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Resumo

A ideia de obter fórmulas para as derivadas e para as respectivas normas de
certas c funções de matrizes foi sugerida pelo Professor Rajendra Bhatia, no
sentido de generalizar resultados obtidos anteriormente.

O pioneiro neste tipo de problemas foi Carl Gustav Jacob Jacobi (século
XIX) que calculou a primeira derivada da função determinante. Seja det :
Mn(C) −→ C a aplicação que a cada matriz quadrada de ordem n faz corre-
sponder o seu determinante, onde Mn(C) representa o espaço vectorial das
matrizes quadadradas de ordem n sobre o corpo dos números complexos.
Pela definição de derivada direccional no ponto A ∈ Mn(C), para cada
X ∈Mn(C),

D det(A)(X) =
d

dt

∣∣∣
t=0

det(A+ tX).

A famosa Fórmula de Jacobi é

D det(A)(X) = tr(adj(A)X),

onde adj(A) representa a matriz adjunta de A e tr o traço da matriz.
A questão que se coloca é como pode este resultado ser generalizado. Por

um lado, podemos tentar generalizá-lo para derivadas de ordem superior, por
outro podemos considerar a primeira derivada de outras funções matriciais,
das quais o determinante é um caso particular. O determinante pode ser
encarado como um caso particular de uma função generalizada de matrizes,
no entanto uma vez que det(A) = ∧nA, este também pode ser visto como
uma das potências de Grassmman de A, i.e. ∧mA, no caso em que m = n.

A noção de k-ésima derivada de uma função φ é dada do seguinte modo:
considerando A,X1, . . . Xk ∈ Mn(C),a k-ésima derivada no ponto A e nas
direcções de (X1, . . . , Xk) é uma função multilinear definida por

Dkφ(A)(X1, . . . , Xk) :=
∂k

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

φ(A+ t1X
1 + . . .+ tkX

k).
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Dado χ um carácter irredut́ıvel do grupo de permutações de ordem n, Sn
sabe-se que o imanente de A, associado a χ é dado pela expressão:

dχ(A) =
∑
σ∈Sn

χ(σ)
n∏
i=1

aiσ(i)

e tem como casos particulares o determinante, que corresponde ao carácter
alternante, e o permanente que corresponde ao carácter principal. Con-
siderando χ um carácter irredut́ıvel de Sm, ∧mA e ∨mA são também casos
particulares da m-ésima potência χ-simétrica de A, Kχ(A).

Em [9], R. Bhatia e T. Jain calcularam várias expressões para as derivadas
de ordem superior do determinante. Em seguida T. Jain [17] obteve fórmulas
para as derivadas de ordem superior das restantes potências de Grassmman
de A.
Recentemente, R. Bhatia, T. Jain e P. Grover [9], [8] deram um passo
noutro sentido da generalização da fórmula de Jacobi e calcularam diver-
sas expressões para a k-ésima derivada de um outro imanente, o permanente.
Também obtiveram fórmulas para as k-ésimas derivadas de outra potência
χ-simétrica de A, a m-ésima potência induzida da matriz A, representada
por ∨mA, onde 1 ≤ k ≤ m ≤ n.

A outra questão que estudámos nesta dissertação prende-se com as nor-
mas das derivadas de ordem superior do imanente e da potência χ- simétrica,
em todos os problemas a norma considerada é a norma espectral.

Em 1981 R. Bhatia e S. Friedland, em [7] deram o primeiro passo neste
tipo de problemas quando demonstraram que

‖D ∧m (A)‖ = pm−1(ν1, . . . , νm), (1)

onde ν1 ≥ ν2 ≥ . . . ≥ νn são os valores singulares da matriz A e pm−1

representa o polinómo simétrico elementar de grau m − 1, neste caso em m
variáveis.

Pouco tempo depois, R. Bhatia, em [5], obteve uma expressão para a
norma da derivada da potência simétrica,

‖D ∨m A‖ = m‖A‖m−1 = mνm−1
1 . (2)

Em 2002 R. Bhatia and J. Dias da Silva demonstraram em [6], um resultado
para a norma da primeira derivada de qualquer classe simétrica, general-
izando deste modo as expressões (1) e (2).
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Recentemente, R. Bhatia, P. Grover e T. Jain estenderam as mesmas ex-
pressões (1) e (2) noutra direcção na medida em que estabeleceram fórmulas
para as normas das derivadas de ordem superior das potências de Grassmman
e simétricas, respectivamente.

Em [17] e [8], os autores provaram que

‖Dk ⊗m T‖ = ‖Dk ∨m T‖ =
m!

(m− k)!
‖T‖m−k =

m!

(m− k)!
νm−k1

‖Dk ∧m T‖ = k! pm−k(ν1, . . . , νm).

Em todos os casos estudados, notamos que a norma é dada por

k! pm−k(νi1 , . . . , νim),

em que pm−k é um polinómio simétrico elementar em m variáveis e νi1 , . . . , νim
um conjunto de m valores singulares do operador T (eventualmente com
repetições).

Apesar de se tratarem de resultados que abordam assuntos similares, con-
vem notar que as técnicas e áreas envolvidas nos processos de demonstração
de cada um deles são bastante diferentes.
Nesta dissertação de doutoramento generalizamos todos os resultados anteri-
ores, ou seja, são calculadas fórmulas para as k-ésimas derivadas do imanente
e da m-ésima potência χ-simétrica de A. Também são analisadas as normas
de algumas destas derivadas.

A ideia que levou ao estudo destes problemas pode ser inserida na área da
análise matricial, uma vez que queremos calcular expressões para derivadas de
funções de matrizes. No entanto, ao observarmos as funções estudadas, este
problema insere-se claramente no contexto da álgebra multilinear, que por
sua vez, está fortemente ligada à combinatória e à teoria da representação.
Portanto, como acontece na grande maioria das vezes, estamos perante um
problema multidisciplinar. Os fundamentos teóricos que foram necessários à
compreensão e resolução destes problemas encontram-se nos livros [3], [12] e
[25], que são verdadeiras referências para qualquer tipo de trabalho que se
insira nestas áreas do saber.
É também muito pertinente salientar a importância que a notação tem neste
tipo de áreas da matemática. Por um lado utilizamos notação clássica da
álgebra multilinear e combinatória, por outro introduzimos muita notação
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nova, com o objectivo de simplificar conceitos bastante profundos e de al-
guma forma manter-nos compat́ıveis com a notação existente.

O primeiro problema surgiu com a função imanente. As únicas pro-
priedades dos imanentes que são herdadas do determinante são aquelas que
decorrem do facto de qualquer imanente ser também uma função multilin-
ear nas colunas (ou linhas) da matriz A. Assim, foi posśıvel generalizar a
expressão da primeira derivada do imanente e, recorrendo ao argumento de
multilinearidade e alguma notação bastante complexa, generalizar a primeira
expressão para a sua k-ésima derivada. Para obter a segunda expressão para a
k-ésima derivada foi necessário provar a expansão de Laplace para imanentes.
Para isso tivemos que contornar o facto de o imanente de uma matriz de or-
dem n não se calcular através de imanentes de submatrizes. O que fizemos
para ultrapassar esta questão foi através da generalização da soma directa
usual de matrizes.

Quando passamos ao cálculo da k-ésima derivada da m-ésima potência χ-
simétrica de A, apresentam-se algumas questões. A primeira é precisamente
construção da matriz Kχ(A) que generaliza ∨mA e ∧mA. Outra questão
prende-se com o facto de que os únicos caracteres lineares de Sm serem o
carácter principal e o carácter alternante. Entre outras coisas isto significa
que apenas o espaço de Grassmann e o espaço dos tensores completamente
simétricos têm bases ortogonais conhecidas, para o produto interno induzido,
formadas por tensores decompońıveis.
No caso geral Vχ para χ não linear isto não acontece. Como consequência é
necessário recorrer ao processo de ortogonalização de Gram-Schmidt na base
induzida. Desta forma os cálculos são significativamente mais complicados e
as expressões obtidas para o caso geral são muito mais complexas. Para além
disso, tal como acontece com o imanente, não é posśıvel efectuar cálculos com
submatrizes e temos que, novamente, utilizar uma generalização de soma di-
recta de matrizes

O estudo das normas das derivadas de ordem superior da potência χ-
simétrica é feito para o caso da norma espectral. Primeiramente observamos
que, dado um operador T e considerando a decomposição polar T = PW , que
as normas de DkKχ(T ) e DkKχ(P ) coincidem, uma vez que Kχ(W ) é unitário
e a norma considerada é unitariamente invariante. Ainda assim se quisesse-
mos explicitar a norma de DkKχ(P ) os cálculos seriam complicad́ıssimos.
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Porém, T. Jain [8] conseguiu generalizar o corolário do famoso teorema de
Russo-Dye para aplicações multilineares, o que nos permitiu concluir que a
norma da k-ésima derivada de Kχ(P ) é atingida se todas as direções forem
iguais à matriz identidade, o que simplifica consideravelmente os cálculos a
efectuar. Por fim, pela definição da norma espectral temos que determinar
o maior valor próprio de DkKχ(P )(I, I, . . . , I). Tal foi posśıvel através de
um resultado clássico da álgebra multilinear. Usando a expressão obtida
para a norma de DkKχ(T ) conseguimos obter também uma expressão para
as normas das derivadas de ordem superior de Kχ(A), onde A é uma matriz
quadrada de ordem n que representa T em relação a uma base ortonormada.
A partir desta expressão obtemos também majorantes para a norma das
derivadas de ordem superior qualquer imanente.

Finalmente, as ideias para trabalho futuro nesta área passam por várias
questões distintas. A primeira questão que surge é se os resultados continuam
válidos se considerarmos que V é um espaço vectorial com dimensão infinita.
No caso das desigualdades obtidas para as normas, uma das questões que se
pode colocar é para que matrizes é que a igualdade é válida.
No que diz respeito às expressões das derivadas de ordem superior demon-
stradas, que melhoramentos podemos obter se considerarmos casos particu-
lares de caracteres irredut́ıveis de Sm (ou partições de m), nomeadamente, se
considerarmos a famı́lia de partições com propriedades já conhecidas e estu-
dadas, como é o caso das hook partitions. Numa perspectiva mais generalista
podemos pensar se é posśıvel provar para qualquer imanente ou para qualquer
potência χ-simétrica outro tipo de resultados conhecidos para o determinante
ou para o permanente e para as potências simétrica e anti-simétrica.

Palavras Chave: Carácter, imanente, derivada direccional, norma ma-
tricial, composta de uma matriz, potência induzida de uma matriz.
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Abstract

In this thesis we obtain formulas for higher order directional derivatives for
the immanant map, which is a generalization of the determinant and the
permanent maps. We also obtain formulas for the k-th derivative of the
m-th χ-symmetric tensor power of an operator or a matrix, where χ is an
irreducible character of the permutation group Sm. Moreover, we calculate
the operator norm of these derivatives.

We start by presenting some general concepts of multilinear algebra, rep-
resentation theory and matrix analysis, in particular some results about char-
acters of Sm and differential calculus applied to matrix functions, which will
be useful throughout this work. We also present some well known results
about the immanant map, as well as other results such as the generalized
Laplace expansion for immanants.

The starting point of this kind of problems is the famous Jacobi formula
obtained in the 19th century by Carl Jacobi. This formula gives us the first
order derivative of the determinant function. In recent work, R. Bhatia, T.
Jain and P. Grover [9], [8] presented us formulas for higher order derivatives
of the determinant and the permanent maps and also the expressions for the
derivatives of the symmetric and antisymmetric tensor powers. These maps
are all particular cases of the immanant and the χ-symmetric tensor power,
when χ is a linear character of Sm, namely the principal and alternating
characters. The general case has much more complicated features and needs
some new concepts and notations, which play a very important role through-
out our work.

We also study the norm of these higher order derivatives. This problem
was first addressed by R. Bhatia and S. Friedland in [7] where they proved
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a formula for D ∧m (A). This result has been extended in two different
directions. In [9], R. Bhatia and T. Jain study the case for higher order
derivatives and they obtain a formula for the norm of Dk ∧m (A), whereas in
[6], R. Bhatia and J. A. Dias da Silva demonstrate a formula for the norm of
the first derivative for all symmetry classes. In our work we obtain a result
that subsumes all the previous expressions.

Keywords: Immanant, Fréchet derivative, matrix norm, compound matrix,
induced power of a matrix.
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Dφ(A) Fréchet derivative 46
Dφ(A)(X) first derivative of φ(A) in direction X 46
Dkφ(A)(X1, . . . , Xk) k-th derivative of φ(A) in directions (X1, . . . , Xk) 47

xvii



δαβ Kronecker delta 7
∆ 18
∆ 19

∆̂ 19
∆(B1, . . . , Bn) mixed discriminant 67
∆χ(X1, . . . , Xn) mixed immanant 58
e⊗α decomposable tensor associated to α 6
e∗α decomposable symmetrized tensor associated to α 16
E ′ induced basis of Vχ 19
E orthonormal basis of Vχ 23
‖f‖ norm of a linear operator 73
‖φ‖ norm of a multilinear operator 74
GL(n,C) n× n invertible complex matrices 10
Gα stabilizer subgroup 17
Gm,n increasing functions in Γm,n 18
Γm,n functions α : {1, . . . ,m} 7−→ {1, . . . , n} 6
Γ(n1, . . . , nm) 50
Γ0
n,k 51

Γ 56
id identity of Sm 12
Imα image of α 31
immχ(A) matrix with (α, β)-entry dχ(A[α|β]) 63
I identity operator 8
I(Sm) set of irreducible characters of Sm 11
Kχ symmetrizer map 13
Kχ(A) m-th χ-symmetric tensor power of A 62
Kχ(T ) induced transformation 22
l(π) length of the partition π 69
L(V ) linear transformations from V to V 7
L(X, Y ) bounded linear operators from X to Y 46
λ � µ λ precedes µ 77
λα 53
λ(α) 83
Λ 51
Λβ equivalence class of β 52
miximmχ(A) 63
Mn(C) n× n complex matrices 10

xviii



M(T ;E) matrix representation of T 9
µ(α) multiplicity partition of α 77(
n
m

)
binomial coefficient 19

o(G) order of G 12
ω(π) 76
Ω 18
Ωχ 18
per(A) permanent of A 24
pm(x1, . . . , xn) elementary symmetric polynomial of degree m 75
⊗mβ P 82
P unitary representation of Sm 13
P (σ) linear operator on ⊗mV 13
Qm,n strictly increasing functions of Γm,n 18
Qn,k 52
sgn(σ) sign of σ 11
suppα support of α 51
Sm permutation group of order m 10
Sα,β 31
S0
k 51
S ′k 51
S1⊗̃S2⊗̃ . . . ⊗̃Sm 67
S1 ∗ S2 ∗ . . . ∗ Sm restriction of S1⊗̃S2⊗̃ . . . ⊗̃Sm to Vχ 68
tr(A) trace of A 48
T ∗ adjoint operator 7
⊗mT m-th tensor power of T 8
u(δ) 44
v1 ∗ . . . ∗ vm decomposable symmetrized tensor 16
v1 ∨ . . . ∨ vm decomposable completely symmetric tensor 16
v1 ∧ . . . ∧ vm decomposable anti-symmetric tensor 16
⊗mV m-th tensor power of V 5
∨mV space of the completely symmetric tensors 16
∧mV Grassmann power 16
Vχ symmetry class of tensors associated to χ 14
xα 69
X[α|β] keep rows α and columns β 29
X(α|β) delete rows α and columns β 29
Xσ
β 59

xix



xx



Introduction

It is not uncommon to find a special richness and vitality at the
boundary between mathematical disciplines. With roots in linear
algebra, group representation theory, and combinatorics, multi-
linear algebra is an important example. Serious expeditions into
any of these fertile areas require substantial preparation, and mul-
tilinear algebra is no exception.

Russell Merris, in Multilinear Algebra.

When we start to read this thesis, the first thing we come across is its
title, which is clearly related to the field of matrix analysis. Although, after
we look at the contents, we see the strong presence of multilinear algebra
and combinatorics.
The idea, the motivation, the main goals and results of this work are, in fact,
in the area of matrix analysis, but the tools, the techniques, the lemmas are
certainly in the areas of multilinear algebra and combinatorics. That is why
we began by quoting the first paragraph of one of the most used references
in this area.
This dissertation is divided into three parts. Chapter two is devoted to gen-
eral concepts of three areas of mathematics, multilinear algebra, combina-
torics and representation theory, that we will use. In the other two chapters,
we state and prove some new results on higher order derivatives of special
matrix functions and we also derive expressions and upper bounds for the
operator norm of these derivatives.
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2 CONTENTS

Symmetry, as wide or narrow as you may define its meaning, is
one idea by which man through the ages has tried to comprehend
and create order, beauty, and perfection.

Hermann Weyl

In chapter one we give an overview of tensor spaces and symmetry classes of
tensors, with a subsection devoted to characters of the permutation group.
In the last part of this chapter, we have gathered most of the results that are
known about the immmanant of a square matrix, but we also prove some new
results that extend the formulas which are already known for determinants
and for permanents, such as the Laplace Expansion for Immanants and the
Generalized Laplace Expansion for Immanants. The last formula evaluates
the immanant of a square matrix of order n using immanants of special type
of a direct sum of submatrices of order k and order n−k. In order to do this
we introduce some new notation that will be used in the following chapters.

In the next chapter we obtain formulas for the higher order derivatives of
the immanant and the m-th χ-symmetric tensor power of an operator, where
χ is an irreducible character of the permutation group Sm.

It is known that the determinant map and the permanent map are special
cases of a more generalized map, which is the immanant, and the compound
and the induced power of a matrix are also generalized by other symmetric
powers, related to symmetry classes of tensors. These will be our objects of
study. We present various expressions for the k-th derivatives that extend
the formulas previously established for the two special cases.

In the last chapter we obtain exact values for the norm of the k-th deriva-
tive of the operator f(T ) = Kχ(T ), where Kχ(T ) represents the χ-symmetric
tensor power of the operator T , that is, the restriction of the operator ⊗mT
to the subspace of χ-symmetric tensors, which we will denote by Vχ. This
kind of problem was first addressed in [7] by R. Bhatia and S. Friedland
where they found the norm of the first derivative of the Grassmann power of
a matrix, which led to a striking formula:

‖D ∧m (A)‖ = pm−1(ν1, . . . , νm) (3)

where pm−1 is the symmetric polynomial of degree m− 1 in m variables and
ν1 ≥ ν2 ≥ . . . ≥ νn represent the singular values of the matrix A. Later R.



CONTENTS 3

Bhatia and J. A. Dias da Silva have proved a formula that gives an explicit
expression for the norm of the first derivative for other symmetry classes.
Again, this expression is given by the symmetric polynomial of degree m− 1
in m variables calculated on the “top m” singular values of A, these “top m”
singular values are chosen according to each symmetry class.

Recently, T. Jain have generalized formula (3) in another way. In [17] it
is proved that

‖Dk ∧m T‖ = k! pm−k(ν1, . . . , νm).

Similar formulas have been obtained by R. Bhatia, P. Grover and T. Jain [8]
for the norm of the higher order derivatives of the permanent and for ∨mT .
In this last chapter we demonstrate a formula that subsumes all the previous
cases, which was published in [11]. Our proof is inspired in the techniques
used by R. Bhatia and J. A. Dias da Silva in [6].

Finally, we present a result for the norm of the k-th derivative of Kχ(A),
the m-th χ-symmetric tensor power of the matrix A, a matrix we have defined
in the previous chapter. Using this result we are able to obtain an upper
bound for the k-th derivative of the immanant dχ(A) and some inequalities
which are consequences of Taylor’s formula.

There are some questions that are still unanswered, such as: “Do the
formulas hold in infinite dimension?”, “Are the inequalities sharp?”. We end
this thesis by summarizing some problems and questions for future work on
this subject.



4 CONTENTS



Chapter 1

General Concepts

The truth is rarely pure and never simple.

Oscar Wilde

We present some general results of multilinear algebra and some classical
definitions that will be used throughout the next chapters. General references
for this topic are [12] and [25].

1.1 Tensor Power

Let V be a vector space of dimension n over the field of complex numbers C
and let m be an integer such that 1 ≤ m ≤ n.

Definition 1.1.1. The m-th tensor power of V , denoted by ⊗mV , is the
tensor product of m copies of V . In particular, ⊗1V = V and ⊗0V = C.

