide between sentence types in the dataset, a random selection of
sentences is used to form the splits. More precisely, the sentences in the
dataset are first randomly shuffled, spreading the various sentence types
uniformly over the corpus, and then 10 contiguous folds are taken.

5.2 Preliminary experiments

This Section reports on a set of initial experiments that were carried out
using the previous stable version (v2) of CINTIL DeepBank.

During the course of the dissertation, a new and larger stable version of
the dataset became available, and the experiments reported in the Sections
that follow this one will be done over this new corpus. Nevertheless, it
is important to report on these preliminary experiments since they were
important in providing an initial direction and a compass that guided the
approaches that were subsequently followed.

The preliminary experiments were in part prompted and inspired by
some of the related work covered in Chapter 2. Following Dridan (2009, §5),
two supertaggers that assign tags sequentially were induced, one using TnT
and another using C&C. Next, a dedicated instance classifier is created,
with a setup similar to the one presented in (Baldwin, 2005). The goal was,
on the one hand, to replicate these previous approaches, and on the other
hand, to study if and how the different dataset might have an impact in our
expectations.
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5.2.1 Preliminary sequential taggers
The task of assigning lexical types to tokens can be envisaged as a POS
tagging task with an unusually detailed tagset. Hence, the most straightfor-
ward way to quickly create a supertagger is to train a POS tagger over an
annotated corpus where POS tags have been replaced by lexical types.

POS tagging has been one of the most widely and intensely studied tasks
in the field of NLP. Accordingly, many POS taggers have been created and
made available over the years. Though there is a variety of approaches, those
that became popular achieve roughly the same scores, indicating that a
performance ceiling has likely been reached by the different machine learning
approaches to this task.1

For this experiment, we opted for the TnT POS tagger. This is a statistical
POS tagger, well known for its efficiency in terms of training and tagging
speed, and for achieving state-of-the-art results despite having a quite
simple underlying model (Brants, 2000). It is based on a second-order
hidden Markov Model2 extended with linear smoothing of parameters to
address data-sparseness issues and suffix analysis for handling unknown
words.

Running with default parameters, TnT was trained over the 1, 204
sentences extracted from CINTIL DeepBank (v2), with an overall tagset
with 274 deep lexical types. To mitigate data-sparseness issues, words were
replaced by their lemmas. The evaluation methodology followed was 10-fold
cross-validation over random 90%/10% splits. The average token accuracy
was 88.58%.

The accuracy achieved in this initial experiment is not far from the
results reported in (Dridan, 2009), where a token accuracy of 91% was
achieved, also when using TnT to assign lexical types, though with a more
extensive tagset and larger training corpus (cf. §2.2.1, page 26).

C&C is a supertagger with a richer model than that used by TnT. In
particular, its model is based on a Maximum Entropy approach and uses
words and POS tags from a five word window as features (Clark and Curran,
2003, 2004, 2007).

Running with default parameters, the C&C supertagger was trained over
the 1, 204 POS-tagged sentences extracted from CINTIL DeepBank (v2).

1This might not be exactly true. Banko and Brill (2001a,b) find, albeit for a simpler
task, that learning curves can still grow as corpora increases exponentially in size into
the billion of tokens. However, it is unlikely such a POS-tagged corpus could be created.

2See (Manning and Schütze, 1999) for a comprehensive coverage of this subject.
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tokens → t1 t2 t3 t4 t5 t6 t7 t8
window → w−2 w−1 w0 w+1 w+2

Figure 5.1: The 5-word window of C&C on an 8-token sentence

Similar to what was done with TnT, words were replaced by their lemmas
to reduce data-sparseness.

The evaluation methodology was 10-fold cross-validation, taking the same
90%/10% splits as before. The gold POS tags were kept in the evaluation
fold since C&C uses them as features and the purpose of the test was to
intrinsically evaluate the classifier, not considering mistakes that might be
introduced by a POS tagging step. The average token accuracy was 79.61%.

The C&C supertagger displayed a lower accuracy than TnT. This result is
worthy of being addressed in further detail.

One would expect that C&C would perform better given that it uses a
more complex model than TnT. While it is true that more complex models
tend to be more accurate, they are also lead to additional data-sparseness
issues since more data is required to estimate the parameters of the model.
Given that the experiments were run over a modestly sized dataset, there
was likely not enough data for C&C to induce a good model.

This hypothesis is supported by the results in (Dridan, 2009). Therein,
TnT is able to score slightly better than C&C. However, and, more im-
portantly, this author notes that, upon reaching a certain dataset size, the
learning curve for TnT has flattened while the learning curve of C&C is still
rising. This is an indication that C&C might eventually surpass TnT given
enough training data.

An additional contribution to the low score of C&C is likely to come from
the short average sentence length in the current version of the dataset. Given
that C&C uses features from a 5-word window and the average sentence
length in the dataset is 8 words, the context window is only fully usable
for roughly half of the tokens in an sentence. As shown in Figure 5.1, the
context window only fully covers tokens in the sentence when centered on
one of the tokens from t3 to t6.

5.2.2 Preliminary instance classifier
TnT and C&C can be seen as sequential classifiers since both go through
each token in a sentence, assigning a tag to each of them. An alternative
way of tackling the assignment of lexical types is to use an instance classifier.
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description #
a 3-word lemma-POS window 3× 2 = 6
the lemma-POS of the head 1× 2 = 2
up to 6 dependency triples 6× 3 = 18
total features 26

Table 5.1: Features for the TiMBL instance classifier

That is, a classifier that can be invoked to assign a lexical type to the token
at hand.

Following (Baldwin, 2005), we opted for a memory-based learning (MBL)
approach3 to build this classifier. In MBL, the training examples are stored
and new instances are classified according to the examples they are closest
to (under some metric).

To train the classifier we used TiMBL (Daelemans et al., 2009), an
efficient software package for MBL that has been widely used for NLP tasks.
Given that TiMBL is a generic framework for MBL, it is up to the user to
define and extract the context features that are to be used in each specific
task.

The dataset used for this is CINTIL DependencyBank, after being
extended with an extra column with the lexical type of the token. A tool
was created to extract features from this dataset. The experiment reported
uses the 26 features summarized in Table 5.1.

Like with the sequential classifiers, lemmas were used instead of words.
The features are the lemma-POS pairs from a 3-word context centered on
the token at stake; the lemma-POS pair of the head (i.e. the word that the
token is dependent on); and up to 6 triples representing the dependents of
the token, formed by the relation name, and the lemma and POS of the
dependent.

The evaluation methodology was again 10-fold cross-validation, with the
same 90%/10% splits as before. The instance classifier achieved an average
token accuracy of 79.38%, similar to the score of the C&C supertagger.

Specialized binary classifier

Any classifier has to face data-sparseness issues. Instead of inducing a single
classifier capable of assigning all types, a common approach to tackling
this problem is to induce a set of independent, specialized binary classifiers,

3Also known as instance-based, case-based or example-based learning approach.
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one for each type (Galar et al., 2011). Each binary classifier is tasked with
assigning a true/false distinction to each token, depending on whether
that token is or is not a member of the class the classifier recognizes.

To experiment with this approach, a binary classifier was induced. For
this experiment, instead of creating multiple classifiers, we focused on a
single type, verb-dir_trans-lex (direct transitive verb), one of the most
common verbal types.

Before proceeding, it is important to note that such a classifier cannot
be properly evaluated using the accuracy metric. From the 9, 789 tokens in
the dataset, only 108 have the type verb-dir_trans-lex. Accordingly, a
naive classifier that always assigns the false class would have an accuracy
of nearly 99%. When dealing with binary classifiers, and specially when
there is a great deal of class skewness, a more informative metric is Area
Under Curve, or AUC (Fawcett, 2006).

For the verb-dir_trans-lex type alone, the multi-class instance clas-
sifier scored 0.79 AUC. This increases to 0.80 AUC with the specialized
binary classifier.4

Dealing with an unbalanced dataset

The problem of unbalanced datasets is usually tackled either by under-
sampling the majority class or by over-sampling the minority class.

An interesting approach that is worth exploring is SMOTE, or Synthetic
Minority Over-sampling TEchnique (Chawla et al., 2002). If we visualize the
instances as being on a n-dimensional feature space, this method effectively
over-samples the minority class by creating new synthetic samples along the
lines connecting minority examples to their nearest minority class neighbors.

The SMOTE implementation included in the Weka machine-learning
package (Hall et al., 2009) was used. Run with default parameters, it doubled
the number of verb-dir_trans-lex examples, from 108 to 216. Following
the usual evaluation methodology on this enlarged dataset, the specialized
binary classifier achieves 0.91 AUC.

The big increase in AUC should be taken with a grain of salt, though.
SMOTE is concerned only with creating new synthetic minority examples
in order to make the decision area for the minority class more general.
Given that it looks at feature-space rather than input-space, it is blind to
application-specific issues and constraints. In particular, the newly created
examples are not necessarily linguistically sound. For instance, one of the
synthetic examples created by SMOTE had a punctuation token with a

4An AUC score will always be between 0 and 1. Note that a score of 0.5 corresponds
to random choice. No realistic classifier will have a score below that value.
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accuracy
TnT 88.58
C&C 79.61
TiMBL 79.38

Table 5.2: Accuracy (%) results from the preliminary experiment

verb POS feature. This raised some fears of over-fitting the classifier to the
particular dataset being used.

5.2.3 Summary of the preliminary experiments
This Section presented exploratory experiments.

Several machine learning methods were used to induce classifiers that
assign deep lexical types. Two sequential classifiers were induced, one based
on the TnT POS tagger, with 88.58% accuracy, and the other on the C&C
supertagger, with 79.61% accuracy. The simpler model achieves a better
score, likely due to data-sparseness issues raised by the small dataset and
to C&C being run out-of-the-box. An MBL-based instance classifier was
also induced that achieves an accuracy score of 79.38%, close to that of the
C&C supertagger. These results are summarized in Table 5.2.

When presented with a problem with multiple classes, a common ap-
proach to try to improve accuracy is to replace a single multi-class classifier
by several class-specific classifiers. An experiment was run to test a binary
classifier specific to a lexical type (viz. verb-dir_trans-lex), but it showed
only a negligible improvement over the performance of the multi-class classi-
fier for that particular type. Finally, in an attempt to balance the highly
skewed dataset used to train the binary classifier, the SMOTE over-sampling
technique was applied in order to create new minority class examples. This
did lead to a marked improvement, raising AUC from 0.80 to 0.91 for that
single type being targeted, but the extent of its applicability was called
into question since the newly created examples were not linguistically well
formed.

5.3 Sequential supertaggers
This Section reports on a set of experiments that take the same approach of
sequential supertagging presented in the preliminary experiment, but over a
larger dataset, v3 of CINTIL DeepBank, that eventually became available.
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accuracy
TnT 90.74
C&C 81.59
SVMTool 90.61

(a) over all tokens

accuracy
TnT 89.19
C&C 78.51
SVMTool 89.04

(b) excluding punctuation

Table 5.3: Accuracy (%) of sequential supertaggers

We keep the same taggers as in the preliminary experiment, TnT and
C&C, and add SVMTool.

TnT (Brants, 2000) was used in the preliminary experiment (cf. §5.2.1)
where it achieved the best performance among the approaches that
were tried. As such, it will be used again for the experiments over the
larger dataset.

C&C (Clark and Curran, 2003, 2004, 2007) was also used in the preliminary
experiment (cf. §5.2.1), where it fared worse than TnT, perhaps partly
due to data-sparseness issues. It is tested again to determine the
impact of additional training data.

SVMTool (Giménez and Màrquez, 2004) is a POS tagger generator based
on support-vector machines. It is extremely flexible in allowing to
define which features should be used in the model (e.g. size of context
window, number of POS bigrams, etc.) and the tagging strategy (left
to right, bidirectional, number of passes, etc). Here it is run with the
default and simplest settings, “M0 LR”, which use Model 0 in a left
to right tagging direction.5 It is used since in (Giménez and Màrquez,
2004) achieves better results than TnT.

These taggers were run out-of-the-box and evaluated using 10-fold cross-
validation, yielding the results summarized in Table 5.3. Accuracy is shown
for all tokens and also for all tokens except punctuation, since tokens in this
category are not ambiguous and thus inflate the accuracy score.

C&C again falls behind TnT, maintaining the same ratio difference in
their scores as in the preliminary experiment (i.e. performance has improved
performance for both, but C&C remains 90% as accurate as TnT).

