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Abstract 

 

Malaria remains a critical global health problem, with terrible social and economic 

consequences in countries where this disease is endemic. The problem is exacerbated by 

the emergence and spread of parasites that are resistant to well-established antimalarial 

drugs. As a result, there is an urgent need for novel drugs, preferably acting on under 

exploited parasite targets in order to overcome clinical resistance. 

Cytochrome bc1 complex is a crucial element in the mitochondrial respiratory 

chain, being indispensable for the survival of several species of Plasmodia that cause 

malaria and, therefore, it is a promising target for antimalarial drug development. 

Moreover, in the absence of a crystal structure for the P. falciparum bc1 complex, key 

structural and mechanistic information has been inferred from analogous mammalian, 

bacterial and yeast bc1 systems. 

In the present work, a molecular docking study based on the most recently 

obtained X-ray structure of the Saccharomyces cerevisiae bc1 complex (PDB code: 3CX5) 

and using several reported inhibitors with experimentally determined IC50 values against 

the Plasmodium falciparum bc1 complex is presented. This Qo model was also used to 

search the drug-like database included in the MOE package for novel potential bc1 

complex inhibitors allowing to obtain five compounds with demonstrated activity against 

the chloroquine-resistant W2 strain of P. falciparum. Moreover, the most active 

compounds were also active against the atovaquone-resistant P. falciparum FCR3 strain 

and S.cerevisiae. 

Furthermore, considering that a reliable three-dimensional structure of this Pf 

enzymatic complex is essential for successful drug design and having in mind the 

increasing interest in obtaining potential antimalarial drugs that can act in this target, a 

homology model of cytochrome bc1 Qo binding site was further developed based on yeast 

crystallographic structure.  

Additionally, a library containing several structurally diverse aurone and azaaurone 

derivatives were also synthesized and tested for their antimalarial activity. The aurone 

derivatives synthesized showed to be moderate active with IC50 values in the low 
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micromolar range while de azaaurone analogous presented much higher potency with 

some compounds being active in the nanomolar range. Despite the mechanism of action 

of these two classes of compounds is still not very clear, this study highlight the 

usefulness of aurones and azaaurones to be derivatized in order to rapidly deliver lead 

compounds for further optimization and also the potential of these two scaffolds as 

promising antimalarial compounds. 

 

Keywords: Malaria, Plasmodium falciparum, bc1 complex, molecular docking, virtual 

screening, aurones, azaaurones. 
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Resumo 

 

A malária continua a ser um grave problema de saúde, com enormes consequências 

sociais e económicas que afectam os países onde esta doença é endémica. Este problema 

tem vindo a crescer devido ao agravamento do aparecimento de parasitas resistentes aos 

fármacos antimaláricos disponíveis. Apesar da importância geral desta doença, o 

desenvolvimento de novos fármacos tem sido negligenciado pela indústria farmacêutica 

nos países industrializados. Deste modo, existe uma necessidade urgente de obter novos 

fármacos, de preferência que actuem em alvos menos explorados, de modo a se poder 

superar todos os problemas relacionados com a resistência. 

 Nos últimos anos o esforço para desenvolver novos fármacos tem vindo a 

aumentar sendo que várias parcerias entre a indústria e a academia têm mesmo sido 

formadas. Esta união de esforços permite não só expandir o conhecimento existente 

acerca de fármacos antimaláricos mas também potenciar o progresso na obtenção de 

novos fármacos. 

 Devido à complexidade do ciclo de vida do parasita, vários alvos têm sido 

utilizados nos últimos tempos de modo a permitir desenvolver um fármaco que seja 

eficiente e selectivo para o parasita. Um desses alvos é a cadeia de transporte electrónico 

que inclue o citocromo bc1. O citocromo bc1 é um elemento crucial para o correcto 

funcionamento da cadeia de transporte electrónico do parasita. Sendo essencial para a 

sobrevivência do parasita responsável pela malária, este pode ser considerado um alvo 

promissor para o desenvolvimento de fármacos antimaláricos. Na ausência de uma 

estrutura cristalográfica do citocromo bc1 do P. falciparum, toda a informação acerca da 

sua estrutura e do seu mecanismo tem sido obtida através de estudos desenvolvidos nos 

seus análogos provenientes de mamíferos, bactérias e leveduras. 

Neste projecto desenvolveu-se inicialmente um estudo de docking molecular com 

base na estrutura cristalográfica do citocromo bc1 da levedura Saccharomyces cerevisiae 

(PDB 3CX5) e utilizando vários inibidores conhecidos com valores de IC50 determinados 

experimentalmente. Tal permitiu analisar a possibilidade de a estrutura cristalográfica da 

levedura poder ser utilizada como um bom modelo para o P. falciparum. Mais 
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importante, permitiu também compreender o modo de interacção dos inibidores 

seleccionados com o centro activo Qo e prever o potencial inibitório destas moléculas.  

Este modelo foi posteriormente utilizado para se proceder a um estudo de 

screening virtual utilizando a biblioteca de compostos incluída no programa MOE. Este 

estudo permitiu obter cinco compostos com actividade antimalárica contra a estirpe W2 

resistente à cloroquina. Os compostos mais activos demonstraram também actividade 

contra a estirpe resistente à atovaquona e contra a levedura. Infelizmente, os estudos 

biológicos feitos especificamente na cadeia de transporte electrónico não permitiram 

comprovar que estes compostos actuam definitivamente neste alvo. 

Tendo em conta a importância de se ter uma estrutura tridimensional adequada 

para se poder desenhar novos inibidores e considerando o crescente interesse neste alvo, 

procedeu-se ao desenvolvimento de um modelo por homologia do sítio activo Qo do 

citocromo bc1 do P. falciparum com base numa estrutura cristalográfica conhecida. Para 

tal, procedeu-se a um estudo inicial das estruturas cristalográficas deste alvo disponíveis 

de várias espécies e fez.se a uma comparação exaustiva de modo a seleccionar o melhor 

modelo. A S. cerevisiae foi a espécie escolhida devido ao grau de homologia entre as duas 

estruturas homólogas e a resolução da sua estrutura cristalográfica. O modelo por 

homologia foi desenvolvido utilizando as ferramentas disponíveis no MOE e foi validado 

utilizando técnicas de docking e screening virtual. Este estudo de screening foi efectuado 

com base na mesma biblioteca de compostos utilizada anteriormente e permitiu 

identificar novas moléculas com estruturas químicas bastante interessantes e com 

potencial para actuar neste alvo. Os dados biológicas destas moléculas não estão ainda 

disponíveis não permitindo definitivamente validar este modelo por homologia como o 

modelo mais correcto da estrutura cristalográfica do sítio activo Qo do citocromo bc1 do P. 

falciparum. Apesar disso, foi feito um enorme avanço em termos de obter uma estrutura 

tridimensional mais fidedigna deste alvo o que será útil para desenvolver novos inibidores 

selectivos para o citocromo bc1. 

Na segunda parte deste trabalho, uma biblioteca de compostos contendo diversos 

derivados de auronas e azaauronas foi também sintetizada e testada para avaliar a sua 

actividade antimalárica. As auronas são produtos naturais com actividade antiparasitária 

já reconhecida. Estes compostos foram primeiramente sintetizados com o objectivo inicial 
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de obter estruturas quimicamente diversas e mais complexas de modo a permitir 

reconhecer que tipo de alterações permite aumentar o seu potencial antimalárico. Deste 

modo foram sintetizados vários compostos recorrendo a reacções de acoplamento 

catalisadas por paládio, como as reacções de Suzuki e Buchwald, devido à facilidade de 

aumentar rapidamente uma biblioteca de compostos utilizando estes procedimentos. 

Foram também sintetizados alguns derivados por introdução de uma amina alifática no 

anel A da aurona de modo a obter bases de Mannich. As moléculas sintetizadas 

mostraram actividade moderada contra o P. falciparum com valores de IC50 na ordem dos 

micromolar. Foram feitos ainda vários estudos biológicos com o objectivo de se identificar 

o modo de acção desta classe de compostos mas tal não foi possível. Novos estudos terão 

ainda que ser feitos. 

Os derivados de azaauronas foram obtidos de um modo semelhante ao utilizado 

para os derivados de auronas. Contudo, neste caso, foi necessário utilizar um método de 

síntese convergente de modo a se obter os compostos mais eficientemente. Tal deveu-se 

a problemas associados ao facto de a síntese destes compostos ser mais complexa e 

menos eficiente que a síntese dos derivados de auronas o que levou não só a uma 

diminuição do rendimento das reacções mas também a um aumento considerável de 

produtos secundários e, consequentemente, a um acréscimo na dificuldade em isolar os 

produtos. Ao contrário dos derivados de auronas, estes novos compostos demonstraram 

ser bastante mais activos que os seus análogos com valores de IC50 na ordem dos 

nanomolar. Mais ainda, estes compostos apresentam também citotoxicidade 

negligenciável. Dado que estes compostos contêm um aceitador de Michael na sua 

estrutura, foram testados contra a falcipaína-2, uma protease muito importante para a 

degradação de hemoglobina no vacúolo digestivo do parasita e essencial para a sua 

sobrevivência. Infelizmente os resultados obtidos indicam que este não é o alvo desta 

classe de compostos dado que apenas três apresentaram baixo poder inibitório na ordem 

dos 10 μM. Foi feito ainda um estudo de sinergismo na presença de cloroquina e 

mefloquina que permitiu demonstrar o potential sinergístico desta classe de potenciais 

antimaláricos. Mais ainda, a semelhança estrutural destes compostos com as quinolonas, 

reconhecidos inibidores do citocromo bc1, e os estudos de docking efectuados com base 

no modelo por homologia desenvolvido anteriormente permite sugerir que seja este o 
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alvo desta classe de compostos. Contudo, estudos biológicos adicionais serão necessários 

para identificar o modo de acção dos derivados de azaauronas. 

Finalmente, apesar de o modo de acção destas duas classes de compostos não 

estar ainda completamente identificado, o estudo desenvolvido demonstra que tanto as 

auronas como as azaauronas podem ser derivatizadas de modo a se obter novos 

compostos mais activos. Mais ainda, estas duas classes de compostos podem ser 

consideradas promissoras no desenvolvimento de fármacos antimaláricos. 

O estudo desenvolvido pode ser então considerado um passo importante não só 

na caracterização de um importante alvo terapêutico para a malária mas também na 

identificação de novas classes de compostos com potencial para ser posteriormente 

optimizadas de modo a obter novos fármacos antimaláricos com actividade relevante. 

 

Palavras-chave: Malária, Plasmodium falciparum, citocromo bc1, docking molecular, 

screening virtual, auronas, azaauronas. 
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Preamble 

 

Malaria is responsible for causing an estimated 200 million clinical cases and more than 

500 000 deaths annually1 being drug resistance to currently established antimalarial drugs 

such as chloroquine (CQ) a major problem of concern. Therefore, novel and innovative 

inhibitors active against Plasmodium falciparum, which produces the most aggressive 

form of malaria, are urgently required to develop new treatments able to fight malaria2. 

 Nowadays, there is an increased concern related with this infection since no new 

drugs have been approved in the last 15 years and an efficient vaccine is still not 

available. Fortunately, this situation led to an encouragement of both academia and 

pharmaceutical companies to actively take an effort in order to develop new antimalarial 

drugs that are able to hinder this disease3. 

 However, in spite of all efforts, all the numbers related with this disease are still 

high and surely not acceptable when considering the target expected for 2015 (Figure 1).  

 

 

Figure 1. Malaria numbers: targets achieved by 2010 and targets aspired to achieve by 2015. From Shetty et 

al
4
. 

 

 Several factors can be responsible for contributing for malaria burden including 

political, social and economic aspects. Moreover, all issues related with the vector 

control, and consequently transmission, the widespread of parasite resistance to existent 

antimalarial drugs and the lack of an efficient vaccine to prevent infection are surely some 

of the main reasons responsible for the failing in achieving these goals. 
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 This project focused mainly in obtaining new potential antimalarial drugs using 

straightforward chemical procedures that could conduct to the development of 

economically affordable antimalarial drugs acting in the mitochondrial electron transport 

chain (mETC), particularly in the bc1 complex. The electron transport chain in malaria 

parasites was first recognized as an attractive drug target since the development and 

clinical use of atovaquone in 19925. To achieve this goal, the work was developed using 

two diverse but complementary approaches in medicinal chemistry: the synthesis of 

novel compounds in parallel with the application of computed-aided drug design tools. In 

this way, new compounds could be synthesized in order to be tested for their antimalarial 

potential and, in the same time, new scaffolds could be developed using, for instance, 

virtual screening and docking procedures. The junction of these two techniques can be 

considered extremely significant to successfully achieve the goals proposed for this 

project. 
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1.  Introduction 

1.1.  Malaria – An overview 

Malaria has always been one of the most important causes of death of populations 

throughout the tropics for thousands of years. Besides the important advances in order to 

understand this disease and develop new drugs in the past years, it continues to be one 

of the greatest causes of serious sickness and death in the world. More specifically, this 

disease is responsible for infecting around 200 million people each year resulting in an 

estimated 500 000 − 900 000 deaths1, 6 (Figure 1.1). In accordance with the latest WHO 

datafrom 2010, about 90% of all malaria deaths occur in Africa being predominant in 

young children and pregnant women1. This disease has a broad distribution in both the 

subtropics and tropics. More specifically, the countries of sub-Saharan Africa comprise 

the majority of all malaria cases while the remnant is mostly concentrated in India, Brazil, 

Afghanistan, Sri Lanka, Thailand, Indonesia, Vietnam, Cambodia, and China1. 

Malaria infection is caused by protozoal parasites of the genus Plasmodium. From 

more than 100 Plasmodium species that are identified, five are the most virulent in 

humans and can cause different disease patterns. Included in those species are P. vivax, 

P. ovale, P. falciparum, P. malariae7, and, more recently discovered, P. knowlesi8. 
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Figure 1.1. Number of malaria confirmed cases in 2010
1
.  

 

These Plasmodia species differ essentially in their morphology and immunology, 

their geographical distribution and, more important, in their relapse patterns and drug 

responses9. In spite of the infections caused by P. falciparum are the most severe form of 

the disease being responsible for almost all the fatal cases, particularly in young children 

and pregnant women10-11, P. vivax also contributes significantly to the overall morbidity12-

13. P. falciparum specie is also crucial in the alarming development of resistance to 

antimalarial drugs14. The emergence and spread of drug resistance in this specie is one of 

the most important factors demoralizing malaria control programs in most of the malaria 

endemic areas. Considering the present situation where not only the drug resistance is 

widely spread but also the mosquito vectors are insecticide-resistant15 and an effective 

vaccine is still not available16-17, chemotherapy and chemoprophylaxis remains the main 

approach to fight malaria infections. In this way, there is an urgent need for novel drugs, 

preferably acting on underexploited parasite targets in order to overcome clinical 

resistance and help to solve such public heath problem14, 18. 
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 1.2.  Life cycle of malaria parasite 

Malaria infections is primarily transmitted through the salivary glands of infected female 

Anopheles mosquitoes that bite humans. The life cycle of malaria parasites is particularly 

complex and starts when sporozoites enter into the bloodstream (Figure 1.2). It can be 

divided in several stages that include, specifically, the tissue and the erythrocytic or blood 

schizonogy, both in the human host, and the sexual phase in the mosquito. Additionally, it 

is during the blood-stage that the symptoms of the disease appear due to repeated lysis 

and invasion of the erythrocytes. More specifically, in the first step of the life cycle of 

parasites, during the blood extraction, the mosquito injects saliva into the skin lesion 

transferring about 15-20 sporozoites into the blood human stream . In minutes, the 

sporozoites that are circulating in the blood stream, invade liver cells where they are able 

to hide themselves from the host’s immune system . Once in the liver, they develop 

into exoerythrocytic schizonts, containing 10 000 - 30 000 merozoites 19. After one or 

two weeks, the schizont membrane suffers rupture and the merozoites are released into 

the blood stream . Afterward, the erythrocytic phase of the parasite’s life cycle takes 

place .  

P. vivax and P. ovale have a dormant stage where the sporozoites may turn into 

hypnozoites , remaining in the liver for long time before the development of 

exoerythrocytic schizogony. Parasites of these two species can re-emerge later beginning 

a blood-infection and, consequently, causing relapses months or even years after the 

initial infection. In the life cycle of P. falciparum and P. malariae there is an absence of 

this liver persistent phase7, 19.  

After their release into the blood stream, merozoites are once more able to hide 

from the host’s immune system by invading erythrocytes. Here, the parasite develops 

from a ring stage into a blood schizont via a trophozoite stage . After some time, 

dependent of each Plasmodium species, the erythrocyte ruptures and 16 to 32 new 

merozoites are released. These new merozoites, in turn, invade more erythrocytes and a 

new erythrocytic cycle begins. The release of merozoites is responsible for increasing 

infection and, consequently, causing the clinical manifestation of the disease. This asexual 
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cycle can persevere for an indefinite period if the treatment is not adequate17. After a 

certain number of asexual life cycles, some merozoites undergo transformation into 

sexual forms, the gametocytes , which can be transferred to another mosquito during 

its blood meal. This process is still not well understood20, however, it is suggested that 

secreted parasite factors induce this differentiation21-22. After the ingestion of 

gametocytes by the mosquito during the blood meal, they suffer sexual reproduction 

within the midgut and thousands of infective sporozoites are produced . The 

sporozoites are now able to migrate to the salivary gland where they are ready to infect 

the next host7, 23. Therefore, when an infected Anopheles mosquito bites another human 

during its blood meal, this life cycle is able to start once again.  

 

 

Figure 1.2. The life cycle of malaria parasites. Adapted from Mueller et al
13

. 

 

Due to the different stages of the parasite life cycle (Figure 1.2), specific drugs 

targeting those stages, can be developed. Therefore, blood schizontocides act during the 
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asexual intraerythrocytic stages whilst tissue schizonticides kill parasites in the liver stage 

preventing the invasion of erythrocytes. As a result, it can be considered that tissue 

schizonticides act as a prophylactic drug. Hypnozoiticides can be use in the case of P. 

vivax and P. ovale since both species undergo in persistent intrahepatic stages. For the 

sexual forms of the parasites, gametocytocides can be used. This kind of drug is able not 

only to destroy intraerythrocytic sexual forms but also to prevent transmission from 

human to mosquito. Moreover, since P. falciparum does not have a dormant liver stage, 

blood schizonticidal drugs are adequate to cure the infection caused by this specie. In 

another way, for infections due to P. vivax and P. ovale, a combination between blood 

and tissue schizonticidal drugs is essential7, 24. 

 

1.3.  Antimalarial chemotherapy during erythrocytic stage 

The erythrocytic stage of P. falciparum’s life cycle involves a huge amplification of the 

parasite population through periodic cycles of invasion, growth, division, and egress from 

erythrocytes, i.e., escape of mature malaria parasites from host red blood cells (Figure 

1.2). In this way, the comprehension of all the biological mechanisms involved in this 

stage is essential to successfully develop new compounds. To achieve this goal, the 

sequencing of the P. falciparum genome was crucial25. The malaria parasite is able to 

offer several possible drug targets associated with its variety of organelles. More 

specifically, during the erythrocytic stage, targets like cytosol, apicoplast, mitochondrion, 

membrane and the digestive vacuole (DV) can be considered (Figure 1.3).  

Usually, essential surviving processes to the parasite can be regarded as valuable 

targets. Some examples of antimalarial drugs targeting specific parasite’s organelles will 

be described. 
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Figure 1.3. Potential drug targets of asexual erythrocytic stage. Adapted from Kappe et al
26

. 

 

1.3.1.  Targeting parasite membrane biosynthesis 

The amount of lipid in infected erythrocytes is considerably higher than in healthy cells 

since the intraerythrocytic parasite contains different type of membranes. Moreover, 

growing and dividing parasites need a large amount of phospholipids. In this way, the 

phospholipid metabolism can be considered an effective target for antimalarial drugs not 

only due to its specificity but also because of its importance for parasite growth27-29. 

Phosphatidylcholine is the major parasite phospholipid, constituting around 50% of the 

total phospholipids of infected erythrocyte, and is obtained by de novo synthesis from 

choline28. Therefore, molecules targeting the parasite’s supply of choline can be 

considered potential antimalarial drugs. Usually, quaternary ammonium and bis-

ammonium quaternary salts containing one long lipophilic alkyl chain demonstrated high 

in vitro parasite inhibitory activity and significant in vivo effectiveness27, 29. G25 (1.1, 

Figure 1.4) is an important member of this group showing an IC50 value against P. 

falciparum of 0.64 nM and low toxicity27. Moreover, a low dose of this antimalarial drug 

could also cure infected monkeys30. Albitiazolium (1.2, Figure 1.4) is another example of a 

compound that inhibits the transport of choline into the parasite blocking the synthesis of 

phosphatidylcholine. This compound reached Phase II clinical trials31 but it lacked in its 
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oral bioavailability32 leading to its removal from trials. Due to the importance of having an 

oral antimalarial drug, attempts were made not only to obtain an orally bioavailable pro-

drug of albitiazolium (1.2)33-34 but also to increase the wide-ranging bioavailability of this 

class of drugs35-37. 

 

 

Figure 1.4. Chemical structure of two inhibitors of phospholipid biosynthesis. 

 

1.3.2.  Targeting parasite transporters 

The transport pathways along the parasite membrane are other important target for 

antimalarial drugs38. This type of targets is of extreme importance since they are unique 

for malaria parasite showing significantly differences from other transporters in host cells. 

More specifically, during the asexual reproductive phase, the permeability of the host 

erythrocytes’ plasma membrane increases in order to permit the movement of different 

solutes including sugars, amino acids, nucleosides and inorganic ions that are essential for 

parasite’s survival39. The induction of new permeability pathways (NPP) by the internal 

parasite is responsible for this occurrence. Moreover, several of these transporters are 

also related with the resistance to established antimalarial drugs like chloroquine (CQ)40-

41. In this way, the antimalarial potential of these drug targets can be exploited not only 

by inhibiting the transport of essential nutrients but also by designing cytotoxic drugs that 

selectively enter the parasite through these transporters38. A number of inhibitors of the 

NPP have already been identified. Furosemide (Figure 1.5, 1.3) and their analogues are 

examples of compounds inhibiting the activity of these targets in the submicromolar 
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range. Unfortunately, although there is a significant interest in NPP as a potential 

antimalarial target, the majority of the compounds tested lack potency and/or 

specificity38-39. 

 

 

Figure 1.5. Chemical structure of furosemide (1.3), an inhibitor of new permeability pathways. 

 

1.3.3.  Targeting digestive vacuole 

One of the most important targets for antimalarial drugs is the acidic parasite digestive 

vacuole (DV). The major function of this organelle is to degrade the host red cell 

hemoglobin providing amino acids to the parasite42-43. All this process is attributable to a 

complex machinery that includes a variety of proteases that degrade the host hemoglobin 

in order to obtain free amino acids that can be further incorporated into newly 

synthesized proteins. More specifically, several aspartic endopeptidases (plasmepsins), 

three different cysteine endopeptidases (falcipains), the metalloprotease falcilysin, and 

aminopeptidases are essential for this process (Scheme 1.1)44. However, the considerable 

degradation of hemoglobin also induces the formation of large quantity of heme which is 

toxic to the parasite due to induced oxidative stress. Therefore, the high accumulation of 

heme within the DV is responsible for causing the parasite death45-46. To overcome these 

possible toxic effects, heme is polymerized into insoluble hemozoin pigment by a 

biomineralization process (Scheme 1.1)47. 

As a result, antimalarial drugs can act in DV either by inhibiting the proteases 

function, preventing hemoglobin hydrolyses, or by blocking hemozoin formation, leading 

to the accumulation of toxic heme. 
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Scheme 1.1. Mechanism of formation of hemozoin crystal as possible drug target in P. falciparum digestive 

vacuole. Adapted from Ettari et al
48

. 

 

- Inhibition of parasite proteases 

Several studies suggest that proteases involved in hemoglobin degradation within the DV 

are crucial for the parasite growth and, therefore, for its survival. The importance of these 

enzymes relies in the fact that the malaria parasite has a restricted ability for de novo 

biosynthesis of the amino acids that are required to synthesize its own proteins43. In this 

way, host amino acids are essential for parasite survival. The protease cascade is 

described in Scheme 1.1. These enzymes work in a semi-ordered pathway49, with aspartyl 

proteases (plasmepsins) being the first to be involved in this pathway by contributing for 

the initial cleavage of the hemoglobin. Then, successive degradation to obtain small 

peptides is obtained first by cysteine proteases, namely falcipains, and after both by the 

metalloprotease falcilysin and dipeptidyl amino peptidase 1 (DPAP1). The small peptides 

are then transported from the DV to the cytoplasm of the intraerytrocytic parasite where 

are finally degraded into amino acids by aminopeptidases44. In this way, it is expected 

that this cluster of enzymes can be considered of extreme interest for the design and 

development of antimalarial drugs. Figure 1.6 summarizes some examples of peptidic- 

and non-peptidic based inhibitors of these proteases50-56. 
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Figure 1.6. Examples of inhibitors acting in different proteases. 

 

 - Inhibition of hemozoin formation 

The inhibition of hemozoin formation is already a validated drug target and is considered 

a valuable target for the design of novel antimalarial drugs46. Several classes of 

compounds were already shown to interact with heme by preventing its polymerization, 

namely, 4-aminoquinolines, azoles, isonitriles, xanthones, methylene blue, and others 

(Figure 1.7)47.  
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Figure 1.7. Examples of inhibitors of hemozoin formation. 

 

Chloroquine (CQ, 1.11, Figure 1.7) is probably the most important antimalarial 

drug displaying this type of mode of action. This molecule was first obtained in 1934 and 

quickly become the most generally used antimalarial drug57. Studies performed on this 

class of antimalarials and, more specifically, on CQ, permitted to conclude about the most 

important features that contribute for its antimalarial potential (Figure 1.8). Accordingly, 

the 4-aminoquinoline nucleus provides a heme complexing template. The π–π interaction 

between this nucleus and the electronic system of heme are essential to block the 

hemozoin formation. Also, the introduction of the 7-chloro group is important for 

inhibition of hemozoin formation. Furthermore, 4-aminoquinolines lacking 7-chloro group 

do not inhibit hemozoin formation in spite of the complexes with heme are still formed58. 
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Studies performed with several substituents in position 7 also showed that the chloro 

group displays better antimalarial activity. The aminoalkyl side chain is also a requirement 

for strong antiplasmodial activity since it probably facilitates drug accumulation in the DV. 

Moreover, it appears to enhance the strength of interaction with heme in some cases, but 

this effect does not emerge as crucial for its biological activity. The presence of basic side 

chain, which can assist accumulation in the DV by pH trapping, is an indispensable 

requirement. More specifically, to be effective, this kind of drugs needs to be 

accumulated in the acidic DV. Consequently, potent 4-aminoquinolines are generally 

diprotic weak bases. Although the protonated specie is always in equilibrium with the 

neutral one, the lower pH of the DV leads to an equilibrium shift toward the protonated 

CQ and, therefore, this is the more abundant specie within the DV. In its unprotonated 

form, the drug is able to cross the membrane of the parasitized erythrocyte. 

Nevertheless, once protonated due to the acidic pH of the DV, the drug become 

impermeable and is trapped in the compartment of the parasite since membranes are not 

permeable to charged species57-58. 

 

 

Figure 1.8. Main features that contribute for the antimalarial activity of CQ. Adapted from Egan et al
58

. 

 

This 4-aminoquinoline has been the most successful drug for the treatment and 

prophylaxis of malaria and was very effective until resistant strains began to emerge. Due 

to the rapid spread of resistance against CQ, the search of novel quinoline-based 

antimalarials, with the desired pharmacological benefits, is imperative57.  
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 - Artemisinin and other endoperoxides as potent antimalarial drugs 

The DV also seems to be the target of artemisinin (1.20, Figure 1.9) and its related 

endoperoxides as potent antimalarial drugs. This class of compounds is of extreme 

importance since, until now, only diminutive drug resistance has been demonstrated59. 

 

 

Figure 1.9. Chemical structures of artemisinin and some derivatives. 

 

Being a sesquiterpene lactone endoperoxide, artemisinin drugs belong to a 

distinctive class of highly active antimalarial agents. The reduction of artemisinin’s lactone 

substructure to a hemiacetal originates dihydroartemisinin (1.21), which can be 

transformed in order to permit the preparation of a set of semisynthetic analogues, 

including artemether (1.22). Although this derivative is more potent, it presents short 

plasma half-life and produces severe side-effects in vivo. To overcome the problem of the 

low water-solubility of these compounds, a water soluble derivative of artemisinin, 

artesunate (1.23), was developed. In the case of the treatment of advanced cases of P. 

falciparum this kind of drug is of extreme importance since it can be injected 

intravenously and, consequently, the drug can be delivered quickly contributing to a rapid 

diminishing of the parasitemia57. 

The main important feature of all artemisinins is the 1,2,4-trioxene moiety or, 

more precisely, the endoperoxide. This substructure is considered of extreme importance 

for the antimalarial activity. In spite of the increasing significance of artemisinins in the 

antimalarial chemotherapy, the mechanism of action of these drugs is still not completely 

elucidated. However, there are strong evidences suggesting that the heme iron play 
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critical roles in the mechanism of action, which is comprised of two main distinct steps 

(Scheme 1.2)60-61. In the first step, the heme iron attacks and breaks the endoperoxide 

linkage of artemisinin to produce an oxygen free radical, which is then rearranged to 

obtain a more stable carbon free radical. During the second step, the carbon free radical 

will subsequently react leading to the alkylation of specific malarial proteins and causing 

lethal damage to malarial parasites. 

 

 

Scheme 1.2. Fe(II)-mediated formation of primary or secondary carbon radicals from artemisinin. From 

Schlitzer et al
7
. 

 

Once it became perceptible that the antimalarial activity of artemisinin derivatives 

was due to the endoperoxide substructure, several fully synthetic endoperoxides were 

synthesized. This was a huge advantage for the development of new potent antimalarial 

drugs since it was very difficult to obtain the starting artemisinin to synthesize its 

derivatives. Some examples of fully synthetic endoperoxides are highlighted in Figure 

1.10. 

Compound 1.25, known as OZ439, presents an EC50 value of 4 nM and is now in 

Phase IIa clinical studies62. This compound exhibits a huge increase in the 

pharmacokinetic half-life and blood concentration versus time profile in preclinical 

species. The stabilization of the intrinsically unstable pharmacophoric endoperoxide bond 
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was probably responsible for the improved antimalarial potential of compound 1.25 when 

compared with the first generation 1,2,4-trioxolane 1.24. 

 

 

Figure 1.10. Examples of fully synthetic endoperoxides. 

 

1.3.4.  Targeting the mitochondria 

In contrast to the majority of the eukaryotic organisms in which the mitochondrial 

electron transport chain (mETC) plays a central role in the oxidative energy metabolism, 

for P. falciparum, this pathway is not associated with the synthesis of ATP. In fact, the 

anaerobic glycolysis is the main source of this high-energy compound. The main role of 

the mETC is to keep an electrochemical gradient across the mitochondrial membrane and 

also to keep a constant pool of ubiquinone to be used in other critical processes such as 

the de novo pyrimidine biosynthesis. Malaria parasites lack completely the ability to 

salvage pyrimidines that are essential for the synthesis of nucleic acids, glycoproteins and 

phospholipids thus requiring other metabolic pathways to obtain these biological building 

blocks. In this way, it is well recognized that the mitochondria of Plasmodia play a critical 

and indispensable part in the life cycle of this parasite. Moreover, there are significant 

molecular and functional differences between the parasite’s mitochondria and the 

mitochondria of human host cells that enable the exploitation of this organelle as safe 

and valuable target for antimalarial chemotherapy63-64. 
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The mETC  of malaria parasites (Figure 1.11) comprises five dehydrogenases, 

specifically NADH:ubiquinone oxidoreductase (PfNDH2), succinate:ubiquinone 

oxidoreductase (Complex  II or SDH), glycerol-3-phosphate dehydrogenase, malate 

quinone oxidoreductase (MQO) and dihydroorotate dehydrogenase (DHODH). 

Additionally, considering this group of enzymes, some differences can be found between 

the mitochondrial parasite and the human host since PfNDH2 and MQO are not present 

in human mitochondria whilst DHODH displays distinct biological differences when 

compared with the homolog host.  

Other important elements of the mETC are ubiquinol:cytochrome c 

oxidoreductase (Complex III or cytochrome bc1) and cytochrome c oxidase (Complex IV). 

Probably, one of the most important functions of the dehydrogenases enzymes is to 

provide an electron pool for these last two components of the mETC. In addition, both 

ubiquinone (coenzyme Q) and cytochrome c act as electron carriers between these two 

complexes65-66.  

 

 

Figure 1.11. Parasite’s mitochondrial electron transport chain. From Stocks et al
67

. 
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The last component of the mETC, unlike its mammalian homolog, is not recognized 

to generate ATP. Nevertheless, the ATP synthase (Complex V) is suggested to be an 

essential element, possibly acting as a proton leak for the mETC68. In particular, regarding 

mETC, three drug targets are being currently exploited namely, two dehydrogenases 

(PfNDH2 and PfDHODH) and cytochrome bc1
63. 

 

 i)  PfNDH2 

PfNDH2 is constituted by a single 52-kDa subunit and is responsible for catalyzing the 

electron transfer from NADH to ubiquinone and for maintaining a constant amount of 

NAD+ for reductive metabolic pathways69. Moreover, unlike the homolog Complex I found 

in other organism, PfNDH2 is not probably involved in the pumping of protons through 

the mitochondrial membrane. However, it is suggested that its activity may contribute to 

establish an electrochemical transmembrane potential69-70. 

Studies performed in this dehydrogenase as a valuable antimalarial target are very 

recent and little information on potential inhibitors is still available. Nevertheless, 

hydroxy-2-dodecyl-4-(1H)-quinolone, HDQ (1.29, Scheme 1.3) showed to be a potent 

inhibitor of PfNDH2 and proved also to be of extreme importance for developing a series 

of novel compounds acting against this target71-73. 

Compounds 1.30 and 1.31 are examples of strong inhibitors presenting also IC50 

values against bc1 complex in the low nanomolar range. This class of compounds, 

diheteroaryl quinolones, was optimized based on the antimalarial potential of HDQ and 

using several techniques including chemoinformatics, virtual screening (VS) and high-

throughput screening (HTS)74. The optimization of these compounds permitted to obtain 

highly potent PfNDH2 inhibitors that are also active against the parasitic bc1 complex73, 75. 

These studies suggest that the quinolone ring can be considered a privileged scaffold to 

design inhibitors for both drug targets in mETC. 
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Scheme 1.3. Hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ) and the rational design of novel quinolones as 

PfDHD2 inhibitors. 

 

 ii)  DHODH 

DHODH is the fourth and last enzyme involved in the de novo pyrimidine biosynthesis 

being also responsible for coupling this metabolic pathway with the mETC. This enzyme 

catalyses the oxidation of dihydroorotate (1.32) to orotate (1.33) allowing to supply the 

resulting pair of electrons into the mETC through flavin mononucleotide co-factor 

(Scheme 1.4)76. The reoxidation of the flavin cofactor is achieved through reduction of 

ubiquinone to ubiquinol. 

X-ray structures of both human and parasitic DHODH were already solved 

demonstrating the variations between the two structures and contributing to design new 

potential antimalarial drugs with improved selectivity77-79. 
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Scheme 1.4. Reaction catalysed by DHODH. Abbreviations: FMN – flavin mononucleotide; FMNH2 – reduced 

flavin mononucleotide; Q – ubiquinone; QH2 – ubiquinol. Adapted from Stocks et al
67

. 

 

Inhibitors of human DHODH were already recognized for their potential to be used 

not only in the treatment of rheumatoid arthritis but also to act as antitumor and 

immune suppressive agents (Figure 1.12)76. Despite these compounds showed reduced 

inhibitory activity against PfDHODH, both leflunomide (1.34) and brequinar (1.36) were 

considered good starting points to design novel potential antimalarial drugs acting in this 

target. Furthermore, studies performed with leflunomide and its active metabolite (1.35) 

permitted to obtain the x-ray crystal structure of this enzyme with 1.35 co-crystallized in 

its active site which represents a valuable tool to design new PfDHODH inhibitors80.  

 

 

Figure 1.12. Examples of human dihydroorotate dehydrogenase inhibitors. 

 

So far, several campaigns including HTS, computational methods and drug 

optimization allowed to obtain several classes of PfDHODH inhibitors (Figure 1.13). The 

triazolopyrimidine-based derivatives were first recognized when compound 1.37 was 
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discovered during an HTS screening project81. This compound displayed an IC50 value of 

47 nM against the PfDHODH and showed to be highly selective when compared with the 

human enzyme. However its activity against the mice model was reduced. 

 

 

Figure 1.13. Examples of P. falciparum dihydroorotate dehydrogenase inhibitors. 
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This scaffold was further optimized permitting to obtain several compounds with 

improved antimalarial and pharmacological properties82-85. More specifically, compound 

1.40 showed improved inhibitory activity against both Pf and PbDHODH and good 

pharmacological profiles. Moreover, this compound was identified as a preclinical 

candidate85. 

Later, another HTS screening allowed to identify the benzimidazolyl thiophene-2-

carboxamides as an important scaffold for PfDHODH inhibitors86. Further optimization of 

the lead compound 1.41 led to the identification of compounds showing double digit 

nanomolar potency against this target. Compound 1.42 was recognized as a potential 

drug development candidate due to its effective antimalarial activity and low toxicity87-88. 

Compound 1.37 was also used as input for the identification of novel chemical scaffolds 

through a VS study over a drug-like database. From this study, compound 1.43 emerged 

as the most active compound with an IC50 value of 1 μM against this target79 

Also, the biaryl carboxamide scaffold was obtained after careful comparison of X-

ray crystal structures of both Pf and human DHODH bound to compound 1.35 followed by 

the application of the molecular design program SPROUT89. From this study twenty 

different templates resulted being the amides of the anthranilic acid the most attractive 

ones displaying binding affinities in the micromolar range. Compounds 1.44 and 1.45 are 

examples of compounds belonging to this class. More recently, some salicylamides 

derivatives with moderate inhibitory activity against PfDHODH were also identified. 

Optimization of this class permitted to obtain compound 1.46 displaying moderate 

inhibitory activity against this target (IC50 = 9.1 μM) and good selectivity90. Some examples 

of leflunomide (1.34) and brequinar (1.36) analogs were also developed91-92. Compounds 

1.47 and 1.48 are examples of PfDHODH inhibitors successfully obtained after 

optimization of the parent compounds acting selectively in human DHODH. 

 

 iii)  bc1 complex 

The mitochondrial bc1 complex, a membrane-bound enzyme, is one of the essential 

components of the respiratory electron transfer chain being responsible for catalyzing the 



22  Chapter  1  

 

 

electron transfer between ubiquinol and cytochrome c. Coupled to this process is the 

consequent translocation of two protons across the inner mitochondrial membrane with 

the resulting electrochemical gradient used for ATP production93-94. Being crucial for the 

survival of several species of the Plasmodium genus responsible for malaria, the 

cytochrome bc1 complex is an attractive and already validated target for antimalarial drug 

development93. 

This enzymatic complex is a dimer with each monomer comprising 11 distinct 

polypeptides. Both monomers include four redox centers, specifically, two heme groups, 

bH and bL, in cytochrome b, one heme group in cytochrome c1, and one iron-sulfur cluster 

in the Rieske protein (Figure 1.14).  

 

 

Figure 1.14. Structure of the dimeric bc1 complex. 
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Moreover, the catalytic core of this complex is formed by three subunits, namely, 

cytochrome b, cytochrome c1 and the Rieske iron-sulfur protein ([2Fe-2S], ISP). Together, 

these three subunits display a key role in the electron-transfer and proton translocation 

pathway. The biological function of the other subunits is still not completely understood 

but they are supposed to contribute for stabilizing the whole complex. 

So far, the mechanism which better explains the proton translocation coupled to 

electron transport by this enzymatic complex is a version of the well known Q cycle of 

Mitchell (Figure 1.15)95-97. Briefly, Q cycle mechanism involves the two distinct quinone-

binding sites, i.e., the quinol oxidation site (Qo) and the quinone reduction site (Qi). These 

two binding sites are positioned in opposite sides of the membrane and are connected by 

a transmembrane electron-transfer pathway. As mentioned, ubiquinol (1.49, Scheme 

1.5), produced by dehydrogenases, binds to Qo and its oxidation permits the release of 

two protons and two electrons.  

 

 

Figure 1.15. Q-cycle mechanism of the bc1 complex catalytic core. The main components of cytochrome bc1 

are represented in the scheme: cytochrome c1 – in checker board, Qo binding site (including ISP) – in grid 

and, Qi binding site – in diagonal lines. Abbreviations: Q – ubiquinone; QH2 – ubiquinol; SQ – stable semi-

ubiquinone intermediate; ISP – iron-sulfur protein; IMS – mitochondrial inter-membrane space; IMM – 

inner mitochondrial membrane. 
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The two electrons obtained from the ubiquinol’s oxidation take different 

pathways. In a bifurcated reaction at the Qo site, one of the electrons reduces the high 

potential [2Fe-2S] cluster while the second reduces the heme bL of cytochrome b. The 

reduced heme bL instantly transfers the electron to the heme bH of cytochrome b at the Qi 

site, where ubiquinone (1.51) is reduced to semi-ubiquinone (1.50). 

 

 

Scheme 1.5. Two oxidation states of coenzyme Q: the fully reduced ubiquinol form (1.49) and the fully 

oxidized ubiquinone form (1.51), and the stable semi-ubiquinone intermediate (1.50). 

 

The oxidation of a second molecule of ubiquinol leads to complete reduction of 

the ubiquinone at the Qi site. This electron transfer to the [2Fe-2S] cluster is followed by a 

conformational shift of the head domain of this subunit allowing the approximation 

between the [2Fe-2S] cluster and the heme of cytochrome c1 enabling its oxidation and 

subsequent reduction of cytochrome c98. 

Solved structures of the mitochondrial bc1 complex, using X-ray crystallography, 

have been reported for several species at different resolution96, 99-103 which can be 

considered a powerful starting point to design new and more effective drugs. However, 

until now, a solved crystallographic structure of P. falciparum bc1 complex is still not 

available. Since cytochrome b, which provides the ubiquinol and ubiquinone binding 

pocket, of both Saccharomyces cerevisiae yeast and P. falciparum share a high sequence 

identity, this was the crystallographic structure adopted as a model to study the 

interactions involving this enzyme complex and possible inhibitors71, 104-109. Although the 

overall structure of the bc1 complex is highly conserved between several species, different 
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structural features have been observed that may confer selectivity between the parasite 

and the human host69. 

Cytochrome bc1 has been considered the major drug target in the mETC and 

several inhibitors were already developed. This has been definitely the most studied 

target on mETC presenting the higher diversity and number of potential inhibitors. These 

inhibitors can be divided into four groups in agreement with their binding sites in the 

cytochrome. As a result, group I, II and IV include inhibitors binding Qo site and, 

consequently, inhibiting electron transfer from the [2Fe-2S] cluster to cytochrome c1 as 

well as electron transfer onto the bL centre. Those three groups differ from each other by 

the chemical characteristics of their inhibitors. Group I inhibitors typically contain a β-

metoxyacrilate group as a characteristic structural element while group II inhibitors 

include 2-hydroxyquinone analogues. Group IV inhibitors usually contain a chromone ring 

system and, in spite of blocking the Qo site, these inhibitors display different properties 

from those of groups I and II. Group III includes the inhibitors that bind the Qi site, being 

responsible for blocking electron transfer from bH centre to ubiquinone63. 

 

  - Hydroxynapthoquinones 

Atovaquone (1.52, Figure 1.16) is, currently, the only drug targeting the bc1 complex in 

use. As others drugs belonging to class II, atovaquone selectively inhibits electron transfer 

by binding to Qo site. This drug induces collapse of the mitochondrial membrane potential 

at very low concentrations and, as a result, the mammalian system is not affected 

substantially. Initially, this drug was found to be a very effective antimalarial compound, 

but sooner was considered inappropriate for use as a single agent due to the relatively 

quick emergence of resistance. In an attempt to improve the efficiency and overcome the 

resistance issue, atovaquone is now used in combination with the synergistic agent 

proguanil (1.53)5.  
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Figure 1.16. Chemical structures of atovaquone (1.52) and proguanil (1.53) that are the active molecules in 

Malarone. 

 

Mutations associated with atovaquone’s resistance are predominantly restricted 

to the conserved PEWY region being the most common mutation observed at position 

268 in cytochrome b, where tyrosine is changed by a serine (Y268S) or, less frequently, by 

a cysteine (Y268C)110. Regarding atovaquone’s binding mode, some computational studies 

were already performed and the interactions of this molecule with the bc1 complex 

binding site are fully characterized using the X-ray coordinates of S. cerevisiae bc1 

complex (Figure 1.17)111-112. 

 

 

Figure 1.17. Binding mode of atovaquone into bc1 complex Qo site. 

 

In the model obtained, the hydroxyl group of the hydroxynaphthoquinone binds to 

the imidazole nitrogen of His181 of the Rieske protein by a strong hydrogen bond. The 
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carbonyl group at 4-position on the quinone ring interacts with Glu272 of cytochrome b 

through a water molecule. The hydrophobic interactions of the hydrophobic trans 

substituted p-chlorophenyl ring with the side chains of several hydrophobic amino acids 

also contributes to stabilize the inhibitor inside the Qo site.  

Apart from acting as a competitive inhibitor of Qo binding site, atovaquone also 

block the conformation change of the Rieske complex since it binds to His181. 

Consequently, this cluster will be immobilized, reducing or preventing electron transfer, 

which has also impact in other systems depending on the mETC, such as PfDHODH113. 

Although atovaquone display excellent antimalarial activity, this drug also displays 

poor pharmacological properties namely low bioavailability and high plasma protein 

binding114. In this way, in an attempt to improve the bioavailability of atovaquone, some 

new hydroxynaphthoquinones were designed by replacing the 3-hydroxyl function for 

more lipophilic ester and ether groups. Different series of atovaquone derivative were 

obtained with all compounds showing potent antimalarial activity, most of them 

exhibiting in vitro IC50s below 5 nM. Ester derivatives (1.54, Figure 1.18) at the hydroxyl 

group of atovaquone presented the highest activity. Nevertheless, the modifications 

made in atovaquone’s structure did not result in a major improvement in the oral 

bioavailability115.  

. 

 

Figure 1.18. Examples of some atovaquone analogs. 

 

A library of several hydroxynaphthoquinones including a wide variety of linear, 

branched, saturated, unsaturated and aromatic side-chain substitutions at 2-position on 
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the hydroxyquinone ring was also developed116. The linear alkyl side-chain derivatives 

exhibited significant inhibition of the yeast enzyme but they did not exhibit considerable 

species selectivity 

The more active compound found was S-10576 (1.55), obtained when a methyl 

group was inserted in the beta position of a saturated 8-carbon linear side-chain. 

Nevertheless, studies designed to test the therapeutic potential of S-10576 in vivo 

showed that the two terminal carbons of the side chain are easy oxidized, resulting in a 

more water soluble compound. This rapid metabolic degradation, consequently, leads to 

a rapidly excretion of the compound turning S-10576 ineffective as a potential drug117. In 

an attempt to overcome metabolic stability issues related with S-10576, a number of 

trifluoromethyl derivatives were synthesized with compound 1.56 showing enhanced 

metabolic stability118. In this way, fluorinated hydroxynaphthoquinones provides 

enhanced metabolic stability which can be considered a significant advantage over 

atovaquone119. 

 

  - Quinolones 

Antimalarial activity of 4(1H)-quinolones was first recognized in the 1940's when 

endochin (1.57, Figure 1.19) was identified as a causal prophylactic, killing growing liver 

stage parasites, and potent erythrocytic stage agent in avian malaria models. However, 

this inhibitor was not efficacious against malaria parasites of mammals67. Recently, 

several efforts have been made to develop new quinolones targeting the P. falciparum 

bc1 complex allowing to obtain several compounds displaying exceptional antimalarial 

activity (Figure 1.19)71, 105, 107, 120-124.  
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Figure 1.19. Examples of 4(1H)-quinolones with potent antimalarial activity. 

 

From these efforts resulted also ELQ-300 (1.63, Scheme 1.6) that contains a 

diarylether moiety and acts selectively against Plasmodium bc1 complex120. This 

compound was designed based on the chemical structure of endochin (1.57) through 

replacement of its metabolic unstable alkyl chain by the side chain from the well known 

bc1 complex inhibitor GW844520 (1.64). This compound demonstrated improved 

metabolic stability when compared with endochin and increased selectivity ratio for P. 

falciparum bc1 over the human homolog. Moreover, due its superior properties, this 

compound was selected for preclinical studies. 

Despite the good antimalarial activity displayed by this class of compounds, they 

often lack aqueous solubility which affects the pharmacokinetics of the potential drug. 

Hence, some compounds were also synthesized to overcome this problem allowing to 

obtain compounds 1.61 and 1.62 (Figure 1.19) presenting good inhibitory potential 

against this target and also improved oral biovailability125. 
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Scheme 1.6. Design of ELQ-300 (1.63) based on the structure of endochin (1.57) and GW844520 (1.64). 

 

  - Pyridones 

Pyridones are other important scaffold acting against the bc1 complex. This antimalarial 

class is based on clopidol (1.65, Figure 1.20). This drug is known since the late 1960s for 

its antimalarial and anticoccidal activity by interfering with mitochondrial respiration126. 

However, this inhibitor is rapidly excreted and present high insolubility in several 

solvents. 

 

 

Figure 1.20. Examples of pyridones and analogs acting on Pfbc1 complex. 