If E = {e1, e2, . . . en} is a basis of V , then

{ei1 ⊗ ei2 ⊗ . . .⊗ eim : 1 ≤ ij ≤ n, 1 ≤ j ≤ m}

is a basis of ⊗mV induced by E. In order to simplify this notation we will
introduce some concepts.
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Let Γm,n be the set of all maps from the set {1, . . . ,m} into the set
{1, . . . , n}. This set can also be identified with the collection of multiindices
{(i1, . . . , im) : ij ≤ n, j = 1, . . . ,m}. If α ∈ Γm,n, this correspondence
associates to α the m-tuple

α := (α(1), . . . , α(m)).

In the set Γm,n we will consider the lexicographic order.

Definition 1.1.2. Let α be an element of Γm,n. A decomposable tensor
associated to the element α, u⊗α , is an element of ⊗mV such that

u⊗α := uα(1) ⊗ uα(2) ⊗ . . .⊗ uα(m).

In particular, if E = {e1, e2, . . . en} is a basis of V then the set

{e⊗α : α ∈ Γm,n}

is the basis of ⊗mV , induced by E.

We have that dim⊗mV = nm.

Notice that ⊗mV 6= {v1 ⊗ v2 ⊗ . . . ⊗ vm : vi ∈ V, 1 ≤ i ≤ m}, meaning
that there are tensors in ⊗mV that are not decomposable.

Definition 1.1.3. A Hilbert space V is a vector space V over the field C
together with an inner product, i.e., with a map

〈 , 〉 : V × V −→ C,

that satisfies the following three axioms for all vectors u, v, w ∈ V and all
scalars a, b ∈ C

1. 〈v, w〉 = 〈w, v〉,

2. 〈au+ bv, w〉 = a〈u,w〉+ b〈v, w〉,

3. If u 6= 0 then 〈u, u〉 > 0.

If V is a Hilbert space, then the m-th tensor power of V is also a Hilbert
space.
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Proposition 1.1.4. Let V be an n-dimensional Hilbert space and suppose
that E = {e1, e2, . . . , en} is an orthonormal basis of V . Let z, w ∈ ⊗mV such
that

z =
∑

α∈Γm,n

bαe
⊗
α , w =

∑
α∈Γm,n

cαe
⊗
α .

Then,

〈z, w〉 =
∑

α∈Γm,n

bαcα,

defines an inner product on the space ⊗mV . In particular, if x1, x2, . . . , xm, y1, y2, . . . , ym ∈
V then

〈x1 ⊗ x2 ⊗ . . .⊗ xm, y1 ⊗ y2 ⊗ . . .⊗ ym〉 =
m∏
i=1

〈xi, yi〉. (1.1)

This is called the induced inner product in ⊗mV and this is the unique
inner product that satisfies (1.1). For simplicity we use the same notation to
represent the inner product in V and the induced inner product in ⊗mV .
If E = {e1, e2, . . . , en} is an orthonormal basis of V , then the induced basis
of ⊗mV is also an orthonormal basis, because for every α, β ∈ Γm,n we have

〈e⊗α , e⊗β 〉 =
m∏
i=1

〈eα(i), eβ(i)〉 =
m∏
i=1

δα(i)β(i) = δαβ.

We will denote by L(V ) the vector space consisting of linear operators
T : V −→ V . Recall that the adjoint operator of T , T ∗ is the unique
operator that satisfies

〈Tu, v〉 = 〈u, T ∗v〉,

for every u, v ∈ V .

Definition 1.1.5. Let T ∈ L(V ). We say that

i) T is normal if TT ∗ = T ∗T .

ii) T is unitary if TT ∗ = T ∗T = I.

iii) T is hermitian if T ∗ = T ,

where I stands for the identity operator.
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Let us recall that every normal operator has an orthonormal basis of
eigenvectors, meaning that every matrix representation of T is unitarily sim-
ilar to a diagonal matrix. Moreover if T is unitary then its eigenvalues are
in the unit circle and if T is hermitian then its eigenvalues are all real.

If the operators Ti ∈ L(V ), i = 1, . . . ,m,then there is a unique operator
L ∈ L(⊗mV ) such that

L(v1 ⊗ v2 ⊗ . . .⊗ vm) = T1(v1)⊗ T2(v2)⊗ . . .⊗ Tm(vm),

for every vi ∈ V . This operator L is called the tensor product of the operators
T1, T2, . . . Tm and it is denoted by

L := T1 ⊗ T2 ⊗ . . .⊗ Tm.

In particular, if T1 = T2 = . . . = Tm = T , we will write this as ⊗mT , the
m-th tensor power of the operator T .

Now, we list some properties of the tensor product of linear operators.

Proposition 1.1.6. Let Ti, Si ∈ L(V ), i = 1, . . . ,m. Then

1. (S1 ⊗ S2 ⊗ . . . ⊗ Sm) ◦ (T1 ⊗ T2 ⊗ . . . ⊗ Tm) = (S1 ◦ T1) ⊗ (S2 ◦ T2) ⊗
. . .⊗ (Sm ◦ Tm).

2. ⊗mIV = I⊗mV .

3. (T1 ⊗ T2 ⊗ . . .⊗ Tm)(⊗mV ) = T1(V )⊗ T2(V )⊗ . . .⊗ Tm(V ).

4. If T1, T2, . . . , Tm are injective (respectively: bijective, normal, hermitian
or unitary) then T1 ⊗ T2 ⊗ . . .⊗ Tm is injective (respectively: bijective,
normal, hermitian or unitary).

5. T1⊗T2⊗ . . .⊗Tm is invertible if and only if T1, T2, . . . Tm are invertible.

Since the tensor product of linear operators in V is a linear operator in
⊗mV , it can be represented by a matrix of order nm.
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Definition 1.1.7. Let Ap = (apij) be a kp × np matrix, 1 ≤ p ≤ m.
The Kronecker product of the matrices A1, A2, . . . , Am, represented by A1 ⊗
A2 ⊗ . . . ⊗ Am is a

∏
kp ×

∏
np matrix whose rows are indexed by the

set {(i1, i2, . . . , im) : 1 ≤ ip ≤ kp} and whose columns are indexed by the
set {(j1, j2, . . . , jm) : 1 ≤ jp ≤ np}, both ordered lexicographically. The
((i1, i2, . . . , im), (j1, j2, . . . , jm))- entry of this matrix is

m∏
p=1

apipjp .

Example 1.1.8. Let A1 = (a1
ij), A2 = (a2

kl) be n1 × n1and n2 × n2 matrices.
Then A1 ⊗ A2 is a n1n2 × n1n2 matrix, and

A1 ⊗ A2 =


a1

11A2 a1
12A2 . . . a1

1n1
A2

a1
21A2 a1

22A2 . . . a1
2n1
A2

. . . . . . . . . . . .
a1
n11A2 a1

n12A2 . . . a1
n1n1

A2

 .

Theorem 1.1.9. Let E = {e1, e2, . . . , en} be a basis of the Hilbert space V
and Ti ∈ L(V ), i = 1, 2, . . . ,m such that Ai is the matrix representation of
Ti with respect to E, i.e. Ai = M(Ti, E).

Then the matrix representation of T1 ⊗ T2 ⊗ . . .⊗ Tm with respect to the
basis {e⊗α : α ∈ Γm,n} is A1 ⊗ A2 ⊗ . . .⊗ Am.

In particular, if A is a n× n complex matrix we write

⊗mA := A⊗ A⊗ . . .⊗ A,

the Kronecker product of m copies of A which is usually called the m-fold
tensor power of the matrix A. We have that ⊗mA is an nm × nm matrix.

We list below some properties of these tensor powers. For A and B n×n
complex matrices, we have

1. (⊗mA)(⊗mB) = ⊗m(AB).

2. (⊗mA)−1 = ⊗mA−1 when A is invertible.

3. (⊗mA)∗ = ⊗mA∗.
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4. If A is hermitian, unitary, normal or positive, then so is ⊗mA.

5. If λ1, λ2, . . . , λm are m eigenvalues of A, not necessarily distinct, with
eigenvectors u1, u2, . . . , um, respectively, then λ1λ2 . . . λm is an eigen-
value of the matrix ⊗mA associated to the eigenvector u1⊗u2⊗. . .⊗um.

All of these properties are true if we replace the matrix A by a linear
operator T on the Hilbert space V .

1.2 Symmetry Classes of Tensors

Characters of Sm

Denote by Ml(C) the set of l × l complex matrices and by GL(l,C) the
multiplicative group of all l × l invertible matrices.

Definition 1.2.1. Let G be a group. A representation of the group G of
degree l is a homomorphism A : σ −→ GL(l,C). If the homomorphism is one-
to-one, then the representation is faithful.

In this thesis we only study the particular case when G = Sm, where Sm
denotes the permutation group of order m, although in some parts we will
also state some interesting properties for a subgroup G of Sm.

Example 1.2.2. 1. For every σ ∈ Sm, define

A(σ) = (δiσ(j))ij,

the m ×m complex matrix whose (i, j)-entry is equal to 1 if σ(j) = i
and 0 otherwise. There are m! different matrices of this kind and they
are called permutation matrices of order m. Notice that if σ1, σ2 ∈ Sm
then:

A(σ1σ2) = A(σ1)A(σ2).

Then A is representation of Sm, of degree m. It is easy to see that A
is faithful.

2. Using the previous example, for each σ ∈ Sm define

B(σ) = det(A(σ)).

With simple calculations we can see that B is a representation of Sm
of degree 1. It is easy to check that B is not faithful.
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Definition 1.2.3. LetN be a nonempty set and suppose S = {A(ν) : ν ∈ N}
is a set of m×m complex matrices indexed by N . Then the set S is reducible
if there is an invertible matrix Q of order m and an integer p with 1 < p < m,
such that for all ν ∈ N ,

Q−1A(ν)Q =

(
B(ν) 0
C(ν) D(ν)

)
,

where B(ν) is a p× p complex matrix. S is irreducible if it is not reducible.
The representation A of Sm is called reducible or irreducible if the set of
matrices {A(σ) : σ ∈ Sm} has the corresponding property.

Definition 1.2.4. Let A be a representation of Sm. Let χ : Sm −→ C be
defined as

χ(σ) = trA(σ),

where trA(σ) stands for the trace of A(σ). The function χ is called the
character of the group Sm afforded by the representation A.

If A is an irreducible representation, then χ is an irreducible character.
We will denote by I(Sm) the set of all irreducible characters of Sm.

From now on, χ will always denote an irreducible character of Sm. If A
is a representation of degree 1, then χ is a homomorphism of groups, i.e. for
every σ, τ ∈ Sm,

χ(στ) = χ(σ)χ(τ).

In this case χ is said to be a linear character.
The following proposition is well-known.

Proposition 1.2.5. There are only two irreducible linear characters of Sm,
for every natural number m. These linear characters are

• χ ≡ 1 the principal character of Sm.

• χ(σ) = sgn(σ) the alternating character of Sm, where sgn(σ) stands
for the sign of the permutation σ.

Now we list some properties of characters of the permutation group.
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Proposition 1.2.6. [25] Let χ be an irreducible character of the group Sm
with degree l. Suppose σ, τ ∈ Sm and id is the identity element of Sm. Then:

1. χ(id) = tr(I) = l.

2. |χ(σ)| ≤ l, for every σ ∈ Sm.

3. χ(στ) = χ(τσ).

4. χ(τ−1στ) = χ(σ), that is, χ is constant on the conjugacy classes of Sm.

5. χ(σ) is an integer for every σ ∈ Sm.

Remark 1.2.7. Notice that:

1. The elements σ, τ ∈ Sm are in the same conjugacy class if and only
if σ and τ have the same cycle type. We will represent by C(σ) the
conjugacy class of the element σ.

2. The last property of the previous proposition is only true if we consider
the characters of the whole permutation group. In this case σ and σ−1

are in the same conjugacy class, and as a consequence χ has to be real.
Using some results of Galois theory, it can be proved that Imχ has to
be an integer. However, if we consider a more general case, that is G a
subgroup of Sm then the values of χ need not be real and we only have
that χ is an irreducible character and χ(σ) = χ(σ) = χ(σ−1).

Next we state two technical results, which we will use later The first one
establishes relations between two irreducible characters of Sm. This lemma
is an extension of a well known result called the Orthogonality Relations of
the First Kind.

Lemma 1.2.8. [25] Let χ, ξ ∈ I(Sm), then

∑
σ∈Sm

χ(σ−1)ξ(στ) =


m!χ(τ)

χ(id)
, if χ = ξ;

0, otherwise.

In order to state the second lemma we need the following notation. We
represent by o(G) the number of elements of the subgroup G. This lemma
describes the Orthogonality Relations of the Second Kind.
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Lemma 1.2.9. [25] Let σ and τ be elements of the permutation group Sm.
Then ∑

σ∈Sm

χ(σ−1)χ(τ) =


m!

o(C(σ))
, if τ ∈ C(σ);

0, otherwise.

We are interested in studying some important subspaces of the space
⊗mV , which are associated to an irreducible character of Sm.

Definition 1.2.10. For each σ ∈ Sm, we define the linear operator P (σ) ∈ L(⊗mV )
as

P (σ)(v1 ⊗ v2 ⊗ . . .⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ . . .⊗ vσ−1(m).

We also consider the map P defined as

P : Sm −→ L(⊗mV ),

σ 7−→ P (σ).

It is easy to check that the map P has the following properties:

• P (στ) = P (σ)P (τ), σ, τ ∈ Sm.

• P (σ) is invertible and P (σ−1) = P (σ)−1.

• For every σ ∈ Sm, P (σ) is unitary, i.e. P (σ)∗ = P (σ)−1.

In particular, P is said to be a unitary representation of Sm, since every
matrix P (σ) is unitary, for every σ ∈ Sm.

Definition 1.2.11. Let χ be an irreducible character of Sm and define the
operator

Kχ =
χ(id)

m!

∑
σ∈Sm

χ(σ)P (σ),

where id stands for the identity element of Sm. For every χ, Kχ is a linear
operator on ⊗mV . It is called the symmetrizer map.

Theorem 1.2.12. Suppose χ is an irreducible character of Sm. Then Kχ is
an orthogonal projection in the space ⊗mV .
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Proof. Suppose that χ is an irreducible character of Sm.

1. Kχ is an Hermitian operator:

K∗χ =
χ(id)

m!

∑
σ∈Sm

χ(σ)P (σ)∗

=
χ(id)

m!

∑
σ∈Sm

χ(σ−1)P (σ−1)

= Kχ.

2. Kχ is idempotent.

First we notice that Kχ commutes with P (σ) for every σ ∈ Sm.

K2
χ =

(
χ(id)

m!

)2
(∑
σ∈Sm

χ(σ)P (σ)

)(∑
τ∈Sm

χ(τ)P (τ)

)

=

(
χ(id)

m!

)2 ∑
σ,τ∈Sm

χ(σ)χ(τ)P (στ)

=
χ(id)

m!

∑
γ∈Sm

χ(id)

m!

(∑
σ∈Sm

χ(σ)χ(σ−1γ)

)
P (γ) (γ = στ)

=
χ(id)

m!

∑
γ∈Sm

χ(γ)P (γ)

= Kχ.

The fourth equality follows from Lemma 1.2.8.

Definition 1.2.13. Suppose χ is an irreducible character of Sm. The range
of Kχ is called the symmetry class of tensors associated with the irreducible
character χ and it is represented by

Vχ = Kχ(⊗mV ).



1.2. SYMMETRY CLASSES OF TENSORS 15

There is a relation between the whole tensor product space ⊗mV and its
subspaces Vχ, for an irreducible character χ. This relation is a corollary of
the following theorem:

Theorem 1.2.14. Suppose χ and ξ are irreducible characters of Sm. If
χ 6= ξ, then KχKξ = 0. Moreover,∑

χ∈I(Sm)

Kχ = I,

where I is the identity operator in L(⊗mV ).

Proof. By the definition of the symmetrizer map

KχKξ =
χ(id)ξ(id)

m!2

(∑
σ∈Sm

χ(σ)P (σ)

)(∑
τ∈Sm

ξ(τ)P (τ)

)

=
χ(id)ξ(id)

m!2

∑
στ∈Sm

χ(σ)ξ(τ)P (στ)

=
χ(id)ξ(id)

m!2

∑
σ∈Sm

(∑
µ∈Sm

χ(σ)ξ(σ−1µ)

)
P (µ) (µ = στ)

= 0,

by Lemma 1.2.8. On the other hand,

∑
χ∈I(Sm)

Kχ =
1

m!

∑
χ∈I(Sm)

χ(id)
∑
σ∈Sm

χ(σ)P (σ)

=
∑
σ∈Sm

1

m!

 ∑
χ∈I(Sm)

χ(id)χ(σ)

P (σ)

= P (id)

= I,

by Lemma 1.2.9.
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Corollary 1.2.15. The space ⊗mV is the orthogonal direct sum of the sym-
metry classes Vχ as χ ranges over I(Sm). This means, if I(Sm) = {χ1, χ2, . . . , χl},
then

⊗mV = Vχ1 ⊕ Vχ2 ⊕ . . .⊕ Vχl .

Proof.

⊗mV = I(⊗mV )

= (Kχ1 +Kχ2 + . . .+Kχl)(⊗mV )

= Kχ1(⊗mV )⊕Kχ2(⊗mV )⊕ . . .⊕Kχl(⊗mV )

= Vχ1 ⊕ Vχ2 ⊕ . . .⊕ Vχl .

Theorem 2.2.13 assures that the sum is direct. That concludes our proof.

It is well known that the alternating character χ(σ) = sgn(σ) (sign of
the permutation σ) leads to the symmetry class ∧mV which is called the
space of skew-symmetric tensors, the m-th Grassmann space, or the m-th ex-
terior power of V . It is also well known that the symmetry class correspond-
ing to the the principal character χ(σ) ≡ 1 of the group Sm is represented
by ∨mV and is usually called the space of completely symmetric tensors.[25]

Given a symmetrizer map Kχ, we denote

v1 ∗ v2 ∗ . . . ∗ vm = Kχ(v1 ⊗ v2 ⊗ . . .⊗ vm).

These vectors belong to Vχ and are called decomposable symmetrized tensors.
It is important to observe that the chosen notation does not emphasize the
fact that ∗ depends on the irreducible character χ. Again if χ(σ) = sgn(σ)
we usually write decomposable symmetrized tensors as

v1 ∧ v2 ∧ . . . ∧ vm

and if χ is the principal character, we write

v1 ∨ v2 ∨ . . . ∨ vm.

The space Vχ contains all of the decomposable symmetrized tensors, but,
in general, it is not equal to this set. However, from the previous definitions
we can conclude that Vχ is spanned by the set:

{e∗α := Kχ(e⊗α ) = Kχ(eα(1) ⊗ eα(2) ⊗ . . .⊗ eα(m)) : α ∈ Γm,n}.
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Now we turn to finding a basis for the space Vχ . The set {e∗α : α ∈ Γm,n}
is a set of generators. It is easy to check that, in general, this set is not a
basis of Vχ , in fact some of its elements may be equal to zero. In order to
find a basis for Vχ we need some more definitions.

First notice that the group Sm acts on the set Γm,n by the action defined
as

(σ, α) −→ ασ−1

where σ ∈ Sm and α ∈ Γm,n.

We recall some standard definitions from group theory.

Definition 1.2.16. Let α ∈ Γm,n. The set

{ασ : σ ∈ Sm}

is the orbit of α.

If α, β ∈ Γm,n are in the same orbit then we say that α and β are equivalent
and we write α ≡ β.

Example 1.2.17. Consider α = (3, 3, 5, 1) ∈ Γ4,6. Then the orbit of α is:

{(1, 3, 3, 5), (1, 3, 5, 3), (1, 5, 3, 3), (3, 1, 3, 5), (3, 1, 5, 3), (3, 3, 1, 5),

(3, 3, 5, 1), (3, 5, 1, 3), (3, 5, 3, 1), (5, 1, 3, 3), (5, 3, 1, 3), (5, 3, 3, 1)}.

In particular, α ≡ (1, 3, 3, 5) ∈ G4,6.

Definition 1.2.18. Let α ∈ Γm,n. The stabilizer of α is the subgroup of Sm
defined as

Gα = {σ ∈ Sm : ασ = α}.

Example 1.2.19. For α = (3, 3, 5, 1) ∈ Γ4,6,

Gα = {id, (12)}.

Considering the set of generators of Vχ indexed by Γm,n, we want to
remove the ones that are equal to zero.
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Lemma 1.2.20. Let {e1, . . . , en} be an orthonormal basis of the Hilbert space
V . For every α ∈ Γm,n we have

‖e∗α‖2 =
χ(id)

m!