5Model 0 uses features such as the last two POS tags, bigrams and trigrams of POS
and words, and word affixes. See (Giménez and Màrquez, 2006) for a detailed list.
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5.4. Instance classifier

TnT is now close to the 91% token accuracy that was achieved by
Dridan (2009) with that same tagger but over a corpus of English (cf. §2.2.1,
page 26). As such, we intend to use TnT—and also SVM-TK, since their
performances are similar—as representatives of sequential tagging approaches
when comparing these approaches with the instance classifier, which is
presented next.

5.4 Instance classifier
Most of the classifiers presented so far look at features that have been
extracted from what basically amounts to a limited window of context
around the word being tagged. However, in some cases, it might happen
that some of the information that is relevant towards determining the lexical
type of a word is not found within a window of context of predetermined
size around that word.

In particular, given that the subcategorization frame (SCF) is one of the
most relevant pieces of information that is associated with a word in the
lexicon of a deep grammar, one would expect that features describing the
inter-word dependencies in a sentence would be highly discriminative and
help to accurately assign lexical types. However, these dependencies are
often unbounded, and thus cannot be generally accounted for by features
from a limited window of context.

The instance classifier based on TiMBL that was presented in the pre-
liminary experiment (cf. §5.2.2) was a first step towards addressing this by
including features for grammatical dependencies. That early experiment
did not produce any improvement in accuracy when compared with the
sequential supertaggers that were based on a limited window of context,
tough this might be due to the very small corpus of 1, 204 sentences used
at the time which did not have enough data to support the more complex
features.

The preliminary experiment also highlighted the difficulty in designing
and extracting features. The set of 26 features that was shown in Table 5.1
is just one of the many that were tested, and the 18 features representing
dependencies were bounded at 6 triples because that is the highest number
of dependencies connected to a single word that were found in the corpus
used at the time. On the one hand, this means that for most cases many
of these triples will be empty but, on the other hand, if a new case occurs
that happens to require more than 6 dependencies, unlikely as it may be,
the chosen features will not be able to account for all of them.

A better approach would be to use a classifier that somehow is able to
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5. Deep Lexical Ambiguity Resolution

directly take a dependency graph as a feature. Support-vector machine
algorithms, combined with tree kernels (cf. §3.2), provide a straightforward
way of doing this, a consideration that lead to moving away from the TiMBL
classifier from the preliminary experiment and to the development of the
SVM-TK classifier presented next.

5.4.1 SVM-TK
As described in §3.2, tree kernels provide a way for a classifier to seamlessly
use features based on tree structures.

For training and classification we use SVM-light-TK (Moschitti, 2006),
an extension to the widely-used SVM-light (Joachims, 1999) software for
SVMs that adds an implementation of a tree kernel function. This extension
allows providing one or more tree structures directly as data (using the
standard representation of trees using parenthesis) together with the numeric
vector data that are already accepted by SVM-light.

Binarization

Given that the task at stake is a multi-class classification problem but an
SVM is a binary classifier, the problem must first be binarized (Galar et al.,
2011), a technique that decomposes the original multi-class problem into
several binary problems. This decomposition is usually done according to
one of two strategies, one-vs-all (OvA) or one-vs-one (OvO).

When following the OvA strategy, one creates as many binary classifiers
as there are classes, and each classifier is tasked with identifying instances
that belong to its class.6 When inducing a model for a class, instances of
that class are seen as positive examples while all other instances in the
dataset are taken as negative examples. When classifying a new instance,
ideally all but one classifier will respond negatively, and the class that ends
up being assigned to that instance is the class that corresponds to the single
classifier that answered positively. Cases where several classifiers answer
positively must undergo some sort of tie-break procedure, which could, for
instance, be based on the confidence score of the conflicting classifiers.

The OvO strategy consists of creating one binary classifier for each
possible pairing of different classes, where each classifier is tasked with
assigning one of the two classes it knows to the instances being annotated.
This strategy decomposes a problem with n classes into

(
n
2

)
= n(n−1)

2 separate
6This was the approach taken in the preliminary experiment where a specialized

binary classifier was created for verb-dir_trans-lex.
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a o segundo dia de viagem encontrámos os primeiros golfinhos
on the second day of travel we-found the first dolphins

TMP

C
SP

PRD ADV C

DO
SP

PRD

ROOT

Figure 5.2: Dependency graph

binary problems (i.e. the binomial coefficient, n choose k, or one for each
way of picking k unordered outcomes from n possibilities).

When inducing an OvO classifier that discriminates between class A and
class B, instances of class A are taken as positive examples while instances
of class B are seen as negative examples. When classifying, each classifier
performs a binary decision, voting for one of the two classes it is tasked
with discriminating between, and the class with the overall largest number
of votes is chosen.

OvO creates many classifiers, which raises some concerns regarding its
scalability when the number of classes is high, as it is bound to happen
when wanting to assign deep lexical types. However, the training phase of
an OvO classifier for classes A and B only looks at instances that belong to
either of those classes, while each OvA classifier must be trained over every
instance in the dataset. This greatly offsets the penalty of having such a
large number of classifiers when adopting the OvO strategy.

For this reason, and because OvO seems to generally outperform OvA
(Galar et al., 2011), the OvO strategy is used in the current work.

Representing dependencies

The example in Figure 5.2 shows the dependency representation of the
(tokenized) sentence “a o segundo dia de viagem encontrámos os primeiros
golfinhos” (Eng.: on the second day of travel we found the first dolphins).7
Note that, in the dataset, each word is also annotated with its lexical type,
POS tag and lemma, though this is not shown in the example for the sake
of readability.

Take, for instance, the word “encontrámos”, whose lexical type in this
particular occurrence is verb-dir_trans-lex, the type assigned to transi-
tive verbs by LX-Gram. The OvO classifier tasked with recognizing this
type (against some other type) will take this instance as a positive training

7Relations shown in the example: ADV (adverb), C (complement), DO (direct object),
PRED (predicate), SP (specifier) and TMP (temporal modifier).
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Figure 5.3: Trees used by SVM-TK for “encontrar”

example, while other OvO classifiers tasked with recognizing against this
type would take this exact same instance as a negative training example.

The full dependency representation of the sentence has many grammatical
relations that are irrelevant for learning how to classify this word. Instead,
the classifier focuses more closely on the information that is directly relevant
towards determining the SCF of the target word by looking only at its
immediate neighbors in the dependency graph, viz. its dependents and the
word it depends on. As before, words were replaced by their lemmas to
reduce data-sparseness.

SVM-TK handles tree structures, and not generic graphs. Accordingly,
the dependency information is encoded into the two tree structures shown
in Figure 5.3, which represent the actual data given to SVM-light-TK.

One tree, labeled with H as root, holds the word and all its dependents.
The target word is marked by being under an asterisk “category” while the
dependents fall under a “category” corresponding to the relation between
the target word and the dependent. The words appears as the leafs of the
tree, with their POS tags as the pre-terminal nodes.8

The second feature tree, labeled with D as root, encodes the target
word—again marked with an asterisk—and the word it is dependent on. In
the example shown in Figure 5.3, since the target word is the main verb of
the sentence, the D feature tree has no other nodes apart from that of the
target word.

This is just one of the various ways that dependency information can
be encoded into trees to be used by SVM-TK. It was chosen because, in
early tests, the classifier showed slightly better performance when using it
versus the alternatives. Nevertheless, the important point that must be
underlined is that any alternative must also somehow encode the information
one would expect to find in the SCF description of a word, corresponding

8POS tags in the example: V (verb), PREP (preposition) and CN (common noun).
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5.4. Instance classifier

in this example to the H tree: The target word is a verb, “encontrar”, it
has as dependents a direct object with the common noun category, which in
this case is “golfinho”, and the preposition “a” as a temporal modifier.

5.4.2 Restriction to the top-n types

The class distribution in the dataset is highly skewed. For instance, from all
the common noun types that occur in the corpus, the two most frequent ones
are enough to account for 57% of all the common noun tokens. Such skewed
category distributions are usually a problematic issue for machine-learning
approaches since the number of instances of the rarer categories is too small
to properly estimate the parameters of the model.

Since SVM-TK is in fact composed by an ensemble of specialized OvO
binary classifiers, for many types there are not enough instances in the
dataset to train a classifier.

For example, there are 130 verb types in the corpus, but 13 of those are
types whose occurrences are all found in a single fold. So, when that fold is
the one being used for evaluation, none of the OvO classifiers that involve
that type can be created, since there are no instances of that type in the
remaining folds, which are the ones being used for training.9

Hence, the evaluation that follows is done only for the most frequent
types (cf. Appendix A). For instance, top-10 means picking the 10 most
frequent types in the corpus, training OvO classifiers for those types, and
evaluating only over the tokens that in the original corpus bear one of
those types. Though this is an apparently stringent restriction, the skewed
distribution allows covering much of the corpus with only a few types. For
instance, there are 130 verb types in the corpus, but the top-n most frequent
ones are enough to account for most of the verb token occurrences in the
corpus, namely top-10 covers 68%, top-20 covers 84% and top-30 covers 90%
of verb occurrences.

Figure 5.4 shows a plot of the cumulative token coverage for the top-n
most frequent verb types,10 highlighting the points where n is 10, 20 and 30.
The halfway value, where n = 65, is also marked.

9In fact, only 32 of the 130 verb types occur in every fold. For each of the remaining
98 types, there is always some fold from where that type is missing. Half of the verb
types occur 6 or fewer times in the corpus and only cover 3% of the verb tokens.

10The coverage curves for other open categories show a similar overall shape.
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Figure 5.4: Cumulative verb token coverage of top-n verb lexical types

5.4.3 Initial evaluation and comparison

Varying the number of types that are assignable can be seen as in reality
creating different classifiers. For instance, an SVM-TK classifier for the
top-10 verb types might be very accurate over that particular set of types,
but its accuracy over all verb tokens will always be limited by the low token
coverage. That is, given that the top-10 verb types only cover 68% of the
verb tokens, the remaining tokens will always receive the wrong type. A
classifier induced for the top-30 verb types might have worse performance
when measured over the target tokens but achieve a better overall score,
since the verb token coverage, and thus the accuracy ceiling, is 90%.

This can be seen in Table 5.4, which shows the accuracy over verb
tokens of the best sequential supertaggers presented previously and of three
SVM-TK classifiers induced for three different top-n verb sets.

As n increases, the overall verb token accuracy of the SVM-TK classifier
also increases due to the accuracy ceiling being raised. Although results here
are only explicitly shown for top-10, top-20 and top-30, experiments found
that, as expected, there are diminishing returns that come from increasing
the value of n. Overall verb token accuracy stopped improving around the
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accuracy
TnT 90.19
SVMTool 90.94
SVM-TK
for top-10 64.16
for top-20 75.74
for top-30 80.38

Table 5.4: Classifier accuracy (%) over all verb tokens

top-65 mark, where SVM-TK achieves 83.69% against a ceiling of 97%.
Regarding the sequential supertaggers, the results seem to indicate that

the features used by SVMTool allow it to handle verbs better than the two
other tools, since it is able to take first place from TnT, which scores slightly
better over all tokens (compare Table 5.3 with Table 5.4).

The fact that SVM-TK has an unavoidable accuracy ceiling, which varies with
the number of assignable types, makes it harder to interpret its performance
scores. To provide an alternative view, accuracy can be measured only over
tokens that in the gold corpus bear a type belonging to one of the top-n
verb types.

For the SVM-TK classifier the training and evaluation procedure is rather
straightforward, viz. induce a classifier for the top-n types and evaluate
only over tokens that bear one of those types. For the sequential taggers,
however, two approaches are possible:

• The taggers can be trained over a corpus that uses the full tagset of
deep lexical types but evaluated only over the subset of tokens that in
the gold corpus bear a type belonging to the top-n.

• Alternatively, the training data can be altered so that only the tokens
with a type in the top-n have a fully realized deep lexical type, leaving
all other tokens with a plain POS tag.

At first blush, the latter approach might seem better due to having a
smaller, and thus easier, tagset. Since one is only going to evaluate over a
restricted set of top-n types, there is no use in making the training tagset
unnecessarily large. However, results have shown that the sequential taggers,
even when being evaluated only over a top-n subset, perform better if trained
over a dataset that uses the full tagset of deep lexical types. This is likely
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SVM-TK TnT SVMTool
top-10 94.76 92.96 94.20
top-20 90.27 91.69 92.49
top-30 89.04 91.62 92.48

Table 5.5: Classifier accuracy (%) over top-n verb types

due to the fact that the additional granularity in the context allows the
taggers to be more discriminant.

Accordingly, in the results that follow, sequential taggers being evaluated
over a top-n subset have been nevertheless trained over a corpus where every
token bears a deep lexical type.

Table 5.5 summarizes the accuracy scores for the SVM-TK classifier and
the two sequential taggers over different top-n subsets of verb types.

In all cases, accuracy decreases as the set of lexical types being considered
is broadened by higher values of n. This is to be expected, since the most
common types are tagged more accurately.

