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RESUMO 
 

 

São necessários esforços adicionais para promover a utilização de sistemas de 

produção de energia fotovoltaica conectados à rede como uma fonte fundamental de 

sistemas de energia elétrica, em níveis de penetrações mais elevados. Nesta tese é  abordada 

a variabilidade da geração elétrica por sistemas fotovoltaicos e é desenvolvida com base na 

premissa de que o desempenho e a gestão de pequenas redes elétricas podem ser 

melhorados quando são utilizadas as informações de previsão de energia solar. É 

implementado um sistema de arquitetura de rede neuronal para o modelo auto-regressivo 

não-linear com variáveis eXógenas (NARX) utilizando, não só, dados meteorológicos 

locais, mas também medições de sistemas fotovoltaicos circunjacentes. Diferentes 

configurações de entrada são otimizadas e comparadas para avaliar os efeitos no 

desempenho do modelo para previsão. A precisão das previsões revelou melhoria quando 

lhe são adicionadas informações de sistemas fotovoltaicos circunjacentes. Após ser 

selecionada a configuração de entrada da rede com o melhor desempenho, são testadas 

previsões com várias horas de antecedência e comparadas com o modelo da persistência, 

para verificar a precisão do modelo na previsão de diferentes horizontes temporais de curto 

prazo. O modelo NARX superou, claramente, o modelo de persistência, resultando num 

RMSE de 3,7% e de 4,5% aquando da antecipação das previsões de 5min e 2h30min, 

respetivamente. 

 

Palavras-chave: Fotovoltaico, Redes Neuronais Artificiais, Modelo NARX, Previsão de 

Séries Temporais  
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ABSTRACT 

 
 
 Additional efforts are required to promote the use of grid-connected photovoltaic 

(PV) systems as a fundamental source in electric power systems at the higher penetration 

levels. This thesis addresses the variability of PV electric generation and is built based on 

the premise that the performance and management of small electric networks can be 

improved when solar power forecast information is used. A neural network architecture 

system for the Nonlinear Autoregressive with eXogenous inputs (NARX) model is 

implemented using not only local meteorological data but also measurements of 

neighbouring PV systems. Input configurations are optimized and compared to assess the 

effects in the model forecasting performance. The added value of the information of the 

neighbouring PV systems has demonstrated to further improve the prediction accuracy. 

After selecting the input configuration with the best network performance, forecasts up to 

several hours in advance are tested to verify the model forecasting accuracy for different 

short-term time horizons and compared with the persistence model. The NARX model 

clearly outperformed the persistence model and yielded a 3.7% and a 4.5% RMSE for the 

anticipation of the 5min and 2h30 forecasts, respectively. 
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1. INTRODUCTION 

1.1. Introduction 

 The world’s electricity consumption is growing exponentially as a consequence of world 

population growth and increasing per capita demand. As a result, primary energy demand will 

increase and, without appropriate measures, an increase in energy related greenhouse gas (GHG) 

emissions is expected with severe effects on our climate. However, there are development paths that 

allow GHG concentrations to stabilize, such as the replacement of fossil fuels (whose reserves are 

being rapidly depleted) by renewable energy resources, for instance, solar power. Thus, not only a 

decrease of the GHG emissions but also a reduction of the energy dependence is possible to 

establish (Heimo, Sempreviva, Kuik, Gryning, 2012). 

Nowadays, electrical grids are mostly centralized, transferring power between big power 

plants towards end users; however, decentralized production units are expected to increase 

significantly. Approaches to increase electricity transfers amongst grids at different levels and 

penetration of renewable energies may provide a more efficient grid management. The challenge for 

electrical grid operators is to synchronize, continuously, the demand with energy supply. 

 Accordingly, as global demand for renewable energy is increasing, the economic and 

technical issues of solar power penetrations into the power grid must be addressed. The flat-panel 

PV, Concentrated Solar Power (CSP), and concentrated PV (CPV) systems are considered the most 

liable sources of solar energy technology to compete with fossil fuel energy production in the near 

future. However, natural variability of the solar resource, seasonal deviations in production and the 

high cost of energy storage raises concerns regarding reliability and feasibility of these systems.  

Moreover, solar plants usually have the support of generators for periods of high variability, 

increasing the costs with personnel and financially (Inman, Pedro, & Coimbra, 2013). 

 Unlike conventional power sources, future electricity supply cannot be precisely planned 

beforehand. This is due to the fact that solar energy is highly dependent on weather conditions 

especially cloud structure and day/night cycles. Clouds can cause significant ramps in solar 

insolation and PV output. Therefore, integration of electricity produced by solar power systems 

requires accurate solar energy potential availability evaluation and several time horizons forecasts 

because electricity generation varies in time and, hence, energy production pattern does not always 

follow the load demand. To successfully integrate increased levels of solar power production while 

maintaining reliability is the biggest challenge for solar energy supply and makes the availability of 

accurate information an important necessity. 

 Solar forecasts on multiple time horizons play a fundamental role in storage management of 

PV systems, control systems in buildings, control of solar thermal power plants, as well as for the 

grids’ regulation and power scheduling. It allows grid operators to adapt the load in order to 

optimize the energy transport, allocate the needed balance energy from other sources if no solar 

energy is available, plan maintenance activities at the production sites and take necessary measures 

to protect the production from extreme events.  

Depending on the purpose, different sorts of information are needed, such as the long term 

historical data sets of the expected energy yield (in order to assess sites where solar power systems 

can possible be implemented), real-time data sets (supports and optimizes energy production 

management), forecasted site irradiances (supports regional power grids management), local solar 

resource characterization and reliable estimates on the availability of solar irradiance (to uphold 

socio-economic planning) and, finally, real-time datasets on weather conditions (supporting 

forecasting of electricity demand, since this is essential to determine prices and trading of electric 

power) (Espinar, Aznarte, Girard, Moussa & Kariniotakis, 2010).  
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1.2. Motivation and Goals 

Accurate solar forecasting methods improve the quality of the energy delivered to the grid 

and reduce the additional cost associated with weather dependency. The combination of these two 

factors has been the main motivation behind several research activities.  

Although the existent solar forecast systems remain evasive, several approaches that 

combine atmospheric physics, solar instrumentation, machine learning, forecasting theory and 

remote sensing have been developed and presented promising results in the solar energy 

meteorology field.  A recent study regarding a power forecasting system designed to optimize the 

scheduling of a small energy network including PV is described in (Kudo, Takeuchi, Nozaki, End, 

& Sumita, 2009). Using advanced communication networks and power predictions, the electric 

power and heat may be controlled especially for optimizing the energy flow. Also, a different study 

(Rikos, Tselepis, Hoyer-Klick, & Schroedter-Homscheidt, 2008) shows the influence of weather 

disturbances on the stability of an island micro-grid power system. They described how the stability 

may be improved when information on cloud cover approaching the island is available 15 minutes 

in advance. They also conclude that this information allows the start-up of power backup or the 

disconnection of less critical loads.  

Some methods behave better for shorter time horizons and others perform better for longer 

time horizons. Usually, the time horizon is divided in long-term (6 hours up to days ahead) and 

short-term (up to 6 hours ahead). The day-ahead forecasts are required by about noon for each hour 

of the next day, whereas, for example in California, the intra-day ahead forecasts have to be 

submitted 105 minutes prior to each operating hour and at the same time have to provide advisory 

forecasts for the 7 hours after the operating hour (Pelland, Remund, Kleissl, Oozeki, De & 

Brabandere, 2013).  Numerical weather forecasts, times series approaches, neural networks, use of 

satellite and total sky images are amongst the most used methodologies.  

 Numerical weather forecasts (NWP) are a common strategy for long time horizons of more 

than 6 hours forecasts. Basically, NWP predicts the weather by using current conditions as input 

into mathematical models and it has been used to forecast solar irradiance for up to several days in 

(Hammer, Heinemann, Hoyer-Klick, Lorenz, Mayer, & Schroedter-Homscheidt, 2007), (Lorenz, 

Hurka, Karampela, Beyer, & Schneider, 2008) and (Remund, Perez, & Lorenz, 2008). However, 

this model does not have the spatial or temporal resolution for a detailed mapping of small scale 

features and cannot predict how a certain solar panel is affected by cloud fields.  

 However, there are also classic approaches, as the times series approach, that traditionally 

forecast solar energy based on the time series of weather conditions and solar energy. Regarding 

long-term forecasting, the models used in (Bie & Musikowski, 2008), (Brinkworth, 1977) and (Puri, 

1978) are based on weather station data and climate time series. On the other hand, for a time scale 

smaller than a day, information about cloud cover is necessary. In (Bacher, Madsen, Nielsen, & 

Plads,  2009) and (Dazhi, Jirutitijaroen, & Walsh, 2012)  Autoregressive Models (AR), Moving 

Averages (MA) and Autoregressive Models Moving Averages (ARMA) are used to model linear 

dynamics structures and forecast hourly solar irradiance times series using cloud index.  

Given the limitations of the basic models previously presented, research has been done in 

nonlinear models that show more flexibility in capturing the data underlying characteristics 

(Artificial Neural Networks). In order to fit the network, training of the model is involved over the 

known input and output values. The authors in (Zeng & Qiao, 2011) show that an artificial neural 

network-based model for short-term solar power prediction outperforms the AR model.  
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 The use of total sky and satellite images stand out as models for very short-term forecasting 

because incorporate information on the actual atmospherics state by applying image processing and 

cloud tracking techniques. In (Jayadevan, Rodriguez, Lonij, & Cronin, 2012) the authors analyzed 

digital images taken with a ground-based sun tracking camera and discuss statistics of ramp rates 

and duration of cloud induced intermittencies; Also, (Marquez & Coimbra, 2012) describes several 

sky image processing techniques relevant to solar forecasting, including velocity field calculations, 

spatial transformation of the images, and cloud classification. 

 Furthermore, satellite imagery is based on the premise that clouds reflect light from earth 

into the satellite, leading to the detection and ability to calculate the amount of light transmitted. 

The low spatial and temporal resolution causes satellite forecasts to be less accurate than total sky 

imagery. However, in the 1 to 5 hours range satellite imagery has a better forecasting accuracy. In 

(Hoff & Perez, 2012), the authors suggested that satellite-based irradiance has an annual error 

comparable to ground sensors and is suitable to provide the data required to perform high 

penetration PV studies.  

As illustrated in Figure 1, for the very short-term time horizon, from minutes up to a few 

hours, time series models using on-site irradiance measurements or power data as input are 

adequate. Moreover, regarding Intra-hour forecasts of clouds and irradiance with a high spatial and 

temporal resolution total sky images are the best option. Forecasts based on cloud motion vectors 

from satellite images show good performance for a temporal range of 30 minutes to 6 hours. 

Finally, grid integration of PV power mainly requires forecasts up to 2 days ahead or even beyond 

and these forecasts are based on NWP models.  

 

 

Figure 1 - Relation between forecasting horizons, forecasting models and the related activities. 
(Diagne, David, & Boland, 2012) 
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Figure 1 depicts the temporal and spatial resolution of different forecasting models. 

ARIMA models present significant reliability in the statistical forecasting model range. However, 

one verifies in Figure 2 that the persistence
1
 model often achieves better accuracy than ARIMA-

type models for real time forecasts. The choice of the model depends critically on the horizon of 

forecast. At higher frequency, short-term patterns dominate and Artificial Neural Networks 

demonstrated good results. (Diagne e al., 2012)   

 

 
 

The present work intends to use an artificial neural network (ANN) model to capture the 

short-term ramping patterns caused by cloud formations and to forecast a PV system power output 

up to 1 day ahead. Moreover, using different input combinations, we want to assess whether or not 

solar power forecasts can be improved by knowing beforehand the power output of other 

neighbouring grid-connected PV systems and local meteorological information. 

 

1.3. Thesis Scope 

 

In section 2, an introduction to the architecture and relevant variations of neural networks is 

presented. Furthermore, typical photovoltaic systems are described and the current state of the art of 

solar forecasting with artificial neural networks is reviewed. Additionally, several functions that can 

evaluate the quality of the neural network predictions are indicated. Section 3 describes the design 

and implementation of the NARX model using neural networks. In section 4, the results of the 

experiments and tests are presented and thoroughly discussed. Finally, in section 5, the conclusion 

of the work and future research expectations in the solar forecasting domain are elaborated. 

  

                                                
 

1
 Simple model that meets the definition: X n,y = X n-k,y where k denotes the lag (k = 1,2,3,..,m). 

Figure 2 - Classification of the forecasting models (Temporal Resolution vs Spatial Resolution). 
(Diagne et al., 2012) 
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2. PHOTOVOLTAIC FORECASTING 

 

2.1. Artificial Neural Networks  

 

A thorough understanding of the architecture of neural networks is important to avoid 

disappointing results and, thus, identify and establish better parameters to improve the network 

performance. Therefore, this section describes the fundamentals of artificial neural networks. 

 

 

 
The design and functionalities of the artificial neuron derive from the observation of the 

complex biological neuron in which distributed information is processed in parallel by mutual 

dynamical iterations of the neuron. Accordingly, there are some similarities between the biological 

neural network and the artificial neural network and one can verify it in Figure 3. In the biological 

neuron the information comes into the neuron via dendrite, soma processes it and passes it on via 

axon. Similarly, in the artificial neural network the information comes from the inputs that are 

weighted. Consequently, in the artificial neural body the weighted inputs and bias are summed and 

processed with a transfer function. After being processed, the information is passed via outputs.  

Different learning rules can be chosen and applied, and, consequently, the weights and bias 

are adjustable parameters so that the neuron input/output achieves a specific end. In any artificial 

neural network model, it is important to consider the structure of the nodes, topology of the network 

and the learning algorithm. Therefore a broader view of the mathematical and fundamentals and 

algorithms will be presented. 

 

2.1.1. Artificial Neural Networks: Definitions and Properties 
 

2.1.1.1. Single Input-Neuron 

 

A neural network consists of simple processing units, the neuron, and directed, weighted 

connections between those neurons (Figure 4). The inputs channels have an associated weight, 

which means that the incoming information    is multiplied by the corresponding weight   . The 

network input is the result of the latter process, so-called propagation function. Here, the strength of 

a connection between two neurons   and   is a connecting weight and illustrated by    . (Kriesel, 

2005) 

Figure 3 - Biologic and artificial neuron designs. (Krenker, Bešte, & Kos, 2011) 
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These connecting weights can be inhibitory or excitatory and by being connected with the 

neurons, data are transferred. Figure 4 illustrates the single-input neuron.    is formed after the 

scalar input   is multiplied by the scalar weight  . Consequently,  , often referred to as the net 

input is processed into a transfer or activation function  . The latter process gives the scalar neuron 

output  . Thus, the output is a function of the particular activation function chosen and the bias. The 

latter is similar to a weight, albeit it has a constant input of 1. This bias term is used by the neuron 

to generate an output signal in the absence of input signals. 

 

 

 

2.1.1.2. Neuron with vector input 

 

The simple neuron previously shown can be extended to handle inputs that are vectors.  The 

concept is the same as before: the individual elements in a neuron with a single R-element input, 

vector            are multiplied by weights                 and then fed to the summing 

junction. The sum of the weighted values is   , the product of the matrix   and the vector  . In 

order to form the network input  , there is a bias   in the neuron which is summed with the 

weighted inputs. Consequently, the network input n is the argument of the activation function  , 

 

                           (1) 

 

 

 

  

Figure 4 - Single-Input Neuron. (Beale, Hagan, & Demuth, 2013) 

Figure 5 - Neuron with vector input. (Beale et al., 2013) 
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2.1.1.3. Transfer function 

 

Transfer function or activation function controls the amplitude of the output of the neuron 

and is based on the neurons reactions to the input values and depends on the level of activity of the 

neurons (activation state). This premise is founded on the biological model, where every neuron is, 

at all times, somewhat active. Essentially, neurons are activated when the network input exceeds the 

uniquely maximum gradient assigned value of the activation function, known as threshold. 

Accordingly, near the threshold value the activation function has a rather sensitive reaction. The 

activation function is dependent of the previous activation state of the neuron and the external input 

and is defined as 

  ( )      (    ( )   (   )   ) 
(2) 

  

 

This equation demonstrates how the network input    , previous activation state   (   ) 

and the influence of the threshold   , is transformed into a new activation state   ( ). It must be 

emphasized that though the threshold values are different for each neuron, the activation function 

embraces all neurons.   

Two of the most commonly used activation functions in neural networks are the logistic and 

hyperbolic tangent function. Both functions are used because of the simplicity in finding its 

derivatives. Usually, these functions are applied in the hidden layer of the network.  