∑
σ∈Gα

χ(σ). (1.2)

Proof. In order to calculate the norm of e∗α we start by calculating the inner
product between two generators of Vχ. Let α, β ∈ Γm,n. SinceKχ is hermitian
and idempotent,

〈e∗α, e∗β〉 = 〈Kχ(e⊗α ), Kχ(e⊗β )〉
= 〈Kχ(e⊗α ), e⊗β 〉.

Using the definition of Kχ,

〈e∗α, e∗β〉 =
χ(id)

m!

∑
σ∈Sm

χ(σ)
m∏
t=1

〈eα(t), eβσ(t)〉.

Since the basis is orthonormal the only nonzero summands are the ones for
which α and β are equivalent. So we have that

‖e∗α‖2 =
χ(id)

m!

∑
σ∈Gα

χ(σ). (1.3)

That concludes our proof.

Now let
Ω = Ωχ = {α ∈ Γm,n :

∑
σ∈Gα

χ(σ) 6= 0}. (1.4)

So the nonzero decomposable symmetrized tensors are {e∗α : α ∈ Ω}, this
set, obviously, generates Vχ.

Definition 1.2.21. Let ∆ be the system of distinct representatives for the
quotient set Γm,n/Sm, constructed by choosing the first element in each orbit,
for the lexicographic order of indices.

Recall that Gm,n is the set of all increasing sequences of Γm,n.
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Lemma 1.2.22. With the notation already defined, we have the following

1. If β ∈ Γm,n, then there are α ∈ Gm,n and σ ∈ Sm such that β = ασ.

2. We have α, β ∈ Gm,n and σ ∈ Sm with β = ασ if and only if α = β.

Using the previous lemma it is easy to see that ∆ = Gm,n, that is, in every
orbit there is an unique element of Gm,n and that element is the smallest in
the lexicographic order.
Let

∆ = ∆ ∩ Ω ⊆ Gm,n.

On the one hand it can be proved that the set

{e∗α : α ∈ ∆}

is linearly independent. On the other hand, the set {e∗α : α ∈ Ω}, spans Vχ.

So, we can conclude that there is a set ∆̂, with

∆ ⊆ ∆̂ ⊆ Ω

such that
E ′ := {e∗α : α ∈ ∆̂}, (1.5)

is a basis for Vχ, formed with decomposable symmetrized tensors.
From the classical theory, it is also known that if χ is one of the two linear
characters of Sm, then ∆ = ∆̂ and in these two cases, the basis is orthogonal.
In particular, if χ is the alternating character then

∆ = Qm,n,

the subset of Γm,n of all strictly increasing maps, and in this case

dim(∧mV ) =

(
n

m

)
.

If χ is the principal character of Sm then

∆ = Gm,n

and

dim(∨mV ) =

(
n+m− 1

m

)
.
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If χ is an irreducible character of Sm it is known that χ = χ, because
the range of χ lies in the integers. However if χ is an irreducible character
of a subgroup G of Sm this is not true. In this case we only have that χ
is also an irreducible character of G. In the next proposition we establish
a relation between the symmetry class of tensors associated with χ and χ,
which is trivial in the case of characters of Sm.

Proposition 1.2.23. Let G be a subgroup of Sm. Suppose χ is an irreducible
character of G. Then

Vχ = Kχ(⊗mV ) = Kχ(⊗mV ) = Vχ.

Proof. First notice that

∆χ = ∆χ,

it follows from the definition of Ωχ that

∑
σ∈Gα

χ(σ) 6= 0 if and only if
∑
σ∈Gα

χ(σ) 6= 0

with α ∈ Γm,n.

So

∆̂χ ∩ ∆̂χ 6= ∅

and we can choose α ∈ ∆̂χ ∩ ∆̂χ.

From 1.2.15 we have that either

Vχ andVχ are ortogonal or Vχ = Vχ.

Let E = {e1, e2, . . . , en} be an orthonormal basis of the Hilbert space V . Let
e∗α ∈ Vχ, e∗α ∈ Vχ be elements of the induced bases of the spaces Vχ and Vχ,
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respectively. We compute the inner product of these elements of ⊗mV .

〈e∗α, e∗α〉 =
〈
Kχ(e⊗α ), Kχ(e⊗α )

〉
=

(
χ(id)

m!

)2
〈∑
σ∈G

χ(σ)e⊗ασ,
∑
τ∈Sm

χ(τ−1)e⊗ατ

〉

=

(
χ(id)

m!

)2 ∑
σ,τ∈Gα

χ(σ)χ(τ−1)‖e⊗ασ‖2

=

(
χ(id)

m!

)2

‖e⊗α‖2
∑

σ,τ∈Gα

χ(σ)χ(τ−1)

=

(
χ(id)

m!

)2

‖e⊗α‖2
∑
σ∈Gα

χ(σ)
∑
τ∈Gα

χ(τ−1)

Since α ∈ Ωχ, we have that
∑

σ∈Gα χ(σ) 6= 0 and
∑

τ∈Gα χ(τ−1) 6= 0, by the
definition of Ωχ . So

〈e∗α, e∗α〉 6= 0.

Then we must have
Vχ = Vχ.

This concludes our proof.

Given a linear operator T in L(V ) we have previously defined the m-
th tensor power of T which we have represented by ⊗mT . Now we want
to define an induced transformation on the space Vχ. Since Vχ ⊂ ⊗mV , in
order to define this induced transformation, we consider the restriction of the
operator ⊗mT to Vχ. We will see that the space Vχ is an invariant subspace
for the operator ⊗mT .

Definition 1.2.24. Suppose L ∈ L(⊗mV ). Then L is bisymmetric if it
commutes with P (σ), for every σ ∈ Sm.

We will need the following lemma which characterizes the bisymmetric
operators.

Lemma 1.2.25. [25] Suppose L ∈ L(⊗mV ). Then L is bisymmetric if and
only if L belongs to the linear closure of

{⊗mT : T ∈ L(V )}.
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Using this it is easy to see that the symmetry class of tensors Vχ is an
invariant subspace of ⊗mT . Notice that P (σ) is bisymmetric for all σ ∈ Sm.
Therefore, using the previous lemma, P (σ) commutes with ⊗mT for every

σ ∈ Sm. Then⊗mT commutes with any projectionKχ =
χ(id)

m!

∑
σ∈Sm

χ(σ)P (σ).

Definition 1.2.26. Let V be a Hilbert space of dimension n and let 1 ≤ m ≤
n. Suppose χ is an irreducible character of Sm and T ∈ L(V ). The induced
transformation determined by χ is the restriction of ⊗mT to the subspace Vχ.
This is represented by the symbol Kχ(T ).

Now we list some properties of the induced transformation determined
by the irreducible character χ.

Proposition 1.2.27. Suppose V is a Hilbert space with dimension n and let
1 ≤ m ≤ n. Let χ be an irreducible character of Sm and suppose that S and
T are in L(V ) and v1, . . . vm ∈ V . Then

1. Kχ(ST ) = Kχ(S)Kχ(T ),

2. Kχ(T )(v1 ∗ · · · ∗ vm) = T (v1) ∗ · · · ∗ T (vm),

3. Kχ(T )∗ = Kχ(T ∗), where T ∗ is the adjoint operator of T ,

4. Kχ(T ) is invertible for all invertible T and Kχ(T )−1 = Kχ(T−1).

5. If T is a unitary operator then Kχ(T ) is unitary.

We have already seen that if E = {e1, e2, . . . , en} is an orthonormal basis
of the Hilbert space V then the set

{e⊗α : α ∈ Γm,n}

is an orthogonal basis of ⊗mV , formed by decomposable tensors of ⊗mV . On
the other hand, if χ is a linear character then

{e∗α : α ∈ ∆}

is an orthogonal basis of Vχ. Among other things, this is consequence of the
fact that for every σ ∈ Sm, e∗ασ = χ(σ)e∗α, when χ is linear. [25, p. 165]
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In general, if χ does not have degree one, there are no known orthonormal
bases of Vχ formed by decomposable symmetrized tensors, this means that
the induced basis

E ′ = {e∗α : α ∈ ∆̂},
is not, in general, an orthogonal basis of the space Vχ, with the induced inner
product in Vχ.

However, if we apply the Gram-Schmidt orthonormalization procedure to
the basis E ′, we obtain an orthonormal basis of the m-th χ-symmetric tensor
power of the vector space V , which we denote by

E = {vα : α ∈ ∆̂}.

Let T be an operator in L(V ) and let A be a complex n×n complex matrix.
Suppose that A represents the operator T in the orthonormal basis E, i.e.

A = M(T ;E).

Let t = |∆̂|. By the previous definitions, we have already seen that Kχ(T ) is
in L(Vχ). Suppose A is a t× t complex matrix that represents the operator
Kχ(T ) in the orthonormal basis E , i.e.

A = M(Kχ(T ); E).

Our goal is to find a relation between the entries of A and A, which will lead
us to the definition of the m-th χ-symmetric tensor power of a matrix A. In
order to construct this matrix, we study the immanant of a square matrix,
in the next section.

1.3 Immanant

In this section, we present some properties of a multilinear function called
the immanant. The immanant function can be looked at in two different,
but equivalent ways. On the one hand it may be studied as a special case
of a map called generalized matrix function which was first introduced by I.
Schur, on the other hand it can be studied as a generalization of the deter-
minant.
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In this section we also define the χ-symmetric tensor power of an n ×
n complex matrix, where χ is an irreducible character of Sm. Finally we
establish a relation between these two concepts.

Definition 1.3.1. Let A be an n × n complex matrix. Suppose G is a
subgroup of Sn and χ a character of G. The generalized matrix function
dGχ : Mn(C) −→ C is defined by

dGχ (A) =
∑
σ∈G

χ(σ)
n∏
i=1

aiσ(i).

In the special case G = Sn and χ irreducible, we have:

Definition 1.3.2. Let A ∈ Mn(C) and χ be an irreducible character of Sn.
We define the immanant of A as:

dχ(A) =
∑
σ∈Sn

χ(σ)
n∏
i=1

aiσ(i).

The map dχ : Mn(C) −→ C is a multilinear map on the columns (and
also on the rows) of A.

Example 1.3.3. The determinant of A,

det(A) = dsgn(A) =
∑
σ∈Sn

n∏
i=1

sgn(σ)aiσ(i)

is the particular case of an immanant when χ is the alternating character.

If χ is the principal character then

per(A) := d1(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i),

which is the permanent of the matrix A.
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It is important to notice that these two immanants are the only im-
manants afforded by linear characters of Sn, which means, among other
things, that in these cases χ is a homomorphism.
Since the immanant is a multilinear function on the columns (or rows) of the
matrix A, all the properties of the determinant that are consequences of its
multilinearity are still true for every immanant dχ.

Proposition 1.3.4. Let χ be an irreducible character of Sn and A ∈Mn(C).
Then

1. dχ(AT ) = dχ(A);

2. dχ(A∗) = dχ(A).

Proof. Suppose A ∈Mn(C), we want to prove that

dχ(AT ) = dχ(A).

dχ(AT ) =
∑
σ∈Sn

χ(σ)
n∏
i=1

(AT )iσ(i)

=
∑
σ∈Sn

χ(σ)
n∏
i=1

aσ(i)i (i = σ−1(j))

=
∑
σ∈Sn

χ(σ)
n∏
j=1

ajσ−1(j) (σ = τ−1)

=
∑
τ∈Sn

χ(τ−1)
m∏
j=1

ajτ(j)

=
∑
τ∈Sn

χ(τ)
n∏
j=1

ajτ(j)

= dχ(A).

Recall that χ(τ) = χ(τ−1), because χ is an irreducible character of the per-
mutation group.
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Now we will prove that dχ(A∗) = dχ(A).

dχ(A∗) =
∑
σ∈Sn

χ(σ)
n∏
i=1

(A∗)iσ(i)

=
∑
σ∈Sn

χ(σ)
n∏
i=1

aσ(i)i

=
∑
σ∈Sn

χ(σ)
n∏
j=1

ajσ−1(j) (σ(i) = j)

=
∑
τ∈Sn

χ(τ−1)
n∏
j=1

ajτ(j) (σ = τ−1)

=
∑
τ∈Sn

χ(τ)
n∏
j=1

ajτ(j)

=
∑
τ∈Sn

χ(τ)
n∏
j=1

ajτ(j)

= dχ(A).

This concludes our proof.

Using the last proposition, we can see that for the permanent function:

1. per(AT ) = per(A),

2. per(A∗) = per(A).

Now, if we consider the determinant function, the Laplace Expansion
gives us a formula to calculate the determinant of a matrix of order n using
determinants of submatrices of order n − 1. In general, there is no natural
way to associate a character of Sn with a character of Sn−1, so there is no
natural way to relate the immanant of an n × n matrix with immanants of
its submatrices. We intend to generalize the Laplace Expansion for every
immanant. In order to do that we need to relate the immanant of the matrix
A with the immanant of matrices of the same size.

First we need to introduce some notation and definitions.
We denote by A(i|j) the n× n matrix that is obtained from A by replacing
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the i-th row and j-th column with zero entries, except entry (i, j) which we
set to 1. For example, suppose

A =


2 −1 0 3
1 1 1 0
0 −2 −1 3
−2 −2 6 1


then

A(3|2) =


2 0 0 3
1 0 1 0
0 1 0 0
−2 0 6 1

 .

Definition 1.3.5. Let A ∈ Mn(C) and let χ be an irreducible character of
Sn. The immanantal adjoint of A, adjχ(A) is the n× n matrix in which the
entry (i, j) is dχ(A(i|j)).

This definition agrees with the definition of permanental adjoint in [25],
but not with the usual adjugate matrix. In this case we would need to
consider the transpose matrix. This is only a matter of convention.

Using the fact that the immanant is a multilinear function, we get the
following result.

Proposition 1.3.6. (Laplace Expansion for Immanants) Let A ∈ Mn(C)
and χ an irreducible character of Sn.
For every 1 ≤ j ≤ n,

dχ(A) =
n∑
i=1

aijdχ(A(i|j)).

For every 1 ≤ i ≤ n,

dχ(A) =
n∑
j=1

aijdχ(A(i|j)).
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Proof. First notice that

aijdχ(A(i|j)) = dχ


a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

. . . . . . . . . . . . . . . . . .
0 0 . . . aij . . . 0
. . . . . . . . . . . . . . . . . .
an1 an2 . . . anj . . . ann

 .

Since dχ is multilinear we have

dχ(A) = dχ


a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

. . . . . . . . . . . . . . . . . .
ai1 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .
an1 an2 . . . anj . . . ann

+ . . .

+dχ


a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

. . . . . . . . . . . . . . . . . .
0 0 . . . aij . . . 0
. . . . . . . . . . . . . . . . . .
an1 an2 . . . anj . . . ann

+ . . .

+dχ


a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . ain
. . . . . . . . . . . . . . . . . .
an1 an2 . . . anj . . . ann

 .

So we have the desired result.

Now we want to go further in the sense of a Generalized Laplace Expan-
sion, that gives us a formula to calculate the determinant of a matrix of order
n, using products of determinants of submatrices with order k and n− k of
A, 1 ≤ k ≤ n. This expansion was first proved for the determinant and
the same arguments were later used to prove the corresponding generalized
expansion for the permanent. We now present both of these formulas that
can be found in [23] and in [28].



1.3. IMMANANT 29

Definition 1.3.7. Let X be a n × n complex matrix, k a natural number,
1 ≤ k ≤ n and α, β ∈ Qk,n. We denote by

X[α|β]

the k × k matrix obtained from X by picking the rows α(1), . . . , α(k) and
the columns β(1), . . . , β(k).

We denote by

X(α|β)

the (n−k)×(n−k) matrix obtained fromX by deleting the rows α(1), . . . , α(k)
and the columns β(1), . . . , β(k).

Example 1.3.8. Suppose A =


2 −1 0 3
1 1 1 0
0 −2 −1 3
−2 −2 6 1

 and α = (1, 3), β =

(2, 3). Then

A[α|β] =

(
−1 0
−2 −1

)
A(α|β) =

(
1 0
−2 1

)
.

For α ∈ Qk,n, denote |α| = α(1)+ . . .+α(k). We now look at some results
that are already known.

Theorem 1.3.9 ([23], [28]). [Generalized Laplace Expansion for Determi-
nants and Permanents] Fixing α ∈ Qk,n

detX = (−1)|α|
∑

β∈Qk,n

(−1)|β| det(X[α|β]) det(X(α|β)). (1.6)

and

perX =
∑

β∈Qk,n

per(X[α|β]) per(X(α|β)). (1.7)

Example 1.3.10. Let n = 4 and k = 2, thenQ2,4 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

fixing α = (1, 2), A =


1 −1 0 1
2 1 1 2
1 −1 0 0
3 1 2 −1

 and using the previous formula for
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the determinant,

detA = (−1)3
∑
β∈Q2,4

(−1)|β| det(A[(1, 2)|β]) det(A((1, 2)|β))

= −(− det(A[(1, 2)|(1, 2)]) det(A((1, 2)|(1, 2)))

+ det(A[(1, 2)|(1, 3)]) det(A((1, 2)|(1, 3)))

− det(A[(1, 2)|(1, 4)]) det(A((1, 2)|(1, 4)))

− det(A[(1, 2)|(2, 3)]) det(A((1, 2)|(2, 3)))

+ det(A[(1, 2)|(2, 4)]) det(A((1, 2)|(2, 4)))

− det(A[(1, 2)|(3, 4)]) det(A((1, 2)|(3, 4))))

= det

(
1 −1
2 1

)
det

(
0 0
2 −1

)
− det

(
1 0
2 1

)
det

(
−1 0
1 1

)
+ det

(
1 1
2 2

)
det

(
−1 0
1 2

)
+ det

(
−1 0
1 1

)
det

(
1 0
3 −1

)
− det

(
1 1
1 2

)
det

(
1 0
3 2

)
+ det

(
0 1
1 2

)
det

(
1 −1
3 1

)
= −8

If we analyse both of the proofs, that can be found in [28] and [23] we
can see that the similarity between them is due to the fact that the deter-
minant and the permanent of a direct sum of matrices is the product of the
determinants, or the permanents, of the block summands. That is

det

(
A O
O B

)
= det(A⊕B) = det(A) det(B),

per

(
A O
O B

)
= per(A⊕B) = per(A) per(B).

However, if χ is any other irreducible character, there is no clear general
relation between the immanant of A and the immanant of any submatrix of
A. In fact there is no relation between a character of Sn and a character
of Sm, for m < n. So the Generalized Laplace Expansion formula for any
immanant is a little more complicated.

The idea to overcome this drawback is to calculate the immanant of A
using matrices of order n in which some of the entries are equal to the entries
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of A and others are replaced by zeros.

Let 1 ≤ k ≤ n, α ∈ Qk,n, we denote by Imα the image of α.

Definition 1.3.11. Let 1 ≤ k ≤ n, α, β ∈ Qk,n. We denote by Sα,β the
subset of Sn defined has

Sα,β = {σ ∈ Sn : σ(Imα) = Im β}.

Example 1.3.12. Let n = 5, k = 3, then α, β ∈ Q3,5. Suppose α = (1, 3, 5)
and β = (2, 4, 5). It is easy to check that if σ = (12)(34) and τ = (1234),
then σ, τ ∈ Sα,β.

Fixing α ∈ Qk,n, we have the following result.

Lemma 1.3.13. For every α ∈ Qk,n, the set {Sα,β : β ∈ Qk,n} is a partition
of Sn.

Proof. We first prove that

1. Let β, γ ∈ Qk,n, if β 6= γ then Sα,β ∩ Sα,γ = ∅.
Suppose σ ∈ Sα,β ∩ Sα,γ. Then σ(Imα) = Im β = Im γ, and thus
Im β = Im γ. Since β, γ ∈ Qk,n, it follows that β = γ.
Now we prove that

2. Sn =
⋃

β∈Qk,n

Sα,β.

Take π ∈ Sn with π(Imα) = {j1, . . . , jk} and suppose j1 < . . . < jk.

Let γ ∈ Qk,n such that γ(i) = ji, for i = 1, . . . , k. Therefore π ∈ Sα,γ
and Sn ⊆

⋃
β∈Qk,n

Sα,β.

The other inclusion is trivial.

Now, for every α ∈ Qk,n denote by Imα the complement of Imα that is

Imα = {1, 2, . . . , n} \ Imα.

Lemma 1.3.14. Let 1 ≤ k ≤ n and α, β ∈ Qk,n. If σ ∈ Sα,β then

σ(Imα) = Im β.
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Proof. Suppose that l ∈ Imα and σ(l) = jl ∈ Im β. We have σ ∈ Sα,β so
we can find i ∈ Imα such that σ(i) = jl = σ(l). But i 6= l. This is a
contradiction, because σ ∈ Sn, and therefore is injective.