It is interesting to note that, for the top-10 most frequent types, SVM-TK
is ahead, beating SVMTool and far surpassing TnT, but this advantage is
quickly lost as the set of lexical types that SVM-TK must account for grows.

These results raise two related issues:

• SVM-TK starts off having better results, but that might happen only
because it is using features that are based on gold dependencies instead
of having to rely on automatically assigned grammatical dependencies
for its features.

• The drop in accuracy shown by SVM-TK as n increases suggests the
existence of a data-sparseness problem, which could be reduced given
additional training data.

To address these two points, the classifier should be run using features
that are extracted from automatically assigned dependencies and also trained
and tested over a larger dataset. These issues are covered in the next Sections.

5.5 Running over predicted dependencies
The previous Section was concerned with evaluating the SVM-TK classifier
alone. Accordingly, the features used by the classifier were taken from the
gold dependencies in the corpus. However, on an actual running system, the
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gold pred.
top-10 94.76 93.88
top-20 90.27 89.34
top-30 89.04 87.99

Table 5.6: SVM-TK accuracy (%) over top-n verb types using predicted
features

features used by the classifier must be based on the output generated by a
dependency parser.

To test the performance under this scenario, we trained a dependency
parser, MaltParser, that achieves an average 88.24% LAS.11 This parser
is used to automatically assign grammatical relations prior to running the
SVM-TK classifier.

Note that the predicted dependencies produced by MaltParser are not
used only when SVM-TK is assigning types, but also during the training
phase of the classifier. This idea of using the output of a classifier (Malt-
Parser) as training data for another (SVM-TK) has some similarities to
the stacked learning approach presented in (Wolpert, 1992). By taking this
approach, SVM-TK can be seen as learning to cope with the noisy features
coming from MaltParser, which will be the actual input it will use, instead
of training over unrealistic gold dependencies. In fact, experiments have
shown that, by taking this approach, SVM-TK ultimately achieves slightly
higher accuracy than when trained over gold dependencies and run over the
output of MaltParser.

As expected, the noisy features derived from the automatically assigned
dependencies have a detrimental effect on the accuracy of the classifier, but
the decrease is in fact quite small. For the same top-n sets reported previ-
ously, the accuracy of the SVM-TK classifier when running over predicted
dependencies trails 0.88–1.05 percentage points behind that of the classifier
that is trained and run using gold dependencies, as shown in Table 5.6.

The detrimental effect the results from having automatically assigned
dependencies is not dramatic. Note, however, that the most frequent verb
types will also be the ones most likely to be annotated correctly. Accordingly,
one would expect, and it turns out to be so, that as n is increased the accuracy
gap between the classifier running over gold dependencies and the classifier
running over predicted dependencies also increases. Over the top-65 verbs,

11For this task, MaltOptimizer was used to automatically tune the settings (cf. §4.5.2).
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dataset sentences tokens unique oov
base (v3) 5, 422 51, 483 8, 815 10.0%
+ Wiki 10, 727 139, 330 18, 899 7.6%
+ Público 15, 108 205, 585 24, 063 6.6%
+ Folha 21, 217 288, 875 30, 204 6.0%

Table 5.7: Cumulative size of datasets

for instance, the gap is 1.29 percentage points.
It is anticipated that using larger corpora will be effective in raising

the accuracy of the classifier that runs over predicted dependencies since
additional training data will not only improve the SVM-TK classifier itself
but also the underlying parser that provides the dependencies that are used
as features.

5.6 Experiments over extended datasets
The drop in accuracy of SVM-TK when the set of assignable verbs grows
in size suggests a data-sparseness problem. To assess the impact of using
additional training data we extend the dataset with automatically annotated
sentences.

The extended datasets were created by taking additional sentences from
the Público newspaper, as well as sentences from the Portuguese Wikipedia
and from the Folha de São Paulo newspaper, pre-processing them with a
POS tagger, and running them through LX-Gram. Having an analysis given
by the grammar, the vista extraction procedure described in §4.4 allows
obtaining the grammatical dependencies that are then used in the training
of the classifier.

The grammar, whose coverage currently stands at roughly 30%, allowed
building progressively larger datasets as more data were added. The cumula-
tive sizes of the resulting datasets are shown in Table 5.7, together with the
number of unique12 tokens and the “expected” ratio of OOV words, which
was determined by taking the average of the OOV ratio of each of the 10
folds (i.e. words that occur in a fold but not in any of the other 9 folds).

Such an approach is only made possible because, as discussed in §1.5,
LX-Gram is run over the output of a POS tagger and is able to use the

12The number of unique tokens, i.e. the number of tokens when not counting multiple
occurrences, is often referred to as the number of types, but this term was not used to
avoid confusion with its use to refer to deep lexical types.

94



5.6. Experiments over extended datasets

dataset TnT SVMTool
base (v3) 89.19 89.04
+ Wiki 90.12 90.50
+ Público 90.83 91.32
+ Folha 91.53 92.09

(a) all tokens (excl. punctuation)

dataset TnT SVMTool
base (v3) 90.19 90.94
+ Wiki 89.77 91.29
+ Público 89.98 91.70
+ Folha 91.08 92.74

(b) verb tokens

Table 5.8: Accuracy (%) of sequential supertaggers on extended datasets

tags that were assigned to pick a generic (or default) deep lexical type for
OOV words; and also because LX-Gram, like many other HPSG grammars,
includes a stochastic disambiguation module that automatically chooses the
most likely analysis among all those returned in the parse forest, instead of
requiring a manual choice by a human annotator (Branco and Costa, 2010).

This disambiguation module will make mistakes, and in some cases will
not pick the correct analysis. However, it is not clear how these wrong
choices translate into errors in the lexical types that end up being assigned
to the tokens. For instance, when faced with the rather common case of
PP-attachment ambiguity, the disambiguation module may choose the wrong
attachment, which will count as being a wrong analysis though most lexical
types assigned to the words in the sentence may nonetheless be correct.

To assess this, the disambiguation module was tested over the base
dataset, for which the correct parses are known. This test found that
the grammar picks the correct parse in 44% of the cases. However, when
considering only the correctness of the assignment of lexical types, the
sentence picked by the grammar is fully correct in 68% of the cases.

Tables 5.8 and 5.9 summarize the results of the evaluation over the extended
datasets. Each table presents the results from previous experiments over
the base (v3) dataset and over the progressively larger extended datasets.

Table 5.8(a) complements Table 5.3(b) (page 84) by showing how the
accuracy of the best sequential supertaggers over all tokens (excluding
punctuation) changes as the dataset grows. Table 5.8(b) is similar, but
accuracy is measured only over verb tokens, complementing the scores shown
in the upper part of Table 5.4 (page 91).

Nor surprisingly, both taggers improve their accuracy as additional
training data are used. More interesting is to note how SVMTool begins to
pull away from TnT as the size of the dataset increases. Henceforth, we use
only SVMTool to represent the sequential tagging approaches.
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top-10 top-20 top-30
dataset Tool TK Tool TK Tool TK

base (v3) 94.20 93.88 92.49 89.34 92.48 87.99
+ Wiki 93.58 93.83 92.75 90.35 92.73 88.97
+ Público 93.55 93.95 93.08 91.29 93.16 90.21
+ Folha 94.07 94.55 93.91 92.26 94.01 91.50

Table 5.9: Accuracy (%) comparison between SVMTool and SVM-TK (with
predicted features), on extended datasets

Table 5.9 complements the information in Tables 5.5 and 5.6. For each
dataset, and for each of the three top-n sets of verbs, it shows the accuracy
of SVMTool and SVM-TK, the latter running over predicted dependencies
assigned by MaltParser.

As expected, accuracy tends to improve as the dataset grows larger, the
exception being the first extended corpus (i.e. the addition of sentences from
Wikipedia) when targeting only the top-10 verb types.

In most of the cases, SVMTool performs better than SVM-TK. The gap
between both approaches decreases as the datasets grow. This is natural,
since accuracy becomes harder to improve on as it gets higher and, as such,
equal amounts of additional data have diminishing returns.

Another contributing factor towards the gap between the approaches
may be that, even with the extended datasets, there is still not enough data
to allow SVM-TK to really come into its own. A similar effect was seen
in previous experiments, for instance when SVMTool trailed behind TnT,
up to a point where, when additional training data were used, SVMTool
surpassed TnT as the best sequential tagger.

We believe that this claim is given credence by the performance com-
parison when targeting only the top-10 verb types. In this case, there are
enough training instances of each type in the dataset to allow the ensemble
of classifiers that supports SVM-TK to discriminate between the possible
alternatives, and we thus see SVMTool being surpassed by SVM-TK as
additional data are used for training.

When targeting the top-20 or top-30 verb types, to say nothing of the
case where the classifier casts an even wider net, most of the individual OvO
classifiers that form the ensemble are tasked with choosing between two
classes with extremely skewed distributions, when discriminating between a
common type and a rare type, or tasked with choosing between two classes
with very few instances. The individual classifiers in the ensemble that have
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to choose between two frequent types may perform better, but many of
these classifiers are already present in the top-10 ensemble.

5.7 In-grammar disambiguation
At this juncture, several approaches have been tested as a way of improving
on the standard mechanism of OOV handling, which consists of assigning
a generic (or default) type that depends on the POS category of the OOV
word. What all these approaches have in common is that they move the
task of disambiguating among the possible lexical types out of the grammar,
into a pre-processing step.

This raises a pertinent question: Perhaps all this machinery that is used
to assign types in a pre-processing step is not needed after all. Maybe it
can simply be discarded and the decision on which is the correct type left
to the disambiguation module of the grammar, similarly to what was done
in (van de Cruys, 2006) with the Alpino grammar for Dutch (cf. §2.1.3,
page 21).

Following the approach of in-grammar disambiguation may seem the
best choice since, in theory, it allows integrating information from all aspects
accessible to the grammar into the statistical model used by the disambigua-
tion component while, for instance, the SVM-TK classifier presented earlier
is only able to look at the grammatical dependencies.

In this Section we test the performance of using in-grammar disambigua-
tion to resolve OOV words and show that this approach is unable to cope
with the vast amounts of ambiguity in the problem space.

The experimental procedure for testing the performance of the grammar when
coupled with its disambiguation module is based on explicitly introducing
lexical ambiguity by replacing entries in the lexicon of the grammar by
multiple entries that only vary in terms of their lexical type.

An entry from the lexicon of the grammar is replaced by n entries, one
for each of the top-n most frequent deep lexical types pertaining to the POS
category of that word. When the grammar is run over the raw sentences
in the dataset it will arrive upon an occurrence of a word corresponding to
an entry that was replaced. At that point, all of the multiple entries for
that word will be triggered and the disambiguation module of the grammar
will eventually have to choose a deep type from among the n types that
are possible for that word. To determine disambiguation accuracy, the
type assigned by the grammar is compared with the correct type in the
grammatical representation stored in CINTIL DeepBank.
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top-10 top-20 top-30
SVM-TK 90 82 80
in-grammar 43 20 16

Table 5.10: Accuracy (%) when assigning from the top-n verbal types

Note that, for the sake of comparability with the pre-processing approach,
the experiment with the grammar only targets verbal types. Note also that
the underspecified top-n lexical entries are not created for every word in
the lexicon. For instance, “non-content” verbs, such as those that enter
auxiliary verb constructions,13 are left unaltered in the lexicon since they are
extremely frequent and form a well-defined closed list. It is thus reasonable
to assume that such entries would always be present in the lexicon of any
grammar and would never need to be treated as being OOV.

Table 5.10 summarizes the accuracy results that were obtained in this
experiment. Note that the results shown for the SVM-TK classifier are
lower than the ones mentioned previously in Table 5.5 (page 92). This
happens because, in the previous case, top-n accuracy was given over all
verbs bearing those types, while in the current case, as mentioned above,
certain common verbs (e.g. auxiliary verbs) are not considered. Since the
verbs that were left out have high frequency, they tend to be tagged more
accurately, leading to a better overall score in the previous case.

It is clear that the approach of using the grammar to assign deep lexical
types to OOV words performs quite poorly when compared with using the
classifier.

This likely happens because the disambiguation module is unable to
cope with the huge amount of ambiguity that is introduced when each verb
is allowed to have n types. Even the smallest search space that was tested,
where n is 10, is vastly superior to the amount of ambiguity present in the
original lexicon, where 81% of the verbs only have a single type, and where
there are no verbs with more than three types.14

The results show that relying solely on the grammar for disambiguation
is not a feasible approach.