 

During the last years, GlaxoSmithKline has developed a series of clopidol 

derivatives with more lipophilic side chains. The introduction of the atovaquone side 
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chain (as in compound 1.66) and also the phenoxyaryl moiety (for example compound 

1.64, Scheme 1.6) permitted to highly increase the antimalarial activity of this class of 

compounds. The most promising antimalarial candidate was GW844520 (1.64). This 

compound displayed IC50 values in the low nanomolar range for both T996 and 3D7A P. 

falciparum CQ-resistant and sensitive strains, respectively. Moreover, it also presented 

several drug-like properties reported in its preclinical evaluation. For instance, GW844520 

has an appropriate half life for short term therapy and it is easy to synthesize127. 

Nevertheless, the drug development of GW844520 terminated due to problems related 

to the unexpected cardiotoxicity128. Recently, based on the evidence that the introduction 

of a lipophilic chain can improve antimalarial activity of 4(1H)-pyridones, a number of 

analogues of clopidol isosteres were synthesized106. These analogues resulted from the 

incorporation of an aromatic moiety at the imine nitrogen atom of the (1H-pyridin-4-

ylidene)amine scaffold. The antiplasmodial activity of these compounds was evaluated 

against P. falciparum W2 and FCR3, CQ and atovaquone-resistant strains, respectively, 

and IC50 values were obtained in the range of 0.9 to 7 μM. The most active analogue 

incorporated a lipophilic phenyl ethyl side chain at the imine nitrogen and a N-ethyl group 

(1.67, Figure 1.20). 

 

  - Acridones and acridinediones 

Acridine-based drugs are known in malaria chemotherapy since mepacrine (1.68, Figure 

1.21) was introduced as the first synthetic antimalarial blood schizontocide used 

clinically129-131. More recently, haloalkoxyacridones were identified as a new acridine-

based scaffold. Compounds 1.69 and 1.70 (Figure 1.21) are examples of acridones 

derivatives displaying an IC50 value in the subnamolar range. The studies performed 

revealed structure activity patterns identical to the ones obtained for quinolones. 

Namely, the introduction of a longer alkoxy side chain in 3-position with terminal CF3 

groups contributed to enhance antimalarial activity. The nitrogen ring is also essential for 

activity since the activity strongly decreases when the nitrogen atom is replaced by 

oxygen. The antimalarial activity of these new compounds has been attributed to 

inhibition of mitochondrial bc1. However, some of the recognized antimalarial activity of 
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this new class of compounds can be also a consequence of heme binding132. Specifically, 

like quinolines, acridines are believed to confer almost all of their antimalarial activity by 

preventing the crystallization of heme and, consequently, inhibiting hemozoin 

formation47. 

 

 

Figure 1.21. Examples of acridones and acridinediones derivatives. 

 

Acredinediones are other acridine-based class of compounds known for their 

potent antimalarial activity. In accordance with acridones’ mode of action, these drugs 

are thought to inhibit in vitro hemazoin formation in addition with their ability to block 

electron transfer in bc1 complex133-134 

The S enantiomer of WR249685 (1.71, Figure 1.21) and the racemic floxacrine 

(1.72) are two dihydroacridinediones that selectively binds bc1 complex of P. falciparum 

with IC50 values, measured directly in the enzymatic complex, in the nanomolar range. 

However, floxacrine displays an IC50 value approximately 300 times higher than 

WR249685 indicating that the introduction of the hydroxyl group in the nitrogen atom of 
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the acridinedione ring probably reduces the antimalarial activity133. Furthermore, the 

replacement of the ketone functionality at the 1-position by an imine group permitted to 

afford acridinedione derivatives like compound 1.73 with equivalent activities135. 

 

  - Other inhibitors binding to Qo site 

Another class of compounds known to inhibit cytochrome bc1 complex are the β-

methoxyacrylates (for example compound 1.74, Figure 1.22)136. Despite binding to Qo 

site, these inhibitors act in a different way than the others already mentioned being still 

possible for ubiquinol to bind to the Qo site in the presence of this type of inhibitors. The 

presence of these inhibitors leads to a shift in the position of the natural ligand due to a 

conformational distortion in the binding pocket. As a result, ubiquinol electrons cannot be 

transferred to [2Fe-2S] cluster137-138.  

Myxothiazol (1.75) and stigmatellin A (1.76) are two antibiotics with well known 

antimalarial activity. Myxothiazol is able to inhibit mitochondrial respiration in the bc1 

complex and has effects on the redox components of isolated succinate-cytochrome c 

reductase complex. This suggests that this drug is able to interact with both cytochrome b 

and the Rieske ISP of the bc1 complex139-141. By the other hand, stigmatelin A blocks the 

oxidation site preventing electron transfer. This inhibitor binds simultaneously to the bL 

domain of cytochrome b and the Rieske ISP140-141. The crystal structure of the cytochrome 

bc1 complex, from yeast, with stigmatellin A bound to the Qo site is currently available 

which contributes to elucidate the binding mode of these type of inhibitors103. 

More recently, several tetracyclic benzothiazepines were discovered as potent 

antimalarial drugs acting selectively in P. falciparum bc1 complex. Examples of compounds 

belonging to this class are highlighted in Figure 1.22 (compounds 1.77, 1.78 and 1.79) 

with all displaying IC50 values, both in the Pf bc1 complex as well as in Dd2 strain, in the 

low nanomolar range142. 
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Figure 1.22. Examples of several compounds acting on Pf bc1 complex. 

 

  - Inhibitors binding to Qi site 

While several compounds have been designed to act selectively against Qo binding site of 

bc1 complex, the Qi site has been slightly neglected. Until now, only few inhibitors are 

known to act exclusively in this pocket. Antimycin A (1.80, Figure 1.23), a dilactone 

salicylamide, blocks the electron transfer in cytochrome bc1 by inhibiting Qi reduction site 

presenting an IC50 value against several P. falciparum strains around 10 nM141, 143. SAR 

studies showed that the N-formylamino-salicyl-amide group is the main responsible for 

the binding specificity to Qi site. Moreover, a low pKa value for the phenolic hydroxyl 

group and an intramolecular H-bond between that OH and the carbonyl moiety of the 

salicylamide linkage are also important for activity144. Like in the case of stigmatellin A, 

crystal structures of bovine cytochrome bc1 complex, co-crystallized with this drug, are 

currently available145-146. Analogues of this drug were further obtained by replacement of 
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the dilactone moiety for simpler scaffolds (Figure 1.23). As a result, biphenyl ethers (for 

example 1.81), benzotriazole (1.82) and indole (1.83) derivatives of antimycin were 

obtained with comparable in vitro inhibitory potency147-148. Funiculosin (1.84) is another 

antibiotic known for its ability to inhibit respiratory chain by binding both to Qi and Qo 

sites. It has been isolated from Penicillium funiculosum and has a broad antifungal 

spectrum showing also some antiviral activity149. 

 

 

Figure 1.23. Examples of inhibitors of bc1 complex Qi binding site. 

 

 iv)  Other elements of mTEC 

Despite some inhibitors are already known for other elements of the mETC, these targets 

are relatively underinvestigated. Namely, SDH and ATP synthase can be viewed as two 

underexplored potential antimalarial targets. More specifically, SDH is mainly involved 

with the electron feeding to the mETC and, consequently, to bc1 complex150 while ATP 
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synthase displays minimal contribution to ATP synthesis being responsible for allowing 

protons to leave mETC68. However, some inhibitors for both targets are already 

recognized. For instance, plumagin (1.85, Figure 1.24) and licochalcone A (1.86) have 

previously demonstrated their antimalarial mode of action by acting against SDH151 while 

almitrine (1.87) is able to interact with ATP synthase152. 

 

 

Figure 1.24. Examples of inhibitors of SDH and ATP synthase. 

 

1.3.5.  Targeting the apicoplast 

The apicoplast of Plasmodium parasite apparently resulted from endosymbiosis, allowing 

to obtain an organelle that keeps unique metabolic pathways such as heme synthesis, 

fatty acid and isoprenoid metabolism that are not found in the human host153. In this way, 

these parasitic specific pathways are an excellent source of drug targets154. 

Fatty acid biosynthesis is crucial to cell growth, differentiation and homeostasis 

and also for the synthesis of membranes which contributes to turn this pathway the 

major function of apicoplast. Fatty acids are produced through repeated cycles of 

elongation reactions that include condensation, dehydration, and reduction. The 

resultant acyl substrate is bound to the acyl carrier protein that delivers the substrate 

from one enzyme to the other155. Several enzymes are important for this metabolic 

pathway being responsible for catalyzing different steps of this process98. Some of these 

enzymes are β-ketoacyl-ACP-reductase (FabG), β-hydroxyacyl-ACP-dehydratase (FabZ) 
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and enoyl-ACP-reductase (FabI or ENR). The last enzyme is a key regulator of fatty acid 

biosynthesis and has already been validated for the development of antimalarial drugs156. 

Contrasting with this process, fatty acid biosynthesis occurs in mammals by a multi-

enzyme complex that control all the enzymatic steps needed. In this way, the two 

pathways are fundamentally distinct allowing the design of selective drugs against this 

target.  

The natural antibiotic thiolactomycin (1.88, Figure 1.25) is able to inhibit several 

enzymes in this metabolic pathway displaying an IC50 value against the parasite growth of 

50 μM157. Triclosan158 (1.89) is a known inhibitor of FabI being also an important lead to 

design novel inhibitors against this specific target159-160 (for instance, compounds 1.90, 

1.91 and 1.92). Triclosan is much more active against P. falciparum than thiolactomycin 

exhibiting an IC50 of 1 μM. 

 

 

Figure 1.25. Examples of inhibitors of fatty acid biosynthesis. 

 

Isoprenoids are an important class of lipid components forming prosthetic groups 

of some enzymes. These compounds are also often required for protein anchoring and for 

the synthesis of biologically important molecules such as ubiquinone. These molecules 

are constituted by repeated units of isopentenyl pyrophosphate (IPP) and 

dimethylallylpyrophosphate (DMAPP) being synthesized via a non-mevalonate pathway 

(1-deoxy-D-xylulose-5-phosphate pathway). Moreover, fosmidomycin (1.93, Figure 1.26) 
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is a phosphonic acid derivative with low toxicity that was found to inhibit this pathway 

leading to the parasite’s death. This compound was also significant to suggest the 

importance of this pathway for the parasite’s survival161. 

 

 

Figure 1.26. Examples of compounds inhibiting isoprenoids and heme biosynthesis. 

 

Concerning heme biosynthesis, it has been shown that malaria parasite 

synthesizes heme de novo being both mitochondria and apicoplast involved in this 

metabolic procedure162. The parasite holds several cytochromes and the heme prosthetic 

group is essential for their correct function. In this way, malaria parasite synthesizes 

heme by de novo pathways, despite the accumulation of large quantities of polymeric 

heme derived from the hemoglobin of the host red cell 163. Furthermore, succinylacetone 

(1.94, Figure 1.26) was found to inhibit this pathway demonstrating not only the depence 

of the parasite in the heme biosynthesis pathway but also the value of this target to 

develop new antimalarial drugs164-165. 

Several antibiotics are already known to display an important antimalarial effect 

due to their action on bacterium-derived endosymbiotic organelles, the mitochondrion 

and/or the apicoplast. Both organelles have their own DNA and bacteria-like machinery 

for replication, transcription and translation98, 166. Apart from tetracyclines, which are 

considered to act primarily against mitochondrion167, all other antibiotics are thought to 

act on the apicoplast98. Generally, the majority of antibiotics do not show any visible 

effect in the first intracellular cycle, nevertheless, during the second cycle, the parasites 

are killed after the invasion of the new host cell. It was proposed that the inhibition of the 

apicoplast due to the action of the antibiotic may cause liponic acid starvation, increasing 

the oxidative stress and mitochondrial injury during the subsequent asexual reproductive 
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cycle168. A different theory states that apicoplasts inherited by parasites treated with 

antibiotics contain deficient levels of specific proteins required for the import and 

processing of nuclear gene-encoded proteins needed for normal function. Due to the 

delayed kill effect of these drugs, the symptoms of malaria remain for a longer time when 

antibiotics are used as single agents then when a classical antimalarial is used. As a result, 

antibiotics are only used in combination with a faster-acting drug in the case of acute 

malaria. In this kind of combination, classical antimalarials should quickly reduce the 

parasite burden while antibiotics will deal with the remaining parasites.  

Until this moment, no significant resistance of malaria parasites against antibiotics 

was found169. Included in the antibiotic group are a diversity of compounds like several 

quinolones, rifampicin (1.96, Figure 1.27), and some protein biosynthesis inhibitors like 

tetracycline (1.97) and macrolides.  

One example of a quinoline used as antimalarial is ciprofloxacin (1.95). This drug 

has been shown to induce cleavage of the plastid DNA displaying the highest activity 

against P. falciparum parasites among the quinolines generally used in antibacterial 

therapy170-171. Several antibiotics like tetracyclines, macrolides, and chloramphenicol, 

which are known for their translation inhibition in prokaryotic systems, are also proposed 

to inhibit protein synthesis inside the apicoplast172. Doxycyclin (1.98) is the most widely 

used antibiotic of the tetracycline class against malaria. This drug is used in combination 

with quinine or artesunate both for the treatment of uncomplicated and severe 

malaria173. Concerning the macrolides class, azithromycin (1.100) was verified to be more 

active than erythromycin (1.99)174. Moreover, an in vitro study demonstrated a synergistic 

effect when azithromycin was used with CQ on CQ-resistant strains175 while clindamycin 

(1.101), a lincosamide, showed a synergistic or additive effect in vitro with 

dihydroartemisinin176. 
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Figure 1.27. Examples of antibiotics acting against P. falciparum. 

 

1.3.6.  Targeting the cytosol 

The cytosol is the location of several metabolic pathways, engaging inumerous enzymes 

that are essential for the survival of the parasite. Due to the vital importance of these 

enzymes, they could be considered potential drug targets. However, many of these 

metabolic pathways are well conserved between species leading to an increased difficulty 

on the identification of compounds that act selectively against the parasite. Nevertheless, 

folate metabolism has already been proved to be a valuable target for antimalarial drugs 

(Scheme 1.7)177.  
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Scheme 1.7. Simplified folate pathway. Adapted from Schlitzer et al
7
. 

 

Antifolate drugs target two related enzymes of the biosynthesis of tetrahydrofolic 

acid: the dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR). In most 

species, DHFR has a key role in the folate biosynthesis pathway being responsible for the 

generation of the DNA base, deoxythymidinemonophosphate (dTMP). DHFR is also 

important for the biosynthesis of purine nucleotides and the amino acids histidine and 

methionine. While humans depend on diary intake of pre-formed dihydrofolic acid as an 

essential nutrient to be further reduced to tetrahydrofolic acid, pathogenic 

microorganisms can synthesize this essential molecule from simple precursors using these 

two key enzymes of the folate biosynthetic pathway. 

Consequently, inhibitors of these two key enzymes have been used in the 

treatment of bacterial and protozoal infections. Moreover, while DHPS is absolutely 

absent in humans, there are several differences between the DHFR in parasitic protozoa 

and in humans which allow the development of inhibitors that selectively target this 

enzyme178. Inhibitors of DHPS include competitive inhibitors of 4-aminobenzoic acid 

(Figure 1.28), the endogenous substrate of this enzyme, like sulfonamides (sulfadoxine, 

1.102) and sulfones (dapsone, 1.103). Included in DHFR set of inhibitors are 

pyrimethamine (1.104) and cycloguanil (1.105). In therapy, not cycloguanil but its open 
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chain biguanid prodrug proguanil (1.53, Figure 1.16) is provided and the metabolic 

oxidative ring closure of proguanil results in cycloguanil177. In contrast with other 

antimalarial drugs already considered, the mechanism of interaction of DHFR inhibitors 

with its target was already identified at a molecular level179-180. The X-ray structure of this 

enzyme is well known which contributes to clarify the interactions between the inhibitors 

and the active site of this target. 

 

 

Figure 1.28. Examples of antifolates acting as antimalarial drugs. 

 

Resistance against DHFR inhibitors developed due to the widespread use of these 

compounds. Therefore, several mutations were found in dhfr gene. The replacement of 

Ser108 by a residue of asparagine (S108N) is the key mutation for resistance and is 

responsible to decrease the sensitive of PfDHFR toward pyrimethamine and cycloguanil. 

The triple mutant S108N/N51I/C59S and the quadruple mutant S108N/N51I/C59R/I64L 

were also found making the parasite even less sensitive to pyrimethamine and cycloguanil 

inhibitors180-181. 

Some studies revealed that the combination of sulfonamides, inhibiting DHPS, 

with a DHFR inhibitor showed synergistic effects. Sulfadoxine (1.102) showed to 

potentiate pyrimethamine (1.104) effect on human P. falciparum infections, 
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demonstrating that the combination of these two drugs permitted to obtain better results 

than either drug alone. This synergism is thought to depend strongly on DHPS but its 

mechanism is not fully understood182. 

Moreover, other folate pathway enzymes may also be effective as drug target for 

antimalarial drugs. For instance, 5-fluoroorotate (1.106) is a prodrug which metabolite is 

highly active against thymidylate synthase183-184. 

 Glycolisis is another cytosolic pathway of extreme interest for designing 

antimalarial drugs since malaria parasites rely on this pathway for energy production. 

More specifically, Plasmodium parasites are believed to lack a functional Krebs cycle 

during the intraerythrocytic growth phase depending mainly on glycolysis for its energy 

requirements185. One of the enzymes present in this pathway is lactate dehydrogenase 

that is responsible for the reduction of pyruvate to lactate in order to generate NAD+. The 

disesquiterpene gossypol (1.107, Figure 1.29) demonstrated to be active against this 

target displaying moderate in vitro activity for both CQ-resistant and sensitive strains of P. 

falciparum with IC50 values around 10 μM186. Additionally, this enzyme was already 

structurally characterized which allowed to develop selective inhibitors187-188.  

 Nucleic acid metabolism can also be considered an important drug target within 

parasite cytosol. Nucleotides, being precursors of DNA and RNA biosynthesis, are 

essential for the survival of parasites. Plasmodium parasites are not able to synthesize 

purines relying on salvage of the human host. In contrast, the pyrimidines need to be 

synthesized de novo since they can not salvage these building blocks. In this way, both 

purine salvage and pyrimidine synthetic pathways can be considered potential drug 

targets. Both pathways involve several indispensable enzymes while pyrimidine synthesis 

also depends on mitochondrial electron transport189. Moreover, it was also demonstrated 

that inhibition of the purine salvage pathway with transition state analogue inhibitors of 

Plasmodium purine nucleotides, such as Immucillin-H (1.108) can be lethal for P. 

falciparum in vitro. 
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Figure 1.29. Inhibitors of glycolysis and purine salvage pathway. 

 

1.4.  Antimalarial chemotherapy during liver stage 

The most currently used antimalarial drugs are mainly active against the blood stage 

acting quickly against the parasite forms that invade erythrocytes and cause the malaria 

symptoms. Nevertheless, before the entire clinical symptoms take place, pre-erythrocytic 

life cycle stages have already invaded and developed in the liver. In this way, since liver 

stage always comes first than blood stage, the complete inhibition of parasites in this 

stage would lead to causal prophylaxis blocking also the transmission. Accordingly, the 

liver stage of Plasmodium life cycle is of extreme importance for designing potent and 

effective antimalarial drugs190-191. Moreover, it was also been suggested that this type of 

treatment might be preferred in order to minimize the risk of drug-resistance emergence. 

However, there is strong difficulty to develop drugs acting in this phase due to the 

intrinsic biology of Plasmodium species and the technical issues related with its study190. 

 Several compounds with recognized antimalarial activity against blood stage are 

also considered to act against the liver stage. Included in this set are, for example, the bc1 

complex inhibitor atovaquone (1.52, Figure 1.16), the antibiotics clindamycin (1.101, 

Figure 1.27), tetracycline and oxycycline (1.97 and 1.98, respectively), the antifolate 

proguanil (1.53, Figure 1.16), and others190, 192.  

However, until now, only primaquine (1.109, Figure 1.30) is used against liver 

stage. Additionally, this drug is also able to kill the persistent hepatocytic forms 

(hypnozoites) that are responsible for causing relapsing malaria. Moreover, primaquine is 

still the only available drug against gametocytes, which are responsible for the 
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transmission of parasites between human host and mosquito193. Unfortunately, this drug 

presents some inconveniences related mainly with its low biovailabity and its tendency to 

cause hemolytic anemia in patients with glucose-6-phosphate dehydrogenase deficiency, 

the most common human enzyme deficiency192, 194. 

 Tafenoquine (1.110), a primaquine analog, is currently under Phase IIb/III clinical 

trials and was proven to be highly active against the latent hypnozoites. Although 

displaying the same secondary effects on patients with glucose-6-phosphate 

dehydrogenase deficiency, tafenoquine has the advantage of being a single-dose 

treatment195. 

 

Figure 1.30. Compounds acting against P. falciparum liver stage. 

 

Given that drugs able to act in this stage can provide efficient causal prophylaxis 

that would contribute to control the widespread of malaria, the developement of 

antimalarial drugs acting specific in liver stage is highly desirable. 

 

1.5.  Antimalarial drug resistance and artemisinin-based combination therapies 

In the 1940s, expectation on malaria eradication increased when CQ was discovered and 

introduced as potent antimalarial drug. Moreover, the use of this drug combined with the 

potent insecticide dichlorodiphenyltrichloroethane (DDT) promptly showed to be 

successful in reducing the malaria cases worldwide196. However, resistance to CQ rapidly 
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emerged leading to a huge decline in its therapeutic efficacy and to a consequent impasse 

in all efforts to eradicate this disease.  

After P. falciparum developed resistance against CQ, several other drugs including 

a combination of sulfadoxine-pyrimethamine, mefloquine, quinine, and others, were 

introduced but all these efforts were unproductive since multidrug-resistant parasites 

rapidly emerged197. As consequence, there was an overall resurgence of morbidity and 

mortality due to this infection.  

 As a result of the emergence of resistance in the last decades, WHO started to 

recommend artemisinin-based combination therapy (ACT) as the key treatment of P. 

falciparum malaria198. This type of treatment combines artemisinin or an artemisinin 

derivative (for example artesunate, artemether or dihydroartemisinin) and an additional 

drug presenting a longer half-life in the bloodstream. This second drug can be typically 

amodiaquine, mefloquine, piperaquine sulfadoxine-pyrimethamine, pyronaridine 

tetraphosphate or lumefantrine. The rational behind this combination therapy is mainly 

related with the different properties of the two drugs used. More specifically, the 

combination of an artemisinin derivative, displaying poor pharmacokinetic properties, 

with a longer-lasting associated drug may guarantee the treatment efficacy due to a 

higher concentration of antimalarial drugs in the bloodstream during more time199. In this 

way, the antimalarial treatment can benefit from the ability of the artemisinin derivative 

to reduce effectively the parasitemia which results in a smaller amount of parasites that 

are further eradicated by the combined drug198, 200. Moreover, the combination of two 

drugs may also improve antimalarial efficacy providing additive or synergistic antiparasitic 

activity. Consequently, not only the overall treatment is more efficient but also drug 

resistance can be prevented since the drugs used in combination usually display different 

modes of action and, for that reason, different resistance mechanism199. 

 Dispite all efforts made to prevent artemisinin monotherapy and to introduce ACT 

as the first-line treatment, partial resistance has already emerged in some malarial 

endemic regions. Additionally, these resistant strains may reach other regions becoming a 
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further global risk for malaria control and treatment since currently there is no alternative 

drugs to substitute artemisinin derivatives for fighting malaria201-202. 

 

1.6.  Computational approaches in antimalarial drug discovery 

The drug development of antimalarial drugs can be restrained by similar issues as any 

other drug development procedure. The new agents need to show efficacy, safety and, 

especially in the case of malaria, must be significantly widespread and easily afforded in 

developing countries. Moreover, in this specific case, drugs should be dosed orally and be 

effective in a single-dose regimen being curative in short time. However, new drugs 

against malaria are still greatly required and many approaches have been pursued in 

antimalarial drug discovery. 

Throughout the first step of the drug development’s process, the main goal is to 

identify new compounds with pharmacological interest. These compounds are usually 

small organic molecules that are able to interact with specific targets (for instance, 

receptors, enzymes, or nucleic acids) and that can cause a perturbation in their cellular 

functions203. During the last decades, several techniques were improved in order to 

revolutionize all the process of identifying new potential drugs. Therefore, experimental 

identification of small molecules with the desired activity can be achieved using high-

throughput screening204 (HTS) allied with combinatorial chemistry205 techniques. As a 

result, the combination of both techniques enabled the synthesis of large libraries of 

chemical compounds and, in addition, the screening of these compounds against several 

targets in a fast and efficient way. However, all the procedure of obtaining and testing 

millions of compounds is very expensive which can be considered a huge limitation that 

reduces the usability of HTS203.  

An alternative to experimental HTS is high-throughput virtual screening (VS), 

which has become a typical tool in medicinal chemistry206. This technique uses 

computational power to test large libraries of chemical compounds in few days at lower 

costs. Compounds are selected by predicting their binding affinity to a biomolecular 



48  Chapter  1  

 

 

target using adequate computer programs. Using this approach, not only real compounds 

can be tested but also purely theoretical ones can be included in the virtual library and 

screened in silico. In addition, VS has been shown to be effective in several studies using a 

good set of filters (Lipinski's rule of five, ADME restrictions, substructure similarity 

searches or pharmacophores, for instance)203, 207. As a result, VS is a very powerful tool 

that allows purchasing or synthesizing only a reduced set of selected compounds thus 

reducing significantly the cost and time of the entire study203, 206, 208. However, some 

weaknesses have also to be considered. For instance, this technique also requires the 

knowledge of the tridimensional structure of the receptor, which sometimes is not 

available. In this way, the quality and the amount of information regarding the target 

under inspection is a critical factor to take into account when designing a computer-

assisted drug design experiment like VS209. 

In a virtual screening study, usually a funnel strategy is followed210. More 

precisely, this is a multi-step structure-based filtering strategy that hierarchically 

combines several different docking methods in order to extract a small set of potential 

new hits from a vast library of drug-like compounds. Thereafter, this smaller set is 

analyzed in more detail. Structurally diverse libraries will lead to more varied results, 

permitting to obtain novel and innovative chemical structures. Moreover, the results of 

chemical database querying can be refined using docking programs with ligand-receptor 

algorithms that are able to rapidly process a large number of compounds. Afterward, 

structurally diverse scaffolds selected by this method need to be further analyzed using 

experimental validated enzymatic and/or cell-based assays and optimized in order to 

identify new interesting chemical structures.  

Various docking programs can be used presently to assess the best conformations 

of each candidate in terms of the energy and positioning. These programs include Gold211-

212, FlexX213, Glide214-216, LigandFit217, AutoDock (AD)218, AutoDock Vina (AD Vina)219, and 

others, presenting some differences mainly in their performance against specific targets. 

Moreover, these programs can optimise interactions in the active site allowing for the 

discovery of novel pharmacophoric groups. New drugs are further designed based on 
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previous leads and the stability of the ligands inside the binding pockets can be further 

refined using molecular dynamics simulations. 

Several virtual screening studies were already successful in providing new classes 

of potential antimalarial drugs. Many of these studies include not only a structure-based 

virtual screening but also other computational techniques, for instance pharmacophore 

generation and homology modeling allowing to improve the efficacy of this procedure. In 

particular, several potential inhibitors were identified through this technique for 

enzymatic targets such as PfDHFR220-222, falcipains223-226, plasmepsins227-229, enoyl-acyl 

carrier protein reductase (PfENR) in fatty acid biosynthesis pathway230-231, mETC74, 232-233, 

and others. In Figure 1.31 are highlighted some examples of compounds active against 

different antimalarial targets that were discovered using this type of approaches. 

Additionally, some computational studies were also made in order to discover new 

antimalarial compounds acting against non-specific targets. In this context, several 

approaches, including validated quantitative structure-activity relationship (QSAR) models 

and structural descriptors based on training sets that include known antimalarial 

compounds, can be employed234-237. This kind of procedure may increase the efficiency of 

the virtual screening method and, in spite of the specific antimalarial target being 

unknown, it may be successful in the early discovery of several compounds as starting 

points of novel antimalarial agents. 
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Figure 1.31. Examples of antimalarial compounds discovered by virtual screening. 

 

1.7.  Concluding remarks 

Besides the importance of malaria as an emergent infection worldwide, the development 

of antimalarial chemotherapeutics has long been neglected by pharmaceutical industry in 



Chapter  1  
 

51  

 

 

industrialized countries. Unfortunately, current antimalarial therapeutics started to lose 

efficacy due to the increasing resistance developed in several endemic countries. As a 

result, discovery of new drug targets and potential new drugs are highly required. In the 

last years, considerable efforts have been made through public-private partnerships in 

order to expand the knowledge related with antimalarial chemotherapeutics. Further 

antimalarial drug development can follow several strategies, namely, it is possible to 

improve existing drugs by slight modifications or design new drugs that can act against 

new targets. Recent advances in genomics and proteomics in addition to the technical 

progress in structural biology and high-throughput screening methods were of extreme 

importance to develop new approaches in antimalarial chemotherapy. 

The new drugs obtained in future studies, both acting in conventional and novel 

targets will definitely contribute to increase the therapeutic repertory in the fight against 

malaria. 
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2.  S. cerevisiae bc1 Complex as a Model for P. falciparum bc1 

Complex 

2.1.  Background  

The bc1 complex, one of the components of the mitochondrial electron transport chain, is 

crucial for the survival of P. falciparum and therefore is an attractive and already 

validated target for antimalarial drug development3, 238. As a result, the structural 

information about this target is of extreme importance to successfully design new 

inhibitors for bc1 complex. Unfortunately, until now, the crystallographic structure of this 

antimalarial target is still not available. Therefore, in the absence of a crystallographic 

structure for the bc1 complex from P. falciparum, much of the key structural and 

mechanistic information has been obtained from analogous mammalian, bacterial and 

yeast bc1 systems96, 99-103. More specifically, the bc1 complex of S. cerevisiae has already 

been chosen in previous studies to model the mechanism of action of antimalarial leads 

in the P. falciparum bc1 complex105-109, 239. This organism has been selected due to the (i) 

high sequence identity in the oxidation pocket (Qo) between both species (in close 

contact with the pocket, there is only one non-conserved residue - Leu275Phe)104, 139, (ii) 
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availability of an S. cerevisiae bc1 crystal structure, with good resolution101-103 and (iii) 

close relation between inhibitory activity in the two species133. 

Therefore, in a first attempt to design new bc1 complex inhibitors that can interact 

with the oxidation pocket, a computational study was developed to better elucidate the 

binding mode and interaction mechanism between experimentally identified Qo bc1 

inhibitors (Figure 2.1) and the bc1 enzymatic complex of yeast. 

In order to ensure comparable values for biological activity, only inhibitors 

experimentally screened in a single biological test and using the same protocol were 

chosen. Included in this set are stigmatellin, atovaquone, two dihydroacridinediones 

(floxacrine and WR 249685) and a pyridone (GW844520). The IC50 values (Figure 2.1) 

were derived from inhibition of the P. falciparum bc1 complex determined by reduction of 

cytochrome c with decylubiquinol as an electron donor133.  

 

 

Figure 2.1. The Qo bc1 complex inhibitors studied. 
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Myxothiazol was excluded since it belongs to a different subgroup within the Qo 

class inhibitors (binds in a very specific part of the pocket, proximal to the bL heme, while 

the considered inhibitors bind in distally)240. In particular, this compound has a different 

binding mode since it causes the displacement of Glu272 rotamer inside the pocket, as 

seen in PDB 1SQP. 

In order to obtain the best model for the Qo binding site of bc1 complex, several 

docking procedures were employed. As a result, not only the quality of the two more 

recently obtained PDB coordinates of S. cerevisiae bc1 complex were tested but also the 

environment inside the Qo binding site was taken into account. More specifically, two 

amino acid residues were more deeply studied – Glu272 from the highly conserved 

cytochrome b PEWY sequence241 and His181, one of the [2Fe-2S] cluster ligands in the 

Rieske protein. These two residues were chosen since they were already shown to be 

essential in the catalytic process242-244 once they are direct ligands of the natural substrate 

and are the primary acceptors for the protons released upon substrate oxidation. 

Therefore, the interaction of both residues with potential bc1 complex inhibitors is 

essential. In this study, the importance of the protonation state of His181 was 

investigated due to experimental evidence showing that when stigmatellin is bound in the 

Qo pocket, this residue is protonated245. Additionally, computational studies indicate that 

the protonation state of this residue can change during the catalytic cycle depending on 

the oxidation state of the cytochrome bc1
242. Furthermore, the influence of a catalytic 

water molecule in the vicinity of Glu272 was also tested in order to evaluate how the 

inhibitory ability of the selected compounds could be affected by its presence. 

 

2.2.  Validation of P. falciparum bc1 complex model and binding mode of 

stigmatellin 

In a first step, to assess the validity and reliability of the docking procedures used in this 

study, bound stigmatellin was redocked into the Qo binding site of yeast bc1 complex 

using AD as the docking software.  
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As mentioned before, two PDB structures, 1KYO102 and 3CX5103, were chosen to 

perform this study. Yeast bc1 complex coordinates with PDB code 3CX5 are more recent 

than 1KYO and display better resolution (1.90 Å). Furthermore, to test and optimize the 

docking procedure, the environment inside the pocket was also tested in the several 

docking experiments.  

The results obtained were evaluated by comparing the best ranked pose of 

stigmatellin with the pose of this inhibitor crystallized in the PDB structure through a root 

mean square deviation (RMSD) calculation using VMD 1.8.7246 (Table 2.1). RMSD values 

were calculated both for the entire inhibitor structure and for the rigid aromatic moiety. 

An assessment of the predicted binding free energy (ΔGcalc) and the equivalent value 

obtained experimentally (ΔGexp) was also made. For each PDB structure, the most 

favorable docking pose was identified by the scoring function/binding energy and its 

similarity with the crystallographic pose of stigmatellin in the active site. 

 

Table 2.1. Root mean square deviation (RMSD) and binding free energy (ΔG) obtained for stigmatellin in 

different docking experiments with neutral His181 (His181), with His181 protonated (His181 H
+
) and with 

the crystallographic water near Glu272 (Hist181 + water). 

X-ray 

structure 

Experimental 

conditions 

RMSD (Å) ΔG (kcal.mol-1) 

all atoms 
aromatic 

moiety 
Calculated Experimental 

1KY0 
His181 H+ 1.119 0.759 -10.12 

-12.12 

His181 1.798 0.839 -8.44 

3CX5 

His181 H+ 1.570 0.585 -10.94 

His181 2.138 0.743 -9.79 

His181 + water 1.795 0.788 -9.36 

 

The total average RMSD value of 1.684 Å shows the ability of the docking 

procedure to predict the binding mode of stigmatellin. This is a satisfactory value taking 
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into account the size of the molecule and the number of rotatable bonds of this inhibitor 

(13). However, a consistent lower value was obtained when using protonated His181, 

which is in accordance with experimental evidence showing that His181 is protonated 

when stigmatellin is bound in the Qo active site101, 245. When considering only the 

benzopyranone ring of stigmatellin, which is responsible for specific interactions with the 

amino acid residues described as essential for inhibition (the rigid planar moiety of this 

molecule), a much better average RMSD is obtained (0.743 Å).  Again, a lower RMSD 

value was obtained with protonated His181, showing that the docking procedures 

employed in this study are able to accurately predict the binding mode of stigmatellin in 

the Qo binding site. The superposition of the best ranked pose of stigmatellin (considering 

His181 protonated) with the pose of this inhibitor crystallized in the X-ray structure is 

shown in Figure 2.2. 

 

 

Figure 2.2. Comparison of the poses of crystallographic stigmatellin (carbon atoms in yellow) and the best 

ranked pose of this inhibitor (carbon atoms in blue). Hydrogen bonds are represented by grey lines. 

 

Moreover, the differences between the binding free energy values obtained in 

these calculations and the experimental one for 1KYO and 3CX5, ΔΔG(exp-calc), are within 

the residual standard error of AD (2.18 kcal/mol)247 only when His181 is protonated (2.00 

and 1.18 kcal/mol, for 1KYO and 3CX5, respectively). 
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It was previously recognized that the carbonyl oxygen atom of stigmatellin is 

positioned in a favorable geometry to establish a strong interaction between this moiety 

and His181101, 245. Consequently, to enable hydrogen bond formation, the residue of 

His181 must be protonated or, if this residue is in its neutral state, the presence of a 

water molecule is required. However, there is no experimental evidence confirming the 

presence of a water molecule in the vicinity of His181 when stigmatellin is inside the Qo 

pocket101-103. As a result, His181 must be protonated, which is in line with the results 

achieved.  

An important observation that also emphasizes the quality of the predictions can 

be drawn from the data of Table 2.1. The binding free energy is correlated with the RMSD 

obtained for the aromatic moiety (the benzopyranone ring), more specifically, the closer 

the pose to the crystallographic one, the lower is the free energy and the closer it is to the 

experimental free energy value. 

Regarding the results obtained for the two different X-ray structures, some 

comparisons can be made. Interestingly, higher binding free energy values were found for 

1KYO when compared with 3CX5. When both X-ray structures are aligned, in particular 

chains E and N (as described in RCSB Protein Data Bank248 and corresponding to the 

Rieske protein and cytochrome b, respectively) slight variations are found in the 

conformation of some residues. This can be related with the lower resolution of the 

structure 1KYO and can contribute to the differences of binding free energy values 

observed in the docking procedures. The energy values obtained for 3CX5 are lower than 

for 1KYO indicating that the interactions established between stigmatellin and the 

residues of the pocket site are more favorable when the former coordinates are used. 

Moreover, it is important to notice that residue 122 in Rieske protein (chain E) is not 

correctly assigned in 1KYO. According to the sequence of the mitochondrial bc1 complex 

of S. cerevisiae249, this residue should be an isoleucine, as in 3CX5, rather than a threonine 

residue, as revealed by 1KYO. Although the interactions between this residue and the 

inhibitors in Qo active site are not particularly strong, this amino acid is located in the 

access to the pocket and, therefore, its hydrophobic or hydrophilic characteristics are 

extremely important. In the case of stigmatellin, the presence of these two chemically 
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distinct amino acids also contribute to explain the poorer results obtained with structure 

1KYO, since the hydrophobic chain of stigmatellin interacts directly with the active site 

entrance (within no more than 4 Å) where residue 122 is situated. This result strongly 

founded on the quality and resolution of both structures was the first indication that the 

3CX5 could be a better model structure than 1KYO. 

Currently, only the structure of stigmatellin co-crystallized in the Qo active site of 

the yeast bc1 complex is available. Therefore, the structural basis for binding to the active 

site by this inhibitor is an important tool to elucidate the binding mode of the bc1 

inhibitors presented in Figure 2.1.  

Considering that all inhibitors in this analysis bind the Qo active site and their 

structural similarities with stigmatellin, it is expected that these inhibitors interact with 

the ubiquinol oxidation pocket in a similar mode. Accordingly, the results obtained in this 

docking study for the different inhibitors were compared with the pose of stigmatellin 

inside the ubiquinol oxidation pocket and with the significant interactions formed 

between this inhibitor and the most important residues, namely His181 and Glu272. 

The results obtained for all inhibitors (Figure 2.1) in the five docking experiments 

are presented in Table 2.2. As for stigmatellin, different docking conditions were applied 

i.e. the two PDB coordinates (1KYO and 3CX5), with different protonation states for 

His181 were tested.  

In order to assess which docking procedure could better predict the inhibitory 

activity of the studied molecules, correlations between log IC50 and ΔGbind were evaluated. 

Quite reasonably, the log IC50 for P. falciparum bc1 inhibition correlated with the ΔGbind 

values (r2=0.87) determined using 3CX5 coordinates with neutral His181 (Figure 2.3).  

Considering the relative strength of the correlations obtained based on the values 

in Table 2.2 for the different docking experiments, it was possible to conclude that for 

most of the inhibitors studied, the activity can be explained using as model the 3CX5 

coordinates with the residue His181 in its neutral state. Although in the case of 

stigmatellin the protonation of the His181, as expected, stabilizes the complex (ΔΔG = -

1.15 kcal/mol), it has the opposite effect on the binding of myxothiazol (ΔΔG = 1.29 
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kcal/mol) putting one of the best inhibitors at the bottom of this relative inhibition scale. 

For all others, the His181 protonation just shifts the values towards a higher stabilization 

by no more than 0.5 kcal/mol. 

 

 

Figure 2.3. Correlation obtained between the experimental log IC50 and calculated ΔGbind obtained using the 

3CX5 coordinates with neutral His181 (r
2
=0.87). The square represents the binding free energy obtained for 

atovaquone in the presence of the minimized water molecule in the vicinity of Glu272 (r
2
=0.92; linear fit not 

presented). 

 

When testing the effect of the presence of crystallographic water in the vicinity of 

Glu272 on the binding free energy, the best ranked pose had stigmatellin flipped (i.e. 

hydrophobic chain in the inner part of the pocket). Since this could be due to a sampling 

problem (sampling the three dimensional and conformational spaces) three more 

attempts were done using different random number generator seeds. The respective 

values, presented in Table 2.2, are the average values obtained for the docked poses of 

stigmatellin, with the aromatic moiety of the molecule located in the internal part of the 

pocket. However, the water can stabilize atovaquone, WR249685 and S-floxacrine 
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suggesting that, for some of the inhibitors, a water molecule may be important to 

mediate a hydrogen bond between the inhibitor and Glu272. Therefore, and unless 

specifically stated otherwise, all discussion of the docking results will be drawn based on 

the docking of the ligands in the 3CX5 structure with neutral His181.  

 

 



 

 

Table 2.2. Docking results of the available inhibitors at different experimental conditions: with neutral His181 (His), with His181 protonated (His H
+
) and with a 

crystallographic water near Glu272 (+ water). Free energies in kcal.mol
-1

, Ki and IC50 in nM. Experimental values obtained by Biagini et al
133

 

 1KY0 3CX5 Experimental 

 

 

His H+ 

ΔGcalc / Kicalc 

His H 

ΔGcalc / Kicalc 

His H+ 

ΔGcalc / Kicalc 

His H 

ΔGcalc / Kicalc 

His + water 

ΔGcalc / Kicalc 
ΔGexp / Kiexp IC50 

 

Atovaquone -9.29/153.86 -9.03/243.27 -9.96 / 50.35 -9.49 / 110.23 -9.67 / 81.75 -12.99 / 0.3 3 ± 2 

WR 249685 -9.72 / 75.08 -9.76 / 70.20 -10.20 / 33.37 -9.97 / 49.27 -10.13 / 37.16 -12.99 / 0.3 3 ± 2 

Stigmatellin -10.12 / 38.35 -8.44 / 650.53 -10.94 / 9.56 -9.79 / 66.58 -9.78 / 67.12 -12.12 / 1.3 12 ± 1 

GW844520 -8.89 /232.88 -8.95 / 275.55 -9.44 / 120.10 -9.28 / 158.28 -9.25 / 164.28 -11.53 / 3.5 32 ± 13 

S-Floxacrine -8.53 / 527.52 -8.60 / 496.34 -8.49 / 598.37 -8.20 / 975.39 -8.57 / 518.01 

-9.62 / 89 803 ± 183 

R-Floxacrine -8.97 / 265.24 -8.68 / 431.37 -9.00 / 252.23 -8.59 / 501.42 -8.54 / 544.93 
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2.3.  Binding mode of atovaquone 

The binding mode of atovaquone inside the ubiquinol oxidation pocket is depicted 

in Figure 2.4. This antimalarial drug is able to inhibit selectively the parasite mitochondrial 

electron transport chain at the Qo binding site5. It is possible to observe that the hydroxyl 

group at the position 3 of the hydroxynaphtoquinone, one of the principal features of this 

molecule that contribute to its activity250, interacts with the Nτ of His181 via a hydrogen 

bond (3.1 Å). Atovaquone may also establish an additional hydrogen bond between the 

carbonyl oxygen group at position 1 on the quinone ring and the carboxylate oxygen of 

Glu272 of cytochrome b (3.4 Å), mediated by a water molecule in the correct position, 

since the conformation of the docked structure is in a favorable geometry to allow the 

formation of this interaction. Considering that this amino acid residue is anionic, Glu272 

acts as a proton acceptor. Consequently, in order to allow the formation of this hydrogen 

bond between the carbonyl group and the glutamate carboxylate, the presence of a 

water molecule is essential to mediate this interaction. Atovaquone was docked in the 

presence of the water molecule crystallized near Glu272 and showed almost no change in 

the binding energy (Table 2.2). It is important to notice that during the docking process, 

the coordinates of this molecule are rigid and are in accordance with the position of 

stigmatellin inside the oxidation pocket. Therefore, in the case of atovaquone, the 

position of this water molecule is not adequate to allow the formation of a strong 

hydrogen bond between the carbonyl oxygen group of the ligand and Glu272. In the 

absence of a water molecule, although the interactions found between atovaquone and 

the amino acid residues in the oxidation binding site can be considered favorable, the 

distance between the atoms that are involved in the hydrogen bonds are longer than 

what is expected for a strong hydrogen bond interaction (Figure 2.4). As a result, the 

weaker hydrogen bonds formed between this inhibitor and the amino acids in the binding 

pocket can contribute to the lower score and, consequently, to the higher binding free 

energy value (Table 2.2). These weak interactions can also be significant to explain the 

deviation obtained for atovaquone in the correlation achieved between the binding free 

energy of the docked ligands and the experimental IC50 value (Figure 2.3). 
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Figure 2.4. Predicted binding poses for atovaquone without the crystallographic water (carbon atoms in 

yellow) and in the presence of a minimized water molecule near Glu272 (carbon atoms in blue). Hydrogen 

bonds are represented by grey lines. 

 

In a previous docking study of the binding mode of atovaquone, using PDB code 

1EZV111, it was possible to note that the presence of a water molecule is crucial to obtain 

a good interaction between this inhibitor and the binding pocket, especially with Glu272. 

Since the study of the flexible position of water molecules inside the binding pocket, to 

facilitate the arrangement of more favorable hydrogen bonds, is not possible to be 

performed directly with AD, the importance of the presence of this molecule in the 

inhibitory activity of atovaquone could only be deduced by optimizing the position of the 

water molecule inside the oxidation pocket. Therefore, to address this issue, the position 

of a water molecule crystallized in the vicinity of Glu272 was energy minimized, in the 

presence of docked atovaquone, using MOE. For this minimization, only water and 

atovaquone were considered flexible, keeping the bc1 backbone and all the amino acid 

residues fixed as tethered atoms. Iterating between docking atovaquone with AD in the 

presence of rigid water and optimizing both molecules in MOE led to better docked poses 

and enhanced score values for this inhibitor (Figure 2.4).  

The first binding free energy value obtained for atovaquone in the absence of the 

water molecule was -9.49 kcal/mol (Table 2.2) while, in the presence of the minimized 
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water molecule, the binding free energy was enhanced to -9.67 kcal/mol. This way, it was 

possible to get a more satisfactory correlation between the binding free energy and the 

IC50 values (Figure 2.3). It was observed that atovaquone in the presence of water that 

can mediate an H–bond with Glu272 moves closer to His181 making stronger hydrogen 

bonds that can explain this change in the binding free energy (Figure 2.4) i.e. the H-bond 

formed between the hydroxyl group of the hydroxynaphtoquinone and the Nτ of His181 

was weaker in the absence of the water molecule than the one obtained with the water 

optimization (the distance decreased from 3.1 to 2.5 Å). In this case, an hydrogen bond is 

established between the carbonyl group of the inhibitor and water (1.7 Å) followed by a 

second H-bond between water and the carboxylate moiety of Glu272 (1.8 Å). It is 

important to notice that the aromatic and rigid moiety of atovaquone is maintained in the 

same plane in both poses (Figure 2.4) and that the position of atovaquone is only 

adjusted to allow the formation of two stronger hydrogen bonds. By moving towards 

His181 it promotes the formation of a stronger hydrogen bond with this residue and the 

interaction in a more favorable way with the water molecule near Glu272. This shows 

that although in the case of stigmatellin the crystallized water is relevant to stabilize the 

Glu272 charge, in the case of atovaquone, and possibly other molecules without a 

hydrogen donor group located near this residue (e.g. GW844520), water can both 

mediate a hydrogen bond and stabilize the complex. 

Atovaquone’s proximity to several aromatic residues that contribute to create an 

hydrophobic binding zone is also favorable. Since this inhibitor is mostly hydrophobic due 

to the cyclohexyl side-chain at position 2 and the chlorophenyl substituent that dock in 

the vicinity of this hydrophobic area, it allows π-π interactions with Phe278 and Tyr279 of 

the E-ef loop (conserved domain containing residues of cytochrome b101), within a 

distance from the atovaquone aromatic moieties of about 3 and 4 Å, respectively. 

 

2.4.  Binding mode of floxacrine and WR249685 

The binding modes of the two dihydroacridinediones considered in this study, floxacrine 

(a racemic mixture) and WR249685 (the S enantiomer of WR243246), in the most 
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energetically favorable conformation, are shown in Figure 2.5 and Figure 2.6. The mode 

of action of these inhibitors against P. falciparum has already been proposed based on 

experimental evidences133-134, 251.  

Surprisingly, when WR 249685 was docked in the Qo site, no interaction with 

Glu272 or His181 was found. However, the hydrogen bond between the nitrogen atom of 

the dihydroacridinedione ring (2.56 Å) and the carbonyl backbone of Leu275 stabilizes the 

inhibitor inside the pocket. The other interactions are mostly hydrophobic, predominantly 

with the residues of the E-ef loop. It is also important to note that, in the most favorable 

pose, the dihydroacridinedione moiety is approximately parallel to Tyr279 at a distance of 

3 Å and, in addition, it also interacts favorably with Phe278, which contributes to 

establish good π-π stacking interactions. Interestingly, the chlorine atom in the para 

position can also interact suitably with Tyr132 of cytochrome b through an edge-on Cl―π 

contact252-253. The halogen interactions have mostly an electrostatic nature and, although 

they are relatively weak, can help to explain binding affinity254-256. This specific halogen 

interaction may also contribute to the different fitting found for this inhibitor. 