Since {Sα,β : β ∈ Qk,n} is a partition of Sn we have

|{Sα,β : β ∈ Qk,n}| = |Qk,n| =
n!

k!(n− k)!
.

In an analogous way, we can prove the same results if we fix β instead of α.
That is, if we consider the set {Sα,β : α ∈ Qk,n}.

Now, we can conclude that for every α, β ∈ Qk,n the value∑
σ∈Sα,β

χ(σ)
n∏
t=1

atσ(t)

does not depend on the values of the following entries of the matrix A:

I. The k rows of A that are in Imα and the n− k columns of A in Im β.

II. The n − k rows of A that are in Imα and the k columns of A with
index in Im β.

We now denote by
A{α|β} = (a+

ij)

the matrix of order n obtained by replacing in the matrix A every entry in I
and II by zeros.

Example 1.3.15. Suppose

A =


8 −2 1 3 −5
1 2 −3 3 −2
3 1 −2 4 −1
3 1 −1 2 7
3 −3 4 5 1

 .

We have that n = 5, suppose k = 2 and let α = (2, 3) and β = (1, 5). Then

A{(2, 3)|(1, 5)} =


0 −2 1 3 0
1 0 0 0 −2
3 0 0 0 −1
0 1 −1 2 0
0 −3 4 5 0

 .
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Lemma 1.3.16. With the previously established notation, we have that for
each α, β ∈ Qk,n, ∑

σ∈Sα,β

χ(σ)
n∏
t=1

atσ(t) = dχ(A{α|β}).

Proof. Using the definition of the immanant and the fact that Sn =
⋃

γ∈Qk,n

Sα,γ,

we have that

dχ(A{α|β}) =
∑
σ∈Sn

χ(σ)
n∏
t=1

a+
tσ(t)

=
∑

σ∈∪γ∈Qk,nSα,γ
χ(σ)

n∏
t=1

a+
tσ(t)

=
∑

γ∈Qk,n

∑
σ∈Sα,γ

χ(σ)
n∏
t=1

a+
tσ(t).

Now take δ ∈ Qk,n such that δ 6= β and σ ∈ Sα,δ. Then
n∏
t=1

a+
tσ(t) = 0,

because at least one of the factors is zero, by the definition of the matrix
A{α|β}.
Therefore ∑

σ∈Sα,γ

χ(σ)
n∏
t=1

a+
tσ(t) = 0,

for every γ ∈ Qk,n \ {β}.
Moreover, for A{α|β}, if σ ∈ Sα,β then a+

tσ(t) = atσ(t). So

dχ(A{α|β}) =
∑
σ∈Sα,β

χ(σ)
n∏
t=1

atσ(t).

This concludes the proof.

Proposition 1.3.17. Let A be an n × n complex matrix and suppose 1 ≤
k ≤ n. Suppose α ∈ Qk,n. Then

dχ(A) =
∑

β∈Qk,n

dχ(A{α|β}).
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Proof.

dχ(A) =
∑
σ∈Sn

χ(σ)
n∏
t=1

atσ(t)

=
∑

β∈Qk,n

∑
σ∈Sα,β

χ(σ)
n∏
t=1

atσ(t)

=
∑

β∈Qk,n

dχ(A{α|β}). (1.8)

This concludes our proof.

Now we construct matrices of order n using matrices of order k and order
n−k. In general this could be done by using the usual direct sum of matrices.
We introduce a generalization of this concept.

Definition 1.3.18. Let α, β ∈ Qk,n, and let A be a k × k matrix and let B
be a (n− k)× (n− k) matrix. Denote by ᾱ be the unique element of Qn−k,n
with Imα = Imα.

We define
A
⊕
α|β

B = (xij),

as a n× n matrix such that

• xij = 0 if i ∈ Imα and j 6∈ Im β;

• xij = 0 if i 6∈ Imα and j ∈ Im β;

• xij = aα−1(i)β−1(j) if i ∈ Imα and j ∈ Im β;

• xij = b
α−1(i)β

−1
(j)

if i 6∈ Imα and j 6∈ Im β.

In a sense, we place A in rows α and columns β and we place B in rows
ᾱ and columns β̄.

Example 1.3.19. Let

A =

(
1 −2
3 −1

)
B =

−2 1 3
1 −1 2
−3 4 6

 ,
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then k = 2 and n = 5. Suppose α = (2, 3) and β = (1, 5). So we have

A
⊕
α|β

B =


0 −2 1 3 0
1 0 0 0 −2
3 0 0 0 −1
0 1 −1 2 0
0 −3 4 6 0

 .

If α = β = (1, . . . , k), this is the usual direct sum of A and B, that is

A
⊕

(1,...,k)|(1,...,k)

B =

(
A O
O B

)
.

Also it is easy to see that if α 6= β then

A
⊕
α|β

B 6= A
⊕
β|α

B.

The following result is easy to verify.

Lemma 1.3.20. Let X be an n × n complex matrix and let 1 ≤ k ≤ n
, α, β ∈ Qk,n. Then we have

X{α|β} = X[α|β]
⊕
α|β

X(α|β).

Proof. First notice that the matrices X[α|β] and X(α|β) have order k and
n− k, respectively. So both matrices X{α|β} and X[α|β]

⊕
α|βX(α|β) have

order n.
The (i, j)-entry of X{α|β} is zero if

I. i ∈ Imα and j ∈ Im β, or

II. i ∈ Imα and j ∈ Im β.

All the other entries of X{α|β} are equal to the entries of the matrix X.
So rephrasing the last sentences, we have that the (i, j)-entry of X{α|β} is
equal to

• 0 if i ∈ Imα and j 6∈ Im β;
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• 0 if i 6∈ Imα and j ∈ Im β;

• xα−1(i)β−1(j) if i ∈ Imα and j ∈ Im β;

• x
α−1(i)β

−1
(j)

if i 6∈ Im id and j 6∈ Im β,

These entries are exactly the same as the entries of the n×n complex matrix
X[α|β]

⊕
α|βX(α|β)

Now we can state the Laplace expansion for immanants.

Theorem 1.3.21 (Generalized Laplace Expansion). Let X be an n×n com-
plex matrix, let 1 ≤ k ≤ n , and α a fixed element in Qk,n. Suppose χ is an
irreducible character of Sn. Then

dχ(X) =
∑

β∈Qk,n

dχ(X[α|β]
⊕
α|β

X(α|β)) =
∑

β∈Qk,n

dχ(X{α|β}). (1.9)

and

dχ(X) =
∑

β∈Qk,n

dχ(X[β|α]
⊕
β|α

X(β|α)) =
∑

β∈Qk,n

dχ(X{β|α}). (1.10)

Example 1.3.22. Let A be a matrix of order 4. Let k = 2 and α = (1, 2)
in Q2,4. Then, we have

dχ(A) = dχ


a11 a12 0 0
a12 a22 0 0
0 0 a33 a34

0 0 a43 a44

+ dχ


a11 0 a13 0
a12 0 a23 0
0 a32 0 a34

0 a42 0 a44



+ dχ


a11 0 0 a14

a12 0 0 a24

0 a32 a33 0
0 a42 a43 0

+ dχ


0 a12 a13 0
0 a22 a23 0
a31 0 0 a34

a41 0 0 a44



+ dχ


0 a12 0 a14

0 a22 0 a24

a31 0 a33 0
a41 0 a43 0

+ dχ


0 0 a13 a14

0 0 a23 a24

a31 a32 0 0
a41 a42 0 0
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Now we show that Proposition 1.3.6 is a particular case of the General-
ized Laplace Expansion.

Take k = 1, then Q1,n = {(1), (2), . . . , (n)}. Suppose α, β ∈ Q1,n, with
α = (i) and β = (j). First, notice that for every X ∈Mn(C), we have that

dχ(X{α|β}) = dχ(X{(i)|(j)}) = xijdχ(X(i|j)).

So, using the previous theorem

dχ(X) =
∑

α∈Qk,n

dχ(X{α|β})

=
n∑
i=1

dχ(X{(i)|(j)})

=
n∑
i=1

xijdχ(X(i|j)).

The last equality is due to the multilinearity of the immanant.

We also want to prove that the generalized Laplace expansion for deter-
minants is a particular case of formula 1.9. For that purpose, we list some
properties of the matrix X{α|β}.

Proposition 1.3.23. Let α, β, α′, β′ ∈ Qk,n. Then we have

1. X{α|β}[α|β] = X[α|β].

2. X{α|β}(α|β) = X(α|β).

3. If β 6= β′, then both matrices X{α|β}[α|β′] and X{α|β}(α|β′) have a
zero column.

4. If α 6= α′, then both matrices X{α|β}[α′|β] and X{α|β}(α′|β) have a
zero row.
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Proof. 1. Let us denote as before X{α|β} = (x+
ij), i, j = 1, . . . , n. Then

X{α|β}[α|β] =


x+
α(1)β(1) x+

α(1)β(2) . . . x+
α(k)β(k)

x+
α(2)β(1) x+

α(2)β(2) . . . x+
α(2)β(k)

. . . . . . . . . . . .
x+
α(k)β(1) x+

α(k)β(2) . . . x+
α(k)β(k)

 .

By definition of X{α|β}, for every s, t = 1, . . . , k,

x+
α(s)β(t) = xα(s)β(t),

so

X{α|β}[α|β] =


xα(1)β(1) xα(1)β(2) . . . xα(k)β(k)

xα(2)β(1) xα(2)β(2) . . . xα(2)β(k)

. . . . . . . . . . . .
xα(k)β(1) xα(k)β(2) . . . xα(k)β(k)

 = X[α|β].

2. With similar arguments we can prove that X{α|β}(α|β) = X(α|β).

3. Now suppose that β′ 6= β, then

X{α|β}[α|β′] =


x+
α(1)β′(1) x+

α(1)β′(2) . . . x+
α(k)β′(k)

x+
α(2)β′(1) x+

α(2)β′(2) . . . x+
α(2)β′(k)

. . . . . . . . . . . .
x+
α(k)β′(1) x+

α(k)β′(2) . . . x+
α(k)β′(k)

 .

Since β′ 6= β, there is j such that j = β′(t) and j 6∈ Im β. So the
elements of the j-th column of X{α|β}[α|β′] are x+

α(s)j, that are equal

to zero by the definition of X{α|β}.

4. Analogous to 3.
This concludes the proof.

We can now check that this formula generalizes the known Laplace for-
mulas for the determinant and the permanent (see [23] and [28]).

If χ = sgn, then dsgn = det. For α ∈ Qk,n, recall that |α| = α(1) + . . .+ α(k).
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Fixing α ∈ Qk,n

detX =
∑

β∈Qk,n

det(X{α|β})

= (−1)|α|
∑

β∈Qk,n

∑
γ∈Qk,n

(−1)|γ| det(X{α|β}[α|γ]) det(X{α|β}(α|γ))

= (−1)|α|
∑

β∈Qk,n

(−1)|β| det(X{α|β}[α|β]) det(X{α|β}(α|β))

= (−1)|α|
∑

β∈Qk,n

(−1)|β| det(X[α|β]) det(X(α|β)). (1.11)

The first equality follows from Theorem 1.9, the second from 1.11, the third
and fourth from Proposition 1.3.23.

This is exactly the expression of the the Generalized Laplace Expansion
for determinants. With similar arguments we can prove the result for the
Generalized Laplace Expansion of the permanent.

Now we turn to another kind of properties of the immanants, that is the
relation between immanants and decomposable symmetrized tensors. This
question arises because both of them are associated with an irreducible char-
acter of the permutation group. These relations will allow us to state the
famous Binet-Cauchy theorem that was first stated for determinants but it
is true for every immanant, with the convenient notation.
The following results can be found in [12] and [25].

Proposition 1.3.24. Let A ∈Mm(C) and V a Hilbert space. Let u1, u2, . . . , um, v1, v2, . . . , vm
be vectors in V such that

(aij) = 〈ui, vj〉,

i, j = 1, 2, . . .m.

Let χ be an irreducible character of Sm. Then

m!

χ(id)
〈u1 ∗ u2 ∗ . . . ∗ um, v1 ∗ v2 ∗ . . . ∗ vm〉 = dχ(A),

with respect to the induced inner product in Vχ.
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Proof. Suppose A is an m × m complex matrix and (aij) = 〈ui, vj〉. Since
Kχ is an orthogonal projection,

〈u1 ∗ u2 ∗ . . . ∗ um, v1 ∗ v2 ∗ . . . ∗ vm〉 =

= 〈Kχ(u1 ⊗ u2 ⊗ . . .⊗ um), Kχ(v1 ⊗ v2 ⊗ . . .⊗ vm)〉
= 〈u1 ⊗ u2 ⊗ . . .⊗ um, K∗χKχ(v1 ⊗ v2 ⊗ . . .⊗ vm)〉
= 〈u1 ⊗ u2 ⊗ . . .⊗ um, K2

χ(v1 ⊗ v2 ⊗ . . .⊗ vm)〉
= 〈u1 ⊗ u2 ⊗ . . .⊗ um, Kχ(v1 ⊗ v2 ⊗ . . .⊗ vm)〉

=
χ(id)

m!

∑
σ∈Sm

χ(σ)
m∏
t=1

〈ut, vσ−1(t)〉

=
χ(id)

m!

∑
σ∈Sm

χ(σ)
m∏
t=1

〈ut, vσ(t)〉

=
χ(id)

m!
dχ(A).

This concludes our proof.

Corollary 1.3.25. Let V be an m-dimensional Hilbert space and suppose that
E = {e1, e2, . . . , em} is an orthonormal basis of V . Let χ be an irreducible
character of Sm. Take T ∈ L(V ) and let AT be the matrix of the operator T
in the basis E. Then

dχ(A) =
m!

χ(id)
〈Kχ(T )(e1 ∗ e2 ∗ . . . ∗ em), e1 ∗ e2 ∗ . . . ∗ em〉.

Proof. We have that AT = M(T ;E), and E is an orthonormal basis of V so
the (i, j) - entry of A is

(aij) = 〈T (ei), ej〉.
The result follows from the theorem by setting vi = ei and ui = T (ei), for
every i = 1, 2, . . . ,m.

The next two technical results will allows us to prove the Cauchy-Binet
theorem.

Lemma 1.3.26 (Parseval’s Identity). Let E = {e1, e2, . . . , en} be an or-
thonormal basis of the Hilbert space V . If v, w ∈ V then

〈v, w〉 =
n∑
i=1

〈v, ei〉〈ei, w〉.
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Now we present a result that establishes a relation between the induced
transformation Kχ(T ) and the immanant dχ.

Lemma 1.3.27. Let V be an n dimensional Hilbert space and E = {e1, . . . , en}
an orthonormal basis of V . For 1 ≤ m ≤ n, let χ be an irreducible character
of Sm. Take T ∈ L(V ) and let A be the matrix of the operator T in the basis

E. For every α, β ∈ ∆̂, we have

〈Kχ(T )(e∗α), e∗β〉 =
χ(id)

m!
dχ(AT [α|β]).

Proof. By the properties of the operator Kχ(T ),

〈Kχ(T )(e∗α), e∗β〉 = 〈T (eα(1))∗T (eα(2))∗ . . .∗T (eα(m)), eβ(1) ∗ eβ(2) ∗ . . .∗ eβ(m)〉.

On the other hand, since A = M(T ;E) and E is orthonormal, for every
i, j = 1, 2, . . . , n,

(aij) = 〈T (ej), ei〉.
So the (i, j) entries of the matrix A [α|β] are

(aα(i)β(j)) = 〈T (eβ(j)), eα(i)〉.

Consequently the (i, j) entries of the matrix AT [α|β] are

(aβ(j)α(i)) = 〈T (eα(i)), eβ(j)〉.

So by Theorem 1.3.24 we have that

〈Kχ(T )(e∗α), e∗β〉 =
χ(id)

m!
dχ(AT [α|β]).

It is a well known fact that the determinant is a multiplicative multilinear
map, that is, for A and B n× n matrices,

det(AB) = det(A) det(B).

In fact it is known that the determinant is the only multiplicative general-
ized matrix function. So this last equality is false if we consider any other
immanant. However, there is a result that includes this property which is
called the Cauchy-Binet theorem.
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Theorem 1.3.28 (Cauchy-Binet). Let A and B be n× n complex matrices.
Suppose χ is an irreducible character of Sm. If α, β ∈ Ωχ, then:

dχ((AB)[α|β]) =
χ(id)

m!

∑
γ∈Ωχ

dχ(A[α|γ])dχ(B[γ|β]). (1.12)

Proof. Suppose E = {e1, e2, . . . , en} an orthonormal basis of V , S, T ∈ L(V )
and

AT = M(S;E) BT = M(T ;E).

Then

χ(id)

m!
dχ((AB)[α|β]) = 〈Kχ(ST )(e∗α), e∗β〉

= 〈Kχ(S)(e∗α), Kχ(T ∗)(e∗β)〉

=
∑

γ∈Γm,n

〈Kχ(S)(e∗α), e⊗γ 〉〈e⊗γ , Kχ(T ∗)(e∗β)〉.

In the first equality we use Lemma 1.3.27, and in the last equality we use
Parseval’s Identity.
Since Kχ is hermitian and idempotent and it commutes with ⊗mS and ⊗mT ,
in the last expression we may replace e⊗γ by e∗γ.
Now we have that e∗γ = 0 if γ 6∈ Ωχ. So

χ(id)

m!
dχ((AB)[α|β]) =

∑
γ∈Ωχ

(
χ(id)

m!

)2

dχ(A[α|γ])dχ(B∗[β|γ]),

applying Lemma 1.3.27 twice. Notice that

B∗ [β|γ] = B [γ|β]∗ dχ(C∗) = dχ(C),

we conclude that

dχ((AB)[α|β]) =
χ(id)

m!

∑
γ∈Ωχ

dχ(A[α|γ])dχ(B[γ|β]).
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Example 1.3.29. We will prove that det(AB) = det(A) det(B), using Cauchy-
Binet theorem. In order to do that, take m = n , α = β = id and χ the
alternating character of Sn. Then

dsgn(AB[id|id]) = det(AB)

=
1

m!

∑
γ∈Ωsgn

det(A[id|γ]) det(B[γ|id]).

Since Ωsgn = Γn,n and det(A[id|γ]) = 0 if γ is not injective, we have, from
the last equality

det(AB) =
1

m!

∑
σ∈Sn

det(A[id|σ]) det(B[σ|id]). (1.13)

Now, we analyse the matrices in each summand. For each σ ∈ Sn, A[id|σ]
is the matrix whose (i, j)-entry is equal to the (i, σ(j))-entry of A and we
also have that the (i, j)-entry of B[σ|id] is equal to the (σ(i), j)-entry of the
matrix B. So

• det(A[id|σ]) = sgn(σ) det(A),

• det(B[σ|id]) = sgn(σ) det(B).

Substituting this in the last equation, we get

det(AB) =
1

m!

∑
σ∈Sn

det(A) det(B)

= det(A) det(B).

We have already noticed that the permanent is not a multiplicative im-
manant, and it is easy to provide a counterexample where this property fails.

Example 1.3.30. Let A =

(
1 2
0 −1

)
and B =

(
1 1
1 1

)
.

We have

per(A) per(B) = −1× 2 6= −6 = per(AB).



44 CHAPTER 1. GENERAL CONCEPTS

There is, however, a relation between per(A) per(B) and per(AB), which
we can deduce using the Cauchy-Binet formula. If we apply this formula to
the permanent, we have χ ≡ 1 and

d1(AB[id|id]) = per(AB)

=
1

m!

∑
γ∈Ω1

per(A[id|γ]) per(B[γ|id]).

Again it is easy to check that Ω1 = Γn,n. On the other hand, there are
summands that are equal. In fact, suppose γ, δ ∈ Γ1, we have that

per(A[id|γ]) per(B[γ|id]) = per(A[id|δ]) per(B[δ|id])

if Im γ = Im δ = {i1, i2, . . . , il} and |γ−1(ik)| = |γ−1(ik)| = mk for every
k = 1, 2, . . . , l. So the sum in Cauchy-Binet formula can be indexed by Gn,n

and for each element δ ∈ Gn,n there are m!
m1!m2!...ml!

elements in Γn,n that

have the same value for per(A[id|γ]) per(B[γ|id]). For each element δ ∈ Gn,n

denote u(δ) = m1!m2! . . .ml!. With this notation we can rewrite the formula
for per(AB),

per(AB) =
∑
δ∈Gn,n

1

u(δ)
per(A[id|δ]) per(B[δ|id]),

which is exactly the expression stated in [23].
If δ = id then 1

u(id)
per(A[id|id]) per(B[id|id]) = per(A) per(B) and so

per(AB) = per(A) per(B) +
∑
δ∈Gn,n
δ 6=id

1

u(δ)
per(A[id|δ]) per(B[δ|id]).