The logistic function,         ( )  
 

  (     )
  takes the input with any value between plus 

and minus infinity and maps the output to the range values (0, 1).  The hyperbolic tangent: 

     ( )  
      

      
 also takes the input with any value between plus and minus infinity and squashes 

the output into the range -1 to 1. The selection of the activation function provides nonlinear limits to 

the hidden neurons and influences the performance of the networks. To avoid bad performances, 

one usually preprocesses the input data, for example, by normalizing the data.  

Another relevant function is the linear function  ( )   , where the inputs and outputs 

range from minus infinity to plus infinity, which it is generally used in the output layer of the 

network. 

 

2.2. Neural Networks Architecture 

 

The neuron is a nonlinear, parameterized function of its input. The configuration of the 

nonlinear functions of two or more neurons is a neural network. The next sections introduce the 

different neural networks classes: feedfoward networks and recurrent (feedback) networks. 
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2.2.1. Feedforward Neural Networks 

 

A Feedforward neural network is a nonlinear function of its inputs, which is the 

composition of the functions of its neurons. As Figure 6 illustrates, the information runs through the 

connected neurons only in the forward direction, from inputs to outputs. Graphically, the vertices 

are the neurons and the edges are the connections; these types of networks do not have back-loops. 

Obviously, the term connection is taken metaphorically because the computations by each neuron 

are implemented as software programs.  

 

2.2.2.  Multilayer Networks 
 

Most neural networks applications require the use of multilayer networks with a similar 

topology as the one in Figure 6, which illustrates how the network computes N0 functions of the 

input variables of the network; each output is a nonlinear function of the nonlinear functions 

computed by the hidden neurons. In other words, in the Feedforward neural network the    

nonlinear functions are computed based on the previous computation of the    functions computed 

by the hidden neurons.  

Feedforward neural networks are considered static neural networks models, that is, models 

applicable to processes where the setting for each piece are determined up front, and are not altered 

for that piece using feedback during the process. (Coit, Jackson, & Smith, 1997) 

 Furthermore, Feedforward multilayer networks that use sigmoid nonlinearities are also 

designated as Multilayer Perceptron (MLP) networks. The following equations and Figure 7 present 

the structure and calculations required to generate outputs of single multilayers Feedforward 

artificial neural networks.  

 

     (       ) (3) 

 

     (       ) (4) 

Figure 6 - Feedfoward neural network with n inputs, a layer of Nc hidden neurons, and N0 
output neurons. (Krenker et al., 2011) 
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     (       ) (5) 

 

     (       ) (6) 

 

  

     (            ) (7) 

 

     (            ) (8) 

 

  

    (            ) (9) 

 

     [
  (  [    [       ]      [       ]]      

    (  [    [       ]      [       ]    ])    
] 

(10) 

 

 

 
 

 
 

2.2.3.  Multilayer Perceptron and the hidden nodes 
 

The Multilayer Perceptron is one of the most important models in the artificial neural 

networks domain. For prediction purposes, data is presented to the MLP as a sliding window over 

the time series observations. The task of the MLP is to model the underlying generator of the data 

during training, so that a valid forecast is made when the trained neural network is subsequently 

presented with a new input vector value. (Bramer, 2006)  

Figure 7 - Multilayer artificial neural network. (Krenker et al., 2011) 
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The inherent capability of the three-layer network structure to carry out any arbitrary input-

output mapping highly qualifies the MLP networks for efficient time series forecasting. When 

examples of the observation data are trained, the networks can learn the characteristic features 

“hidden” in the examples of the collected data and even generalize the knowledge learnt. (Palit & 

Popovic, 2005) 

The hidden layer nodes are fundamental, albeit there is a large controversy regarding the 

number of nodes and hidden layers that are necessary to guarantee a good network performance. 

Due to the fact that no theoretical answer exists, heuristics processes are applied and have been 

generating some rules of thumb depending on the task. Usually, one hidden layer is enough to 

characterize the task because several hidden layers may generate unwanted complexity to the 

problem. (Coit et al.,1997) 

In general, one should select enough hidden neurons to generate a solution to a task. 

However, if the group of patterns of input available is not enough, it is not recommended to have an 

amount of nodes that generates an estimation of the weights that is not trustworthy.  

 

2.2.4. Recurrent Neural Networks 
 

Recurrent Neural Networks are similar to Feedfoward neural networks but with no 

limitations regarding back-loops, that is, the network exhibits cycles (Figure 8). Therefore, 

information may be transmitted both forward and backwards. Consequently, an internal state of the 

network is created displaying a dynamic temporal behaviour. (Krenker et al., 2011) 

 

 

 

Given the fact that the output of a neuron cannot be a function of itself but can be a function 

of past values, these architectures require time to be explicitly taken into consideration.  The 

ordinary framework applied to recurrent networks is the discrete-time system, which is described 

mathematically by recurrent equations. 

These equations are discrete-time equivalents of continuous-time differential equations. 

Therefore, besides being assigned a parameter as in Feedforward neural networks, a delay is 

assigned to each connection of a recurrent neural network (this delay can be made equal to zero). 

Each delay is a numeric value multiple of an elementary time that is considered as a time unit.  

Figure 8 - Fully recurrent artificial neural network. (Krenker et al., 2011) 
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Essentially, a discrete-time recurrent neural network follows a set of non-linear discrete-time 

recurrent equations, not only through the neurons functions configuration but also through the time 

delays associated to its connections.  

 

 

2.3. Dynamic Driven Recurrent Networks 

 

Most dynamical systems involve an autonomous part and a part governed by external force 

that usually is difficult to identify or noisy. Forecasting deals with dynamic models whose inputs 

and outputs are related through differential equations, or, for discrete-time systems, by recurrent 

equations. Recurrent networks with global feedback will be discussed, which is relevant for the 

scope of this thesis. For a thoroughly understanding of recurrent networks with local feedback, 

(Haylin, 1999) is suggested.  

Considering the typical design of the multilayer networks previously shown, applying the 

global feedback can take a variety of arrangements. Global feedback can either be in a form of 

output neuron to the input layer or from the hidden neuron to the input layer. Other architectural 

layouts for recurrent networks exist, for instance, for multilayer networks with more than one 

hidden layer; however, those are not relevant for the current work and will not be discussed in 

detail. 

Pertinent to this work is the discussion of recurrent networks used as input-output mapping 

networks. Basically, in this situation, an external input is applied and the recurrent network has a 

temporary response. Consequently, the recurrent network is considered as dynamically driven 

recurrent network. This characteristic enables recurrent networks to acquire state representations, 

which are fundamental for applications such as nonlinear predictions and modelling. In section 2.7, 

the recent use of neural networks for forecasting purposes is thoroughly discussed.  

 

2.3.1. Input-Output Recurrent Model 
 

The input-Output recurrent model, with a design that follows the typical multilayer 

perceptron, is illustrated in Figure 9. One can notice that the model has a single input that is applied 

to a tapped-delay-line (TDL) memory of   elements. A delay line tap extracts a signal output from 

somewhere within the delay line and usually sums with other taps to form an output signal. 

Moreover, via another TDL memory with q units, the single output is also fed back to the input. 

Thus, the contents from both TDL memories are fed to the input layer of the multilayer perceptron.  

In Figure 9,  ( ) denotes the present value of the model input and  (   ) corresponds to 

the value of the model output. Accordingly, one may understand that the output is one time unit 

ahead of the input. Hence, the present and past values of the input, which are exogenous inputs 

generated from outside the network, and delayed values of the output, on which the model output is 

regressed, are the data window of the signal vector applied to the input layer. 

This recurrent network described above and shown in Figure 9 is also referred as nonlinear 

autoregressive with exogenous inputs (NARX) model (Haylin, 1999). 
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  (   )   ( ( )     (     )  ( )    (     )) (11) 

 

Equation 11 demonstrates the dynamic behaviour of the NARX model, where   is a 

nonlinear function of its arguments. The two delay line memories in the model are generally 

different, albeit they can have the same   size. 

 

2.4.  Training a Neural Network 

 

A key aspect in the implementation of artificial neural networks is the training. This process 

must be well designed so that the network successfully learns a task. However, one should 

understand that a precise definition of training is difficult to achieve because there is no direct 

approach on how to do this (Jain & Mao,  1996). This learning process consists in the adjustment of 

the weights under some learning rules. Essentially, the free parameters from a network are adapted, 

through a stimulation process. When a group of patterns is presented, the network typically learns 

Figure 9 - Nonlinear autoregressive with exogenous inputs (NARX) model. (Haylin, 1999) 
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the connection weights and the performance is improved by iteratively updating the weights. The 

network learns to recognize the pattern inherent to the training signals.  

Though the learning process poses some issues, the ability to automatically learn from 

examples and learn underlying rules, such as the input-output relationships, makes the neural 

networks more attractive than traditional systems. Theoretically, the network must approach the 

global minimum of the objective function, that is, the error function will steadily decrease until the 

minimum error has been reached. If this is achieved, and no further decrease of the error function is 

necessary, the training process must be stopped. In practice, the network training can require several 

training trials with various initial weight values in order to find this global minimum. After each 

training run, an evaluation and comparison between the training results and the results achieved in 

the previous run allow us to select the best run. 

The design of the training or learning process has to consider the model of the environment 

in which a neural network works. Thus, one has to distinguish which information is available to the 

network. Moreover, it is essential to understand how the network weights are updated, i.e. the 

learning rules that the updating process must follow. 

There is not a unique algorithm for the design of neural networks and the learning process 

of the neural networks can either be classified as supervised or unsupervised training. Essentially, 

these classifications differ in the existence or not of an external agent (supervisor) that controls the 

learning process in the network. Other classification criteria reside in defining if the network learns 

through its normal functioning (online) or if the learning assumes the unplugging of the network 

(offline). For an online training the weights vary dynamically when new information is shown to the 

system. Inversely, the networks that use offline learning have their connection weights remain fixed 

after the training stage.      

In supervised training, for every input pattern an output is provided to the network and the 

external agent controls the answer that the network must generate based on a determined answer, 

that is, the supervisor compares the output of the network with the expected results and determines 

the amount of modification that must be applied in the weight. Accordingly, weights are determined 

so that the result is as close as possible to the known correct answers, i.e. the objective is to find the 

minimum value of the difference between the answer of the network and the correct answer. 

Differently, the unsupervised training organizes patterns into categories from the 

underlying structure in the data or correlation between patterns in the data. With this method, the 

neural network is capable of self-organize because there is no information received from the 

environment indicating the correctness of a generated output. Basically, there is no correct answer 

required. The interpretation of the output of unsupervised networks depends on the structure of the 

network and the learning algorithm used. Sometimes the output represents the degree of similarity 

between the signal introduced in the network and the displayed information until then. Under 

certain circumstances, grouping of information (clustering) is established, where each category is 

set based on the correlation between the presented information.  

Theoretically, there are some fundamental issues associated with learning from samples that 

must be considered, such as, the capacity, sample and computational complexity. The capacity 

refers to the functions and boundaries a network can form, that is, the quantity of patterns that may 

be stored. Assessing the complexity of the sample is highly important, as it determines the 

necessary patterns that need to be train in order to achieve a valid generalization. Finally, the 

computer complexity refers to the time that a chosen algorithm requires to reach an estimate 

solution from the trained patterns.  
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The experiment design for network training involves concerns regarding the network 

initialization training, selection of the appropriate training algorithm, formulation of training 

stopping criteria, etc.  

 

2.4.1. Avoiding Overfitting 
 

One must find the information that allows us to confirm that the maximum generalization 

has been reached. Figure 10 presents the case where after reaching the point of maximum 

generalization the network keeps learning from the training set; however, it starts to damage the 

related test set performance due to its overtraining. Furthermore, in Figure 10 the overfitting is 

caused when the validation error increases while training error decreases progressively. Reducing 

the number of hidden neurons is an option to avoid overfitting. (Tan, 2009) 

 

 

 

 

 

 

 

 

However, in (Palit & Popovic, 2005) a better approach to solve the training termination 

problem based on stopping criteria was presented. They developed an automated stopping principle 

using a predetermined number of training steps. Ideally, the stopping strategy is the one that stops 

the training after the network has learnt all the problem details it has to solve. Consequently, when 

the training stopping achieves that stage, the network reaches the maximum generalization. Thus, 

the minimum value has been reached and this is the point where stopping should be activated. This 

action is known as early stopping. Beyond this point, the network would be performing the so-

called network overtraining or overfitting.  

 

 

 

 

 

 

 

 

 

Figure 10 - Overtraining example. (Palit & Popovic, 2005) 

Figure 11 - Early stopping of training. (Palit & Popovic, 2005) 
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To prevent overfitting, in (Prechelt, 1998) the author suggested the method of early 

stopping with cross-validation. This method proposes the division of collected data into a training 

set and a test set, and for further partitioning of the training set into the estimation set and validation 

set. Yet, finding the exact location of the early stopping is not an easy task. Therefore, to manage 

the problem a stopping principle was introduced consisting in subdividing the training set into the 

training error Etrain (average error per example across the training set), the test and the validation 

error, Etest and Eval respectively. 

Both the problem of overfitting and the opposite problem of underfitting are consequences 

of improper training stopping. The network ability to generalize is affected and lowered by both 

problems and should be prevented. In the underfitting problem, the network trained is less complex 

than the task to be learnt, therefore, poorly identifies the structures within a large training data set. 

Inversely, when trained, a very complex network not only can extract the structures within the 

training set, it also extracts the embedded noise. This may pose results and predictions that are not 

acceptable.   

The network complexity is related to the number of weights and it is determined by the 

prediction accuracy of the model selected. The latter depends on the number and size of weights 

and hidden neurons that would implement the desired prediction accuracy without performing 

overfitting. Statistically, the underfitting and overfitting are related to the statistical bias and the 

statistical variance they produce.  The statistical bias is related to the degree of target function 

fitting and constrains the network complexity; however, disregards the trained network 

generalization. The statistical variance (deviation of network learning efficiency within the set of 

training data) cares about the generalization of the trained network. It is difficult to get the balance 

between both as the underfitting generates a high bias network and the overfitting produces a large 

variance.  

 

2.4.2. Training Algorithm 
  

One of the most significant breakthroughs for training neural networks was the 

development of the steepest descent algorithm, also known as error backpropagation (EBP) 

algorithm. For each example in the training set, the algorithm calculates the error using a predefined 

error function, that is, the difference between the actual and desired outputs. After that process, the 

error is back propagated through the hidden nodes to adjust the weights of the inputs. This 

procedure is completed when the network converges to a minimum error solution. Though this 

algorithm is widely used in neural networks, it presents some limitations, in particular slow 

convergence and easily traps in local minima. (Dreyfus, 2005)  

When the gradient is steep, small step sizes should be taken to not rattle out of the required 

minima. On the other hand, for a small constant step size the training process would be very slow 

when the gradient is gentle. Also, the classic “error valley” can occur when the curvature of the 

error surface has different directions and, therefore, can result in slow convergence. However, the 

slow convergence of the steepest descent method can be significantly enhanced by the Gauss-

Newton algorithm which is able to find adequate step sizes for each direction and can converge very 

fast by using second-derivatives of error function to evaluate the curvature of error surface. Yet, 

calculating the second-derivatives poses computational complexity. 
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To overcome these problems other learning algorithms were proposed such as the 

Levenberg-Marquardt which is suitable for small and medium sized problems and has a fast and 

stable convergence when compared to other methods. It combines the steepest descent and the 

Gauss-Newton algorithms. It has the stability of the steepest descent method and the speed of the 

Gauss-Newton but it is more robust than the Gauss-Newton. The idea is to combine both training 

processes so that around the area with complex curvature the algorithm switches to the steepest 

descent algorithm, until the local curvature is adequate to complete a quadratic approximation; later, 

to speed up the convergence, the algorithm approximately becomes the Gauss-Newton algorithm 

(Yu & Wilamowski, 2010). 

 

2.4.3. Levenberg-Marquardt Algorithm Origin  
 

This section explains how the Levenberg-Marquardt method derived from the combination 

of algorithms.  

 

2.4.3.1. Steepest Descent Algorithm  

 

The backpropagation algorithm is used to learn the weights of a multilayer neural network 

and performs gradient descent to minimize the sum squared error between the network’s output and 

a certain target value. The error is squared because its magnitude is more relevant than its sign. The 

total error E is given by the following equation 

 

 

 (   )  
 

 
 ∑   

 

 

   

 

 

(12) 

 

 

where   is number of training patters,   is the input vector,   the weight vector and    defines the 

training error for training pattern  .    is obtained by, 

Figure 12 - Steepest descent method with different learning constants. The trajectory on the left is 
for small learning constant that leads to slow convergence; the trajectory on the right is for large 

learning constant that causes oscillation (divergence). (Yu & Wilamowski, 2010) 
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(13) 

 

 

where    is the network output at the     output node,    is the target output at the     output node. 