 

  

Figure 2.5. Predicted binding pose for WR249685 on the left, and a comparison of the poses of 

crystallographic stigmatellin (green), atovaquone (grey) and WR249685 (orange), on the right. 
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Figure 2.5 compares the pose obtained for WR249685 with the crystallographic 

pose of stigmatellin and the one obtained for atovaquone. Although the aromatic ring 

located deeper in the pocket is not perfectly parallel with the rings for the other 

molecules, this inhibitor adapts to the binding pocket in a very similar way as stigmatellin 

and, especially, atovaquone. The superimposition of these three inhibitors show that the 

poses obtained for atovaquone and WR249685 share similarity, being the aromatic 

moieties that interact closer to the pocket entrance coplanar and almost superposed in 

both structures.  

Both enantiomers of floxacrine were docked in the Qo binding pocket and the best 

ranked pose, for each, is shown in Figure 2.6. Both S and R enantiomers of floxacrine 

share similar interactions with His181 and Glu272. Interestingly, the two enantiomers are 

able to interact with these two residues using the same H-bond donor and acceptor 

groups. In both cases, the hydroxyl group of the dihydroacridinedione ring is in good 

position to interact with the Glu272, with a distance of 2.6 and 2.7 Å for S and R-

floxacrine, respectively.  

 

 

Figure 2.6. Predicted binding pose for enantiomers R (carbon atoms in yellow) and S (carbon atoms in 

purple) of floxacrine. Hydrogen bonds are represented by grey lines. 
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Like in the case of stigmatellin, the interaction between the H-acceptor of the 

dihydroacridinedione ring, the carbonyl oxygen atom, and His181, requires the 

intervention of a water molecule or a change of the protonation state.  

For the S enantiomer, it is the carbonyl oxygen atom in position 1 that makes this 

interaction while in the case of R enantiomer it is the carbonyl in position 9. These small 

differences concerning the specific hydrogen interactions contribute to slightly different 

poses inside the pocket. A lower binding free energy value of -8.59 kcal/mol was obtained 

for R-floxacrine when compared to -8.20 kcal/mol of S-floxacrine. However, there are no 

experimental evidences that confirm the better activity of one of the enantiomers when 

compared to the other. 

When considering S-floxacrine and WR249685, the binding mode of these two 

inhibitors was thought to be similar due to the analogy existing in both structures. Since, 

WR249685 is a 10-desoxy derivative of floxacrine, bearing a different C-3 phenyl pattern 

and an added chlorine atom in the benzene ring, the substitution of the chlorine by the 

trifluoromethyl group should have a small impact in the properties since these two 

substituents are bioisosters. In the case of WR249685, the aromatic moiety with the two 

chlorine substituents probably contributes to this different arrangement, not only due to 

the possibility of favorable halogen interactions, but also as a result of the added size due 

to the second chlorine atom. Although the size of a trifluoromethyl group is similar to 

chlorine, fluorine is a smaller halogen than chlorine having a different electrostatic nature 

and, therefore, the trifluoromethyl substituent in floxacrine is not able to establish 

favorable halogen interactions with amino acid residues. Although both WR249685 and 

floxacrine have donor groups at the same position, the added size of an OH group could 

also disallow floxacrine to have a similar pose as WR249685. 

Attempting to assure the reliability of the different poses obtained for these 

inhibitors and to get a clear picture of the relevant features conducting to the two 

completely different poses, an additional molecule based on the chemical structure of 

both WR249685 and floxacrine, was also docked using the same experimental conditions. 

The chemical structure of this molecule includes the two main moieties of both inhibitors: 
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the hydroxyl substituent in the acridinedione ring, as floxacrine, and the aromatic side 

chain with the two chlorine substituents, as in the case of WR249685 (Figure 2.1). The 

comparison of the docked pose of this molecule and WR249685 (Figure 2.7) allows to 

conclude that it is the presence of the chlorine substituents in the aromatic ring that 

completely change the pose of the inhibitor inside the binding pocket, and, consequently, 

the interactions established between the inhibitor and the amino acids in the Qo site. 

Moreover, it is also important to notice that the presence of this aromatic moiety 

decreased the binding free energy of floxacrine (ΔG = -8.20 kcal/mol for S-floxacrine and 

ΔG = -10.25 kcal/mol for the tested molecule) which indicates that the presence of the 

chlorine substituents contribute to increase the inhibitory ability of WR249685 when 

compared with the racemic mixture of floxacrine.  

 

 

 

Figure 2.7. Chemical structure of the tested molecule on the left, and comparison between the predicted 

binding poses of WR249685 (carbon atoms in yellow) and of the new tested molecule (carbon atoms in 

purple) on the right. 

 

2.5.  Binding mode of GW844520 

The analysis of the most favorable pose of GW844520 (Figure 2.8), a 4(1H)-pyridone that 

selectively inhibits the bc1 complex63, 127, shows that it interacts with the binding pocket 
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by several hydrophobic contacts between the aromatic substituent in position 3 and the 

E-ef loop (like in atovaquone, it is also stabilized by π-π stacking interactions with 

aromatic amino acids, specifically Phe278 and Tyr279). GW844520, comparable to other 

known pyridones, may establish two important H-bonds with Glu272 and His181 which 

are of extreme importance in keeping the ligand in the right position inside the pocket. 

The nitrogen atom of the pyridone ring is in an appropriate geometry to interact with Nτ 

of His181 (1.9 Å). Similar to atovaquone, the carbonyl oxygen of the pyridone ring, being a 

hydrogen bond acceptor, requires the presence of a water molecule to mediate an H-

bond with Glu272. 

 

 

Figure 2.8. Predicted binding pose of GW844520. Hydrogen bonds are represented by grey lines. 

 

Two docking experiments, in the absence and presence of a water molecule in the 

vicinity of Glu272, were performed to test this effect on the binding free energy of 

GW844520 (Table 2.2). Like in the case of atovaquone, the presence of the crystallized 

water molecule does not improve the value of binding free energy in spite of being 

needed to mediate a strong hydrogen bond between the carbonyl group of the pyridone 

and the Glu272 residue. The explanation for this weak interaction between GW844520 

and the water molecule is identical to the one already stated for atovaquone: since the 
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coordinates of this molecule are rigid and are in accordance with the position of the co-

crystallized ligand inside the pocket (stigmatellin), the position of this water molecule is 

not adequate for the formation of a strong H-bond between GW844520 and the Glu272 

residue. As a result, the optimization of the position of this water molecule in the 

presence of the inhibitor was performed, decreasing the binding free energy in 0.46 

kcal/mol. However, the presence of the optimized water molecule has no impact on the 

pose of GW844520 inside the pocket i.e. the presence of this additional H-bond between 

the carbonyl group of the pyridine ring and the water hydrogen (the same distance of 2.2 

Å was found for the H-bond between the water hydrogen and Glu272), does not move 

GW844520 closer to Glu272 and keeps the distance between the nitrogen donor of the 

pyridone ring and Nτ of His181 constant (1.9 Å).  

It is important to stress that some care should be taken when analyzing the results 

of the water optimizations. In the docking procedure the addition of extra hydrogen 

bonds will stabilize the complex and, therefore, will decrease the binding free energy. 

However, the contribution of breaking and making hydrogen bonds by changing water 

position is not accounted in the calculations. Comparing the docking processes, with and 

without water optimization, for GW844520 we are substituting two strong hydrogen 

bonds (between water and Glu272) with two weak hydrogen bonds (between GW844520 

and water and between water and Glu272). This part of the physical process will not be 

spontaneous, the free energy will be positive and, therefore, the decrease in the total 

free energy of binding with water optimization is over-estimated. Moreover, the presence 

of the water shows basically no impact in the pose of GW844520 inside the pocket and, 

therefore, the binding free energy without the water optimization should give in this case 

a better estimation. It should also be noted that a different behaviour is found for 

atovaquone since, with the optimized water, the pose is closer to His181 (increasing the 

strength of the H-bond between atovaquone and His181) and two other strong hydrogen 

bonds are formed (1.8 and 1.7 Å). 
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2.6.  Concluding remarks 

Considering the results obtained with the two PDB structures used and the different 

docking procedures employed, it was possible to conclude that the most appropriate 

model is based on the 3CX5 coordinates, with a better resolution than 1KYO. Considering 

His181, only in the case of stigmatellin, and in agreement with experimental findings, the 

protonation of this residue was found to be very important. This result was expected 

having in mind the moiety of the inhibitor that interacts with this amino acid, specifically 

the carbonyl group. For the other molecules studied, it was possible to obtain a good 

prediction of the inhibitory activity considering the X-ray structure with His181 in its 

neutral state. Accordingly, this model was accepted as the preferred one to explain the 

molecular basis of inhibition in the Qo active site. Moreover, when considering the 

presence of the water molecule in the vicinity of Glu272, the results obtained stress the 

importance of this molecule to mediate a strong H-bond between atovaquone and this 

residue trough the consequent change of the molecule’s pose and, therefore, on the 

positive impact upon the inhibitory activity. In the case of GW844520, and taking into 

account the good correlation found between the calculated binding free energy for all 

inhibitors and the logarithm of their IC50, the high inhibition activity of this ligand could be 

explained in the absence of the water molecule. For that reason, the presence of a water 

molecule has no impact on the predicted docked pose of GW844520 inside the Qo binding 

pocket. 

By inspecting the predicted binding modes of the tested inhibitors it was possible 

to recognize that they are arranged in a very similar way inside the pocket and make 

similar interactions with Qo active site residues. In general, part of the inhibitors’ 

structure interacts favorably with both His181 of the Rieske protein and Glu272 of the 

conserved PEWY region and, consequently, the interactions with these two amino acid 

residues can be considered of extreme relevance for the inhibitory activity. The only 

exception found was for WR249685. However, despite presenting different interactions, 

this inhibitor displays a similar arrangement inside the active pocket to the one found for 

the crystallographic stigmatellin.  
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In conclusion, this study permitted to recognize the molecular basis of action of 

known bc1 inhibitors inside the Qo active site and establishes a good predictive method to 

determine the inhibitory potential of possible new inhibitors taking into consideration the 

binding free energy values obtained with the docking calculations.  
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3.  Virtual Screening Studies over S. cerevisiae bc1 Complex 

3.1.  Background 

Taken into account the advantages of performing a virtual screening study in order to 

identify hits with potential pharmacological interest, two different drug-like databases 

were screened over the S. cerevisiae bc1 complex using the experimental conditions 

validated in the Chapter 2. The main goals of this study were to conclude about the 

reliability of S. cerevisiae bc1 complex to be used to design new P. falciparum bc1 complex 

inhibitors and, additionally, to obtain new hits that can be further optimized. 

 

3.2.  Virtual screening of TCAMS 

The recently released Tres Cantos Antimalarial Set (TCAMS)257 was chosen to be used in 

the first screening with the yeast model. This database includes around 13500 

compounds already confirmed to inhibit parasite growth in vitro, by at least 80% at 2 μM 

concentration, and was obtained after testing almost 2 million compounds present in 

GSK’s screening collection using HTS. All molecules presented in this database were 

further separated in distinct classes concerning their mode of action. In the absence of 

specific target information, a similarity principle was used. More specifically, compounds 

in the same cluster, with analogous chemical structure, are supposed to share the same 

mode of action. Additionally, included in this set are 122 molecules which were
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 hypothesized to interfere with the mitochondrial electron transport chain (mETC). These 

molecules are mainly 4(1H)-pyridones and 4(1H)-quinolones, two classes of compounds 

already recognized to disrupt electron transfer by blocking cytochrome bc1 complex133. 

This virtual screening study was first performed not only to test the validity of the 

yeast model but also to evaluate the performance of two available docking programs: AD 

4.0 247, 258 (using Dovis 2.0 package259) and AD Vina 1.0.2219. 

 

3.2.1.  Comparison between AutoDock and AutoDock Vina 

Generally, docking programs may differ in two basic features: (i) the search method for 

exploring the conformational space available to the system and (ii) the scoring function 

used to predict the strength of the interaction between compounds and the potential 

target. To correctly evaluate the potential of a compound to interact with its target is also 

important to have in consideration the force field employed since it defines the energetic 

parameters of each conformation obtained during the docking calculation260-261. 

Regarding AD and AD Vina, both programs operate in a very similar manner. The main 

differences rely in two features described above: the local search function and the scoring 

function. Concerning the search method that enables to explore the conformational 

space, AD uses a stochastic search based on genetic algorithms whilst AD Vina performs 

an iterative gradient-based local search219, 247, 258. Genetic algorithms are based on 

genetics and biological evolution. More specifically, a compound can be defined by a 

selection of values that describe its translation, orientation, and conformation with 

respect to the protein target. These properties are the ligand’s state variables and can be 

enconded into a gene. The evolutionary process starts from a population of randomly 

generated individual. In each generation, the interaction energy between each compound 

and the target is evaluated in order to obtain a fitness value.  The more fit individuals are 

selected from the population and the genome of each individual suffers mutations in 

order to create a new generation. Then, the new generation of candidate solutions 

suffers the same process. Finally, the algorithm is finished when the maximum number of 

generations is produced or the desired fitness level is reached247, 258.  
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For AD Vina, an iterated local search system is performed. With this algorithm, a 

sequence of steps consisting of a mutation and a local optimization are applied in order to 

find the best pose. The local optimization takes into account not only the position and 

orientation of the compound but also the values of the torsions for the compound’s 

active rotatable bonds. One advantage that arises from using this type of algorithm is that 

the number of steps in a run is adjusted according to the complexity of the calculation219. 

Regarding scoring functions, both programs consider similar energetic terms with 

parameters adjusted in different ways. More explicitly, the differences found in both 

scoring functions are not associated with the nature of the energetic contributions but 

are related with the importance of each term to design the scoring function equations. 

Therefore, both scoring functions are empirically weighted functions that contain terms 

that account for intermolecular and intramolecular contributions. Included in the scoring 

functions are dispersion/repulsion, hydrogen bonding, and electrostatics terms. Usually, 

the entropic contribution of changes in solvation and conformational mobility are also 

taken into account219, 258. Moreover, AD Vina has the ability to allow a significant 

improvement in the virtual screening process since it achieves approximately two orders 

of magnitude speed-up when compared with the AD. Further speed-up can be achieved 

from parallelism, by using multithreading on multicore machines219. However, the Dovis 

package permits to run AD in parallel on hundreds of CPUs contributing to solve time 

related issues associated to large-scale high-throughput virtual screening259. Some 

differences can be found between the parallelization mode of both programs which 

results in the speed-up of AD Vina when compared with AD Dovis. Namely, while AD Vina 

is able to perform the docking calculations simultaneously in several CPUs, AD Dovis only 

performs the runs one molecule per CPU.  

 

3.2.2.  Structure-based virtual screening 

The compounds included in TCAMS were independently screened against yeast model 

(PDB coordinates 3CX5) using the two docking programs mentioned before. Firstly, a 

special attention was given to the 122 compounds that are supposed to interact with the 



84  Chapter  3  

 

 

mETC, namely, the 4(1H)-pyridones and 4(1H)-quinolones. This set of compounds were 

important not only to establish a comparison between the binding free energy values 

obtained with AD and AD Vina but also to verify if both are able to recognize the score 

values found for 4(1H)-pyridones during the validation process. The ranges of score and 

binding free energy values obtained for these two classes of molecules are summarized in 

Table 3.1.  

 

Table 3.1. Summary of the results obtained for 4(1H)-pyridones and 4(1H)-quinolones during the screening 

of TCAMS.  

Class of 

Compounds 
Example 

AD AD Vina 

Score Energy (kcal/mol) 

4(1H)-pyridones 

 

[4.60; 7.71] [-5.9; -10.5] 

4(1H)-quinolones 

 

[4.63; 7.39] [-7.2; -10.4] 

 

From the data available, it is possible to conclude that both 4(1H)-pyridones and 

4(1H)-quinolones display score values in a wide range with non substituted compounds 

presenting lower binding affinity with the target. In addition, a more exhaustive analysis 

of all compounds’ data showed that 93% of the 122 compounds hypothesized as mETC 

inhibitors exhibit score values between 6 and 8 in AD calculations. A comparison between 

the binding free energy values obtained in this screening and the same values obtained 

for GW844520 in the previous chapter permitted to conclude that AD was able to 

successfully predict the characteristic binding free energy values for 4(1H)-pyridones as 

bc1 complex inhibitors. In addition, both programs are able to successfully reproduce the 

binding mode of this class of inhibitors inside the Qo pocket. Figure 3.1 shows the 

predicted binding pose obtaining with AD for compound TCMDC-134570. 
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Figure 3.1. Predicted binding mode of TCMDC-134570 obtained with AD. Hydrogen bonds are represented 

by grey lines.  

 

Furthermore, a correlation between the binding free energy values obtained for 

these two scaffolds in both docking procedures, was also calculated which permitted to 

obtain a Pearson correlation value of 0.67 (Figure 3.2).  

 

 

Figure 3.2. Binding free energy correlation between AD and AD Vina. 
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This value indicates that these two programs, in spite of sharing some differences, 

show some linear dependence and, consequently, they are both roughly able to recognize 

typical bc1 complex inhibitors.  

An examination of the results obtained was also done for all compounds 

presented in this library. More precisely, the score values found using AD were analyzed 

and collected in Figure 3.3. It is possible to observe that almost 20% of the tested 

compounds exhibited a score value higher than 8 indicating that several may establish 

potent interactions with Qo binding site. In addition, this data suggests that some of the 

compounds showing P. falciparum growth arrest by inhibition of an unknown or different 

target may also demonstrate potential activity against cytochrome bc1 and can be 

considered valuable scaffolds to design new antimalarial drugs targeting this specific 

enzyme. 

 

 

Figure 3.3. Overall score values obtained for TCAMS virtual screening using PDB 3CX5 and AD. 

 

One example of the most interesting structure found (TCMDC-140353) is shown in 

Figure 3.4. This is an example of a compound having potential activity on the bc1 complex: 

the hydrogen bond that can probably be established with the backbone carbonyl of Ile125 
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in the presence of a water molecule and the hydrophobic interactions with the Qo site 

pocket assure the high score value for this molecule. 

 

 

Figure 3.4. Predicted binding pose of TCMDC-140353 obtained with AD. 

 

3.3.  Virtual screening of MOE Database 

A second receptor-based virtual screening against the druglike MOE database was also 

performed against the same target. The workflow followed is illustrated in Scheme 3.1. 

A collection of 653214 drug-like compounds included in the MOE package262 was 

screened against the yeast bc1 complex Qo binding site using AD Vina. This software was 

used to rank all database molecules, and the best 80000 molecules were further docked 

with AD. As previously shown, the binding free energy values obtained with both 

software have good enough correlation to exclude molecules screened with AD Vina 

having low predicted activity. Therefore, it was possible to use AD Vina to rapidly screen 

an extensive library of compounds before applying an exhaustive AD screen to the best 

putative compounds. 
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Scheme 3.1. Representation of the overall screening process. 

  

The 250 top-ranked structures obtained after refinement with AD (score higher 

than 7) were visually inspected. Although some compounds possess high score values, 

some are located distant from the pocket zone where His181 and Glu272 are located. 

Since the model used for the docking experiments characterize competitive inhibitors 

that bind to the distal part of the pocket, like stigmatellin, the compounds that bind in a 

different part of the pocket were rejected. For the majority of the molecules it was 

possible to identify structural features that permit the formation of strong hydrophobic 

interactions with the hydrophobic part of the Qo site. Furthermore, several molecules 

could establish π-π stacking interactions with Phe278 and Tyr279 as seen above for the 

inhibitors. Some of these compounds could also interact with Glu272 of the cytochrome b 

and/or His181 from the Rieske ISP. 

After visual inspection, 25 potential inhibitors were selected to be purchased from 

commercial suppliers (Figure 3.5). 

The compounds were chosen with the following criteria: (i) score obtained, (ii) 

interaction with the most important residues in the pocket, (iii) chemical diversity, and 

(iv) commercial availability.  
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Figure 3.5. Chemical structures of the purchased compounds. 

 

The compounds were obtained from different commercial sources and the 

respective commercial code is included in Table 3.2. Additional relevant pharmacological 

properties like clogP were calculated using ALOGPS 2.1263. 
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Table 3.2. Some physical properties and antiplasmodial activity of the purchased compounds. 

Compound cLogP MW / g.mol-1 IC50 (w2) / μM 

3.1  Asinex ASN 03775157 3.18 440.54 > 10 

3.2 Asinex ASN 06130215 3.26 445.56 > 10 

3.3 Asinex ASN 06130599 3.26 445.56 9.16 

3.4 Asinex ASN 06365235 4.13 447.50 > 2.5 

3.5 Asinex ASN 07104188 4.25 438.52 > 2.5 

3.6 Chembridge 5549172 2.72 435.56 > 10 

3.7 Chembridge 7461561 4.74 443.56 > 10 

3.8 Chembridge 7676526 4.95 413.47 > 10 

3.9 Chembridge 7816742 3.35 434.51 > 10 

3.10 Chembridge 7950798 4.56 439.51 > 5 

3.11 Chemical Block A3959-0168692 3.42 444.46 > 10 

3.12 Enamine T0507-8072 4.34 389.84 > 10 

3.13 Enamine T0508-0678 3.20 441.46 > 2.5 

3.14 InterBioScreen STOCK3S-45023 2.54 424.50 > 5 

3.15 InterBioScreen STOCK3S-52483 2.80 438.53 > 10 

3.16 InterBioScreen STOCK3S-52603 2.73 442.49 > 10 

3.17 Labotest LT00135147 3.49 413.51 0.44 

3.18 Labotest LT01121502 3.46 400.43 > 10 

3.19 Life Chemicals F1386-0209 3.47 388.49 1.58 

3.20 Specs AE-641 00605023 3.98 333.45 8.39 

3.21 Specs AG-670 11859029 3.58 439.42 > 10 

3.22 Specs AG-690 11632029 2.71 430.46 > 5 

3.23 Specs AN-465 40809732 3.45 444.53 > 10 

3.24 Toslab 802803 4.47 416.56 2.87 

3.25 Toslab 865471 3.40 405.50 > 10 
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3.3.1.  Biological activity 

Antiplasmodial ability of the selected compounds was measured by in vitro tests against 

P. falciparum W2 (CQ-resistant) strain and the assay results are listed in Table 3.2. Among 

the purchased compounds, five showed antiplasmodial activity on the micromolar range 

with one compound having submicromolar activity. More specifically, compounds 3.3, 

3.19, 3.20 and 3.24 presented an IC50 below 10 μM while compound 3.17, the most active 

compound, exhibited activity with an IC50 value of 440 nM. Unfortunately, several 

compounds (compounds 3.4, 3.5, 3.10, 3.13, 3.14, and 3.22) had solubility limitations that 

prevented measuring precise IC50 values. Additionally, some compounds did not present 

appreciable activity up to the tested concentrations.  

Regarding the best two inhibitors obtained in this procedure, compounds 3.17 and 

3.19, additional in vitro assays were made in order to verify their mode of action. 

Therefore, the cytochrome bc1 complex activity assay was used to investigate if the 

antimalarial mode of action of these compounds was due to the inhibition of this target. 

Since cytochrome bc1 complex is a membranar enzymatic complex, several difficulties are 

related with its isolation and, for that reason, the biological assays were performed in the 

mitochondria and not in the isolated bc1 complex. Specifically, cytochrome bc1 complex 

activity was evaluated by reduction of cytochrome c using a synthetic ubiquinol 

(decylubiquinol) as the electron donor and atovaquone as positive control. Unfortunately, 

these two compounds did not show inhibition potential at the maximum concentration 

tested (Table 3.3). However, since compounds were not tested directly in the isolated bc1 

complex it is not possible to establish with no doubt that these compounds are not able 

to inhibit this target. Furthermore, inhibitors acting against bc1 complex, or against other 

mETC component, have to pass through the mitochondrial inner membrane in order to 

reach their target. In this way, considering the biological studies performed, it is not 

possible to confirm their ability to achieve the target in order to further display their 

antimalarial activity by interacting with Qo binding site. 
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Table 3.3. Sensitivity of cytochrome bc1 complex activity on isolated mitochondria to compounds 3.17 and 

3.19. 

Cytochrome bc1 

complex 

IC50 (µM) 

Compound 3.17 Compound 3.19 Atovaquone 

P. falciparum >50 >50 0.0003 ± 0.0001 

 

Furthermore, in order to study if compounds 3.17 and 3.19 could inhibit the 

enzyme DHODH which is a different target in mETC, the inhibitors were tested against a P. 

falciparum cell line transfected with cytoplasmic yeast DHODH (Dd2-yDHODH), a soluble 

DHODH that is independent of ubiquinone. In this way, the transgenic strain can bypass 

the P. falciparum DHODH counterpart by using yeast DHODH. This cell line is able to use 

fumarate instead of mitochondrial ubiquinone as the final acceptor and was previously 

demonstrated to turn the parasite resistant to both PfDHODH and bc1 complex 

inhibitors113. Specifically, the wild type Dd2 strain shows sensitivity to both DHODH and 

bc1 complex inhibitors while the transgenic strain should present no inhibition when 

testing compounds acting against these targets. Moreover, addition of proguanil has been 

shown to restore sensitivity of Dd2-yDHODH to bc1 complex inhibitors (antimycin A, 

myxothiazol and atovaquone) but has no effect with specific PfDHODH inhibitors.  

The biological results obtained demonstrated that two potential inhibitors 3.17 

and 3.19 display similar activity in both wild type and transgenic strains indicating that 

these compounds do not lose their activity in the transgenic Dd2-yDHODH, with or 

without proguanil, when compared to the control Dd2 line. This suggests that inhibition 

of the Plasmodium bc1 complex or DHODH is not the primary antimalarial mechanism of 

action for these compounds (Table 3.4). 
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Table 3.4. Growth inhibition of wild type (Dd2) and transgenic (Dd2-yDHODH) P. falciparum strains in the 

absence and presence of 1 µM proguanil with different compounds. 

Parasite Strain 
Proguanil 

(1 µM) 

IC50 (µM) 

3.17 3.19 
DHODH 

inhibitor 
Atovaquone Artemisinin 

Dd2 - 2.6 8.7 0.37 0.0013 0.036 

Dd2 + 2.6 9.58 0.44 0.0005 0.037 

Dd2_yDHODH - 2.01 10.7 >5 >0.035 0.026 

Dd2_yDHODH + 1.57 10.1 >5 0.001 0.028 

 

The most active compounds were also tested against the atovaquone-resistant P. 

falciparum FCR3 strain and against S. cerevisiae (Table 3.5). Significantly, three of these 

compounds also presented antiplasmodial activity against the FCR3 strain, with 

compound 3.20 displaying a 20-fold increase in potency when compared with W2 strain.  

 

Table 3.5. Activity against CQ-resistant strain W2 and atovaquone-resistant strain FCR3 of P. falciparum, 

and S. cerevisiae. 

Compound 
IC50 / μM 

W2 FCR3 S.c. 

3.3 9.16 > 10 N.D. 

3.17 0.44 N.D. N.D. 

3.19 1.58 2.71 13.5 

3.20 8.39 0.43 14.9 

3.24 2.88 2.81 13.3 

 

As an example, the docked pose of one of the most active compounds against the 

W2 strain (3.19) is illustrated in Figure 3.6. The thiouronium moiety of this compound is 

able to establish two H bonds with residues Val270 and Glu272 at a distance of 1.81 and 

2.40 Å, respectively, which stabilizes this hit inside the active site. Although no specific 
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interaction is found between this inhibitor and His181, several hydrophobic interactions 

exist between the naphthalene ring and the hydrophobic pocket. 

 

 

Figure 3.6. Predicted binding pose of compound 3.19. Hydrogen bonds are represented by grey lines. 

 

Unfortunately, compound 3.17 was excluded from the biological assays 

mentioned above (Table 3.5) since this purchased compound did not show a satisfactory 

degree of purity upon testing. Therefore, the results obtained for P. falciparum W2 and 

Dd2-yDHODH strains inhibition and for ubiquinol-cytochrome bc1 oxidoreductase activity 

assay can not be considered conclusive. 

 

3.3.2.  Synthetic approaches to obtain compound 3.17 

In order to perform a second set of biological assays, some attempts were made to 

synthesize compound 3.17. In Scheme 3.2 is described the retrosynthetic approach 

designed to obtain this compound. 
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Scheme 3.2. Retrosynthetic approach for the synthesis of compound 3.17. 

 

The Gould-Jacobs protocol was selected to prepare the benzoquinolone scaffold 

(compound 3.27) starting from the appropriate aniline105, 264, more specifically, 2-

naphthylamine (Scheme 3.3). This is a very straightforward synthetic method that usually 

permits to obtain substituted quinoline in reasonable yields. 

 

 

Scheme 3.3. Reaction conditions: (a) Diethyl ethoxymethylenemalonate, reflux; (b) Diphenyl ether, reflux. 
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The first step of the reaction consists in a nucleophilic attack of the amine to the 

double bond of diethyl ethoxymethylenemalonate with the consequent elimination of a 

molecule of ethanol. Compound 3.26 was easily obtained with a yield of 75%. The second 

step is a simple intramolecular cyclization facilitated by high temperatures. The final 

product can be obtained in one of the two tautomeric forms that are usually in 

equilibrium – 4-quinolinol (compound 3.27) or 4(1H)-quinolone (compound 3.28). 

However, the quinolone form is usually more abundant both in solid and solution state265-

266. 

In this case, due to the fact that the starting material used in this reaction is not 

symmetric, two products are expected to be formed during the reaction, isomer A, 

corresponding to the benzoquinolone of interest, and isomer B (Scheme 3.4). 

 

 

Scheme 3.4. Mechanism of formation of both benzoquinolone isomers of compound 3.27. 

 

Unfortunately, the 1H NMR spectra of the solid obtained in the cyclization step 

showed that only the isomer B was formed (Figure 3.7). For isomer A, it was expected a 

peak pattern that showed four singlets: two of them corresponding to the two protons of 

the center ring, one peak corresponding to the NH or OH moiety (depending on the 

tautomer obtained), and the last one belonging to the proton adjacent to the amine. 
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However, only the last two mentioned singlets were obtained. The duplet at 10.20 ppm 

(proton B - Figure 3.7) coupling with the multiplet at 7.65 ppm (proton H - Figure 3.7) 

indicates that both protons can interact with each other and this observation is in line 

with the peak pattern expected for isomer B. In this way, it is possible to conclude that 

only the isomer B was formed during the cyclization reaction. Moreover, the absence of a 

specific interaction between the more deshielded proton (δ = 12.54 ppm) and the proton 

near the nitrogen atom (δ = 8.51 ppm) indicates that isomer B is more stable as 

benzoquinolinol than as benzoquinoline. This fact is probable related to the formation of 

an intramolecular hydrogen bond that can confer more stability to this tautomer. 

 

 

Figure 3.7. Expansion of the 
1
H NMR spectra of isomer B of compound 3.27. 

 

The regioselectivity in electrophilic aromatic substitutions depends on the stability 

of the cationic intermediate. In this way, comparing the two competing pathways, it is 

possible to notice that several resonance structures for each of the two cationic 
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intermediates can be written (Scheme 3.5). However, the cation resulting from cyclization 

in position 1, permitting to obtain the isomer B of compound 3.27, has two contributing 

structures that retain the unbroken benzene-like structure whereas the cation from 

addition in position 3, which results in the formation of isomer A, only have one 

benzenoid contributing structures. Therefore, since the benzenoid bonding pattern is 

associated with aromatic stabilization, it is possible to conclude that the preferred 

pathway of cyclization will be the one that retains the greatest number of intact benzene-

like rings among its resonance structures. Therefore, the formation of isomer B is 

preferred when compared with the formation of isomer A. 

 

 

Scheme 3.5. Comparison between the resonance structures obtained for both isomers A and B of 

compound 3.27. 
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As a result, efforts were made to block position 1 of 2-naphthylamine in order to 

try to successfully obtain the desired isomer. More specifically, this approach involved the 

sulfonation of 2-naphthylamine in position 1, followed by the reaction with diethyl 

ethoxymethylenemalonate. After the intramolecular cyclization, the sulfonic acid group 

should be easily removed (Scheme 3.6).  

 

 

Scheme 3.6. Alternative approach to obtain intermediate 3.27. 

 

The sulfonation reaction performed in order to obtain the intermediate 3.29 was 

carried out in the presence of concentrated sulfuric acid, both at room temperature and 

in reflux, until the starting material was fully consumed. However, NMR spectroscopy and 

mass spectrometry did not confirm the formation of the desired product. Almost 

certainly, the protonation of the amine function in such extreme pH conditions led to a 

lesser activated specie that was not able to suffer electrophilic aromatic substitution. In 

this way, to succeed in the synthesis of the sulfonic acid derivative, the starting material 

2-naphthylamine was first protected with an acetyl group (Scheme 3.7). Compound 3.32 

was successfully obtained when reacted with a mixture of acetic anhydride and acetic 

acid with a yield of 39%.  
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Scheme 3.7. Alternative approach to obtain intermediate 3.29. 

 

Unfortunately, once more, the formation of compound 3.33 was not confirmed using the 

available techniques and, since all efforts made to obtain this intermediate were not 

successful, the synthesis of compound 3.17 was abandoned. 

 

3.3.3.  Synthesis of quinoline 3.34 – A simpler model of compound 3.17 

As an alternative to the synthesis of compound 3.17, a similar quinolone derivative was 

synthesized (Scheme 3.8). The antimalarial activity of this class of compounds is well 

known and a large variety of compounds was already synthesized and biologically 

tested105, 121-123, 171, 239, 267. 

 

 

Scheme 3.8. Achievement of the model compound 3.34 from the tested compound 3.17.  

 

The retrosynthetic approach employed to obtain compound 3.34 was very similar 

to the one designed to achieve compound 3.17 (Scheme 3.2) involving also the 

application of the Gould-Jacobs protocol. Nevertheless, in this case, aniline was used as 
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the starting material to obtain the 4(1H)-quinolone ring 3.36 in 38% total yield (Scheme 

3.9).  

 

 

Scheme 3.9. Synthetic procedure to obtain compound 3.34. 

  

As in the case of compound 3.27, the analysis of the 1H NMR permitted to 

conclude that, in this synthetic procedure, compound 3.36 is obtained preferentially in its 

quinolinol form. In particular, the bidimensional data obtained showed no interaction 

between the NH proton and the vinylic CH in its vicinity, confirming the structure of this 

compound. In addition, the most deshielded proton, the OH proton, appears at δ = 12.54 

ppm which is consistent with the chemical shift value that can be obtained for an OH 

proton involved in an intramolecular H-bond268. 

After, in order to proceed with the Friedel-Crafts alquilation to obtain compound 

3.38, the third step of this synthetic procedure included the reduction of the ester 

derivative 3.36 into the hydroxymethylquinoline 3.37. In this way, compound 3.36 was 

reacted in several reaction conditions with different reducing agents but all efforts made 

to obtain this intermediate were ineffective and this compound was not achieved. More 

specifically, compound 3.36 was first reacted with LiAlH4 in dry THF at room temperature 

but no reaction occurred and all the starting material was recovered. Then, in spite of 

being a weaker reducing agent, NaBH4 was chosen in an attempt to perform this reaction 
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and obtain the desired product. It is already recognized that this reagent is not able to 

successful reduce esters and other functional groups under mild conditions. However, 

several studies proved that its reactivity can be increased in the presence of certain 

additives269. Accordingly, the reaction was performed in the presence of NaBH4 using 

MeOH270-271, CaCl2
272 and I2

273 as additives. In these cases, it was possible to verify the 

partial consumption of the starting material though, the desired product could not be 

identified in the 1H NMR spectra. Once again, none of the synthetic procedures resulted 

in the synthesis of the hydroxymethylquinoline 3.37 and this approach was abandoned. 

Most probably, the presence of a very strong intramolecular H-bond between the 

hydroxyl group of the quinolinol ring and the ester substituent contributes to stabilize the 

ester function and to decrease its reactivity towards the reducing agents used in this step. 

An alternative synthetic route was then designed using the commercially available 

unsubstituted quinolone as the starting material (Scheme 3.10). Therefore, this new 

starting material was reacted with aqueous formaldehyde in the presence of KOH274 

permitting to obtain compound 3.37 in 96% yield. 

 

 

Scheme 3.10. Alternative synthetic procedure to obtain compound 3.34 using an unsubstituted quinolone 

as starting material. 

 



Chapter  3  
 

103  

 

 

The subsequent step was the synthesis of intermediate 3.38 via a Friedel-Crafts 

alquilation. The main goal in this step was the formation of a stabilized carbocation that 

could suffer a nucleophilic attack of the phenol ring in order to obtain this compound as 

described in Scheme 3.11. 

 

Scheme 3.11. Proposed mechanism for the synthesis of compound 3.38. 

 

To facilitate the loss of a water molecule in order to form the carbocation, 

compound 3.37 was reacted with different Lewis and Brönsted acids. More exactly, 

H2SO4
275,and FeCl3•6H2O276-277 were used in order to obtain the Friedel-Crafts product of 

the reaction between the hydroxymethylquinoline and phenol. However, compound 3.38 

could only be synthesized in the presence of HClO4 as catalyst277. This strategy permitted 

to obtain this compound in reasonable yields. In the last step, the Mannich-base 

derivative was achieved by reacting compound 3.38 with a small excess of N-

methylpiperazine in the presence of aqueous formaldehyde in ethanol278 (Scheme 3.10). 

The final product 3.34 was isolated in low yield. Nevertheless, an increase in the amount 

of N-methylpiperazine and aqueous formaldehyde did not lead to an improvement of the 

yield but resulted in the formation of bis-Mannich side-product. Additionally, by 

inspection of the 1H NMR data, it is possible to conclude that this compound is more 

stable in its quinoline form since the interaction between both the NH and the vinylic 

protons can be found in the bidimensional spectrum. 
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Finally, both compounds 3.34 and 3.38 were tested for their antimalarial activity 

against P. falciparum W2 strain but unfortunately none of the compounds showed to be 

active at the tested concentration (Scheme 3.12). 

 

 

Scheme 3.12. Chemical structure of the two tested quinolone derivatives and their antimalaraial activity 

against P. falciparum W2 strain. 

 

3.4.  Concluding remarks 

The virtual screening approach showed to be a powerful tool in several important aspects 

within this study. First off all, the screening performed against TCAMS database permitted 

to evaluate the performance of two distinct docking programs (AD and AD Vina) and their 

ability to predict the inhibitory potential of a class of known mETC inhibitors. Significantly, 

a reasonable correlation between the binding free energy values found using both 

docking procedures was found, meaning that AD and AD Vina have both the ability to 

recognize typical bc1 complex inhibitors. Since this second program has the advantage of 

being much faster than AD, AD Vina can be successful used to screen large libraries of 

compounds. In this way, both programs were used to screen a large library of drug-like 

compounds using the yeast model developed in Chapter 2. The proof of concept was 

demonstrated since this procedure permitted the identification of five molecules with 

antimalarial activity. Unfortunately, the biological assays performed on the Pf cytochrome 

bc1 complex and on the Dd2-yDHODH transgenic cell line showed that the two best hits, 

compounds 3.17 and 3.19, displayed no activity in the mETC. In consequence, it was 
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possible to conclude that the inhibition of this target is not the primary antimalarial 

mechanism of action of both compounds. Conversely, compounds 3.19, 3.20 and 3.24 

proved to be active against the atovaquone-resistant Pf FCR3 strain and S. cerevisiae. In 

this last set of biological tests, compound 3.17 could not be included due to purity issues. 

Several attempts were then made to synthesize this compound but all were found to be 

unproductive. Consequently, the mechanism of action of this compound could not be 

effectively studied and the biological assays performed can not be regarded as conclusive. 

In order to overcome the synthetic problems concerning compound 3.17, a model of this 

compound (3.34) was obtained. Although several quinolones are already recognize to 

display high antimalarial activity, compound 3.34 showed no activity at 10 μM 

concentration. 
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4.  Homology model of P. falciparum Qo site of bc1 complex and 

Virtual Screening Study 

4.1.  Background 

The model presented in Chapter 2 was able to explain the binding mode of the selected 

inhibitors in order to clarify the interaction mechanism between experimentally known 

bc1 inhibitors and the active pocket. A good correlation between the calculated binding 

free energy of each compound and its experimental inhibitory activity was also found 

and, therefore, this can be considered a good predictive method to determine the 

inhibitory potential of possible new inhibitors. However, this model was not able to 

explain the selectivity found for WR 249685 since this compound is highly active against 

P. falciparum bc1 complex but loses completely its activity when tested against S. 

cerevisiae133. In spite of sharing a high sequence identity, the Qo pocket of both species 

must present different structural features that provide such selectivity and, therefore, a 

more accurate model is urgently needed to provide better predicted inhibitory potential 

for chemically diverse inhibitors. 

To this point, some work has been developed addressing this issue and distinct 

homology models of P. falciparum bc1 complex, specifically for the Qo binding site133, 279, 
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were published. The first homology model133 was built only considering the cytochrome b 

being, consequently, highly incomplete. As already mentioned, the Qo binding site is 

established by the close contact between cytochrome b, of one monomer of bc1 complex, 

and the Rieske ISP, of the second monomer and, therefore, the presence of both 

structures is essential to modulate this active site280-281. As a result, this homology model 

cannot be recognized as a reliable model of Qo binding site. More recently, Hughes et 

al279 published a more accurate homology model using as template the yeast cytochrome 

b and Rieske ISP. Nevertheless, this model was not validated with experimental results 

being only applied to obtain a very basic explanation for the molecular basis of 

atovaquone’s resistance and its reliability cannot be deduced. 

Presently, having in mind the crescent interest in bc1 complex as a target to 

develop potential antimalarial drugs and considering the importance of having a reliable 

three-dimensional structure of this enzymatic complex to understand the mechanism of 

action of the inhibitors, a homology model of cytochrome b and Rieske ISP was generated 

based on yeast crystallographic structure. 

In order to obtain the most reliable model of bc1 complex Qo binding site, the 

experimental procedure was pursued as follows: 

(i) Protein sequences alignment for Plasmodium falciparum and for four selected 

species; 

(ii) Definition of the amino acid residues that establish the Qo active site; 

(iii) Evaluation of the best template for Qo binding site of Pf bc1 complex; 

(iv) Homology model built and optimization of the structure obtained; 

(v) Validation of the model by docking of known Pf bc1 complex inhibitors. 
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4.2.  Identity between species in bc1 complex Qo binding site and definition of 

the pocket 

 

Since Qo binding site is composed by both Rieske ISP and cytochrome b, the complete 

sequence of P. falciparum of the two subunits was searched and collected from UniProt 

database249 (Figure 4.1 and Figure 4.2). 

In this way, as a first step to identify the most adequate template to construct the 

homology model of the target, both Rieske ISP and cytochrome b protein sequences for 

five homologous proteins (namely from S. cerevisiae, B. Taurus, G. gallus, R. sphaeroides 

and P. falciparum) were retrieved from UniProt and were aligned based on their 

conserved residues (Table 4.1.). 

 

  10         20         30         40         50         60  

 MNNIKYVELF YKCKIFRKNG LNRIIRRNGG TFNHNIKENE RIPPASEDPS YKNLFDHAED  

         70         80         90        100        110        120  

 IKLWEIEEKQ NVSHKKVEDL SELVEPSNHP HQYEGIFART RYAHYNQTAE PVFPRKPDLE  

        130        140        150        160        170        180  

 KGELASGANV TRTDVWHNPK EPAIVSIGKF EPRNFRPAGY AENCPNPESI NSDHHPDFRE  

        190        200        210        220        230        240  

 YRLRSGNEDR RSFMYFISAS YFFIMSSIMR SAICKSVHFF WISKDLVAGG TTELDMRTVN  

        250        260        270        280        290        300  

 PGEHVVIKWR GKPVFVKHRT PEDIQRAKED DKLIQTMRDP QLDSDRTIKP EWLVNIGICT  

        310        320        330        340        350  

 HLGCVPAQGG NYSGYFCPCH GSHYDNSGRI RQGPAPSNLE VPPYEFVDEN TIKIG  

Figure 4.1. Sequence of P. falciparum Rieske Iron-Sulfur Protein (UniProt code Q8IL75). 
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         10         20         30         40         50         60  

 MNFYSINLVK AHLINYPCPL NINFLWNYGF LLGIIFFIQI ITGVFLASRY TPDVSYAYYS  

         70         80         90        100        110        120  

 IQHILRELWS GWCFRYMHAT GASLVFLLTY LHILRGLNYS YMYLPLSWIS GLILFMIFIV  

        130        140        150        160        170        180  

 TAFVGYVLPW GQMSYWGATV ITNLLSSIPV AVIWICGGYT VSDPTIKRFF VLHFILPFIG  

        190        200        210        220        230        240  

 LCIVFIHIFF LHLHGSTNPL GYDTALKIPF YPNLLSLDVK GFNNVIILFL IQSLFGIIPL  

        250        260        270        280        290        300  

 SHPDNAIVVN TYVTPSQIVP EWYFLPFYAM LKTVPSKPAG LVIVLLSLQL LFLLAEQRSL  

        310        320        330        340        350        360  

 TTIIQFKMIF GARDYSVPII WFMCAFYALL WIGCQLPQDI FILYGRLFIV LFFCSGLFVL  

        370  

 VHYRRTHYDY SSQANI  

Figure 4.2. Sequence of P. falciparum cytochrome b (UniProt code Q7HP03). 

 

This four species were chosen to be initially tested as template for this procedure 

since their crystallographic structure is currently available. Additionally, all these 

structures present the same bound inhibitor ― stigmatellin. The protein sequences of 

Homo sapiens were also included in order to verify the identity between species. 

 

Table 4.1. Protein sequences of Rieske ISP and cytochrome b for the several species and summary of the 

crystal structures used as templates. 

Source 
UniProt code 

PDB code Reference 
Resolution 

(Å) Rieske ISP Cyt b 

S. cerevisiae P08067 P00163 3CX5 103 1.90  

B. Taurus P13272 P00157 1PPJ 145 2.10 

G. gallus Q5ZLR5 P18946 3H1J 96 3.00 

R. sphaeroides Q02762 Q02761 2QJY 282 2.40 

P. falciparum Q8IL75 Q7HP03 - - - 

H. sapiens P47985 P00156 - - - 

  

http://www.uniprot.org/uniprot/P47985
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A visual inspection of the superposition of the four available X-ray structures 

allowed to verify that the secondary structure of these two subunits are well conserved 

between the considered species (Figure 4.3.). In this way, it is possible to conclude that, 

although these subunits may show some differences in their amino acid sequences, their 

secondary structure is very similar. Moreover, when considering the active site and the 

bound inhibitor stigmatellin, it is also important to notice an almost perfect superposition 

of the aromatic moiety of this compound.  

 

  

Figure 4.3. Superposition of Rieske ISP and cytochrome b of S. cerevisiae (in pink), B. Taurus (in purple), G. 

gallus (in yellow) and R. shaeroides (in green) on the left, and superposition of the bound stigmatellin in the 

active site of the respective species (the same color pattern was used for stigmatellin). 

 

Furthermore, considering the protein sequences alignment obtained, the identity 

between the complete protein sequences was further calculated using UniProt and the 

values obtained are depicted in Table 4.2 and Table 4.3.  

 



114  Chapter  4  

 

 

Table 4.2. Identity between species in Rieske ISP (complete protein sequence) for Pf (P. falciparum), Sc (S. 

cerevisiae), Bt (B. Taurus), Gg (G. gallus), Rs (R. sphaeroides) and Hs (H. sapiens). Values obtained from 

Uniprot
249

. 

Species Pf Sc Bt Gg Rs Hs 

Pf 100% 22.4% 24.1% 26.4% 18.4% 25.4% 

Sc 22.4% 100% 37.2% 37.7% 32.0% 34.9% 

Bt 24.1% 37.2% 100% 75.5% 24.9% 90.1% 

Gg 26.4% 37.7% 75.5% 100% 25.8% 74.0% 

Rs 18.4% 32.0% 24.9% 25.8% 100% 25.6% 

Hs 25.4% 34.9% 90.1% 74.0% 25.6% 100% 

 

Table 4.3. Identity between species in cytochrome b (complete protein sequence) for Pf (P. falciparum), Sc 

(S. cerevisiae), Bt (B. Taurus), Gg (G. gallus), Rs (R. sphaeroides) and Hs (H. sapiens). Values obtained from 

Uniprot
249

. 

Species Pf Sc Bt Gg Rs Hs 

Pf 100% 35.4% 39.8% 38.1% 30.5% 40.1% 

Sc 35.4% 100% 50% 50.4% 41.1% 48.4% 

Bt 39.8% 50% 100% 74.5% 42.6% 78.7% 

Gg 38.1% 50.4% 74.5% 100% 41.3% 72.2% 

Rs 30.5% 41.1% 42.6% 41.3% 100% 41.9% 

Hs 40.1% 48.4% 78.7% 72.2% 41.9% 100% 

 

Concerning the identity values obtained is important to highlight that the 

sequence of cytochrome b is more conserved between the considered species than the 

protein sequence of Rieske ISP. Moreover, when considering both the complete protein 

sequence of P. falciparum Rieske ISP and cytochrome b, the homologous proteins of B. 

Taurus and G. gallus present higher identity. 

However, it is importance to notice that the Qo binding site is specifically defined 

by the interaction between both Rieske ISP and cytochrome b and not for the entire 

proteins. More exactly, the Qo binding site is located close to heme bL and the [2Fe-2S] 
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cluster. As a result, in order to obtain a model with high quality, it is important to identify 

the amino acid residues that, being part of each protein sequence, contribute specifically 

to determine the active site and, subsequently, recognize the conserved amino acid 

residues.  