Chapter 2

Higher Order Derivatives

Analysis takes back with one hand what it gives with the other.

Charles Hermite

There is a well-known formula for the first directional derivative of the
determinant function, due to Jacobi:

D det(A)(X) = tr(adj(A)X),

where adj(A) is the adjugate matrix.
When looking for extensions of this formula, one can consider higher order

derivatives of the determinant function. This was done by R. Bhatia and T.
Jain in [9].

One can also notice that det(A) = ∧nA and look for formulas for deriva-
tives of other Grassmann powers of A. T. Jain has presented some formulas
in [17].

Yet another possible path is to consider the permanent instead of the
determinant, and the symmetric tensor powers instead of the Grassmann
powers, and try to establish formulas for their derivatives. This study can
be found in a very recent paper by R. Bhatia, P. Grover and T. Jain, [8].

In our work we address the problem of generalizing these formulas for all
immanants and all symmetric powers of a matrix or an operator. One of the
obstacles in this generalization is that the permanent and the determinant
are the only immanants that are associated with linear characters, which
have better properties. Another difficulty was finding the expression of the

45
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immanant of a direct sum of matrices. Finally, it was necessary to find good
bases for the symmetry classes. The results have been collected in [10].

In dealing with symmetric powers we take two approaches: first, we con-
sider powers of matrices and present formulas that depend on the entries
of these matrices, then we establish formulas for the symmetric powers of
operators and show what is the relation between them.

2.1 Differential Calculus

We present some basic concepts and results of differential calculus, more
details and proofs can be found in [3]. Like in the previous chapters V is an
n dimensional Hilbert space over C.

Let X and Y be real Banach spaces, we write L(X, Y ) to represent the
space of all bounded linear operator from X to Y . Let U be an open subset
of X.

Definition 2.1.1. Suppose f : U 7−→ Y is a continuous map. The map f
is said to be differentiable at a point u of U if there exists a bounded linear
operator T ∈ L(X, Y ) such that

lim
v→0

‖f(u+ v)− f(u)− Tv‖
‖v‖

= 0.

We can easily see that if the operator T exists, it is unique.
If the map f is differentiable at u, the operator T in the previous defini-
tion is called the derivative or the Fréchet derivative of f at u.

Definition 2.1.2. Let φ : Mn(C) −→ Ml(C) be a differentiable map and
A,X ∈ Mn(C). The directional derivative of φ at A in the direction X is
given by

Dφ(A)(X) =
d

dt

∣∣∣
t=0
φ(A+ tX) = lim

t→0

φ(A+ tX)− φ(A)

t
.

If f is differentiable at u, then for every v ∈ X the directional derivative
of f at u in the direction v exists. However, the existence of directional
derivatives in all directions does not imply differentiability.

If T is a linear operator then T is differentiable at all points, and its
derivative is equal to itself, i.e.,

DT (A)(X) = T (X),
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for every A,X ∈Mn(C).

Example 2.1.3. Let A,X ∈Mn(C).

1. Let f(A) = A3, then

Df(A)(X) = A2X + AXA+XA2.

2. Let f(A) = AA∗, then

Df(A)(X) = AX∗ +XA∗.

In the next proposition we recall the usual rules of differentiation, which
remain valid in this context.

Proposition 2.1.4. Let f, g : Mn(C) −→ Mn(C) and A,X ∈ Mn(C). Sup-
pose f and g are differentiable at all points. Then

1. D(f + g)(A)(X) = Df(A)(X) +Dg(A)(X),

2. D(g ◦ f)(A)(X) = Dg(f(A))(f(X)).Df(A)(X),

3. If g is a linear map, then D(g ◦ f)(A)(X) = g(f(X)).Df(A)(X),

4. D(fg)(A)(X) = [Df(A)(X)] g(A) + f(A) [Dg(A)(X)] .

We can also define higher order derivatives of a differentiable map.

Definition 2.1.5. Let f : Mn(C) −→ Mn(C) be a differentiable map. Sup-
pose 1 ≤ k ≤ n and A,X1, . . . Xk ∈ Mn(C), the k-th derivative of f at A in
the directions of (X1, . . . , Xk) is given by the expression

Dkf(A)(X1, . . . , Xk) :=
∂k

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

φ(A+ t1X
1 + . . .+ tkX

k).

Later we will need the following proposition, which generalizes the rules
of derivation — recall that the derivative of a linear map g at each point is
g.

Proposition 2.1.6. If f, g and h are maps such that f ◦ g and g ◦h are well
defined, with g linear, all of them being k times differentiable, then

Dk(f ◦ g)(A)(X1, . . . , Xk) = Dkf(g(A))(g(X1), . . . , g(Xk))

and
Dk(g ◦ h)(A)(X1, . . . , Xk) = g ◦Dkh(A)(X1, . . . , Xk).
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2.2 First Order Derivative of the Immanant

Let det : Mn(C) −→ C be the multilinear map taking a n×n complex matrix
to its determinant. By the definition of the directional derivative at a point
A ∈Mn(C), for each X ∈Mn(C),

D det(A)(X) =
d

dt

∣∣∣
t=0

det(A+ tX).

The famous Jacobi formula states that

D det(A)(X) = tr(adj(A)X),

where adj(A) stands for the usual adjugate of the matrix A.
Our first theorem gives a generalization of Jacobi’s formula to all im-

manants.

Theorem 2.2.1. Let A be an n× n complex matrix. For each X ∈Mn(C),

Ddχ(A)(X) = tr(adjχ(A)TX).

Before we prove the theorem, we prove the following lemma.

Lemma 2.2.2. Let dχ : Mn(C) −→ C be the immanant function and let
A,X ∈ Mn(C). Suppose t is a variable. Then dχ(A + tX) is a polynomial
in t with degree less or equal to n, and the first derivative of dχ at A in the
direction of X is the coefficient of t in the polynomial dχ(A+ tX).

Proof. By the definition of the immanant we have that

dχ(A+ tX) = dχ(A) + a1t+ a2t
2 + . . .+ ant

n,

where ai ∈ C. Then

Ddχ(A)(X) =
d

dt

∣∣∣
t=0
dχ(A+ tX)

= lim
t→0

dχ(A+ tX)− dχ(A)

t

= lim
t→0

dχ(A) + a1t+ a2t
2 + . . .+ ant

n − dχ(A)

t
= lim

t→0
a1 + a2t+ . . .+ ant

n−1

= a1.

This concludes our proof.
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Now we can prove Theorem 2.2.1.

Proof. For each 1 ≤ j ≤ n, let A(j;X) be the matrix obtained from A by
replacing the j-th column of A by the j-th column of X and keeping the rest
of the columns unchanged. Then the given equality can be restated as

Ddχ(A)(X) =
n∑
j=1

dχ(A(j;X)). (2.1)

On the other hand, using the previous lemma, we note that Ddχ(A)(X)
is the coefficient of t in the polynomial dχ(A + tX). Let us calculate the
coefficient in t. By the definition of the immanant, we have that

dχ(A+ tX) =
∑
σ∈Sn

n∏
i=1

χ(σ)(aiσ(i) + txiσ(i))

=
∑
σ∈Sn

n∏
i=1

χ(σ)(aσ(i)i + txσ(i)i),

because χ(σ) = χ(σ−1), for every σ ∈ Sn. So, the coefficient in t is equal to∑
σ∈Sn

χ(σ)(xσ(1)1aσ(2)2 . . . aσ(n)n +

aσ(1)1xσ(2)2 . . . aσ(n)n + . . .+ aσ(1)1aσ(2)2 . . . xσ(n)n)

=
∑
σ∈Sn

χ(σ)xσ(1)1aσ(2)2 . . . aσ(n)n +∑
σ∈Sn

χ(σ)aσ(1)1xσ(2)2 . . . aσ(n)n + . . .+
∑
σ∈Sn

χ(σ)aσ(1)1aσ(2)2 . . . xσ(n)n

= dχ(A(1;X)) + dχ(A(2;X)) + . . .+ dχ(A(n;X))

=
n∑
j=1

dχ(A(j;X))

That concludes our proof.

Now we use the Laplace Expansion for Immanants, in the j-th column.
This says

dχ(A) =
n∑
i=1

aijdχ(A(i|j)).
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Using this and (2.1), we can re-write the expression for the first derivative
of dχ(A) as

Ddχ(A)(X) =
n∑
i=1

n∑
j=1

xijdχ(A(i|j)). (2.2)

We will obtain, in the next sections, a few expressions generalizing (2.1)
and (2.2) for the derivatives of all orders of the immanant.

2.3 First Expression

In this section we follow the techniques used in the papers [8] and [9] by R.
Bhatia, T. Jain and P. Grover. In these papers we can find several expres-
sions for the higher order derivatives of the determinant and permanent maps.

Let V and U be Hilbert spaces over the field of the complex numbers.
We use the symbol V n to represent the cartesian product of n copies of V ,
i.e.

V n := V × . . .× V.

We recall the definition of the k-th derivative.

Definition 2.3.1. Let φ : V n −→ U be a multilinear map, and take 1 ≤
k ≤ n and A,X1, . . . Xk ∈ V n. The k-th derivative of φ at A in directions of
(X1, . . . , Xk) is given by the expression

Dkφ(A)(X1, . . . , Xk) :=
∂k

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

φ(A+ t1X
1 + . . .+ tkX

k).

For a fixed A, Dkφ(A) is a multilinear map.

We need the following classical result. Let n1, n2, . . . nm be m positive
integers we define

Γ(n1, ..., nm) = {α : {1, 2, . . . ,m} −→ N : α(i) ≤ ni, i = 1, 2, . . .m}.
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Proposition 2.3.2 (Multilinearity Argument). Let V1, ..., Vm, U be vector
spaces over C and ϕ : V1 × ... × Vm −→ U a multilinear map. Suppose that

for each i ∈ {1, ...,m} , ui ∈ Vi and ui =

ni∑
j=1

uij. Then

ϕ(u1, ..., um) = ϕ(

n1∑
j=1

u1j, ...,

nm∑
j=1

umj) =
∑

α∈Γ(n1,...,nm)

ϕ(u1α(1), ..., umα(m)).

We use the multilinearity argument to obtain the first expression of the
higher order derivatives of the immanant. We need to introduce some new
notation. Let

• Γ0
n,k = {α : {1, ..., n} −→ {0, 1, ..., k}}.

• S 0
k = S{0,1,...,k}, i.e. the permutation group of the set {0, 1, ..., k}.

• S
′

k = {σ ∈ S 0
k : σ(0) = 0}.

Given α in Γ0
n,k and we denote by |α−1(i)| the number of elements of

{1, ..., n} whose image is equal to i, 0 ≤ i ≤ k.

Definition 2.3.3. Let α ∈ Γ0
n,k, we define the support of α as

suppα = {i ∈ {1, 2, . . . n} : α(i) 6= 0}.

In Γ0
n,k we consider the elements α that are bijective when restricted to

suppα, i.e.

Λ = {α ∈ Γ0
n,k : |α−1(0)| = n− k , |α−1(1)| = |α−1(2)| = . . . = |α−1(k)| = 1}.

In Λ we define the following equivalence relation:

α ρβ if and only if suppα = supp β,

meaning that two elements of Λ are in the same equivalence class if they have
the same support.

Let X be a subset of {1, ..., n} we denote by X the complement of X in
{1, ..., n}.
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Lemma 2.3.4. Let α, β ∈ Λ. Then α ρβ if and only if there is σ ∈ S ′k such
that β = σα

Proof. Suppose β = σα then

β−1(0) = α−1σ−1(0) = α−1(0),

by the definition of S ′k.
Now, for the converse, let

σ =

(
0 α(1) ... α(k)
0 β(1) ... β(k)

)
∈ S ′k.

Then for every i ∈ {1, ..., k} we have that

σα(i) =

{
0, i ∈ α−1(0)

β(i), i 6∈ α−1(0)

So σα = β.

For each β in Λ we will write Λβ to denote the equivalence class of β with
respect to the relation ρ.

Define also the set of elements α of Λ that are strictly increasing in suppα,
i.e.

Qn,k = {α ∈ Λ : α|suppα ∈ Qk,n}.

Then we have the following result.

Proposition 2.3.5. The set Qk,n is a system of representatives of the equiv-

alence classes of
Λ

ρ
, i.e.

Λ = {Λβ : β ∈ Qn,k}.

Proof. We will start by proving that if α, β ∈ Qn,k and α ρβ then α = β.
We have seen that if α ρβ then there is σ ∈ S ′k such that α = σβ. Let
γ = (α|suppα)−1 and θ = (β|suppβ)−1, with α ρβ. It follows from the definition
of the set Λ that γ and θ are elements of Qk,n.

γ = (α|suppα)−1 = (β|suppα)−1σ−1 = (β|suppβ)−1σ−1 = θσ−1
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So σ = id and then α = β.
Now we have to prove that every class has an element of Qn,k.
If ω ∈ Λ then let ω−1(0) = {i1, ..., ik}, i1 < ... < ik.

Suppose ν ∈ Γ0
n,k such that ν−1(0) = ω−1(0) and ν(i1) = 1, ..., ν(ik) = k,

notice that in particular ν ∈ Qn,k.

Let σ ∈ S ′k, defined as follows.
We have that

σν(i1) = ω(i1), ..., σν(ik) = ω(ik).

Then σν = ω. Now we can conclude that every element of the set Λ is ρ
equivalent to an element of the set Qn,k and that element is unique.
That concludes our proof.

It is a direct consequence of the previous proposition that it is possible
to define a map

Qk,n −→ Qn,k
α −→ λα,

where

λα(i) =

{
α−1(i), i ∈ Imα

0, otherwise
.

In other words, this means that for every γ ∈ Λ there are unique σ ∈ S ′k and
α ∈ Qk,n such that:

γ = σλα. (2.3)

Example 2.3.6. Suppose k = 3 and n = 6. Let α = (3, 5, 6) ∈ Q3,6. Then

λα : {1, 2, 3, 4, 5, 6} −→ {0, 1, 2, 3}

λα = (0, 0, 1, 0, 2, 3),

that belongs to Q6,3.

We now obtain a generalization of the expression (3.1) for higher order
derivatives. First we demonstrate a more general result for multilinear maps
using the multilinearity argument. For A,X1, . . . , Xk ∈ V n, we can write
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A = (A1, . . . , An) and X i = (X i
1, . . . , X

i
n) with Aj, X

i
j ∈ V , for every 1 ≤ i ≤

k and 1 ≤ j ≤ n. Define

Ui = Ai + t1X
1
i + ...+ tkX

k
i .

uij =

{
t0Ai, j = 0

tjX
j
i , j = 1, ..., k

,

where t0 = 1 for a matter of convention. We also define

U ′i = Ai +X1
i + ...+Xk

i .

u′ij =

{
Ai, j = 0

Xj
i , j = 1, ..., k

.

We start by proving the following result.

Lemma 2.3.7. Let 1 ≤ k ≤ n and let φ : V n −→ U be a multilinear map.
Suppose A,X1, . . . , Xk ∈ V n and let t1, . . . , tk, be k complex variables. Then

φ(A+ t1X
1 + ...+ tkX

k) =
∑

γ∈ Γ0
n,k

t
|γ−1(1)|
1 ...t

|γ−1(k)|
k φ(u′1γ(1), ..., u

′
nγ(n)). (2.4)

Proof.

φ(A+ t1X
1 + ...+ tkX

k) = φ(U1, ..., Un)

=
∑

γ∈ Γ0
n,k

φ(u1γ(1), ..., unγ(n))

=
∑

γ∈ Γ0
n,k

φ(tγ(1)u
′
1γ(1), ..., tγ(n)u

′
nγ(n))

=
∑

γ∈ Γ0
n,k

t
|γ−1(1)|
1 ...t

|γ−1(k)|
k φ(u′1γ(1), ..., u

′
nγ(n))

For the second equality we have used the multilinearity argument. For the
last equality we use th fact that φ is a multilinear map.
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Now we can prove a proposition that gives a result for the higher order
directional derivatives of a multilinear map.

Proposition 2.3.8. Let 1 ≤ k ≤ n. Let φ : V n −→ U be a multilin-
ear map. Suppose A,X1, . . . , Xk ∈ V n and let t1, . . . , tk, be k complex
variables. Then Dkφ(A)(X1, . . . , Xk) is the coefficient of t1 . . . tk in the
polynomial φ(A+ t1X

1 + . . .+Xk).

Proof. By the definition of the k-th derivative, we have that

Dkφ(A)(X1, ..., Xk) =
∂k

∂t1...∂tk

∣∣∣
t1=...=tk=0

φ(A+ t1X
1 + ...+ tkX

k).

Using the previous lemma, we know that

φ(A+ t1X
1 + ...+ tkX

k) =
∑

γ∈ Γ0
n,k

t
|γ−1(1)|
1 . . . t

|γ−1(k)|
k φ(u′1γ(1), . . . , u

′
nγ(n)).

This is a polynomial in the variables t1, . . . , tk and its derivative is

∂k

∂t1 . . . ∂tk

∑
γ∈ Γ0

n,k

t
|γ−1(1)|
1 . . . t

|γ−1(k)|
k φ(u′1γ(1), . . . , u

′
nγ(n)) =

∑
γ∈Γ

t
|γ−1(1)|−1
1 . . . t

|γ−1(k)|−1
k φ(u′1γ(1), . . . , u

′
nγ(n)),

where Γ = {γ ∈ Γ0
n,k : |γ−1(i)| ≥ 1, 1 ≤ i ≤ k}.

The last sum is indexed by Γ because the summands that are indexed by
Γ0
n,k \ Γ are equal to zero.

Now, taking t1 = t2 = . . . = tk = 0, the only nonzero summands are the
ones in which

|γ−1(1)| = |γ−1(2)| = . . . = |γ−1(k)| = 1,

for γ ∈ Γ.
This is exactly the coefficient of t1 . . . tk in φ(A+ t1X

1 + . . .+ tkX
k).
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We have proved that the higher order derivatives of a multilinear map φ
are certain coefficients of the polynomial φ(A + t1X

1 + . . . + tkX
k). In the

next theorem we give the explicit expression for those coefficients. We first
introduce some notation.

Definition 2.3.9. Let α ∈ Qk,n. We denote by A(α;X1, . . . , Xk) the element
of V n obtained from the element A by replacing coordinate α(j) of A by
coordinate α(j) of Xj for every 1 ≤ j ≤ k.

Theorem 2.3.10. Let 1 ≤ k ≤ n and let φ : V n −→ U be a multilinear map
and A,X1, . . . , Xk ∈ V n. Then

Dkφ(A)(X1, . . . , Xk) =
∑
σ∈Sk

∑
α∈Qk,n

φ
(
A(α;Xσ(1), . . . , Xσ(k))

)
.

Proof. By Proposition 2.3.8, Dkφ(A)(X1, ..., Xk) is the coefficient of t1 . . . tk
in the polynomial∑

γ∈Γ

t
|γ−1(1)|−1
1 . . . t

|γ−1(k)|−1
k φ(u′1γ(1), . . . , u

′
nγ(n)),

where Γ = {γ ∈ Γ0
n,k : |γ−1(i)| ≥ 1, 1 ≤ i ≤ k} and

|γ−1(1)| = |γ−1(2)| = . . . = |γ−1(k)| = 1,

for γ ∈ Γ. This also means that γ is in Λ. Therefore,

Dkφ(A)(X1, ..., Xk) =
∑
γ∈Λ

φ(u′1γ(1), ..., u
′
nγ(n)).

We have also seen in (2.3) that for every γ ∈ Λ there are unique σ ∈ S ′k and
α ∈ Qk,n such that γ = σλα, so we have

Dkφ(A)(X1, ..., Xk) =
∑

α∈Qk,n

∑
σ∈S ′k

φ(u′1σλα(1), ..., u
′
nσλα(n)).

Fixing a coordinate t, 1 ≤ t ≤ n, we analyse u′tσλα(t). If t /∈ Imα, then

λα(t) = 0 and we have that

u′tσ(0) = u′t0 = At.
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If t ∈ Imα, then λα(t) = α−1(t) and we have that

u′tσ(α−1(t)) = X
σ(α−1(t))
t .

In this case t ∈ Imα, so there is an s such that t = α(s) and we have

X
σ(α−1(t))
t = X

σ(s)
α(s) . Therefore, for every α ∈ Qk,n and for every σ ∈ Sk,

φ(u′1σλα(1), ..., u
′
nσλα(n)) = φ

(
A(α;Xσ(1), ..., Xσ(k))

)
.