13Verbs like ser/estar (to be) and ter/haver (to have).
14There might also be cases of sentences with more than one unknown verb, which

would have an even greater detrimental effect due to compounding ambiguity, though the
rather short sentence size limits this to some extent.
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top-10 top-20 top-30
median 1.6 3.9 5.9
mean 12.3 25.6 35.3
worst case 834.1 953.9 991.6

Table 5.11: Extra memory (MB) needed for top-n verbal types

Time and memory requirements

Though it is not the main concern in this study, it is worth noting to what
extent the use of multiple (top-n) types for a word affects the processing
time and memory requirements of the parsing process.

The grammar, with its original lexicon, took 337 seconds to process
the sentences in v3 of CINTIL DeepBank. There is a fivefold increase in
processing time when using the underspecified entries for top-10 verbal types.
When using the top-20 and top-30 verb types the corpus takes, respectively,
11 and 21 times longer to parse.

Note that, when in use over “real-world” text and with an unaltered
lexicon, it is unlikely that LX-Gram would find OOV words in every sentence,
as it is bound to happen in this test. The increase in parsing time that
was reported above is, on average, the increase for each sentence with OOV
words.

Memory usage is affected in a similar manner. Table 5.11 shows the
median, mean and worst case increase in memory usage of each top-n test
when compared with running the grammar with its original lexicon.

For instance, when using the underspecified entries for top-10 verbal
types, the PET parser uses, on average, 12.3 MB more for each parse than
when using its original lexicon. Note, however, that the median value is
only 1.6 MB. The mean value is skewed by some highly complex sentences
that require a great deal more memory when using underspecified types.
For top-10, the most extreme case is a sentence that requires an extra 834.1
MB to parse.

As such, even if we were to disregard its poor disambiguation accuracy,
this approach is hardly suitable for on-the-fly processing.

5.8 Experiments over another language
The machine-learning algorithms presented in the previous Sections of the
current Chapter are language-independent. Thus, evaluating them over a
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5. Deep Lexical Ambiguity Resolution

dataset sentences tokens
CINTIL DeepBank
base (v3) 5, 422 51, 483
largest extended 21, 217 288, 875
Redwoods 44, 754 584, 367

Table 5.12: CINTIL DeepBank and Redwoods

language other than Portuguese is a natural path to follow.
To carry out this experiment we turned to the LinGO Redwoods Treebank

of English (Oepen et al., 2002, 2004), a corpus composed from datasets
from various domains, including e-commerce texts, the SemCor subset of
the Brown corpus, articles from Wikipedia, etc. Like CINTIL DeepBank,
the Redwoods corpus is a collection of manually disambiguated analyses
whose construction is supported by a deep computational grammar which,
in this case, is the English Resource Grammar (ERG), an HPSG for English
(Flickinger, 2000).

The most recent version (Seventh Growth) of Redwoods was taken from
the SVN repository where ERG is stored and, similarly to what was done
previously for DeepBank, a vista with grammatical dependencies in CoNLL
format was extracted for each analysis.15 The resulting corpus has a total of
44, 754 sentences and 584, 367 tokens, making it several times larger than the
base CINTIL DependencyBank, and twice as large as the largest extended
dataset used in §5.6 (cf. Table 5.12).

Despite their large difference in size, both corpora share similarities
regarding the distribution of lexical types. There are 276 verb types in ERG,
roughly twice as many as in LX-Gram. Their frequency in the corpus is
also skewed, as one would expect, showing the usual Zipfian long tail of
infrequent types (e.g. half of the verbal types account for only 1.4% of the
verbal tokens).

Figure 5.5 shows a plot comparing the cumulative coverage of the top-n
verbal lexical types in ERG and in LX-Gram. The topmost line shows the
coverage of the types in LX-Gram, and it basically repeats what was shown
in Figure 5.4 (page 90). Naturally, this line stops at 130 since this is the
number of verbal lexical types in LX-Gram. Underneath that line runs the
line that depicts the coverage of verb types for ERG. For any fixed value of
n, the top-n types in LX-Gram provide higher coverage than the one given

15I’d like to thank Angelina Ivanova for her help in extracting the CoNLL dependencies
from the Redwoods analyses.
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Figure 5.5: Cumulative token coverage of top-n verbal lexical types

by the same number of top-n types in ERG.
An alternative way of comparing the coverage of verb types in both

grammars is presented in Figure 5.6. The scatter plot shows for each
grammar the number of types required to achieve a given coverage value.
Note that the points corresponding to 0% and 100% coverage are not shown
since these are trivially fixed. They are, respectively, 0 and the full set of
verb types (130 for LX-Gram and 276 for ERG).16

An interesting point that is highlighted by the scatter plot is how, despite
the differences in corpora and tagset size, there tends to be a stable ratio
between the values of n required by ERG and LX-Gram to ensure a certain
coverage. This ratio is close to the ratio between the number of verb types
in ERG and in LX-Gram (276

130 ≈ 2.12), shown in the plot as a dashed line.
When comparing the performance of the classifier for the two grammars,

setting the same top-n range for both is not suitable, since that will impose
coverage ceilings that are very different. Instead, the coverage information
presented previously is used to pick values n1 and n2 in such a way as to

16For readability, the axes in Figure 5.6 do not use the same scale. If the same scale
were to be enforced, most points would be compressed in a tiny area.
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Figure 5.6: Top-n types needed for a given coverage (LX-Gram vs. ERG)

ensure that top-n1 in LX-Gram has a coverage that is similar to that of
top-n2 in ERG.

The top-n ranges that, for ERG, have a coverage that is closest to the
coverage achieved by top-10, top-20 and top-30 in LX-Gram are, respectively,
top-19, top-41 and top-56.

Not all of the experiments that have been presented previously will be
repeated for ERG. Instead, SVMTool is taken as a representative of the
sequential supertaggers, since it achieves the best performance among those
approaches.17

Table 5.13 shows the accuracy scores obtained by SVMTool (to ease
comparison with the experiment for Portuguese, the LX-Gram column
repeats the values from Table 5.3 and Table 5.4).

Looking at the evaluation over all tokens, or over all tokens excluding
punctuation, reveals the positive impact of using the larger Redwoods corpus,
which allows for higher accuracy despite the larger tagset. However, looking
only at the performance over verb tokens on ERG reveals an interesting

17TnT was also tested on ERG, scoring consistently below SVMTool.
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ERG LX-Gram
over all tokens 92.30 90.61
excl. punctuation 91.16 89.19
over all verb tokens 86.55 90.94

Table 5.13: SVMTool accuracy (%) on ERG and LX-Gram

SVM-TK SVMTool
top-19 93.05 91.53
top-41 91.63 89.63
top-56 90.93 88.80

(a) over ERG

SVM-TK SVMTool
top-10 94.76 94.20
top-20 90.27 92.49
top-30 89.04 92.48

(b) over LX-Gram

Table 5.14: Classifier accuracy (%), top-n verb types, ERG and LX-Gram

point. The sharp drop in accuracy is indicative of the limitations of the
model used by SVMTool. The high granularity and rich SCF information
implicit in the lexical types used by ERG is not easily captured by models
that rely on fixed windows of context, like the n-grams of SVMTool.

The experiment reported previously in §5.6 where the classifiers were
tested over extended corpora failed to highlight this point since, while the
corpora size was increased, the tagset size effectively remained the same.

Thus, testing over ERG/Redwoods is not only interesting due to the
change of grammar and language, which addresses the generality of the
approach, but also because it provides an account of how the performance
of these classifiers changes as the grammar grows in complexity.

Table 5.14 shows the accuracy of SVM-TK and SVMTool over ERG. To
ease comparison with the previous experiments, the corresponding values
for performance over LX-Gram from Table 5.5 are repeated here.

Further emphasizing the results from Table 5.13, the evaluation shows
that the accuracy of both approaches drops when assigning the types from
ERG. The bigger dataset does not make up for the larger tagset and higher
number of assignable types.

The most interesting result comes from observing how accuracy changes
as the set of assignable types grows. Similarly to what happened previously
with the LX-Gram experiment, the accuracy of every classifier drops as
the number of top-n types being covered increases. Note, however, that on
ERG/Redwoods SVM-TK consistently stays ahead of SVMTool.
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5. Deep Lexical Ambiguity Resolution

From the accuracy results in Table 5.14, we know that assigning verbal
types in ERG is not easier to do than in LX-Gram. The proposed explanation
is that the complexity of the tagset, and that of the linguistic information that
is required to build an adequate model, reached a point where it cannot be
properly accounted for by the model of the sequential supertagger, requiring
instead the structured information encoded in grammatical dependencies
used by SVM-TK.

5.9 Summary
This Chapter presented the experiments where the classifiers that assign
deep lexical types were intrinsically evaluated.

The first experiment reported in this Chapter was a preliminary exploratory
trial that sought to find useful tools and feasible approaches to the task
of assigning deep lexical types. Run over the stable version of CINTIL
DeepBank available at the time (v2), it suffered from data-sparseness issues
due to the small dataset, which had only 1, 204 sentences. Nevertheless, the
experiment confirmed TnT as a feasible supertagger that is able to provide
a very strong accuracy baseline despite having a simple model.

An instance classifier that made use of dependency information was
tested, but it performed worse than TnT, likely due to the small dataset
and highly skewed distribution of lexical types. As an attempt to tackle this
latter issue, the SMOTE over-sampling technique was applied, though it was
not used in the subsequent experiments since the new synthetic instances it
creates are not linguistically well formed.

The remaining experiments make use of the most recent stable version (v3)
of CINTIL DeepBank, with 5, 422 sentences. These experiments build on
what was learned in the exploratory trial by reusing the most promising
approaches. Some of these experiments have also been reported in (Silva
and Branco, 2012a,b).

The approach that uses sequential taggers is represented by TnT, which
had the best performance in the preliminary experiment, and by SVMTool,
a more recent POS-tagger with competitive performance.

The SVM-TK instance classifier is presented as a way of seamlessly
incorporating structured information in the features without requiring much
effort in terms of feature engineering. Given that SVM is a binary classifier,
an ensemble of one-vs-one classifiers was used. Since most types have only
a few occurrences in the corpus, training and evaluation was performed

104



5.9. Summary

only for the top-n most frequent types, though different values for n were
tested (viz. 10, 20 and 30). The types being assigned are also restricted to
verbal types since this category tend to display richer variation in terms
of subcategorization frames, these being a large part of the information
encoded in a lexical type.

The SVM-TK classifier for the top-10 most frequent verb types performs
better than the competing sequential supertaggers, tough it falls behind
when moving to the top-20 and top-30 ranges. Two possible explanations for
this behavior are proposed and tested: (i) SVM-TK starts off with better
results only because it is running over accurate dependency information;
and (ii) the accuracy of SVM-TK drops due to data-sparseness issues.

To test the former situation, SVM-TK was trained and evaluated using
features based on predicted dependencies automatically provided by Malt-
Parser. While the noisy feature cause the accuracy of the classifier to drop,
the effect is mitigated by the fact that the cases where MaltParser performs
worse correspond to the less frequent types, where errors have less impact
on the overall score. Also, additional training data is expected to improve
not only the SVM-TK classifier, but also the underlying dependency parser.

To test the latter case, (ii), the same experiments were run over extended
datasets.18 Results show that, as more training data is made available, all
approaches improve their accuracy, but not in equal amounts. SVMTool
pulls away from TnT, becoming the best sequential tagger. The SVM-TK
classifier, running over predicted dependencies, is even better when targeting
the set of top-10 verbs, though data-sparseness issues lead to it falling behind
SVMTool as soon as the set of assignable verbs is increased.

The existence of a probabilistic disambiguation module in LX-Gram opens
up a totally different form of handling OOV words. Instead of assigning a
lexical type in a pre-processing step, a set of possible types is defined and the
grammar is left to disambiguate and pick the most likely result. However,
the accuracy of this approach was much worse than the one achieved by any
of the pre-processing methods, in particular SVM-TK.

18The dataset was automatically extended by annotating text with LX-Gram, allowing
the probabilistic disambiguation module of the grammar to pick the most likely parse for
each sentence, and extracting a vista with grammatical dependencies from the result.
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The final experiment consisted in repeating some of the previous experiments
for a different grammar and corpus, namely the English Resource Grammar
(ERG) and the Seventh Growth of the Redwoods corpus.

ERG has been under development for far longer than LX-Gram and
accordingly has a richer and more granular set of lexical types, while Red-
woods is much larger than the base CINTIL DeepBank corpus. Thus, this
experiment allows checking how the classifiers behave when applied to a
more complex tagset and being supported by additional training data.

SVM-TK was compared with SVMTool, since that latter had shown the
best performance among the sequential taggers. The experiment found that,
while for Portuguese SVM-TK eventually falls behind SVMTool as the set
of top-n verbs is increased, in ERG/Redwoods the SVM-TK classifier is
able to consistently score better than SVMTool.