Every algorithm adjusts the weights and biases to reduce this global error.  

To overcome the problem of finding global solutions to the error given the non-linearity of 

the error function, the algorithm is set to analyze the weight space. Therefore, it is formulated as 

follows: 

 

 

            (14) 

 

where k is the index of iterations. 

The steepest descent algorithm uses the first-order derivative of total error function to find 

the minima in error space. The first-order derivative of total error function   defines gradient  : 
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(15) 

 

 

Based on the definition of gradient g, it can be written the update rule of the steepest descent 

algorithm: 

             (16) 

 

where α is the learning constant (step size). 

All the elements of gradient vector would be very small with a slightly weight adjustment 

around the solution. Therefore, this training process is asymptotic convergence. 

 

2.4.3.2. Newton’s Method 

 

Newton methods can be relatively slow because they explicitly use the full Hessian matrix 

H, which must be calculated and, therefore, some computational expense occurs. The Hessian 

matrix H gives the proper evaluation on the change of gradient vector with the second-order 

derivatives of total error function. Through several mathematical equations and using Taylor Series 

(Yu & Wilamowski, 2010), it can be demonstrated that: 

  

      ⇔          (17) 

Consequently, the update rule for Newton’s method is 

 

           
     (18) 

 

Where H is 
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(19) 

 

 

One is able to identify the differences between the equations of the steepest descent method 

and the Newton’s method and notice that complementary step sizes are given by the inverted 

Hessian matrix. 

 

2.4.3.3. Gauss-Newton Algorithm 

 

Although it is rather complicated to calculate the second-order derivatives of the total error 

function that allow us to determine the Hessian matrix H, this process is essential for Newton’s 

method because it is applied for the weight updating. To simplify the calculating process, the 

Jacobian matrix J can be introduced. The Jacobian matrix is the matrix of the first-order partial 

derivatives of the error function as illustrated in the following equation. 
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(20) 

 

 

 

The relationship between Jacobian matrix   and the gradient vector   is shown in (Yu & 

Wilamowski, 2010) to be  

 

      (21) 
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where e is the error vector. Moreover, it is proved in (Yu & Wilamowski, 2010) that the relationship 

between the Hessian matrix   and Jacobian Matrix   can be written as 

 

       (22) 

 

Consequently, 

         (  
    )

        (23) 

 

 

This equation clearly demonstrates that calculating the second-order derivatives of the total 

error function is not required. Thus, the Gauss-Newton algorithm has this advantage comparing to 

the standard Newton’s method. Nonetheless, the Gauss-Newton method still presents some 

problems regarding the convergence for complex error space optimization just as the Newton’s 

method. Mathematically, the   
      can pose a problem because this matrix may not be invertible. 

 

2.4.3.4. Levenberg-Marquardt Algorithm 

 

The Levenberg-Marquardt algorithm presents another approximation to the Hessian matrix 

in order to make sure that the matrix   
      is invertible: 

 

            (24) 

 

where   is the combination coefficient (always positive), and   is the identity matrix. 

This approximation insures that the matrix H is always invertible because the elements of 

the main diagonal of the approximated Hessian matrix are larger than zero. Consequently, by 

combining equation (18) and equation (24), the update rule of Levenberg-Marquardt algorithm is  

 

         (  
        )

        (25) 

 

Hence it is demonstrated the combination between the Gauss-Newton algorithm and the 

steepest descent algorithm. The Levenberg-Marquardt algorithm switches between both algorithms 

during the training process. When   is very small, that is, very close to zero, the Levenberg-

Marquardt algorithm switches to the Gauss-Newton algorithm. On the other hand, when   is large, 

the steepest descent method is used because the equation (25) approximates the equation (16). Table 

1 summarizes the differences between the different training algorithms and its main features 

regarding speed, stability and computational complexity. 
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Table 1 - Characteristics of the algorithms. 

Algorithms Update Rules Convergence 
Computational 

Complexity 

EBP 
            

 
Stable, slow Gradient 

Newton 
          

     

 
Unstable, fast Gradient and Hessian 

Gauss-Newton 
        (  

    )
  
      

 
Unstable, fast Jacobian 

Levenberg-

Marquardt 

        (  
        )

  
      

 
Stable, fast Jacobian 

 

One might have noticed that according to the updating rule of the Levenberg-Marquardt 

algorithm, if the error is decreasing, that is, the error in     is smaller than in    the   coefficient 

can be reduced so that the influence of gradient descent part is diminished. However, if the opposite 

occurs, if the error increases, it is necessary to follow the gradient to look for a proper curvature for 

quadratic approximation and the coefficient   is increased. 

The main drawback of the Levenberg-Marquardt algorithm is that it requires the storage of 

some matrices that can be rather large for certain problems. 

The following section introduces the photovoltaic technology and further down the use of 

artificial neural networks in the photovoltaic domain is discussed. 

  

2.5. Photovoltaic Systems  

 

The sun can be considered as the source of almost all energy on the planet, because most of 

the available energy is directly (sunlight) or indirectly (wind and waves) related with it. The sun’s 

apparently ability to provide endless energy results from the process of nuclear fusion. This energy, 

produced in the core of the sun, is emitted as electromagnetic radiation. Though electromagnetic 

radiation is emitted in many useful forms, the solar cell designers are more interested in capturing 

the energy carried in visible light. (Stapleton & Neill, 2012) 

The present section introduces typical small-scale PV systems from which information 

regarding the systems’ energy production is collected. This section also analyses relevant factors 

that influence that production. 

 

2.5.1. Photovoltaic Technology 
 

PV cells are devices that produce electricity directly from electromagnetism radiation. 

These devices are made from semiconducting materials, which conduct electricity under specific 

conditions, so they are neither insulators nor conductors. The most common semiconductor material 

is silicon, which is often combined with other elements to improve its conductivity, in a process 
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designated as doping. Controlled quantities of specific impurity ions are added to the very pure 

material to produced doped semiconductors.  

Impurity dopant ions of fewer valences (e.g. boron) enter the solid Si lattice and become 

electron acceptor sites which trap free electrons. These traps have an energy level within the band 

gap, but near to the valence band. The absence of the free electrons produces positively charged 

states called holes that move through the material as free carriers. With such electron acceptor 

impurity ions, the semiconductor is called p (positive) type material, having holes as majority 

carriers. On the other hand, atoms of great valency (e.g. phosphorus) are electron donors, producing 

n (negative) type material with an excess of conductions electrons as the majority carriers. (Twidell 

& Weir, 2006) 

An electron free to move throughout the crystal is said to be in the crystal's conduction 

band, because free electrons are the means by which electricity flows. Both the conduction-band 

electrons and the holes are fundamental in the electrical behavior of PV cells. Although the 

generation of electrons and holes by light is the central process in the overall PV effect, it does not 

itself produce a current.   

A PV cell contains a barrier that is set up by opposite electric charges facing one another on 

either side of the junction. This potential barrier selectively separates light-generated electrons and 

holes, sending more electrons to one side of the cell, and more holes to the other. This charge 

separation sets up a voltage difference between either ends of the cell, which can be used to drive an 

electric current in an external circuit. (Zweibel, 1982) 

If we connect the n-type side to the p-type side of the cell by means of an external electric 

circuit, current flows through the circuit because this reduces the light induced charge imbalance in 

the cell. This current from the cell is inherently direct current (DC). Figure 13 illustrates the 

functioning of a typical PV cell. 

 

 

Figure 13 - Light incident on the cell creates electron-hole pairs, which are separated by the 
potential barrier, creating a voltage that drives a current through an external circuit. (Zweibel, 1982)  
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2.5.2. Grid-connected PV systems 
 

PV cells are used to create PV modules that can then be used to create a PV array, which is 

the principal component of a grid-connected PV system.  

Although small-scale PV systems may be applied in many different ways, the residential 

grid-connected PV systems are the most relevant configuration for this thesis scope. In these 

systems, any surplus of energy being produced is fed into the grid. Figure 14 and Figure 15 

illustrate the functioning of the PV system and the required basic structures (PV array, Inverters, 

metering, controllers, and electrical devices) that allow an effective and safe interaction with the 

power grid. These are merely illustrative designs and variations are most likely possible.  

Given the fact that a PV system generates electricity as DC and the one coming from the 

grid is alternating current (AC), an inverter is required to convert DC power from the PV array into 

AC power to be used by appliances on site or fed back into the grid via the meter. This conversion 

is possible due to the inverter’s switching mechanism that allows the circuit to rapidly open and 

close. (Boxwell, 2013) 

The grid-connected PV system uses grid-interactive inverters, also known as grid-tied 

inverters, which are crucial for the transfer of the electricity produced by a PV system into the grid. 

The grid-interactive inverter finds the maximum power available from the PV array to convert to 

AC and ensures that the power being fed into the grid is at the appropriate frequency and voltage. 

Most grid-interactive inverters include transformers that are used to increase the voltage to the level 

required by the grid.  

When the grid is not operating within adequate voltage and frequency tolerances, the 

inverter has active and passive safety protections that allow shutting itself down. The inverter’s 

ability to detect the grid’s voltage and frequency is known as passive protection, whereas active 

protections is provided by the inverter detecting any frequency instability, frequency shift or power 

variation that would vary the voltage that the inverter detects. Moreover, the grid-connected inverter 

detects power cuts and monitors the power feed from the grid and if any extreme conditions occur it 

will disconnect, protecting not only the grid but also the PV system. Additionally, the amount of 

energy taken from the grid and fed back into the grid is monitored by the grid-connected meter. 

(Stapleton & Neill, 2012) 

Other components involved in the PV system functioning are known collective as the 

balance of system (BoS) equipment and often must comply with local and/or national codes and 

regulations. These components are required to connect and protect the PV array and the inverter and 

includes cabling, disconnects/isolators, protection devices and monitoring equipment. (Stapleton & 

Neill, 2012) 

 

      

 

 

 

 

 

 Figure 14 - Schematic of a grid-connected photovoltaic system. (Twidell & Weir, 2006) 
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2.6. Time Series Forecasting 

The present section introduces linear and nonlinear models that can be applied to typical 

time series collected from PV systems, in order to estimate future values of the energy production. 

 A time series is a set of numbers that measures the status of some activity over time. It is 

the historical record of some activity, with measurements taken at equally spaced intervals 

(exception: monthly) with consistency in the activity and the method of measurement. 

 

2.6.1. Linear Models  
 

Linear stochastic difference equation models with random input are often the statistical 

approach used to forecast time series. These stochastic models use past observations of the time 

series to predict future values. Such prediction can be used as a baseline to evaluate the possible 

importance of other variables to the systems. 

  The most significant of such models is the already introduced linear autoregressive 

integrated moving average (ARIMA) model. The basic idea behind these models is to find a 

mathematical equation that approximately generates the historical patterns.  The ARIMA model is a 

type of self-projecting time series model that uses only the time series data of the activity to 

perform forecasts.  

The Box-Jenkins Models are identified as AR (autoregressive), MA (moving average) and 

the combination of both is ARMA. AR models expresses a time series as a linear function of its past 

values and the order of the AR models tells the number of lagged past values included. MA models 

include lagged terms on the noise or residuals. Consequently, the ARMA model includes both types 

of lagged terms. The difference between ARMA and ARIMA is that that latter indicates that 

differencing was already applied to remove trends in the time series. ARIMA (p, d, q) defines 

models with an Autoregressive part of order  , a Moving average part order   and having applied d 

order differencing as illustrated in equation (26).  
 

(         
        

 )(   )       (                
 )   

 

(26) 

Figure 15 - Grid-connected system functioning. (Boxwell, 2013) 
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where  s and   s are coefficients to be estimated,   is the constant level,   is the “backshit” 

operator and basically characterizes past values and (1-B) symbolizes the differencing operator. 

(         
        

 ) refers to the autoregressive polynomial and (           

     
 ) denotes the moving average polynomial.  

To find the order of the operators (p, q, d), it is common practice to look at the 

autocorrelation function (ACF) and partial autocorrelation function (PACF), as well as the 

minimising information criterion - Akaike’s information criterion (AIC) or Bayes information 

criterion (BIC) (Box, Jenkins, & Reinsel, 1994).  

 

2.6.2. Nonlinear Models  
 

The traditional approaches of the Box-Jenkins method assume that the time series in study 

are generated from linear processes. Though these linear processes may be advantageous to 

understand the details and are easier to explain and implement, several time series reveal 

unexplained features in a linear framework. Therefore, and in opposition to traditional statistical 

methods, nonlinear models such as artificial neural networks can capture those structures, are more 

flexible and have fewer limitations in estimating the essential relationships between the past values 

of the time series (inputs) and the future values (outputs). 

 

2.7. Forecasting with Artificial Neural Networks  

 

Artificial Neural Networks show powerful pattern recognition and pattern classification 

capabilities and have a wide range of applications, in science, business or industry. What makes 

artificial neural networks attractive is the fact that they possess self-adaptive methods that require 

few a priori model assumptions. Moreover, the relationships among the data are capture and they 

are capable of learning from examples and to generalize from experience, regardless of the 

complexity level. Usually, these models correctly infer the unobserved part of a population after the 

learning process, even if the sample data contains noisy information. Thus, forecasting is an ideal 

application area for artificial neural networks since it is performed through estimation of the future 

based on the past steps. 

Artificial neural networks were firstly applied in 1964 by Michael Hu. However, the 

research was rather limited given the lack of training algorithms for the general model of multilayer 

networks at that time. In 1974, Paul Werbos formulated the concept of backpropagation and, in 

1986; David Everett Rumelhart introduced the backpropagation algorithm, which fostered an 

enormous breakthrough for the development of artificial neural networks. Since these major 

findings, research efforts to further develop artificial neural networks have occurred and keep 

evolving until the present time. 

These efforts focused in finding and developing an ideal model. This indicates selecting the 

most parsimonious model, that is, the model with the smallest number of parameters (Kriesel, 

2005). This issue of finding a parsimonious model for a real problem became critical for all 

statistical methods and in particular to neural networks, given the possibility of overfitting. For 

example, in (Weigend, Hubernam, & Rumelhart, 1992), the authors addressed the problem of 

overfitting and proposed a method to overcome this network problem by introducing a term to the 

backpropagation cost function that penalizes network complexity.  
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At the same time, comparative studies between the performance of neural networks in 

forecasting and traditional statistical methods were developed. In (Zhang, Eddy Patuwo, & Hu, 

1997) one can detect several inconsistent reports regarding the performance of artificial neural 

networks when used for forecasting. This is due to the fact that the network structures, sample data 

and training methods selected by the designer affects the network performance. For instance, linear 

data without much disturbance may explain that linear statistical models outperform artificial neural 

networks. Obviously, one cannot expect that an artificial neural network performs better than a 

linear model for linear relationships. Moreover, poor network design may also lead to poor 

performance. In (Tang & Fishwick, 1993), while comparing with traditional statistical methods, the 

authors found that artificial neural networks perform better for short memory series, when the 

forecast horizon increases and with more input nodes. Furthermore, using artificial neural networks, 

(Hill, Marquez, O'Connor, & Remus, 1994) achieved better results for monthly and quarterly time 

series forecasts than for yearly data. This is a consequence of the fact that monthly and quarterly 

time series data possess more irregularities and the artificial neural networks can detect the 

underlying pattern masked by noisy factors in a complex system. 

In (Nelson, Hill, Remus, & O’Connor, 1994) the ability of an artificial neural network to 

learn seasonal patterns in a time series is discussed. The study indicated that forecasts could be 

more accurate if prior deseasonalization of seasonal time series is implemented. On the other hand, 

(Sharda & Patil, 1992) concluded that artificial neural networks are able to incorporate seasonality 

and its performance is not affected by seasonality of time series. 

More recently, (Diaconescu, 2008) performs forecasting for different chaotic time series 

using a Nonlinear Autoregressive with exogenous inputs (NARX) dynamic recurrent neural 

network. The authors concluded that NARX recurrent networks can capture the dynamics of 

nonlinear dynamic systems and determined that the architecture of the tested model affects the 

performance of prediction. However, some drawbacks were also found such as the limitation in 

learning long time dependences. Additionally, (Menezes & Barreto, 2008) showed that a NARX 

network applied for long term multi-step-ahead predictions outperforms standard neural network 

based predictors, such as the time delay neural network (TDNN)
2
 architectures. 