So we have

Dkφ(A)(X1, . . . , Xk) =
∑
σ∈Sk

∑
α∈Qk,n

φ
(
A(α;Xσ(1), . . . , Xσ(k))

)
.

This concludes our proof.

Given a matrix A ∈ Mn(C), we represent by A[i] the i-th column of A,
i ∈ {1, . . . , n}. In particular, we have A = (A[1], . . . , A[n]).

Now we consider each matrix to be a list of n columns, so that if V = Cn,
V n = Mn(C). With this identification, we have that A(α;X1, . . . , Xk) is the
matrix of order n obtained from A replacing the α(j) column of A by the
α(j) column of Xj.

Example 2.3.11. Suppose n = 5, A = I5, (X1)ij = −1, for every i, j =
1, . . . , 5 and (X2)ij = i+ j, for every i, j = 1, . . . , 5. Let α = (35). Then

A(α;X1, X2) =


1 0 −1 0 6
0 1 −1 0 7
0 0 −1 0 8
0 0 −1 1 9
0 0 −1 0 10

 .

The following theorem states the main result of this section.

Theorem 2.3.12 (First expression). For every 1 ≤ k ≤ n, let A,X1, . . . , Xk

be n× n complex matrices. Then

Dkdχ(A)(X1, . . . , Xk) =
∑
σ∈Sk

∑
α∈Qk,n

dχA(α;Xσ(1), . . . , Xσ(k)).

In particular,

Dkdχ(A)(X, . . . , X) = k!
∑

α∈Qk,n

dχA(α;X, . . . , X).



58 CHAPTER 2. HIGHER ORDER DERIVATIVES

Proof. We only have to take φ = dχ and V n = Mn(C).
IfX1 = . . . = Xk = X, then dχA(α;Xσ(1), . . . , Xσ(k)) = dχA(α;X, . . . , X)

for every σ ∈ Sk. So, in this case

Dkdχ(A)(X, . . . , X) = k!
∑

α∈Qk,n

dχA(α;X, . . . , X).

We can re-write the last expression for the k-th derivative of the immanant
map using the concept of mixed immanant, generalizing the respective con-
cepts for the determinant and the permanent.

Definition 2.3.13. Let X1, . . . , Xn be n matrices of order n. We define the
mixed immanant of X1, . . . , Xn as

∆χ(X1, . . . , Xn) :=
1

n!

∑
σ∈Sn

dχ(X
σ(1)
[1] , . . . , X

σ(n)
[n] ).

If X1 = . . . = X t = A, for some t ≤ n and A ∈Mn(C), we denote the mixed
immanant by ∆χ(A;X t+1, . . . , Xn).

As with the permanent and the determinant, we have that

∆χ(A, . . . , A) = dχ(A).

Proposition 2.3.14. Let A ∈Mn(C). Then

∆χ(A;X1, . . . , Xk) :=
(n− k)!

n!

∑
σ∈Sk

∑
α∈Qk,n

dχA(α;Xσ(1), . . . , Xσ(k)).

Proof. One simply has to observe that each summand in ∆χ(A;X1, . . . , Xk)
appears (n−k)! times: once we fix a permutation of the matrices X1, . . . , Xk,
these summands correspond to the possible permutations of the n−k matrices
equal to A.

As an immediate consequence of this result, we can obtain another for-
mula for the derivative of order k of the immanant map. This generalizes
formula (26) in [9].

Proposition 2.3.15 (First expression, rewritten). For every 1 ≤ k ≤ n, let
A,X1, . . . , Xk be n× n complex matrices. Then

Dkdχ(A)(X1, . . . , Xk) =
n!

(n− k)!
∆χ(A;X1, . . . , Xk). (2.5)
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2.4 Second Expression

In order to generalize the second expression of the k-th derivative of the
determinant and the permanent, we wish to separate in the expression of
Ddχ(A)(X1, . . . , Xk) the entries of the matrices X1, . . . , Xk from the entries
of A. In the two cases that have already been studied, the determinant
and the permanent maps, this was easier, because in both cases there are
formulas that allow us to express the determinant of a direct sum in terms of
determinants of direct summands, and the same happens with the permanent.
With other immanants, the best we can do is use formula (1.9), which is what
we do in this second expression.

Definition 2.4.1. Let 1 ≤ k ≤ n, X1, . . . , Xk complex matrices of order n.
Suppose σ ∈ Sk, and β ∈ Qk,n. Denoting by 0 the zero matrix of order n,
we define

Xσ
β = 0(β;Xσ(1), . . . , Xσ(k)),

the matrix whose β(p)-th column is equal toX
σ(p)
[β(p)] and the remaining columns

are zero, for 1 ≤ p ≤ k.

Example 2.4.2. Suppose n = 4 , k = 2, β = (2, 4),

X1 = I4 X
2 =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

 .

We have that S2 = {id, (12)}. Then

X id
(2,4) =


0 0 0 4
0 1 0 4
0 0 0 4
0 0 0 4


and

X
(12)
(2,4) =


0 2 0 0
0 2 0 0
0 2 0 0
0 2 0 1

 .
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Theorem 2.4.3 (Second Formula). For every 1 ≤ k ≤ n, let A,X1, . . . , Xk

be n× n complex matrices. Then

DkdχA(X1, . . . , Xk) =
∑
σ∈Sk

∑
α,β∈Qk,n

dχ(Xσ
β [α|β]

⊕
α|β

A(α|β)),

in particular

DkdχA(X, . . . , X) = k!
∑

α,β∈Qk,n

dχ(X[α|β]
⊕
α|β

A(α|β))

Proof. We have proved that

DkdχA(X1, . . . , Xk) =
∑
σ∈Sk

∑
β∈Qk,n

dχA(β;Xσ(1), . . . , Xσ(k)).

By the Laplace expansion for immanants, for every β ∈ Qk,n, we have that

dχA(β;Xσ(1), . . . , Xσ(k)) =

=
∑

α∈Qk,n

dχ(A(β;Xσ(1), . . . , Xσ(k)){α|β})

=
∑

α∈Qk,n

dχ(A(β;Xσ(1), . . . , Xσ(k))[α|β]
⊕
α|β

A(β;Xσ(1), . . . , Xσ(k))(α|β)).

Now we just notice that

A(β;Xσ(1), . . . , Xσ(k))[α|β] = Xσ
β [α|β]

and
A(β;Xσ(1), . . . , Xσ(k))(α|β) = A(α|β).

This concludes the proof of the formula.

2.5 Formulas for the k-th Derivative of Kχ(A)

The main goal of this chapter is to generalize higher order derivative formulas
for the antisymmetric and symmetric tensor powers obtained by R. Bhatia, T.
Jain and P. Grover. In the previous section we have already generalized the
formulas for the determinant and the permanent functions to all immanants.
Now, we intend to calculate formulas that generalize the ones that have been
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calculated for the m-th induced power of a n× n matrix A, which is usually
represented by ∨mA and for the m-th compound of A, ∧mA, these are also
called the permanental compound and the determinantal compound of A,
respectively. Before we can do this, we need quite a bit of definitions, includ-
ing the very definition of this matrix, which is a little bit more complicated
than in the particular cases that have already been studied.

Let E = {e1, e2, . . . , en} be an orthonormal basis of the Hilbert space V .
Then

E ′ := {e∗α : α ∈ ∆̂}, (2.6)

is basis of Vχ, induced by the basis E. It is also known that this basis is
orthogonal if χ is a linear character.

In general, if we consider the induced inner product on ⊗mV , if χ does
not have degree one, there are no known orthonormal bases of Vχ formed by
decomposable symmetrized tensors. Let

E = {vα : α ∈ ∆̂}

be the orthonormal basis of the m-th χ-symmetric tensor power of the vec-
tor space V obtained by applying the Gram-Schmidt orthonormalization
procedure to E ′. Let B be the t × t change of basis matrix, from E to
E ′ = {e∗α : α ∈ ∆̂}, where t = dim(Vχ). This means that for each α ∈ ∆̂,

vα =
∑
γ∈∆̂

bγαe
∗
γ.

We note that this matrix B does not depend on the choice of the or-
thonormal basis of V , since the set ∆̂ is independent of the vectors of E,
and has a natural order (the lexicographic order), which the basis E inherits.
Moreover, the Gram-Schmidt process only depends on the numbers 〈e∗α, e∗β〉
and these are given by formula

〈e∗α, e∗β〉 =
χ(id)

m!

∑
σ∈Sm

χ(σ)
m∏
t=1

〈eα(t), eβσ(t)〉.

Hence, they only depend on the values of 〈ei, ej〉 = δij and are thus
independent of the vectors themselves.

Now we want to define Kχ(A), the m-th χ-symmetric tensor power of the
matrix A.
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Definition 2.5.1. Let E = {e1, e2, . . . , en} be an orthonormal basis of the
Hilbert space V and A an n× n complex matrix. Consider the linear endo-
morphism T such that A = M(T,E). Let 1 ≤ m ≤ n and χ an irreducible
character of Sm. Suppose E is the orthonormal basis of Vχ applying the
Gram-Schmidt orthonormalization to the induced basis. We define the m-th
χ-symmetric tensor power of the matrix A as the t× t complex matrix

Kχ(A) := M(Kχ(T ), E)

where t = |∆̂| and |Qm,n| ≤ t.

We now notice that this matrix does not depend on the choice of the
orthonormal basis E of V . This is an immediate consequence of the formula
in lemma (1.3.27).

Proposition 2.5.2. Suppose α, β ∈ ∆̂, the (α, β) entry of Kχ(A) is

χ(id)

m!

∑
γ,δ∈∆̂

bγβbδαdχ(A[δ|γ]).

Proof. Since the basis E is orthonormal, the (α, β)-entry of Kχ(A) is given
by:

〈Kχ(T )vβ, vα〉 =
∑
γ,δ∈∆̂

〈bγβKχ(T )e∗γ, bδαe
∗
δ〉

=
∑
γ,δ∈∆̂

bγβbδα〈Kχ(T )e∗γ, e
∗
δ〉

=
χ(id)

m!

∑
γ,δ∈∆̂

bγβbδαdχ(AT [γ|δ])

=
χ(id)

m!

∑
γ,δ∈∆̂

bγβbδαdχ(A[δ|γ]T )

=
χ(id)

m!

∑
γ,δ∈∆̂

bγβbδαdχ(A[δ|γ]).

In the second equality we use the properties of the induced inner prod-
uct, in the third, Lemma 1.3.27, in the fourth the fact that dχ(AT [γ|δ]) =
dχ(A[δ|γ]T ) and in the last equality we use the fact that dχ(X) = dχ(XT ).
This concludes our proof.
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This definition admits, as special cases, the m-th compound and the m-th
induced power of a matrix, as defined in [25, p. 236]. The matrix Kχ(A) is
called the induced matrix in [25, p. 235], in the case when the character has
degree one.

Definition 2.5.3. Let A be an n × n complex matrix and χ an irreducible
character of Sm. We denote by immχ(A) the t × t matrix for t = |∆̂|, with

rows and columns indexed by ∆̂, whose (γ, δ) entry is

dχ(A[γ|δ]).

We call the elements of this matrix immanantal minors indexed by ∆̂.
The usual minors are obtained by considering the alternating character, in
which case ∆̂ = Qm,n. With this definition, we can rewrite the previous
equation as

Kχ(A) =
χ(id)

m!
B∗ immχ(A)B. (2.7)

Finally, denote by miximmχ(X1, . . . , Xn) the t × t complex matrix with

rows and columns indexed by ∆̂, whose (γ, δ) entry is ∆χ(X1[γ|δ], . . . , Xn[γ|δ]),
so that miximmχ(A, . . . , A) = immχ(A). We use the same shorthand as with
the mixed immanant: for k ≤ n,

miximmχ(A;X1, . . . , Xk) := miximmχ(A, . . . , A,X1, . . . Xk).

We will present two formulas for the higher order derivatives of Kχ(A).
The first formula is written as a matrix equality and the second formula is an
expression where we split the entries of A from the entries of X1, X2, . . . , Xk.
Before our main formulas, we recall a general result about derivatives, which
we have stated in section 1.

Lemma 2.5.4. If f and g are two maps such that f ◦ g is well defined, with
g linear, then

Dk(f ◦ g)(A)(X1, . . . , Xk) = Dkf(g(A))(g(X1), . . . , g(Xk)).

Theorem 2.5.5. According to our previous notation, we have

DkKχ(A)(X1, . . . , Xk) =
χ(id)

(m− k)!
B∗miximmχ(A;X1, . . . , Xk)B
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and, using the notation we have already established, the (α, β) entry of this
matrix is

χ(id)

(m− k)!

∑
γ,δ∈∆̂

bγβbδα∆χ(A[δ|γ];X1[δ|γ], . . . , Xk[δ|γ])

Proof. Notice that the map A 7→ A[δ|γ] is linear, so we can apply the previous
lemma in order to compute the derivatives of the entries of the matrix Kχ(A).
The (α, β) entry of the k-th derivative of the m-th χ-symmetric tensor power
of A, i.e., the (α, β) entry of the matrix DkKχ(A)(X1, . . . , Xk) is:

χ(id)

k!

∑
γ,δ∈∆̂

bγβbδαD
kdχ(A[δ|γ])(X1[δ|γ], . . . , Xk[δ|γ]).

To abbreviate notation, for fixed γ, δ ∈ ∆̂, we will write C := A[δ|γ], and
Zi := X i[δ|γ], i = 1, . . . , k. Using formula (2.5), we get

Dkdχ(A[δ|γ])(X1[δ|γ], . . . , Xk[δ|γ]) = Dkdχ(C)(Z1, . . . , Zk)

=
m!

(m− k)!
∆χ(C;Z1, . . . , Zk).

So the (α, β) entry of DkKχ(A)(X1, . . . , Xk) is

χ(id)

m!

∑
γ,δ∈∆̂

bγβbδα
m!

(m− k)!
∆χ(C;Z1, . . . , Zk) =

χ(id)

(m− k)!

∑
γ,δ∈∆̂

bγβbδα∆χ(A[δ|γ];X1[δ|γ], . . . , Xk[δ|γ])

According to the definition of miximmχ(A;X1, . . . , Xk), we have

DkKχ(A)(X1, . . . , Xk) =
χ(id)

(m− k)!
B∗miximmχ(A;X1, . . . , Xk)B.

This concludes our proof.

Corollary 2.5.6. According to our previous notation, we have that DkKχ(A)(X1, . . . , Xk)
is equal to

χ(id)

m!

∑
γ,δ∈∆̂

bγβbδα
∑
σ∈Sk

∑
ρ,τ∈Qk,m

dχ(X[δ|γ]στ [ρ|τ ]
⊕
ρ|τ

A[δ|γ](ρ|τ)).
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Proof. Again,to abbreviate notation, for fixed γ, δ ∈ ∆̂, we will write C := A[δ|γ],
and Zi := X i[δ|γ], i = 1, . . . , k.
Using the formula in Theorem 2.4.3, we have that

Dkdχ(C)(Z1, . . . , Zk) =
∑
σ∈Sk

∑
ρ,τ∈Qk,m

dχ(Zσ
τ [ρ|τ ]

⊕
ρ|τ

C(ρ|τ)).

Recall that
Zσ
τ = 0(τ ;Zσ(1), . . . , Zσ(k)),

where 0 denotes the zero matrix of order m.
So, the (α, β) entry of the k-th derivative of Kχ(A) is:

χ(id)

m!

∑
γ,δ∈∆̂

bγβbδα
∑
σ∈Sk

∑
ρ,τ∈Qk,m

dχ(Zσ
τ [ρ|τ ]

⊕
ρ|τ

C(ρ|τ)) =

χ(id)

m!

∑
γ,δ∈∆̂

bγβbδα
∑
σ∈Sk

∑
ρ,τ∈Qk,m

dχ(X[δ|γ]στ [ρ|τ ]
⊕
ρ|τ

A[δ|γ](ρ|τ)).

This concludes our proof.

The formula obtained for the higher order derivatives ofKχ(A)(X1, . . . , Xk)
generalizes the expressions obtained by Bhatia, Jain and Grover ([9], [15]).
We will demonstrate this for the derivative of the m-th compound, establish-
ing that, from the formula in Theorem 2.5.5, we can establish formula (2.5)
in [17], from which the main formula for the derivative of the m-th compound
of A is obtained.

Let χ = sgn. Then

Kχ(A)(X1, . . . , Xk) = ∧m(A)(X1, . . . , Xk).

In this case ∆̂ = Qm,n and the basis {e∧α : α ∈ Qm,n} is orthogonal and it is
easy to see (by direct computation or using formula (1.2)) that every vector
has norm 1/

√
m!. So the matrix B of order

(
n
m

)
is diagonal and its diagonal

entries are equal to
√
m!.

We now notice two properties that we will use in our computations:

I. For any matrices X ∈Mk(C), Y ∈Mn−k(C) and functions α, β ∈ Qk,n,

detX
⊕
α|β

Y = (−1)|α|+|β| detX detY.
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This is a consequence of formula (1.11). We again notice that if γ 6= β, the
matrices

(X
⊕
α|β

Y )[α|γ] and (X
⊕
α|β

Y )(α|γ)

have a zero column. Now, using the Laplace expansion for the determinant
along α,

detX
⊕
α|β

Y = (−1)|α|
∑

γ∈Qk,n

(−1)|γ| det((X
⊕
α|β

Y )[α|γ]) det((X
⊕
α|β

Y )(α|γ))

= (−1)|α|+|β| det((X
⊕
α|β

Y )[α|β]) det((X
⊕
α|β

Y )(α|β))

= (−1)|α|+|β| detX detY.

II. For α, β ∈ Qm,n and ρ, τ ∈ Qk,m, we have∑
σ∈Sk

det(X[α|β]στ [ρ|τ ]) = k!∆(X1[α|β][ρ|τ ], . . . , Xk[α|β][ρ|τ ])

To check this, consider the columns of the matrices involved. Remember that

X[α|β]στ = 0(τ,Xσ(1)[α|β], . . . , Xσ(k)[α|β]).

For given σ ∈ Sk and j ∈ {1, 2, . . . , k}, we have:

entry (i, j) of X[α|β]στ [ρ|τ ] = entry (ρ(i), τ(j)) of X[α|β]στ

= entry (ρ(i), τ(j)) of Xσ(j)[α|β]τ(j)

= entry (i, j) of Xσ(j)[α|β][ρ|τ ].

Therefore,

X[α|β]στ [ρ|τ ] = [Xσ(1)[α|β][ρ|τ ][1] . . . X
σ(k)[α|β][ρ|τ ][k])

and the matrices that appear in the first sum are the same as the ones that
appear in the mixed discriminant.

We are now ready to prove the result. If we replace in Theorem 2.5.5
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dχ = det, we have that that the (α, β) entry of Dk ∧m (A)(X1, . . . , Xk) is

1

m!

∑
γ,δ∈Qm,n

bγβbδα
∑
σ∈Sk

∑
ρ,τ∈Qk,m

det(X[δ|γ]στ [ρ|τ ]
⊕
ρ|τ

A[δ|γ](ρ|τ))

=
1

m!
m!
∑
σ∈Sk

∑
ρ,τ∈Qk,m

det(X[α|β]στ [ρ|τ ]
⊕
ρ|τ

A[α|β](ρ|τ))

=
∑
σ∈Sk

∑
ρ,τ∈Qk,m

(−1)|ρ|+|τ | det(A[α|β](ρ|τ)) det(X[α|β]στ [ρ|τ ])

= k!
∑

ρ,τ∈Qk,m

(−1)|ρ|+|τ | det(A[α|β](ρ|τ))∆(X1[α|β][ρ|τ ], . . . , Xk[α|β][ρ|τ ]).

We denoted by
∆(B1, ..., Bn)

the mixed discriminant. The formula we obtained is formula (2.5) in [17], if
you take into account that in this paper the roles of the letters k and m are
interchanged.

Using similar arguments we can obtain the formula for the k-th derivative
of ∨m(A)(X1, . . . , Xk) in [15].

2.6 Formulas for k-th Derivatives of Kχ(T )

We now present a formula for higher order derivatives of Kχ(T ) that gener-
alizes formulas in [7] and [8].

Definition 2.6.1. Let V be an n dimensional Hilbert space, let S1, . . . , Sm ∈
L(V ) and let χ be an irreducible character of Sm. We define an operator on
⊗mV as

S1⊗̃S2⊗̃ . . . ⊗̃Sm :=
1

m!

∑
σ∈Sm

Sσ(1) ⊗ Sσ(2) ⊗ · · · ⊗ Sσ(m).