The SVM-TK classifier fulfills the requirements put forward at the start
of this dissertation. It is able to assign, on-the-fly, a single disambiguated
lexical type, which can then be used by the grammar when faced with an
OOV word. It makes use of structured information, namely grammatical
dependencies, and does not require specific knowledge about the grammar
or about the type hierarchy.

The SVM-TK approach is compared against using a regular POS-tagger,
SVMTool, that has been trained with an enriched tagset formed by lexical
types instead of POS tags.

In general, SVMTool is more accurate than SVM-TK, but the results
that were obtained point towards this being a matter of data-sparseness,
contingent on the corpus being used, that hampers the performance of
SVM-TK, and not so much a deficiency of the approach that is followed.

The results summarized in Table 5.9 (page 96) show that, when SVM-TK
assigns from the set of top-10 verb types, and is thus given enough training
instances of each verb type, it performs better than SVMTool. It is only
when the set of assignable types grows, without a corresponding increase
in the size of the training data, and the training instances become much
sparser, then SVM-TK loses to SVMTool. The results from Table 5.14
(page 103) also argue for this conclusion since they show that SVM-TK is
clearly better than SVMTool on the larger (English) dataset.
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Chapter 6

Parsing with
Out-of-Vocabulary Words

The preceding Chapter reported on several experiments where the SVM-TK
classifier was evaluated intrinsically. The main purpose of the classifier is to
provide lexical types that a deep grammar can use.

This Chapter addresses the extrinsic evaluation of the SVM-TK classifier
by measuring how the performance of the grammar is impacted when
LX-Gram relies on SVM-TK to pick the lexical types of OOV words instead
of choosing a default type (baseline).

6.1 LX-Gram with SVM-TK
As mentioned previously, LX-Gram is run over a corpus that has been
annotated by a POS tagger. While the grammar ignores the POS tag for
words that are in its lexicon, this setup provides the grammar with some
degree of robustness since, when faced with an OOV word, the grammar
falls back on the POS information, using the assigned POS tag to trigger a
default deep lexical type. This is a sub-optimal solution, since for a given
POS tag the grammar will always use the same lexical type, but it is better
than an outright parse failure.

As an alternative, we experiment here with SVM-TK as a bridge between
a richer annotation, namely grammatical dependencies, and the grammar.
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X︸︷︷︸
tag

map−−−−−−→ generic-X︸ ︷︷ ︸
generic type

−−−−−−→ X︸︷︷︸
lexical type

Figure 6.1: Mapping from a tag to a generic type

We wish to use the types assigned by SVM-TK, but the version of the parser
we are using for this study has no straightforward mechanism to force words
to receive a lexical type that is given by a pre-processing step external to
the grammar. To overcome this limitation of the current system we use the
POS-mapping mechanism that is already in place, known as generic types,
to link the SVM-TK pre-processing step and LX-Gram.

Each tag that can be assigned by the classifier is in a one-to-one mapping
with a generic type that, in turn, corresponds to a lexical type, as exemplified
in Figure 6.1. Note that this workaround does not introduce anything new.
From the point of view of the grammar, the tags assigned by SVM-TK are
treated as POS tags that map to some lexical type, as usual. There are,
however, some issues regarding efficiency, in terms of speed and memory
usage. In particular, given the way the parser is implemented, using the
mechanism of generic types circumvents the process of morphological analysis
in the grammar. As such, the generic type must also include information
about morphology. For Portuguese verbs, this means that the generic type
must explicitly refer the time, aspect, mood, person and number features.1
Due to all the possible combinations of these features, and just to account
for the top-10 most frequent verb types, we need to create slightly over one
thousand POS-mappings.

Future versions of LX-Gram will be supported by a more recent parser,
which will allow using a different method, chart mapping, that promises
to be a more elegant and efficient way of setting the lexical types of OOV
words.

The extrinsic test is performed over a set of 5, 000 sentences taken from arti-
cles from the Público newspaper. These sentences have not been used before,
so they are “previously unseen” to every tool involved in the experiment,
namely the POS-tagger, the dependency parser, the SVM-TK classifier and
the disambiguation module of LX-Gram. They are, however, in the same
genre as much of the corpus that was used to train these tools.

In the preceding Chapter several versions of the SVM-TK classifier were

1These were omitted from the example in Figure 6.1 for the sake of clarity.
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tested. For this experiment, given that we start with an unannotated test
corpus, we must run SVM-TK over predicted dependencies.2 This would
nonetheless be the proper choice since the extrinsic experiment seeks to
assess performance under a real usage scenario where it is unrealistic to
expect that SVM-TK will receive fully correct dependency information to
build the features it needs. Concerning the set of lexical types assignable
by the classifier, we opted for the smallest that was tested, i.e. top-10 verb
types. In the intrinsic evaluation, this classifier obtained 93.88% accuracy
(cf. Table 5.6 on §5.5, page 93).

6.1.1 Coverage results
To begin the extrinsic evaluation of SVM-TK, we compare the baseline of
LX-Gram running over POS-tagged text against LX-Gram running over text
that has been annotated with lexical types by SVM-TK. When running in
the baseline mode, OOV words will be assigned a default type. Alternatively,
when coupled with SVM-TK, the grammar will use for OOV words the
types assigned to them by SVM-TK. Mind that it is to be expected that, in
some cases, SVM-TK will assign the same type as the default that is given
in the baseline mode.

As such, each sentence can fall into one of the following 4 cases:

• case [−−], sentences that fail to parse in the baseline mode and also
when LX-Gram is coupled with SVM-TK;

• case [−+], sentences that fail to parse in the baseline mode but that
receive at least a parse when LX-Gram is coupled with SVM-TK;

• case [+−], sentences that receive at least a parse in the baseline mode
but that fail to parse when LX-Gram is coupled with SVM-TK;

• and case [++], sentences that receive at least a parse in the baseline
mode and also when LX-Gram is coupled with SVM-TK.

Note that being able to assign at least a parse to a sentence does not
mean that that parse, or any of the other parses in the parse forest returned
by the grammar, is necessarily correct. That is, the comparison outlined
above speaks only of the relative coverage of both approaches.

The number of sentences that fall into each of the 4 cases outlined above
is summarized in Table 6.1.

2For this we use the dependency parser described in §5.5, trained over the totality of
CINTIL DependencyBank (5, 422 sentences).
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case sent.
[−−] 3474
[−+] 10
[+−] 37
[++] 1479
total 5000

Table 6.1: Coverage (using SVM-TK for top-10 verbs)

In the baseline mode, 3, 484 sentences, or roughly two-thirds of the total
sentences, do not receive any parse. This is in line with what was expected,
given LX-Gram has a coverage of around 30%. When using SVM-TK, 10
of these sentences receive at least a parse (case [−+]). Conversely, of the
1, 516 sentences that receive at least a parse in the baseline mode, 37 drop
from the coverage of the grammar when coupled with SVM-TK (case [+−]),
leading to an overall loss in coverage of 27 sentences.

6.1.2 Correctness results
Coverage scores alone paint an incomplete picture of the extrinsic evaluation
task that is intended.

In case [−+], there are 10 sentences that receive no analysis in the
baseline mode but that receive analyses when using the types assigned by
SVM-TK. However, we must determine how many of the 10 resulting parse
forests contain the correct parse. Conversely, [+−] suggests that 37 sentences
were lost. However, we must determine in how many of those situations the
correct parse is actually present in the parse forest in the baseline mode.

Finally, though in case [++] there is no change in coverage, we still
need to take a closer look at the parse forests since there are two distinct
situations that may occur: Either (i) SVM-TK has assigned the same type
as the default that was given in the baseline mode, in which case there is no
difference between the parse forests; or (ii) SVM-TK has assigned a type
different from the default one, in which case we need to determine which
parse forest, if any, contains the correct parse.

Accordingly, the extrinsic evaluation task requires manual analysis of
the parse forests, following the grammar-supported treebanking approach
described in §4.2, to determine whether the correct parse is present or not.3

3I’d like to thank the annotators, Helena Pimentel and Luís Morgado, and the
adjudicator, Francisco Costa, for their help.
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other
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default
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no OOV verbs

Figure 6.2: Breakdown of sentences in the extrinsic experiment

Note that, for the sake of efficiency, the parse forests produced by
LX-Gram are limited at the first 250 parses, according to the ranking given
by the disambiguation module of the grammar.

The following discussion of the extrinsic evaluation results will be split along
the cases described above. Figure 6.2 gives an overview.

For 3, 474 sentences, or about two-thirds of the corpus, the grammar
fails to deliver any parse, both when running in the baseline mode and
when running over types provided by SVM-TK. Since the grammar does not
produce any output for these cases, no manual treebanking can be done.

Case [−+] concerns those sentences that receive no analysis when in the
baseline mode and that become parsable when the grammar uses the types
assigned by SVM-TK. There are 10 sentences that fall into this case. For 9
of them the annotators reject every parse in the parse forests, which leaves
a single sentence where the increase in coverage results in a new parse being
accepted.

Case [+−] is the converse of the previous case. It concerns those sentences
that are covered by LX-Gram in the baseline mode but that do not receive
any analysis when using the types assigned by SVM-TK. Despite the drop
of 37 sentences in absolute coverage, none of the parse forests produced by
LX-Gram in the baseline mode contain analyses that are accepted by the
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annotators, so no correct parses are lost. This gives a net benefit in terms
of correctness.

In the final case, [++], we find 1, 479 sentences that are parsable in
the baseline mode and also when using the types assigned by SVM-TK. A
sizable chunk of 1, 163 sentences can bypass manual evaluation since its
sentences do not involve any verbal default types (i.e. they have no OOV
verbs), and therefore the correctness of the resulting analyses will not be
affected by using the types assigned by SVM-TK. This leaves 316 sentences
that can potentially be affected by the use of SVM-TK.

This set of 316 sentences is further reduced by leaving aside the 183
sentences where SVM-TK assigns to OOV words the same type as the
default type since in those cases the correctness of the resulting analyses
does not change. In this way, the number of sentences in [++] that need to
be manually analyzed is reduced to 133.

To restate, these 133 sentences are those that receive at least a parse
in the baseline mode and also when using the types assigned by SVM-TK,
but where the type assigned by SVM-TK is not the default type used in the
baseline mode.

Through the treebanking process we find that, of those 133, nearly
all (128) are rejected and, again, nearly all (126) are cases that are also
rejected in the baseline mode, so the acceptability of these analyses does
not change when using the type assigned by SVM-TK instead of the default
type. This might happen because the default type and the type assigned
by SVM-TK are both wrong; or because, despite one of those two types
actually being correct, there being some other reason not related to OOV
verbs that prevents accepting the parse.

Out of the 133 sentences, this leaves 2 with accepted parses in the
baseline mode that, due to SVM-TK assigning a type other than the default
type, end up being rejected. Conversely, there are 5 sentences whose parses
are rejected in the baseline mode that have accepted parses when using the
types assigned by SVM-TK.

6.1.3 Discussion
Using the types assigned by SVM-TK instead of relying on the default type
as a way of dealing with OOV words leads to minor improvements in the
performance of the grammar. Note that here we refer to performance in
terms of coverage and correctness. Performance in terms of parsing speed
and memory usage actually becomes worse when using SVM-TK since the
mappings from tag to type increase greatly in number and the algorithm
that does that mapping seems to be quite inefficient.
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The coverage and correctness improvements are minor but are found in
several places.

Case [−+] concerns what may be seen as the standard OOV situation
where LX-Gram fails to assign a parse in the baseline mode but succeeds
when using SVM-TK. Out of the 10 sentences that gain analyses, only 1 has
an accepted analysis. We find that, in most of the other 9 cases, SVM-TK
assigns a type intended for copula verbs4 to verbs that cannot ever be a
copula. This issue will be addressed further ahead.

In case [+−], we find 37 sentences that drop from the coverage of the
grammar when we switch to using the types assigned by SVM-TK. The
subsequent analysis through manual treebanking shows that none of those
37 sentences has accepted parses to be lost. In this regard, SVM-TK acts as
a filter, easing the work of the human annotators by reducing the amount
of parse forests that they must analyze.

Case [++] concerns another aspect of OOV words, where the missing
word does not cause a parse failure but SVM-TK may present a better
alternative than the default type. Though there are only a few cases, we
find that using the type assigned by SVM-TK is the better solution.

The following paragraphs address several factors that we envision may
have impeded SVM-TK from having a stronger impact on the extrinsic
performance of the grammar.