The Qo active site was then defined based on the bc1 complex crystal structure 

obtained from S. cerevisiae co-crystallized with a known inhibitor, stigmatellin. This X-ray 

structure was chosen to identify the amino acid residues in the pocket since previous 

studies were already performed based on S. cerevisiae. In addition, from all the 

considered structures, this one presented the higher resolution. Moreover, stigmatellin 

presents also a complex chemical structure being able to interact with a large amount of 

amino acid which allow to better identify the most significant residues in the pocket. In 

this way, the amino acid residues establishing important interactions with this inhibitor 

were considered to be essential to define the pocket (Figure 4.4). 

 

 

Figure 4.4. Interactions between stigmatellin and Qo binding site residues in S. cerevisiae X-ray structure 

(PDB code 3CX5). 
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In particular, Ile122, Ile125, Ala126, Phe129, Leu130, Met139, Trp142, Gly143, 

Val146, Ile147, Phe151, Leu165, Phe179, Leu182, Ile269, Val270, Pro271, Glu272, Leu275, 

Phe278, Tyr279, Leu282, Met295, Phe296, Ile299 (from cytochrome b) and Cys180 and 

His181 (from Rieske ISP) were considered to be located in proximity to stigmatellin and 

strongly interacting with this inhibitor. For simplicity purposes, amino acid residues 

numbering is according with S. cerevisiae protein sequence and all discussion will be done 

considering the yeast numbering.  

Although only two amino acid residues from the Rieske ISP were considered to be 

important to define the binding pocket, these residues can be considered essential for the 

correct function of this catalytic site. Specifically, both Cys180 and His181 are coordinated 

with the [2Fe-2S] cluster contributing for its stability. Moreover, His181 is responsible for 

anchoring the natural substrate and the inhibitors to the binding site and, therefore, its 

presence is crucial for obtaining reliable docking results. 

As a result, the identity in Qo binding site between the considered species can be 

determinated more accurately (Table 4.4). It is possible to conclude that P. falciparum Qo 

binding site displays higher identity with the homologous sequence of S. cerevisiae and B. 

taurus since in both cases 18 in 27 amino acid residues are conserved.  

 

Table 4.4. Identity between species in Qo binding site. 

Species Pf Sc Bt Gg Rs Hs 

Pf 27/27 18/27 18/27 17/27 17/27 18/27 

Sc 18/27 27/27 17/27 17/27 24/27 16/27 

Bt 18/27 17/27 27/27 21/27 20/27 25/27 

Gg 17/27 17/27 21/27 27/27 19/27 21/27 

Rs 17/27 24/27 20/27 19/27 27/27 19/27 

Hs 18/27 16/27 25/27 21/27 19/27 27/27 

 

 



Chapter  4 
 

117  

 

 

However, the crystal structure of Scbc1 complex presents better resolution (1.90 

Å) and, therefore, this was the structure chosen as template to obtain the homology 

model of bc1 complex Qo binding site of P. falciparum. In Figure 4.5 are highlighted the 

amino acid residues of Qo binding site that differ in both S. cerevisiae and P. falciparum 

species. 

 

  

Figure 4.5. Cytochrome b and Rieske ISP on the left and Qo binding site of yeast bc1 complex on the right 

with bound stigmatellin highlighting in yellow the amino acid residues that are mutated in P. falciparum. 

 

Moreover, bovine and human Rieske ISP and cytochrome b must share high 

identity since both are mammalian species. Indeed, a simple alignment of the protein 

sequences of the two species using UniProt showed that Rieske ISP and cytochrome b 

share 90% and 79% identity, respectively. In this specific case, the main goal is to obtain a 

reliable model of the P. falciparum bc1 complex that explains not only the inhibitory 

potential of several compounds but that can be also applied to further design selective 

inhibitors concerning the human host. For all these reasons pointed, the structure of S. 

cerevisiae bc1 complex was chosen instead of the structure of B. taurus. 
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 In summary, S. cerevisiae crystallographic structure was chosen as template since: 

(i) This structure displays higher resolution; 

(ii) Both S. cerevisiae and B. taurus display similar identity in the Qo binding 

pocket; 

(iii) B. taurus presents higher identity with H. sapiens than S. cerevisiae which 

contributes to lower selectivity. 

 

4.3.  Homology model building and docking studies 

In a first step to obtain a homology model of Pf bc1 complex Qo site, the program 

Modeller 9v7283 provided by Chimera284 was used. This approach permitted to obtain 

independently the models for both cytochrome b and Rieske ISP from the yeast template 

(PDB entry 3CX5). These two protein subunits were then coupled in the end of calculation 

allowing to obtain the model of cytochrome b and Rieske ISP. Moreover, the [2Fe-2S] 

cluster was added manually to this model having in consideration the position of these 4 

atoms in the yeast structure. However, this effort showed to be unproductive since the 

newly created subunits display several superposed segments. Moreover, a simple 

minimization of the whole structure did not allow to solve this issue and, as a result, this 

methodology was abandoned. 

 In a second approach to obtain an homology model of Pfbc1 complex Qo binding 

site, the calculations were performed using MOE. In this case, it was possible to model 

both subunits at the same time using the Homology Model tool available. Moreover, the 

model was built including also the known inhibitor stigmatellin and the [2Fe-2S] cluster in 

the active site in order to create an induced fit whilst calculating the final structure. 

Finally, the higher scored model was chosen to pursue the study and went through a 

energy minimization of the active site in the presence of the same bound inhibitor. 

The crystal structures of bc1 complex, namely Rieske ISP and cytochrome b 

sequences, from S. cerevisiae, B. Taurus, G. gallus and R. sphaeroides were aligned with 

the model obtained and a careful visual inspection of all amino acid residues of the Qo 
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binding site was performed. The main goal of this examination was to compare the 

rotamers and the relative position of the residues, essentially the conserved ones, and 

confirm the validation of the rotamers obtained in the modulating process. Taking into 

consideration the difference observed in the relative position of residue Pro260 when 

comparing the structures and that this residue is highly conserved in all species, an energy 

minimization of the position of this residue was performed. The new arrangement of this 

residue permitted to slightly increase the pocket size in order to better accommodate 

inhibitors inside the pocket (Figure 4.6). 

 

 

Figure 4.6. Comparison between the position of Pro260 in the several species: S. cerevisiae (in pink), B. 

Taurus (in purple), G. gallus (in yellow) and R. shaeroides (in green), and the one obtained by homology 

modeling before and after energy minimization (in orange and grey, respectively).  

 

Special attention was also given to residue Phe264. This residue is conserved 

between several species, namely P. falciparum, B. Taurus and G. gallus but, in the case of 

S. cerevisiae is replaced by a Leu residue. Experimental evidences133 already shown that 

some compounds, more specifically, WR 249685, are highly active against Pfbc1 complex 

but show no activity against Scbc1 complex. Therefore, the presence of this residue is 

probably one of the most important features that provide the selectivity observed 
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between these two species. In the homology model obtained, the aromatic ring of 

Phe264 was pointing towards the pocket center (Figure 4.7) contributing to decrease the 

pocket size. After energy minimization of Phe264 side chain, with stigmatellin in the 

active site, it was possible to obtain more favorable interactions between this residue and 

the inhibitor. However, the relative position obtained for this aromatic ring was still not in 

accordance with the position found in other species. As a result, the rotamer was 

manually adjusted and the aromatic ring was turned 46o in order to stay parallel to the 

phenyl rings of the same residue in both bovine and avian structures. Once more, the 

position of the aromatic ring was energy minimized in order to obtain a more stable 

structure. 

 

 

Figure 4.7. Comparison between the position of Phe264 in the several species: S. cerevisiae (in pink), B. 

Taurus (in purple), G. gallus (in yellow) and R. shaeroides (in green), and the one obtained by homology 

modeling before and after energy minimization (in orange and grey, respectively).  

 

The quality of the built model was first evaluated using the available validation 

tools in MOE. These tools are considered of extreme importance to assess the 3D 

structure obtained concerning both energy and structural parameters. The model was 

also evaluated with other tools. According to PROCHECK285 and to the Ramachandran plot 



Chapter  4 
 

121  

 

 

obtained (Figure 4.8), only 81% of the amino acid is in the most favored regions being 

16.5% of the residues in additional allowed regions. In comparison, the template 

structure displays 92% of the amino acid in the most favored regions and only 7% of the 

residues in additional allowed regions. The number of residues in the most favored 

regions is quite lower than it was expected since a good quality model must present at 

least 90% of its residues in this region285.  

 

 

Figure 4.8. Ramachandran plot of the modeled 3D structure of P. falciparum bc1 complex Qo binding site 

obtained with PROCHECK
285

. The different colorated areas specify: most favored regions (in red), additional 

allowed regions (in yellow), generously allowed regions (in beige), and disallowed regions (in white). 

 

This can probably be related to the fact that the two protein sequences were built 

in the absence of the overall cytochrome structure. More specifically, since bc1 complex is 
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comprised by several subunits, each contributing to keep stable the secondary structure 

of the entire cytochrome, the lack of the adjacent subunits could lead to an increase of 

the flexibility of some parts of both cytochrome b and Rieske ISP. In this way, the high 

flexibility of the amino acid chains could be responsible for decreasing the number of 

residues in the most favored regions of Ramachandran plot. In addition, only six residues 

are found in the disallowed region. However, the analysis of the structure demonstrated 

that all these amino acids are very distant from the Qo binding site which suggests that 

the conformation of these specific residues should have no repercussion on further 

calculations. Additionally, both Pro260 and Phe264, the two amino acid residues which 

conformation were optimized during the model built, show to be in the most favored 

allowed regions in Ramachandran plot. 

The reliability of the model was further verified through a docking study of a small 

database of experimentally known P. falciparum bc1 complex inhibitors. To guarantee 

comparable values for biological activity, only compounds experimentally screened using 

the same protocol were included in the set. This is the set of compounds including the 

same bc1 complex inhibitors already employed in Chapter 2 for validating the S. cerevisiae 

bc1 complex. Nevertheless, a recently obtained quinolone derivative (Quinolone 1) was 

also integrated in this set in order to increase chemical diversity (Figure 4.9)105. In spite of 

not being tested in the same biological assay, this new compound was evaluated using 

the same protocol and in similar conditions. 

All compounds were docked separately into the modeled Qo binding site using AD 

and ranked according to AD scoring function. The binding free energy values obtained in 

this docking calculation can be found in Table 4.5. AD was chosen again to perform the 

docking procedure since it showed previously to be successful in calculations over this 

target. Namely, this program was able to reproduce the experimentally observed binding 

mode of stigmatellin as described in Chapter 2. 
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Figure 4.9. The Qo bc1 complex inhibitors used to validate the homology model. 

 

Overall, the binding mode of the inhibitors tested is very similar to the one found 

when using the yeast model. However, the analysis of Table 4.5 allows to conclude that 

all inhibitors present an higher score after docking calculations over the homology model 

of P. falciparum Qo binding site when compared with the yeast model. As a result, it is 

possible to verify that this new model allows to improve the inhibitors’ predicted binding 

free energy meaning that the interactions between all inhibitors and the newly build Qo 

active site are much more favorable. For Quinolone 1 and GW844520, better results were 

obtained when a water molecule was introduced in the active site near Glu272. These 

results were quite expected since, in the presence of this molecule, these inhibitors may 

establish a second hydrogen bond with Glu272. The docking results obtained in Chapter 2 

already indicated that this molecule could be of extreme importance to explain the strong 

interactions between some inhibitors and the Qo binding site. 
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Table 4.5. Docking results for the tested inhibitors. Free energies in kcal/mol, Ki and IC50 in units of nM. 

Experimental values obtained from Cowley et al
105

 (for Quinolone 1) and Biagini et al
133

 (for the other 

compounds). Docking calculations performed with His181 in its neutral state. 

Inhibitor 
Yeast model Homology model Ki IC50 

(Pfbc1) Score ΔGcalc  Kicalc Score ΔGcalc Kicalc (Pfbc1) 

Quinolone 1a 6.22 -8.47 611.48 7.02 -9.56 97.09 - 1.3 

Atovaquone 7.09 -9.67 81.75 8.38 -11.42 4.26 0.3 3 

WR 249685 7.32 -9.97 49.27 7.62 -10.38 24.44 0.3 3 

Stigmatellin 7.18 -9.79 66.58 7.88 -10.74 13.39 1.3 12 

GW844520a 6.78 -9.25 164.28 7.48 -10.03 44.47 3.5 32 

S-Floxacrine 6.02 -8.20 975.39 6.78 -9.24 168.13 89 
803 

R-Floxacrine 6.30 -8.59 501.42 7.11 -9.69 78.61 89 

a) Docking calculations performed with H2O molecule in the active site. 

 

Due to the comprehensive description of the binding mode of all bc1 complex 

inhibitors already presented in Chapter 2, only some comments will be made about 

specific inhibitors. In this way, the binding mode of stigmatellin is depicted in Figure 4.10. 

Stigmatellin fits into the active site quite nicely, strongly interacting with His181 and 

Glu272. This inhibitor adopts a conformation that is very close to the one found in the 

several crystallographic structures used for this study. Moreover, the analysis of the 

superposition of all structures shows that the benzopyranone ring stays almost in the 

same plane. However, when considering the side chain of stigmatellin, some 

conformational differences can be found since the predicted pose for this inhibitor shows 

its aliphatic chain pointing toward a different part of the pocket. Most likely, the size of 

the Qo binding pocket obtained by homology modeling is slightly enlarged in the pocket 

entrace when compared with the same pocket in the other species contributing to 

increase the pocket space. 
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Figure 4.10. Predicted binding pose for stigmatellin on the left. Hydrogen bonds are represented by grey 

lines. Superposition of the bound stigmatellin in the crystallographic structures of several species: S. 

cerevisiae (in pink), B. Taurus (in purple), G. gallus (in yellow) and R. shaeroides (in green), and the one 

predicted by docking calculations (in grey) on the right.  

 

 Concerning WR 249685 some observations can also be made. This inhibitor, as 

already mentioned, was of extreme importance for building this homology model since 

this dihydroacridinedione is the only P. falciparum bc1 complex inhibitor that is 

completely selective for yeast. In this way, it was expected that the predicted binding free 

energy value for this inhibitor should decrease when compared with the same value 

obtained for yeast model. However, this value only slightly decreased not reaching the 

binding free energy value obtained for atovaquone. More specifically, although these two 

compounds present the same IC50 value (3 nM), the binding free energy obtained are -

11.42 and -10.38 kcal/mol for atovaquone and WR 249685, respectively. The predicted 

binding mode of WR 249685 in the Pf model is illustrated in Figure 4.11 and allows to 

verify that a potential interaction between the aromatic moiety of this inhibitor with 

Phe264 is essential to explain the inhibitory activity of this compound. Additionally, a 

more favorable interaction can be probably found if the flexible loop to which this residue 

belongs suffers an adjustment in order to increase the strength of the π-π contacts. 

Almost certainly, the predicted binding free energy value obtained for this inhibitor is not 
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in the same range than the one obtained for atovaquone as a result of the diminished 

effectiveness of this type of interactions due to the use of a rigid interaction model. 

 

 

Figure 4.11. Predicted binding poses for WR 249685. 

 

 Further studies can still be done in order to verify this hypothesis. Namely, a 

molecular dynamics study could be performed to check if Phe264 side chain may adjust to 

the position of WR 249685, highly increasing the interactions between the two aromatic 

moieties. Unfortunately, it was not possible to perform this study due to time and 

computer power limitations. 

 Moreover, when considering Quinolone 1, this inhibitor also did not display the 

expected binding free energy value. Although this compound was not considered in the 

first study over the yeast model, some calculations were further made using the yeast 

structure in order to verify the ability of the homology model to improve its predicted 

inhibitory potential. Indeed, in spite of the low score value obtained when compared with 

the remain inhibitors, the score value of Quinolone 1 is improved when the docking 

calculations are performed in the homology model. As already mentioned, although this 

molecule was not tested with the remain inhibitors in the same biological assay, this 

compound was chosen to be included in this set since it was tested in the same 
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experimental conditions. Nonetheless, no positive control was used when testing 

Quinolone 1 and, as a result, a comparison between IC50 values measured in these two 

biological assays is quite difficult to formulate since IC50 values may differ considerably 

between the same assays at different times. In this way, it is not possible to assure a 

reliable comparison between all IC50 values and, consequently, between the predicted 

binding free energy values. 

The analysis of Figure 4.12 allows to conclude that this inhibitor fits quite well in 

the pocket, interacting with both His181 and Glu272 through a water mediated hydrogen 

bond. Moreover, this compound presents a similar conformation to the one obtained for 

pyridone GW844520.  

 

 

Figure 4.12. Predicted binding pose for Quinolone 1. Hydrogen bonds are represented by grey lines.  

 

Some docking calculations were already made by Cowley et al105 regarding this 

class of compounds. In this study, the authors performed the docking calculations using 

the yeast bc1 complex as a model for P. falciparum which permitted to obtain the 

quinolone ring interacting also with both His181 and Glu272 residues. However, in this 

case, the NH moiety establishes a hydrogen bond with Glu272 while the carbonyl group 
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interacts with His181 which is not in line with the results obtained with the homology 

model here in presented.  

However, the pose obtained for this compound during the docking calculations 

performed on the homology model of P. falciparum Qo binding site appears to be more 

favorable given that the H-bond donor group (NH) interacts with the neutral His181 while 

the H-bond acceptor group (carbonyl) is able to establish a strong hydrogen bond with 

Glu272 mediated by a water molecule. 

 

4.4.  Virtual screening studies over the homology model of P. falciparum bc1 

complex 

Considering the recently obtained homology model structure, a virtual screening study 

against the same druglike MOE database already used in Chapter 3 was performed. In 

order to establish a reliable comparison between the results obtained in both procedures, 

the experimental methodology followed was identical (Scheme 4.1). 

 

 

Scheme 4.1. Representation of the overall screening process. 

 



Chapter  4 
 

129  

 

 

Shortly, the 653214 drug-like compounds included in the MOE package262 was 

screened against the P. falciparum bc1 complex Qo binding site obtained by homology 

modeling using AD Vina. As before, this software was also used to rank all database 

molecules, and the best 80000 molecules were further docked with AD.  

The 250 top-ranked structures obtained after refinement with AD (score higher 

than 8) were visually inspected. As previously, only compounds presenting structural 

features that allow not only the formation of strong hydrophobic interactions with the 

hydrophobic part of the Qo site but also than can interact with Glu272 of the cytochrome 

b and/or His181 from the Rieske ISP were selected for purchase from commercial 

suppliers. Other than the score obtained and the docking pose, the chemical diversity, 

and the commercial availability of the compounds are other important aspects to have in 

mind. Examples of the most interesting potential bc1 complex inhibitors are highlighted in 

Figure 4.13 and their score values are included in Table 4.6. 

 

Table 4.6. Some physical properties and score of the selected compounds. cLogP values obtained from 

ALOGPS 2.1
263

. 

Compound cLogP MW / g.mol-1 Score 

4.1 4.90 441.48 9.56 

4.2 5.27 446.55 9.40 

4.3 4.36 417.46 9.24 

4.4 4.54 447.55 9.18 

4.5 4.83 435.93 9.05 

4.6 3.36 432.45 9.03 

4.7 4.81 447.11 8.99 

4.8 3.47 444.42 8.94 

4.9 5.36 441.50 8.93 

4.10 4.22 437.13 8.92 

4.11 3.41 423.16 8.76 

4.12 3.74 407.13 8.66 
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Figure 4.13. Chemical structures of the selected potential bc1 complex inhibitors. 

 

A comparison between the chemical structures of the compounds obtained after 

the virtual screening, with both yeast Qo binding site model and P. falciparum homology 

model, allows to conclude that the potential bc1 complex inhibitors obtained in this 

second study present higher molecular volume than the ones obtained in the first study. 

As a result, it is possible to observe that the recently obtained Qo binding site exhibits a 

larger pocket than the yeast pocket which is in line with the results already obtained for 
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stigmatellin. The predicted binding poses of some of these potential inhibitors are 

illustrated in Figure 4.14.  

 

  
  

  
  

  

Figure 4.14. Predicted binding poses of compounds 4.4 (A), 4.6 (B), 4.7 (C), 4.9 (D), 4.11 (E) and 4.12 (F). 

Hydrogen bonds are represented by grey lines.  

 

A B 

C D 

E F 
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The selected inhibitors are able to establish strong interactions with different 

amino acid residues in the pocket, more specifically with His181, Phe264 and Glu272. 

Additional hydrophobic interactions can also be found between Phe264 and all these 

compounds.  

 Although, as of the writing of this thesis, no biological results are until now 

available for these compounds, the docking results indicate that the new ligands can be 

tested as potential antimalarial drugs acting on bc1 complex and also be used to further 

develop novel and effective classes of inhibitors following a hit to lead drug discovery 

optimization techniques. 

 

4.5.  Concluding remarks 

With this study it was possible to solve the structure of the Qo binding site of P. 

falciparum bc1 complex by homology modeling using the yeast crystallographic structure 

as template. The best output model was further refined and subjected to comparison 

with other available structures before being validated by PROCKECK. 

 An additional validation procedure was conducted by docking known P. falciparum 

bc1 complex inhibitors in this newly build Qo binding pocket. The predict binding free 

energy values for all inhibitors were quite satisfactory and showed that this model 

allowed to enhance the interactions between the compounds and the binding site. 

Furthermore, special attention was given to WR 249685 since this compound is key to 

explain the selectivity found between both P. falciparum and S. cerevisiae bc1 complex. 

Although the predict binding free energy value for this compound was not as lower as 

expected, the results indicate that the interaction between the aromatic moiety of WR 

249685 and Phe264, only existing in P. falciparum, is crucial to explain its inhibitory 

activity. Only a molecular dynamics study, which was not possible to be performed in due 

time, can confirm this hypothesis. 

 A second virtual screening study was performed against this new model and the 

same drug-like database used in Chapter 3 by following identical procedure. After visual 
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inspection of the top-ranked compounds, some of them were selected to be purchased 

and to be further biologically assayed.  

 Although no biological results are so far available that permits to validate this 

model as a reliable tridimensional structure of P. falciparum bc1 complex Qo binding site, 

some additional steps were made in order to better understand the structure of this 

target. Moreover, this model can be considered an important tool to recognize substrate 

specificity and, more relevant, it may be used for the development of new specific Pf bc1 

complex inhibitors. 
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5.  Synthesis of Aurone Derivatives as Potential Antimalarials 

5.1.  Background 

Aurones, 2-benzylidenebenzofuran-3-(2H)-ones (Figure 5.1), are structural isomers of 

flavones that contain an exocyclic carbon-carbon double bond bridging the 

benzofuranone and phenyl rings286-287. The therapeutic potential of aurones has been 

highlighted with recent studies that revealed their anti-cancer288-293, antimicrobial294, 

antiparasitic295-298, anti-viral299, and anti-inflammatory294-300 activities. In addition, 

aurones can also act as modulators of ABC drug transporters301-305 and present inhibitory 

activity against acetylcholinesterase306 and MAO-B307. 

 

 

Figure 5.1. General structure of aurones. 

 

The antimalarial potential of aurones was first reported by Kayser et al.296. In this 

study, several naturally occurring aurones were synthesized and tested for their ability to 
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inhibit erythrocytic stages of P. falciparum K1 and NF54 strains in vitro. Some of these 

compounds exhibit antiplasmodial activity in the micromolar range and are more potent 

against the multiple drug-resistant strain K1 (Table 5.1). Additionally, these aurone 

derivatives showed no citotoxicity in mammalian tumor cell lines. The analysis of the 

biological data permitted to conclude that the presence of hydroxyl and methoxy 

substituents display a strong effect in the IC50 values for either P. falciparum strain. More 

specifically, the introduction of a higher number of oxygenated substituents led to better 

antiplasmodial compounds (for example, compound 5.8). On the other hand, compounds 

displaying more lipophilic character, with less oxygen substituents, showed only 

moderate or no activity. Moreover, the SAR analysis permitted also to conclude that the 

introduction of an oxygenated substituent in positions 6 of ring A and positions 3’ and/or 

4’ of ring B allowed increasing antimalarial activity of this class of compounds.  

 

Table 5.1. Structure and in vitro antimalarial activity of selected naturally occurring aurones
296

. 

 

Comp R1 R2 R3 R4 R5 R6 
IC50 (μM) 

K1 NF54 

5.1 H H H H H OH > 0.400 > 0.400 

5.2 H OH OH H H OH 0.300 0.300 

5.3 H H OH H H OH 0.500 > 0.390 

5.4 H OH H OH H OH 0.030 0.170 

5.5 H OH H H H OH > 0.390 > 0.390 

5.6 H OMe OMe H H OH 0.120 0.190 

5.7 H OH OMe H OH OH 0.030 0.200 

5.8 OMe OAc OMe H OMe OAc 0.007 0.180 

5.9 OMe OAc OMe H GlcAc OAc > 0.100 > 0.130 
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In 2010, Souard et al.298 obtained a series of synthetic aurones with potential 

antimalarial activity. All the compounds were found to be non-cytotoxic in human cell 

lines and six exhibit an IC50 below 50 μM in the antiplasmodial assay (Table 5.2).  

 

Table 5.2. Structure and in vitro antimalarial activity of synthetic aurone derivatives
298

. 

 

Compound R R1 R2 IC50 (μM) 

5.10 H OH OH 94.5 

5.11 H OMe OMe 60.3 

5.12 4’-Me OH OH 63.4 

5.13 2’-Et OMe OMe 21 

5.14 2’-Et OH OH 113.5 

5.15 4’-Et OH H 28 

5.16 4’-tBu OMe OMe 13.3 

5.17 4’-Bu OMe OMe 11.8 

5.18 4’-Br OMe OMe 49.8 

5.19 4’-F OMe OMe 86.7 

5.20 4’-OH OH H 130 

5.21 4’-OMe OMe OMe 11 

5.22 4’-Ph OMe OMe 234 

5.23 4’-Py OMe OMe 85 

CQ - - - 0.19 

 

The SAR elucidation confirmed, once again, that the presence of methoxy groups 

was highly favorable for the antimalarial activity. Additionally, the presence of a 

hydrophobic group in ring B was also highly favorable. The chain elongation also resulted 
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in a significant increase in activity. However, introduction of an additional aromatic ring 

led to less active derivatives.  

Furthermore, in vivo assays showed that the most active compound was not toxic 

to the mouse itself although the antiplamosdial effect appeared to be less efficient when 

compared with the in vitro studies.  

More recently, Adhikari et al.308 developed a computational study involving DFT-

based QSAR, and CoMFA-CoMSIA techniques to explore the structural requirements of 

aurone derivatives as antimalarial drugs. This study was supported by the results 

obtained by Souard298 highlighted that not only the methoxy fragments in ring A are 

important for biological activity but also that the introduction of positively charged 

and/or bulky hydrophobic groups in ring B are essential for antimarial potential in this 

class of compounds.  

Most of aurone-based libraries already screened against P. falciparum were 

inspired by naturally occurring aurones, typically containing hydroxy, methoxy, acetoxy or 

other small groups at different positions of this scaffold, leading to a limited diversity of 

compounds tested in this parasite. Therefore, in order to increase the antimalarial ability 

of this class of natural compounds, a diverse range of substituents should be introduced 

in this scaffold. Therefore, the main goal is to incorporate different moieties in a known 

scaffold in order to identify the most relevant modifications responsible for biological 

activity.  

 

5.2.  Synthetic approaches 

A library of novel aurone derivatives were designed and synthesized in order to probe the 

chemical space around this scaffold. Palladium-catalyzed reactions can provide an 

excellent platform for increasing the chemical diversity of known scaffolds due to the 

wide range of transformations mediated by this catalyst309. Therefore, considering the 

advantageous of the palladium-catalyzed reactions, many of the target compounds were 

obtained through Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions. 
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Furthermore, taking in account recent evidences suggesting antimalarial activity of 

aurone-Mannich base derivatives310, some compounds were also obtained via the 

introduction of different aliphatic amines in the benzofuranone ring. 

A total of 35 aurones derivatives were synthesized by varying substituents both in 

ring A and B (Figure 5.1) to explore the potential of this scaffold as a platform to design 

new antimalarial agents (Table 5.3).  

 

Table 5.3. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final step) of 

aurones 5.24-5.58.  

 

 
 R1 R2 R3 R4 R5 LogP263 

Rule of 5 

violations 
Yield/% 

Se
ri

e
s 

A
 

5.24 H H H H H 3.39 0 41 

5.25 H H Br H H 4.12 0 55 

5.26 H H H Br H 4.13 0 54 

5.27 H H H H Br 4.12 0 54 

5.28 H H H H NMe2 3.51 0 49 

5.29 H OMe H H H 3.09 0 62 
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Table 5.3. Structure, clogP values, rule of 5 violations, and yields for the synthesis (final step) of aurones 

5.24-5.58 (cont.). 

 
 R1 R2 R3 R4 R5 LogP263 

Rule of 5 

violations 
Yield/% 

Se
ri

e
s 

B
 5.30 OH H H H H 3.02 0 99 

5.31 OH H H H NMe2 3.17 0 71 

Se
ri

es
 C

 

5.32 H H H H 
 

5.06 1 77 

5.33 H H H H 
 

5.21 1 66 

5.34 H H H H 
 

5.65 1 64 

5.35 H H H H 
 

4.70 0 83 

5.36 H H H H 
 

5.24 1 70 

5.37 H H H H 
 

5.16 1 87 

5.38 H H H H 
 

3.69 0 98 

Se
ri

es
 D

 5.39 H H H H 
 

4.83 0 71 

5.40 H H H H 
 

4.62 0 49 

Se
ri

es
 E

 

5.41 H H H H 
 

5.40 1 33 

5.42 H H H H 
 

5.51 1 51 

5.43 OH H H H 
 

5.27 1 51 

5.44 OH H H H 
 

5.13 1 84 

Se
ri

e
s 

F 5.45 H H H 
 

H 5.05 1 71 

5.46 H H H 
 

H 5.21 1 65 
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Table 5.3. Structure, clogP values, rule of 5 violations, and yields for the synthesis (final step) of aurones 

5.24-5.58 (cont.). 

 
 R1 R2 R3 R4 R5 LogP263 

Rule of 5 

violations 
Yield/% 

Se
ri

e
s 

F 

5.47 H H H 
 

H 5.65 1 51 

5.48 H H H 
 

H 4.70 0 63 

5.49 H H H 
 

H 5.24 1 49 

5.50 H H H 
 

H 5.16 1 68 

5.51 H H H 
 

H 3.69 0 76 

Se
ri

e
s 

G
 

5.52 
 

H H H H 5.24 1 78 

5.53 
 

H H H H 5.05 1 66 

5.54 
 

H H H H 5.20 1 99 

Se
ri

e
s 

H
 

5.55 OH 
 

H H H 2.55 0 61 

5.56 OH 
 

H H H 3.73 0 63 

5.57 OH 
 

H H H 2.47 0 54 

5.58 OH 
 

H H H 3.55 0 29 

 

Compounds in series A and compounds 5.41-5.42 were synthesized from 

commercially available benzofuran-3(2H)-one, 5.59, or 7-methoxy-3(2H)-benzofuranone, 

5.60, which were reacted with appropriately substituted benzaldehydes in the presence 

of neutral alumina311 (Scheme 5.1), in order to give the desired aurones with moderate 

yields. Only commercially available benzofuranone derivatives were used in this study 

which limitated the chemical diversity in ring A of the compounds synthesized. 
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Scheme 5.1. Reagents and conditions: (a) 5.59 or 5.60, Al2O3, MeOH, reflux under N2, 24 hours. (b) 5.61, 

glacial AcOH, HCl (cat), RT, 4 hours. R substituents are according to Table 5.3. 

 

However, this method failed to provide the 6-hydroxy aurones in reasonable 

yields. Possibly, the favorable interaction of alumina with the free hydroxyl group in the 

benzofuranone ring contributed to decrease its catalytic efficiency and, consequently, to 

decrease the formation of the product. In contrast, for these compounds, the acidic 

catalysis in the presence of glacial acetic acid and hydrochloric acid was preferred312. 

Accordingly, the acid-catalyzed aldol condensation of 6-hydroxy-3(2H)-benzofuranone, 

5.61, with benzaldehydes afforded aurones in series B (compounds 5.30 and 5.31) and 

compounds 5.43 and 5.44 in moderate to good yields (Scheme 5.1).  

The aldehydes required for aurones 5.41-5.44 were synthesized from 4-

fluorobenzonitrile and the appropriate phenol, and via the Weinreb amides 5.66 and 

5.67, as described in Scheme 5.2. In the first step, the appropriate phenol was reacted 

with 4-fluorobenzonitrile in the presence of Na2CO3 in order to obtain the 

phenoxybenzonitrile derivatives (5.62 and 5.63) via an aromatic nucleophilic substitution. 

These intermediates suffered subsequent hydrolysis in the presence of H2O2 and KOH to 

provide the benzoic acids 5.64 and 5.65. Compounds 5.66 and 5.67 were obtained in very 

good yields using TBTU as a coupling agent. In the last step, the phenoxybenzaldehydes 

5.68 and 5.69 were synthesized in quantitative yields from simple LiAlH4 reduction in 

anhydrous conditions. 
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Scheme 5.2. Reactions and conditions: (a) substituted phenol, Na2CO3, dry DMF, reflux, 24 hours; (b) H2O2 

(30%), KOH, MeOH, EtOH, reflux, 5 hours; (c) N,O-dimethylhydroxylamine, TEA, TBTU, dry DMF, RT, 

overnight; (d) LiAlH4, dry THF, -5
o
C. 

 

Compounds in series C, F and G were obtained through a standard Suzuki-Miyaura 

cross-coupling reaction in the presence of Pd(PPh3)2Cl2 as catalyst, as described by Liu et 

al 313 (Scheme 5.3).  

 

 

Scheme 5.3. Reactions and conditions: (a) Pd(PPh3)2Cl2, Na2CO3 (1M), 1,4-dioxane, 100 
o
C, 3 hours; (b) 

Pd2(dba)3, (R)-BINAP, NaO
t
Bu, dry toluene, 110 

o
C, 15 min, MW. 

 

Performing the cross-coupling reactions on starting materials 5.27 and 5.26 

afforded aurones 5.32-5.38 (series C) and 5.45-5.51 (series F), respectively, in moderate 
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to very good yields. The synthesis of compounds 5.52-5.54 (series G) was accomplished 

through the Suzuki-Miyaura cross-coupling reaction of triflate 5.70, obtained from the 

starting material 5.30. Aurones in series D (compounds 5.39 and 5.40) were prepared via 

the Buchwald-Hartwig cross-coupling reaction following the Fitzmaurice et al. 

procedure309. Starting material 5.27 was reacted with the appropriate amine in the 

presence of Pd2(dba)3, (R)-BINAP, and NaOtBu in microwave conditions to afford 5.39 and 

5.40 in moderate yields (Scheme 5.3). This reaction was also performed in the presence of 

Pd(OAc)2 and tBu-Xantphos in both termic and MW conditions but the desired product 

was not obtained. 

Finally, the Mannich-base derivatives 5.55-5.58 (series H) were synthesized in 

moderate yields by reacting the starting material 5.30 with the appropriate aliphatic 

secondary amine in aqueous formaldehyde (Scheme 5.4). 

 

 

Scheme 5.4. Reactions and conditions: (a) aliphatic amine, formaldehyde solution, EtOH, reflux, 5 hours. 

 

Due to the presence of an exocyclic double bond in the synthesized aurones is 

important to formulate some considerations about their stereochemistry. Therefore, it is 

possible to obtain these compounds in two configurational isomers, E (trans) or Z (cis), 

being the Z isomer generally regarded as the thermodynamically more stable form314. 

These two isomers present very specific 1H and 13C chemical shifts in the NMR spectra. 

Experimental evidences show that typical chemical shift value in 1H NMR for vinylic 

proton in E isomer is around 7.01 ppm while for Z isomer is ca. 6.70 ppm315-316. For 13C 

NMR, the chemical shift reported for Z isomer is 111 ppm while the E isomer is usually 
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observed at a higher frequency (ca. 120–130 ppm)301. Moreover, the x-ray structures of 

some aurone derivatives also support the assignment of the double bond configuration. 

In this case, the 13C NMR data obtained for these compounds shows that the 

chemical shift for the exocyclic carbon in all compounds appears in the range of 108-112 

ppm indicating that this double bond must be in Z configuration. However, the 1H 

chemical shifts for the same compounds present values around 7 ppm which are 

consistent with reported values for E configuration. This ambiguity in 1H and 13C chemical 

shifts values may be related to the electronic properties of the substituents in ring B. 

Nevertheless, due to experimental evidences that indicate the thermodynamical stability 

of the Z isomer, it is reasonable to hypothesize that the majority of the compounds are at 

the Z configuration. The same ambiguity was already found for some aurone derivatives 

that are correctly assigned by X-ray structure298. For instance, some aurone derivatives 

with substituents in position 2’ of ring B presented chemical shift values ranging from 

7.00 to 7.38 ppm suggesting the presence of an E configuration. In contrast, aurones 

substituted in position 4’ of ring B showed the 1H chemical shift of the β hydrogen of 6.87 

ppm. In both cases, the X-ray structures of the compounds showed that these aurone 

derivatives are in Z configuration. 

 

5.3.  Biological evaluation 

5.3.1. Activity against P. falciparum W2 strain 

All compounds were assayed for their antiplasmodial activity against the chloroquine-

resistant P. falciparum W2 strain and for their toxicity against Human Embryonic Kidney 

293T cells. The data presented in Table 5.4 reveals that 20 aurones displayed relevant 

antiplasmodial activity, with IC50 values ranging from 1.2 to 9.9 μM. In addition, aurones 

derivatives presented negligible cytotoxicity, with EC50 values against cultured human 

cells ranging from 68 to ≥100 μM. In general, most of the compounds presented 

selectivity indices (SI = EC50(HEK293T)/IC50(W2)) higher than 10, indicating that aurones 

are selective and nontoxic antiplasmodial agents. Concerning the bioavailabilty, Lipinski 
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rule317 was applied to the synthesized compounds and showed that the majority of 

aurone derivatives passed the Lipinski filter with some compounds presenting only one 

violation (Table 5.3). 



 

 

Table 5.4. Antiplasmodial activity (IC50) against the CQ-resistant Plasmodium falciparum W2 strain, cytotoxicity (EC50) against Human Embryonic Kidney 293T cells and 

selectivity index (SI = EC50/IC50) for aurones 5.24-5.58. 

Compound 
IC50 / 
μM 

EC50 / μM 
SI 

Compound 
IC50 / 
μM 

EC50 / μM 
SI 

Compound 
IC50 / 
μM 

EC50 / μM 
SI 

5.24 > 10 > 100 > 10 5.36 7.34 87 > 12 5.48 > 10 > 100 > 10 

5.25 > 10 > 100 > 10 5.37 6.59 > 100 > 10 5.49 2.31 71 > 31 

5.26 4.70 > 100 > 10 5.38 3.70 > 100 > 10 5.50 4.78 > 100 > 10 

5.27 3.21 > 100 > 10 5.39 8.59 > 100 > 10 5.51 2.56 79 > 31 

5.28 7.99 > 100 > 10 5.40 5.00 > 100 > 10 5.52 > 10 > 100 > 10 

5.29 > 10 > 100 > 10 5.41 > 10 > 100 > 10 5.53 > 10 > 100 > 10 

5.30 > 10 > 100 > 10 5.42 > 10 > 100 > 10 5.54 3.03 > 100 > 10 

5.31 >10 > 100 > 10 5.43 5.84 95 > 16 5.55 4.01 > 100 > 10 

5.32 > 10 > 100 > 10 5.44 9.88 12 > 1 5.56 1.18 > 100 > 10 

5.33 > 10 > 100 > 10 5.45 5.21 > 100 > 10 5.57 3.34 > 100 > 10 

5.34 > 10 > 100 > 10 5.46 4.41 > 100 > 10 5.58 3.47 > 100 > 10 

5.35 > 10 > 100 > 10 5.47 > 10 > 100 > 10 CQ 0.14 ND ND 

ND: not determined 
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Inspection of the data in Table 5.4 allowed to conclude that, overall, the 

introduction of a second aromatic or aliphatic moiety in the aurone scaffold allowed 

enhancing the antimalarial potential of this class of compounds. More precisely, 

compounds containing only the aurone skeleton showed no significant activity with only 

three compounds (5.26, 5.27, and 5.28) presenting an IC50 value lower than 10 μM. 

Concerning the simpler aurone derivatives in series A and B (compounds 5.24 to 5.31), 

results showed that the introduction of a bromine or amine substituent increase the 

antimalarial activity when comparing to the parent compound 5.24. However, the 

bromine substituent is preferred in ring B of aurone scaffold when compared with the 

amine substituent (compound 5.27 vs compound 5.28). Moreover, the evaluation of the 

biological results obtained for compounds 5.25, 5.26 and 5.27 permitted to conclude that 

the para and meta positions are favored when compared to the orto position. 

In most cases, for compounds in series C, D and E, the inhibitory potential of these 

compounds could only be increased when a more flexible substituent is added (benzyl 

group in compound 5.36) or when the additional aromatic moiety includes a heteroatom 

as in aurones 5.37 to 5.40.  Additionally, the activity data for ether derivatives (series E) 

show that only the hydroxylated derivatives presented relevant inhibitory activity against 

P. falciparum W2 strain. Specifically, compounds 5.43 and 5.44 present IC50 values of 5.84 

and 9.88 μM, respectively, while compounds 5.41 and 5.42, lacking the hydroxyl group, 

show no appreciable inhibitory activity at the tested concentration (10 μM). Accordingly, 

a comparison between the IC50 values obtained for these compounds and for compounds 

5.30 and 5.31 allowed to conclude that an additional aromatic ring is essential to increase 

the inhibitory potential of 6-hydroxyaurones. These results are in line with the 

computational results obtained by Adhikari308 showing that the introducing of an 

additional bulky substituent in ring B contributes to increase the antimalarial activity of 

these compounds.  

Regarding aurone derivatives with an additional aromatic moiety in position 3’ of 

ring B (Serie F), inspection of Table 5.4 allowed to conclude that the inhibitory activity of 

these compounds is superior to the one found for their analogous substituted in position 

4’ (series C). Accordingly, the introduction of an additional aromatic moiety in aurone 
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scaffold is preferred in meta position. As observed in series C (compounds 5.32 to 2.38), 

the most potent inhibitor includes a flexible side chain or a heteroatom in the additional 

aromatic moiety (compounds 2.49 and 2.51, respectively). Concerning aurone derivatives 

substituted in position 6 of ring A (compounds 2.52 to 2.54), these compounds present 

comparable activity to their analogous substituted in position 4’ of ring B (compounds 

2.32, 2.33, and 2.38) with only compound 2.54 showing appreciable inhibitory activity.  

Finally, the IC50 values obtained for Mannich-base aurone derivatives (series H) 

permitted to conclude that the introduction of a protonable aliphatic amine in position 7 

of ring A increased the inhibitory activity of these compounds when compared with the 

parent compound 5.30. These results were already expected since the antimalarial 

activity of Mannich-base derivatives was previously established with well known 

antimalarials drugs such as amodiaquine and pyronaridine57.  

Overall, these results suggest that aurones containing basic moieties, i.e., 3-(2’-

amino)pyridine, 5.38, 5.51, 5.54,  3-quinoline, 5.37, 5.50, and Mannich-bases, 5.55 to 

5.58, generally present improved antiplasmodial activity when compared to their non-

basic counterparts. Moreover, it is also important to notice that the basic moiety can 

exert its beneficial effect on activity independently of its localization in the aurone 

scaffold. For example, compound 5.54, containing a 2-aminopyridine moiety in ring A, is 

equipotent to its counterparts 5.38 and 5.51, which contain the basic moiety at positions 

4’ and 3’ of ring B, respectively. A similar effect was already reported for chalcones, 

where substitution with a quinoline moiety at ring A or ring B provided compounds with 

antiplasmodial activity in the low micromolar range318. It is also worth noting that 

replacement of the benzyl group at ring B by its anilino or phenoxy isosters had a 

detrimental effect on antiplasmodial activity (5.36 versus 5.39, 5.41 and 5.42). The same 

trend in activity was observed when the benzylamine moiety at position 4’ of ring B was 

replaced by its aniline counterpart (5.39 versus 5.40).  

In conclusion, the results obtained indicate that the introduction of an additional 

aromatic or aliphatic moiety to the aurone scaffold can improve the inhibitory ability of 

this class of compounds. Better inhibitors are achieved when a basic moiety is introduced 
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in the aurone scaffold. In this way, aurone 5.56 emerged as the most promising 

compound, with an IC50 value of 1.2 μM and an excellent selectivity index SI > 85. 

5.3.2. Heme polymerization inhibition assay  

Plasmodium parasites dispose the free, toxic heme that results from digestion of host 

erythrocyte hemoglobin by crystallizing it into hemozoin. Heme detoxification takes place 

in the acidic DV of the parasite (pH 5.2), and is believed to be the target of several 

antimalarial drugs319. It has been recently reported that Mannich-base aurone derivatives 

might interfere with heme polymerization inside the DV of erythrocytic parasites during 

the hemoglobin digestion310. There is strong evidence that pH trapping in the DV (pH 5.2) 

plays a role in the activity of basic antimalarials such as CQ319. In this way, the possibility 

of the quinoline (5.37 and 5.50), 2-aminopyridine (5.38, 5.51 and 5.54) and Mannich-base 

aurone derivatives (5.55 to 5.58) being trapped in the acidic DV was assessed, by 

calculating the vacuolar accumulation ratio (VAR) based on the pH-dependent distribution 

of these compounds between water and lipid (log D) (Table 5.5). The lipid accumulation 

ratio (LAR), which measures the expected ratio of compound that would concentrate 

within the lipid component within the DV was also determined319. 

Log D, VAR and LAR values were obtained by application of Equations 1-4 using the 

calculated values of logP and pKa
319. Additionally, Equation 1 and 2 allowed to obtain the 

log D values for both 7.4 and 5.2 pH values for the monoprotic and diprotic compounds, 

respectively.  

 

log D   log     log        p a   p    

Equation 1 

 

log D   log     log         p a   p      p a  p a   p    

Equation 2 
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         log Dp        log Dp       

Equation 3 

 

              log Dp      

Equation 4 

 

Table 5.5. Physicochemical parameters for chosen compounds. cLogP values were calculated using AlogPS 

2.1 software from Virtual Computational Chemistry Laboratory
263

. pKa values were obtained from SPARC 

software
320

, except when indicated. Values of logD, VAR and LAR were calculated using the equations 

available in ref 319.  

Comp clogP pKa1 pKa2 logD7.4 logD5.2 VAR LAR MIC/M IC50/M 

5.37 5.16 4.49a - 5.16 5.08 1.19 144366 ND 6.59 

5.38 3.69 6.14b - 3.67 2.70 9.20 4643 NI 3.70 

5.50 5.16 4.49a - 5.16 5.08 1.19 144366 ND 4.78 

5.51 3.69 6.14b - 3.67 2.70 9.20 4643 NI 2.56 

5.54 5.20 6.14b - 5.18 4.21 9.20 150233 NI 3.03 

5.55 2.55 8.50 7.78 1.02 -3.33 22589 10.6 NI 4.01 

5.56 3.73 9.08 - 2.04 -0.15 155 110 NI 1.18 

5.57 2.47 6.46 - 2.42 1.19 17.2 265 NI 3.34 

5.58 3.55 9.15 - 1.79 -0.40 156 62.0 NI 3.47 

CQ 7.72 10.18 8.38 0.92 -3.44 22749 8.25 125 0.14 

NI: no inhibition of hemozoin-like crystal formation; ND: not determined; a) Calculated from reference 321; 

b) Calculated from reference 322. 

 

As shown by the VAR values presented in Table 5.5, basic aurones have the 

potential to accumulate within the DV, with compound 5.55 exhibiting a VAR value 

comparable to that of CQ, reflecting the predominance of its double positively charged 
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form at pH 5.2. With exception of the piperazine Mannich-base 5.55, most of the basic 

aurones exhibit high LAR values, suggesting the preference of these compounds for a 

lipophilic environment. Consequently, upon entrance into the digestive food vacuole, the 

compounds could accumulate within the neutral lipid particles at the sight of hemozoin 

formation323-324. However, no clear correlation emerged between the pIC50 values for 

antiplasmodial activity of compounds 5.37, 5.38, 5.50, 5.51, 5.54, and 5.55-5.58, and their 

LAR or VAR values. Furthermore, in order to effectively verify the ability of these 

derivatives to inhibit the heme polymerization, these compounds were submitted to a 

hemozoin-like crystal inhibition assay325. All compounds were tested in concentrations 

ranging 0 to 1000 μM. Interestingly, none of the compounds showed heme 

polymerization inhibition at the concentrations tested, which strongly indicates that this 

is not the main mechanism of acting of these aurone derivatives during the erythrocytic 

stage of infection. However, the VAR value obtained for these compounds show their 

ability to accumulate in the DV, and, as a result, this class of compounds may probably 

interact with other targets within this compartment. Examples of possible targets 

contained in the DV of P. falciparum are the proteases which are of particular interest as 

therapeutic target due to its role in parasite development44, 326-327. Within the falcipain 

family, falcipain-2 is one of the most promising targets for antimalarial therapy. This 

cysteine protease is localized in the parasite’s DV and plays a key role in the hydrolysis of 

host hemoglobin into amino acids essential to parasite growth48, 328. Moreover, 

plasmepsins are other family of aspartic proteases which are involved in early hemoglobin 

degradation and are essential for growth and maturation of Plasmodium species329-330. 