Most researchers adopted, for specific problems, the trial-and-error methodology and, 

consequently, the literature can be rather inconsistent (Zhanget al., 1997). Though, as mentioned 

before, the artificial neural networks are promising alternatives to traditional statistical methods, 

they are a black-box method, which makes it difficult to explain the relationship between inputs and 

outputs. A wide range of questions still remain unanswered, but as any other method, artificial 

neural networks have their weaknesses and one should recognize them and generate the best 

possible suitable solution for its problem.  

 

2.8. Solar Energy Forecasting with Artificial Neural Networks  

 

The previous section introduced forecasting with artificial neural networks regardless of the 

field of study. However, this thesis is interested in assessing the forecasting potential of artificial 

neural networks applied to the solar forecasting domain, which is a more recent topic of study. This 

                                                
 

2
 The TDNN model is similar to the NARX model but without the feedback loop. 
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section identifies relevant studies developed in the field of solar energy forecasting with artificial 

neural networks.  

In (Sfetsos & Coonick, 2000) the authors used artificial neural networks to perform one-

step ahead forecasting of hourly values of global irradiance and revealed that those results 

outperform linear models results. They also compared various models in terms of error and training 

time and found that the Levenberg-Marquardt algorithm achieved the best performance. 

Furthermore, the use an artificial neural network in (Mihalakakou, Santamouris, & Asimakopoulos, 

2000) yielded a root mean square error RMSE 5% lower than the persistence approach.  

Furthermore, the authors in (Cornaro, et al., 2009) compare models to forecast hourly solar 

irradiance with a day in advance. The models use artificial neural network techniques, where one of 

the models uses measured local data and the other is a hybrid model that also uses numerical 

weather prediction data. They conclude that the hybrid model gives the best results and improves 

almost 40% with respect to the persistence model. 

Additionally, the authors in (Chaouachi, A.; Kamel, R.M.; Ichikawa, R.; Hayashi, H.; 

Nagasaka, K., 2009) studied the applicability of artificial neural networks for 1 day ahead solar 

power generation forecasting. Different types of networks were tested and a neural network 

ensemble is more precise than conventional networks (multi-layered perceptron, radial basis 

function, recurrent network), albeit all models demonstrate acceptable forecasting accuracy. 

Likewise, in (Yona, Senjyu, Saber, & Funabashi, 2007) a comparative study between different 

artificial neural networks models was conducted to predict insolation one day ahead, in which the 

Recurrent neural network outperforms the Feedforward neural network. Furthermore, the authors in 

(Paoli, Voyant, Muselli, & Nivet, 2010) presented a MLP neural network prediction approach to 

determine the global radiation at a daily horizon. They assumed an ad hoc time series preprocessing 

that reduces the error forecasts of about 5% compared to classical predictors. Additionally, in 

(Mantzari & Mantzaris, 2013) the researchers implemented a MLP neural network for half hour 

cloudiness forecasting and considered it an important tool for the estimation of cloudiness affecting 

solar radiation. 

Artificial neural networks forecasting models for hourly solar irradiation for times of up to 

6 days ahead were tested in (Marquez & Coimbra, 2011) and the authors concluded that the 

developed intelligent models outperformed satellite-based models. Moreover, an input selection 

scheme was used and results revealed that models with slightly larger sets of inputs generally 

perform better for same-day and 1-day ahead forecasts.  

In (Di Piazza, Di Piazza, & Vitale, 2013) forecasting the daily solar radiation with two 

dynamic artificial neural networks (Feedforward Time Delay Neural Network and NARX) was 

proposed. According to the authors, both models had a satisfactory performance and can facilitate 

energy management of solar systems when storage systems are adopted.   

All of the previous mentioned studies had an essential role in the development of this thesis. 

Though the parameters used in each study may be different, there were some important details to 

retrieve from the results, whether it was the input parameters, the applied algorithm, the type of 

neural network or even the time horizon for prediction. 
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Table 2 - Solar Forecasting - State of the art. 

Author 
Forecasting Time 

horizon 
ANN Error 

Sfetsos and Coonick, (2000) Hourly Multilayer Perceptron 

72%  RMSE improvement 

comparing to the 

Persistence Model 

Mihalakakou et al., (2000)  Hourly Multilayer Perceptron 6% RMSE 

Yona et al., (2007 Daily Recurrent Network 15% MAPE 

Chaouachi et al., (2009)   Daily Recurrent Network 7%  MAPE 

Cornaro et al., (2009)  Daily 
Hybrid model based 

on MLP 
20% RMSE 

Paoli et al., (2010)  Daily Multilayer Perceptron 21% RMSE 

Di Piazza et al., (2013)  Daily NARX network 20% RMSE 

 

2.9. Prediction Accuracy Evaluation 

 

This section introduces the different existent tools to measure the overall accuracy of the 

network forecasts.  

Forecasts are never completely accurate and will always deviate from the actual value. 

Consequently, the primary goal is to reduce as much as possible the associated error of the time 

series forecast. There is a wide range of functions that evaluate the neural network performance. 

However, these functions may not measure the same units, and therefore, it is not possible to 

compare the different functions between each other. Yet, the reason for presenting a wide range of 

forecast evaluators is the fact that each function accentuates specific features of the obtained values 

and observing all functions may help determine whether or not a neural network had a good 

performed.   

To quantify the quality of a prediction, let us assume the time series target value  ( ) and 

the predicted value   ( ) for a series of length n. The difference between the sum of the squared 

deviations (SSE) of the forecasted value compared to the target value,  
 

 

 
     ∑( ( )    ( ))

 

 

   

 
(27) 

 

 

is highly dependent on the series size. Thus, a time series with more terms implicitly has a bigger 

error and a comparison of the quality of different time series forecasts is not feasible. To overcome 

this situation, one can use the mean value of this error: 
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(28) 

 

where      and        are the maximum and minimum observed values. 

 Equation 28 calculates the mean squared error (MSE) of the predicted values. This is the 

first function to evaluate forecasts accuracy and measures the average of the square of the errors. 

This function incorporates both the variance of the prediction and its bias. MSE and variance have 

the same units of measurement as the square of the quantity being predicted. Consequently, one can 

take the square root of MSE, analogously to the standard deviation, to yield the root mean square 

error (RMSE). In fact, RMSE is basically the standard deviation of the differences between 

predicted values and target values. The RMSE is representative of the size of a “typical” error and 

will have the same units as the quantity of the time series being estimated. It tends to exaggerate 

large errors because squaring gives more weight to very large errors, which helps when comparing 

methods.   
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(29) 

 

 

Another prediction evaluator commonly used is the mean absolute error (MAE) which is 

measured in the same units as the original data and is usually similar in magnitude to the root mean 

squared error, albeit slightly smaller. Taking the absolute value avoids the positives and negatives 

values canceling each other out. 
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(30) 

 

 

Since RMSE error is more sensitive to occasional large errors, MAE may be the most 

relevant criteria when occasional large error is not a problem.  

These functions solve the problem of cumulating error but still have the problem of relative 

error. The computed mean error is only absolute and highly depends on the series values. To 

overcome the relative error problem, one can calculate the coefficient of variation (CV), which is 

determined by the ratio between the standard deviation (σ) and the mean value of the evaluators. 

 

    ( )   
  

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
      (31) 

 

The lower the CV value, the smaller the deviations between the multiple trials. 

Consequently, this may suggest a good model fit. Another important characteristic of the CV is the 

fact that is adimensional and allows comparisons between different models.  
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3. METHODOLOGY  

  

This section intends to thoroughly describe and explain all steps for the design of a NARX 

model for solar forecasting. This model is implemented with MATLAB@ 2012
Rb

 Neural Networks 

Toolbox, which facilities the comprehension of the neural network functioning; however, 

ultimately, the user requires time to get acquainted with the neural networks mechanisms and some 

knowledge and experience handling datasets and computing functions. 

 

3.1. Data Collection 

 

Designing a neural network forecasting model requires several distinct steps because it 

involves the selection of many variables and parameters.  A successful design can only be achieved 

if the problem is clearly specified and understood. Thus, in this particular work, the variables 

selection falls into those that are believed to be directly or indirectly influenced by cloud 

movements. Accordingly, the fundamental inputs selected were the time series of the ambient 

temperature and solar radiation, and data of five geographically separated PV systems from 

different households in the city of Utrecht, Netherlands, collected from the 1st of July to the 31st of 

July of 2012. The weather in the month of July (summer) in Utrecht usually remains pleasantly 

warm.  

The meteorological data was collected from the Royal Netherlands Meteorological Institute 

(KNMI) website and the information regarding the PV systems was kindly provided by the PV-

Group of the Copernicus Institute of Sustainable Development, Utrecht University. Figure 16 

illustrates the geographic distribution of the PV systems (red circles) and the location where the 

Utrecht meteorological data is collected (small red rectangle). The PV systems will be designated as 

Centre, West, North, East, and South PV systems in order to differentiate them whenever required. 

Table 3 shows the maximum power installed and the date of installation of these PV systems. 

 

Table 3 - PV systems technical information. 

PV System Max Power Installed (Watt) Date of installation Distance to Centre PV (km) 

Centre 500 1 - Nov - 2003 - 

West 560 29 - Nov - 2002 5 

North 800 1 - Jan - 2004 7.5 

East 1500 1 - Mar - 2002 3 

South 500 1 - Nov - 2001 4 
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Figure 16 - Map of Utrecht illustrating the distribution of the PV systems. 

3.2. Data Preprocessing 

 

Data preprocessing is essential to analyze and transform the input and output variables to 

minimize noise, highlighting important relationships and flatten the distribution of variables so that 

the artificial neural network can learn relevant patterns. In fact, rarely the data collected for the 

input and output variables are fed into the artificial neural network in raw form. 

The raw energy data collected from the PV systems inverters are in Watt-hour (Wh), with 1 

min time steps; however, some of the time series have missing and/or outliers observations. The 

energy cumulative production is not as interesting to assess as the power production. This is due to 

the fact that, graphically, the power production shows the quick variations caused by cloud 

movements.  Thus, data in energy units were converted to power units using the following equation. 

 

  

  [    ]  (         )         
   

   
    

     
       

 

  
 

 

(32) 

 

Differently, ambient temperature (in degrees Celsius) and solar radiation
3
 (J/cm

2
) data from 

the meteorological station have 1 hour time steps.  

                                                
 

3
 In physics, J/cm

2
 is typically designated as fluence (energy delivered per unit of area). 
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Missing observations can be handled in many different ways. In this work, all of those 

observations are considered as Not-a-Number (NaN) values, which is a function that considers 

undefined numbers and are ignored by the artificial neural network. Furthermore, outliers were 

removed by calculating a 10-points moving average (the average between the next five steps and 

the previous five steps of that observation). 

Different time steps intervals were tested, in order to define which of them was able to 

capture the nonlinear and pattern characteristics of data. The time steps range assessed vary 

between 1min, 5min, 15min, 30min and 1h time steps. Though different time steps were tested, the 

selected forecast horizon was 1 day, which always coincided with predicting the last day of the 

month of July. 

Manifestly, for simulation purposes both data from the PV systems and meteorological data 

must have the same length and, subsequently, the same time step value, when used simultaneously. 

Therefore, a moving average filter generates a series of averages of different subgroups of the full 

data set and later the time series length was shortened according to the time step required. In fact, 

this allows the training and testing sets to become more uniform distributed. On the other hand, the 

rapid changes caused by clouds on the solar power production are reduced and may disappear when 

the filter order severely increases.  

Given the fact that the raw meteorological data has 1h time steps, the first phase was to 

interpolate the time series, using the MATLAB function interp to define time series with 1min 

steps.  

Another preprocessing tool applied that may positively influence the artificial neural 

network performance was the removal of the observations between 10 pm and 6 am of each day. 

During these hours the PV systems cannot produce energy because it is night time and, 

consequently, the computational value is zero. A time series of the month of July with 1min time 

step has 44640 points of which 14880 points have the value zero (observations during the night). 

Accordingly, the difference between these values gives a total of 29760 points, which were used in 

the neural network. These “night values” add little to none information to the learning process and, 

thus, the complexity and simulations’ running time were reduced by removing them. 

To complete the data preprocessing, the time series were normalized between 0 and 1 

because each dataset had different magnitudes. This process adjusts the measured values that have 

different scales and converts them to a common size; it is defined by the following equation: 

 

             
      

         
 (33) 

 

where,      and       are the maximum and minimum points of the time series, respectively.  

 

3.3. Training, Testing, and Validation sets 

Before activating the network, the time series were divided into three different sets: 

training, testing and validation sets. Usually, the training set is larger because the patterns in the 

time series require learning. The testing set typically ranges in size from 10% to 30% of the training 

set and evaluates the generalization ability of a trained network. The final evaluation of the 

performance of the network was completed using the validation set. Frequently, the size of the 

validation set consists of the most recent observations in a way that there are enough remaining 

observations for both training and testing. 
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The range selected for the training, testing, and validation sets was 60%, 20%, and 20%, 

respectively, of the time series used as inputs. This division intends to avoid the risk of using a 

testing set characterized by a certain type of trend. 

 

3.4. Artificial Neural Network Paradigms  

 

There are countless ways to construct an artificial neural network. The properties of an 

individual neuron such as the transfer function and the way inputs are combined, associated with the 

number of neurons in each layer and the type of interconnections, define the neural network model. 

Consequently, the selection of the hidden layers, hidden layer neurons, and transfer function must 

be addressed in this section.  

The generalization ability of an artificial neural network is provided by the hidden layer(s). 

Increasing the number of hidden layers also increases the possibility of overfitting and computation 

time, leading to poor results. The use of many hidden layers increases the number of weights 

relatively to the size of the training set and the ability to memorize instead of learning. Therefore, a 

single hidden layer was selected for the NARX network. 

Moreover, selecting the number of hidden neurons involves a heurist approach. First, the 

default number of hidden neurons in the MATLAB@ 2012
Rb

 Neural Networks Toolbox, 10 hidden 

neurons, was tested to select the most adaptable time step (1min, 5min, 15min, 30min, and 1h). 

After the selection of the best time step, a range of hidden neurons (5, 10, 20, 35, and 50) was tested 

for each case that is proposed. With this experimentation, the NARX network with the best 

performance and, therefore, with the best ability to generalize, was selected and one can observe the 

impact of the hidden neurons in its performance.   

The selection of the number of tapped delays is to a certain degree similar to the hidden 

neuron selection process. Initially, two tapped delays were used while selecting the hidden neurons 

number, which is also the default value in the MATLAB@ 2012
Rb

 Neural Networks Toolbox. 

Having the hidden neurons selected, the influence of feedback delays in the neural network was also 

tested. Similarly, a range of feedback delays was verified and the best performance was selected for 

different cases. 

The transfer functions selected for the hidden layer and the output layer are the hyperbolic 

tangent and linear, respectively. These functions are also the default selection for time series 

prediction using MATLAB@ 2012
Rb

 Neural Networks Toolbox. Therefore, to be consistent with 

the transfer function being used, the input data was scaled between -1 and +1, according to the 

following equation, 

              (          )   
      

         
 (34) 

 

with ymax and ymin being +1 and -1 respectively. The data was scaled back to the original dimensions 

(0 to 1) after the network being processed.  

 

3.5. Training 

 

NARX network outputs are estimates of the outputs of the nonlinear dynamic systems. As 

illustrated in Figure 17, the output is fed back to the input of the Feedfoward neural network 

(Parallel architecture), which is part of the standard NARX architecture. However, the true output is 

available during the training process; therefore, a series-parallel architecture can be created. 
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Basically, the true output is used instead of feeding back the estimated output, providing static 

training and more accurate inputs to the Feedforward network. 

 

 

The data from the Centre PV system is used as target series ( ( )) and the other variables 

are used as exogenous inputs ( ( )). Many different simulations were experimented to understand 

the impact that the considered exogenous variables have in the target data series. 

 In Figure 17, TDL designates Tapped Delay Line, which means, for instance, if two TDLs 

are used, the training begins with the third data point. In the series-parallel configuration, though 

there is no feedback TDL, as in the parallel architecture,  ( ) has a predetermined TDL value 

because  ̂(t) is a function of past values of  ( ) and the current/past values of  ( ).  
The series-parallel configuration only presents errors for one-step-ahead predictions. 

Consequently, for multistep performances, the network has to be rearranged into the original 

parallel form. Though the information regarding the time of the month that we desire to predict is 

available, that data is only used to compare the final results.  

Generally, the dynamic training (iterated) of the parallel architecture takes longer and the 

performance is not as good as that obtained with series-parallel training. Therefore, the NARX 

network is trained with the series-parallel configuration. 