We begin by recalling the fact that much of the parse ambiguity does
not involve the lexicon at all. As pointed out in §2.2.2, a study performed
on ERG by Toutanova et al. (2002) found that, even when using an oracle
tagger that perfectly assigns a fully disambiguated deep lexical type to every
word, the disambiguation module in ERG ranks the correct analysis in first
place only for 55% of the sentences.5 This issue is not specific to SVM-TK,
and places a hard ceiling on the precision that can be achieved.

In the experiment reported here, manual treebanking was used to assess
only whether the correct parse was present in the parse forest, not whether
it was ranked first. As such, parse ranking only has a negative impact
when the correct parse is ranked so low as to be outside the 250 most likely
analyses that form the parse forest. In other scenarios, e.g. an application
that only takes the top-ranked analysis, failing to rank the correct parse in
the first position would have a greater negative impact.

Another issue, also not specific to SVM-TK, relates to the completeness

4The verbs ser (Eng.: to be, as an essential characteristic) and estar (Eng.: to be, as
a state or situation).

5We ran a similar test for LX-Gram and found a value of 56%.
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of the grammar and of the type hierarchy. When faced with an OOV word,
the grammar may fail to produce the correct parse due to a number of
reasons. In particular, it may happen that the correct type for that word
in that context does not even exist in the type hierarchy. Note that this
is not the case of the correct type being so rare as to be outside the set of
top-n most frequent types. Instead, there is no deep lexical type in the type
hierarchy that can be used for that word in that context. As such, until the
type hierarchy is extended with the proper type, sentences that include that
word in that context will not be analyzed or, if an analysis is generated, it
will always be rejected during manual treebanking.

The distribution of lexical types is highly skewed. Accordingly, it is
expected that the SVM-TK classifier will assign the most frequent type
more often than the other types. This type corresponds to the default type
that LX-Gram uses in the baseline mode for OOV words. We thus see an
appreciable amount of cases (183 out of 316, cf. Figure 6.2) where relying
on SVM-TK is no different from using the baseline setup.

Finally, we note that SVM-TK may be trying to assign types that are
not relevant for OOV words. One of the guiding principles of the approach
that is proposed in this work is that the classifier should try to be as agnostic
as possible in what concerns the grammar and its type hierarchy. Taking
the top-n most frequent types without regard to what they stand for is a
consequence of this decision. While this means that this approach can be
applied to any grammar without having to know the particular details of
how that grammar is implemented and how the type hierarchy is organized,
it has a downside in that it might try to assign types that are unlikely to be
useful for OOV resolving.

This may be the case with deep lexical types with a very small lexical
diversity. That is, types that cover only very few words in the lexicon and,
more to the point, it is expected that the lexicon already contains all possible
words that bear those types.

Taking LX-Gram and SVM-TK as an example, a look at the set of
the top-10 most frequent verb types will reveal the presence of types used
solely for copula verbs. Given their importance, it is to be expected that
all such verbs will already be present in the lexicon of LX-Gram and thus
that there will never occur an OOV verb that should be assigned a copula
type. However, due to the high frequency of these types in the training data,
SVM-TK will often assign them to other, non-copula verbs. Also, since we
are working with a limited set of top-n types, having these types be part of
the category space assignable by the classifier means that other types will
necessarily be left out.

Note, however, that this effect will tend to become less pronounced as
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the set of assignable types grows (i.e. as the n in top-n increases). Since the
number of types with very limited lexical diversity is rather small, they will
make up a smaller portion of the assignable type space when larger top-n
sets are used.

6.2 Summary
In this Chapter we presented results from the extrinsic evaluation of the
SVM-TK classifier. LX-Gram was run in the baseline mode, over POS-tagged
text, and also run using SVM-TK (top-10 verb) as a classifier OOV types,
and the evaluation looked for changes in coverage and parse correctness.

Results show a minor impact on the coverage of the grammar and on the
correctness of the parses that are generated. On a test set of 5, 000 sentences,
3, 484 are not parsed by LX-Gram in the baseline mode, a value in line with
the about 30% coverage the grammar is known to currently achieve. When
using the types assigned by SVM-TK, 10 more sentences are covered, of
which only 1 has a parse that is accepted by the annotators. Conversely,
using SVM-TK leads to 37 sentence dropping out from the coverage of the
grammar, though treebanking reveals that no acceptable parses were lost in
those 37 sentences.

There are 1, 516 sentences that are covered by the grammar, whether
in the baseline mode or with SVM-TK. For these sentences, 2 have their
parses become rejected when using the classifier, while there are 5 where the
opposite happens, i.e. sentences whose parses are rejected in the baseline
mode that become acceptable when using SVM-TK.
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Chapter 7

Conclusion

This Chapter concludes the dissertation. It begins with a Section where the
most relevant points from the preceding Chapters are summarized. This is
followed by some concluding remarks that put those results in perspective
and by comments on future work.

7.1 Summary
Deep computational grammars are highly prized due to the precise and
detailed way in which they account for highly complex linguistic phenomena.
They are used whenever a precise grammatical analysis is required.

Such approaches are not fully robust in the face of malformed input or,
in the particular case of highly lexicalized grammar frameworks like HPSG,
when dealing with words missing from their lexicon, i.e. out-of-vocabulary
(OOV) words.

The lexicon of such grammars is highly complex (cf. Appendix B) and,
as it is well known, no matter how large the lexicon is, there will always
be OOV words due to the novelty and lexical creativity that is intrinsic to
natural languages.

Therefore, regarding the handling of OOV words, these deep grammars
can greatly benefit from an integration with robust approaches which can
be used to annotate the word that is unknown to the grammar with some
sort of linguistic information, such as part-of-speech (POS) category, sub-
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categorization frame (SCF) restrictions, and more, that allow the grammar
to take the word as if it had been present in its lexicon all along (with the
important caveat that the annotation process may not be fully accurate).

Probabilistic POS taggers have often been used to provide an initial an-
notation upon which a parser can build its analysis. For instance, LX-Gram,
the HPSG working grammar used in our research, currently relies on the
annotation provided by a plain POS tagger as a way of handling OOV words.
Such a coarse category allows LX-Gram to trigger a default lexical type
for that category that, even though it might be the best choice (i.e. the
most likely type) for that category, will nevertheless be wrong in many cases.
Consequently, having a deep computational grammar as the ultimate con-
sumer of the annotation that is produced brings about the specific challenge
of being able to generate annotation that is rich and detailed enough to be
useful for the parsing process supported by the grammar.

To handle OOV words, the initial annotation provided by the probabilistic
process needs to have increased granularity as to match the range of possible
deep lexical types. Some of the finer grammatical details that allow to
assign a deep lexical type are hard to capture with models that only rely
on features taken from a fixed window of context, as commonly found on
current approaches.

Since grammatical dependencies occurring among word tokens in a
sentence are an instantiation of the SCF of a target OOV word, they should
provide information that is useful to discriminate between deep lexical types.
This is the rationale that motivated the creation of a classifier that is able
to use information about grammatical dependencies.

Note that the decision on the type of linguistic information to use is
contingent on available resources. Naturally, we would not be able to use
grammatical dependencies if a corpus annotated with that information and
a trainable dependency parser were not available. However, there are several
machine-learning parsers with state-of-the-art performance that are freely
available and the corpus used in these experiments contains information on
grammatical dependencies.

Tree kernels were chosen as a principled way of seamlessly integrating
an encoding of grammatical dependencies into a support-vector machine
classifier, SVM-TK. This classifier was compared with an approach where a
POS tagger is repurposed to assign deep lexical types, since that task can
be seen as doing POS tagging with a highly granular tagset. The model
underlying SVM-TK is a support-vector machine, a binary classifier. As
such, SVM-TK is designed as an ensemble of several one-vs-one classifiers,
one for each possible pairing of the lexical types being assigned.
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The corpus used in these experiments, DeepBank, was built through manual
disambiguation of the parse forest produced by LX-Gram when run over a
set of (mostly newspaper) texts. Since the representation thus produced is
specific to the HPSG framework and unwieldy to work with, a novel vista
extraction mechanism was developed.

Vista extraction allows taking the full grammatical representation that is
produced by the grammar and separate only the information that is relevant
for the task at hand. In this case, this consists in extracting a vista with
grammatical dependencies.

As expected, the distribution of types in the corpus is highly skewed. This
fact, together with the modest size of the dataset, means that for many
types a classifier cannot be induced since there are too few occurrences of
those types in the corpus. Accordingly, SVM-TK is experimented with for a
subset of types that contains only the most frequent (top-n) types in the
corpus (cf. Appendix A).

Evaluation results show that SVM-TK takes the lead when running over
the top-10 most frequent verb types, achieving an accuracy of 94.76%. It
falls behind the other approaches (i.e. the repurposed POS taggers) when
the set of types being assigned grows to include the top-20 and top-30 most
frequent verb types. Given these results, two additional experiments were
pursued.

A first experiment sought to ascertain to what extent the accuracy
score would be affected by running the classifier using features based on
grammatical dependencies assigned automatically by a dependency parser,
thus approximating a realistic usage scenario. The decrease in accuracy was
between 0.88 and 1.05 percentage points.

A second experiment sought to determine the impact of additional train-
ing data. This extended training data was obtained by running LX-Gram
over additional text and letting the disambiguation module in the gram-
mar pick the best analysis. The increased amount of training data allows
SVM-TK to perform better than the other approaches, even when run-
ning over predicted dependencies, with verbs from the set of top-10 verb
types, reaching 94.55%, 0.48 percentage points above SVMTool, when using
the largest dataset. When the number of types being assigned grows, the
SVMTool POS tagger performs better. Over the top-30 verb types, using
the largest dataset, SVM-TK scores 91.50%, 2.51 percentage points behind
SVMTool.

The disambiguation module in LX-Gram, which was used to pick the
best analysis when creating the extended datasets, can also be used to
tackle OOV words by allowing an OOV word to have a set of possible
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types (i.e. taking it as a n-way ambiguous word) and accepting the reading
picked by the disambiguation module. This approach requires no tools other
than the grammar itself (as long as it includes a disambiguation module).
However, it shows much worse performance than SVM-TK.

SVM-TK was tested with the ERG grammar for English, using the
Redwoods corpus as the dataset. This allowed evaluating the classifier over
a different language, and also over a larger tagset and a larger corpus.1

Comparing against SVMTool, which shows the best accuracy among
the sequential taggers, it was found that SVM-TK was able to perform
consistently better, achieving 90.93% accuracy when assigning from largest
(top-56) set of verb types, 2.13 percentage points above SVMTool.

The final experiment consisted of an extrinsic evaluation. For this,
LX-Gram was used to annotate a new corpus of 5, 000 sentences. The
baseline mode, running over POS-tagged text and relying on a generic
(or default) type, is compared with using SVM-TK as a pre-processor for
assigning deep lexical types.

Note that there are two issues that impose a performance ceiling on the
extrinsic experiment. First, we know that assigning correct lexical types
alone is not enough to ensure that the correct parse will be selected or
even produced. Second, the grammar and type hierarchy are not complete.
As such, in some cases, there is no existing deep lexical type that can be
assigned that will lead to an analysis being accepted.

A process of error analysis is needed to probe the roughly 70% of
sentences that lie outside the coverage of the grammar.2 This process is
outside the scope of the current work, falling under the umbrella of grammar
development, since it helps direct the development of the grammar and
lexicon towards the missing features. Nonetheless, it can shed some light
on the causes of those parsing failures and allow us to determine how many
of those failures are due to OOV words. This, in turn, would allow us to
better calibrate our expectations regarding what OOV handling can do.

Coverage was measured to determine if using SVM-TK changed the
number of sentences that receive parses. In absolute terms, coverage went
down (10 parses gained, 37 parses lost). Manual treebanking was used
for a more fine-grained evaluation, and found that none of the 37 parses
that dropped out of coverage were correct, giving a net benefit in terms of
correctness. Out of the 10 new parses, 1 was, in the end, accepted.

1ERG has roughly twice as many verb types as LX-Gram. Redwood is roughly twice
as large as the largest extended dataset used for Portuguese.

2The error analysis process can be semi-automated by using error mining techniques,
like the one described in (van Noord, 2004), which automatically finds strings that tend
to occur in the unparsable sentences.
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SVM-TK also has an impact on those sentences that always stay in
coverage when it assigns a type other than the default one. For these cases,
2 accepted parses were lost and 5 new parses were accepted.

7.2 Concluding remarks and future work
Results have shown that, given a set of n allowable types for an OOV word,
it pays off to perform the disambiguation outside of the grammar, as a
pre-processing step, rather than letting that n-way ambiguous word be
resolved by the grammar alone.

The main hypothesis guiding this work is that current methods for
performing this sort of OOV handling in a deep computational grammar
can be improved by including features derived from linguistically informed
structure, in particular those derived from grammatical dependencies, since
dependencies closely mirror the SCF of a word, which constitutes a large
part of the linguistic information encoded into a deep lexical type.