Concerning the falcipain family, it was already reported that some potent inhibitors 

contain a Michael acceptor warhead331. In this way, since this family of compounds is well 

known for containing a Michael acceptor286, they may exert its antimalarial activity by 

interacting with this family of enzymes. However, to evaluate the potential of these 

compounds to inhibit one of these proteases, additional biochemical studies are 

necessary.  
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5.3.3. In vitro drug combination assay 

Previous studies showed that aurone derivatives also display the ability to inhibit ABC 

proteins, a family of proteins recognized to be involved in the mechanism of multidrug 

resistance (MDR)301-305. Moreover, the importance of this family of transporters, in 

particular the multidrug resistance transporter (PfMDR1), was also highlighted for the 

resistance of P. falciparum to specific antimalarial drugs, more specifically, to CQ332-333. 

Some observations also confirmed that CQ resistant P. falciparum accumulate less drug 

than more sensitive parasites334 but also that CQ resistance could be modulated in vitro 

by the MDR modulator verapamil335. However, the decrease of accumulation of CQ in DV 

can result not only from drug efflux mechanism but also a reduced uptake of the drug336. 

In order to perform the synergism studies, five distinct compounds were chosen to 

be tested against the mefloquine and CQ resistant P. falciparum strain Dd2. The IC50 

values obtained in this study are included in Table 5.6. 

 

Table 5.6. Antiplasmodial activity (IC50) against the CQ-resistant (W2) and mefloquine and CQ resistant 

(Dd2) P. falciparum strains. 

Compound IC50 / μM (W2 strain) IC50 / μM (Dd2 strain) 

5.40 5.00 4.31 

5.43 5.84 7.56 

5.51 2.56 7.15 

5.54 3.03 6.55 

5.57 3.34 3.87 

 

Compound 5.57 was selected to evaluate the potential of these new aurone 

derivatives to exhibit a mechanism of synergism in the presence of CQ.  This compound 

was chosen from all the set of compounds since it displays similar antiplasmodial in both 

W2 and Dd2 strains. The analysis of the combination effects of compound 5.57 with CQ 

was determined by a modified fixed ratio isobologram method337-340.  Isobologram 

analysis, based on calculation of the sum of FICs (FICs = IC50 of drug in the combination / 
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IC50 of drug when tested alone) or combination index (CI)340 is able to give an indication of 

whether the interaction is antagonistic, additive or synergistic. A recent study defined 

synergism between two drugs as CI < 0.9, additive effect as 0.90 ≤ CI < 1.10 and 

antagonism as CI ≥ 1.10341. In the present case, the CI value of 1.06 obtained for 

compound 5.57, allowed to conclude that there is an additive interaction between this 

compound and CQ (Figure 5.2).  

 

 

Figure 5.2. Isobologram showing the relationship between the FIC50s of CQ and compound 5.57 against 

Plasmodium falciparum Dd2 strain. Numbers on each plotted point correspond to the calculated CI value 

for the utilized combination ratio. 

 

Unfortunately, the synergistic potential of this class of compounds could not be 

demonstrated. Therefore, this study indicates that aurone derivatives do not interfere 

with the uptake of CQ into the DV.  
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5.4.  Concluding remarks 

Novel aurone derivatives with additional structural complexity and diversity were 

synthesized and screened against a CQ-resistant P. falciparum strain. This study 

demonstrated that aurones can provide a useful platform to develop diverse synthetic 

strategies to generate novel bioactive compounds. Furthermore, appropriate 

functionalization of the aurone scaffold yielded compounds with antiplasmodial activity in 

the low micromolar range and with low cytotoxicity. In particular, aurones containing 

basic moieties with capacity to protonate under weakly acidic conditions (for example 2-

aminopyridine and Mannich-bases) emerged as the most active in this series. These 

results also indicated that the primary mechanism of action of these basic aurones does 

not involve inhibition of hemozoin formation. However, the high VAR values obtained for 

the basic aurones indicate their ability to accumulate in the DV which may be related with 

their mode of action. Further studies are essential to unravel the antimalarial mechanism 

of this class of compounds. Finally, these results highlight the potential of the aurone 

scaffold for future antiplasmodial lead optimization. 
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6.  Synthesis of Azaaurone Derivatives as Potential bc1 Complex 

Inhibitors  

6.1.  Background  

The results previously obtained with aurone derivatives were very significant since they 

suggested the potential of this class of compounds to be further optimized in order to 

develop new antimalarial compounds. However, to be effective, these compounds must 

show a higher potency against the parasites.  

Azaaurone derivatives (Scheme 6.1) are obtained from aurones by bioisosteric 

replacement of the intracyclic oxygen by NH. Some compounds of this class were also 

developed by Souard et al298 which allow to demonstrate the ability of azaaurones to 

inhibit parasite growth at concentrations lower than aurone derivatives. 

 

 

Scheme 6.1. General structure of aurones (left) and azaaurones. 
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 When compared with similar aurone derivatives, Souard et al298 could decrease 

the IC50 of these compounds to one-digit micromolar concentrations (Table 6.1).  

 

Table 6.1. Structure and in vitro antimalarial activity of published azaaurone derivatives
298

. 

 

Compound R IC50 (μM) 

6.1 4’-Br 49.8 

6.2 4’-Cl 17 

6.3 2’-Cl 9.9 

6.4 2’,5’-Cl 8.4 

6.5 2’-Cl, 6’-F 9 

6.6 4’-Et 1 

6.7 2’-Et 12.8 

6.8 2’,6’-Me 9.1 

6.9 2’,4’-Me 3.6 

6.10 2’,4’,5’-Me 5.6 

6.11 2’,3’,5’,6’-Me 8.9 

6.12 4’-iPr 4.4 

6.13 4’-tBu 7.2 

6.14 4’-Bu 4.1 

6.15 4’-CCH 13.4 

6.16 2’,4’-OMe 5 

6.17 2’,4’,6’-OMe 1.9 

6.18 3’,4’,5’-OMe 1.9 

6.19 4’-SMe 6.7 

6.20 4’-Morpholino 8.9 

6.21 4’-N(Me)2 3.7 

CQ - 0.19 
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Although these compounds show no diversity in ring A, it is possible to notice that 

the ethyl group at position 4’ could increase their antimalarial potential (compound 6.6). 

However, the introduction of the ethyl group in position 2’ led to a huge decrease in the 

antimalarial activity of compound 6.7. The metoxylation of ring B was also favorable as 

shown by the IC50 values obtained for compounds 6.16 to 6.18. The overall results 

demonstrate that both the size and the lipophilic properties of the compounds affect the 

inhibitory ability of this class of compounds. 

 Nevertheless, the results obtained previously with aurone scaffold showed that 

the introduction of additional aliphatic and aromatic moieties in both ring A and B could 

in fact increase the antimalarial potential of these compounds. In this way, similar 

approach was followed in order to expand the chemical diversity with this new scaffold. 

Moreover, the structural similarity between azaaurones and 4-(1H)quinolones also 

suggests that these compounds may interact with bc1 complex. This new scaffold can be 

considered to be obtained after contraction of the quinolone ring (Scheme 6.2). In this 

way, it is expected that these molecules interact favorably with Glu272 and His181 

through carbonyl and amine groups, respectively. Molecules included in this new set will 

contain a hydrophobic side chain that will interact with the pocket. 

 

 

Scheme 6.2. Schematic contraction of the quinolone ring to obtain 3-indolinone. 

 

6.2.  Synthetic approaches 

In order to obtain a library of chemically distinct azaaurones, the same approach used to 

synthesize the aurone derivatives was applied. Accordingly, this scaffold was also tested 
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as a platform for potential synthesis exploration by using, once again, palladium-catalyzed 

reactions. 

 Unlike the aurone derivatives that were simply obtained by reacting the 

commercially available benzofuranone rings with the substituted benzaldehyde, in this 

case, all 3-indolinone starting materials were synthesized from the appropriate aniline 

since these compounds were not available in the usual suppliers. As a result, 3-indolinone 

derivatives were obtained as described by Wager et al342 (Scheme 6.3).  

 

 

Scheme 6.3. Reagents and conditions: (a) BCl3 1M in DCM, chloroacetonitrile, ZnCl2, dry 1,2-DCE, reflux. (b) 

HCl 1M, reflux. (c) AcOH, Ac2O. (c) NaH, dry DMF. 

 

 Specifically, the appropriate aniline is reacted with chloroacetonitrile in the 

presence of BCl3 and ZnCl2. This first reaction is a simple Friedel-Crafts acylation 

nevertheless, the addition of BCl3 allows to obtain an exclusive ortho substitution of 

anilines. This specific reaction in known by Sugasawa reaction343-344 and the mechanism is 

depicted in Scheme 6.4. The first step implies the interaction between the aniline and 

BCl3 which is essential for the selective ortho acylation since BCl3 allows the formation of 

the intermediate anilinochloroborane species. In this way, after addition of 

chloroacetonitrile, the nitrogen of the nitrile group will interact with the boron forming a 

stable complex. The following step consists of the nucleophilic attack to the 

electrodeficient carbon (in nitrile group) and subsequent electronic rearrangement. The 
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hydrolysis in acidic media of the anilinochloroborane intermediate allowed to obtain the 

desired compound (6.22). This first step of the reaction allows to obtain the final 

compound in moderate yields ranging from 40 to 70%, depending on the type of 

substitution in aniline ring. 

 In the second step of the reaction compound 6.22 is acylated in order to form the 

corresponding acetanilide 6.23 in good yields. The main goal with this procedure is to 

obtain a more acidic proton that can be more easily removed. The last step consists in a 

straightforward intramolecular nucleophilic substitution assisted by NaH as a base 

allowing to obtain the cyclic starting material 6.24 in low yields. The cyclization step was 

first tried with Na2CO3 in dry acetone but the yields obtained were even lower. 

 

 

Scheme 6.4. Sugasawa reaction mechanism. 

 

 In order to obtain the library of azaaurone derivatives, the initial approach 

involved the aldol condensation between the 3-indolinone starting material and the 
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bromobenzaldehyde in the presence of a base as catalyst (Scheme 6.5). The product of 

this reaction could then be used in the subsequent Suzuki coupling in order to expand the 

chemical diversity of this scaffold. In the last step, the hydrolysis of the acetyl group in 

basic media would generate the final compound.  

 

 

Scheme 6.5. Proposed reaction procedure for the synthesis of the azaaurone derivatives. 

 

 A library including 62 azaaurone derivatives were synthesized by varying the 

substituents in ring A and B (Table 6.2 and Table 6.4). The acetylated derivatives were 

also considered in this study in order to evaluate the influence of the free amine moiety 

in the antimalarial activity. 

 Compounds in series A (6.25-6.27), series B (6.28-6.31) and series E (6.52-6.55) 

were obtained by reaction of the synthesized 3-indolinone ring with the appropriate 

aldehyde. Only aldehydes required for obtaining compounds 6.28 to 6.30 were previously 

synthesized from the substituted phenol and fluorobenzonitrile as described in Chapter 5. 

All other aldehydes were obtained from commercial suppliers. Furthermore, compounds 
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6.52 to 6.55 were obtained by reacting the substituted 3-indolinone ring with 

benzaldehyde. The substituted 3-indolinone starting materials were also previously 

synthesized, as described in Scheme 6.3, from the appropriate and commercially available 

aniline. 

 

Table 6.2. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final step) of 

acetylated azaaurones 6.25-6.55. 

 

 
 R1 R2 R3 R4 cLogP263 

Rule of 5 

violations 
Yield/% 

Se
ri

e
s 

A
 

6.25 H H H H 2.98 0 72 

6.26 H H H Br 3.67 0 64 

6.27 H H H N(Me)2 3.10 0 70 

Se
ri

e
s 

B
 

6.28 H H H 
 

4.42 0 57 

6.29 H H H 
 

4.78 0 53 

6.30 H H H 
 

4.99 0 61 

6.31 H H H  4.38 0 57 

Se
ri

e
s 

C
 

6.32 H H H 
 

4.57 0 94 

6.33 H H H 
 

4.74 0 80 

6.34 H H H 
 

4.94 0 65 

6.35 H H H 
 

5.16 1 75 
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Table 6.2. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final step) of 

acetylated azaaurones 6.25-6.55 (cont). 

Se
ri

es
 C

 

6.36 H H H 
 

5.34 1 78 

6.37 H H H 
 

5.50 1 71 

6.38 H H H 
 

4.78 0 73 

6.39 H H H 
 

4.67 0 69 

6.40 H H H 
 

4.28 0 72 

6.41 H H H 
 

3.04 0 77 

Se
ri

e
s 

D
 

6.42 H H 
 

H 4.56 0 65 

6.43 H H 
 

H 4.74 0 69 

6.44 H H 
 

H 4.93 0 62 

6.45 H H 
 

H 5.16 1 66 

6.46 H H 
 

H 5.33 1 75 

6.47 H H 
 

H 5.50 1 72 

6.48 H H 
 

H 4.77 0 73 

6.49 H H 
 

H 4.67 0 62 

6.50 H H 
 

H 4.28 0 69 

6.51 H H 
 

H 3.04 0 68 

 

 

 
 R1 R2 R3 R4 cLogP263 

Rule of 5 

violations 
Yield/% 



Chapter  6 
 

169  

 

 

Table 6.2. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final step) of 

acetylated azaaurones 6.25-6.55 (cont). 

Se
ri

e
s 

E 

6.52 
 

H H H 4.58 0 67 

6.53 
 

H H H 4.45 0 62 

6.54 
 

H H H 4.80 0 65 

6.55 H 
 

H H 4.45 0 61 

 

In order to successfully obtain the azaaurone derivatives via aldol condensation, 

several attempts were made since this reaction did not pursue easily as in the case of 

aurone derivatives (Table 6.3).  

 

Table 6.3. Reactions conditions for aldol condensation to obtain azaaurone derivatives. 

 Reaction Conditions Observations 

A Al2O3, dry MeOH, reflux No product formed. 

B KOH (50% in H2O), MeOH, reflux No product formed 

C NaH, dry DMF, RT Product formed in low yields. 

D 
piperidine (cat), toluene, reflux 

under Dean-Stark conditions 
Product formed in low yields. 

E piperidine (cat), toluene, reflux Product formed in moderate yields. 

 

In the first attempt (conditions A), the same reaction procedure used to obtain 

aurone derivatives were applied, although, in this case, no product was obtain. 

Afterward, the conditions followed by Souard et al298 (conditions B) using KOH as base 

also did not allow to obtain the desired product. The first azaaurone derivative was only 

obtained when NaH, a very strong base, was used (conditions C). This reaction conditions 

 
 R1 R2 R3 R4 cLogP263 

Rule of 5 

violations 
Yield/% 
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permitted to synthesize the product only in low yields probably due to the complexity of 

the reaction mixture and to the consequent issues related with its purification. The 

reaction conditions described by Buzas et al345 (conditions D) allowed also to obtain the 

azaaurone but, as in the previous case, the yields were low and the reaction was not 

complete. All efforts made to enhance the reaction yield led to the increase of side 

products and also to the degradation of the final compound. More recently, Leung et al75 

performed this reaction using the conditions described by Buzas but in the absence of the 

Dean-Stark apparatus (conditions E). This last reaction condition allowed to obtain the 

desired compounds in moderate yields and, as a result, this was the one chosen to pursue 

with the synthesis of azaaurone derivatives. 

 In this way, compound 6.26, containing a bromine substituent in position 4’ was 

chosen as a platform for increasing the structural complexity of these compounds via the 

Suzuki coupling reaction (Scheme 6.5). The procedure applied for the synthesis of these 

compounds was the one already employed for obtaining aurones derivatives. Accordingly, 

compound 6.26 was reacted with a boronic acid in the presence of Pd(PPh3)2Cl2 as 

catalyst and Na2CO3 1M in dioxane, as described by Liu et al 313. Although the reaction 

was complete, the complexity of the reaction mixture prevented the isolation of the final 

product in acceptable yields. Moreover, the presence of a basic aqueous solution in the 

reaction mixture also contributed to increase the number of side products due to its 

ability to remove the acetyl group of the amine moiety.  

 Since in the majority of the reactions performed, namely, the cyclization step, the 

aldol condensation and the Suzuki coupling, displayed low yields, the approach employed 

to obtain the final compounds was inevitably modified. As a consequence, a convergent 

approach (Scheme 6.6) was chosen in detriment of the linear synthesis described in 

Scheme 6.5.  

 



Chapter  6 
 

171  

 

 

 

Scheme 6.6. Alternative reaction procedure for the synthesis of the azaaurone derivatives. 

 

 Accordingly, all aldehydes were first synthesized starting from both 3- and 4-

bromobenzaldehyde and the appropriate boronic acids in the presence of Pd(PPh3)2Cl2 as 

catalyst. These compounds were obtained in very high to quantitative yields. 

Subsequently, compounds in series C and D (6.32-6.51) were obtained after reaction of 

the 3-indolinone with the resulting aldehydes, as depicted in Scheme 6.6, in moderate 

yields. 

 In order to obtain the deacetylated azaaurone derivatives, compounds in series A 

to E were treated with an aqueous solution of KOH in order to remove the acetyl group of 

the amine moiety (Scheme 6.7). 

 

 

Scheme 6.7. Reagents and conditions: KOH (50% in H2O), MeOH, RT. 
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 Although this deprotection step was expected to occur smoothly, again, some 

purification related issues were responsible for decreasing the predictable yields of this 

reaction (Table 6.4). 

 

Table 6.4. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final step) of 

azaaurones 6.56-6.86. 

 

 
 R1 R2 R3 R4 cLogP263 

Rule of 5 

violations 
Yield/% 

Se
ri

e
s 

F 

6.56 H H H H 3.41 0 90 

6.57 H H H Br 4.14 0 91 

6.58 H H H N(Me)2 3.48 0 87 

Se
ri

e
s 

G
 

6.59 H H H 
 

4.87 0 93 

6.60 H H H 
 

5.24 1 92 

6.61 H H H 
 

5.47 1 89 

6.62 H H H  4.82 0 89 

Se
ri

e
s 

H
 

6.63 H H H 
 

4.98 0 94 

6.64 H H H 
 

5.14 1 91 

6.65 H H H 
 

5.35 1 92 

6.66 H H H 
 

5.60 1 87 
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Table 6.4. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final 

step) of azaaurones 6.56-6.86 (cont.). 

Se
ri

es
 H

 

6.67 H H H 
 

5.84 1 90 

6.68 H H H 
 

5.98 1 92 

6.69 H H H 
 

5.18 1 91 

6.70 H H H 
 

5.14 1 97 

6.71 H H H 
 

4.71 0 93 

6.72 H H H 
 

3.43 0 92 

Se
ri

e
s 

I 

6.73 H H 
 

H 4.98 0 93 

6.74 H H 
 

H 5.14 1 95 

6.75 H H 
 

H 5.34 1 94 

6.76 H H 
 

H 5.60 1 90 

6.77 H H 
 

H 5.83 1 91 

6.78 H H 
 

H 5.97 1 92 

6.79 H H 
 

H 5.18 1 96 

6.80 H H 
 

H 5.13 1 94 

6.81 H H 
 

H 4.71 0 93 

6.82 H H 
 

H 3.42 0 94 

 

 
 R1 R2 R3 R4 cLogP263 

Rule of 5 

violations 
Yield/% 
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Table 6.4. Structure, clogP values, Lipinski rule of 5 violations, and yields for the synthesis (final 

step) of azaaurones 6.56-6.86 (cont.). 

Se
ri

e
s 

J 

6.83 
 

H H H 4.97 0 91 

6.84 
 

H H H 4.87 0 91 

6.85 
 

H H H 5.18 1 92 

6.86 H 
 

H H 4.87 0 89 

 

 As in the case of aurone derivatives, some observations can be done concerning 

the stereochemistry of the exocyclic double bond. In this case, contrasting with the 

aurone derivatives synthesized, the 1H and 13C NMR confirmed that all acetylated 

azaaurones (series A to E) were obtained as a mixture of both isomers E and Z. 

Interestingly, it was also possible to conclude that the ratio between the two isomers 

could vary in solution which suggests that the two isomers can suffer interconversion. 

Buzas et al previously described the mixture of two isomers for acetylated 

azaaurones345. Moreover, the possibility of obtaining pure isomers depending on the 

electronic nature of the substituents and their position in the ring B was also 

demonstrated. 

Examples of the 1H NMR of both compounds 6.27 and 6.58 are illustrated in Figure 

6.1 and Figure 6.2, respectively. 

 
 R1 R2 R3 R4 cLogP263 

Rule of 5 

violations 
Yield/% 
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Figure 6.1. 
1
H NMR of compound 6.27. 

 

 

Figure 6.2. 
1
H NMR of compound 6.58. 
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 The observation of Figure 6.1 allowed to conclude that all peaks are present in 

duplicate which is in accordance with some experimental evidences showing that 

azaaurones can be obtained as a mixture of two isomers345. Moreover, it is important to 

notice that, for this specific compound, the more abundant specie presents the vinylic 

proton with a chemical shift of 7.33 ppm while the less abundant appears at lower 

frequency (δ ~ 6.7 ppm). Considering the low number of examples available in literature, 

it is difficult to confirm undoubtedly which isomer is more abundant. Nevertheless, taking 

into consideration the studies performed with aurones, it is expected that Z isomer is 

predominant since this is usually regarded as the thermodynamically more stable form314. 

 However, after deacetylation, all final compounds (series F to J) were obtained as 

a single isomer. In the specific case of compound 6.58, the vinylic proton appears at δ = 

6.91 ppm which is consistent with the chemical shift values obtained by Souard et al298 for 

Z-azaaurones (Figure 6.2). Nevertheless, this NMR data indicating that a mixture of two 

isomers could result in only one isomer raised the question if the two species formed 

during the aldol condensation could probably be different rotamers, due to the rotation 

of the acetyl group, and not isomers E and Z. In this way, in order to confirm this 

possibility, some experiences were made with 1H NMR at different temperatures. The 

main goal was to verify if the increase of the solution temperature would contribute to 

merge the two sets of peaks. In this way, if the two peaks fused by increasing the 

temperature, it was possible to assure that the two species in solution were rotamers and 

not isomers. In Figure 6.3 is depicted the superposition of 1H NMR spectra of compound 

6.30 at different temperatures. It is possible to observe that when temperature increases, 

some aromatic peaks change slightly their positions but this alteration is not significative. 

Furthermore, the two peaks corresponding to the CH3 of the acetyl group (of the more 

and less abundant species) almost no suffer alterations keeping their chemical shifts 

constant while the temperature increases. In this way, it is possible to conclude that the 

two species are isomers and not rotamers. 
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Figure 6.3. Superposition of the 1H NMR spectra of compound 6.30 at 25 
o
C (in purple), 30 

o
C (in blue), 50 

o
C (in green) and 70 

o
C (in red). 

 

 Concerning the stereochemistry of the exocyclic double bond of azaaurones in 

series F to J, the crystallografic structure of compound 6.64 allowed to undoubtedly 

confirm that these compounds are obtained as Z isomers as anticipated (Figure 6.4). 

 

25 oC 

30 oC 

50 oC 

70 oC 
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Figure 6.4. X- ray crystallographic structure of compound 6.64. 

 

 In order to introduce additional chemical diversity to this class of compounds and 

also to evaluate the importance of the double bond for the antimalarial activity, several 

attempts were made to reduce the double bond of the azaaurone scaffold (Scheme 6.8). 

The main goal of this procedure was to obtain the reduced product before the 

deprotection of the amine moiety. 

 

 

Scheme 6.8. Proposed reaction procedure for the reduction of azaaurone derivatives. 

 

 The reaction conditions applied to obtain the reduced azaaurone derivatives are 

indicated in Table 6.5. In a first attempt, the azaaurone derivative was reacted with TES as 

the hydrogen source in the presence of Pd/C in EtOH (conditions A). Although some 

starting material was consumed during this reaction, the desired product was not 

identified. Further attempts were made using TES and TFA, both as reagent (conditions B) 

and as solvent (conditions C)346-347. Only when conditions C were used the starting 

material was completely consumed, nevertheless the product formed was not identified.  
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Table 6.5. Reactions conditions for the reduction of azaaurone derivatives. 

 Reaction Conditions Observations 

A TES, Pd/C, EtOH, RT No product formed. 

B TFA, TES, DCM, reflux No product formed 

C TES, TFA (solvent), RT 
Starting material consumed but no 

product formed. 

D H2, Pd/C, MeOH, RT No product formed. 

 

Concerning conditions D345, the amount of H2 was increased from atmospheric 

pressure to 4 atm in order to improve the efficiency of this reaction but, once again, the 

desired product was not obtained. In this way, and considering all the unsuccessful 

attempts, the synthesis of the reduced azaaurone derivatives was abandoned. 

 

6.3.  Biological Evaluation 

6.3.1. Activity against P. falciparum W2 strain 

All compounds were assayed for their antiplasmodial activity against the CQ-resistant P. 

falciparum W2 strain. The biological results obtained for all series of azaaurones 

derivatives are presented in Table 6.6 and Table 6.7. Further, the most promising 

azaurones derivatives were also tested against Human Embryonic Kidney 293T cells 

presenting small cytotoxicity, with EC50 values against cultured human cells ranging from 

7 to ≥ 100 μM. In most cases, the compounds presented selectivity indices (SI = 

EC50(HEK293T)/IC50(W2)) higher than 10, showing that these compounds can be 

considered selective and nontoxic antiplasmodial agents. However, the selected 

acetylated azaaurone derivatives (compounds 6.33, 6.34, 6.37, 6.39, 6.44, 6.49, and 6.52) 

showed significant citotoxicity. Concerning the bioavailabilty, Lipinski rule317 was applied 

to the synthesized compounds and showed that the majority of azaaurone derivatives 

passed the Lipinski filter with some compounds presenting only one violation, more 

exactly, the lipophilicity (Table 6.2 and Table 6.4). 
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The first analysis of Table 6.6 and Table 6.7 shows that all azaaurone derivatives 

lacking the acetyl group (compounds 6.56 to 6.86) display extremely increased 

antimalarial activity when compared to the same acetylated derivatives. Moreover, it is 

also possible to verify that the antimalarial potential of acetylated azaaurones 

(compounds 6.25 to 6.55) is in the same range of the aurone derivatives presented in 

Chapter 5. Generally, acetylated azaaurone derivatives displayed IC50 values ranging 

between 2.0 and 9.8 μM while azaaurone derivatives with free amine exhibited 

antimalarial activity in nanomolar range. Moreover, some compounds present an increase 

of 50 fold in antimalarial activity when the acetyl group of the azaaurone is removed (for 

instance compounds 6.46 and 6.77). In this way, these results indicate that NH group in 

the azaaurone scaffold is essential for the antimalarial activity, being probably essential to 

establish a strong interaction with a H-bond acceptor in the target. 

 

 

 



 

 

Table 6.6. Antiplasmodial activity (IC50) against the CQ-resistant Plasmodium falciparum W2 strain, cytotoxicity (EC50) against Human Embryonic Kidney 293T cells and selectivity 

index (SI = EC50/IC50) for azaaurones 6.25-6.55 (Series A-E). 

Compound IC50 / μM EC50 / μM SI Compound IC50 / μM EC50 / μM SI Compound IC50 / μM EC50 / μM SI 

6.25 A.R. N.D. N.D. 6.36 5.06 N.D. N.D. 6.47 5.08 N.D. N.D. 

6.26 5.99 N.D. N.D. 6.37 3.21 8 2 6.48 > 10 N.D. N.D. 

6.27 > 10 N.D. N.D. 6.38 > 10 N.D. N.D. 6.49 3.92 14 4 

6.28 5.02 N.D. N.D. 6.39 2.03 19 9 6.50 8.74 N.D. N.D. 

6.29 5.13 N.D. N.D. 6.40 9.83 N.D. N.D. 6.51 > 10 N.D. N.D. 

6.30 A.R. N.D. N.D. 6.41 9.43 N.D. N.D. 6.52 3.75 12 3 

6.31 A.R. N.D. N.D. 6.42 9.78 N.D. N.D. 6.53 > 10 N.D. N.D. 

6.32 8.42 N.D. N.D. 6.43 9.38 N.D. N.D. 6.54 6.77 N.D. N.D. 

6.33 4.59 7 2 6.44 3.65 16 4 6.55 A.R. N.D. N.D. 

6.34 3.78 9 2 6.45 > 10 N.D. N.D. CQ 0.14 N.D. N.D. 

6.35 5.64 N.D. N.D. 6.46 6.12 N.D. N.D.     

A.R. – awaiting results; N.D. – not determined 

 



 

 

Table 6.7. Antiplasmodial activity (IC50) against the CQ-resistant Plasmodium falciparum W2 strain, cytotoxicity (EC50) against Human Embryonic Kidney 293T cells and selectivity 

index (SI = EC50/IC50) for azaaurones 6.56-6.86 (Series F-J). 

Compound IC50 / μM EC50 / μM SI Compound IC50 / μM EC50 / μM SI Compound IC50 / μM EC50 / μM SI 

6.56 A.R. > 100 A.R. 6.67 A.R. > 100 A.R. 6.78 A.R. > 100 A.R. 

6.57 0.56 > 100 > 10 6.68 0.86 > 100 > 10 6.79 A.R. > 100 A.R. 

6.58 2.90 > 100 > 10 6.69 0.52 > 100 > 10 6.80 0.26 > 100 > 10 

6.59 0.36 > 100 > 10 6.70 0.44 22 > 10 6.81 0.47 > 100 > 10 

6.60 0.32 > 100 > 10 6.71 0.48 > 100 > 10 6.82 A.R. > 100 A.R. 

6.61 A.R. > 100 A.R. 6.72 1.35 > 100 > 10 6.83 A.R. > 100 A.R. 

6.62 A.R. > 100 A.R. 6.73 0.45 > 100 > 10 6.84 A.R. > 100 A.R. 

6.63 0.31 > 100 > 10 6.74 0.26 > 100 > 10 6.85 A.R. > 100 A.R. 

6.64 0.27 > 100 > 10 6.75 0.20 > 100 > 10 6.86 A.R. > 100 A.R. 

6.65 0.83 > 100 > 10 6.76 0.20 20 > 10 CQ 0.14 > 100 N.D. 

6.66 0.53 > 100 > 10 6.77 0.11 > 100 > 10     

A.R. – awaiting results; N.D. – not determined 
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 The examination of Table 6.7 allows to conclude that, in general, the introduction 

of an additional aromatic moiety to azaaurone scaffold permited to increase the 

antimalarial activity when compared to compound 6.57 possessing only a bromine 

substituent in para position. Moreover, compound 6.58 display antimalarial activity in the 

micromolar range which suggests that the dimethylamino substituent is not favorable for 

this class of compounds. 

 Concerning compounds in series G (compounds 6.59-6.62) only compounds 6.59 

and 6.60 were so far tested for their antimalarial activity with both compounds 

presenting similar biological activity.  

In series H (compounds 6.63-6.72), the azaaurone derivatives present a large 

range of IC50 values with compounds 6.64 and 6.72 presenting antimalarial activity at 0.27 

and 1.35 μM, respectively. When considering the introduction of a second aromatic 

moiety in the position 4’ of azaaurone scaffold, the fluorine substituent allowed to 

increase the antimalarial activity while the chlorine, the methyl and the trifluoromethoxy 

lead to a drop of the potency of these compounds. This effect in the antimalarial activity 

is more evident for compound 6.65 and 6.68 showing an increase of the IC50 values 

around 3 fold when comparing with the non substituted derivative 6.63. In addition, 

compound 6.69, containing a benzyl substituent, shows to be less active than its 

analogous 6.59 having an oxygen atom connecting the two aromatic moieties rather than 

the isoster group CH2. Moreover, the introduction of a heterocyclic substituent in the 

position 4’ of the azaaurone scaffold also allowed to obtain potent inhibitors with IC50 

values around 400 nM. However, when introducing the pyrazole substituent (compound 

6.72), the antimalarial activity drops to values in the micromolar range. 

When considering compounds in series I (compounds 6.73-6.82), with exception of 

compound 6.73, all compounds presented comparable or higher inhibitory activity than 

their analogous in series H. More precisely, the comparison between the results obtained 

for compounds 6.65 and 6.75, both containing a methylphenyl substituent, and for 

compounds 6.66 and 6.76, bearing a chlorophenyl substituent, allow to conclude that the 

introduction of these aromatic substituents in position 3’ of azaaurone scaffold increase 

the inhibitory activity by 4 and 2.5 fold, respectively. Moreover, the azaaurone derivative 
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containing the quinolinyl substituent in position 3’ (compound 6.80) also increased the 

inhibitory potential when comparing with compound 6.70 while the two compounds 

having the tiophenyl substituents (compounds 6.71 and 6.81) showed identical biological 

activity. Furthermore, it is also worth notice that the introduction of substituents containg 

fluorine atoms is desirable for the antimalarial activity of this class of compounds as 

highlighted by the contrasting IC50 values obtained for compounds 6.63 and 6.64 and also 

for compounds 6.73, 6.74, 6.75 and 6.77. Additionally, compound 6.77 demonstrated to 

be the most potent compound with an IC50 value of 110 nM. 

Unfortunately, the biological results for compounds in series J are still not 

available and therefore, the relevance of the substituents in ring A of azaaurone scaffold 

can not be discussed. 

Overall, putting together all the biological data of both acetylated and non 

acetylted azaaurone derivatives, it is not possible to establish a correlation between the 

IC50 values obtained for these two set of compounds. More specifically, the IC50 values do 

not vary in the same way taking into account the substituent introduced. For instance, 

compound 6.34 shows an IC50 value of 3.78 μM while its non acetylated counterpart 

(compound 6.70) presents inhibitory activity at 0.83 μM. In the other hand, the 

acetylated derivative 6.46 displays an IC50 of 6.12 μM while its analogous 6.77 exhibit 

much more inhibitory potential with an IC50 value of 0.11 μM. 

 

6.3.2. Activity against falcipain-2 

As in the case of aurone derivatives described in Chapter 5, this family of compounds also 

encloses a Michael acceptor and, therefore, these compounds may exert their 

antimalarial activity by inhibiting the falcipain family of enzymes.  

In this way, azaaurones in series A-J were then screened for inhibition of cysteine 

protease from P. falciparum, falcipain-2, which is of particular interest as therapeutic 

target due to its role in parasite development44. Falcipain-2 is localized in the parasite’s 

DV and plays a key role in the hydrolysis of host hemoglobin into amino acids essential to 
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parasite growth328. Falcipain inhibitors that contain a Michael acceptor warhead331 have 

been reported to block the development of cultured erythrocytic parasites and to cure 

mice having lethal malaria infections348. Although azaaurones are Michael acceptors, 

these compounds showed no inhibition of falcipain-2 in concentrations up to 50 M. Only 

three azaaurone derivatives (compounds 6.27, 6.57 and 6.58) showed to be weak 

falcipain-2 inhibitors with IC50 values ranging from 10.6 to 19 M. The observation that 

falcipain-2 is inhibited only in the high µM range, suggests that azaaurone scaffold is not 

suitable for enzyme binding. 

 

6.3.3. In vitro drug combination assay 

Having in mind the studies already performed showing the potential of aurone derivatives 

to inhibit transporters involved in the mechanism of MDR301-305
 and, therefore, to 

modulate CQ resistance, one of the most potent azaaurone derivatives (compound 6.60) 

was selected to test the potential of this class of antimalarial drugs to exhibit a 

mechanism of synergism in the presence of CQ. 

In order to perform the synergism studies, compound 6.60 was first tested against 

the mefloquine and CQ resistant and sensitive P. falciparum strain Dd2 and 3D7, 

respectively. The IC50 values obtained in this study are included in Table 6.8. 

 

Table 6.8. Antiplasmodial activity (IC50) against the CQ-resistant (W2), mefloquine (MEF) and CQ resistant 

(Dd2) and sensitive (3D7) P. falciparum strains. 

Compound IC50 / μM (W2) IC50 / μM (Dd2) IC50 / μM (3D7) 

6.60 0.32 2.20 1.20 

CQ 0.14 0.34 0.02 

MEF - 0.09 0.03 

 

 In this case, the synergistic potential of compound 6.60 was evaluated not only in 

the presence of CQ but also of mefloquine. Once again, the analysis of the combination 
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effects of compound 6.60 with both CQ and mefloquine was determined by a modified 

fixed ratio isobologram method337-340. Moreover, the isobologram analysis was based on 

the calculation of the sum of FICs (FICs = IC50 of drug in the combination / IC50 of drug 

when tested alone) or the combination index (CI)340. In this way, this value is able to give 

an indication of whether the interaction is antagonistic (CI ≥ 1.10), additive (0.90 ≤ CI < 

1.10) or synergistic (CI < 0.9)341. 

 The inspection of the isobologram in Figure 6.5 allow to conclude that a synergistic 

effect can be found between the selected compound and mefloquine both in 3D7 and 

Dd2 strains, with CI values of 0.77 and 0.88 respectively. On the other hand, only an 

additive effect can be established between compound 6.60 and CQ for both strains (CI 

values of 1.19 and 1.22 for 3D7 and Dd2 strains, respectively). 

 

 

Figure 6.5. Isobologram showing the relationship between the FIC50s of the quinolines CQ and mefloquine 

and compound 6.60 against Plasmodium falciparum Dd2 and 3D7 strains. Numbers on each plotted point 

correspond to the calculated CI value for the utilized combination ratio. 
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 Although this compound shows to induce a synergistic effect in the presence of 

mefloquine for both tested strains, interestingly, the most promising result was obtained 

with the 3D7 sensitive strain which lacks the mutations related with drug resistance. In 

this way, it is possible to deduce that compound 6.60 may interact with PfMDR1 

transporter responsible for mefloquine resistance in the resistant strain349. In addition, 

the results obtained for 3D7 strain allow to presume that the azaaurone derivative may 

possible induce moderate synergistic effect in the presence of mefloquine by a different 

mechanism. 

 Considering the studies performed in the presence of CQ, the results 

demonstrated no synergistic effect. 

 

6.4. Docking studies over P. falciparum bc1 complex 

Considering the potential of the azaaurone derivatives to act in the bc1 complex, some 

docking studies were performed in the newly built P. falciparum Qo binding pocket. In this 

way, all synthesized compounds were docked into the active site obtained by homology 

modeling using AD as docking tool and the same experimental parameters already 

employed in Chapters 2 and 4. 

 IFigure 6.6 depicts the predicted binding mode of selected azaaurone derivatives. 

The inspection of the binding pose of these compounds allows to conclude that these 

compounds, with exception of compound 6.66, can strongly interact with His181 through 

the carbonyl group of azaaurone scaffold. Moreover, an additional hydrogen bond may 

be established between the Glu272 and the NH moiety in the presence of a water 

molecule. Also, as displayed in Figure 6-B, C and D, strong π-π interactions can also be 

found between the aromatic side chain of the azaaurone derivatives and Phe264. 

 Interestingly, the predicted binding pose of compound 6.66 (Figure 6-A), 

displaying lower inhibitory activity, shows that its arrangement inside the pocket does not 

allow the interaction between the carbonyl moiety and His181 as in compounds 6.60, 

6.75 and 6.77. 
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Figure 6.6. Predicted binding poses of compounds 6.66 (A), 6.60 (B), 6.75 (C), and 6.77 (D). Hydrogen bonds 

are represented by grey lines.  

 

 Additionally, the distance between the NH group of azaaurone scaffold is also 

longer for this compound when compared to the other selected azaaurone derivatives. In 

this way, the reduced favorable interactions between compound 6.66 and the Qo binding 

pocket of bc1 complex may be responsible for the decreased antimalarial activity of this 

compound. However, this docking study is merely suggestive of a potential antimalarial 

mode of action of this class of compounds and, therefore, additional biological studies are 

indispensable to undoubtedly identify the target of azaaurone derivatives. 

A B 

C D 
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6.5. Concluding remarks 

A library of novel azaaurones containing a large structural diversity was synthesized and 

tested against the CQ-resistant P. falciparum W2 strain. Unlike aurones, this scaffold did 

not provide a platform to generate new antimalarial compounds using simple synthetic 

strategies due to several issues related with the synthetic strategies. However, 

azaaurones can be considered a valuable scaffold for developing new potential 

antimalarial drugs. In this way, the derivatization of this scaffold allowed to highly 

increase their antimalarial potential when compared with aurone derivatives. Moreover, 

compound 6.77 emerged as the more active compound with an IC50 value of 110 nM. 

Although not all synthesized compounds were already tested, some SAR elucidation can 

be made (Scheme 6.9). 

 

 

Scheme 6.9. Structure-activity relationships for azaaurone derivatives. 

 

 In this way, it was possible to conclude that the free NH is essential for 

antimalarial activity and that the protection of this group with the acetyl group highly 

decreased the potency of this class of compounds. Moreover, better inhibitory activity 

was obtained when azaaurone scaffold were derivatized at position 3’ of ring B. 

Furthermore, substituents containing fluorine also contributed to increase the 

antimalarial potential of these compounds. 

 Additional biological studies were performed to identify the mechanism of action 

of azaaurone derivatives. More specifically, all compounds were screened against 
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falcipain-2 due to the structural characteristics of this class but only low inhibitory activity 

was found for three inhibitors suggesting that this is not the primary mechanism of action 

of this class of compounds. Although the docking studies suggest that these compounds 

may establish strong interactions with Qo binding site of bc1 complex fitting quite well in 

the pocket, added biological studies need to be done to test for the inhibition of this 

target and, consequently, the mode of action of this class of compounds. 

 Lastly, synergistic studies revealed that this class of compounds may establish a 

synergistic effect with mefloquine when tested against both mefloquine and CQ resistant 

and sensitive P. falciparum strain Dd2 and 3D7. 
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7.  Conclusions  

The first part of this project focused essentially in understanding the mechanism of 

inhibition of bc1 complex inhibitors acting on Qo binding site. For that, an exhaustive study 

was pursued in order to evaluate the potential of the crystallographic structure of S. 

cerevisiae bc1 complex to be used as a model for the P. falciparum homologous. 

Furthermore, a good prediction of the inhibitory activity of the inhibitors selected was 

obtained using the yeast coordinates and, accordingly, this model was accepted to 

explain the molecular basis of inhibition in the Qo active site. Additionally, this model was 

considered a good predictive method to determine the inhibitory potential of promising 

new inhibitors acting in this target by considering the binding free energy values obtained 

through docking calculations. 

 Using the validated model, a virtual screening study over a drug-like database was 

performed allowing to identify five new compounds with moderate antimalarial activity. 

Further studies performed on the Pf cytochrome bc1 complex and on the Dd2-yDHODH 

transgenic cell line showed that the two best hits, compounds 5.17 and 5.19, displayed no 

activity in the mETC. As a result, it was not possible to conclude that the inhibition of this 

target is the primary antimalarial mechanism of action of both compounds. On the other 

hand, compounds 5.19, 5.20 and 5.24 proved to be reasonably active against the 

atovaquone-resistant Pf FCR3 strain and S. cerevisiae. 

 Considering the importance related with the reliability of the target’s 

tridimensional structure, the structure of the Qo binding site of P. falciparum bc1 complex 

was further solved using homology modeling techniques based on the yeast 

crystallographic structure as template. Although this model allowed to improve the 

interactions between the compounds and the binding site, the potential of WR 249685 to 

selectively inhibit this target was not fully explained. In this way, a molecular dynamics 

study can be considered of extreme importance to obtain a more accurate and 

satisfactory tridimensional structure of this target. A second virtual screening study was 

also performed in order to provide a proof-of-concept on an experimental basis. In spite 
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of several interesting potential new inhibitors have been identified, all biological studies 

related with this new set of compounds have still to be performed in order to verify their 

inhibitory potential. 

 In the second part of this project, two libraries of compounds were also 

synthesized. The library comprising aurone derivatives was synthesized with the main 

goal of increasing the chemical space around this known scaffold and also to evaluate its 

potential to be considered a useful platform to apply simple synthetic strategies to 

generate novel bioactive compounds. In this way, the appropriate functionalization of this 

scaffold allowed to obtain diverse compounds with moderate antimalarial activity 

displaying IC50 values in the micromolar range. Unfortunately, although these compounds 

appear to accumulate in the DV of the parasite, their mechanism of action is still unclear 

and additional biological assays need to be done. Moreover, the presence of a Michael 

acceptor in this scaffold and the accumulation in the DV suggest that this class of 

compounds may interact with proteases present in this organelle. 

 The introduction of the amine moiety in the aurone scaffold allowed to increase 

extremely the antimalarial activity of these compounds. Moreover, it was possible to 

obtain compounds displaying IC50 values in the nanomolar range. Considering the 

structural similarity between 4(1H)-quinolones and azaaurones and the docking results 

obtained using the bc1 complex structure obtained by homology modeling, this set of 

compounds may probably interact with this target. Nevertheless, the docking studies are 

only an indication of a possible mechanism of action and additional biological studies are 

essential. As performed for the compounds obtained by virtual screening, the best 

azaaurone derivatives should be tested against the mitochondrial bc1 complex and also 

against the Dd2-yDHODH transgenic cell line in order to assure their inhibitory 

mechanism. 

 Finally, the work developed during this project was fundamental not only to 

understand the mechanism of action of bc1 complex inhibitors regarding the structural 

features of P. falciparum Qo binding site but also to identify potential new antimalarial 

scaffolds that can be effectively further optimized. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCHHAAPPTTEERR  EEIIGGHHTT  
 

 

  



 

 

  



 

 

List of contents 

8.1. Molecular docking over S. cerevisiae bc1 complex               197 

8.2. Virtual screening studies over S. cerevisiae bc1 complex              198 

8.3. Homology model of P. falciparum bc1 complex Qo binding site             199 

8.4. Chemistry                     200 

8.5. Synthesis of quinolone derivatives                 201 

8.6. Synthesis of aurone derivatives                  204 

8.7. Synthesis of azaaurone derivatives                 224 

8.8. Biological Assays                    266 

 

 

8.  Experimental Part 

8.1.  Molecular docking over S. cerevisiae bc1 complex 

8.1.1.  Structure preparation 

The yeast bc1 crystallographic structures were obtained from the RCSB Protein Data 

Bank248 (PDB codes 1KYO and 3CX5). Bound inhibitors and other coordinated molecules 

were removed from the PDB file. All crystallized water molecules were also removed, 

except when a catalytic water molecule was used in the docking calculations. The 

protonation states of the residues were assigned using the Protonate 3D algorithm within 

the Molecular Operating Environment (MOE) program262. Only the polar hydrogens were 

kept, and the correct protonation state of His181 was assigned for each docking 

experiment. The 3D molecular structures of the docked molecules were built and 

parameterized, and energy was minimized within MOE using the MMFF94x force field. In 

the case of floxacrine, which was experimentally assayed as a racemic mixture, separate 

files for each enantiomer were prepared. 
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8.1.2.  Docking of the inhibitors 

AD 4.0 was chosen for the docking calculations within the DOVIS 2.0 package259. The grid 

box was set with 40 points in the x and y and 44 in the z direction. The default value of 

0.375 Å for spacing between grid points was used, leading to a box size of 15 Å in x and y 

and 16.5 Å in z, allowing the crystallographic pose of stigmatellin to be in the middle of 

the box. The Lamarckian genetic algorithm conformational search with a population size 

of 150, 250000 energy evaluations and a maximum of 27000 generations per run, was 

used. 200 docking runs were applied in all calculations. The docking results were ranked 

using the AD 4.0 scoring function, and Pymol 350was used for visual inspection of the 

docking results. 

 

8.2.  Virtual screening studies over S. cerevisiae bc1 complex 

8.2.1.  Structure preparation and docking 

The PDB structure 3CX5 was prepared as described in section 8.5.1. keeping His181 

neutral. A druglike database included in the MOE 2009.10262 package was used for this 

virtual screening study. The PDBQT input files for receptor and ligands were prepared 

using the available tools included in the AD package. All structures were docked and 

scored using AD Vina 1.0.2219. This software was used as the initial screening tool, with 

the center of the docking box defined as above (box dimensions: x=y=15 Å, z=16.5 Å) and 

keeping the other parameters as default.  

The top-ranked ligands given by AD Vina were redocked with AD 4.0 (using DOVIS 2.0 

parallel implementation) and scored with the AD4.0 scoring function. All parameters were 

the same as described in section 8.5.2., leading to the same box size as described for AD 

Vina. The interactions of the ligands with the Qo binding pocket were evaluated using the 

results of this AD screening. 
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8.2.2.  Tested compounds 

Compounds were purchased from commercial vendors such as Asinex351, ChemBrigde352, 

Chemical Block353, Enamine354, InterBioScreen355, LaboTest356, Life Chemicals357, Specs358, 

and TOSLab359. 

 

8.3.  Homology model of P. falciparum bc1 complex Qo binding site 

8.3.1.  Template structures 

Protein sequences of Rieske ISP and cytochrome b, essential elements of bc1 complex Qo 

binding site, from the species Saccharomyces cerevisiae, Bos Taurus, Gallus gallus, 

Rhodobacter sphaeroides and Plasmodium falciparum were obtained from UniProt249. 

Crystal structures of bc1 complex available from the stated sources with stigmatellin co-

crystallized were retrieved as potential templates based on their sequence similarity with 

P. falciparum bc1 complex Qo site. 

 

8.3.2.  Definition of Qo binding site. 

The S. cerevisiae crystal structure and the co-crystallized inhibitor, stigmatellin, were used 

in order to define the Qo binding site. MOE software262 was applied to establish the 

interactions between this inhibitor and the binding pocket using the Ligand Interactions 

tool. The amino acid residues interacting with the stigmatellin were considered to be 

essential to define the pocket.  

 

8.3.3.  Sequence alignment 

Protein sequences of Rieske ISP and cytochrome b from the templates and P. falciparum 

were aligned on the basis of conserved residues using Uniprot tools. 
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8.3.4.  Model building. 

S. cerevisiae high-resolution crystal structure (PDB code 3CX5) of the homologous bc1 

complex was used as template. For structure preparation, bound inhibitors and other 

coordinated molecules were removed from the PDB file. The protonation state of the 

residues was assigned using the Protonate 3D algorithm within the MOE software262 The 

key residue His181 was kept neutral. Only chains E and N, corresponding to Rieske ISP 

and cytochrome b, respectively, were maintained for model generation purposes.  