Every time a network is trained a different solution is achieved given the different initial 

weights and bias values, i.e., different outputs may be achieved with the same inputs. Thus, to 

ensure good accuracy, each specific architecture was simulated eleven times and the median of the 

eleven simulations was calculated; results larger than 15% of the median are disregarded, to 

eliminate outliers. Furthermore, the mean value of the remaining results is calculated and assumed 

as the final value of the performance of that specific network architecture. 

In this work, the Lavenberg-Marquardt algorithm is the algorithm used for every training 

process and the number of epochs, which corresponds to the number of iterations through all the 

series that the network will perform in the training process, is set to a maximum of 1000 (default 

value of MATLAB@ 2012
Rb

 Neural Networks Toolbox). Moreover, the number of training 

interactions is defined automatically as the early stopping principle is applied, i.e. the training stops 

when the improvement of the error function is no longer possible.   

 

 

 

Figure 17 - NARX network architecture variations. (Beale et al., 2013) 
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3.6. Evaluation  

 

The evaluation module intends to compare and understand the level of accuracy of forecasts 

according to the indicators that have been presented in the “prediction accuracy evaluation” section. 

Thus, one can compare different architectures and adjust the parameters in order to obtain the best 

possible prediction. 

 

3.7. Optimization 

 

The following different scenarios are applied to help selecting the best network architecture 

and to learn about the impact of using variations of the exogenous variables.  

 

Case 1 - Selection of the time step 

 

This case applied different time steps (1min, 5min, 15min, 30min, and 1h) using 4 

exogenous inputs, 1 output, and the default values of 10 hidden neurons and 2 tapped delay lines. 

The goal was to determine the most appropriate time step for the NARX network. The architecture 

of this example can be hence described as 4 – 10 – 1 with 2 TDL NARX network. 

 

Table 4 - Case 1 configuration. 

 

 

Case 2 - Selection of the best configuration of a NARX network with data of 4 PV systems as 

exogenous inputs. 

 

After the ideal time step selection, the influence of the hidden neurons and tapped delay line 

was tested. The number of hidden neurons tested varied between 5, 10, 20, 35 and 50 using a 

default value of a 2 tapped delay line. 

Additionally, after the number of hidden numbers selection, several tapped delay lines were 

tested and the network that featured the lowest errors was selected. The tapped delay line 

experimented varied according to the time step selection of the case 1. 

This case aimed to assess if the information of other PV systems, surrounding the system of 

interest, is relevant for the forecast accuracy when compared to different cases. 

Inputs 

4 - Present and past values of the (Exogenous) time series of the West, 

North, East, and South PV systems. 

1 - Past values of the time series of the Centre PV system 

Output 1 - Future values of the time series of the Centre PV system 

Number of hidden neurons 10 

Number of Tapped Delay Line 2 

Time step Variable (1min, 5min, 15min, 30min, and 1h) 
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Table 5 - Case 2 configuration. 

 

 

Case 3 - Selection of the best configuration of a NARX network with data of 2 PV systems as 

exogenous inputs. 

   

The network configuration was defined based on the same methodology of the former case. 

After establishing the configuration, the variations of parameters were now focused on the inputs, in 

order to determine if removing data from the NARX network actually affected the final result. In 

this case, combinations of data of the West and East PV systems and data of the North and South 

PV systems were used as exogenous inputs. That is, 2 different simulations were performed. 

 

Table 6 - Case 3 configuration. 

 

Case 4 - NARX network with meteorological data as exogenous inputs 

 

The present case intended to determine the NARX network performance using solely 

meteorological data (radiation and temperature) as exogenous inputs.    

 

Table 7 - Case 4 configuration. 

 

 

  

Inputs 
4 - Present and past values of the (Exogenous) time series of the West, North, East, and South PV systems. 

1 - Past values of the time series of the Centre PV System. 

Output 1 - Future values of the time series of the Centre PV system 

Inputs 

2 - Present and past values of the (Exogenous) time series of the West and East PV systems and North and 

South PV systems. 

1 - Past values of the time series of the Centre PV System. 

Output 1 - Future values of the time series of the PV Centre system. 

Inputs 
2 - Present and past values of the (Exogenous) time series of the Solar Radiation and Temperature. 

1 - Past values of the time series of the Centre System. 

Output 1 - Future values of the time series of the Centre system. 
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Case 5 - NARX network with data of 4 PV systems and meteorological data as exogenous inputs 

(6 exogenous inputs total) 

 

The final model used all the available data and intended to determine whether or not the 

forecasts can be improved by adding positively correlated information to the network. 

 

Table 8 - Case 5 configuration. 

 

Case 6 - Multistep ahead forecasting 

The different scenarios which were previously presented performed 1 day predictions on a 

one step forecast basis. To be precise, to forecast the PV output at       we use the input time 

series until  . This allowed the determination of the most relevant data and selection of the best 

configuration amongst the previous scenarios. 

On the other hand, the present case intends to study the multistep ahead NARX neural 

network forecasting performances, which means, trying to forecast the PV output at     a few 

hours in advance. Several time steps (5min, 30min, 1h, 1h30, 2h, 2h30, 3h, 4h, 6h, 8h, 12h and 16h) 

are executed and tested for a horizon of up to 1 day in advance.  

  

Inputs 

4 - Present and past values of the (Exogenous) time series of the West, North, East, and South PV systems. 

1 - Past values of the time series of the Centre PV System.  

2 - Present and past values of the (Exogenous) time series of Temperature and Radiation.  

Output 1 - Future values time series of the Centre PV system. 
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4. RESULTS  

4.1. Raw and Preprocessing data 

 

Figure 18 and Figure 19 illustrate the PV systems time series converted to power (Watt) 

and the meteorological time series raw data, respectively. One can verify that the East and South PV 

systems time series present several missing observations in the first days of the month. Moreover, 

only 5 days of the month display the shape of the typical “clear sky day”, which indicates that most 

days in Utrecht are highly affected by cloud formations.  The variation on the radiation time series 

is obviously very consistent with the shape of the PV system time series. Also, it is clearly 

observable that these meteorological data are positively correlated with the PV system time series 

because the temperature increases
4
 when a sunny day is detected and the opposite is also verified. 

 

 

 

                                                
 

4
 There is a direct correlation between the ambient temperature and the solar radiation. Although the 

PV cell efficiency decreases with the temperature, the solar radiation effect is more preponderant. 

Therefore, one may say there is a correlation between the PV production and the ambient 

temperature. 
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Figure 18 – Raw time series generated by the PV Systems in the month of July. 
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 Furthermore, the following two figures illustrate the results of the preprocessing of the time 

series of the Centre PV system and the meteorological data. Although the other PV systems time 

series are not presented, the same processing was applied to them. Figure 20 displays normalized 

moving average time series with different time steps.  

Figure 21 illustrates the interpolated meteorological time series with a 5 min step. As 

before, interpolated meteorological time series with 1min, 15min, and 30min time steps are not 

presented but have undergone the same processing.  
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Figure 19 – Meteorological raw data in the month of July. 

Figure 20 - Preprocessing of time series data generated by the Centre PV system. 
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4.2. Case 1 - Selection of the time step 

 

Table 9 and Table 10 show the results of a 4-10-1 with 2 TDL NARX network. For 

illustration purposes “t” and “f” characterize the performances of the series-parallel configuration 

and the parallel configuration, respectively. “t” denotes the training and modelling of the NARX 

network, whereas “f” denotes the multistep predictions/forecasting process. Moreover, the tables are 

coloured to illustrate the best (green), intermediate (yellow), and worst (red) relative performances. 

 

Table 9 - Case 1Training and predicting error results using different time steps. 

Time step MSEt RMSEt MAEt MSEf RMSEf MAEf 

1min 0.017 0.093 0.064 0.007 0.061 0.046 

5min 0.014 0.084 0.051 0.003 0.038 0.027 

15min 0.014 0.083 0.054 0.005 0.050 0.036 

30min 0.014 0.086 0.062 0.012 0.081 0.065 

1h 0.016 0.093 0.065 0.010 0.069 0.056 

 
Table 10 - Case 1 Training and predicting coefficients of variation, using different time steps. 

Time step CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

1min 2% 1% 2% 4% 4% 4% 

5min 3% 2% 4% 6% 5% 11% 

15min 5% 2% 4% 10% 11% 7% 

30min 8% 6% 7% 42% 21% 23% 

1h 12% 9% 8% 29% 19% 15% 
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  Figure 21 - Normalization and interpolation of the meteorological time series. 
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Figure 22 – Case 1 RMSE results for the forecasting process using different time steps. 

RMSE is one of the most important evaluators for the assessment of the quality of the 

network and its values are always higher than MAE. Therefore, though these evaluators are not 

comparable between them, both might exhibit the same behaviour when comparing different 

simulations. 

Figure 22 displays the NARX networks RMSEf results using different time steps. These 

results led us to select the 5 min time step as the most appropriate to perform all remainder cases.  

The network forecasting performance of 30 min and 1h time step were clearly the worst, albeit still 

showed an acceptable error, as displayed in Table 9 and Table 10. In spite of mean errors being 

acceptable, there was a significant variation of the independent performances. The time series of 

30min and 1h time steps probably did not have enough length to allow the network to capture 

enough patterns and complete a good network learning process. That is, given the fact that only the 

month of July is being assessed, 30min and 1h time steps for a single month results in a too small 

length time series.  

Though the performance of the 1min time step network was rather good, especially because 

of the low values of the coefficient of variation (around 1% for the training and 3% to 4% for the 

forecasting), it takes a very long time to process because of the high number of weights involved in 

such complex network. 

Finally, despite of the RMSEf values of the network with the time series with 15 min time 

step showing good accuracy, it did not outperform the network with the time series with 5 min time 

step. Though the coefficient of variation of both performances was similar, the 5 min time step 

network demonstrates better forecasting results and, therefore, it is more capable of learning the 

patterns of the time series. This may be a consequence of the fact that many physical phenomena 

that establish the correlation between the inputs and the output can be detected in a 5min timeline. 

 

4.3. Case 2 - NARX network with data of 4 PV systems as exogenous inputs. 

 In case 1, the number of hidden neurons and tapped delay line were selected based on the 

default values of MATLAB@ 2012
Rb

 Neural Networks Toolbox. However, for case 2, though the 

neural network has the same exogenous inputs as in case 1, the 5 min time step is now used and 

several simulations were made to determine the effect of the hidden neurons and the tapped delay 
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line in the network performance. First, the tapped delay line was maintained constant using the 

default value (2 TDLs) while the number of hidden neurons varied. Subsequently, the number of 

hidden neurons that yielded the best neural network performance was selected and maintained 

constant while a range of tapped delay lines were tested. 

 

Selection of the number of hidden neurons 

 

Table 11 – Case 2 training and predicting error results, using different hidden neurons. 

Hidden Neurons MSEt RMSEt MAEt MSEf RMSEf MAEf 

5 0.014 0.083 0.050 0.003 0.041 0.029 

10 0.014 0.084 0.051 0.003 0.038 0.027 

20 0.014 0.083 0.051 0.003 0.042 0.029 

35 0.014 0.084 0.053 0.003 0.041 0.029 

50 0.015 0.088 0.054 0.006 0.056 0.043 

 
Table 12 – Case 2 training and predicting coefficients of variation, using different hidden neurons. 

Hidden Neurons CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

5 3% 2% 3% 8% 7% 10% 

10 3% 2% 4% 6% 5% 11% 

20 3% 1% 3% 10% 5% 8% 

35 6% 3% 6% 21% 11% 12% 

50 9% 6% 6% 39% 21% 27% 

 

Table 11 and Table 12 show the results obtained for the NARX network varying the 

number of hidden neurons in the hidden layer. First, it is observable that the parallel configuration 

(multistep predictions) results are relatively smaller than the results from the series-parallel 

configuration (training). Therefore, one can verify that a recurrent network such as the one that is 

used to perform multistep predictions outperforms the multilayer Feedforward network, which is 

used for the training process (series-parallel configuration). However, looking at the Table 12, one 

confirms that the parallel configuration results are considerably higher compared to the results from 

the series-parallel configuration (training). Indeed, though the multistep forecasting process shows 

good performances, the coefficients of variation lead us to consider that a high level of variation of 

performances may occur. On the other hand, the performance of the training process shows that 

fewer variations occur, albeit the errors slightly increase. The low errors of the multistep prediction 

process result from the fact that the neural network was able to learn adequately and to generalize.  

Though the functions that measure the errors magnitude cannot be compared between each 

other, one may observe that the results are coherent. That is, for instance, when the RMSEf 

increases the MAEf also tends to increase. In Table 11, training and forecasting errors tend to 

increase with the number of hidden neurons. The RMSE penalizes higher deviations and it is the 

most interesting evaluator because we intend that the predictions do not diverge significantly from 

the true target value. 
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Figure 23 illustrates, graphically, those variations of the RMSEf function. The difference 

between the value of the best performance and the worst performance of the RMSEf is considerably 

large (more than 50% relative difference). We want to select the number of hidden neurons that 

implies less number of weights and complexity of the network but still has a good performance, that 

is, the most parsimonious model. 

Accordingly, one observes that the neural network’s lowest RMSEf of 0.038 was achieved 

with 10 hidden neurons. The network with 5 hidden neurons produced a slightly higher error value 

because it was not as effective in capturing the underlying features of data. Moreover, the remainder 

number of hidden neurons in the network configuration also did not perform as well as the 10 

hidden neurons configuration given the fact that adds unnecessary weights.  

 

Selection of the tapped delay line 

Table 13 and Table 14 show the neural network results using different tapped delay lines, 

and once again the colors allow us to easily identify the best and the worst performances. The 

associated real time that is being considered in every tapped delay line is also shown. 

 

Table 13 - Case 2 training and predicting error results, using different TDL. 

Real Time TDL MSEt RMSEt MAEt MSEf RMSEf MAEf 

10min 2 0.014 0.084 0.051 0.003 0.038 0.027 

20min 4 0.014 0.083 0.050 0.005 0.050 0.036 

30min 6 0.013 0.082 0.050 0.003 0.040 0.028 

45min 9 0.014 0.083 0.051 0.004 0.044 0.033 

1h 12 0.014 0.083 0.051 0.004 0.047 0.034 

1h30 16 0.014 0.085 0.054 0.005 0.051 0.040 

2h 24 0.013 0.083 0.051 0.005 0.050 0.037 

3h 36 0.015 0.089 0.056 0.007 0.063 0.049 

4h 48 0.020 0.104 0.067 0.010 0.070 0.059 
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Figure 23 - Case 2 RMSE results for the forecasting process using different hidden neurons. 
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Table 14 - Case 2 training and predicting coefficients of variation, using different TDL. 

Real Time TDL CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

10min 2 3% 2% 4% 6% 5% 11% 

20min 4 6% 3% 3% 24% 17% 13% 

30min 6 3% 1% 4% 10% 5% 10% 

45min 9 5% 2% 5% 23% 16% 12% 

1h 12 4% 3% 4% 20% 10% 16% 

1h30 16 7% 4% 8% 27% 13% 16% 

2h 24 3% 5% 5% 31% 18% 18% 

3h 36 8% 7% 8% 37% 22% 22% 

4h 48 15% 10% 13% 32% 17% 28% 

 

It was observed that adding more numbers to the tapped delay line increases the complexity 

of the network and, consequently, the error results. A considerable amount of time was required to 

compute the networks with a 48 Tapped delay line and understandably the overall performance of 

that network configuration is significantly poor.  

One may observe that the training results of the neural networks appear to be very 

consistent, with small variations. This suggests similar accuracy and that varying the tapped delay 

line only poses relevant discrepancies in the training results when it is severely increased. On the 

other hand higher variations can be detected for the multistep predictions in the coefficient of 

variation’s table, albeit those variations are acceptable considering the task. Usually, for multistep 

predictions, the best neural network performances exhibit a lower coefficient of variation and, on 

the other hand, worse performances tend to have higher coefficients of variation. 

All functions suggest similar trends for the errors. Figure 24 demonstrates that the 

performance of the NARX network tends to deteriorate by increasing dramatically the TDL. 

The configuration using 2 TDL (10 min) revealed to be the most parsimonious model with 

an RMSEf of 0.038. The difference between the latter result and the one with the poorer 

performance was higher than 80%. Accordingly, one can determine that for a NARX neural 

network with 4 PV systems data as exogenous inputs, it is more relevant to feedback to the network 

only the information of the two previous outputs than feedback several of the previous output 

values. This is coherent with most real world dynamic systems, where future values tend to be 

similar to the closest previous values.  

Furthermore, it was also observed that the network with 6 TDL and the best configured 

network (2TDL) had very similar results. Therefore, one can verify that periodically adding 

information may improve the network performance. In this case, this extra past observations 

considered may indicate that cloud movements were detected. 
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Figure 24 - Case 2 RMSE results for the forecasting process using different TDL. 