Proposition 2.6.2. Let S1, . . . , Sm ∈ L(V ) and let χ be an irreducible char-
acter of Sm. The space Vχ is invariant for the operator S1⊗̃S2⊗̃ . . . ⊗̃Sm.

Proof. We only have to prove that S1⊗̃S2⊗̃ . . . ⊗̃Sm sends decomposable
symmetrized tensors to elements of Vχ. Let u1 ∗ . . . ∗ um ∈ Vχ.
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S1⊗̃S2⊗̃ . . . ⊗̃Sm(u1 ∗ u2 ∗ . . . ∗ um) =

=
1

m!

∑
σ∈Sm

Sσ(1) ⊗ Sσ(2) ⊗ · · · ⊗ Sσ(m)(
∑
τ∈Sm

χ(τ)P (τ)(u1 ⊗ u2 ⊗ . . .⊗ um))

=
1

m!

∑
στ∈Sm

χ(τ)P (τ)Sσ(1) ⊗ Sσ(2) ⊗ · · · ⊗ Sσ(m)(u1 ⊗ u2 ⊗ . . .⊗ um)

=
1

m!

∑
στ∈Sm

χ(τ)P (τ)Sσ(1)(u1)⊗ Sσ(2)(u2)⊗ · · · ⊗ Sσ(m)(um)

=
1

m!

∑
σ∈Sm

Sσ(1)(u1) ∗ Sσ(2)(u2) ∗ · · · ∗ Sσ(m)(um).

This belongs to Vχ.

We denote the restriction of the map S1⊗̃S2⊗̃ . . . ⊗̃Sm to Vχ by

S1 ∗ S2 ∗ · · · ∗ Sm

and call it the symmetrized χ-symmetric tensor product of the operators
S1, S2, . . . , Sm. We remark that the notation chosen to represent the sym-
metrized χ-symmetric tensor product does not convey the fact that the prod-
uct depends on the character χ.

In [8] the following proposition was proved.

Proposition 2.6.3. Let V be an n-dimensional Hilbert space. For 1 ≤ k ≤ m ≤ n,
suppose T, S1, . . . , Sm ∈ L(V ). Then

Dk(⊗mT )(S1, . . . , Sk) =
m!

(m− k)!
T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸
m−k copies

⊗̃S1⊗̃ · · · ⊗̃Sk. (2.8)

If k > m all derivatives are zero.

Proof. In this context we can use Theorem 2.3.10, which states that this
derivative is the coefficient of t1 . . . tk in the polynomial

⊗m(T + t1S
1 + . . .+ tkS

k),
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given by the expression∑
σ∈Sk

∑
α∈Qk,m

⊗m(T (α;Sσ(1), . . . Sσ(k))).

For a given α ∈ Qk,m, the summand⊗m(T (α;Sσ(1), . . . Sσ(k))) appears (m− k)!
times in the expression of T ⊗̃ · · · ⊗̃T ⊗̃S1⊗̃ · · · ⊗̃Sk, since T appears m − k
times as a factor. Thus,

(m− k)!

m!

∑
σ∈Sk

∑
α∈Qk,m

⊗m(T (α;Sσ(1), . . . Sσ(k))) = T ⊗̃ · · · ⊗̃T ⊗̃S1⊗̃ · · · ⊗̃Sk.

This proves the formula.

From this proposition we can deduce a formula for DkKχ(T )(S1, . . . , Sk),
using the same techniques that were used in the previous proof.

Theorem 2.6.4. Let V be an n dimensional Hilbert space, 1 ≤ k ≤ m ≤ n,
T, S1, . . . , Sm ∈ L(V ) and χ an irreducible character of Sm. Then

DkKχ(T )(S1, . . . , Sk) =
m!

(m− k)!
T ∗ · · · ∗ T ∗ S1 ∗ · · · ∗ Sk.

In particular, if k = m then

DmKχ(T )(S1, . . . , Sm) = m!S1 ∗ S2 · · · ∗ Sm.
For k > m all derivatives are zero.

Proof. Let Q be the inclusion map defined as Q : Vχ −→ ⊗mV , so its adjoint
operator Q∗ is the projection of⊗mV onto Vχ. We have that for any operators
T1, T2, . . . Tm of V

T1 ∗ · · · ∗ Tm = Q∗(T1⊗̃ · · · ⊗̃Tm)Q.

Both maps L 7→ Q∗T and T 7→ LQ are linear, so we can apply formula (2.8)
and a derivation rule from Proposition 2.1.6 and get

DkKχ(T )(S1, . . . , Sk) = Dk(Q∗(⊗mT )Q)(S1, . . . , Sk)

= Q∗Dk(⊗mT )(S1, . . . , Sk)Q

=
m!

(m− k)!
Q∗(T ⊗̃ · · · ⊗̃T︸ ︷︷ ︸

m−k times

⊗̃S1⊗̃ · · · ⊗̃Sk)Q

=
m!

(m− k)!
T ∗ · · · ∗ T ∗ S1 ∗ · · · ∗ Sk.

This concludes the proof.
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In the previous section we have calculated several formulas for the k-th
derivative of Kχ(A), in the directions of (X1, X2, . . . , Xk). We have seen in
Theorem 2.5.5 that the (α, β) entry of this matrix is equal to

χ(id)

(m− k)!

∑
γ,δ∈∆̂

bγβbδα∆χ(A[δ|γ];X1[δ|γ], . . . , Xk[δ|γ]).

If we look at the formula obtained in the last theorem it is clear that there
are similarities between these two expressions. We now establish a relation
between DkKχ(T )(S1, . . . , Sk) and DkKχ(A)(X1, . . . , Xk).

Recall that E = {e1, e2, . . . , en} is an orthonormal basis of V , E ′ = {e∗α :

α ∈ ∆̂} is the induced basis of Vχ and E = {vα : α ∈ ∆̂} is the orthonormal
basis of Vχ obtained by applying the Gram-Schmidt orthogonalization to the
basis E ′.

Proposition 2.6.5. Let T, S1, S2, . . . , Sk be operators on the Hilbert space
V and let E be an orthonormal basis of V . Let A,X1, X2, . . . , Xk be n × n
complex matrices such that A = M(T ;E), X i = M(Si;E), i = 1, 2, . . . , k.
Then

DkKχ(A)(X1, . . . , Xk) = M(DkKχ(T )(S1, . . . , Sk); E),

where E = {vα : α ∈ ∆̂} is the orthonormal basis of Vχ that is obtained by
applying the Gram-Schmidt orthogonalization to the induced basis E ′.

In order to prove the previous proposition we need the following lemma.

Lemma 2.6.6. Suppose T1, T2, . . . , Tm are linear operators in the Hilbert
space V and let E = {e1, e2, . . . , en} be an orthonormal basis of V . Let
A1, A2, . . . , Am be n × n complex matrices such that Ai = M(Ti;E), for

i = 1, 2, . . . ,m. Let χ be an irreducible character of Sm and δ, γ ∈ ∆̂. Then

〈T1⊗̃T2⊗̃ . . . ⊗̃Tm(e∗δ), e
∗
γ〉 =

χ(id)

m!
∆χ (A1[γ|δ], A2[γ|δ], . . . , Am[γ|δ]) .
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Proof. We have that

T1⊗̃T2⊗̃ . . . ⊗̃Tm(e∗δ) = T1⊗̃T2⊗̃ . . . ⊗̃Tm

(∑
σ∈Sm

χ(σ)P (σ)(e⊗δ )

)
=

∑
σ∈Sm

χ(σ)P (σ)T1⊗̃T2⊗̃ . . . ⊗̃Tm(e⊗δ )

=
1

m!

∑
σ∈Sm

χ(σ)P (σ)
∑
τ∈Sm

Tτ(1) ⊗ Tτ(2) ⊗ . . . Tτ(m)(eδ(1) ⊗ eδ(2) ⊗ . . .⊗ eδ(m))

=
1

m!

∑
σ,τ∈Sm

χ(σ)P (σ)Tτ(1)(eδ(1))⊗ Tτ(2)(eδ(2))⊗ . . .⊗ Tτ(m)(eδ(m))

=
1

m!

∑
τ∈Sm

Tτ(1)(eδ(1)) ∗ Tτ(2)(eδ(2)) ∗ . . . ∗ Tτ(m)(eδ(m)).

The induced inner product in Vχ

〈Tτ(1)(eδ(1)) ∗ Tτ(2)(eδ(2)) ∗ . . . ∗ Tτ(m)(eδ(m)), eγ(1) ∗ eγ(1) . . . ∗ eγ(m)〉

is by Proposition 1.3.24 equal to

χ(id)

m!
dχ〈Tτ(i)(eδ(i)), eγ(j)〉 =

=
χ(id)

m!
dχ(〈Tτ(1)(eδ(1)), eγ(j)〉[1], 〈Tτ(2)(eδ(2)), eγ(j)〉[2], . . . , 〈Tτ(m)(eδ(m)), eγ(j)〉[m])

=
χ(id)

m!
dχ(Aτ(1)[δ|γ][1], Aτ(2)[δ|γ][2], . . . , Aτ(m)[δ|γ][m]).

So,

(T1⊗̃T2⊗̃ . . . ⊗̃Tm〈e∗δ), e∗γ〉 =

=
1

m!

∑
τ∈Sm

χ(id)

m!
dχ(Aτ(1)[δ|γ][1], Aτ(2)[δ|γ][2], . . . , Aτ(m)[δ|γ][m])

=
χ(id)

m!
∆χ (A1[γ|δ], A2[γ|δ], . . . , Am[γ|δ]) .

This concludes our proof.

Now we can prove Proposition 2.6.5.
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Proof. Let α, β ∈ ∆̂, since the basis E is orthonormal, the (α, β)-entry of the
matrix that represents DkKχ(T )(S1, . . . , Sk) in the basis E is:

〈DkKχ(T )(S1, . . . , Sk)〈vβ), vα〉 =

=
m!

(m− k)!

〈
T ∗ T ∗ . . . ∗ T ∗ S1 ∗ . . . ∗ Sk(vβ), vα

〉
=

m!

(m− k)!

〈
T ⊗̃T ⊗̃ . . . ⊗̃T ⊗̃S1⊗̃ . . . ⊗̃Sk(vβ), vα

〉
=

m!

(m− k)!

∑
γ,δ∈∆̂

bγβbδα〈T ⊗̃T ⊗̃ . . . ⊗̃T ⊗̃S1⊗̃ . . . ⊗̃Sk(e∗δ), e∗γ〉.

By the previous Lemma, we have that

〈T ⊗̃T ⊗̃ . . . ⊗̃T ⊗̃S1⊗̃ . . . ⊗̃Sk(e∗δ), e∗γ〉 =
χ(id)

m!
∆χ

(
A[γ|δ; , X1[γ|δ], . . . , Xk[γ|δ]

)
.

So we can conclude that the (α, β)-entry of the matrix of the operator
DkKχ(T )(S1, . . . , Sk) is equal to

χ(id)

(m− k)!

∑
γ,δ∈∆̂

bγβbδα∆χ

(
A[γ|δ]; , X1[γ|δ], . . . , Xk[γ|δ]

)
,

which is exactly the (α, β)-entry of the matrix DkKχ(A)(X1, . . . , Xk).



Chapter 3

Variation of Multilinear
Induced Operators

The definition of a good mathematical problem is the mathematics
it generates rather then the problem itself.

Andrew Wiles

Let V be a complex Hilbert space and L(V ) be the vector space of linear
operators from V to itself. Let T be an operator in L(V ) and let ‖.‖ be the
vector norm on V defined by the inner product. The operator norm induced
by the vector norm ‖.‖ is defined by

‖T‖ = sup
‖x‖=1

‖Tx‖.

This norm is called operator bound norm or spectral norm of T . From
now on we always consider the spectral norm on L(V ). If ν1 ≥ ν2 ≥ . . . ≥ νn
are the singular values of T , then ‖T‖ = ν1.

R. Bhatia and S. Friedland have addressed in [7] the problem of finding
the norm of the derivative of the Grassmann power of a matrix, which led to
a remarkable formula:

‖D ∧m (A)‖ = pm−1(ν1, . . . , νm) (3.1)

73
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where pm−1 is the symmetric polynomial of degree m− 1 in m variables. It
should be noted that this formula gives an exact value for the derivative and
not just an upper bound.

After this, R. Bhatia has addressed the problem of finding a similar for-
mula for the symmetric power, which was done in [5], finding that this norm
was the same as that of the derivative of the m-th fold tensor power:

‖D ∨m A‖ = m‖A‖m−1 = mνm−1
1 . (3.2)

We note that mνm−1
1 = pm−1(ν1, . . . , ν1), where ν1 appears m times.

Generalizing both these results, R. Bhatia and J. A. Dias da Silva estab-
lished in [6] a formula for the norm of the first derivative for all χ-symmetric
powers of an operator. Being technically more intricate than the previous
results, the final formula also involves the value of the symmetric polynomial
of degree m− 1 on m variables calculated on some of the singular values of
A.

Recently, R. Bhatia, P. Grover and T. Jain have established formulas that
generalize (3.1) and (3.2) in a diferent direction: formulas are established for
higher order derivatives of symmetric powers and Grassmann powers. Before
we briefly describe these results we recall the definition of norm for multilinear
maps — the m-th directional derivative is a multilinear map.

Let V and U be complex Hilbert spaces and let Φ : (L(V ))m −→ L(U)
be a multilinear operator. The norm of Φ is given by

‖Φ‖ = sup
‖X1‖=...=‖Xm‖=1

‖Φ(X1, . . . , Xm)‖.

In papers [17] and [8], the authors have established the following values:

‖Dk ⊗m T‖ = ‖Dk ∨m T‖ =
m!

(m− k)!
‖T‖m−k =

m!

(m− k)!
νm−k1

‖Dk ∧m T‖ = k! pm−k(ν1, . . . , νm).

In all cases, we note that the norm is the value of the elementary sym-
metric polynomial of degree m− k applied to a certain family of m singular
values of T (possibly with repetitions), multiplied by k!.

In our work, which was done simultaneously with [8], formulas are es-
tablished that subsume all the aforementioned formulas. The techniques are
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similar, but the fact that the symmetry classes we considered were associ-
ated with an arbitrary irreducible character made it necessary to use more
intricate combinatorial theorems.

3.1 Basic Concepts and Results

Recall the operator Kχ(T ), Definition 1.2.26. In this chapter we will obtain
exact values for the norm of k-th derivative of the operator f(T ) = Kχ(T ).

Definition 3.1.1. Let T ∈ L(V ). The operator T is positive semidefinite if
for every x ∈ V , 〈x, T (x)〉 ≥ 0 and T is positive definite if for every x ∈ V ,
x 6= 0 〈x, T (x)〉 > 0.

For any T ∈ L(V ) the operator TT ∗ is always positive semidefinite, so
its eigenvalues are always nonnegative. The eigenvalues of this operator are
called the singular values of the operator T .

Definition 3.1.2. Let V and U be complex Hilbert spaces and let Φ :
(L(V ))m → L(U) be a multilinear operator. We say that Φ is positive if
Φ(X1, . . . , Xm) is positive definite for every family X1, . . . Xm ∈ L(V ) of
positive definite operators.

Definition 3.1.3. Let m, n be positive integers 1 ≤ m ≤ n, x1, x2, . . . xn n
variables. The elementary symmetric polynomial in n variables and degree
m is the homogeneous symmetric polynomial defined as

pm(x1, x2, . . . , xn) =
∑

α∈Qm,n

xα(1)xα(2) . . . xα(m).

Example 3.1.4. 1. p1(x1, . . . , xm) = x1 + x2 + ...+ xm,

2. p2(x1, x2, x3) = x1x2 + x1x3 + x2x3,

3. pm(x1, . . . , xm) = x1x2 . . . xm.
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Definition 3.1.5. Let m, r be positive integers, 1 ≤ r ≤ m. A partition π
of m is an r-tuple of positive integers π = (π1, . . . , πr), such that

• π1 ≥ . . . ≥ πr,

• π1 + . . .+ πr = m.

Sometimes it is useful to consider a partition of m with exactly m entries,
so we complete the list with zeros. The number of nonzero entries in the
partition π is called the length of π and is represented by l(π).

Example 3.1.6. Ifm = 10, π = (4, 2, 2, 1, 1, 0, 0, 0, 0, 0), π = (10, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and π′ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) are partitions of 10. l(π) = 5, l(π) = 1 and
l(π′) = 10).

Given an n-tuple of real numbers x = (x1, . . . , xn) and α ∈ Γm,n, we
define the m-tuple

xα := (xα(1), xα(2), . . . , xα(m)).

It is known from representation theory (see [25]) that there is a canonical
correspondence between the irreducible characters of Sm and the partitions
of m, it is usual to use the same notation to represent both of them. Recall
that if χ = (1, . . . , 1) then Vχ = ∧mV is the Grassmann space, and if χ =
(m, 0 . . . , 0), then Vχ = ∨mV .

Definition 3.1.7. For every partition π = (π1, π2, . . . , πl(π)) of m we define
ω(π) as

ω(π) := (1, . . . , 1︸ ︷︷ ︸
π1 times

, 2, . . . , 2︸ ︷︷ ︸
π2 times

, . . . , l(π), . . . , l(π)︸ ︷︷ ︸
πl(π) times

) ∈ Gm,n ⊆ Γm,n.

Example 3.1.8. For π = (4, 2, 2, 1, 1, 0, 0, 0, 0, 0), π = (10, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and π′ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) partitions of 10, we have

ω(π) = (1, 1, 1, 1, 2, 2, 3, 3, 4, 5);

ω(π) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1);

ω(π′) = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

Now to every element of Γm,n we will associate a partition of m.
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Definition 3.1.9. For each α ∈ Γm,n let Imα = {i1, . . . , il}, suppose that
|α−1(i1)| ≥ . . . ≥ |α−1(il)|. The partition of m

µ(α) := (|α−1(i1)|, . . . , |α−1(il)|) (3.3)

is called the multiplicity partition of α.

Example 3.1.10. Consider α = (2, 2, 5, 4, 8, 8, 8), then

µ(α) = (|α−1(8)|, |α−1(2)|, |α−1(4)|, |α−1(5)|) = (3, 2, 1, 1).

For β = (3, 3, 3, 1, 2, 5, 5), we see that µ(α) = µ(β). This means that µ is not
an injective map.

So the maps defined before are not inverses of each other, however there
is a weaker relation between them.

Remark 3.1.11. The multiplicity partition of ω(π) is equal to the partition
π:

µ(ω(π)) = π

We have that Imω(π) = {1, 2, . . . , l(π)} and that |α−1(i)| = πi, for every
i = 1, 2, . . . l(π). So

µ(ω(π)) = (|α−1(1)|, |α−1(2)|, . . . , |α−1(l(π))|) = (π1, π2, . . . , πl(π)) = π.

We recall a well known order defined on the set of partitions of m.

Definition 3.1.12. Let µ and λ be partitions of the positive integer m. The
partition µ precedes λ, written µ � λ, if for all 1 ≤ s ≤ m,

s∑
j=1

µj ≤
s∑
j=1

λj.

We will also need the following classical result, that can be found in [25],
that characterizes the elements of the set Ωχ.

Theorem 3.1.13. Let χ be a partition of m and α ∈ Γm,n. Let Ωχ and µ(α)
be as defined in (1.4) and (3.3). Then α ∈ Ωχ if and only if χ majorizes
µ(α).
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3.2 Norm of the k-the Derivative of Kχ(T )

We recall that the norm of a multilinear operator Φ : (L(V ))k −→ L(U) is
given by

‖Φ‖ = sup
‖S1‖=...=‖Sk‖=1

‖Φ(S1, . . . , Sk)‖.

The main result of this section is the following theorem.

Theorem 3.2.1. Let V be an n-dimensional Hilbert space. Let m and k
be positive integers such that 1 ≤ k ≤ m ≤ n, and let χ be a partition of
m. Suppose T is an operator in L(V ) and ν1 ≥ ν2 ≥ . . . ≥ νn its singular
values. Let T → Kχ(T ) be the map that associates to each element of L(V )
the induced operator Kχ(T ) on the symmetry class Vχ. Then the norm of the
derivative of order k of this map is given by the formula

‖DkKχ(T )‖ = k! pm−k(νω(χ)) (3.4)

where pm−k is the elementary symmetric polynomial of degree m − k in m
variables.

The proof of our main result is inspired in the techniques used in [6].

Proposition 3.2.2 (Polar Decomposition). Let T be a linear operator in V .
Then there exist a positive semidefinite operator P and a unitary operator
W , such that

T = PW.

If T is invertible then this decomposition is unique.

We will now highlight the most important features of the proof of our
main theorem.