To obtain the model, the Homology Model tool available in MOE package was applied. 

For that, the two sequences of both Rieske ISP and cytochrome b of P. falciparum were 

aligned with the template (chains E and N) taking into account positions of highly 

conserved residues. Both the [2Fe-2S] cluster and stigmatellin were included in this 

calculation in order to permit induced fit. A total of 25 independent models were 

generated at 300K and the highest scoring intermediate model was chosen as the final 

model. The model was then minimized with stigmatellin in the active site and, after visual 

comparison with all crystal structures considered in this study, the rotamers of Phe254 

and Pro260 were set as adequate. Amino acid residues numbering is according with P. 

falciparum protein sequence.  

 

8.4.  Chemistry 

All reagents and solvents were obtained from commercial suppliers and were used 

without further purification. Melting points were determined using a Kofler camera Bock 

monoscope M and are uncorrected. Merck Silica Gel 60 F254 plates were used as 

analytical TLC and flash column chromatography was performed on Merck Silica Gel (200–

400 mesh). 1H and 13C NMR spectra were recorded on a Bruker 400 Ultra-Shield (400 

MHz). 1H and 13C chemical shifts are expressed in parts per million (ppm, δ) referenced to 

the solvent used and the proton coupling constants (J) in hertz. Proton coupling patterns 

were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of 

doublets (dd), and broad (br). Low-resolution mass spectra were recorded using a VG 
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Quattro LCMS instruments. HR-ESI-MS were recorded on an ESI-TOF spectrometer (Biotof 

II Model, Bruker). Elemental analyses were performed using an EA 1110 CE Instruments 

automatic analyser. The microwave-assisted synthesis was performed in a CEM 

Corporation Discover Labmate. 

 

8.5.  Synthesis of quinolone derivatives 

8.5.1.  Synthesis of compounds 3.26 and 3.35 

The appropriate aniline (1 mmol) was dissolved in diethyl ethoxymethylenemalonate (222 

μL, 1.1 mmol) and the mixture was refluxed for 1 hour. After cooling, the reaction mixture 

was poured in hexane. The solid formed was further filtrated and washed with hexane to 

provide the pure product. 

 

Diethyl 2-((naphthalen-2-ylamino)methylene)malonate (3.26) 

Obtained as white solid, yield 75%, mp 88-90 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 10.89 (d, J = 13.8 Hz, 1H, NH), 8.57 (d, J = 

13.9 Hz, 1H, Hvin), 7.96-7.87 (m, 4H, H1+H2+H3+H8), 7.60 (d, J = 

8.8 Hz, 1H, H6), 7.52 (t, J = 8.8 Hz, 1H, H5), 7.44 (t, J = 8.8 Hz, 

1H, H7), 4.26-4.13 (m, 4H, 2CH2)+ 1.27 (q, J = 6.9 Hz, 6H, 2CH3). 

 

Diethyl 2-((phenylamino)methylene)malonate (3.35) 

Obtained as white solid, yield 75%, mp 49-51 oC. 1H NMR (400 MHz, 

CDCl3) δ = 11.01 (d, J = 13.5 Hz, 1H, NH), 8.54 (d, J = 13.5 Hz, 1H, 

Hvin), 7.37 (t, J = 7.9 Hz, 2H, 2H3), 7.17-7.13 (m, 3H, 2H2+H4), 4.34-

4.22 (m, 4H, 2CH2), 1.40-1.31 (m, 6H, 2CH3). 

 



202  Chapter  8  

 

 

8.5.2.  Synthesis of compounds 3.27 and 3.36 

The appropriate malonate derivative (1 mmol) was dissolved in biphenyl ether (7 mL) was 

the mixture was refluxed for 1 hour. After cooling, the reaction mixture was poured in 

hexane. The solid formed was further filtrated and washed with hexane to provide the 

pure product. 

 

Ethyl 1-hydroxybenzo[f]quinoline-2-carboxylate (3.27) 

Obtained as white solid, yield 32%, mp 170-172 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 12.54 (br, 1H, OH), 10.22 (d, J = 8.6 Hz, 1H, H6), 

8.51 (s, 1H, H3), 8.19 (d, J = 8.7 Hz, 1H, H10), 8.02 (d, J =8.7 Hz, 1H, 

H7), 7.73-7.60 (m, 3H, H6+H8+H9), 4.26 (q, J = 7.1 Hz, 2H, CH2), 1.31 

(t, J = 7.1 Hz, 3H, CH3). 

 

Ethyl 4-hydroxyquinoline-3-carboxylate (3.36) 

Obtained as white solid, yield 50%, mp 255-256 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 12.35 (br, 1H, OH), 8.55 (s, 1H, H2), 8.15 (d, J = 

8.1 Hz, H8), 7.71 (t, J = 8.1 Hz, 1H, H6), 7.62 (d, J = 8.1 Hz, 1H, H5), 

7.41 (t, J = 8.1 Hz, 1H, H7), 4.21 (q, J = 7.1 Hz, 2H, CH2), 1.28 (t, J = 7.1 Hz, 3H, CH3). 

 

8.5.3.  Synthesis of 3-(hydroxymethyl)-6,7-dihydroquinolin-4-ol (3.37) 

To a solution of 6,7-dihydroquinolin-4-ol (500 mg, 3.4 mmol) in KOH 

1M (4.2 mL) was added formaldehyde solution (600 μL). The reaction 

mixture was stirred at 45 oC during 15 hours. After cooling, a solution 

of HCl 2 N (2.1 mL) was added and the aqueous solution was washed with ethyl acetate. 

The solvent was removed under vacuum to provide the pure product. Obtained as a white 

solid, yield 96%, mp 133-135 oC. 1H NMR (400 MHz, MeOH) δ = 8.28 (d, J = 8.3 Hz, 1H, H8), 
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8.05 (s, 1H, H2), 7.68 (t, J = 8.3Hz, 1H, H6), 7.58 (d, J = 8.3 Hz, 1H, H5), 7.39 (t, J = 8.3 Hz, 

1H, H7), 4.64 (s, 2H, CH2). 

 

8.5.4.  Synthesis of 3-(4-hydroxybenzyl)quinolin-4(1H)-one (3.38) 

To a solution of 3-(hydroxymethyl)-6,7-dihydroquinolin-4-ol 

(200 mg, 1.04 mmol) in CH2Cl2 (960 μL) was added phenol 

(100 mg, 1.04 mmol) and HClO4 60% (628 μL). The reaction 

mixture was stirred at room temperature during 48 hours. The mixture was after 

neutralized with a solution of NaOH 1M. The aqueous phase was removed and the 

organic solvent was removed and vacuum. Obtained as a beige oil, yield 72%. 1H NMR 

(400 MHz, MeOH) δ = 8.43 (d, J = 8.2 Hz, 1H, H8), 8.18 (s, 1H, H2), 7.90 (t, J = 8.2 Hz, 1H, 

H6), 7.82 (d, J = 8.2 Hz, 1H, H5), 7.66 (t, J = 8.2 Hz, 1H, H7), 7.13 (d, J = 7.9 Hz, 2H, 2H2’), 

6.76 (d, J = 7.9 Hz, 2H, 2H3’), 4.03 (s, 2H, CH2). 1H NMR (400 MHz, MeOH) δ = 166.80 (Cq), 

156.29 (Cq), 150.89 (Car), 142.29 (Cq), 131.24 (Cq), 129.52 (Car), 129.06 (Car), 128.55 (Car), 

125.31 (Car), 124.23 (Car), 123.02 (Cq), 121.39 (Cq), 115.19 (Car), 28.33 (CH2). 

 

8.5.5.  Synthesis of 3-(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)benzyl)-6,7-

dihydroquinolin-4-ol (3.34) 

To a solution of 3-(4-hydroxybenzyl)-6,7-dihydroquinolin-4-ol 

(84 mg, 0.32 mmol) in absolute ethanol (1 mL) was added N-

methylpiperazine (39 μL, 0.35 mmol) followed by 

formaldehyde solution (28 μL, 0.35 mmol). The reaction 

mixture was refluxed during 5 hours. The solvent was 

removed under vacuum and the crude was dissolved in CH2Cl2 (3 mL). The organic phase 

was extracted with a solution of HCl 1N. The aqueous phase was neutralized with a 

solution of NaHCO3 and washed with CH2Cl2. The solvent was removed under vacuum to 

provide the crude product. Purified by TLC (CH2Cl2/MeOH/TEA = 90:9:1). Obtained as a 

beige oil, yield 32%. 1H NMR (400 MHz, MeOH) δ = 8.26 (d, J = 8.0 Hz, 1H, H8), 7.69 (s, 1H, 
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H2), 7.62 (t, J = 8.0 Hz, 1H, H6), 7.51 (d, J = 8.0 Hz, 1H, H5), 7.35 (t, J = 8.0 Hz, 1H, H7), 7.06 

(d, J = 8.3 Hz, 1H, H6’), 6.99 (s, 1H, H2’), 6.68 (d, J = 8.3 Hz, 1H, H5’), 3.79 (s, 2H, CH2), 3.65 

(s, 2H, CH2-piperazine), 2.56 (br, 8H, piperazine), 2.31 (s, 3H, CH3). 13C NMR (101 MHz, 

MeOH) δ = 166.72 (Cq), 156.00 (Cq), 150.78 (Car), 142.22 (Cq), 132.34 (Cq), 129.56 (Car), 

128.78 (Car), 127.55 (Car), 126.89 (Car), 125.93 (Car), 125.33 (Cq), 124.62 (Car), 123.34 (Cq), 

121.78 (Cq), 116.39 (Car), 59.23 (CH2-piperazine), 54.67 (piperazine), 53.02 (piperazine), 

46.01 (CH3), 28.87 (CH2). 

 

8.6.  Synthesis of aurone derivatives 

8.6.1.  General procedure for the synthesis of aurones 5.24 to 5.29 

To a solution of benzofuran-3(2H)-one (134 mg, 1 mmol) in dry methanol (20 mL) at room 

temperature was added the appropriate aldehyde (1.2 mmol) and Al2O3 (1 mmol). The 

mixture was refluxed, under N2, for 48 hours. After, the solvent was removed and the 

solid residue was dissolved in CH2Cl2. The organic layer was washed with water, dried 

with anhydrous Na2SO4 and concentrated under reduced pressure to give the crude 

product.  

 

(Z)-2-benzylidenebenzofuran-3(2H)-one (5.24) 

Purified by flash chromatography (Hexane/EtOAC = 90:10). Obtained 

as yellow solid, yield 41%, mp 113-114 oC. 1H NMR (400 MHz, CDCl3) 

δ = 7.93 (d, J = 7.1 Hz, 2H, 2H2’), 7.80 (d, J = 7.6 Hz, 1H, H4), 7.66 (d, J 

= 7.8 Hz, 1H, H6), 7.49-7.39 (m, 3H, 2H3’+H4’ ), 7.34 (d, J = 7.8 Hz, 1H, 

H7’), 7.23 (t, J = 7.6 Hz, 1H), 6.91 (s, 1H, Hvin). 13C NMR (101 MHz, CDCl3) δ = 186.22 (C=O), 

167.63 (Cq), 138.77 (Car), 132.71 (Car), 132.09 (Car), 131.23 (Cq), 130.04 (Car), 129.42 (Cq), 

125.38 (Car), 124.98 (Car), 122.52 (Cq), 114.24 (Car), 114.15 (Cvin). Anal. Calcd. 

(C15H10O2•0.15H2O): C, 80.09; H, 4.62%. Found: C, 80.35; H, 4.97%. 
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(Z)-2-(2-bromobenzylidene)benzofuran-3(2H)-one (5.25) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). Obtained 

as yellow solid, yield 55%, mp 169-171 oC. 1H NMR (400 MHz, 

DMSO-d6): δ = 8.32 (dd, J1 = 7.9 Hz, J2 = 1.5 Hz, 1H, H4), 7.85-7.79 

(m, 3H, H6+H3’+H5’), 7.59-7.56 (m, 2H, H7+H6’), 7.40-7.33 (m, 2H, 

H5+H4’), 7.07 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): δ = 184.15 (C=O), 166.14 (Cq), 

147.66 (Cq), 138.55 (Car), 133.87 (Car), 132.47 (Car), 132.09 (Car), 131.51 (Cq), 128.88 (Car), 

126.06 (Cq), 125.03 (Car), 124.78 (Car), 121.02 (Cq), 113.78 (Car), 109.23 (Cvin). ESI-MS m/z 

(abund.): 625 [M+M+Na]+ (100). Anal. Calcd. (C15H9BrO2): C, 59.82; H, 3.02%. Found: C, 

59.67; H, 3.13%. 

 

(Z)-2-(3-bromobenzylidene)benzofuran-3(2H)-one (5.26) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as yellow solid, yield 54%, mp 123-124 oC. 1H NMR (400 

MHz, DMSO-d6): δ = 8.18 (s, 1H, H2’), 8.03 (d, J = 7.9 Hz, 1H, H4), 

7.83-7.81 (m, 2H, H6+H4’), 7.66 (d, J = 7.9 Hz, 1H, H7), 7.61 (d, J = 

8.2 Hz, 1H, H6’), 7.48 (t, J = 7.9 Hz, 1H, H5), 7.34 (t, J = 8.2 Hz, 1H, H5’), 6.96 (s, 1H, Hvin). 13C 

NMR (101 MHz, DMSO-d6): δ = 184.15 (C=O), 166.02 (Cq), 147.31 (Cq), 138.42 (Car), 134.81 

(Cq), 133.88 (Car), 133.03 (Car), 131.56 (Car), 130.59 (Car), 124.90 (Car), 124.67 (Car), 122.68 

(Cq), 121.14 (Cq), 113.82 (Car), 110.80 (Cvin). ESI-MS m/z (abund.): 625 [M+M+Na]+ (100). 

Anal. Calcd. (C15H9BrO2): C, 59.82; H, 3.02%. Found: C, 59.81; H, 3.05%. 

 

(Z)-2-(4-bromobenzylidene)benzofuran-3(2H)-one (5.27) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). Obtained 

as yellow solid, yield 56%, mp 180-182 oC. 1H NMR (400 MHz, 

DMSO-d6): δ =7.91 (d, J = 8.3 Hz, 2H, H2’), 7.84-7.80 (m, 2H, H4+H6), 

7.72 (d, J = 8.3 Hz, 2H, H3’), 7.56 (d, J = 8.5 Hz, 1H, H7), 7.33 (t, J = 7.5 

Hz, 1H, H5), 6.95 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): δ = 183.66 (C=O), 165.47 (Cq), 
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146.59 (Cq), 137.88 (Car), 133.14 (Car), 132.10 (Car), 131.21 (Cq), 124.42 (Car), 124.16 (Car), 

123.65 (Cq), 120.78 (Cq), 113.28 (Car), 110.92 (Cvin). ESI-MS m/z (abund.): 625 [M+M+Na]+ 

(100). Anal. Calcd. (C15H9BrO2): C, 59.82; H, 3.02%. Found: C, 59.88; H, 3.04%. 

 

(Z)-2-(4-(dimethylamino)benzylidene)benzofuran-3(2H)-one (5.28) 

Purified by flash chromatography (Hexane/CH2Cl2 = 50:50). 

Obtained as orange solid, 49% yield, mp 150-152 oC. 1H NMR (400 

MHz, CDCl3): δ = 7.85 (d, J = 8.8 Hz, 2H, 2H2’), 7.81 (d, J = 7.5 Hz, 

1H, H4), 7.61 (t, J = 8.3 Hz, 1H, H6), 7.32 (d, J = 8.3 Hz, 1H, H7), 7.19 

(t, J = 7.5 Hz, 1H, H5), 6.93 (s, 1H, Hvin), 6.75 (d, J = 8.8 Hz, 2H, 2H3’), 

3.07 (s, 6H, 2CH3). 13C NMR (101 MHz, CDCl3): δ = 184.14 (C=O), 165.42 (Cq), 151.47 (Cq), 

145.16 (Cq), 135.96 (Car), 133.78 (Car), 124.46 (Car), 123.02 (Car), 122.59 (Cq), 120.15 (Cq), 

115.45 (Cvin), 112.90 (Car), 112.08 (Car), 40.23 (CH3). Anal. Calcd. (C17H15NO2•0.15H2O): C, 

76.18; H, 5.77, N, 5.28%. Found: C, 76.20; H, 5.60, N, 5.33%. 

 

(Z)-2-benzylidene-7-methoxybenzofuran-3(2H)-one (5.29) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). Obtained 

as yellow solid, 62% yield, mp 168-169 oC. 1H NMR (400 MHz, 

CDCl3): δ = 8.00 (d, J = 7.3 Hz, 2H, 2H2’), 7.56-7.47 (m, 4H, 

2H3’+H4+H4’), 7.35 (d, J = 7.8 Hz, 1H, H6), 7.26 (t, J = 7.8 Hz, 1H, H5), 

6.99 (s, 1H), 4.01 (s, 3H). 13C NMR (101 MHz, DMSO-d6): δ = 183.88 (C=O), 154.91 (Cq), 

146.32 (Cq), 145.62 (Cq), 131.89 (Cq), 131.44 (Car), 130.29 (Car), 129.17 (Car), 129.71 (Car), 

122.16 (Cq), 119.64 (Car), 115.17 (Car), 112.75 (Cvin), 56.35 (CH3). Anal. Calcd. (C16H12O3): C, 

76.18; H, 4.80%. Found: C, 76.32; H, 5.03%. 
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8.6.2.  General procedure for the synthesis of aurones 5.30 and 5.31 

To a solution of 6-hydroxybenzofuran-3(2H)-one (0.57 mmol) in glacial acetic acid (5.7 

mL) at room temperature was added the appropriate benzaldehyde (0.68 mmol) and HCl 

(3 drops). The reaction mixture was stirred for 4 hours at room temperature. After, the 

mixture was dropped in cold water and the precipitate formed was filtered and washed 

with water. 

 

(Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one (5.30) 

Obtained as yellow solid, 99% yield, mp 228-230 oC. 1H NMR (400 

MHz, DMSO) δ = 11.26 (s, 1H), 7.95 (d, J = 7.4 Hz, 1H, 2H2’), 7.64 

(d, J = 8.4 Hz, 1H, H4), 7.52-7.42 (m, 3H, 2H3’+H4’), 6.81-6.80 (m, 

2H, H7+Hvin), 6.73 (d, J = 8.4 Hz, 1H, H5). 13C NMR (101 MHz, 

DMSO) δ = 181.51 (C=O), 168.02 (Cq), 166.67 (Cq), 147.41 (Cq), 132.11 (Cq), 131.10 (Car), 

129.71 (Car), 129.03 (Car), 126.07 (Car), 113.15 (Car), 112.75 (Cq), 110.38 (Cvin), 98.69 (Car). 

Anal. Calcd. (C15H10O3•0.15H2O): C, 74.77; H, 4.32%. Found: C, 74.50; H, 4.19%. 

 

(Z)-2-(4-(dimethylamino)benzylidene)-6-hydroxybenzofuran-3(2H)-one (5.31) 

Obtained as orange solid, 71% yield, mp 235-237 oC. 1H NMR 

(400 MHz, CDCl3): δ = 10.00 (s, 1H, OH), 7.73 (d, J = 8.8 Hz, 2H, 

2H2’), 7.55 (d, J = 8.3 Hz, 1H, H4), 6.70-6.61 (m, 5H, 

H5+H7+2H3’+Hvin), 2.99 (s, 6H, 2CH3). 13C NMR (101 MHz, CDCl3): 

δ = 182.10 (C=O), 167.38 (Cq), 165.43 (Cq), 150.17 (Cq), 145.56 

(Cq), 132.77 (Car), 125.15 (Car), 119.69 (Cq), 114.04 (Cq), 112.79 (Car), 112.27 (Car), 111.59 

(Cvin), 98.40 (2CH3). Anal. Calcd. (C17H15NO3): C, 72.58; H, 5.39, N, 4.98%. Found: C, 72.19; 

H, 5.31, N, 5.09%. 
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8.6.3.  General procedure for the synthesis of aurones derivatives 5.32-5.38 and 5.45-

5.54 via Suzuki Coupling 

To a solution of the appropriate aurone derivative (0.23 mmol) in dioxane (2.3 mL) was 

added Pd(PPh3)2Cl2 (0.023 mmol) and Na2CO3 1M (690 μL) followed by the proper boronic 

acid (0.28 mmol). The resulting mixture was degassed and stirred at 100 oC for 3 hours 

under N2. After cooling to room temperature, the reaction mixture was diluted with 

CH2Cl2, filtered under celite and concentrated under pressure to give the crude product. 

 

(Z)-2-(biphenyl-4-ylmethylene)benzofuran-3(2H)-one (5.32) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow solid, 77% yield, mp 133-135 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.10 (d, J = 8.0 Hz, 2H, 2H2’), 7.85-7.75 

(m, 6H, H4+H6+2H3’+2H2’’), 7.61 (d, J = 8.4 Hz, 1H, H7), 7.52-7.49 

(m, 2H, 2H3’’), 7.41 (m, 1H, H4’’), 7.34 (t, J = 7.3 Hz, 1H, H5), 7.03 

(s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): δ = 183.60 (C=O), 165.45 (Cq), 146.42 (Cq), 

141.50 (Cq), 139.11 (Cq), 137.73 (Car), 132.08 (Car), 131.08 (Car), 129.10 (Car), 128.15 (Car), 

127.23 (Car), 126.82 (Car), 124.38 (Car), 124.07 (Car), 120.94 (Cq), 113.30 (Car), 111.97 (Cvin). 

Anal. Calcd. (C21H14O2•0.15H2O): C, 83.78; H, 4.80%. Found: C, 83.67; H, 4.89%. 

 

(Z)-2-((4'-fluorobiphenyl-4-yl)methylene)benzofuran-3(2H)-one (5.33) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow solid, 66% yield, mp 174-175 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.10 (d, J = 8.2 Hz, 2H, 2H2’), 7.84-7.80 

(m, 6H, H4+H6+2H3’+2H2’’), 7.61 (d, J = 8.5 Hz, 1H, H7), 7.36-7.31 

(m, 3H, H5+2H3’’), 7.03 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-

d6): δ = 183.61 (C=O), 165.45 (Cq), 162.27 (CF), 146.43 (Cq), 

140.41 (Cq), 137.75 (Car), 135.60 (Cq), 132.08 (Car), 131.05 (Cq), 128.90 (Car), 127.18 (Car), 
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124.39 (Car), 124.09 (Car), 120.94 (Cq), 115.94 (Car), 113.31 (Car), 111.90 (Cvin). Anal. Calcd. 

(C21H13FO2•0.1H2O): C, 79.28; H, 4.19%. Found: C, 79.07; H, 4.33%. 

 

(Z)-2-((4'-chlorobiphenyl-4-yl)methylene)benzofuran-3(2H)-one (5.34) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow solid, 64% yield, mp 171-173 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.10 (d, J = 8.3 Hz, 2H, 2H2’), 7.86-7.79 

(m, 6H, H4+H6+2H3’+2H2’’), 7.61 (d, J = 8.7 Hz, 1H, H7), 7.56 (d, J = 

8.5 Hz, 2H, 2H3’’), 7.35 (t, J = 7.4 Hz, 1H, H5), 7.03 (s, 1H, Hvin). 13C 

NMR (101 MHz, DMSO-d6): δ = 184.05 (C=O), 165.91 (Cq), 146.95 

(Cq), 140.52 (Cq), 138.35 (Cq), 138.20 (Car), 133.47 (Cq), 132.53 (Car), 131.86 (Cq), 129.49 

(Car), 129.01 (Car), 127.63 (Car), 124.82 (Car), 124.54 (Car), 121.36 (Cq), 113.74 (Car), 112.22 

(Cvin). Anal. Calcd. (C21H13ClO2•0.15H2O): C, 75.18; H, 4.00%. Found: C, 75.16; H,3.97%. 

 

(Z)-4'-((3-oxobenzofuran-2(3H)-ylidene)methyl)biphenyl-4-carbaldehyde (5.35) 

Purified by flash chromatography (Hexane/EtOAc = 90:20). 

Obtained as yellow solid, 83% yield, mp 189-190 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 10.07 (s, 1H, Hald), 8.14 (d, J = 8.3 Hz, 

2H, 2H2’), 8.04-7.99 (m, 4H, 2H2’’+2H3’’), 7.94 (d, J = 8.3 Hz, 2H, 

2H3’), 7.83-7.81 (m, 2H, H4+H6), 7.61 (d, J = 8.4 Hz, 1H, H7), 7.35 

(t, J = 7.4 Hz, 1H, H5), 7.04 (s, 1H, Hvin). 13C NMR (101 MHz, 

DMSO-d6): δ = 192.81 (Cald), 183.69 (C=O), 165.52 (Cq), 146.70 (Cq), 144.76 (Cq), 139.95 

(Cq), 137.85 (Car), 135.49 (Cq), 132.22 (Cq), 132.13 (Car), 130.26 (Car), 127.75 (Car), 127.53 

(Car), 124.45 (Car), 124.17 (Car), 120.89 (Cq), 113.34 (Car), 111.61 (Cvin). Anal. Calcd. 

(C21H14O3•0.75H2O): C, 77.74; H, 4.61%. Found: C, 77.43; H, 4.47%. 
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(Z)-2-(4-benzylbenzylidene)benzofuran-3(2H)-one (5.36) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow solid, 70% yield, 154-156 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 7.93 (d, J = 7.9 Hz, 2H, 2H2’), 7.81-

7.79 (m, 2H, H4+H6), 7.56 (d, J = 8.6 Hz, 1H, H7), 7.39 (d, J = 

7.9 Hz, 2H, 2H3’), 7.34-7.25 (m, 5H, 2H2’’+2H3’’+H4’’), 7.20 (t, J 

= 7.2 Hz, 1H, H5), 6.93 (s, 1H, Hvin), 4.01 (s, 2H, CH2). 13C NMR (101 MHz, DMSO-d6): δ = 

183.60 (C=O), 165.43 (Cq), 146.11 (Cq), 143.86 (Cq), 140.71 (Cq), 137.69 (Car), 131.67 (Car), 

129.75 (Cq), 129.48 (Car), 128.77 (Car), 128.54 (Car), 126.16 (Car), 124.33 (Car), 124.01 (Car), 

120.95 (Cq), 113.26 (Car), 112.33 (Cvin), 41.01 (CH2). Anal. Calcd. (C22H16O2•0.15H2O): C, 

83.86; H, 5.23%. Found: C, 83.87; H, 5.12%. 

 

(Z)-2-(4-(quinolin-3-yl)benzylidene)benzofuran-3(2H)-one (5.37) 

Purified by flash chromatography (Hexane/EtOAc = 70:30). 

Obtained as yellow solid, 87% yield, mp 205-207 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 9.35 (s, 1H, H2’’), 8.77 (s, 1H, H4’’), 

8.19 (d, J = 8.3 Hz, 2H, 2H2’), 8.09-8.07 (m, 4H, H4+2H3’+H8’’), 

7.86-7.78 (m, 3H, H6+H6’’+H7’’), 7.69-7.62 (m, 2H, H7+H5’’), 

7.35 (t, J = 7.4 Hz, 1H, H5), 7.07 (s, 1H, Hvin). 13C NMR (101 

MHz, DMSO-d6): δ = 184.08 (C=O), 165.93 (Cq), 149.78 (Car), 147.47 (Cq), 147.07 (Cq), 

138.80 (Cq), 138.24 (Car), 133.68 (Car), 132.65 (Car), 132.24 (Cq), 130.38 (Car), 129.15 (Car), 

129.02 (Car), 128.12 (Car), 128.05 (Cq), 127.65 (Car), 127.62 (Car), 124.86 (Car), 124.58 (Car), 

121.35 (Cq), 113.78 (Car), 112.15 (Cvin). Anal. Calcd. (C24H15NO2•0.4H2O): C, 80.87; H, 4.48; 

N, 3.93%. Found: C, 80.67; H, 4.27; N, 4.06%. 
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(Z)-2-(4-(6-aminopyridin-3-yl)benzylidene)benzofuran-3(2H)-one (5.38) 

Purified by flash chromatography (EtOAc/MeOH = 97:3). 

Obtained as orange solid, 99% yield, mp 195-197 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.38 (s, 1H, H2’’), 8.04 (d, J = 8.3 Hz, 

2H, 2H2’), 7.84-7.80 (m, 3H, H4+H6+H6’’), 7.76 (d, J = 8.3 Hz, 2H, 

2H3’), 7.61 (d, J = 8.5 Hz, 1H, H7), 7.34 (t, J = 7.4 Hz, 1H, H5), 

7.00 (s, 1H, Hvin), 6.55 (d, J = 8.6 Hz, 1H, H5’’), 6.24 (s, 2H, NH2). 

13C NMR (101 MHz, DMSO-d6): δ = 183.91 (C=O), 165.75 (Cq), 160.10 (Cq), 146.75 (Car), 

146.52 (Car), 140.16 (Cq), 138.03 (Car), 135.74 (Car), 132.62 (Car), 130.16 (Cq), 125.95 (Car), 

124.75 (Car), 124.44 (Car), 123.02 (Cq), 121.46 (Cq), 113.72 (Car), 112.83 (Cvin), 108.48 (Car). 

Anal. Calcd. (C20H14N2O2•0.4H2O): C, 74.70; H, 4.65; N, 8.71%. Found: C, 74.57; H, 4.43; N, 

8.79%. 

 

(Z)-2-(biphenyl-3-ylmethylene)benzofuran-3(2H)-one (5.45) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow solid, 71% yield, mp 123-125 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.24 (s, 1H, H2’), 8.08 (d, J = 7.7 Hz, 

1H, H4), 7.84-7.80 (m, 2H, H6+H4’), 7.77-7.73 (m, 3H, H6’+H2’’), 

7.64-7.60 (m, 2H, H5+H5’), 7.54-7.50 (m, 2H, H4+H3’’), 7.42 (t, J = 7.3 Hz, 1H, H4’’), 7.34 (t, J 

= 7.4 Hz, 1H, H7), 7.07 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): δ = 183.79 (C=O), 

165.59 (Cq), 146.57 (Cq), 140.96 (Cq), 139.51 (Cq), 137.84 (Car), 132.62 (Cq), 130.06 (Car), 

129.99 (Car), 129.76 (Car), 129.13 (Car), 128.47 (Car), 127.90 (Car), 126.87 (Car), 124.43 (Car), 

124.13 (Car), 120.89 (Cq), 113.41 (Car), 112.27 (Cvin). Anal. Calcd. (C21H14O2•0.1H2O): C, 

84.03; H, 4.78%. Found: C, 83.94; H, 4.80%. 
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(Z)-2-((4'-fluorobiphenyl-3-yl)methylene)benzofuran-3(2H)-one (5.46) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow solid, 65% yield, mp 103-105 oC. 1H 

NMR (400 MHz, DMSO-d6): δ = 8.22 (s, 1H, H2’), 8.08 (d, J = 

7.7 Hz, 1H, H4), 7.81-7.78 (m, 5H, H6+H4’+H6’+2H2’’), 7.64-

7.60 (m, 2H, H5+H5’), 7.37-7.32 (m, 3H, H7+2H3’’), 7.06 (s, 1H, Hvin). 13C NMR (101 MHz, 

DMSO-d6): δ = 183.78 (C=O), 165.59 (Cq), 162.15 (CF), 146.58 (Cq), 139.89 (Cq), 137.85 

(Car), 135.95 (Cq), 132.63 (Cq), 129.96 (Car), 129.78 (Car), 128.93 (Car), 128.85 (Car), 128.38 

(Car), 124.43 (Car), 124.14 (Car), 120.88 (Cq), 116.03-115.82 (Car), 113.41 (Car), 112.18 (Cvin). 

Anal. Calcd. (C21H13FO2•0.1H2O): C, 79.28; H, 4.19%. Found: C, 79.23; H, 4.15%. 

 

(Z)-2-((4'-chlorobiphenyl-3-yl)methylene)benzofuran-3(2H)-one (5.47) 

Purified by flash chromatography (Hexane/EtOAc = 

85:15). Obtained as yellow solid, 51% yield, mp 187-189 

oC. 1H NMR (400 MHz, DMSO-d6): δ = 8.24 (s, 1H, H2’), 8.09 

(d, J = 7.7 Hz, 1H, H4), 7.85-7.76 (m, 5H, H6+H4’+H6’+2H2’’), 

7.65-7.56 (m, 4H, H5+H7+2H3’’), 7.34 (t, J = 7.4 Hz, 1H, H5’), 7.06 (s, 1H, Hvin). 13C NMR (101 

MHz, DMSO-d6): δ = 183.82 (C=O), 165.62 (Cq), 146.64 (Cq), 139.63 (Cq), 138.33 (Cq), 

137.91 (Car), 132.83 (Cq), 132.73 (Cq), 130.35 (Car), 129.94 (Car), 129.89 (Car), 129.11 (Car), 

128.67 (Car), 128.38 (Car), 124.47 (Car), 124.19 (Car), 120.88 (Cq), 113.44 (Car), 112.11 (Cvin). 

Anal. Calcd. (C21H13ClO2•0.15H2O): C, 75.18; H, 4.00%. Found: C, 74.79; H, 4.20%. 

 

(Z)-3'-((3-oxobenzofuran-2(3H)-ylidene)methyl)biphenyl-4-carbaldehyde (5.48) 

Purified by flash chromatography (Hexane/EtOAc = 

75:25). Obtained as yellow solid, 63% yield, mp 193-195 

oC. 1H NMR (400 MHz, DMSO-d6): δ = 10.09 (s, 1H, ald), 

8.35 (s, 1H, H2’), 8.15 (d, J = 7.8 Hz, 1H, H4), 8.06-7.98 (m, 

4H, 2H2’’+2H3’’), 7.88-7.82 (m, 3H, H6+H4’+H6’), 7.68 (t, J = 7.8 Hz, 1H, H5), 7.62 (d, J = 8.4 
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Hz, 1H, H7), 7.35 (t, J = 7.4 Hz, 1H, H5’), 7.09 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): δ 

=192.83 (Cald), 183.76 (C=O), 165.59 (Cq), 146.66 (Cq), 145.13 (Cq), 139.54 (Cq), 137.86 (Car), 

135.38 (Cq), 132.81 (Cq), 130.97 (Car), 130.29 (Car), 128.73 (Car), 127.95 (Car), 127.55 (Car), 

124.43 (Car), 124.15 (Car), 120.84 (Cq), 113.42 (Car), 111.89 (Cvin). Anal. Calcd. 

(C22H14O3•0.25H2O): C, 79.86; H, 4.43%. Found: C, 79.48; H, 4.57%. 

 

(Z)-2-(3-benzylbenzylidene)benzofuran-3(2H)-one (5.49) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow oil, 60%. 1H NMR (400 MHz, DMSO-d6): δ 

= 7.86-7.79 (m, 4H, H4+H6+H2’+H6’), 7.52 (t, J = 8.1 Hz, 1H, 

H7), 7.44 (t, J = 7.6 Hz, 1H, H5), 7.34-7.27 (m, 6H, 

H4’+2H2’’+2H3’’+H4’’), 7.23-7.22 (m, 1H, H5’), 6.90 (s, 1H, Hvin), 4.02 (s, 2H, CH2). 13C NMR 

(101 MHz, DMSO-d6): δ = 183.80 (C=O), 165.54 (Cq), 146.41 (Cq), 142.41 (Cq), 140.94 (Cq), 

137.90 (Car), 132.11 (Cq), 131.77 (Car), 130.72 (Car), 129.32 (Car), 129.26 (Car), 128.93 (Car), 

128.67 (Car), 126.26 (Car), 124.48 (Car), 124.17 (Car), 120.94 (Cq), 113.33 (Car), 112.39 (Cvin), 

41.00 (CH2). HRMS calc. (C22H17O2): 313.1223. Found: 313.1226. 

 

(Z)-2-(3-(quinolin-3-yl)benzylidene)benzofuran-3(2H)-one (5.50) 

Purified by flash chromatography (Hexane/EtOAc = 

80:20). Obtained as yellow solid, 68% yield, mp 195-196 

oC. 1H NMR (400 MHz, pyridine-d6): δ = 9.53 (s, 1H, H2’’), 

8.53 (s, 1H, H4’’), 8.42 (d, J = 8.0 Hz, 1H, H4), 8.37 (s, 1H, 

H2’), 8.19 (d, J = 7.9 Hz, 1H, H4’), 8.05 (d, J = 7.9 Hz, 1H, H5’’), 7.90 (d, J = 7.7 Hz, 1H, H8’’), 

7.85 (d, J = 7.7 Hz, 1H, H7’’), 7.78 (t, J = 8.0 Hz, 1H, H5), 7.67-7.61 (m, 3H, H5’+H6’+H6’’), 7.40 

(d, J = 8.1 Hz, 1H, H7), 7.26-7.18 (m, 2H, H6+Hvin). 13C NMR (101 MHz, pyridine-d6): δ = 

184.80 (C=O), 166.74 (Cq), 148.56 (Cq), 147.97 (Cq), 139.23 (Cq), 137.84 (Car), 134.13 (Cq), 

133.94 (Car), 133.66 (Cq), 131.43 (Car), 131.21 (Car), 130.56 (Car), 130.29 (Car), 130.13 (Car), 

129.46 (Car), 129.11 (Car), 128.83 (Cq), 127.83 (Car), 125.05 (Car), 124.45 (Car), 124.17 (Car), 
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122.24 (Cq), 113.85 (Car), 112.55 (Cvin). Anal. Calcd. (C24H15NO2•0.3H2O): C, 81.24; H, 4.44; 

N, 3.95%. Found: C, 81.59; H, 4.83; N, 3.92%. 

 

(Z)-2-(3-(6-aminopyridin-3-yl)benzylidene)benzofuran-3(2H)-one (5.51) 

Purified by flash chromatography (CH2Cl2/MeOH = 97:3). 

Obtained as yellow solid, 76% yield, mp 187-189 oC. 1H 

NMR (400 MHz, DMSO-d6): δ = 8.32 (s, 1H, H2’’), 8.14 (s, 

1H, H2’), 7.98 (d, J = 7.7 Hz, 1H, H4), 7.83-7.80 (m, 2H, 

H4’+H6’), 7.77 (dd, J1 = 8.6 Hz, J2 = 2.5 Hz, 1H, H6’’), 7.67 (d, J = 7.8 Hz, 1H, H7), 7.63-7.61 (m, 

1H, H6), 7.55 (t, J = 7.7 Hz, 1H, H5), 7.34 (t, J = 7.3 Hz, 1H, H5’), 7.03 (s, 1H, Hvin), 6.56 (d, J = 

8.6 Hz, 1H, H5’’), 6.15 (s, 2H, NH2). 13C NMR (101 MHz, DMSO-d6): δ = 184.17 (C=O), 165.97 

(Cq), 159.89 (Cq), 145.87 (Cq), 146.35 (Car), 138.19 (Car), 135.87 (Car), 132.93 (Cq), 131.99 

(Car), 130.09 (Car), 129.28 (Car), 127.50 (Car), 124.80 (Car), 123.52 (Cq), 121.31 (Cq), 113.82 

(Car), 112.89 (Cvin), 108.49 (Car). Anal. Calcd. (C20H14N2O2•0.5H2O): C, 74.28; H, 4.69; N, 

8.67%. Found: C, 74.43; H, 4.55; N, 8.97%. 

 

(Z)-2-benzylidene-6-phenylbenzofuran-3(2H)-one (5.52) 

Purified by flash chromatography (Hexane/CH2Cl2 = 70:30). 

Obtained as yellow solid, 78% yield, mp 141-143 oC. 1H NMR 

(400 MHz, CDCl3): δ = 7.95 (d, J = 7.2 Hz, 2H, 2H2’), 7.87 (d, J = 

7.9 Hz, 1H, H4), 7.57 (d, J = 7.0 Hz, 2H, 2H2’’), 7.56 (s, 1H, H7), 

7.53-7.40 (m, 7H, H5+2H3’+H4’+2H2’’+H4’’), 6.92 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): 

δ = 183.14 (C=O), 166.24 (Cq), 149.52 (Cq), 146.92 (Cq), 138.58 (Cq), 131.99 (Car), 131.44 

(Car), 130.16 (Car), 129.23 (Car), 129.20 (Car), 129.10 (Car), 127.44 (Car), 124.79 (Car), 122.86 

(Car), 124.48 (Car), 119.81 (Cq), 112.18 (Car), 111.06 (Cvin). Anal. Calcd. (C21H14O2•0.6H2O): 

C, 81.58; H, 4.97%. Found: C, 81.41; H, 5.28%. 

 



Chapter  8 
 

215  

 

 

(Z)-2-benzylidene-6-(4-fluorophenyl)benzofuran-3(2H)-one (5.53) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow solid, 66% yield, mp 172-174 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.04 (d, J = 7.1 Hz, 2H, 2H2’), 7.94-

7.90 (m, 3H, H7+2H2’’), 7.87 (d, J = 8.0 Hz, 1H, H4), 7.64 (dd, J1 

= 8.0 Hz, J2 = 1.3 Hz, 1H, H5), 7.55-7.48 (m, 3H, 2H3’+H4’), 7.38 (t, J = 8.84 Hz, 2H, 2H3´´), 

6.98 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6): δ = 183.10 (C=O), 166.22 (Cq), 164.08-

161.63 (Cq), 148.35 (Cq), 146.91 (Cq), 135.03 (Cq), 131.98 (Cq), 131.43 (Car), 130.17 (Car), 

129.73-129.64 (Car), 129.10 (Car), 124.81 (Car), 122.78 (Car), 119.76 (Cq), 116.21-115.99 

(Car), 112.21 (Car), 111.04 (Cvin). Anal. Calcd. (C21H13FO2•0.3H2O): C, 78.39; H, 4.27%. 

Found: C, 78.14; H, 4.22%. 

 

(Z)-6-(6-aminopyridin-3-yl)-2-benzylidenebenzofuran-3(2H)-one (5.54) 

Purified by flash chromatography (CH2Cl2/MeOH = 98:2). 

Obtained as orange solid, 98% yield, mp 191-192 oC. 1H 

NMR (400 MHz, DMSO-d6): δ = 8.50 (s, 1H, H2’), 8.02 (d, J = 

7.2 Hz, 2H, 2H2’), 7.92 (dd, J1 = 8.7 Hz, J2 = 2.5  Hz, 1H, H6’’), 

7.82-7.78 (m, 1H, H4+H7), 7.58 (d, J = 8.1 Hz, 1H, H5), 7.53 (t, J = 7.2 Hz, 2H, 2H3´), 7.48-

7.45 (m, 1H, H4´), 6.92 (s, 1H, Hvin), 6.56 (d, J = 8.7 Hz, 1H, H5’’), 6.44 (s, 2H, NH2). 13C NMR 

(101 MHz, DMSO-d6): δ = 182.75 (C=O), 166.53 (Cq), 160.35 (Cq), 147.83 (Cq), 147.36 (Car), 

147.12 (Cq), 135.82 (Car), 132.09 (Cq), 131.32 (Car), 130.01 (Car), 129.08 (Car), 124.76 (Car), 

121.94 (Cq), 121.00 (Car), 118.51 (Cq), 111.52 (Cvin), 108.53 (Car), 108.02 (Car). Anal. Calcd. 

(C20H14N2O2•0.3H2O): C, 75.12; H, 4.61; N, 8.76%. Found: C, 74.91; H, 4.55; N, 8.64%. 

 

8.6.4.  General procedure for the synthesis of aurones derivatives 5.39 and 5.40 via 

Buchwald Coupling 

(Z)-2-(4-bromobenzylidene)benzofuran-3(2H)-one (5.27) (0.23 mmol), Pd2(dba)3 (0.0115 

mmol), (R)-BINAP (0.075 mmol) and NaOtBu (0.322 mmol) were dissolved in dry toluene 
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(2.3 mL). The resulting mixture was degassed and the appropriate amine (0.276 mmol) 

was added. The mixture was stirred at 100 oC for 15 minutes under MW conditions. After 

cooling to room temperature, the reaction mixture was diluted with Et2O, filtered under 

celite and concentrated under pressure to give the crude product. 

 

(Z)-2-(4-(phenylamino)benzylidene)benzofuran-3(2H)-one (5.39) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as orange solid, 71% yield, mp 191-192 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.87 (s, 1H, NH), 7.90 (d, J = 8.7 Hz, 

2H, 2H2’), 7.79-7.76 (m, 2H, H4+H6), 7.55 (d, J = 7.4 Hz, 1H, H7), 

7.34-7.29 (m, 3H, 2H2’’+H4’’), 7.20 (d, J = 7.5 Hz, 2H, 2H3’’), 7.15 

(d, J = 8.7 Hz, 2H, 2H3’), 6.98 (t, J = 7.2 Hz, 1H, H5), 6.91 (s, 1H, Hvin). 13C NMR (100 MHz, 

DMSO-d6): δ = 183.21 (C=O), 165.18 (Cq), 146.57 (Cq), 144.95 (Cq), 141.80 (Cq), 137.36 

(Car), 134.02 (Car), 129.80 (Car), 124.46 (Car), 124.08 (Car), 122.61 (Cq), 122.13 (Car), 121.92 

(Cq), 119.41 (Car), 115.66 (Car), 114.30 (Cvin), 113.58 (Car). Anal. Calcd. 

(C21H15NO2•0.15H2O): C, 79.80; H, 4.89; N, 4.43%. Found: C, 79.56; H, 5.12; N, 4.68%. 

 

(Z)-2-(4-(benzylamino)benzylidene)benzofuran-3(2H)-one (5.40) 

Purified by flash chromatography (Hexane/EtOAc = 80:20) 

followed by TLC (Hexane/EtOAc = 70:30). Obtained as orange 

oil, 49% yield. 1H NMR (400 MHz, CDCl3): δ = 7.82-7.80 (m, 

3H, H4+2H2’), 7.62 (t, J = 7.6 Hz, 1H, H6), 7.39-728 (m, 6H, 

H7+2H2’’+2H3’’+H4’’), 7.20 (m, 1H, H5), 6.91 (s, 1H, Hvin), 6.70 (d, J = 8.5 Hz, 2H, 2H3’), 4.66 

(br, H, NH), 4.43 (s, 2H, CH2). 13C NMR (100 MHz, CDCl3): δ = 184.22 (C=O), 165.41 (Cq), 

149.82 (Cq), 145.12 (Cq), 138.47 (Cq), 136.08 (Car), 133.93 (Car), 128.86 (Car), 127.59 (Car), 

127.44 (Car), 124.40 (Car), 123.03 (Car), 122.37 (Cq), 121.48 (Cq), 115.21 (Cvin), 112.90 (Car), 

112.86 (Car), 47.71 (CH2). HRMS calc. (C22H17NO2): 328.1332. Found: 328.1334. 
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8.6.5. Synthesis of (Z)-2-benzylidene-3-oxo-2,3-dihydrobenzofuran-6-yl 

trifluoromethanesulfonate (5.70) 

Compound 5.30 (0.25 mmol) was dissolved in dry CH2Cl2 (1 mL) 

and dry TEA (0.275 mmol) was added to the solution followed by 

Tf2O (0.275 mmol). The mixture was stirred for 45 minutes at 

room temperature under N2. After completion, water was added 

to the reaction mixture and the product was extracted with CH2Cl2. The organic layer was 

washed with water, dried with anhydrous Na2SO4 and concentrated under reduced 

pressure permitting to obtain the pure product. Obtained as yellow solid, 98% yield. 1H 

NMR (400 MHz, DMSO-d6): δ =8.04-7.97 (m, 4H), 7.53-7.44 (m, 4H), 7.05 (s, 1H, Hvin). 13C 

NMR (101 MHz, DMSO-d6): δ = 182.17 (C=O), 165.67 (Cq), 154.11 (Cq), 146.55 (Cq), 131.69 

(Car), 131.59 (Cq), 130.56 (Car), 129.13 (Car), 126.56 (Car), 121.37 (Cq), 118.23 (CF3), 117.57 

(Car), 113.51 (Car), 107.89 (Cvin).  

 

8.6.6.  General procedure for the synthesis of ethers derivatives 5.41 and 5.42 

To a solution of benzofuran-3(2H)-one (0.57 mmol) in dry methanol (10 mL) at room 

temperature was added the appropriate aldehyde (0.68 mmol) and Al2O3 (0.57 mmol). 

The mixture was refluxed, under N2, for 48 hours. After, the solvent was removed and the 

solid residue was dissolved in CH2Cl2. The organic layer was washed with water, dried 

with anhydrous Na2SO4 and concentrated under reduced pressure to give the crude 

product.  

 

(Z)-2-(4-(p-tolyloxy)benzylidene)benzofuran-3(2H)-one (5.41) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, 33% yield, mp 116-118 oC. 1H 

NMR (400 MHz, DMSO-d6): δ = 8.02 (d, J = 8.7 Hz, 2H, 

2H2’), 7.82-7.79 (m, 2H, H4+H6), 7.55 (d, J = 8.5 Hz, 1H, H7), 
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7.32 (t, J = 7.4 Hz, 1H, H5), 7.25 (d, J = 8.3 Hz, 2H, 2H3’’), 7.07 (d, J = 8.7 Hz, 2H, 2H3’), 7.02 

(d, J = 8.3 Hz, 2H, 2H2’’), 6.97 (s, 1H, Hvin), 2.32 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6): 

δ = 183.39 (C=O), 165.72 (Cq), 159.49 (Cq), 153.41 (Cq), 146.06 (Cq), 138.00 (Car), 134.10 

(Cq), 133.99 (Car), 131.07 (Car), 126.92 (Cq), 124.72 (Car), 124.39 (Car), 121.47 (Cq), 120.11 

(Car), 118.32 (Car), 113.66 (Car), 112.51 (Cvin), 20.80 (CH3). Anal. Calcd. (C22H16O3•0.15H2O): 

C, 79.81; H, 5.28%. Found: C, 79.59; H, 5.01%. 