 

4.4. Case 3 - NARX network with data of 2 PV systems as exogenous inputs  

To compare models and assess the influence of the exogenous inputs in the NARX neural 

network, different combinations of inputs were applied. First, the neural network was tested using 

solely the information of the West and East PV systems as exogenous inputs, and the second test 

uses the data of the North and South PV systems as exogenous inputs. As standard practice, the 

ideal number of hidden neurons and tapped delay line were determined using the same method 

applied in the previous case.  

 

Case 3.1 West and East PV systems as exogenous inputs   

 

Selection of the number of hidden neurons 

Table 15 and Table 16 exhibit the results of different neural network configurations using 

data from the West and East PV systems as exogenous inputs. The MSEt, RMSEt and MAEt in 

Table 15 indicate very consistent and accurate performances of the series-parallel network 

configuration, that is, the training procedure. According to the MSEf, RMSEf and MAEf results in 

Table 15, the network with 10 hidden neurons outperforms the other network configurations for 

multistep predictions. In Figure 25 one can verify that, similarly to previous cases, increasing the 

number of hidden neurons also increases the final error, by a slight difference. Consequently, 10 

hidden neurons are selected for the neural network configuration. Moreover, though in Table 16 the 

configuration with 10 hidden neurons did not show the lowest coefficients of variation results, the 

observed variations were satisfactory. 
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Table 15 - Case 3.1 training and predicting error results, using different hidden neurons. 

Hidden 

Neurons 
MSEt RMSEt MAEt MSEf RMSEf MAEf 

5 0.013 0.082 0.050 0.004 0.045 0.032 

10 0.014 0.082 0.050 0.004 0.043 0.031 

20 0.014 0.082 0.051 0.004 0.045 0.034 

35 0.014 0.083 0.051 0.005 0.050 0.038 

50 0.014 0.084 0.051 0.005 0.052 0.040 

 
Table 16 - Case 3.1 training and predicting coefficients of variation, using different hidden neurons. 

Hidden 

Neurons 
CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

5 2% 1% 3% 12% 8% 9% 

10 4% 2% 5% 19% 10% 16% 

20 4% 2% 3% 26% 14% 22% 

35 5% 3% 5% 21% 13% 15% 

50 6% 5% 6% 36% 20% 29% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

To achieve the best network configuration, a range of tapped delay lines were tested using 

the selected number of hidden neurons (10 hidden neurons).  

 

 

 

Figure 25 - Case 3.1 RMSE results for the forecasting process using different hidden neurons. 
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Selection of the tapped delay line 

One might have noticed consistent error values between different configurations and low 

variability of results for the neural network training process. On the other hand, though the recurrent 

network used for multistep predictions yields lower MSE, RMSE and MAE results, considerably 

higher coefficients of variation were observed. The ideal number of tapped delay line is selected 

based on the lowest error of the multistep predictions procedure. Accordingly, a neural network 

with a 2 TDL configuration showed to be the best fit, with the RMSEf and the MAEf values of 

0.043 and 0.031 respectively. The latter configuration also showed low coefficients of variation.  

 

Table 17 - Case 3.1 training and predicting error results, using different TDL. 

Real Time TDL MSEt RMSEt MAEt MSEf RMSEf MAEf 

10min 2 0.014 0.082 0.050 0.004 0.043 0.031 

20min 4 0.013 0.081 0.048 0.004 0.046 0.034 

30min 6 0.013 0.081 0.049 0.005 0.053 0.042 

45min 9 0.013 0.082 0.049 0.008 0.065 0.048 

1h 12 0.013 0.081 0.049 0.006 0.056 0.042 

1h30 16 0.013 0.080 0.049 0.008 0.065 0.050 

2h 24 0.013 0.082 0.051 0.006 0.060 0.045 

3h 36 0.014 0.083 0.052 0.006 0.057 0.044 

4h 48 0.013 0.082 0.052 0.005 0.052 0.038 

 

Table 18 - Case 3.1 training and predicting coefficients of variation, using different TDL. 

Real Time TDL CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

10min 2 2% 1% 2% 11% 6% 6% 

20min 4 3% 1% 3% 6% 5% 11% 

30min 6 3% 3% 3% 16% 10% 13% 

45min 9 3% 3% 4% 48% 25% 28% 

1h 12 4% 2% 3% 30% 19% 21% 

1h30 16 5% 3% 3% 13% 7% 10% 

2h 24 5% 3% 5% 18% 14% 15% 

3h 36 7% 4% 5% 20% 14% 17% 

4h 48 4% 2% 4% 14% 9% 12% 

 

One can also observe, graphically, in Figure 26         Figure 26, the RMSEf values of the 

different simulations. We can verify that the performance of the neural network did not improve by 

adding more TDL. In fact, considering past values up to a 9 TDL (45 min) did not prove to be 

relevant, as the error kept increasing. However, between the simulation with the neural network 

with the 9 TDL (45 h) configuration and the 12 TDL (1 h) configuration, a sudden reduction of 

around 15% was detected, which indicates that the extra 15 min considered may involve 

fundamental information to perform the predictions. Furthermore, the accumulated values of 1h30 
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used as tapped delay line also did not pose relevant variation in the RMSEf. Yet, beyond the 16 

TDL, we can identify that the RMSEf values tend to decrease but never reach or outperform the 

minimum RMSE achieved with a neural network with a 2 TDL configuration.   

Thus, the best NARX neural network configuration using data from the West and East PV 

systems as exogenous inputs has 10 hidden neurons, 2TDL  and a 0.043 RMSEf and a 0.031 MAEf. 

 

 
 

 
 

Case 3.2 North and South PV systems as exogenous inputs   

 

Selection of the number of hidden neurons 

In Table 19 and Table 20, one can compare the results of different neural networks 

configurations using time series data of the North and South PV system as exogenous inputs. The 

training process showed close similarities between the different configurations, which is consistent 

with all the previous cases. However, as displayed in Table 20, unlike the previous cases, the neural 

network with 5 hidden neurons showed the lowest MSEf, RMSEf and MAEf results. One can also 

observe in Figure 27 that the network configuration with 20 hidden neurons and 35 hidden neurons 

had the 0.059 RMSEf, which is also the same result as the network configuration with 5 hidden 

neurons. However, the MAEf function indicates better results with the 5 hidden neurons network 

configuration. Accordingly, the latter configuration is selected as the most parsimonious model. 

 

Table 19 - Case 3.2 training and predicting error results, using different hidden neurons. 

Hidden Neurons MSEt RMSEt MAEt MSEf RMSEf MAEf 

5 0.017 0.091 0.055 0.007 0.059 0.043 

10 0.017 0.091 0.055 0.008 0.066 0.046 

20 0.017 0.092 0.056 0.007 0.059 0.045 

35 0.017 0.091 0.055 0.007 0.059 0.044 

50 0.017 0.093 0.056 0.018 0.094 0.073 
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         Figure 26 - Case 3.1 RMSE results for the forecasting process using different TDL. 
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Table 20 - Case 3.2 training and predicting coefficients of variation, using different hidden neurons. 

Hidden Neurons CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

5 1% 1% 2% 9% 5% 7% 

10 2% 1% 2% 26% 16% 17% 

20 3% 3% 3% 21% 11% 16% 

35 3% 2% 5% 20% 11% 13% 

50 5% 3% 5% 47% 25% 32% 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selection of the tapped delay line 

To complete the configuration selection of this case, the following Table 21, Table 22 and 

Figure 28 introduce the network results using different tapped delay line.  

 

Table 21 - Case 3.2 training and predicting error results, using different TDL. 

Real Time TDL MSEt RMSEt MAEt MSEf RMSEf MAEf 

10min 2 0.017 0.091 0.055 0.007 0.059 0.043 

20min 4 0.016 0.089 0.053 0.006 0.055 0.041 

30min 6 0.016 0.089 0.054 0.007 0.061 0.044 

45min 9 0.016 0.089 0.054 0.006 0.056 0.041 

1h 12 0.016 0.091 0.056 0.007 0.059 0.044 

1h30 16 0.017 0.092 0.055 0.010 0.071 0.055 

2h 24 0.017 0.091 0.056 0.009 0.065 0.047 

3h 36 0.017 0.093 0.059 0.017 0.091 0.071 

4h 48 0.018 0.094 0.059 0.013 0.080 0.060 

Figure 27 - Case 3.2 RMSE results for the forecasting process using different hidden neurons. 
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Table 22- Case 3.2 training and predicting coefficients of variation, using different TDL. 

Real Time TDL CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

10min 2 1% 1% 2% 9% 5% 7% 

20min 4 1% 1% 2% 20% 11% 18% 

30min 6 3% 1% 4% 24% 14% 16% 

45min 9 2% 1% 2% 12% 8% 11% 

1h 12 3% 1% 5% 20% 10% 12% 

1h30 16 5% 4% 3% 43% 23% 29% 

2h 24 4% 2% 4% 30% 15% 17% 

3h 36 3% 3% 6% 40% 20% 22% 

4h 48 5% 3% 7% 22% 11% 12% 

 

 

 
According to the latter figure and tables, a 4 TDL was selected as the configuration that 

yielded the lowest errors (0.055 RMSEf). Figure 28 shows periodical oscillations, which indicates 

that using periodically past information of the North and South PV systems as exogenous inputs 

may have added relevant value to the network. Besides the global minimum at the 4 (20 min) TDL 

configuration, two local minimums were achieved with the 9 TDL (45min) and 24 TDL (2h) 

network configurations.  This reveals that, having the 4 TDL as reference, using another 25 min of 

information and another 1h10 min also improves the performance, that is, possibly cloud movement 

information was responsible for the error variations in that time interval. However, none of those 

networks was able to outperform the network that achieved the local minimum RMSEf. Therefore, 

though it is interesting to detect these periodic oscillations, the information regarding the past 20 

min observations (4 TDL) has more importance.  

The best network performance was achieved with a combination of 5 hidden neurons and a 

4 TDL, with the lowest RMSEf and the MAEf being 0.055 and 0.041, respectively. Comparing 

these results with the results of the best configuration of the NARX neural network using the West 
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Figure 28 - Case 3.2 RMSE results for the forecasting process using different TDL. 
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and East PV system information as exogenous inputs (10 hidden neurons and a 2 TDL - RMSEf and 

MAEf were 0.043 and a 0.031 respectively), one may have noticed a deterioration of about 30% of 

these final errors.  

 In fact, the difference of the selected number of hidden neurons for both networks that 

utilize 2 exogenous inputs might be the result of the many missing observations of the South PV 

system time series. Moreover, the fact that the North and South PV systems are, geographically, 

more separated that the West and East PV systems may have influence in the selection of the tapped 

delay line. Consequently, these variations may explain the fact the network with the West and East 

PV systems information outperform the network with the North and South PV systems information.    

 

4.5. Case 4 - NARX network with data of 2 meteorological parameters as 

exogenous inputs. 
 

Selection of the hidden neurons 

In this case, very poor accuracy for the multistep predictions was detected while using the 

default value of 2 TDL to select the best hidden neurons configuration, when comparisons are made 

to the previous cases. Though in Table 23 the training results appear similar to the previous cases, 

the multistep predictions process results were rather different than previous cases. The good 

performance of the training process is due to the fact that a series-parallel configuration is used. 

 
Table 23 - Case 4 training and predicting error results, using different hidden neurons. 

Hidden 

Neurons 
MSEt RMSEt MAEt MSEf RMSEf MAEf 

5 0.016 0.089 0.053 0.031 0.124 0.094 

10 0.016 0.090 0.054 0.011 0.075 0.057 

20 0.016 0.090 0.055 0.026 0.113 0.086 

35 0.016 0.090 0.055 0.031 0.121 0.097 

50 0.016 0.091 0.055 0.027 0.113 0.097 

 
Table 24 - Case 4 training and predicting coefficients of variation, using different hidden neurons. 

Hidden 

Neurons 
CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

5 1% 0% 2% 29% 14% 10% 

10 2% 1% 4% 20% 10% 16% 

20 3% 2% 4% 26% 14% 17% 

35 3% 2% 5% 45% 23% 28% 

50 4% 4% 3% 40% 22% 26% 
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Interpolating the meteorological data as a preprocessing tool may have had influence in 

these results, as the network may have not been able to entirely capture the intra hour patterns and 

effects in the PV system output.  

We can observe inTable 23, Table 24 and Figure 29 that the configuration with 10 hidden 

neurons had the lowest MSEt, RMSEt and MAEt, and therefore was selected to execute further 

tests. The remainder network configurations either established a too complex architecture or had 

lack of complexity, and therefore, presented very high multistep forecasting errors when compared 

to the results of the network with 10 hidden neurons configuration. 

 

Selection of the tapped delay line 

The selected the number of hidden neurons revealed significant high RMSEf and MSEf 

errors while using a 2 TDL in the network configuration. However, Table 25, Table 26 and Figure 

30 illustrate that these errors decrease while increasing significantly the tapped delay line value. 

 

Table 25 - Case 4 training and predicting error results, using different TDL. 

Real Time TDL MSEt RMSEt MAEt MSEf RMSEf MAEf 

10min 2 0.016 0.090 0.054 0.011 0.075 0.057 

20min 4 0.015 0.087 0.053 0.015 0.085 0.062 

30min 6 0.015 0.087 0.052 0.019 0.102 0.066 

45min 9 0.015 0.087 0.053 0.015 0.090 0.074 

1h 12 0.015 0.085 0.052 0.008 0.062 0.047 

1h30 16 0.015 0.085 0.052 0.005 0.051 0.038 

2h 24 0.014 0.086 0.054 0.005 0.053 0.038 

2h30 30 0.014 0.085 0.052 0.005 0.050 0.037 

3h 36 0.015 0.085 0.054 0.005 0.051 0.035 

4h 48 0.015 0.086 0.055 0.005 0.050 0.036 

5h 60 0.015 0.086 0.054 0.006 0.053 0.039 
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    Figure 29 - Case 4 RMSE results for the forecasting process using different hidden neurons. 
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Table 26 - Case 4 training and predicting coefficients of variation, using different TDL. 

Real Time TDL CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

10min 2 2% 1% 4% 20% 10% 16% 

20min 4 5% 2% 4% 33% 15% 20% 

30min 6 4% 2% 2% 55% 32% 28% 

45min 9 2% 1% 2% 38% 22% 31% 

1h 12 1% 0% 1% 15% 8% 10% 

1h30 16 4% 2% 2% 16% 8% 6% 

2h 24 5% 4% 4% 14% 10% 7% 

2h30 30 3% 4% 3% 16% 9% 11% 

3h 36 4% 2% 5% 19% 11% 8% 

4h 48 3% 3% 5% 13% 7% 9% 

5h 60 4% 2% 4% 11% 7% 8% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The error tends to become constant after the 16 TDL (1h30) network configuration; 

however, minimum values of the RMSEf and MAEf were detected at the 30 TDL (3h) and 36 TDL 

(4h).Therefore, the best NARX network configuration using meteorological data as exogenous 

inputs uses a combination of 10 hidden neurons and a 30 TDL. 

This 0.050 RMSEf outperforms the previous case where the data from the North and South 

PV systems used as exogenous inputs yielded a 0.055 RMSEf. However, it was detected that the 

network performance improved because it kept considering previous outputs, that is, more 

information regarding the Centre PV system (Output) was fed back to the network. Because the 

meteorological data did not provide relevant intra-hour information, the parameter that actually 

influenced the network behavior was the own output.  
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Figure 30 - Case 4 RMSE results for the forecasting process using different TDL. 
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This case on its own does not pose much interest. However, in the next case all the 

variables available are used as exogenous inputs and the influence of the combinations of 

meteorological information and all of the time series of the PV systems is tested.     

 

4.6. Case 5 - NARX network with 4PV systems and meteorological data as 

exogenous inputs. 
 

Selection of the number of hidden neurons 

With Case 5 we tried to understand whether or not adding meteorological information to the 

information of all PV systems improves the neural network performance. Table 27 clearly shows 

improvements of the multistep predictions performance comparing to the previous cases, whereas 

the training process displayed small modifications. 

 

Table 27 - Case 5 training and predicting error results, using different hidden neurons. 

Hidden Neurons MSEt RMSEt MAEt MSEf RMSEf MAEf 

5 0.013 0.081 0.050 0.003 0.040 0.025 

10 0.013 0.080 0.050 0.003 0.037 0.025 

20 0.013 0.081 0.050 0.004 0.043 0.030 

35 0.013 0.082 0.051 0.003 0.042 0.028 

50 0.013 0.081 0.053 0.006 0.054 0.043 

 

Table 28 - Case 5 training and predicting error results, using different hidden neurons. 