We developed a novel approach where a classifier, SVM-TK, through the
use of tree kernels, is able to use grammatical dependencies as features and
provide the grammar with fully disambiguated deep lexical types that the
grammar can use when faced with an OOV word.

This is a data-driven approach, independent of the language and of the
grammar. It requires that the lexical information needed by the grammar
be represented by a tag. This is a natural fit to the concept of lexical types
in HPSG, but is also applicable to other grammatical frameworks. Given
that SVM-TK generates its features from grammatical dependencies, when
assigning types it takes as input text that has been automatically annotated
by a dependency parser. The approach itself, however, is not limited to only
making use of this type of linguistic information.

In this sense, SVM-TK acts as a bridge between processes that annotate
the text, and the grammar. A bridge that takes as input the annotation
produced in those shallow processes, which in the current case is a graph of
grammatical dependencies, and produces as output a deep lexical type.

In some cases SVM-TK has lower accuracy than a classifier that uses less
grammatically sophisticated features, here represented by the SVMTool POS
tagger. However, the analysis of the results points towards data-sparseness
as the main cause for the lower performance of SVM-TK in these cases
since, when targeting types with a less sparse distribution, or when using a
larger training dataset, SVM-TK achieves the best accuracy scores among
the approaches that are tested.

The existence of a data-sparseness issue does not invalidate the approach
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that is proposed here. The distribution of lexical types will always be highly
skewed, so it is expected that the rarer types will typically have too few
training instances to be effectively learned. Much of the data-sparseness issue
is contingent on the size of the corpus being used and can be progressively
mitigated by the use of additional data.

Future work

In keeping with the principle that the classifier should be as agnostic as
possible regarding the grammar and the type hierarchy, SVM-TK targets
the set of the n most frequent verbal types (top-n). As seen in the previous
Chapter, this may happen to be sub-optimal since there are types in that
set that are unlikely to ever be applicable to OOV words. A solution is,
naturally, to consult a linguist knowledgeable in the grammar and ask them
which types should be left out of OOV handling, but there is also the
possibility of devising a way of automatically finding such types through
a metric of lexical diversity, and working only with those considered to be
sufficiently diverse to warrant being in the set of assignable types.

SVM-TK assigns fully disambiguated deep lexical types, freeing the grammar
from having to deal with lexically ambiguous OOV words. It would be
interesting to study whether there are cases where allowing some degree
of ambiguity to pass through to the grammar would be advantageous. For
instance, in cases where the various classifiers in the SVM-TK ensemble
have little confidence on their choice, or when the voting procedure does
not pick a clear, stand out winner.

This dissertation targets only OOV verbs. Now that the classification harness
is in place and working, a natural path to follow is to extend OOV handling
to the other open classes, namely nouns and adjectives, in order to cover
the full range of categories of OOV words.

The approach proposed here consists of a classifier that lies between the
processes that run prior to the grammar, whose output it uses as features,
and the grammar, which, when faced with an OOV word, relies on the
tag assigned by the classifier. Crucially, the method used in this approach
provides a principled way of exploring how different kinds of linguistic
information impact on the accuracy of OOV handling by experimenting
with the features used by the classifier.

The SVM-TK classifier described in this work uses only features based on
grammatical dependencies, since these were a prime candidate for improving
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the ability to discriminate between verbal lexical types. In this respect
alone there is already much that can be experimented with, like testing
dependency features that do not include the word, omitting the word only
for the open class dependents, etc.

A deep lexical type encodes much more than the SCF of a word. In
this respect, a look at Appendix B is instructive in that it gives an idea
of the richness and extent of the linguistic information in a lexical type.
Since different representations bring to the forefront different linguistic
phenomena, it would be interesting to study how grammatical dependencies
can be complemented by other kinds of linguistic information.

For instance, the abstraction provided by grammatical dependencies
draws attention to the relations between words that may be far apart,
spanning intervening constituents. The very same abstraction, however,
hides from view the structural differences between the active and passive
forms of a sentence. As such, experimenting with bringing into SVM-TK
features based on syntactic constituency, where these differences are explicit,
may improve the classifier.

Likewise, finding ways to bring into the classifier a source of information
to address the semantic properties encoded in a lexical type should prove
valuable. For this, SVM-TK could include features based on a measure of
similarity between words over, say, a WordNet-like ontology or some other
resource containing information on lexical semantics.

The large number of different linguistic phenomena that need to be accounted
for in a deep lexicon may suggest a different approach towards building the
classifier. Instead of having an ensemble of classifiers trained to discriminate
between deep lexical types, we create an ensemble of classifiers where each
classifier is focused on a particular linguistic phenomena. Using Appendix B
as a guide, this would mean having a classifier for deciding whether a
verb is passivizable, another for assigning one of the 14 possible values for
alternation, etc.

After all the phenomena classifiers have assigned a value, the result is
mapped into a deep lexical types, just like it happens with the entries in
the lexicon.

This approach has a few drawbacks: (i) it is possible that the ensemble
of classifiers will arrive at a combination of values that is not consistent and
does not correspond to any existing type, while with SVM-TK the type that
is assigned will always correspond to a type known to the grammar; (ii) by
doing this, the classifier loses some of its agnosticism regarding the grammar,
since we must know what are the different phenomena and their possible
values; and (iii) instead of a straightforward ensemble of homogeneous
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classifiers, this approach relies on an ensemble of specialized classifiers, each
possibly very different from the others in terms of the algorithm and features
that are used, a setup which is likely to be more demanding to build.

Nonetheless, we can envision some possible important advantages to
having classifiers that focus on the different phenomena.

With SVM-TK, the number of classifiers in the ensemble varies with the
set of top-n verbs being considered, while with this alternative approach
the number of classifiers in the ensemble remains fixed, since the number
of phenomena being accounted for does not change. Accordingly, this
alternative should prove to be more scalable.

Since each classifier in the ensemble specializes in a particular linguistic
property, it can use only the features deemed relevant for discriminating
between the possible values of that property. For instance, taking the
suggestion mentioned above, the classifier for SCFs would take grammatical
dependencies, while the classifier that determines whether the verb is passive
could disregard dependencies and look only at syntactic constituency.

Also, many different deep lexical types have commonalities (e.g. all are
passivizable or all are acceptable in absolute participles). In SVM-TK, those
types have to be learned separately, while in this alternative approach the
instances that belong to those different types will be taken together when
training the classifiers.

This suggests that the alternative approach could also be more resistant
to data-sparseness issues.
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Verbal deep lexical types

Below we list the 130 verb deep lexical types that occur in the corpus (v3 of
CINTIL DeepBank), ranked from the most to the least frequent.

1 verb-dir_trans-lex
2 verb-individual_lvl_copula-lex
3 verb-identity_copula-lex
4 verb-ditrans-lex
5 verb-subj_raising-comp_vp-lex
6 verb-dir_trans-indef_null_obj-lex
7 verb-stage_lvl_copula-lex
8 verb-intrans-obl_direction-lex
9 verb-dir_trans-expletive_subj-lex
10 verb-intrans-comp_pp_de-lex
11 verb-dir_trans-subj_np_inf_cp+conj-lex
12 verb-comp_cp-comp_indir-lex
13 verb-subj_control-lex
14 copular-verb-predicational-lex
15 verb-unaccusative-lex
16 verb-anticausative-lex
17 verb-intrans-lex
18 verb-trans-comp_pp_de-lex
19 verb-comp_np_inf_cp+ind_declarative-lex
20 verb-compound_tense_aux-lex

125



A. Verbal deep lexical types

21 verb-subj_raising-comp_pp_de-lex
22 verb-comp_cp-lex
23 verb-trans-comp_pp_em-lex
24 verb-anticausative-optional_inherent_clitic-lex
25 verb-intrans-obl_location-lex
26 verb-intrans-comp_pp_acercade_de_em_sobre-lex
27 verb-intrans-comp_pp_em-lex
28 verb-subj_raising-comp_pp_a-lex
29 verb-trans-obl_location-lex
30 verb-intrans-obl_direction_em-lex
31 verb-comp_np_inf_cp+ind_declarative-comp_indir-lex
32 verb-ind_trans-lex
33 verb-anticausative-inherent_clitic-lex
34 verb-intrans-comp_pp_a-lex
35 verb-comp_np_inf_cp+conj_declarative-lex
36 verb-anticausative-subj_np_inf_cp+conj-inherent_clitic-lex
37 verb-unaccusative-ind_obj-lex
38 verb-trans-comp_pp_para-lex
39 verb-intrans-comp_pp_com-lex
40 verb-trans-comp_pp_por-lex
41 verb-subj_raising-comp_pp_por-lex
42 verb-dir_trans_or_ind_trans-lex
43 verb-trans-obl_direction_em-lex
44 verb-inherent_clitic-comp_pp_de-lex
45 verb-comp_np_or_pp_com-lex
46 verb-inherent_clitic-expletive_subj-comp_pp_de-lex
47 verb-inherent_clitic-comp_pp_a_de-lex
48 verb-subj_control-subj_np_inf_cp+conj-comp_vp_np_cp+ind-lex
49 verb-intrans-comp_pp_a_contra-lex
50 verb-anticausative-inherent_clitic-comp_pp_em-lex
51 verb-trans-comp_pp_a-lex
52 verb-0place-lex
53 verb-inherent_clitic-comp_pp_a-lex
54 verb-anticausative-subj_np_inf_cp+conj-optional_inherent_clitic-lex
55 verb-trans-comp_pp_a_em-lex
56 verb-intrans-comp_pp_de_em-lex
57 verb-inherent_clitic-comp_pp_em-lex
58 verb-trans-comp_pp_em_por-lex
59 verb-trans-comp_pp_com-lex
60 verb-intrans-comp_pp_com_contra_em_para-lex
61 verb-inherent_clitic-lex
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62 verb-comp_np_inf_cp_declarative-lex
63 verb-subj_control-2comp_np+pp_a-lex
64 verb-intrans-comp_pp_em_sobre-lex
65 verb-inherent_clitic-comp_pp_em_entre-lex
66 verb-inherent_clitic-comp_pp_com-lex
67 verb-obj_raising-comp_pp_de-lex
68 verb-intrans-comp_pp_a_com-lex
69 verb-inherent_clitic-comp_pp_contra-lex
70 verb-trans-comp_pp_sobre-lex
71 verb-trans-comp_pp_com_por-lex
72 verb-trans-comp_pp_com_de-lex
73 verb-subj_np_inf_cp+conj-trans-comp_pp_em-lex
74 verb-subj_np_inf_cp+conj-trans-comp_pp_a+dat_de-lex
75 verb-subj_np_inf_cp+conj-comp_np_inf_cp_declarative-lex
76 verb-subj_control-no_cp_comp-lex
77 verb-intrans-subj_np_inf_cp+conj-lex
78 verb-intrans-comp_pp_com_por-lex
79 verb-intrans-comp_pp_com_de-lex
80 verb-intrans-comp_pp_a_em-lex
81 verb-intrans-comp_pp_a_de-lex
82 verb-intrans-comp_pp_a_de_em-lex
83 verb-intrans-comp_pp_a_contra_para-lex
84 verb-inherent_clitic-comp_pp_por-lex
85 verb-inherent_clitic-comp_pp_afavorde_contra_sobre-lex
86 verb-comp_cp_interrogative-comp_indir-lex
87 verb-anticausative-obl_location-lex
88 verb-anticausative-inherent_clitic-obl_location-lex
89 verb-trans-obl_direction-lex
90 verb-trans-comp_pp_de_em-lex
91 verb-trans-comp_pp_com_em_por-lex
92 verb-trans-comp_pp_a_com-lex
93 verb-intrans-comp_pp_para-lex
94 verb-intrans-comp_pp_em_para_por-lex
95 verb-intrans-comp_pp_contra_por-lex
96 verb-intrans-comp_pp_com_contra-lex
97 verb-intrans-comp_pp_a_de_entre-lex
98 verb-inherent_clitic-comp_pp_em_entre_para-lex
99 verb-inherent_clitic-comp_pp_a_em_sobre-lex
100 verb-trans-comp_pp_a+dat_de-lex
101 verb-obj_control-comp_pp_a-lex
102 verb-intrans-comp_pp_sobre-lex
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103 verb-intrans-comp_pp_por_sobre-lex
104 verb-intrans-comp_pp_por-lex
105 verb-intrans-comp_pp_entre-lex
106 verb-intrans-comp_pp_em_entre_por-lex
107 verb-intrans-comp_pp_em_entre-lex
108 verb-intrans-comp_pp_de_por-lex
109 verb-intrans-comp_pp_a_sobre-lex
110 verb-intrans-comp_pp_afavorde_contra-lex
111 verb-intrans-comp_pp_acercade_de_sobre-lex
112 verb-inherent_clitic-comp_pp_para-lex
113 verb-inherent_clitic-comp_pp_de_por-lex
114 verb-inherent_clitic-comp_pp_de_em-lex
115 verb-inherent_clitic-comp_pp_contra_em-lex
116 verb-inherent_clitic-comp_pp_com_por-lex
117 verb-inherent_clitic-comp_pp_com_em-lex
118 verb-inherent_clitic-comp_pp_a_para-lex
119 verb-comp_np_or_pp_sobre-lex
120 verb-comp_np_inf_cp+conj_declarative-comp_indir-lex
121 verb-anticausative-subj_np_inf_cp+conj-lex
122 verb-trans-comp_pp_de-obligatory_comps-lex
123 verb-intrans-comp_pp_contra_em-lex
124 verb-intrans-comp_pp_afavorde_por-lex
125 verb-intrans-comp_pp_afavorde_contra_sobre-lex
126 verb-inherent_clitic-comp_pp_sobre-lex
127 verb-inherent_clitic-comp_pp_em_por-lex
128 verb-inherent_clitic-comp_pp_afavorde_contra-lex
129 verb-anticausative-inherent_clitic-comp_pp_para-lex
130 verb-anticausative-inherent_clitic-comp_pp_de-lex