 

(Z)-2-(4-(4-chlorophenoxy)benzylidene)benzofuran-3(2H)-one (5.42) 

Purified by flash chromatography (Hexane/CH2Cl2 = 50:50). 

Obtained as yellow solid, 51% yield, 112-113 oC. 1H NMR 

(400 MHz, DMSO-d6): δ = 8.05 (d, J = 8.6 Hz, 2H, 2H2’), 7.83-

7.80 (m, 2H, H4+H6), 7.55 (d, J = 8.5 Hz, 1H, H7), 7.48 (d, J = 

8.8 Hz, 2H, 2H2’’), 7.33 (t, J = 7.4 Hz, 1H, H5), 7.16-7.13 (m, 

4H, 2H3’+2H3’’), 6.98 (s, 1H, Hvin). 13C NMR (100 MHz, DMSO-d6): δ = 183.95 (C=O), 165.80 

(Cq), 158.44 (Cq), 155.01 (Cq), 146.26 (Cq), 138.08 (Car), 134.06 (Car), 130.55 (Car), 128.54 

(Cq), 127.76 (Cq), 124.76 (Car), 124.44 (Car), 121.57 (Car), 121.44 (Cq), 119.14 (Car), 113.68 

(Car), 112.26 (Cvin). Anal. Calcd. (C21H13ClO3•0.15H2O): C, 71.76; H, 3.82%. Found: C, 71.37; 

H, 3.84%. 

 

8.6.7.  General procedure for the synthesis of ethers derivatives 5.43 and 5.44 

To a solution of 6-hydroxybenzofuran-3(2H)-one (0.57 mmol) in glacial acetic acid (5.7 

mL) at room temperature was added the appropriate aldehyde (0.68 mmol) and HCl (cat, 

3 drops). The reaction mixture was stirred for 4 hours at room temperature. After, the 

mixture was dropped in cold water and the precipitate formed was filtered and washed 

with water.   
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(Z)-6-hydroxy-2-(4-(p-tolyloxy)benzylidene)benzofuran-3(2H)-one (5.43) 

Obtained as yellow solid, 51% yield, mp 248-250 oC. 1H 

NMR (400 MHz, CDCl3): δ = 11.22 (br, 1H, OH), 7.96 (d, 

J = 8.7 Hz, 2H, 2H2’), 7.62 (d, J = 8.4 Hz, 1H, H4), 7.24 (d, 

J = 8.1 Hz, 1H, H3’’), 7.06-6.99 (m, 4H, 2H3’+2H2’’), 6.79-

6.77 (m, 2H, H7+Hvin), 6.71 (dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 

1H, H5). 13C NMR (101 MHz, CDCl3): δ = 181.38 (C=O), 167.82 (Cq), 166.53 (Cq), 158.67 

(Cq), 153.14 (Cq), 146.71 (Cq), 133.59 (Cq), 133.17 (Car), 130.64 (Car), 126.73 (Cq), 125.99 

(Car), 119.64 (Car), 117.92 (Car), 113.11 (Car), 112.92 (Cq), 110.14 (Car), 98.61 (Cvin), 20.38 

(CH3). Anal. Calcd. (C22H14O4•0.2H2O): C, 75.93; H, 5.05%. Found: C, 75.66; H, 5.03%. 

 

(Z)-2-(4-(4-chlorophenoxy)benzylidene)-6-hydroxybenzofuran-3(2H)-one (5.44) 

Obtained as yellow solid, 84% yield, mp 243-244 oC. 1H 

NMR (400 MHz, CDCl3): δ = 10.21 (br, 1H, OH), 7.80 (d, 

J = 8.7 Hz, 2H, 2H2’), 7.56 (d, J = 9.0 Hz, 1H, H4), 7.27-

7.25 (m, 2H, 2H2’’), 6.97-6.93 (m, 4H, 2H3’+2H3’’), 6.67-

6.63 (m, 3H, H5+H7+Hvin). 13C NMR (101 MHz, CDCl3): δ = 

181.39 (C=O), 167.86 (Cq), 166.56 (Cq), 157.59 (Cq), 154.71 (Cq), 146.88 (Cq), 133.24 (Car), 

130.11 (Car), 128.00 (Cq), 127.56 (Cq), 126.02 (Car), 121.06 (Car), 118.72 (Car), 113.12 (Car), 

112.87 (Cq), 109.91 (Cvin), 98.62 (Car). Anal. Calcd. (C21H13ClO4•0.15H2O): C, 68.63; H, 

3.66%. Found: C, 68.57; H, 3.64%. 

 

8.6.8.  General procedure for the synthesis of Mannich Bases derivatives 5.55 to 5.58 

To a solution of (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one (0.29 mmol) in 

absolute ethanol (1 mL) was added the appropriate amine (0.32 mmol) followed by 

formaldehyde solution (0.32 mmol). The mixture was refluxed for 3h30. After, the solvent 

was removed and the solid residue was dissolved in CH2Cl2 and extracted with HCl 1M. 

The aqueous layer was neutralized with NaHCO3 saturated solution and extracted with 
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CH2Cl2. The organic layer was dried with anhydrous Na2SO4 and concentrated under 

reduced pressure to give the crude product. 

 

(Z)-2-benzylidene-6-hydroxy-7-((4-methylpiperazin-1-yl)methyl)benzofuran-3(2H)-one 

(5.55) 

Purified by flash chromatography (CH2Cl2/MeOH = 98:2). 

Obtained as yellow solid, 61% yield, mp 178-179 oC. 1H NMR (400 

MHz, DMSO-d6): δ = 7.97 (d, J = 7.3 Hz, 2H, 2H2’), 7.54-7.49 (m, 

3H, H4+2H3’), 7.45-7.41 (m, 1H, H4’), 6.77 (s, 1H, Hvin), 6.65 (d, J = 

7.3 Hz, 1H, H5), 3.90 (s, 2H, CH2), 2.50 (br, 8H, piperazine), 2.18 (s, 

3H, CH3). 13C NMR (101 MHz, DMSO-d6): δ = 181.24 (C=O), 167.75 (Cq), 166.19 (Cq), 147.67 

(Cq), 132.32 (Cq), 131.07 (Car), 129.57 (Car), 129.05 (Car), 124.62 (Car), 113.64 (Car), 111.48 

(Cq), 109.91 (Cvin), 105.77 (Cq), 54.30 (CH2-piperazine), 52.00 (CH2-piperazine), 50.83 (CH2), 

45.47 (CH3). Anal. Calcd. (C21H22N2O3•0.3H2O): C, 70.88; H, 6.42; N, 7.87%. Found: C, 

70.75; H, 6.48; N, 7.66%. 

 

(Z)-2-benzylidene-6-hydroxy-7-(piperidin-1-ylmethyl)benzofuran-3(2H)-one (5.56) 

Purified by flash chromatography (CH2Cl2/MeOH = 98:2). 

Obtained as yellow solid, 63% yield, mp 198-200 oC. 1H NMR (400 

MHz, DMSO-d6): δ = 7.94 (d, J = 7.4 Hz, 2H, 2H2’), 7.51-7.41 (m, 

4H, H4+H4’+2H3’), 6.70 (s, 1H, Hvin), 6.50-6.45 (m, 1H, H5), 4.06 (s, 

2H, CH2), 2.82-2.76 (m, 4H, 4H-piperidine), 1.63-1.48 (m, 6H, 6H-

piperidine). 13C NMR (101 MHz, DMSO-d6): δ = 180.26 (C=O), 171.55 (Cq), 166.39 (Cq), 

148.16 (Cq), 132.50 (Cq), 130.91 (Car), 129.05 (Car), 128.28 (Car), 124.90 (Car), 115.03 (Car), 

109.47 (Cq), 109.07 (Cvin), 103.14 (Cq), 52.69 (CH2-piperidine), 51.91 (CH2), 24.49 (CH2-

piperidine), 22.69 (CH2-piperidine). HRMS calc. (C21H22NO3): 336.1594. Found: 336.1594. 
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(Z)-2-benzylidene-6-hydroxy-7-(morpholinomethyl)benzofuran-3(2H)-one (5.57) 

Purified by flash chromatography (CH2Cl2/MeOH = 99:1). 

Obtained as yellow solid, 54% yield, 179-181 oC. 1H NMR (400 

MHz, acetone-d6): δ = 7.99 (d, J = 7.3 Hz, 2H, 2H2’), 7.58-7.44 (m, 

4H, H4+H4’+2H3’), 6.74 (s, 1H, Hvin), 6.67 (d, J = 8.3 Hz, 1H, H5), 

4.11 (s, 2H, CH2), 3.96-3.75 (m, 8H, morpholine). 13C NMR (101 

MHz, acetone-d6): δ = 167.85 (Cq), 133.51 (Cq), 132.06 (Car), 129.83 (Car), 125.38 (Car), 

114.11 (Car), 111.03 (Cvin), 67.21 (CH2-morpholine), 53.71 (CH2). Anal. Calcd. 

(C20H19NO4•0.25H2O): C, 70.26; H, 5.76; N, 4.10%. Found: C, 70.17; H, 5.72; N, 4.24%. 

 

(Z)-2-benzylidene-7-((diethylamino)methyl)-6-hydroxybenzofuran-3(2H)-one (5.58) 

Purified by flash chromatography (CH2Cl2/MeOH = 97:3) followed 

by TLC (CH2Cl2/MeOH = 95:5). Obtained as yellow solid, 29% 

yield, mp 165-167 oC. 1H NMR (400 MHz, CDCl3): δ = 7.83 (d, J = 

7.3 Hz, 2H, 2H2’), 7.60 (d, J = 8.4 Hz, 1H, H4), 7.46 (t, J = 7.4 Hz, 2H, 

2H3’), 7.40-7.38 (m, 1H, H4’), 6.78 (s, 1H, Hvin), 6.62 (d, J = 8.4 Hz, 

1H, H5), 4.06 (s, 2H, CH2), 2.78 (q, J = 7.1 Hz, 4H, 2CH2), 1.21 (t, J = 7.1 Hz, 6H, 2CH3). 13C 

NMR (101 MHz, CDCl3): δ = 168.93 (Cq), 148.28 (Cq), 132.88 (Cq), 131.23 (Car), 129.48 (Car), 

129.01 (Car), 125.22 (Car), 114.05 (Car), 112.94 (Cq), 111.17 (Cvin), 104.51 (Cq), 49.54 (CH2), 

47.10 (CH2CH3), 11.34 (CH2CH3).  

 

8.6.9.  General procedure for the synthesis of benzonitrile derivatives 5.62 and 5.63 

To a solution of the appropriate phenol (1.25 mmol) and 4-fluorobenzonitrile (1.25 mmol) 

in dry DMF (6 mL) was added Na2CO3 (2.5 mmol). The reaction mixture was refluxed for 

24 hours. After cooling to room temperature, water was added to the crude and the 

product was extracted with EtOAc. The organic layer was dried with anhydrous Na2SO4 

and concentrated under reduced pressure to give the product. 
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4-(p-tolyloxy)benzonitrile (5.62) 

Obtained as transparent oil, 85%, yield. 1H NMR (400 MHz, 

CDCl3): δ = 7.67 (d, J = 9.0 Hz, 2H, 2H2), 7.25 (d, J = 8.9 Hz, 2H, 

2H3’), 7.02 (d, J = 9.0 Hz, 2H, 2H3), 6.98 (d, J = 8.9 Hz, 2H, 2H2’), 

2.36 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)benzonitrile (5.63) 

Obtained as white solid, 95%, 67-68 oC. 1H NMR (400 MHz, CDCl3): 

δ = 7.71 (d, J = 8.5 Hz, 2H, 2H2), 7.44 (d, J = 9.4 Hz, 2H, 2H3’), 7.10-

7.07 (m, 4H, 2H3+2H2’). 

 

8.6.10. General procedure for the synthesis of carboxylic acid derivatives 5.64 and 5.65 

To a solution of the 4-phenoxybenzonitrile derivative (1 mmol) and KOH (20 mmol) in 

MeOH (0.6 mL) and EtOH (2.6 mmol), H2O2 30% (1 mL) was added dropwise. The reaction 

mixture was refluxed for 4h30. After cooling to room temperature, the mixture was 

acidized with HCl 3M to pH 1 and the product was extracted with CH2Cl2. The organic 

layer was dried with anhydrous Na2SO4 and concentrated under reduced pressure to give 

the product. 

 

4-(p-tolyloxy)benzoic acid (5.64) 

Obtained as white solid, 100% yield, mp 145-147 oC. 1H NMR 

(400 MHz, CDCl3): δ = 7.96 (d, J = 8.9 Hz, 2H, 2H2), 7.21 (d, J = 

8.1 Hz, 2H, 2H3’), 6.95-6.92 (m, 4H, 2H3+2H2’), 2.34 (s, 3H, CH3). 
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4-(4-chlorophenoxy)benzoic acid (5.65) 

Obtained as white solid, 98% yield, mp 150-152 oC. 1H NMR 

(400 MHz, CDCl3): δ = 8.01 (d, J = 8.7 Hz, 2H, 2H2), 7.39 (d, J = 

8.2 Hz, 2H, 2H3’), 7.07-7.04 (m, 4H, 2H3+2H2’). 

 

8.6.11. General procedure for the synthesis of hydroxamate derivatives 5.66 and 5.67 

To a solution of the 4-phenoxybenzoic acid derivative (1 mmol) in dry DMF (8 ml) was 

added TEA (1 mmol) and TBTU (1.1 mmol) and the mixture was stirred for 30 minutes at 

room temperature. After, N,O-dimethylhydroxylamine (1.2 mmol) and TEA (1.2 mmol) 

were added, and the final mixture was kept stirring at room temperature for 24 hours. 

The solvent was removed and the solid residue was dissolved in EtOAc and washed with 

HCl 3M, saturated solution of Na2CO3 and brine. The organic layer was dried with 

anhydrous Na2SO4 and concentrated under reduced pressure to give the crude product. 

 

N-methoxy-N-methyl-4-(p-tolyloxy)benzamide (5.66) 

Obtained as transparent oil, 99% yield. 1H NMR (400 MHz, 

CDCl3): δ = 7.70 (d, J = 8.8 Hz, 2H, 2H2), 7.17 (d, J = 8.3 Hz, 

2H, 2H3’), 6.97-6.94 (m, 4H, 2H3+2H2’), 3.57 (s, 3H, OCH3), 

3.36 (s, 3H, NCH3), 2.35 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)-N-methoxy-N-methylbenzamide (5.67) 

Obtained as yellow oil, 98% yield. 1H NMR (400 MHz, CDCl3): 

δ = 7.73 (d, J = 8.8 Hz, 2H, 2H2), 7.33 (d, J = 8.9 Hz, 2H, 2H3’), 

7.00-6.96 (m, 4H, 2H3+2H2’), 3.57 (s, 3H, OCH3), 3.36 (s, 3H, 

NCH3). 
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8.6.12. General procedure for the synthesis of benzaldehyde derivatives 5.68 and 5.69 

To a solution of the N-methoxy-N-methyl-4-phenoxybenzoic acid derivative (1 mmol) in 

dry THF (10 mL) was added LiAlH4 (1.3 eq). The mixture was stirred for 1 hour at 0 oC. 

After, a solution of KHSO4 5% was added to stop the reaction and the product was 

extracted with Et2O. The organic layer was then washed with HCl 3M, saturated solution 

of Na2CO3, H2O and brine. The organic layer was dried with anhydrous Na2SO4 and 

concentrated under reduced pressure to give the crude product. 

 

4-(p-tolyloxy)benzaldehyde (5.68) 

Obtained as white solid, 100% yield, mp 49-51 oC. 1H NMR (400 

MHz, CDCl3): δ = 9.91 (s, 1H, Hald), 7.83 (d, J = 8.7 Hz, 2H, 2H2), 

7.21 (d, J = 8.3 Hz, 2H, 2H3’), 7.03 (d, J = 8.7 Hz, 2H, 2H3), 6.98 

(d, J = 8.3 Hz, 2H, 2H2’), 2.37 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)benzaldehyde (5.69) 

Obtained as white solid, 89%, mp 57-58 oC. 1H NMR (400 MHz, 

CDCl3): δ = 9.93 (s, 1H, Hald), 7.86 (d, J = 8.7 Hz, 2H, 2H2), 7.38 (d, 

J = 8.9 Hz, 2H, 2H3’), 7.07-7.02 (m, 4H, 2H3+2H2’).  

 

8.7.  Synthesis of azaaurone derivatives 

8.7.1.  General procedure for the synthesis of compounds 6.87 to 6.91 

To a solution of the appropriate aniline (1.6 mmol) in dry dichloroethane (10 mL) at room 

temperature, a solution of BCl3 1M in CH2Cl2 (5.2 mL, 5.2 mmol) was added dropwise. 

After that, chloroacetonitrile (350 μL, 5.5 mmol) and ZnCl2 (870 mg, 6.4 mmol) was added 

to the reaction mixture. The mixture was refluxed, under N2, for 24 hours. Afterward, a 
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solution of HCl 1M (10 mL) was added and the mixture was refluxed once more during 1 

hour. After cooling, the reaction mixture was extracted with CH2Cl2, dried with anhydrous 

Na2SO4 and concentrated under reduced pressure to give the product.  

 

1-(2-aminophenyl)-2-chloroethanone (6.87) 

Obtained as yellow solid, yield 72%, mp 107-109 oC. 1H NMR (400 

MHz, CDCl3) δ = 7.62 (dd, J1 = 8.2 Hz, J2 = 1.4 Hz, 1H, H6), 7.23 (dt, J1 = 

8.2 Hz, J2 = 1.4 Hz, 1H, H5), 6.65 (dd, J1 = 8.5 Hz, J2 = 1.4 Hz, 1H, H3), 

6.60 (dt, J1 = 8.5 Hz, J2 = 1.4 Hz, 1H, H4), 4.61 (s, 2H, CH2). 

 

1-(4-aminobiphenyl-3-yl)-2-chloroethanone (6.88) 

Obtained as brown oil, yield 47%. 1H NMR (400 MHz, CDCl3) δ = 

7.83 (s, 1H, H2), 7.58 (d, 1H, J = 8.5 Hz, H6), 7.51 (d, 2H, J = 7.7 

Hz, 2H2’), 7.43 (t, 2H, J = 7.6 Hz, 2H3’), 7.32 (t, 1H, J = 7.6 Hz, H4’), 

6.82 (d, 1H, J = 8.5 Hz, H5), 4.75 (s, 2H, CH2Cl). 

 

1-(2-amino-5-phenoxyphenyl)-2-chloroethanone (6.89) 

Obtained as brown oil, yield 70%. 1H NMR (400 MHz, CDCl3) δ 

= 7.33-7.29 (m, 3H, H2+2H3’), 7.12-7.04 (m, 2H, H6+H4’), 6.93 

(d, 2H, J = 8.5 Hz, 2H2’), 6.63 (d, 1H, J = 9.0 Hz, H5), 4.60 (s, 2H, 

CH2Cl).  
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1-(2-amino-5-benzylphenyl)-2-chloroethanone (6.90) 

Obtained as brown oil, yield 43%. 1H NMR (400 MHz, CDCl3) δ 

= 7.63 (s, 1H, H2), 7.27-7.19 (m, 6H, H6+2H2’+2H3’+H4’), 6.71 (d, 

J = 8.7 Hz, 1H, H5), 4.61 (s, 2H, CH2Cl), 3.71 (s, 2H, CH2). 

 

1-(2-amino-4-phenoxyphenyl)-2-chloroethanone (6.91) 

Obtained as brown oil, yield 43%. 1H NMR (400 MHz, CDCl3) δ 

= 7.61 (d, J = 8.56 Hz, 1H, H6), 7.23 (t, J = 8.3 Hz, 2H, 2H3’), 

7.01-6.97 (m, 3H, 2H2’+H4’), 6.57 (d, J = 8.5 Hz, 1H, H5), 6.42 (s, 

1H, H3), 4.69 (s, 2H, CH2Cl). 

 

8.7.2.  General procedure for the synthesis of compounds 6.92 to 6.96 

The appropriate starting material (5 mmol) was dissolved in acetic anhydride (5 mL) and 

the solution was heated at 90 oC for 1 hour. After completion, the solvent was evaporated 

under vacuum. The residue was dissolved in CH2Cl2 and passed through a silica gel layer 

to remove the polar fraction. The eluate was concentrated under reduced pressure to 

give the product. 

 

N-(2-(2-chloroacetyl)phenyl)acetamide (6.92) 

Obtained as beige solid, yield 92%, mp 120-121 oC. 1H NMR (400 MHz, 

CDCl3) δ = 11.36 (s, 1H, NH), 8.78 (d, J = 8.0 Hz, 1H, H3), 7.82 (d, J = 8.1 

Hz, 1H, H6), 7.61 (t, J = 8.0 Hz, 1H, H4), 7.14 (t, J = 8.1 Hz, 1H, H5), 4.80 

(s, 2H, CH2), 2.25 (s, 3H, CH3). 
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N-(3-(2-chloroacetyl)biphenyl-4-yl)acetamide (6.93) 

Obtained as yellow oil, yield 70%. 1H NMR (400 MHz, CDCl3) δ = 

11.34 (s, 1H, NH), 8.86 (d, J = 8.8 Hz, 1H, H5), 7.99 (s, 1H, H2), 

7.83 (d, J = 8.8 Hz, 1H, H4), 7.57-7.38 (m, 5H, 2H2’+2H3’+H4’), 4.85 

(s, 2H, CH2Cl), 2.27 (s, 3H, CH3).  

 

N-(2-(2-chloroacetyl)-4-phenoxyphenyl)acetamide (6.94) 

Obtained as yellow oil, yield 91%. 1H NMR (400 MHz, CDCl3) δ 

= 11.05 (s, 1H, NH), 8.75 (d, J = 9.2 Hz, 1H, H5), 7.45-7.05 (m, 

5H, H2+H5+2H3’+H4’), 6.99 (d, J = 8.4 Hz, 2H, H2’), 4.69 (s, 2H, 

CH2Cl), 2.24 (s, 3H, CH3).  

 

N-(4-benzyl-2-(2-chloroacetyl)phenyl)acetamide (6.95) 

Obtained as yellow oil, yield 87%. 1H NMR (400 MHz, CDCl3) δ 

= 11.24 (s, 1H, NH), 8.69 (d, J = 8.7 Hz, 1H, H5), 7.57 (s, 1H, H2), 

7.45 (d, J = 8.7 Hz, 1H, H4), 7.33-7.22 (m, 5H, H), 7.16 (d, J = 7.4 

Hz, 2H, H2’), 4.71 (s, 2H, CH2Cl), 3.99 (s, 2H, CH2), 2.23 (s, 3H, CH3). 

 

N-(2-(2-chloroacetyl)-5-phenoxyphenyl)acetamide (6.96) 

Obtained as yellow oil, yield 83%. 1H NMR (400 MHz, CDCl3) δ 

= 11.63 (s, 1H, NH), 8.45 (s, 1H, H3), 7.79 (d, J = 9.0 Hz, 1H, H6), 

7.47-7.42 (m, 2H, 2H3’), 7.27 (t, J = 7.5 Hz, 1H, H4’), 7.12 (d, J = 

7.5 Hz, 2H, 2H2’), 4.72 (s, 2H, CH2Cl), 2.22 (s, 3H, CH3). 
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8.7.3.  General procedure for the synthesis of compounds 6.97 to 6.101 

The appropriate starting material (4 mmol) was dissolved in dry DMF (10 mL) and NaH (6 

mmol) was added slowly to the reaction mixture, under N2, at 0 oC. The mixture was 

stirred for 1 hour at room temperature and the reaction was quenched with the addition 

of a solution of KHSO4 (5%). The reaction mixture was extracted with ethyl acetate and 

the organic layers were combined, dried with anhydrous Na2SO4 and concentrated under 

reduced pressure to give the crude product. 

 

1-acetylindolin-3-one (6.97) 

Purified by flash chromatography (CH2Cl2). Obtained as white solid, yied 

45%, mp 131-133 oC. 1H NMR (400 MHz, CDCl3) δ = 8.56 (d, J = 8.0 Hz, 

1H, H4), 7.75 (d, J = 7.8 Hz, 1H, H7), 7.67 (t, J = 8.0 Hz, 1H, H5), 7.22 (t, J = 

7.8 Hz, 1H, H6), 4.30 (s, 2H, CH2), 2.32 (s, 3H, CH3). 

 

1-acetyl-5-phenylindolin-3-one (6.98) 

Purified by flash chromatography (CH2Cl2). Obtained as yellow oil, 

yied 38%. 1H NMR (400 MHz, CDCl3) δ = 8.63 (d, J = 8.3 Hz, 1H, H7), 

7.97 (s, 1H, H4), 7.93 (d, J = 8.3 Hz, 1H, H6), 7.60 (d, J = 7.4 Hz, 2H, 

2H2’), 7.46 (t, J =7.4 Hz, 2H, 2H3’), 7.39 (t, J = 7.4, 1H, H4’), 4.36 (s, 

2H, CH2), 2.35 (s, 3H, CH3). 

 

1-acetyl-5-phenoxyindolin-3-one (6.99) 

Purified by flash chromatography (CH2Cl2). Obtained as yellow oil, 

yied 31%. 1H NMR (400 MHz, CDCl3) δ = 8.75 (d, J = 9.3 Hz, 1H, 

H7), 7.44 (s, 1H, H4), 7.37 (t, J = 7.4 Hz, 2H, 2H3’’), 7.31 (d, J = 9.3, 
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1H, H6), 7.15 (t, J = 7.4 Hz, 1H, H4’), 6.99 (d, J = 7.4 Hz, 2H, 2H2’), 4.32 (s, 2H, CH2), 2.37 (s, 

3H, CH3). 

 

1-acetyl-5-benzylindolin-3-one (6.100) 

Purified by flash chromatography (CH2Cl2). Obtained as yellow oil, 

yied 35%. 1H NMR (400 MHz, CDCl3) δ = 8.46 (d, J = 8.4 Hz, 1H, H7), 

7.54 (s, 1H, H4), 7.51 (d, J = 8.4 Hz, 1H, H6), 7.32-7.12 (m, 5H, 

2H2’+2H3’+H4’), 4.27 (s, 2H, CH2), 3.98 (s, 2H, ArCH2Ar), 2.29 (s, 3H, CH3). 

 

1-acetyl-6-phenoxyindolin-3-one (6.101) 

Purified by flash chromatography (CH2Cl2). Obtained as yellow oil, 

yied 29%. 1H NMR (400 MHz, CDCl3) δ = 8.22 (d, J = 8.7 Hz, 1H, H4), 

7.74 (t, J = 7.5 Hz, 2H, 2H3’), 7.55 (d, J = 8.7 Hz, 1H, H5), 7.01-6.98 

(m, 4H, H7+2H2’+H4’), 4.34 (s, 2H, CH2), 2.26 (s, 3H, CH3). 

 

8.7.4.  General procedure for the synthesis of benzonitrile derivatives 6.102 and 6.104 

To a solution of the appropriate phenol (1.25 mmol) and 4-fluorobenzonitrile (1.25 mmol) 

in dry DMF (6 mL) was added Na2CO3 (2.5 mmol). The reaction mixture was refluxed for 

24 hours. After cooling to room temperature, water was added to the crude and the 

product was extracted with EtOAc. The organic layer was dried with anhydrous Na2SO4 

and concentrated under reduced pressure to give the product. 
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4-phenoxybenzonitrile (6.102) 

Obtained as yellow oil, 94%, yield. 1H NMR (400 MHz, CDCl3): δ = 

7.59 (d, J = 9.21 Hz, 2H, 2H2), 7.41 (t, J = 8.6 Hz, 2H, 2H3’), 7.22 (t, J = 

8.6 Hz, 1H, H4’), 7.06 (d, J = 8.6 Hz, 2H, 2H2’), 7.00 (d, J = 9.2 Hz, 2H, 

2H3). 

 

4-(p-tolyloxy)benzonitrile (6.103) 

Obtained as white oil, 85%, yield. 1H NMR (400 MHz, CDCl3): δ = 

7.67 (d, J = 9.0 Hz, 2H, 2H2), 7.25 (d, J = 8.9 Hz, 2H, 2H3’), 7.02 (d, J 

= 9.0 Hz, 2H, 2H3), 6.98 (d, J = 8.9 Hz, 2H, 2H2’), 2.36 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)benzonitrile (6.104) 

Obtained as white solid, 95%, 67-68 oC. 1H NMR (400 MHz, CDCl3): 

δ = 7.71 (d, J = 8.5 Hz, 2H, 2H2), 7.44 (d, J = 9.4 Hz, 2H, 2H3’), 7.10-

7.07 (m, 4H, 2H3+2H2’). 

 

8.7.5. General procedure for the synthesis of carboxylic acid derivatives 6.105 and 

6.107 

To a solution of the 4-phenoxybenzonitrile derivative (1 mmol) and KOH (20 mmol) in 

MeOH (0.6 mL) and EtOH (2.6 mmol), H2O2 30% (1 mL) was added dropwise. The reaction 

mixture was refluxed for 4h30. After cooling to room temperature, the mixture was 

acidized with HCl 3M to pH 1 and the product was extracted with CH2Cl2. The organic 

layer was dried with anhydrous Na2SO4 and concentrated under reduced pressure to give 

the product. 
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4-phenoxybenzoic acid (6.105) 

Obtained as white solid, 96% yield, mp 161-163 oC. 1H NMR (400 

MHz, CDCl3): δ = 8.08 (d, J = 8.7 Hz, 2H, 2H2), 7.41 (t, J = 7.4 Hz, 

2H, 2H3’), 7.21 (t, J = 7.4 Hz, 1H, H4’), 7.09 (d, J = 7.4 Hz, 2H, 2H2’), 

7.01 (d, J = 8.7 Hz, 2H, 2H3’). 

 

4-(p-tolyloxy)benzoic acid (6.106) 

Obtained as white solid, 100% yield, mp 145-147 oC. 1H NMR 

(400 MHz, CDCl3): δ = 7.96 (d, J = 8.9 Hz, 2H, 2H2), 7.21 (d, J = 

8.1 Hz, 2H, 2H3’), 6.95-6.92 (m, 4H, 2H3+2H2’), 2.34 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)benzoic acid (6.107) 

Obtained as transparent solid, 98% yield, mp 150-152 oC. 1H 

NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.7 Hz, 2H, 2H2), 7.39 (d, 

J = 8.2 Hz, 2H, 2H3’), 7.07-7.04 (m, 4H, 2H3+2H2’). 

 

8.7.6. General procedure for the synthesis of hydroxamate derivatives 6.108 and 6.110 

To a solution of the 4-phenoxybenzoic acid derivative (1 mmol) in dry DMF (8 ml) was 

added TEA (1 mmol) and TBTU (1.1 mmol) and the mixture was stirred for 30 minutes at 

room temperature. After, N,O-dimethylhydroxylamine (1.2 mmol) and TEA (1.2 mmol) 

were added, and the final mixture was kept stirring at room temperature for 24 hours. 

The solvent was removed and the solid residue was dissolved in EtOAc and washed with 

HCl 3M, saturated solution of Na2CO3 and brine. The organic layer was dried with 

anhydrous Na2SO4 and concentrated under reduced pressure to give the crude product. 
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N-methoxy-N-methyl-4-phenoxybenzamide (6.108) 

Obtained as yellow oil, 90% yield. 1H NMR (400 MHz, CDCl3): δ 

= 7.64 (d, J = 8.7 Hz, 2H, 2H2), 7.36 (t, J = 8.2 Hz, 2H, 2H3’), 7.15 

(t, J = 8.2 Hz, 1H, H4’), 7.01 (d, J = 8.2 Hz, 2H, 2H2’), 6.95 (d, J = 

8.7 Hz, 2H, 2H3), 3.55 (s, 3H, OCH3), 3.31 (s, 3H, NCH3). 

 

N-methoxy-N-methyl-4-(p-tolyloxy)benzamide (6.109) 

Obtained as transparent oil, 99% yield. 1H NMR (400 MHz, 

CDCl3): δ = 7.70 (d, J = 8.8 Hz, 2H, 2H2), 7.17 (d, J = 8.3savbgc 

Hz, 2H, 2H3’), 6.97-6.94 (m, 4H, 2H3+2H2’), 3.57 (s, 3H, OCH3), 

3.36 (s, 3H, NCH3), 2.35 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)-N-methoxy-N-methylbenzamide (6.110) 

Obtained as yellow oil, 98% yield. 1H NMR (400 MHz, CDCl3): 

δ = 7.73 (d, J = 8.8 Hz, 2H, 2H2), 7.33 (d, J = 8.9 Hz, 2H, 2H3’), 

7.00-6.96 (m, 4H, 2H3+2H2’), 3.57 (s, 3H, OCH3), 3.36 (s, 3H, 

NCH3). 

 

8.7.7. General procedure for the synthesis of benzaldehyde derivatives 6.111 and 6.113 

To a solution of the N-methoxy-N-methyl-4-phenoxybenzoic acid derivative (1 mmol) in 

dry THF (10 mL) was added LiAlH4 (1.3 eq). The mixture was stirred for 1 hour at 0 oC. 

After, a solution of KHSO4 5% was added to stop the reaction and the product was 

extracted with Et2O. The organic layer was then washed with HCl 3M, saturated solution 

of Na2CO3, H2O and brine. The organic layer was dried with anhydrous Na2SO4 and 

concentrated under reduced pressure to give the product. 
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4-phenoxybenzaldehyde (6.111) 

Obtained as yellow oil, 96% yield. 1H NMR (400 MHz, CDCl3): δ = 

9.87 (s, 1H, Hald), 7.88 (d, J = 8.6 Hz, 2H, 2H2), 7.44 (t, J = 8.3 Hz, 

2H, 2H3’), 7.24 (t, J = 8.3 Hz, 1H, H4’), 7.10-7.05 (m, 4H, 2H3+2H2’). 

 

4-(p-tolyloxy)benzaldehyde (6.112) 

Obtained as transparent solid, 100% yield, mp 49-51 oC. 1H 

NMR (400 MHz, CDCl3): δ = 9.91 (s, 1H, Hald), 7.83 (d, J = 8.7 Hz, 

2H, 2H2), 7.21 (d, J = 8.3 Hz, 2H, 2H3’), 7.03 (d, J = 8.7 Hz, 2H, 

2H3), 6.98 (d, J = 8.3 Hz, 2H, 2H2’), 2.37 (s, 3H, CH3). 

 

4-(4-chlorophenoxy)benzaldehyde (6.113) 

Obtained as white solid, 89%, mp 57-58 oC. 1H NMR (400 MHz, 

CDCl3): δ = 9.93 (s, 1H, Hald), 7.86 (d, J = 8.7 Hz, 2H, 2H2), 7.38 (d, 

J = 8.9 Hz, 2H, 2H3’), 7.07-7.02 (m, 4H, 2H3+2H2’).  

 

8.7.8.  General procedure for the synthesis of benzaldehydes derivatives 6.114 to 6.133 

via Suzuki Coupling 

To a solution of the appropriate benzaldehyde (1 mmol) in dioxane (10 mL) was added 

Pd(PPh3)2Cl2 (0.1 mmol) and Na2CO3 1M (3 mL) followed by the proper boronic acid (1.2 

mmol). The resulting mixture was degassed and stirred at 100 oC for 3 hours under N2. 

After cooling to room temperature, the reaction mixture was diluted with CH2Cl2, filtered 

under celite and concentrated under pressure to give the crude product. 
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Biphenyl-4-carbaldehyde (6.114) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as white solid, yied 99%, mp 58-59 oC. 1H NMR (400 MHz, 

CDCl3) δ = 10.05 (s, 1H, Hald), 7.95 (d, J = 8.1 Hz, 2H, 2H3), 7.74 (d, J 

= 8.1 Hz, 2H, 2H2), 7.64 (d, J = 7.4 Hz, 2H, 2H2’), 7.49 (t, J = 7.4 Hz, 2H, 2H3’), 7.42 (t, J = 7.4 

Hz, 1H, H4’). 

 

4'-fluorobiphenyl-4-carbaldehyde (6.115) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as transparent oil, yied 96%. 1H NMR (400 MHz, CDCl3) δ 

= 10.06 (s, 1H, Hald), 7.95 (d, J = 8.2 Hz, 2H, 2H3), 7.71 (d, J = 8.2 Hz, 

2H, 2H2), 7.65-7.56 (m, 2H, H2’), 7.17 (t, J = 8.7 Hz, 2H, H3’). 

 

4'-methylbiphenyl-4-carbaldehyde (6.116) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as white solid, yied 94%, mp 104-106 oC. 1H NMR (400 

MHz, CDCl3) δ = 10.05 (s, 1H, Hald), 7.94 (d, J = 8.0 Hz, 2H, 2H3), 

7.74 (d, J = 8.0 Hz, 2H, 2H2), 7.55 (d, J = 7.9 Hz, 2H, 2H2’), 7.28 (d, J 

= 7.9 Hz, 2H, 2H3’), 2.42 (s, 3H, CH3). 

 

4'-chlorobiphenyl-4-carbaldehyde (6.117) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as white solid, yied 99%, mp 115-117 oC. 1H NMR (400 

MHz, CDCl3) δ = 10.05 (s, 1H, Hald), 7.95 (d, J = 8.3 Hz, 2H, 2H3’), 

7.71 (d, J = 8.3 Hz, 2H, 2H2’), 7.56 (d, J = 8.6 Hz, 2H, 2H2’), 7.44 (d, J 

= 8.6 Hz, 2H, 2H3’). 
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4'-(trifluoromethyl)biphenyl-4-carbaldehyde (6.118) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as white solid, yied 89%, mp 71-73 oC. 1H NMR (400 

MHz, CDCl3) δ = 10.09 (s, 1H, Hald), 7.99 (d, J = 8.1 Hz, 2H, 2H3), 

7.78-7.74 (m, 6H, 2H2+2H2’+2H3’). 

 

4'-(trifluoromethoxy)biphenyl-4-carbaldehyde (6.119) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as transparent oil, yied 91%. 1H NMR (400 MHz, CDCl3) 

δ = 10.03 (s, 1H, Hald), 7.98 (d, J = 8.2 Hz, 2H, 2H3), 7.82 (d, J = 8.2 

Hz, 2H, 2H2), 7.63 (d, J = 7.8 Hz, 2H, H2’), 7.11 (d, J = 7.8 Hz, 2H, 2H3’). 

 

4-benzylbenzaldehyde (6.120) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as transparent oil, yied 78%. 1H NMR (400 MHz, CDCl3) δ 

= 10.00 (s, 1H, Hald), 7.84 (d, J = 7.9 Hz, 2H, 2H3), 7.39-7.21 (m, 6H, 

2H2+2H2’+2H3’), 4.09 (s, 2H, CH2). 

 

4-(quinolin-3-yl)benzaldehyde (6.121) 

Purified by flash chromatography (Hexane/EtOAc = 85:15). 

Obtained as light yellow oil, yied 98%. 1H NMR (400 MHz, CDCl3) 

δ = 10.10 (s, 1H, Hald), 9.21 (s, 1H, H2’), 8.39 (s, 1H, H4’), 8.17 (d, J 

= 8.2 Hz, 1H, H5’), 8.04 (d, J = 8.2 Hz, 2H, 2H3), 7.93-7.88 (m, 3H, 2H2+H8’), 7.78 (t, J = 8.2 

Hz, 1H, H6’), 7.62 (t, J = 8.1, 1H, H7’). 
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4-(thiophen-3-yl)benzaldehyde (6.122) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). Obtained 

as light yellow oil, yied 89%. 1H NMR (400 MHz, CDCl3) δ = 10.02 (s, 

1H, Hald), 7.92 (d, J = 8.1 Hz, 2H, 2H3), 7.76 (d, J = 8.1 Hz, 2H, 2H2), 

7.62 (s, 1H, H2’), 7.45 (s, 2H, H4’+H5’). 

 

4-(1-methyl-1H-pyrazol-4-yl)benzaldehyde (6.123) 

Purified by flash chromatography (Hexane/EtOAc = 60:40). 

Obtained as light yellow oil, yied 91%. 1H NMR (400 MHz, CDCl3) δ 

= 9.94 (s, 1H, Hald), 7.84-7.82 (m, 3H, 2H3+H3’), 7.70 (s, 1H, H5’), 7.59 

(d, J = 8.0 Hz, 2H, 2H2), 3.94 (s, 3H, CH3). 

 

Biphenyl-3-carbaldehyde (6.124) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as transparent oil, yied 99%. 1H NMR (400 MHz, CDCl3) δ 

= 10.07 (s, 1H, Hald), 8.10 (s, 1H, H2), 7.88-7.83 (m, 2H, H4+H6), 7.72-

7.54 (m, 3H, H5+2H2’), 7.48 (t, J = 7.5 Hz, 2H, 2H3’), 7.40 (t, J = 7.5 Hz, 1H, H4’). 

 

4'-fluorobiphenyl-3-carbaldehyde (6.125) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as transparent oil, yied 95%. 1H NMR (400 MHz, CDCl3) δ 

= 10.06 (s, 1H, Hald), 8.03 (s, 1H, H2), 7.84 (d, J = 7.5 Hz, 1H, H4), 

7.79 (d, J = 7.5 Hz, 1H, H6), 7.60-7.55 (m, 3H, H5+2H2’), 7.14 (t, J = 8.7 Hz, 2H, 2H3’). 
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4'-methylbiphenyl-3-carbaldehyde (6.126) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as transparent oil, yied 96%. 1H NMR (400 MHz, CDCl3) δ 

= 10.08 (s, 1H, Hald), 8.09 (s, 1H, H2), 7.90-7.76 (m, 2H, H4+H6), 

7.60 (t, J = 7.7 Hz, 1H, H5), 7.53 (d, J = 8.0 Hz, 2H, 2H2’), 7.29 (d, J = 8.0 Hz, 2H, 2H3’), 2.42 

(s, 3H, CH3). 

 

4'-chlorobiphenyl-3-carbaldehyde (6.127) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as white solid, yied 97%, mp 58-60 oC. 1H NMR (400 MHz, 

CDCl3) δ = 10.07 (s, 1H, Hald), 8.05 (s, 1H, H2), 7.86 (d, J = 7.6 Hz, 1H, 

H4), 7.80 (d, J = 7.6 Hz, 1H, H6), 7.60 (t, J = 7.6 Hz, 1H, H5), 7.54 (d, J = 8.5 Hz, 2H, 2H2’), 

7.43 (d, J = 8.5 Hz, 2H, 2H3’). 

 

4'-(trifluoromethyl)biphenyl-3-carbaldehyde (6.128) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as transparent oil, yied 82%. 1H NMR (400 MHz, CDCl3) 

δ = 10.11 (s, 1H, Hald), 8.12 (s, 1H, H2), 7.92 (d, J = 7.6 Hz, 1H, H4), 

7.87 (d, J = 7.6 Hz, 1H, H6), 7.74 (s, 4H, 2H2’+2H3’), 7.66 (t, J = 7.6 Hz, 1H, H5). 

 

4'-(trifluoromethoxy)biphenyl-3-carbaldehyde (6.129) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as transparent oil, yied 89%. 1H NMR (400 MHz, CDCl3) 

δ = 10.09 (s, 1H, Hald), 8.25 (s, 1H, H2), 7.90 (d, J = 7.6 Hz, 1H, H4), 

7.87 (d, J = 7.6 Hz, 1H, H6), 7.65-7.62 (m, 3H, H5+2H2’), 7.10 (d, J = 8.5 Hz, 2H, 2H3’). 
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3-benzylbenzaldehyde (6.130) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as transparent oil, yied 69%. 1H NMR (400 MHz, CDCl3) δ 

= 10.01 (s, 1H, Hald), 7.77-7.75 (m, 2H, H2+H4), 7.51-7.48 (m, 2H, 

H5+H6), 7.50-7.48 (m, 2H, 2H2’), 7.29-7.24 (m, 3H, 2H3’+H4’). 

 

3-(quinolin-3-yl)benzaldehyde (6.131) 

Purified by flash chromatography (Hexane/EtOAc = 85:15). 

Obtained as light yellow oil, yied 92%. 1H NMR (400 MHz, CDCl3) 

δ = 10.14 (s, 1H, Hald), 9.20 (s, 1H, H2’), 8.38 (s, 1H, H4’), 8.24 (s, 

1H, H2), 8.16 (d, J = 8.1 Hz, 1H, H5’), 8.05-7.84 (m, 3H, H4+H6+H8’), 7.79-7.69 (m, 2H, 

H5+H6’), 7.61 (t, J = 8.0 Hz, 1H, H7’). 

 

3-(thiophen-3-yl)benzaldehyde (6.132) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). Obtained 

as light yellow oil, yied 82%. 1H NMR (400 MHz, CDCl3) δ = 10.07 (s, 

1H, Hald), 8.10 (s, 1H, H2), 7.87 (d, J = 7.7 Hz, 1H, H4), 7.80 (d, J = 7.7 

Hz, 1H, H6), 7.59-7.56 (m, 2H, H5+H2’), 7.44 (s, 2H, H4’+H5’).  

 

3-(1-methyl-1H-pyrazol-4-yl)benzaldehyde (6.133) 

Purified by flash chromatography (Hexane/EtOAc = 60:40). 

Obtained as light yellow oil, yied 86%. 1H NMR (400 MHz, CDCl3) δ 

= 9.99 (s, 1H, Hald), 7.92 (s, 1H, H2), 7.79 (s, 1H, H3’), 7.68-7.67 (m, 

3H, H4+H6+H5’), 7.48 (t, J = 7.6 Hz, 1H, H5). 
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8.7.9.  General procedure for the synthesis of azaaurone derivatives 6.25 to 6.55 

To a solution of the appropriate 1-acetylindolin-3-one derivative (0.5 mmol) in toluene (5 

mL) at room temperature was added the proper aldehyde (1.2 mmol) and piperidine (1 

drop). The mixture was refluxed for 24 hours. After reaction completion, the solvent was 

removed to provide the crude product. 

 

(Z)-1-acetyl-2-benzylideneindolin-3-one 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as light yellow oil, yied 72%. Mixture of isomers Z/E = 

1:0.60. 1H NMR (400 MHz, CDCl3, more abundant isomer) δ = 8.30 

(d, J = 8.3 Hz, 1H, H4), 7.86 (d, J = 7.6 Hz, 2H, 2H2’), 7.70-7.61 (m, 

1H, H5), 7.55 (d, J = 7.6 Hz, 2H, 2H3’), 7.45-7.38 (m, 2H, H6+H7), 7.35 (s, 1H, Hvin), 7.31 (t, J = 

7.6 Hz, 1H, H4’), 1.96 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ = 186.01 (C=O), 170.53 

(C=O), 150.27 (Cq), 136.45 (Car), 135.02 (Cq), 133.90 (Cq), 130.21 (Car), 129.94 (Car), 

129.25 (Car), 124.99 (Car), 124.20 (Car), 123.89 (Cq), 122.44 (Car), 117.88 (Cvin), 25.12 (Ac-

CH3). 

 

1-acetyl-2-(4-bromobenzylidene)indolin-3-one (6.26) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, yied 64%, mp 138-141 oC. Mixture of 

isomers Z/E = 1:0.70. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.25 (d, J = 8.2 Hz, 1H, H4), 7.87 (d, J = 8.1 Hz, 1H, H7), 

7.69-7.64 (m, 1H, H6), 7.60-7.54 (m, 2H, 2H2’), 7.41 (d, J = 8.3 Hz, 2H, 2H3’), 7.34-7.29 (m, 

1H, H5), 7.27 (s, 1H, Hvin), 2.03 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant 

isomer) δ = 185.84 (C=O), 170.20 (C=O), 150.47 (Cq), 136.65 (Car), 135.34 (Cq), 133.08 (Cq), 

132.62 (Car), 131.74 (Car), 125.27 (Car), 124.45 (Car), 124.35 (Cq), 124.07 (Cq), 121.05 (Car), 

117.98 (Cvin), 26.71 (Ac-CH3). 
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1-acetyl-2-(4-(dimethylamino)benzylidene)indolin-3-one (6.27) 

Purified by flash chromatography (CH2Cl2/MeOH = 99:1). 

Obtained as yellow solid, yied 70%, mp 147-150 oC. Mixture of 

isomers Z/E = 1:0.20. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.30 (d, J = 8.3 Hz, 1H, H4), 7.84 (d, J = 8.2 Hz, 1H, H7), 

7.64 (t, J = 8.3 Hz, 1H, H5), 7.48 (d, J = 8.8 Hz, 2H, 2H2’), 7.33-7.28 

(m, 2H, H6+Hvin), 6.70 (d, J = 8.8 Hz, 2H, 2H3’), 3.06 (s, 6H, N(CH3)2), 2.14 (s, 3H, CH3). 13C 

NMR (101 MHz, CDCl3, more abundant isomer) δ = 185.92 (C=O), 171.53 (C=O), 151.39 

(Cq), 149.74 (Cq), 135.66 (Car), 133.06 (Car), 131.82 (Cq), 125.09 (Car), 124.93 (Cq), 124.75 

(Car), 123.88 (Car), 120.50 (Cq), 117.95 (Cvin), 111.97 (Car), 40.16 (N(CH3)2), 25.47 (Ac-CH3). 

 

1-acetyl-2-(4-phenoxybenzylidene)indolin-3-one (6.28) 

Purified by flash chromatography (Hexane/CH2Cl2 = 50:50). 