Hidden Neurons CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

5 5% 2% 4% 11% 6% 7% 

10 5% 2% 4% 15% 10% 11% 

20 6% 3% 5% 14% 8% 12% 

35 7% 4% 5% 11% 7% 10% 

50 7% 4% 6% 21% 11% 22% 

 

The coefficients of variation also kept within the expected range, with the series-parallel 

architecture showing lower variations than the parallel architecture. Table 27 indicates that the 10 

hidden neurons network configuration achieves the lowest RMSEf (0.037) and MAEf (0.025) 

values. One can observe in Figure 31 a similar behavior as detected in most previous cases. The 5 

hidden neurons network configuration has insufficient weights and cannot produce better results 

than the 10 hidden neurons network configuration. Moreover, the remainder networks performance 

tend to decay while increasing the number of hidden neurons. Consequently, the 10 hidden neurons 

were selected to test the networks with different TDL. 
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Selection of the tapped delay line 

Varying the tapped delay line did not pose any significant enhancement in the neural 

network performance. In fact, the error results kept increasing while adding delays to the network. 

Table 29 clearly indicates that the 10 hidden neurons and 2 TDL neural network performs better 

than the remainder simulations and is the best suitable architecture to detect the underlying 

characteristics of the time series studied. Moreover, Table 30 indicates low variability of the 10 

hidden neurons and 2 TDL neural network, which indicates very good accuracy. 

 

Table 29 - Case 5 training and predicting error results, using different TDL. 

Real Time TDL MSEt RMSEt MAEt MSEf RMSEf MAEf 

10min 2 0.013 0.080 0.050 0.003 0.037 0.025 

20min 4 0.013 0.081 0.050 0.004 0.044 0.032 

30min 6 0.013 0.083 0.050 0.004 0.044 0.034 

45min 9 0.014 0.084 0.052 0.003 0.041 0.030 

1h 12 0.014 0.083 0.051 0.004 0.043 0.031 

1h30 16 0.014 0.084 0.052 0.004 0.044 0.032 

2h 24 0.014 0.085 0.052 0.005 0.048 0.038 

3h 36 0.017 0.092 0.059 0.006 0.057 0.042 

4h 48 0.018 0.094 0.062 0.007 0.057 0.042 

 

  

Figure 31 - Case 5 RMSE results for the foecasting process using different hidden neurons. 
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Table 30 - Case 5 training and predicting coefficients of variation, using different TDL. 

Real Time TDL CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

10min 2 5% 2% 4% 11% 6% 7% 

20min 4 4% 2% 4% 11% 8% 12% 

30min 6 5% 5% 5% 23% 12% 23% 

45min 9 7% 4% 6% 14% 8% 11% 

1h 12 3% 3% 5% 15% 9% 12% 

1h30 16 6% 3% 4% 14% 7% 11% 

2h 24 7% 5% 6% 21% 10% 18% 

3h 36 11% 6% 8% 32% 18% 19% 

4h 48 19% 10% 13% 38% 19% 19% 

 

Furthermore, a thorough observation of Figure 32 led us to understand that is a similar 

RMSE variation as in previous cases. The global minimum RMSE was, indeed, identified with a 2 

TDL network configuration. Although the error of the subsequent tapped delay line is likely to 

increase, there is usually a sudden drop of the error occurs using around 45min, 1h and up to 2h 

delayed information. In Figure 32 this drop occurred at the 9 TDL (45 min) network configuration. 

Thus, though these drops tend to be merely local minimum errors, one can verify that the 45min, 1h 

and up to 2h delayed information may contain relevant characteristics of the cloud movements. 

However, most networks revealed better performances with smaller TDL. 
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Figure 32 - Case 5, RMSE results for the predicting process using different TDL. 
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Forecasting results 

Considering that a high number of networks configurations were simulated while 

developing this work, the following figures display the multistep predictions using the best network 

configuration achieved. This is merely an example of the expected output values using a NARX 

neural network with 10 hidden neurons, 2 TDL and 6 exogenous inputs. 

Figure 33 displays the multistep predictions for the Centre PV system of the last day of the 

month using the remainder days for test and validation. In Figure 34, one can verify in detail the 

multistep predictions for that day. The network forecasting results can successfully approximate to 

the expected outputs and the intra-hour ramping is well captured. However, the network is not able 

to effectively capture the early and late variations of the day. 
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Figure 33 - Prediction of the last day of the month, using NARX network with 4PV systems and 
meteorological data as exogenous inputs. 
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Additionally, the following figures illustrate some of the MATLAB
@

 2012
Rb

 Neural 

Networks tools to evaluate the training process of only an example of the best network architecture 

(10 hidden neurons and 2 TDL) achieved in this case.  

 Figure 35 displays the error autocorrelation function, which is used to validate the network 

performance. This function describes how the prediction errors are related in time. Ideally, a perfect 

prediction model, only one nonzero value should occur at the zero lag (this is the mean square 

error). This would illustrate that the prediction errors were completely uncorrelated with each other 

(white noise). In this example, the correlations fall approximately within the 95% confidence limits 

around zero, and therefore, the model seems to be adequate. 
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Figure 34 - Comparison between the Network predictions and the expected output for the last day 
of the month. 
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The input-error cross-correlation function, illustrated in    Figure 36, indicates how the 

errors are correlated with input sequence. For a perfect model, the correlations should be zero. 

However, this model showed good performance due to the fact that all of the correlations fall within 

the confidence bounds around zero. If this function displayed that the input was correlated with 

error, the prediction accuracy could have been improved by increasing, for instance, the number of 

delays in the tapped delay lines. 

 

 

 

  

   Figure 36 - Input-error cross-correlation. The y axis has magnitude order of 10
-3

. 

Figure 35 - Error autocorrelation function. The y axis has magnitude order of 10
-3

.  
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4.7. Best neural network configurations from Case 2 to 5  

 

Table 31 and Figure 37 illustrate the results of the most suitable network configurations 

achieved for each case when performing, an equivalent to 1 day, multistep predictions. 

 

Table 31 - Comparison between the optimized networks configurations. 

Case Exogenous Inputs  Output Hidden neurons TDL RMSEf MAEf 

2 4 PV systems (N,S,E,W) 

Centre PV system 

10 2 0.038 0.027 

3.1 
2 PV systems – West and East. 

 
10 2 0.043 0.031 

3.2 2 PV systems – North and South 5 4 0.055 0.041 

4 Meteorological 10 30 0.050 0.037 

5 4 PV systems (N,S,E,W) and Meteorological 10 2 0.037 0.025 
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Figure 37 - Comparison between the optimized networks configurations achieved in each case. The x 
label illustrates the input data used in the NARX network. 
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Case 3.2 presented the highest RMSEf and MAEf results and, as previously mentioned, it 

was probably a consequence of the large number of missing observations in the South PV system. 

Furthermore, in case 4 where meteorological data was used as exogenous inputs, a 30 TDL was 

required to produce lower RMSEf and MAEf values. This indicates the network only performs well 

when the target series (Centre PV system) past information is strongly fed into the network. 

However, the neural network in this case was able to achieve a 10% error reduction comparing to 

case 3.2.  

In case 2, case 3.1 and case 5, a 10 hidden neurons and 2 TDL were considered as the best 

network architecture and produced the three lowest RMSEf and MAEf. Though both NARX neural 

networks in case 3.1 and case 3.2 use data of 2 PV systems as exogenous inputs, the West and East 

PV systems combination (case 3.1) clearly outperforms the (North and south) PV systems, with a 

30% reduction of the error results. As suggested before, this may be related to missing observations 

in the South PV system or may be due to a more relevant correlation between the time series of the 

West and East PV systems with the target system, i.e. predominantly East-West cloud motion. 

Nevertheless, one can observe that the NARX neural network in case 2 improves the prediction 

accuracy when combining the 4 PV systems. A 0.038 RMSEf and a 0.027 MAEf pose a 13% and 

15%, respectively, accuracy improvement comparing to the case 3.1. 

   Adding the meteorological data and the 4 PV systems as exogenous inputs (case 5) 

demonstrated to further improve the NARX neural network performance accuracy with the RMSEf 

and MAEf decreasing by another 3% and by 8%, respectively. Thus, combining all the information 

available revealed to be the best method and, therefore, the following experimentation used the case 

5 NARX network architecture.  

 

4.8. Case 6 - Multistep ahead forecasting  

 

As mentioned before, in the previous cases the past steps (TDL) of the exogenous inputs 

and outputs were used to perform several one-step predictions until achieving one complete day of 

predictions.  

In this case, methodologically, and as an example, a 30min prediction ahead (6 steps 

because each computational step is a 5 min step in real time) using a NARX neural network with 2 

TDL consisted in denoting that     and     values were considered to model the     value 

instead of the     value.  

Table 32 and Table 33 display the results of the multistep ahead predictions, using a NARX 

neural network with 10 hidden neurons and 2TDL. Table 34 presents the results of the persistence 

model and Figure 38 shows the comparison between the NARX model and the persistence model.  
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 Table 32 – Error results of anticipating the predictions using the NARX model. 

Time 

ahead 
MSEt RMSEt MAEt MSEf RMSEf MAEf 

5min 0.013 0.080 0.050 0.003 0.037 0.025 

30min 0.027 0.117 0.077 0.008 0.063 0.042 

1h 0.027 0.116 0.077 0.007 0.058 0.041 

1h30 0.022 0.104 0.069 0.005 0.052 0.036 

2h 0.020 0.101 0.065 0.004 0.046 0.032 

2h30 0.021 0.104 0.069 0.004 0.045 0.034 

3h 0.026 0.114 0.079 0.007 0.059 0.044 

4h 0.046 0.152 0.113 0.022 0.104 0.081 

6h 0.074 0.192 0.146 0.030 0.124 0.101 

8h 0.081 0.208 0.157 0.040 0.144 0.116 

12h 0.072 0.190 0.145 0.034 0.135 0.109 

16h 0.059 0.173 0.126 0.060 0.175 0.134 

 

 

Table 33 - CV results of anticipating the predictions with different intervals. 

Time 

ahead 
CVMSEt CVRMSEt CVMAEt CVMSEf CVRMSEf CVMAEf 

5min 5% 2% 4% 11% 6% 7% 

30min 4% 3% 3% 8% 11% 7% 

1h 4% 3% 3% 12% 6% 8% 

1h30 6% 3% 5% 16% 9% 8% 

2h 5% 4% 6% 12% 7% 8% 

2h30 5% 3% 5% 4% 3% 4% 

3h 11% 6% 8% 14% 7% 8% 

4h 7% 4% 3% 16% 9% 8% 

6h 7% 4% 3% 16% 9% 8% 

8h 4% 6% 8% 26% 20% 15% 

12h 10% 5% 6% 11% 12% 9% 

16h 8% 5% 6% 15% 6% 8% 
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Table 34 - Error results of anticipating the predictions using the persistence model. 

Time 

ahead 
MSEf RMSEf MAEf 

5min 0.00 0.05 0.03 

30min 0.01 0.07 0.05 

1h 0.01 0.09 0.06 

1h30 0.01 0.11 0.08 

2h 0.02 0.13 0.10 

2h30 0.02 0.14 0.11 

3h 0.03 0.16 0.13 

4h 0.04 0.20 0.15 

6h 0.07 0.27 0.21 

8h 0.11 0.32 0.24 

12h 0.09 0.31 0.22 

16h 0.09 0.31 0.21 

 

 

 

 

 In Figure 37, one can detect that the global minimum errors of both models occur with a 

single step ahead predictions (5min), albeit the NARX model (0.037 RMSE) outperforms the 

persistence model (0.05 RMSE). In fact, the persistence model cannot outperform the NARX model 
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Figure 38 - Comparison between the persistence model and the NARX model RMSEf results of 
anticipating the predictions. 
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at any time because as expected, its RMSE value severely increases while increasing the time step 

ahead predictions.    

Furthermore, the NARX results show that anticipating the predictions between 2h and 2h30 

generates a very interesting performance, with the local minimum of 0.046 (RMSEf) and 0.032 

(MAEf) being reached when performing a 2h30 forecasting. This led us to believe that a current 

value may have significant influence in a 2h30 later observation. In fact, though forecasting errors 

between 30 min and 2h were not extremely high, they did not outperform the 2h30 forecasting 

results. 

One can observe in Figure 38 that the forecast accuracy dramatically decays when the 

forecast horizon is increased beyond the 2h horizon. Indeed, the difference between the accuracy of 

the NARX neural network performance for 16 hours forecast horizon and the 2h30 forecasting 

horizon is very significant.    

Finally, it is relevant to highlight the fact that the tested scenarios in case 6 used a 10 

hidden neurons and 2 TDL configuration for the NARX model. This configuration was selected 

based on the one-step forecasts performed in case 5, which indicates that the network was optimized 

for the case 5 conditions. Thus, in Figure 38, the results beyond the 5min forecasts are not 

representative of optimized NARX networks.  Naturally, the training process (Table 32) illustrates 

this statement, as there are some variations between the different trials.  However, the NARX model 

depicts an acceptable behaviour and a significant enhancement relatively to the persistence model. 

Optimizing the networks would probably result in improving the network performances and 

consequently the RMSE values in Figure 38.  
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5. CONCLUSION 

 

This work provides a thorough research in the solar power forecasting domain focusing on 

time series prediction using the NARX model. Accordingly, a NARX model using a Feedforward 

network for the training process and a recurrent network for forecasting is introduced to optimize 

the final performance.  

Several combinations of data from 4 PV systems geographically separated from each other, 

and meteorological data from the area of Utrecht, Netherlands, are proposed as exogenous inputs. 

This allowed us to understand what parameters are more relevant to the forecast performance of a 

PV system located in the middle of other 4 PV systems, while using the same NARX model. Every 

combination requires testing different architectures and, thus, selecting the optimized network. To 

analyse the performance of the several cases different evaluator functions are introduced. By 

observing the MSE, RMSE and MAE values it was possible to select the most appropriate 

architecture and parameters. 

It was proved that the information of 4 PV systems as the network inputs outperforms 

networks solely using 2 time series of PV systems as inputs. Therefore, it was shown that 

considering more information of neighbouring distributed PV systems can enhance the forecasts 

accuracy. Moreover, adding the meteorological information to the network using the information of 

the 4 PV systems has proved to further improve the accuracy. 

Furthermore, using the best network configuration, several forecasting horizons were tested 

to analyse the NARX network ability to forecast in advance. The NARX model clearly outperforms 

the persistence model even for very small horizons, which indicates that considering recent past 

observations is a better method to perform predictions.  

For the NARX model, anticipating the 1 day prediction by 5min (3.7% RMSE) and 2h30 

(4.5% RMSE) proved to be the global and local minimums, respectively, for the input and output 

data considered.  Thus, we can also determine that for the PV system output and for the day 

predicted, a current value of the PV system shows very good ability to recognize patterns of the 

2h30 previous observation. The NARX model is highly effective in multistep predicting but showed 

that these predictions were more accurate by anticipating them up to 2h30. 

 Though the model was able to accurately capture the intra-hour solar ramps, it also had 

some limitations, such as the length of the time series. Indeed, neural networks may require 

historical data that sometimes is not available.  

To overcome the single limitations of a model, hybrid models that use different models 

features to capture different patterns in the data may improve the forecast performance. Therefore, 

neural networks associated with other models, such as the total sky imagery or satellite based 

models, could be a fundamental instrument to improve intra‐day forecasts accuracy. The intra-day 

horizon is currently of smaller economic value than the day-ahead forecasts; however, substantial 

market opportunities will likely materialize by increasing the solar penetration and improving the 

accuracy of intra‐day forecasts. 

It is highly fundamental to foster the joint efforts between system operators and the research 

community, so that novel approaches adapted to the operation of grid systems with a strong 

presence of variable renewables can be implemented. Though forecasting fast solar ramps has not 

yet raised enough attention from the research community, the introduction of the smart grid with 

predictive control of buildings and electricity loads will place its own requirements on solar and PV 

forecasting and help incentive new developments. 
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7. ANNEX - Matlab Code 

 

%% 1. Importing data and preprocessing 
clc; clear all; close all; 

x=load('paineis_1min.txt'); 

 

x1=x(360:length(x),:);%remove 1st 360zeros of the 1st of july 

  

x_semzeros=zeros(28471,5); 

 dia = 930; noite = 510; diasmes = 31;%define day as 930steps and night as 510steps (1min time series) 

 for col = 1:5 

    for lin = 1:diasmes 

        x_semzeros(dia*(lin-1)+1:dia*lin,col) = x1((lin-1)*(dia+noite)+1:(lin-1)*(dia+noite)+dia,col);% 

removes all “night values” 

    end 

end 

  

  

%MOVING AVERAGE FUNCTION 

function [y]=mediaMovel(Sinal,Nfiltro)  

h=1/Nfiltro; 

n=length(Sinal); 

m=(Nfiltro-1)/2; 

aux=zeros(n+(2*m),1);%creates zero matrix 

for i=1+m:n+m %defines auxiliar vector (aux) 

    aux(i)=Sinal(i-m); 

end 

  

for i=1:n 

    suma=0; 

    for k=-m:m 

        suma=suma+aux((i+m)-k)*h; 

    end 

    y(i)=suma; 

end 

end 

  

Centro=x_semzeros(:,1);West=x_semzeros(:,2);North=x_semzeros(:,3);East=x_semzeros(:,4);South=x_semz

eros(:,5);%defines every column. 