Below we list 45 additional types that are known to the grammar but that
do not occur in the DeepBank corpus.
verb-comp_cp+conj_declarative-lex
verb-comp_cp_declarative-lex
verb-comp_cp+ind_declarative-comp_indir-lex
verb-comp_cp_interrogative-lex
verb-dir_trans-opaque-lex
verb-inherent_clitic-comp_pp_a_contra-lex
verb-inherent_clitic-comp_pp_com_de-lex
verb-inherent_clitic-comp_pp_contra_de-lex
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verb-inherent_clitic-comp_pp_perante-lex
verb-intrans-comp_advp-lex
verb-intrans-comp_pp_a_em_sobre-lex
verb-intrans-comp_pp_afavorde_para-lex
verb-intrans-comp_pp_a_para-lex
verb-intrans-comp_pp_àvoltade-lex
verb-intrans-comp_pp_com_contra_em-lex
verb-intrans-comp_pp_com_em-lex
verb-intrans-comp_pp_com_para-lex
verb-intrans-comp_pp_com_sobre-lex
verb-intrans-comp_pp_contra_de-lex
verb-intrans-comp_pp_contra_de_sobre-lex
verb-intrans-comp_pp_contra-lex
verb-intrans-comp_pp_contra_sobre-lex
verb-intrans-comp_pp_de_para_sobre-lex
verb-intrans-comp_pp_em_entre_para-lex
verb-intrans-comp_pp_em_por-lex
verb-intrans-comp_pp_entre_sobre-lex
verb-intrans-comp_pp_perante-lex
verb-trans-comp_pp_a_com_contra_em-lex
verb-trans-comp_pp_a_com_de-lex
verb-trans-comp_pp_a_com_em-lex
verb-trans-comp_pp_a_contra_em-lex
verb-trans-comp_pp_a_contra-lex
verb-trans-comp_pp_a_de-lex
verb-trans-comp_pp_a_para-lex
verb-trans-comp_pp_a_por-lex
verb-trans-comp_pp_com_em-lex
verb-trans-comp_pp_contra_de-lex
verb-trans-comp_pp_contra-lex
verb-trans-comp_pp_contra_para-lex
verb-trans-comp_pp_de_em_por-lex
verb-trans-comp_pp_de_em_sobre-lex
verb-trans-comp_pp_de_para-lex
verb-trans-comp_pp_em_sobre-lex
verb-trans-comp_pp_para_por-lex
verb-trans-comp_pp_perante-lex
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Appendix B

Verb lexicon

To complement the description given in §3.1 (page 35), below we give a
more thorough account of the verb lexicon used by LX-Gram.

As usual, the asterisk is used to mark the ungrammatical examples.

• Lemma. This field holds the lemma of the word.

• Foreign word? This field holds a yes/no value that indicates whether
the word is a foreign word.

• Associated deverbal nouns. This field holds a list of nouns that are
derived from the verb form. For instance, absorver (Eng.: to absorb)
is associated with absorção (Eng.: absorption).

• Associated deverbal adjectives. This field holds a list of adjectives
that are derived from the verb form. For instance, absorver (Eng.: to
absorb) is associated with absorvente (Eng.: absorptive).

• Variety. This field has three possible values: PO, PE or PB. LX-Gram
is able to account for differences between the European and Brazilian
variants of Portuguese. As such, entries in the lexicon must be catego-
rized as whether they belong only to European Portuguese (PE), only
to Brazilian Portuguese (PB) or to either (PO) variant.

• Is the verb passivizable? This field holds a yes/no value that indicates
whether the verb can form passive constructions. For instance, the
verb to see is passivizable while to arrive is not.
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B. Verb lexicon

(1) a. Passivizable: ver (Eng.: to see)
(i) O

the
gato
cat

viu
saw

o
the

pássaro
bird

(ii) The
the

pássaro
bird

foi
was

visto
seen

pelo
by-the

gato
cat

b. Not passivizable: chegar (Eng.: to arrive)
(i) O

the
correio
mail

chegou
arrived

(ii) *O
the

correio
mail

foi
was

chegado
arrived

• Alternation. This field describes how causative-anticausative alterna-
tions are formed. It has 14 possible values. For the sake of simplicity
we show only a few. For instance, “ARG2 to ARG1 oblig. -se” means
that when forming an alternation, ARG2 becomes ARG1 and there is
an obligatory “se” clitic.

(2) a. ARG2 to ARG1 oblig. -se: chatear (Eng.: to annoy)
(i) [ARG1

[ARG1

A
the

discussão]
argument]

chateou
annoyed

[ARG2
[ARG2

a Maria]
Maria]

(ii) [ARG1
[ARG1

A Maria]
Maria]

chateou-se
annoyed-SE

(iii) *[ARG1
[ARG1

A Maria]
Maria]

chateou
annoyed

b. ARG2 to ARG1 optional -se: afundar (Eng.: to sink)
(i) [ARG1

[ARG1

O
the

pirata]
pirate]

afundou
sank

[ARG2
[ARG2

o
the

barco]
boat]

(ii) [ARG1
[ARG1

O
the

barco]
boat]

afundou-se
sank-SE

(iii) [ARG1
[ARG1

O
the

barco]
boat]

afundou-se
sank

c. ARG1 + ARG2 oblig. -se: divorciar (Eng.: to divorce)
(i) [ARG1

[ARG1

O Pedro]
Pedro]

divorciou-se
divorced-SE

[ARG2
[ARG2

da Maria]
Maria]

(ii) [ARG1
[ARG1

O Pedro
Pedro

e
and

a Maria]
Maria]

divorciaram-se
divorced-SE

(iii) *[ARG1
[ARG1

O Pedro
Pedro

e
and

a Maria]
Maria]

divorciaram
divorced
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• Acceptable in absolute participles? This field holds a yes/no value that
indicates whether the verb can form absolute participle constructions.

(3) a. Yes: chegar (Eng.: to arrive)
(i) O João

João
chegou
arrived

e
and

a Paula
Paula

desmaiou
fainted

(ii) Chegado
arrived

o João,
João,

a Paula
Paula

desmaiou
fainted

b. No: sorrir (Eng.: to smile)
(i) O João

João
sorriu
smiled

e
and

a Paula
Paula

desmaiou
fainted

(ii) *Sorrido
smiled

o João,
João,

a Paula
Paula

desmaiou
fainted

• Does the verb have a “se” inherent clitic? This field has three possible
values: obligatory, optional or not allowed.

(4) a. Obligatory: suicidar (Eng.: to suicide)
(i) *Ele

he
suicidou
suicided

(ii) Ele
he

suicidou-se
suicided-SE

“He commited suicide”
b. Optional: derreter (Eng.: to melt)

(i) A
the

manteiga
butter

derreteu
melted

(ii) The
the

butter
butter

derreteu-se
melted-SE

c. Not allowed: sorrir (Eng.: to smile)
(i) Ele

he
sorriu
smiled

(ii) *Ele
he

sorriu-se
smiled-SE

• Subject. This field describes the form of the subject. It has 14 possible
values. Again, for the sake of simplicity, we show only a few.

(5) a. Noun Phrase: ver (Eng.: to see)
(i) [NP

[NP

O
the

gato]
cat]

viu
saw

o
the

rato
mouse

b. Expletive: chover (Eng.: to rain)
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B. Verb lexicon

(i) Choveu
rained
“It rained”

c. Raised: poder (Eng.: to can)
(i) O

the
gato
cat

pode
can

ver
see

o
the

rato
mouse

(ii) Pode
can

chover
rain

• Raising. This field holds a yes/no value that indicates whether the verb
is a raising verb. This property is related to the semantic interpretation
of the verb. With a raising verb, like começar (Eng.: to begin), the
statement “the surgeon began operating on the patient” implies “the
patient began being operated on by the surgeon”; while with a non-
raising verb, like quer (Eng.: to want), the statement “the surgeon
wants to operate on the patient” does not imply “the patient wants to
be operated on by the surgeon”.

• Control Reference, Controller and Controlee are three separate fields
that describe the behaviour of control verbs. These fields have, respec-
tively, 5, 8 and 3 possible values. As before, we show only a few of
them.

(6) a. Control Reference: Obligatory:
querer (Eng.: to want)
(i) O Pedro1

Pedro1

quer
wants to

(PRO1)
(PRO1)

fazer
do

isso
that

(ii) O Pedro1
Pedro1

quer
wants to

(PRO2)
(PRO2)

fazerem
doplural

isso
that

b. Controller: Indirect Object:
deixar (Eng.: to let)
(i) Os

the
pais2
parents2

deixaram
allowed

o Rui1
Rui1

(PRO1)
(PRO1)

viajar
travel

(ii) *Os
the

pais2
parents2

deixaram
allowed

o Rui1
Rui1

(PRO2)
(PRO2)

viajarem
travelplural

• Referential opacity. This property is related with the semantic inter-
pretation of the verb. It can have two values, transparent and opaque.
The difference will be explained through the following scenario: Say
that John mistakenly believes that Antonio Salieri is the composer of
Requiem (the actual composer is Mozart). With a transparent verb,
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like to see, the statement “John saw Mozart” implies “John saw the
composer of Requiem”. However, with an opaque verb, like believe,
the implication is not valid. For instance, “John believes that Mozart
arrived” does not imply “John believes that the composer of Requiem
arrived” since John mistakenly believes that Salieri is the composer.

• Clitic climbing. A yes/no value that indicates whether the verb attracts
the argument of the embedded verb. In the examples below, the clitic
“te” is the argument of lavar.

(7) a. Yes: estar (Eng.: to be)
(i) Estou

i-am
a lavar-te
washing-TE

“I’m washing you”
(ii) Estou-te

i-am-TE
a lavar
washing

b. No: acabar (Eng.: to finish)
(i) Acabei

i-finished
de lavar-te

washing-TE
“I’ve finished washing you”

(ii) *Acabei-te
i-finished-TE

de lavar
washing

• Complement 1, 2 and 3. These are three separate fields that, together
with the Subject field described above, essentially describe the sub-
categorization frame of the verb. Each of these three fields can have
419 different values. As before, we show only a few examples. For
instance, “NP, com NP/de NP” means that the first complement is a
NP, the second is a PP (com or de, followed by a NP), and that there
is no third complement.

(8) a. NP, com NP/de NP:
abastecer (Eng.: to fuel)
(i) Ele

he
abasteceu
fueled

[NP
[NP

o
the

carro]
car]

[PP
[PP

com
with

gasolina]
gasoline]

b. com NP, contra NP:
conspirar (Eng.: to conspire)
(i) Ele

he
conspirou
conspired

[PP
[PP

com
with

eles]
them]

[PP
[PP

contra
against

ela]
her]

c. NP, em NP-Loc/AdvP-Loc:
depositar (Eng.: to deposit)
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B. Verb lexicon

(i) Ele
he

depositou
deposited

[NP
[NP

o
the

dinheiro]
money]

[PP
[PP

no
in-the

banco]
bank]

d. NP, a NP-Dat, para NP:
recomendar (Eng.: to recommend)
(i) Ele

he
recomendou
recommended

[NP
[NP

a
the

estratégia]
strategy]

[NP
[NP

a
to

mim]
me]

[PP
[PP

para
for

o
the

jogo]
game]

We draw attention to (8-c) and (8-d) where the complements are
constrained also in terms of their semantic role: Location and Dative,
respectively.
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