First we will use the polar decomposition of operator T , in the following
form: P = TW , with P positive semidefinite and W unitary. We will see
that

‖DkKχ(T )‖ = ‖DkKχ(P )‖.

This allows us to replace T by P .

After that we observe that the multilinear map DkKχ(P ) is positive be-
tween the two algebras in question, so it is possible to use a multilinear
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version of the famous Russo-Dye theorem that states that the norm for a
positive multilinear map is attained in (I, I, . . . , I), where I is the identity
operator. This result considerably simplifies the calculations needed to ob-
tain the expression stated in our theorem.

The second part of our proof consists in finding the largest singular value
of DkKχ(P )(I, I, . . . , I), which is also the norm of DkKχ(T ).

Proposition 3.2.3. Let T ∈ L(V ) , P the positive semidefinite operator and
W an unitary operator such that P = TW . Then

‖DkKχ(T )‖ = ‖DkKχ(P )‖.

Proof. Let P = TW , with W unitary. Then Kχ(W ) is also unitary , because

[Kχ(W )]−1 = Kχ(W−1) = Kχ(W ∗) = [Kχ(W )]∗ .

Therefore, we have

‖DkKχ(T )(X1, . . . , Xk)‖ =

= ‖DkKχ(T )(X1, . . . , Xk)Kχ(W )‖

= ‖
(

∂m

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

Kχ(T + t1X
1 + . . .+ tkX

k)

)
Kχ(W )‖

= ‖ ∂m

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

Kχ(T + t1X
1 + . . .+ tkX

k)Kχ(W )‖

= ‖ ∂m

∂t1 . . . ∂tk

∣∣∣
t1=...=tk=0

Kχ(P + t1X
1W + . . .+ tkX

kW )‖

= ‖DkKχ(P )(X1W, . . . , XkW )‖

We have ‖X iW‖ = ‖X i‖ and moreover {XW : ‖X‖ = 1} is the set of all
operators with norm 1, so

‖DkKχ(T )‖ = sup
‖X1‖=...=‖Xk‖=1

‖DkKχ(T )(X1, . . . , Xk)‖

= sup
‖X1‖=...=‖Xk‖=1

‖DkKχ(P )(X1W, . . . , XkW )‖

= ‖DkKχ(P )‖.

Now we need to estimate the norm of the operator DkKχ(P ). For this,
we use a result from [8], a multilinear version of the Russo-Dye theorem.
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A Multilinear Version of the Russo-Dye Theorem

Throughout this chapter we are following the techniques of R. Bhatia and J.
A. Dias da Silva that were used to obtain the value of the norm for the first
derivative. In their work they used the famous Russo-Dye theorem which
is sometimes phrased as every positive linear operator on Mn(C) attains its
norm at the identity matrix.

We intend to calculate the norm of higher order derivatives, so we need
a multilinear version of this result. But first we present the classical result
and its well known corollary.

Let ϕ : Mn(C) 7−→ Mn(C) be a linear operator, ϕ is unital if ϕ(I) = I,
where I is the identity matrix of order n.

Definition 3.2.4. Suppose Φ : (L(V ))k −→ L(U) is a multilinear operator
and X1, . . . , Xk ∈ L(V ). Φ is said to be positive if Φ(X1, . . . , Xk) is a positive
semidefinite linear operator whenever X1, . . . , Xk are so.

Theorem 3.2.5 (Russo-Dye Theorem). If ϕ is a positive and unital operator
on Mn(C), then ‖ϕ‖ = 1.

Corollary 3.2.6. Let ϕ be a positive linear operator, then ‖ϕ‖ = ‖ϕ(I)‖.

We need some definitions and some technical results to prove the multi-
linear version of the previous theorem.

First we need the following result from [4]. Let us recall that a linear
operator K is said to be a contraction if ‖A‖ ≤ 1.

Proposition 3.2.7. Let A and B be positive matrices of order n. Then the

matrix

(
A X
X∗ B

)
is positive if and only if X = A

1
2KB

1
2 , for some contrac-

tion K.

Now we can prove a multilinear version of the Russo-Dye theorem. This
proof was presented to us by Tanvi Jain and can be found in [8]

Theorem 3.2.8 (A multilinear Russo-Dye Theorem). Let Φ : (L(V ))k → L(U)
be a positive multilinear operator. Then

‖Φ‖ = ‖Φ(I, I, . . . , I)‖.



3.2. NORM OF THE K-THE DERIVATIVE OF Kχ(T ) 81

Proof. Let U1, . . . , Uk be unitary operators. First we will show that

‖Φ(U1, . . . , Uk)‖ ≤ ‖Φ(I, I, . . . , I)‖.

For each i = 1, . . . , k, let Ui =

ri∑
j=1

λijPij be the spectral decomposition

for Ui. Then

Φ(U1, . . . , Uk) =

r1∑
j1=1

r2∑
j2=1

. . .

rk∑
jk=1

λ1j1λ2j2 . . . λkjkΦ(P1j1 , P2j2 , . . . , Pkjk).

Let X = Φ(I, I, . . . , I) and Y = Φ(U1, . . . , Uk), then we have(
X Y
Y ∗ X

)
=

r1∑
j1=1

r2∑
j2=1

. . .

rk∑
jk=1

(
1 λ1j1λ2j2 . . . λkjk

λ1j1λ2j2 . . . λkjk 1

)
⊗ Φ(P1j1 , P2j2 , . . . , Pkjk)

(3.5)
is positive semidefinite and hence by the last proposition we can conclude
that

Φ(U1, . . . , Uk) = Φ(I, I, . . . , I)
1
2KΦ(I, I, . . . , I)

1
2

for some contraction K. Thus

‖Φ(U1, . . . , Uk)‖ ≤ ‖Φ(I, I, . . . , I)‖.

In order to prove the other inequality let A1, A2, . . . , Ak be contractions.

Then each Ai =
Ui + Vi

2
for some unitaries Ui, Vi and i = 1, 2, . . . , n, and

hence

‖Φ(A1, A2, . . . , Ak)‖ = ‖1

2
Φ(U1 + V1, U2 + V2, . . . , Uk + Vk)‖

≤ 1

2k

2∑
j1=1

2∑
j2=1

. . .

2∑
jk=1

‖Φ(Xj1, Xj2, . . . , Xjk)‖,

where X1i = Ui and X2i = Vi.
Since each ‖Φ(Xj1, Xj2, . . . , Xjk)‖ ≤ ‖Φ(I, I, . . . , I)‖ and there are 2k

summands, we have ‖Φ(A1, A2, . . . , Ak)‖ ≤ ‖Φ(I, I, . . . , I)‖.
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Now we can apply this result to our particular case.

We have thatDkKχ(P ) is a positive multilinear operator, since ifX1, . . . , Xk

are positive semidefinite, then by the formula in Theorem 2.6.4, Dk(P )(X1, . . . , Xk)
is the restriction of a positive semidefinite operator to an invariant subspace,
and thus is positive semidefinite.

Therefore,

‖DkKχ(T )‖ = ‖DkKχ(P )‖ = ‖DkKχ(P )(I, I, . . . , I)‖.

Now we have to find the maximum eigenvalue of the positive operator
DkKχ(P )(I, I, . . . , I). This will be done by finding a basis of Vχ formed by
eigenvectors of DkKχ(P )(I, I, . . . , I). We will see that if E = {e1, . . . , en}
is an orthonormal basis of eigenvectors for P , then {e∗α : α ∈ ∆̂} will be
a basis of eigenvectors for DkKχ(P )(I, I, . . . , I) (in general, it will not be
orthonormal).

Definition 3.2.9. Let 1 ≤ k ≤ m and β ∈ Qm−k,k. Define ⊗mβ P as the
tensor X1 ⊗ · · · ⊗Xm, in which X i = P if i ∈ Im β and X i = I otherwise.

Lemma 3.2.10. Suppose P ∈ L(V ) and let I be the identity operator.

1. We have

P ⊗̃ · · · ⊗̃P︸ ︷︷ ︸
m−k times

⊗̃I⊗̃ · · · ⊗̃I =
k!(m− k)!

m!

∑
β∈Qm−k,k

⊗mβ P.

2. Let v1, . . . , vm be eigenvectors for P with eigenvalues λ1, . . . , λm. Then∑
β∈Qm−k,m

⊗mβ P (v1 ⊗ · · · ⊗ vm) = pm−k(λ1, . . . , λm)v1 ⊗ . . .⊗ vm

Proof. 1. It is a matter of carrying out the computations: for each β, the
summand ⊗mβ P appears k!(m − k)! times in P ⊗̃ · · · ⊗̃P ⊗̃I⊗̃ · · · ⊗̃I, since
there are k repetitions of the symbol I and m− k repetitions of the symbol
P .

2. For each β ∈ Qm−k,m we have that

⊗mβ P (v1 ⊗ · · · ⊗ vm) =
m−k∏
i=1

λβ(i)(v1 ⊗ · · · ⊗ vm).
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So, ∑
β∈Qm−k,m

⊗mβ P (v1 ⊗ · · · ⊗ vm) =
∑

β∈Qm−k,m

m−k∏
i=1

λβ(i)(v1 ⊗ · · · ⊗ vm)

= pm−k(λ1, . . . , λm)v1 ⊗ . . .⊗ vm.

This concludes the proof.

The following proposition gives us the expression for all the eigenvalues
of DkKχ(P )(I, I, . . . , I).

Proposition 3.2.11. Let α ∈ ∆̂ and define

λ(α) := k! pm−k(να).

Then λ(α) is the eigenvalue of DkKχ(P )(I, I, . . . , I) associated with the eigen-
vector e∗α.

Proof. Recall that E = {e1, . . . , en} is an orthonormal basis of eigenvectors
for P , with eigenvalues ν1, . . . , νn. For every α ∈ Γm,n we have

e∗α =
χ(id)

m!

∑
σ∈Sm

χ(σ)e⊗ασ.

Then

DkKχ(P )(I, . . . , I)(e∗α) =
m!

(m− k)!
(P ⊗̃ · · · ⊗̃P ⊗̃I⊗̃ · · · ⊗̃I)(e∗α)

=
m!

(m− k)!

k!(m− k)!

m!

∑
β∈Qm−k,m

⊗mβ P (e∗α)

= k!
∑
σ∈Sm

χ(σ)
∑

β∈Qm−k,m

⊗mβ P (e⊗ασ)

= k!
∑
σ∈Sm

χ(σ)pm−k(νασ)e⊗ασ

= k!
∑
σ∈Sm

χ(σ)pm−k(να)e⊗ασ

= k!pm−k(να)e∗α

In the last equations we used the previous lemma and the symmetry of the
polynomial pm−k. So the eigenvalue associated with e∗α is λ(α).
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We have obtained the expression for all the eigenvalues of the operator
DkKχ(P )(I, . . . , I), now we have to find the largest one.

Lemma 3.2.12. Suppose α, β ∈ Γm,n. If α and β are in the same orbit, then

λ(α) = λ(β).

Proof. If α and β are in the same orbit, then there is σ ∈ Sm such that
ασ = β. So by the definition of the symmetric elementary polynomials, we
have

pm−k(νβ) = pm−k(νασ) = pm−k(να).

This concludes the proof.

We have already seen that every orbit has a representative in Gm,n, and
this is the first element in each orbit (for the lexicographic order). Therefore,
the norm of the k-th derivative of Kχ(T ) is attained at some λ(α) with
α ∈ ∆ ⊆ Gm,n. We now compare eigenvalues coming from different elements
of ∆.

Lemma 3.2.13. Let α, β be elements of ∆ ⊆ Gm,n. Then λ(α) ≥ λ(β) if
and only if α precedes β in the lexicographic order.

Proof. The result follows directly from the expression of the eigenvalues of
DkKχ(P )(I, . . . , I) given in Proposition 3.2.11.

We are now ready to complete the proof of the main theorem. From now
on we will also write χ to represent the partition of m associated with the
irreducible character χ.

Proof. (of Theorem 3.2.1). We have that ω(χ) ∈ ∆, so we must have

‖DkKχ(P )(I, . . . , I)‖ ≥ λ(ω(χ)).

Now let α ∈ ∆. Using the results from Theorem 3.1.13 and Remark 3.1.11,
we have that χ = µ(ω(χ)) majorizes µ(α).
By the definition of multiplicity partition, we have that ω(χ) precedes α in
the lexicographic order. By Lemma 3.2.13, we then have

λ(ω(χ)) ≥ λ(α)

and

‖DkKχ(T )‖ = ‖DkKχ(P )(I, . . . , I)‖ = λ(ω(χ)) = k! pm−k(νω(χ)).

This concludes the proof of the theorem.
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Now observe that the formulas obtained by Jain [17] and Grover [15] are
particular cases of this last formula.

If χ = (m, 0, · · · , 0) then Kχ(T ) = ∨mT . In this case νω(χ) = (ν1, . . . , ν1).
So we have

‖Dk ∨m T‖ = k!pm−k(νω(χ))

= k!pm−k(ν1, ν1, . . . , ν1)

= k!

(
m

k

)
νm−k1 =

m!

(m− k)!
νm−k1

=
m!

(m− k)!
‖T‖m−k

Also, if χ = (1, 1, · · · , 1), thenKχ(T ) = ∧mT and νω(χ) = (ν1, ν2, · · · , νm).
In this case we have that

‖Dk ∧m T‖ = k! pm−k(ν1, ν2, · · · , νm),

where pm−k(ν1, ν2, · · · , νm) is the symmetric elementary polynomial of degree
m− k calculated on the top m singular values of T .

Our main formula also generalizes the result for the norm of the first
derivative of Kχ(T ) obtained by R. Bhatia and J. Dias da Silva in [6]. Just
notice that if k = 1, we have that Q1,m = {1, 2, · · · ,m}, so

‖DKχ(T )‖ = pm−1(νω(χ))

= νω(χ)(2)νω(χ)(3) · · · νω(χ)(m) + νω(χ)(1)νω(χ)(3) · · · νω(χ)(m) + . . .

. . .+ νω(χ)(1)νω(χ)(2) · · · νω(χ)(m−1)

=
m∑
j=1

m∏
i=1
i 6=j

νω(χ)(i).

3.3 Norm of the k-th Derivative of the Im-

manant

We now wish to establish an upper bound for the k-th derivative of the
immanant, which we recall is defined as

dχ(A) =
∑
σ∈Sn

χ(σ)
n∏
i=1

aiσ(i),
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where A is a complex n × n matrix. For this, we also recall the definition
of Kχ(A), the m-th χ-symmetric tensor power of the matrix A. We fix an
orthonormal basis E in V , and consider the linear endomorphism T such
that A = M(T,E). We have seen that E ′ = (e∗α : α ∈ ∆̂) is the induced basis

of Vχ. Recall that E = (vα : α ∈ ∆̂) is the orthonormal basis of the m-th
χ-symmetric tensor power of the vector space V obtained by applying the
Gram-Schmidt orthonormalization procedure to E ′. We have that

Kχ(A) = M(Kχ(T ), E)

The matrix Kχ(A) has rows and columns indexed in ∆̂, with Qm,n ⊆ ∆̂.
This definition admits, as special cases, the m-th compound and the m-th
induced power of a matrix, as defined in [25, p. 236].

Since the basis chosen in Vχ is orthonormal, the result for the norm of
the operator applies to this matrix:

‖Kχ(A)‖ = k! pm−k(νω(χ)),

where ν1 ≥ . . . ≥ νn are the singular values of A. This equality is what we
will need for the main result in this section.

We have denoted by immχ(A) the matrix with rows and columns indexed

by ∆̂, whose (γ, δ) entry is dχ(A[γ|δ]). Let B = (bαβ) be the change of basis

matrix from E to E ′. This means that for each α ∈ ∆̂,

vα =
∑
γ∈∆̂

bγαe
∗
γ.

This matrix B does not depend on the choice of the basis E as long as it is
orthonormal (it encodes the Gram-Schmidt procedure applied to E ′).

With these matrices, we can write

Kχ(A) =
χ(id)

m!
B∗ immχ(A)B. (3.6)

We also have

DkKχ(A)(X1, . . . , Xk) =
χ(id)

(m− k)!
B∗miximmχ(A;X1, . . . , Xk)B

Notice the similarity with the formula in Theorem 2.6.4.

We now use the results on the norm in order to get an upper bound for
the norm of the k-th derivative of the immanant.
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Theorem 3.3.1. Keeping with the notation established, we have that, for
k ≤ n,

‖Dkdχ(A)‖ ≤ k! pn−k(νω(χ))

Proof. We always have Qm,n ⊆ ∆̂.

We now take m = n and denote γ := (1, 2, . . . , n) ∈ Qn,n ⊆ ∆̂ (this is the
only element in Qn,n). By definition, dχ(A) is the (γ, γ) entry of immχ(A),
and, according to formula (3.6), we have

immχ(A) =
n!

χ(id)
(B∗)−1Kχ(A)B−1.

Since multiplication by a constant matrix is a linear map, we have

Dk((B∗)−1Kχ(A)B−1)(X1, . . . , Xk) = (B∗)−1DkKχ(A)(X1, . . . , Xk)B−1.

We denote by C the column γ of the matrix B−1:

C = (B−1)[γ] = (b′αγ), α ∈ ∆̂.

Then

Dkdχ(A)(X1, . . . , Xk) =
n!

χ(id)
C∗DkKχ(A)(X1, . . . , Xk)C.

By formula (1.2), we have that

‖e∗γ‖2 =
χ(id)

n!
.

By definition of the matrix B, we have

e∗γ =
∑
β∈∆̂

b′βγvβ

with C = [b′βγ : β ∈ ∆̂]. Since the basis {vα : α ∈ ∆̂} is orthonormal, we
have

‖C‖2 = ‖C‖2
2 = ‖e∗γ‖2 =

χ(id)

n!
,
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where ‖C‖2 is the Euclidean norm of C. Therefore,

‖Dkdχ(A)‖ =
n!

χ(id)
‖CDkKχ(A)C∗‖

≤ n!

χ(id)
‖C‖2‖DkKχ(A)‖

= k! pn−k(νω(χ)).

This concludes the proof.

This upper bound coincides with the norm of the derivative of the de-
terminant obtained in [9]. When dχ = per, the upper bound presented in
formula (52) in [8] is, using our notation, (n!/(n − k)!)‖A‖n−k. Using our
formula, we get the same value: for ω(χ) = (1, 1, . . . , 1),

k! pn−k(νω(χ)) = k!

(
n

n− k

)
νn−k1 =

n!

(n− k)!
‖A‖n−k.

It is also shown that for

A =

(
1 0
0 0

)
we have strict inequality, for dχ = per.

One of the purposes of having upper bounds for norms is the possibility
of estimating the magnitude of perturbations. Taylor’s formula states that
if f is a p times differentiable function between two normed spaces, then

f(a+ x)− f(a) =

p∑
k=1

1

k!
Dkf(a)(x, . . . , x) +O(‖x‖p+1).

Therefore,

‖f(a+ x)− f(a)‖ ≤
p∑

k=1

1

k!
‖Dkf(a)‖‖x‖k

Using our formulas, we get the following result.
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Corollary 3.3.2. According to our notation, we have, for T,X ∈ L(V ) and
A, Y ∈Mn(C):

‖Kχ(T )−Kχ(T +X)‖ ≤
m∑
k=1

pm−k(νω(χ))‖X‖k,

|dχ(A)− dχ(A+ Y )| ≤
n∑
k=1

pn−k(νω(χ))‖Y ‖k.
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Concluding Remarks

If you want a happy ending, that depends, of course, on where
you stop the story...

Orson Welles

The aim of this dissertation has been to generalize the formulas of higher
order derivatives of certain matrix functions and its norms. Throughout this
process we have proved different formulas using several different processes
and techniques. Sometimes it was purely a matter of using classical results
of multilinear algebra, other times we had to apply heavy and new technical
results of functional and matrix analysis.

Fortunately, our goal has been attained and in a way that we first did
not expect, some of the general formulas look simpler than the ones proved
in particular cases. Still, we have various questions that are unanswered.

1. In [8] the authors have proved that their results for norms hold also
in the infinite dimensional case. Can we state the same formulas if
we consider the infinite dimension case, and if so, which adaptations
should be made?

2. We have found an upper bound for the norm of Dkdχ(A). It is inter-
esting to find a matrix A where the equality holds and also to check if
the inequality is sharp.

3. While generalizing the formulas for DkKχ(A)(X1, X2, . . . , Xk), one of
our drawbacks is the fact that we do not know the basis of Vχ in the
general case. However, if the irreducible character χ is associated with
a special partition of m, usually called a hook partition, there is quite
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some work done in these cases and the basis of the space Vχ is known.
The formulas that we obtained might be improved, if we consider these
family of irreducible characters.
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