%figure 

% subplot(132) 

% plot(Centro,'b');hold on;plot(West,'r');plot(North,'m');plot(East,'c'); plot(South,'y'); 

% title('PV - day cycles'),xlabel('time (min)'),ylabel('Power 

Watts)'),legend('Centro','West','North','East','South'); 

  

  

%Normalize each series from 0 to 1 

CentroN = (Centro - min(Centro)) / ( max(Centro) - min(Centro) ); 

WestN =(West - min(West)) / ( max(West) - min(West) ); 

NorthN = (North - min(North)) / ( max(North) - min(North) ); 

EastN = (East - min(East)) / ( max(East) - min(East) ); 
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SouthN = (South - min(South)) / ( max(South) - min(South) ); 

%figure 

% subplot(133) 

% plot(CentroN,'b');hold on;plot(WestN,'r');plot(NorthN,'m');plot(EastN,'c'); plot(SouthN,'y'); 

% title('Normalized PV data - day cycles'),xlabel('Time 

min)'),ylabel('');legend('Centro','West','North','East','South'); 

  

  

% % %Scales the series to [-1,1] 

 ymax = 1;ymin = -1; 

CentroN = (ymax-ymin)*(Centro-min(Centro))/(max(Centro)-min(Centro))+ymin; 

WestN = (ymax-ymin)*(West-min(West))/(max(West)-min(West))+ymin; 

NorthN = (ymax-ymin)*(North-min(North))/(max(North)-min(North))+ymin; 

EastN = (ymax-ymin)*(East-min(East))/(max(East)-min(East))+ymin; 

SouthN = (ymax-ymin)*(South-min(South))/(max(South)-min(South))+ymin; 

 

  

%Load meteorological data 

meteoaux=load('dadosmeteo.txt'); 

Temp=meteoaux(:,1);Rad=meteoaux(:,2); 

% figure  

% subplot(211);plot(Temp),hold on,title('Temperature Raw data'),xlabel('Time (hours)'),ylabel('ºC')  

% subplot(212);plot(Rad),hold on,title('Radiation Raw data'),xlabel('Time (hours)'),ylabel('J/cm2')  

  

%INTERPOLATION MIN to MIN 

TempInterp = interp(Temp,60);RadInterp = interp(Rad,60); 

TempInterp(TempInterp<0)=0;RadInterp(RadInterp<0)=0; 

 meteodata = [TempInterp,RadInterp]; 

  

x2 = meteodata(360:length(x),:); 

x_semzeros2 = zeros(28471,2); 

dia = 930; noite = 510; diasmes = 31; 

  

for col = 1:2 

    for lin = 1:diasmes 

        x_semzeros2(dia*(lin-1)+1:dia*lin,col) = x2((lin-1)*(dia+noite)+1:(lin-1)*(dia+noite)+dia,col); 

    end 

end 

  

Temperature = x_semzeros2(:,1); 

Radiation = x_semzeros2(:,2); 

  

% Scale Meteorological data [-1,1] 

TempN =(ymax-ymin)*(Temperature-min(Temperature))/(max(Temperature)-min(Temperature))+ymin; 

RadN = (ymax-ymin)*(Radiation-min(Radiation))/(max(Radiation)-min(Radiation))+ymin; 

  

TempN=(Temperature - min(Temperature)) / ( max(Temperature) - min(Temperature) ); 

RadN =(Radiation - min(Radiation)) / ( max(Radiation) - min(Radiation) ); 

 

%Normalized vector ( -1 a 1)  

xN=[CentroN,WestN,NorthN,EastN,SouthN,TempN,RadN]; 
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 % Applying the Moving Average(MA) – 5min,10min,30min,1h 

  

%Converting to 5min step time series with 5min MA 

P1=mediaMovel(CentroN,5);P2=mediaMovel(WestN,5); 

P3=mediaMovel(NorthN,5);P4=mediaMovel(EastN,5); 

P5=mediaMovel(SouthN,5);P6=mediaMovel(TempN,5); 

P7=mediaMovel(RadN,5); 

 

P1_=P1(1:5:end);P2_=P2(1:5:end); 

P3_=P3(1:5:end);P4_=P4(1:5:end); 

P5_=P5(1:5:end);P6_=P6(1:5:end);P7_=P7(1:5:end);%Remove data with a 5step interval 

p5em5=[P1_', P2_', P3_',P4_', P5_',P6_',P7_'];) 

 

% %Converting to 15min step time series with 15min MA 

P1a=mediaMovel(CentroN,15);P2a=mediaMovel(WestN,15); 

P3a=mediaMovel(NorthN,15);P4a=mediaMovel(EastN,15); 

P5a=mediaMovel(SouthN,15);P6a=mediaMovel(TempN,15); 

P7a=mediaMovel(RadN,15);%faz media movel de 5min 

 

P1a_=P1a(1:15:end);P2a_=P2a(1:15:end); 

P3a_=P3a(1:15:end);P4a_=P4a(1:15:end); 

P5a_=P5a(1:15:end);P6a_=P6a(1:15:end); 

P7a_=P7a(1:15:end);%Retirar dados de 15em15 

 p15em15=[P1a_', P2a_', P3a_', P4a_', P5a_',P6a_',P7a_']; 

  

% %%Converting to 30min step time series with 30min MA 

% P1b=mediaMovel(CentroN,31);P2b=mediaMovel(WestN,31); 

P3b=mediaMovel(NorthN,31);P4b=mediaMovel(EastN,31); 

P5b=mediaMovel(SouthN,31);P6b=mediaMovel(TempN,31); 

P7b=mediaMovel(RadN,31);%faz media movel de 5min  

 

P1b_=P1b(1:30:end);P2b_=P2b(1:30:end); 

P3b_=P3b(1:30:end);P4b_=P4b(1:30:end); 

P5b_=P5b(1:30:end);P6b_=P6b(1:30:end); 

P7b_=P7b(1:30:end);%Retirar dados de 30em30 minutos 

% p30em30=[P1b_', P2b_', P3b_', P4b_', P5b_',P6b_',P7b_'];  

 

% %%Converting to 1h step time series with 1h MA 

 

P1c=mediaMovel(CentroN,61);P2c=mediaMovel(WestN,61); 

P3c=mediaMovel(NorthN,61);P4c=mediaMovel(EastN,61); 

P5c=mediaMovel(SouthN,61);P6c=mediaMovel(TempN,61); 

P7c=mediaMovel(RadN,61); 

 

P1c_=P1c(1:60:end);P2c_=P2c(1:60:end); 

P3c_=P3c(1:60:end);P4c_=P4c(1:60:end); 

P5c_=P5c(1:60:end);P6c_=P6c(1:60:end); 

P7c_=P7c(1:60:end);%Retirar dados de 30em30 minutos 

% p1hem1h=[P1c_', P2c_', P3c_', P4c_', P5c_',P6c_',P7c_'];  

 

 

%% 2. Data preparation 
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N1=5766; %length of the time series with 5 min step 

N = 192; % Multi-step prediction (1 day) – 5min step  

 

% Input and target series are divided in two groups of data: 

% 1st group: used to train the network 

inputseries  = p5em5(1:N1-N,2:7); 

targetseries = p5em5(1:N1-N,1); 

  

% 2nd group: this is the new data used for simulation.  

%inputSeriesVal will be used for predicting new targets. targetSeriesVal will be used for network validation 

after prediction 

inputseriesVal  = p5em5(N1-N+1:N1,2:7); 

targetseriesVal = p5em5(N1-N+1:N1,1); % This is generally not available 

  

inputSeries = tonndata(inputseries,false,false); 

targetSeries = tonndata(targetseries,false,false); 

inputSeriesVal = tonndata(inputseriesVal,false,false); 

targetSeriesVal = tonndata(targetseriesVal,false,false); 

  

%% 3. Network Architecture 
 

% Create a Nonlinear Autoregressive Network with External Input 

delay = 2; %number of tapped delays 

  

jj=0; 

for neuronsHiddenLayer = 10 %Number of Neurons in the Hidden Layer 

jj=jj+1; 

  

% Network Creation 

Ntrial = 1;%number of training trials 

  

for ji = 1: Ntrial %Number of tests 

     

    net = narxnet(1:delay,1:delay,neuronsHiddenLayer); 

  

  

%% 4. Training the network 
 

 [Xsinputs,XiinputStates,AilayerStates,Tstargets] = preparets(net,inputSeries,{},targetSeries); 

  

% Customize training parameters  

net.trainFcn = 'trainlm';  % Levenberg-Marquardtalgotihm 

net.trainParam.epochs = 1000; 

net.divideFcn = 'divideblock';  

net.divideParam.trainRatio = 60/100; 

net.divideParam.valRatio = 20/100; 

net.divideParam.testRatio = 20/100; 

  

% Choose a Performance Function:  

net.performFcn = 'mse';  % Mean squared error 

  

%activation functions 
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net.layers{1}.transferFcn = 'tansig';  

net.layers{2}.transferFcn = 'purelin';   

  

% Train the Network 

[net,tr] = train(net,Xsinputs,Tstargets,XiinputStates,AilayerStates);%training the network 

 

Y = net(Xsinputs,XiinputStates,AilayerStates);%Simluations 

  

% Performance for the series-parallel implementation, only one-step-ahead prediction 

errors = gsubtract(Tstargets,Y); 

  

%Results analysis - Series-parallel 

MSEt(ji,jj) = mse(net,Tstargets,Y);%mean square error 

RMSEt(ji,jj) = sqrt(MSEt(ji,jj));%root mean square error 

MAEt(ji,jj) = mae(net,Tstargets,Y);%mean absolute error 

 

% 5. Multi-step ahead prediction 

  

inputSeriesPred  = [inputSeries(end-delay+1:end),inputSeriesVal]; 

targetSeriesPred = [targetSeries(end-delay+1:end),con2seq(nan(1,N))]; 

netc = closeloop(net);%starts the feedback process 

%view(netc) 

  

[Xsinputs,XiinputStates,AilayerStates,Tstargets] = preparets(netc,inputSeriesPred,{},targetSeriesPred); 

yPred = netc(Xsinputs,XiinputStates,AilayerStates); 

 

% FORECASTING Results analysis  

MSEf(ji,jj) = mse(netc,targetSeriesVal,yPred) 

RMSEf(ji,jj) = sqrt(MSEf(ji,jj)) 

MAEf(ji,jj) = mae(netc,targetSeriesVal,yPred) 

 

end   

end 

 

%TRAINING ASSESSMENT PART 

%Delete outliers 

  

MSEtt = sort(MSEt);%displays the results from the lowest to the highest  

mediana_MSEt = median(MSEtt);%calculates the median of the sample 

MSEt(MSEt>1.15*mediana_MSEt)=[];%removes all values 15%higher than the median value 

  

RMSEtt = sort(RMSEt); 

mediana_RMSEt = median(RMSEtt); 

RMSEt(RMSEt>1.15*mediana_RMSEt)=[]; 

  

MAEtt = sort(MAEt); 

mediana_MAEt = median(MAEtt); 

MAEt(MAEt>1.15*mediana_MAEt)=[]; 

   

media_MSEt = mean((MSEt));%mean of the Ntrials for each Neuron 

sigma_MSEt = std(MSEt);%standard deviation 

CV_MSEt = sigma_MSEt/media_MSEt; 
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media_RMSEt = mean(RMSEt);%mean of the Ntrials for each Neuron 

sigma_RMSEt = std(RMSEt);%standard deviation 

CV_RMSEt = sigma_RMSEt/media_RMSEt; 

  

media_MAEt = mean((MAEt));%mean of the Ntrials for each Neuron 

sigma_MAEt = std(MAEt);%standard deviation 

CV_MAEt = sigma_MAEt/media_MAEt; 

  

% %FORECASTING ASSESSMENT PART 

% %Delete outliers 

MSE = sort(MSEf); 

mediana_MSE = median(MSE); 

MSEf(MSEf>1.15*mediana_MSE)=[]; 

  

RMSE = sort(RMSEf); 

mediana_RMSE = median(RMSE); 

RMSEf(RMSEf>1.15*mediana_RMSE)=[]; 

  

MAE = sort(MAEf); 

mediana_MAE = median(MAE); 

MAEf(MAEf>1.15*mediana_MAE)=[]; 

  

media_MSEf = mean((MSEf));%mean of the Ntrials  

sigma_MSEf = std(MSEf);%standard deviation 

CV_MSEf = sigma_MSEf/media_MSEf; 

  

media_RMSEf = mean(RMSEf);%mean of the Ntrials  

sigma_RMSEf = std(RMSEf);%standard deviation 

CV_RMSEf = sigma_RMSEf/media_RMSEf; 

  

media_MAEf = mean((MAEf));%mean of the Ntrials  

sigma_MAEf = std(MAEf);%standard deviation 

CV_MAEf = sigma_MAEf/media_MAEf; 

  

%Final Table 

Erro_mediat = [media_MSEt',media_RMSEt',media_MAEt'] 

% sigma_mediat = [sigma_MSEt',sigma_RMSEt',sigma_MAEt',,sigma_MAPEt'] 

CV_mediat = [CV_MSEt',CV_RMSEt',CV_MAEt'] 

  

%FORECASTING 

Erro_mediaf = [media_MSEf',media_RMSEf',media_MAEf'] 

%sigma_mediaf = [sigma_MSEf',sigma_MAEf',sigma_RMSEf',sigma_MAPEf'] 

CV_mediaf = [CV_MSEf',CV_RMSEf',CV_MAEf'] 

  

  

%CREATE TABLE  

f1 = figure ('name','Table of Errors', 'Position', [100 100 600 200]); 

dados = {Erro_mediat(1,1),Erro_mediat(1,2),Erro_mediat(1,3),... 

     Erro_mediaf(1,1),Erro_mediaf(1,2),Erro_mediaf(1,3),... 
     CV_mediat(1,1),CV_mediat(1,2),CV_mediat(1,3),... 
     CV_mediaf(1,1),CV_mediaf(1,2),CV_mediaf(1,3)}; 
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cname = {'MSEt', 'RMSEt', 'MAEt', .... 
    'MSEf', 'RMSEf', 'MAEf', .... 
    'CV_MSEt','CV_MAEt','CV_RMSEt',... 
    'CV_MSEf','CV_MAEf','CV_RMSEf'}; 
  
rname = {'5','20','35','50','65'}; 
t1 = uitable('Parent',f1,'Data',dados, 'ColumnName', cname,'RowName',rname, 'position', [20 20 360 
100]); 
  
%CONVERT [-1,1] to [0,1] 
% targetSeries_rev = ((cell2mat(targetSeries)) - ymin) / (ymax-ymin)* (max(cell2mat(targetSeries))-
min(cell2mat(targetSeries))) + min(cell2mat(targetSeries)); 
 
% targetSeriesVal_rev =((cell2mat(targetSeriesVal)) - ymin) / (ymax-
ymin)*(max(cell2mat(targetSeriesVal)) - min(cell2mat(targetSeriesVal))) + 
min(cell2mat(targetSeriesVal))); 
 
% yPred_rev = ((cell2mat(yPred) - ymin) /(ymax-ymin))*(max(cell2mat(yPred)) - 
min(cell2mat(yPred)) + min(cell2mat(yPred))); 
  
figure 
plot([cell2mat(targetSeries),nan(1,N); 
      nan(1,length(targetSeries)),cell2mat(yPred); 
      nan(1,length(targetSeries)),cell2mat(targetSeriesVal)]') 
 
title('Normalized Centre PV Data'),xlabel('Time (5min steps'),ylabel('') 
legend('Original Targets','Network Forecasting','Expected Outputs') 
  
figure 
plot([cell2mat(yPred);cell2mat(targetSeriesVal)]') 
 
title('Normalized Centre PV Data'),xlabel('Time (5min steps)'),ylabel('') 
legend('Network Forecasting','Expected Outputs')  

 
 
 
 
 
 
 