Obtained as yellow oil, yied 57%. Mixture of isomers Z/E = 

1:0.30. 1H NMR (400 MHz, CDCl3, more abundant isomer) δ 

= 8.33 (d, J = 8.1 Hz, 1H, H4), 8.01 (d, J = 8.0 Hz, 1H, H7), 7.71 

(t, J = 8.1 Hz, 1H, H5), 7.56 (d, J = 8.7 Hz, 2H, 2H2’), 7.39-7.35 

(m, 3H, H6+2H3’’), 7.29-7.24 (m, 2H, Hvin+H4’), 7.10-7.07 (m, 4H, 2H3’+2H2’’). 
13C NMR (101 

MHz, CDCl3, more abundant isomer) δ = 184.08 (C=O), 168.94 (C=O), 159.12 (Cq), 154.12 

(Cq), 149.98 (Cq), 135.76 (Car), 134.21 (Car), 133.78 (Cq), 131.46 (Car), 129.31 (Car), 128.98 

(Cq), 128.12 (Car), 126.75 (Cq), 124.12 (Car), 122.28 (Car), 121.23 (Car), 119.21 (Car), 117.56 

(Cvin), 26.63 (Ac-CH3). 

 

1-acetyl-2-(4-(p-tolyloxy)benzylidene)indolin-3-one (6.29) 

Purified by flash chromatography (Hexane/CH2Cl2 = 

50:50). Obtained as yellow oil, yied 53%. Mixture of 

isomers Z/E = 1:0.25. 1H NMR (400 MHz, CDCl3, more 
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abundant isomer) δ = 8.27 (d, J = 8.2 Hz, 1H, H4), 7.89 (d, J = 8.1 Hz, 1H, H7), 7.71-7.66 (m, 

3H, H5+2H2’), 7.29-7.34 (m, 4H, H6+2H3’’+Hvin), 7.01-6.98 (m, 4H, 2H3’+2H2’’). 
13C NMR (101 

MHz, CDCl3, more abundant isomer) δ = 183.87 (C=O), 166.98 (C=O), 158.72 (Cq), 153.82 

(Cq), 148.67 (Cq), 134.55 (Cq), 134.27 (Car), 132.28 (Cq), 131.62 (Car), 129.93 (Car), 128.92 

(Cq), 127.62 (Car), 126.15 (Cq), 123.89 (Car), 122.56 (Car), 121.65 (Car), 120.02 (Car), 118.33 

(Cvin), 25.93 (Ac-CH3), 21.24 (CH3). 

 

1-acetyl-2-(4-(4-chlorophenoxy)benzylidene)indolin-3-one (6.30) 

Purified by flash chromatography (Hexane/CH2Cl2 = 

50:50). Obtained as yellow solid, yied 61%, mp 108-111 

oC. Mixture of isomers Z/E = 1:0.70. 1H NMR (400 MHz, 

CDCl3, more abundant isomer) δ = 8.26 (d, J = 8.1 Hz, 1H, 

H4), 7.86 (d, J = 8.0 Hz, 1H, H7), 7.69-7.62 (m, 1H, H5), 7.55-

7.52 (m, 2H, 2H2’), 7.36-7.31 (m, 3H, Hvin+2H2’’), 7.03-7.00 (m, 5H, H6+2H3’+2H3’’). 
13C NMR 

(101 MHz, CDCl3, more abundant isomer) δ = 186.05 (C=O), 170.53 (C=O), 158.87 (Cq), 

154.43 (Cq), 150.30 (Cq), 136.44 (Car), 134.48 (Cq), 133.55 (Car), 132.46 (Car), 130.22 (Car), 

128.72 (Cq), 127.32 (Cq), 125.15 (Car), 124.32 (Car), 124.28 (Cq), 121.34 (Car), 118.58 (Car), 

117.60 (Cvin), 25.34 (Ac-CH3). 

 

1-acetyl-2-(4-(benzyloxy)benzylidene)indolin-3-one (6.31) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as yellow solid, yied 57%, mp 151-154 oC. Mixture 

of isomers Z/E = 1:0.10. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.29 (d, J = 8.3 Hz, 1H, H4), 7.85 (d, J = 

8.2 Hz, 1H, H7), 7.67 (t, J = 8.2 Hz, 1H, H5), 7.52 (d, J = 8.5 Hz, 

2H, 2H2’), 7.45-7.28 (m, 7H, H6+Hvin+2H2’’+2H3’’+H4’’), 7.04 (d, J = 8.5 Hz, 2H, 2H3’), 5.11 (s, 

2H, CH2), 2.06 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.10 

(C=O), 170.87 (C=O), 160.23 (Cq), 150.17 (Cq), 136.26 (Car), 133.80 (Cq), 132.50 (Car), 
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128.84 (Car), 128.42 (Car), 127.68 (Car), 126.37 (Cq), 125.02 (Car), 124.37 (Cq), 124.17 (Car), 

123.00 (Car), 118.02 (Cvin), 115.69 (Car), 70.31 (CH2), 25.33 (Ac-CH3). 

 

1-acetyl-2-(biphenyl-4-ylmethylene)indolin-3-one (6.32) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, yied 94%, mp 172-175 oC. Mixture of 

isomers Z/E = 1:0.10. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.31 (d, J = 8.3 Hz, 1H, H4), 7.88 (d, J = 8.2 Hz, 1H, 

H7), 7.71-7.60 (m, 6H, H5+2H2’+2H3’+H4’’), 7.48 (t, J = 6.9 Hz, 2H, 

2H3’’), 7.41-7.39 (m, 2H, 2H2’’), 7.32 (t, J = 8.2 Hz, 1H, H6), 7.27 (s, 1H, Hvin), 2.06 (s, 3H, 

CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.10 (C=O), 170.71 (C=O), 

150.36 (Cq), 142.72 (Cq), 139.82 (Cq), 136.53 (Car), 135.05 (Cq), 132.84 (Cq), 131.02 (Car), 

129.13 (Car), 128.25 (Car), 127.86 (Car), 127.17 (Car), 125.14 (Car), 124.33 (Car), 124.12 (Cq), 

122.29 (Car), 118.01 (Car), 25.39 (Ac-CH3). 

 

1-acetyl-2-((4'-fluorobiphenyl-4-yl)methylene)indolin-3-one (6.33) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, yied 80%, mp 70-73 oC. Mixture of 

isomers Z/E = 1:0.40. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.30 (d, J = 8.3 Hz, 1H, H4), 7.87 (d, J = 8.0 Hz, 1H, 

H7), 7.69 (t, J = 8.3 Hz, 1H, H5), 7.65-7.58 (m, 6H, 

2H2’+2H3’+2H2’’), 7.37 (s, 1H, Hvin), 7.32 (J = 8.0 Hz, 1H, H6), 

7.18-7.14 (m, 2H, 2H3’’), 2.06 (s, 1H, CH3). 13C NMR (101 MHz, CDCl3, more abundant 

isomer) δ = 186.07 (C=O), 170.64 (C=O), 163.01 (CF), 150.34 (Cq), 141.66 (Cq), 136.55 (Car), 

135.96 (Cq), 135.08 (Cq), 132.87 (Cq), 131.05 (Car), 128.82 (Car), 127.69 (Car), 125.17 (Car), 

124.35 (Car), 124.10 (Cq), 122.13 (Car), 117.98 (Cvin), 116.08 (Car), 25.38 (Ac-CH3). 
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1-acetyl-2-((4'-methylbiphenyl-4-yl)methylene)indolin-3-one (6.34) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow solid, yied 65%, mp 135-138 oC. Mixture of 

isomers Z/E = 1:0.50. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.15 (d, J = 8.2 Hz, 1H, H4), 7.98 (d, J = 8.2 Hz, 2H, 

2H2’), 7.80 (d, J = 8.1 Hz, 1H, H7), 7.69-7.60 (m, 3H, H5+2H3’), 

7.57-7.52 (m, 3H, Hvin+2H2’’), 7.34-7.27 (m, 3H, H6+2H3’’), 2.41 

(s, 3H, CH3), 2.06 (s, 3H, Ac-CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 

186.04 (C=O), 169.35 (C=O), 148.26 (Cq), 143.04 (Cq), 138.25 (Cq), 137.89 (Cq), 137.59 (Cq), 

136.05 (Car), 134.96 (Cq), 131.98 (Car), 130.92 (Cq), 130.23 (Car), 129.75 (Car), 127.10 (Car), 

126.52 (Car), 124.79 (Car), 124.33 (Car), 117.49 (Cvin), 26.56 (CH3), 25.38 (Ac-CH3). 

 

1-acetyl-2-((4'-chlorobiphenyl-4-yl)methylene)indolin-3-one (6.35) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, yied 75%, mp 107-110 oC. Mixture of 

isomers Z/E = 1:0.35. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.29 (d, J = 8.2 Hz, 1H, H4), 7.87 (d, J = 8.0 Hz, 1H, 

H7), 7.71-7.55 (m, 7H, H5+2H2’+2H3’+2H2’’), 7.45-7.42 (m, 2H, 

2H3’’), 7.37 (s, 1H, Hvin), 7.32 (t, J = 8.0 Hz, 1H, H6), 2.06 (s, 3H, 

CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.06 (C=O), 170.59 (C=O), 

150.35 (Cq), 141.37 (Cq), 138.28 (Cq), 136.57 (Car), 135.15 (Cq), 134.39 (Cq), 133.23 (Cq), 

131.08 (Car), 129.30 (Car), 128.40 (Car), 127.67 (Car), 125.18 (Car), 124.37 (Car), 124.09 (Cq), 

122.00 (Car), 117.98 (Cvin), 25.39 (Ac-CH3). 
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1-acetyl-2-((4'-(trifluoromethyl)biphenyl-4-yl)methylene)indolin-3-one (6.36) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as yellow solid, yied 78%, mp 124-127 oC. Mixture of 

isomers Z/E = 1:0.80. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.09 (d, J = 8.2 Hz, 1H, H4), 7.98 (d, J = 8.2 Hz, 2H, 

2H2’), 7.80 (d, J = 8.1 Hz, 1H, H7), 7.76-7.64 (m, 8H, 

H5+Hvin+2H3’+2H2’’+2H3’’), 7.34-7.27 (m, 1H, H6), 2.06 (s, 3H, 

CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.11 (C=O), 170.48 (C=O), 

162.71 (Cq), 148.38 (Cq), 141.19 (Cq), 136.22 (Car), 135.37 (Cq), 133.98 (Cq), 132.31 (Cq), 

131.93 (Car), 129.50 (Car), 127.54 (Car), 126.89 (Car), 125.99 (Car), 124.86 (Car), 124.68 (Cq), 

124.10 (CF3), 121.68 (Car), 117.40 (Cvin), 25.37 (Ac-CH3). 

 

1-acetyl-2-((4'-(trifluoromethoxy)biphenyl-4-yl)methylene)indolin-3-one (6.37) 

Purified by flash chromatography (Hexane/EtOAc = 90:5). 

Obtained as yellow solid, yied 71%, mp 121-124 oC. Mixture of 

isomers Z/E = 1:0.60. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.29 (d, J = 8.2 Hz, 1H, H4), 7.88 (d, J = 

8.0 Hz, 1H, H7), 7.72-7.62 (m, 7H, H5+2H2’+2H3’+2H2’’), 7.38 (s, 

1H, Hvin), 7.34-7.31 (m, 3H, H6+2H3’’), 2.06 (s, 3H, CH3). 13C 

NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.07 (C=O), 170.41 (C=O), 166.54 

(Cq), 150.13 (Cq), 141.19 (Cq), 138.61 (Cq), 136.58 (Car), 133.15 (Cq), 131.65 (Cq), 131.08 

(Car), 129.72 (CF3), 128.59 (Car), 127. 84 (Car), 126.70 (Car), 124.40 (Car), 123.90 (Cq), 121.90 

(Car), 121.55 (Car), 118.00 (Cvin), 25.59 (Ac-CH3). 
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1-acetyl-2-(4-benzylbenzylidene)indolin-3-one (6.38) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow oil, yied 73%. Mixture of isomers Z/E = 

1:0.40. 1H NMR (400 MHz, CDCl3, more abundant isomer) δ = 

8.30 (d, J = 8.2 Hz, 1H, H4), 7.87-7.84 (m, 1H, H7), 7.69-7.64 

(m, 1H, H5), 7.50-7.47 (m, 2H, 2H2’), 7.33-7.18 (m, 9H, 

H6+Hvin+2H3’+2H2’’+2H3’’+H4’’), 4.02 (s, 2H, CH2), 2.00 (s, 3H, CH3). 13C NMR (101 MHz, 

CDCl3, more abundant isomer) δ = 186.10 (C=O), 170.68 (C=O), 150.37 (Cq), 143.67 (Cq), 

140.11 (Cq), 136.43 (Car), 134.83 (Cq), 131.80 (Cq), 130.63 (Car), 129.89 (Car), 129.07 (Car), 

128.78 (Car), 126.55 (Car), 125.04 (Car), 124.25 (Car), 124.07 (Cq), 122.59 (Car), 117.98 (Cvin), 

41.95 (CH2), 25.25 (Ac-CH3). 

 

1-acetyl-2-(4-(quinolin-3-yl)benzylidene)indolin-3-one (6.39) 

Purified by flash chromatography (Hexane/EtOAc = 70:30). 

Obtained as yellow solid, yied 69%, mp 168-171 oC. Mixture 

of isomers Z/E = 1:0.70. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 9.25 (s, 1H, H2’’), 8.39 (s, 1H, H4’’), 8.29 

(d, J = 8.3 Hz, 1H, H4), 8.17 (d, J =8.0 Hz, 1H, H7), 7.93-7.88 

(m, 2H, 2H2’), 7.84-7.60 (m, 7H, H5+H6+2H3’+H5’’+H7’’+H8’’), 

7.40 (s, 1H, Hvin), 7.33 (t, J = 7.5 Hz, 1H, H6’’), 2.07 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, 

more abundant isomer) δ = 186.18 (C=O), 170.47 (C=O), 150.45 (Cq), 149.46 (Car), 147.67 

(Cq), 139.29 (Cq), 137.82 (Cq), 136.62 (Car), 136.22 (Car), 135.41 (Cq), 133.92 (Cq), 133.70 

(Car), 131.31 (Car), 129.45 (Car), 128.12 (Car), 128.05 (Car), 126.96 (Car), 125.24 (Car), 124.79 

(Cq), 124.44 (Car), 123.64 (Cq), 122.70 (Car), 118.00 (Cvin), 25.41 (Ac-CH3). 
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1-acetyl-2-(4-(thiophen-3-yl)benzylidene)indolin-3-one (6.40) 

Purified by flash chromatography (Hexane/EtOAc = 70:30). 

Obtained as yellow solid, yied 72%, mp 126-129 oC. Mixture of 

isomers Z/E = 1:0.25. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.30 (d, J = 8.2 Hz, 1H, H4), 7.87 (d, J = 8.1 Hz, 1H, H7), 

7.70-7.56 (m, 6H, H5+2H2’+2H3’+H2’’), 7.45 (s, 2H, H4’’+H5’’), 7.36 

(s, 1H, Hvin), 7.31 (t, J = 8.1 Hz, H6), 2.05 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more 

abundant isomer) δ = 186.22 (C=O), 170.77 (C=O), 150.40 (Cq), 137.33 (Cq), 136.50 (Car), 

134.96 (Cq), 134.45 (Cq), 132.62 (Cq), 131.12 (Car), 127.11 (Car), 126.94 (Car), 126.12 (Car), 

125.13 (Car), 124.32 (Car), 124.17 (Cq), 122.27 (Car), 118.00 (Cvin), 25.35 (Ac-CH3). 

 

1-acetyl-2-(4-(1-methyl-1H-pyrazol-4-yl)benzylidene)indolin-3-one (6.41) 

Purified by flash chromatography (CH2Cl2/MeOH = 99:1). 

Obtained as yellow solid, yied 77%, mp 161-164 oC. Mixture of 

isomers Z/E = 1:0.20. 1H NMR (400 MHz, CDCl3, more abundant 

isomer) δ = 8.29 (d, J = 8.2 Hz, 1H, H4), 7.86 (d, J = 8.1 Hz, 1H, 

H7), 7.81 (s, 1H, H5’’), 7.69-7.65 (m, 2H, H5+H3’’), 7.54-7.52 (m, 

4H, 2H2’+2H3’), 7.33-7.29 (m, 2H, H6+Hvin), 3.96 (s, 3H, NCH3), 2.05 (s, 3H, Ac-CH3). 13C NMR 

(101 MHz, CDCl3, more abundant isomer) δ = 186.06 (C=O), 170.77 (C=O), 150.30 (Cq), 

137.08 (Car), 136.42 (Car), 134.70 (Cq), 134.55 (Cq), 131.72 (Cq), 131.24 (Car), 127.52 (Car), 

126.01 (Car), 125.09 (Car), 124.28 (Car), 124.21 (Cq), 122.51 (Car), 122.35 (Cq), 117.98 (Cvin), 

39.37 (NCH3), 25.35 (Ac-CH3). 

 

1-acetyl-2-(biphenyl-3-ylmethylene)indolin-3-one (6.42) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, yied 65%, mp 100-103 oC. Mixture 

of isomers Z/E = 1:0.30. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.31 (d, J = 8.3 Hz, 1H, H4), 7.87 (d, J = 
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8.2 Hz, 1H, H7), 7.76 (s, 1H, H2’), 7.71-7.67 (m, 1H, H5), 7.63-7.52 (m, 5H, H4’+H5’+H6’+2H2’’), 

7.48 (t, J = 7.6 Hz, 2H, 2H3’’), 7.41-7.37 (m, 2H, Hvin+H4’’), 7.32 (t, J = 8.2 Hz, 1H, H6), 2.03 (s, 

3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.10 (C=O), 170.62 

(C=O), 150.41 (Cq), 142.40 (Cq), 140.04 (Cq), 136.61 (Car), 135.31 (Cq), 134.55 (Cq), 129.81 

(Car), 129.14 (Car), 129.00 (Car), 128.93 (Car), 128.82 (Car), 128.05 (Car), 127.24 (Car), 125.12 

(Car), 124.36 (Car), 123.97 (Cq), 122.33 (Car), 117.94 (Cvin), 25.39 (Ac-CH3). 

 

1-acetyl-2-((4'-fluorobiphenyl-3-yl)methylene)indolin-3-one (6.43) 

Purified by flash chromatography (Hexane/EtOAc = 80:20). 

Obtained as yellow solid, yied 69%, mp 165-168 oC. 

Mixture of isomers Z/E = 1:0.15. 1H NMR (400 MHz, CDCl3, 

more abundant isomer) δ = 8.30 (d, J = 8.0 Hz, 1H, H4), 7.87 

(d, J = 7.9 Hz, 1H, H7), 7.71-7.49 (m, 7H, H5+H2’+H4’+H5’+H6’+2H2’’), 7.39 (s, 1H, Hvin), 7.32 (t, 

J = 7.9 Hz, 1H, H6), 7.16 (t, J = 8.4 Hz, 2H, 2H3’’), 2.02 (s, 3H, CH3). 13C NMR (101 MHz, 

CDCl3, more abundant isomer) δ = 186.06 (C=O), 170.60 (C=O), 164.14 (Cq), 161.68 (CF), 

150.39 (Cq), 141.41 (Cq), 136.64 (Car), 135.36 (Cq), 134.66 (Cq), 129.88 (Car), 128.93 (Car), 

128.80 (Car), 128.62 (Car), 125.15 (Car), 124.39 (Car), 123.94 (Cq), 122.12 (Car), 117.88 (Cvin), 

116.18 (Car), 115.97 (Car), 25.40 (Ac-CH3). 

 

1-acetyl-2-((4'-methylbiphenyl-3-yl)methylene)indolin-3-one (6.44) 

Purified by flash chromatography (Hexane/EtOAc = 

90:10). Obtained as yellow oil, yied 62%. Mixture of 

isomers Z/E = 1:0.40. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.16-8.12 (m, 2H, H4+H2’), 7.81-7.79 

(m, 2H, H4’+H5’), 7.69-7.57 (m, 4H, H5+H7+2H2’’), 7.51-7.47 (m, 2H, H6+H6’), 7.29-7.26 (m, 

3H, Hvin+2H3’’), 2.41 (CH3), 2.02 (Ac-CH3). 13C NMR (101 MHz, CDCl3, more abundant 

isomer) δ = 186.13 (C=O), 169.30 (C=O), 148.33 (Cq), 140.98 (Cq), 137.92 (Cq), 137.40 (Cq), 

136.08 (Car), 135.24 (Cq), 132.50 (Cq), 139.24 (Car), 129.84 (Car), 129.69 (Car), 128.80 (Car), 
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128.47 (Car), 127.19 (Car), 124.78 (Car), 124.71 (Cq), 124.32 (Car), 122.41 (Car), 117.49 (Cvin), 

26.53 (CH3), 25.36 (Ac-CH3). 

 

1-acetyl-2-((4'-chlorobiphenyl-3-yl)methylene)indolin-3-one (6.45) 

Purified by flash chromatography (Hexane/EtOAc = 

80:20). Obtained as yellow solid, yied 66%, mp 180-183 

oC. Mixture of isomers Z/E = 1:0.20. 1H NMR (400 MHz, 

CDCl3, more abundant isomer) δ = 8.29 (d, J = 8.3 Hz, 1H, 

H4), 7.87 (d, J = 8.0 Hz, 1H, H7), 7.70-7.50 (m, 7H, H5+H2’+H4’+H5’+H6’+2H2’’), 7.44 (d, J = 8.4 

Hz, 2H, 2H3’’), 7.39 (s, 1H, Hvin), 7.32 (t, J = 8.0 Hz, 1H, H6), 2.02 (s, 3H, CH3). 13C NMR (101 

MHz, CDCl3, more abundant isomer) δ = 186.04 (C=O), 170.55 (C=O), 150.39 (Cq), 141.18 

(Cq), 138.51 (Cq), 136.66 (Car), 135.40 (Cq), 134.75 (Cq), 134.23 (Cq), 129.93 (Car), 129.33 

(Car), 129.22 (Car), 128.78 (Car), 128.56 (Car), 128.50 (Car), 125.17 (Car), 124.41 (Car), 123.94 

(Cq), 122.00 (Car), 117.88 (Cvin), 25.39 (Ac-CH3). 

 

1-acetyl-2-((4'-(trifluoromethyl)biphenyl-3-yl)methylene)indolin-3-one (6.46) 

Purified by flash chromatography (Hexane/EtOAc = 95:5). 

Obtained as yellow solid, yied 75%, mp 144-145 oC. 

Mixture of isomers Z/E = 1:0.80. 1H NMR (400 MHz, 

CDCl3, more abundant isomer) δ = 8.28 (d, J = 8.2 Hz, 1H, 

H4), 8.21 (s, 1H, H2’), 7.88 (d, J = 8.1 Hz, 1H, H7), 7.81-7.51 (m, 8H, 

H5+H4’+H5’+H6’+2H2’’+2H3’’), 7.40 (s, 1H, Hvin), 7.32 (t, J = 8.1 Hz, 1H, H6), 2.04 (s, 3H, CH3). 

13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.04 (C=O), 170.52 (C=O), 150.37 

(Cq), 148.35 (Cq), 140.95 (Cq), 139.52 (Cq), 136.27 (Car), 135.43 (Cq), 134.93 (Cq), 132.88 

(Cq), 130.82 (Car), 130.10 (Car), 129.70 (Car), 128.75 (Car), 127.69 (Car), 125.92 (Car), 124.89 

(Car), 124.49 (Car), 123.94 (CF3), 121.75 (Car), 117.41 (Cvin), 26.56 (Ac-CH3). 
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1-acetyl-2-((4'-(trifluoromethoxy)biphenyl-3-yl)methylene)indolin-3-one (6.47) 

Purified by flash chromatography (Hexane/EtOAc = 

90:10). Obtained as yellow solid, yied 72%, mp 115-117 

oC. Mixture of isomers Z/E = 1:0.45. 1H NMR (400 MHz, 

CDCl3, more abundant isomer) δ = 8.18 (s, 1H, H2’), 8.10 

(d, J = 8.3 Hz, 1H, H4), 7.82-7.49 (m, 7H, H5+H6+H4’+H5’+H6’+2H2’’), 7.32-7.27 (m, 4H, 

H7+Hvin+2H3’’), 2.06 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 

186.12 (C=O), 169.31 (C=O), 151.42 (Cq), 150.42 (Cq), 148.37 (Cq), 138.63 (Cq), 138.82 (Cq), 

136.23 (Car), 132.79 (Cq), 130.37 (Car), 129.98 (Car), 129.85 (Car), 129.65 (CF3), 128.76 (Car), 

128.67 (Car), 124.87 (Car), 124.67 (Cq), 124.46 (Car), 121.60 (Car), 121.45 (Car), 117.44 (Cvin), 

26.87 (Ac-CH3). 

 

1-acetyl-2-(3-benzylbenzylidene)indolin-3-one (6.48) 

Purified by flash chromatography (Hexane/EtOAc = 92:8). 

Obtained as yellow oil, yied 72%. Mixture of isomers Z/E = 

1:0.40. 1H NMR (400 MHz, CDCl3, more abundant isomer) δ = 

8.29 (d, J = 8.2 Hz, 1H, H4), 7.86 (d, J = 8.0 Hz, 1H, H7), 7.70-

7.62 (m, 2H, H5+H2’), 7.41-7.19 (m, 10H, H6+Hvin+H4’+H5’+H6’+2H2’’+2H3’’+H4’’), 4.01 (s, 2H, 

CH2), 1.94 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.14 

(C=O), 170.48 (C=O), 150.41 (Cq), 142.53 (Cq), 140.34 (Cq), 136.48 (Car), 135.10 (Cq), 134.22 

(Cq), 130.78 (Car), 130.67 (Car), 129.47 (Car), 129.01 (Car), 128.82 (Car), 129.13 (Car), 126.53 

(Car), 125.03 (Car), 124.28 (Car), 124.04 (Cq), 122.54 (Car), 117.98 (Cvin), 41.90 (CH2), 25.22 

(Ac-CH3). 
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1-acetyl-2-(3-(quinolin-3-yl)benzylidene)indolin-3-one (6.49) 

Purified by flash chromatography (Hexane/EtOAc = 

70:30). Obtained as yellow solid, yied 62%, mp 145-148 

oC. Mixture of isomers Z/E = 1:0.70. 1H NMR (400 MHz, 

CDCl3, more abundant isomer) δ = 9.27 (s, 1H, H2’’), 8.43 

(s, 1H, H4’’), 8.28 (d, J = 8.2 Hz, 1H, H4), 8.80 (d, J = 8.0 Hz, 1H, H7), 7.94-7.57 (m, 10H, 

H5+H6+Hvin+H2’+H4’+H5’+H6’+H5’’+H7’’+H8’’), 7.32 (t, J = 7.5 Hz, 1H, H6’’), 2.07 (s, 1H, CH3). 13C 

NMR (101 MHz, CDCl3, more abundant isomer) δ = 185.99 (C=O), 169.39 (C=O), 150.47 

(Cq), 149.87 (Car), 148.33 (Cq), 139.12 (Cq), 137.62 (Cq), 136.25 (Car), 135.23 (Cq), 133.83 

(Car), 133.16 (Cq), 130.71 (Car), 130.16 (Car), 129.73 (Car), 129.49 (Car), 129.24 (Car), 128.94 

(Car), 128.28 (Car), 127.24 (Car), 124.88 (Car), 124.68 (Cq), 124.52 (Car), 123.97 (Cq), 121.69 

(Car), 117.40 (Cvin), 25.43 (Ac-CH3). 

 

1-acetyl-2-(3-(thiophen-3-yl)benzylidene)indolin-3-one (6.50) 

Purified by flash chromatography (Hexane/EtOAc = 70:30). 

Obtained as yellow solid, yied 69%, mp 150-153 oC. Mixture 

of isomers Z/E = 1:0.75. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.31 (d, J = 8.2 Hz, 1H, H4), 7.87 (d, J = 

8.1 Hz, 1H, H7), 7.80-7.60 (m, 4H, H5+H2’+H4’+H6’), 7.50-7.38 (m, 5H, Hvin+H5’+H2’’+H4’’+H5’’), 

7.31 (t, J = 8.1 Hz, 1H, H6), 2.01 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant 

isomer) δ = 186.06 (C=O), 170.73 (C=O), 150.40 (Cq), 141.21 (Cq), 136.98 (Cq), 136.62 (Car), 

135.38 (Cq), 134.62 (Cq), 129.88 (Car), 128.82 (Car), 128.15 (Car), 126.95 (Car), 126.21 (Car), 

125.11 (Car), 124.38 (Car), 123.96 (Cq), 122.15 (Car), 121.37 (Car), 117.85 (Cvin), 25.37 (Ac-

CH3). 
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1-acetyl-2-(3-(1-methyl-1H-pyrazol-4-yl)benzylidene)indolin-3-one (6.51) 

Purified by flash chromatography (CH2Cl2/MeOH = 99:1). 

Obtained as yellow solid, yied 68%, mp 198-201 oC. Mixture 

of isomers Z/E = 1:0.60. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.30 (d, J = 8.2 Hz, 1H, H4), 7.86 (d, J = 

8.0 Hz, 1H, H7), 7.77 (s, 1H, H5’’), 7.70-7.63 (m, 3H, H5+H2’+H3’’), 7.53-7.38 (m, 3H, 

H4’+H5’+H6’), 7.35 (s, 1H, Hvin), 7.33 (t, J = 8.0 Hz, 1H, H6), 3.96 (s, 3H, NCH3), 2.00 (s, 3H, 

Ac-CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.06 (C=O), 170.76 

(C=O), 150.40 (Cq), 136.90 (Car), 136.58 (Car), 135.29 (Cq), 134.62 (Cq), 133.91 (Cq), 129.89 

(Car), 128.05 (Car), 127.29 (Car), 127.11 (Car), 127.03 (Car), 125.08 (Car), 124.36 (Car), 123.94 

(Cq), 122.30 (Cq), 122.17 (Car), 117.80 (Cvin), 39.35 (NCH3), 25.35 (Ac-CH3). 

 

1-acetyl-2-benzylidene-5-phenylindolin-3-one (6.52) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow solid, yied 67%, mp 131-134 oC. Mixture 

of isomers Z/E = 1:0.25. 1H NMR (400 MHz, CDCl3, more 

abundant isomer) δ = 8.36 (d, J = 8.1 Hz, 1H, H7), 8.08 (s, 1H, 

H4), 7.93 (d, J = 8.1 Hz, 1H, H6), 7.64-7.56 (m, 4H, 2H2’+2H2’’), 

7.49-7.38 (m, 7H, Hvin+2H3’+H4’+2H3’’+H4’’), 1.99 (s, 1H, CH3). 13C NMR (101 MHz, CDCl3, 

more abundant isomer) δ = 186.12 (C=O), 170.58 (C=O), 149.40 (Cq), 140.22 (Cq), 135.15 

(Cq), 134.12 (Cq), 133.78 (Cq), 131.76 (Car), 129.44 (Car), 128.95 (Car), 128.62 (Car), 128.43 

(Car), 128.02 (Car), 127.66 (Car), 127.12 (Cq), 127.02 (Car), 121.15 (Car), 117.70 (Cvin), 26.05 

(Ac-CH3). 
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(Z)-1-acetyl-2-benzylidene-5-phenoxyindolin-3-one (6.53) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow oil, yied 62%. Mixture of isomers Z/E = 

1:0.20. 1H NMR (400 MHz, CDCl3, more abundant isomer) 

δ = 8.30 (d, J = 8.1 Hz, 1H, H7), 7.56 (d, J = 7.5 Hz, 2H, 2H2’’), 

7.47-7.33 (m, 8H, H4+H6+Hvin+2H2’+2H3’’+H4’’), 7.16 (t, J = 7.4 Hz, 1H, H4’), 7.04-6.99 (m, 2H, 

2H3’), 1.98 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 186.01 

(C=O), 170.49 (C=O), 155.11 (Cq), 146.16 (Cq), 135.51 (Cq), 133.98 (Cq), 131.25 (Car), 130.42 

(Car), 130.18 (Car), 129.40 (Car), 127.45 (Car), 125.25 (Cq), 124.15 (Car), 122.99 (Car), 120.28 

(Cq), 119.63 (Car), 119.26 (Cvin), 112.74 (Car), 25.13 (Ac-CH3). 

 

1-acetyl-5-benzyl-2-benzylideneindolin-3-one (6.54) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow oil, yied 65%. Mixture of isomers Z/E = 

1:0.45. 1H NMR (400 MHz, CDCl3, more abundant isomer) 

δ = 8.20 (d, J = 8.1 Hz, 1H, H7), 7.67 (s, 1H, H4), 7.54-7.51 

(m, 2H, 2H2’’), 7.47-7.36 (m, 3H, H6+2H3’’), 7.32-7.15 (m, 7H, Hvin+2H2’+2H3’+H4’+H4’’), 4.04 

(s, 2H, CH2), 1.98 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 

186.14 (C=O), 170.49 (C=O), 148.99 (Cq), 140.40 (Cq), 138.60 (Cq), 137.35 (Car), 135.41 (Cq), 

134.03 (Cq), 131.17 (Car), 130.34 (Car), 129.35 (Car), 128.98 (Car), 128.07 (Car), 126.60 (Car), 

124.30 (Cq), 124.13 (Car), 122.50 (Car), 118.11 (Cvin), 41.42 (CH2), 25.17 (Ac-CH3). 

 

1-acetyl-2-benzylidene-6-phenoxyindolin-3-one (6.55) 

Purified by flash chromatography (Hexane/EtOAc = 90:10). 

Obtained as yellow oil, yied 61%. Mixture of isomers Z/E = 

1:0.30. 1H NMR (400 MHz, CDCl3, more abundant isomer) 

δ = 8.22 (d, J = 8.3 Hz, 1H, H4), 7.67-7.61 (m, 5H, 

H7+2H2’+2H2’’), 7.53 (t, J = 7.6 Hz, 2H, 2H3’), 7.31-7.12 (m, 6H, H5+Hvin+H4’+2H3’’+H4’’), 2.01 



Chapter  8 
 

253  

 

 

(s, 3H, CH3). 13C NMR (101 MHz, CDCl3, more abundant isomer) δ = 185.94 (C=O), 170.09 

(C=O), 149.15 (Cq), 145.56 (Cq), 136.71 (Cq), 134.03 (Cq), 130.95 (Car), 129.82 (Car), 129.68 

(Car), 128.70 (Car), 127.75 (Car), 125.55 (Cq), 123.95 (Car), 123.06 (Car), 121.18 (Cq), 119.23 

(Car), 118.26 (Cvin), 115.74 (Car), 26.03 (Ac-CH3). 

 

8.7.10. General procedure for the synthesis of azaaurone derivatives 6.56 to 6.86 

To a solution of the proper acetylated azaaurone derivative (0.25 mmol) in MeOH (2.5 

mL) at room temperature was added a solution of KOH 50% in water (375 μL). The 

mixture was stirred for 45 minutes. After reaction completion, the reaction mixture was 

neutralized with extracted with EtOAc. The organic layer was dried with anhydrous 

Na2SO4 and concentrated under reduced pressure to give the crude product. 

 

(Z)-2-benzylideneindolin-3-one (6.56) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange solid, 

yied 90%, mp 189-191 oC. 1H NMR (400 MHz, CDCl3) δ = 7.75 (d, J = 

7.7 Hz, 1H, H4), 7.56 (d, J = 7.5 Hz, 2H, 2H2’), 7.50-7.43 (m, 3H, 

H7+2H3’’), 7.34 (t, J = 7.4 Hz, 1H, H6), 7.01-6.98 (m, 2H, H5+H4’), 6.87 

(br, 2H, Hvin+NH). 13C NMR (101 MHz, CDCl3) δ = 186.68 (C=O), 153.27 (Cq), 136.30 (Car), 

135.50 (Cq), 134.90 (Cq), 129.63 (Car), 129.37 (Car), 128.67 (Car), 125.21 (Car), 121.91 (Cq), 

120.84 (Car), 112.09 (Car), 111.69 (Cvin).  

 

(Z)-2-(4-bromobenzylidene)indolin-3-one (6.57) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange solid, 

yied 91%, mp 241-243 oC. 1H NMR (400 MHz, DMSO-d6) δ = 9.84 (s, 

1H, NH), 7.69-764 (m, 4H, 2H2’+2H3’), 7.69 (d, J = 7.7 Hz, 1H, H4), 

7.53 (t, J = 7.7 Hz, 1H, H6), 7.13 (d, J = 7.7 Hz, H7), 6.93 (t, J = 7.7 Hz, 

1H, H5), 6.59 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6) δ = 186.34 (C=O), 154.24 (Cq), 
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136.51 (Car), 134.78 (Cq), 133.34 (Cq), 131.79 (Car), 131.57 (Car), 124.23 (Cq), 121.40 (Cq), 

119.85 (Car), 112.62 (Cvin), 108.34 (Car). 

 

(Z)-2-(4-(dimethylamino)benzylidene)indolin-3-one (6.58) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as red solid, 

yied 87%, mp 250-252 oC. 1H NMR (400 MHz, CDCl3) δ = 7.76 (d, J 

= 7.7 Hz, 1H, H4), 7.49-7.43 (m, 3H, H6+2H2’), 7.02 (d, J = 7.7 Hz, 

1H, H7), 6.95 (t, J = 7.7 Hz, 1H, H5), 6.90 (s, 1H, Hvin), 6.77-6.75 (m, 

3H, 2H3’+NH). 13C NMR (101 MHz, CDCl3) δ = 186.18 (C=O), 152.98 

(Cq), 135.40 (Car), 133.15 (Cq), 131.59 (Car), 124.87 (Car), 122.54 (Cq), 120.40 (Car), 118.44 

(Cq), 117.10 (Cq), 114.30 (Car), 122.30 (Car), 112.23 (Cvin), 40.35 (CH3). 

 

(Z)-2-(4-phenoxybenzylidene)indolin-3-one (6.59) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 93%, mp 209-211 oC. 1H NMR (400 MHz, CDCl3) δ 

= 7.78 (d, J = 7.6 Hz, 1H, H4), 7.55 (d, J = 8.7 Hz, 2H, 2H2’), 

7.50 (t, J = 7.5 Hz, 1H, H6), 7.43-7.39 (m, 2H, 2H3’’), 7.20 (t, J = 

7.6 Hz, 1H, H5), 7.10-7.08 (m, 4H, 2H3’+2H2’’), 7.03-7.01 (m, 

2H, H7+H4’’), 6.89 (s, 1H, Hvin), 6.78 (br, 1H, NH). 13C NMR (101 MHz, CDCl3) δ = 186.09 

(C=O), 153.20 (Cq), 136.16 (Car), 131.31 (Car), 130.11 (Car), 125.17 (Car), 124.24 (Car), 120.87 

(Car), 119.72 (Car), 119.11 (Car), 112.18 (Car), 111.55 (Cvin). 
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(Z)-2-(4-(p-tolyloxy)benzylidene)indolin-3-one (6.60) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 92%, mp 175-176 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 9.74 (s, 1H, NH), 7.75 (d, J = 8.4 Hz, 

2H, 2H2’), 7.58 (d, J = 7.5 Hz, 1H, H4), 7.52 (t, J = 7.5 Hz, 

1H, H6), 7.24 (d, J = 8.0 Hz, 2H, 2H2’’), 7.13 (d, J = 7.5 Hz, 

1H, H7), 7.05-6.99 (m, 4H, 2H3’+2H3’’), 6.92 (t, J = 7.5 Hz, 1H, H5), 6.65 (s, 1H, Hvin), 2.32 (s, 

3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ = 186.15 (C=O), 157.50 (Cq), 154.10 (Cq), 153.53 

(Cq), 136.22 (Car), 133.80 (Cq), 133.33 (Cq), 131.78 (Car), 130.53 (Car), 128.88 (Cq), 124.08 

(Car), 120.18 (Cq), 119.62 (Car), 119.31 (Car), 118.12 (Car), 112.57 (Car), 109.70 (Cvin), 20.34 

(CH3). 

 

(Z)-2-(4-(4-chlorophenoxy)benzylidene)indolin-3-one (6.61) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 89%, mp 192-194 oC. 1H NMR (400 

MHz, CDCl3) δ = 7.83 (d, J = 8.2 Hz, 2H, 2H2’), 7.62 (d, J = 

7.5 Hz, 1H, H4), 7.58 (t, J = 7.5 Hz, 1H, H6), 7.26 (d, J = 8.1 

Hz, 2H, 2H2’’), 7.17 (d, J = 7.5 Hz, 1H, H7), 7.15-7.00 (m, 

5H, H5+2H3’+2H3’’), 6.71 (br, 2H, Hvin+NH). 13C NMR (101 MHz, CDCl3) δ = 186.05 (C=O), 

156.95 (Cq), 153.98 (Cq), 152.83 (Cq), 136.07 (Car), 133.55 (Cq), 133.17 (Cq), 131.07 (Car), 

130.65 (Car), 128.98 (Cq), 123.98 (Car), 120.35 (Cq), 119.32 (Car), 119.11 (Car), 117.92 (Car), 

111.95 (Car), 110.62 (Cvin). 
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(Z)-2-(4-(benzyloxy)benzylidene)indolin-3-one (6.62) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 89%, mp 231-233 oC. 1H NMR (400 MHz, CDCl3) δ 

= 7.76 (d, J = 7.42 Hz, 1H, H4), 7.52-7.35 (m, 8H, 

H6+H7+2H2’+2H2’’+2H3’’), 7.05 (d, J = 8.72 Hz, 2H, 2H3’), 7.01-

6.95 (m, 2H, H5+H4’’), 6.87 (s, 1H, Hvin), 6.74 (br, 1H, NH), 5.12 (CH2). 13C NMR (101 MHz, 

CDCl3) δ = 185.99 (C=O), 159.18 (Cq), 153.15 (Cq), 136.53 (Cq), 136.01 (Car), 134.41 (Cq), 

131.35 (Car), 128.84 (Car), 128.34 (Car), 127.67 (Cq), 127.62 (Car), 125.10 (Car), 122.19 (Cq), 

120.74 (Car), 115.84 (Car), 112.28 (Car), 112.18 (Cvin), 70.26 (CH2). 

 

(Z)-2-(biphenyl-4-ylmethylene)indolin-3-one (6.63) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 94%, mp 233-235 oC. 1H NMR (400 MHz, CDCl3) δ = 

7.77 (d, J = 7.6 Hz, 1H, H4), 7.70-7.62 (m, 6H, 2H2’+2H3’+2H2’’), 

7.51-7.45 (m, 3H, H7+2H3’’), 7.38 (t, J = 7.3 Hz, 1H, H4’’), 7.04-6.97 

(m, 2H, H5+H6), 6.91 (br, 2H, Hvin+NH). 13C NMR (101 MHz, 

CDCl3) δ = 186.65 (C=O), 153.21 (Cq), 141.35 (Cq), 140.25 (Cq), 136.28 (Car), 135.51 (Cq), 

133.86 (Cq), 130.15 (Car), 129.09 (Car), 127.96 (Car), 127.52 (Car), 127.13 (Car), 125.21 (Car), 

121.95 (Cq), 120.91 (Car), 112.16 (Car), 111.41 (Cvin). 

 

(Z)-2-((4'-fluorobiphenyl-4-yl)methylene)indolin-3-one (6.64) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 91%, mp 265-267 oC. 1H NMR (400 MHz, DMSO-d6) δ 

= 9.90 (s, 1H, NH), 7.80 (d, J = 7.6 Hz, 1H, H4), 7.66-7.60 (m, 6H, 

H6+H7+2H2’+2H3’’), 7.52 (t, J = 7.6 Hz, 1H, H6), 7.19 (d, J = 7.8 Hz, 

2H, 2H2’’), 7.06-7.02 (m, 2H, 2H3’’), 6.93 (s, 1H, Hvin). 13C NMR 

(101 MHz, DMSO-d6) δ = 186.38 (C=O), 162.63 (CF), 154.14 (Cq), 
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138.77 (Cq), 136.43 (Car), 135.81 (Cq), 134.48 (Cq), 133.33 (Cq), 130.59 (Car), 128.73 (Car), 

127.06 (Car), 124.17 (Car), 120.03 (Cq), 118.88 (Car), 115.92 (Car), 112.67 (Car), 109.35 (Cvin). 

 

(Z)-2-((4'-methylbiphenyl-4-yl)methylene)indolin-3-one (6.65) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 92%, mp 169-171 oC. 1H NMR (400 MHz, CDCl3) δ = 

7.77 (d, 1H, J = 7.7 Hz, 1H, H4), 7.68 (d, J = 8.1 Hz, 2H, 2H2’), 7.62 

(d, J = 8.1 Hz, 2H, 2H3’), 7.56-7.47 (m, 3H, H7+2H3’’), 7.28 (d, J = 

8.0 Hz, 2H, 2H3’’), 7.03-6.97 (m, 2H, H5+H6), 6.91 (s, 1H, Hvin), 

6.88 (br, 1H, NH), 2.41 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 

= 186.12 (C=O), 153.16 (Cq), 147.86 (Cq), 137.95 (Cq), 137.34 (Cq), 136.25 (Car), 135.41 (Cq), 

133.57 (Cq), 130.14 (Car), 129.82 (Car), 127.75 (Car), 126.97 (Car), 125.21 (Car), 120.89 (Car), 

112.14 (Car), 11.57 (Cvin), 21.12 (CH3). 

 

(Z)-2-((4'-chlorobiphenyl-4-yl)methylene)indolin-3-one (6.66) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 87%, mp 259-261 oC. 1H NMR (400 MHz, DMSO-d6) δ 

= 9.92 (s, 1H, NH), 7.85-7.78 (m, 5H, H4+2H2’+2H3’), 7.71-7.52 

(m, 5H, H6+2H2’’+2H3’’), 7.16 (d, J = 8.1 Hz, 1H, H7), 6.94 (t, J = 

8.1 Hz, 1H, H5), 6.68 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6) 

δ = 186.34 (C=O), 154.13 (Cq), 138.38 (Cq), 138.09 (Cq), 136.43 

(Car), 134.54 (Cq), 133.72 (Cq), 132.71 (Cq), 130.60 (Car), 129.03 (Car), 128.43 (Car), 127.05 

(Car), 124.17 (Car), 120.00 (Cq), 119.89 (Car), 112.66 (Car), 109.20 (Cvin). 
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 (Z)-2-((4'-(trifluoromethyl)biphenyl-4-yl)methylene)indolin-3-one (6.67) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 90%, mp 289-291 oC. 1H NMR (400 MHz, DMSO-d6) δ 

= 9.95 (s, 1H, NH), 7.99 (d, J = 8.1 Hz, 2H, 2H2’), 7.87-7.84 (m, 

6H, 2H3’+2H2’’+2H3’’), 7.60 (d, J = 7.6 Hz, 1H, H4), 7.55 (d, J = 7.6 

Hz, 1H, H6), 7.17 (d, J = 7.6 Hz, 1H, H7), 6.94 (t, J = 7.6 Hz, 1H, 

H5), 6.70 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6) δ = 186.37 

(C=O), 154.16 (Cq), 143.31 (Cq), 138.02 (Cq), 136.49 (Car), 134.72 (Cq), 134.40 (Cq), 130.62 

(Car), 127.51 (Car), 127.47 (Car), 125.92 (Car), 124.20 (Car), 119.99 (Cq), 119.90 (Car), 112.66 

(Car), 108.94 (Cvin). 

 

(Z)-2-((4'-(trifluoromethoxy)biphenyl-4-yl)methylene)indolin-3-one (6.68) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 92%, mp 280-282 oC. 1H NMR (400 MHz, DMSO-d6) 

δ = 9.92 (s, 1H, NH), 7.89-7.79 (m, 7H, H4+2H2’+2H3’+2H2’’), 

7.61-7.46 (m, 3H, H6+2H3’’), 7.16 (d, J = 7.8 Hz, 1H, H7), 6.94 (t, 

J = 7.8 Hz, 1H, H5), 6.69 (s, 1H, Hvin). 13C NMR (101 MHz, 

DMSO-d6) δ = 186.33 (C=O), 154.14 (Cq), 152.16 (Cq), 149.11 

(Cq), 148.06 (Cq), 138.65 (Cq), 136.44 (Car), 134.57 (Cq), 133.80 (Cq), 130.58 (Car), 128.61 

(Car), 127.26 (Car), 126.47 (Car), 124.17 (Car), 121.61 (Car), 119.98 (Cq), 112.65 (Car), 109.13 

(Cvin). 

 

(Z)-2-(4-benzylbenzylidene)indolin-3-one (6.69) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 91%, , mp 194-196 oC. 1H NMR (400 MHz, CDCl3) δ 

= 7.75 (d, J = 7.6 Hz, 1H, H4), 7.47-7.45 (m, 3H, H6+2H2’), 

7.13-7.19 (m, 7H, 2H3’+2H2’’+2H3’’+H4’’), 6.99-6.95 (m, 2H, 
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H5+H7), 6.86 (s, 1H, Hvin), 6.82 (br, 1H, NH), 4.01 (s, 2H, CH2). 13C NMR (101 MHz, CDCl3) δ 

= 186.63 (C=O), 153.19 (Cq), 142.12 (Cq), 140.59 (Cq), 136.20 (Car), 135.26 (Cq), 132.75 (Cq), 

129.94 (Car), 129.85 (Car), 129.06 (Car), 128.75 (Car), 126.47 (Car), 125.16 (Car), 121.96 (Cq), 

120.78 (Car), 112.09 (Car), 111.80 (Cvin), 41.93 (CH2). 

 

(Z)-2-(4-(quinolin-3-yl)benzylidene)indolin-3-one (6.70) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 97%, mp 271-273 oC. 1H NMR (400 MHz, CDCl3) δ 

= 9.22 (s, 1H, H2’’), 8.37 (s, 1H, H4’’), 8.17 (d, J = 7.9 Hz, 1H, 

H4), 7.92 (d, J = 7.6 Hz, 1H, H5’’), 7.83-7.71 (m, 6H, 

H6+2H2’+2H3’+H8’’), 7.62 (t, J = 7.6 Hz, 1H, H7’’), 7.51 (t, J = 7.6 

Hz, 1H, H6’’), 7.05-6.98 (m, 3H, H5+H7+NH), 6.92 (s, 1H, Hvin). 

13C NMR (101 MHz, CDCl3) δ = 186.32 (C=O), 153.26 (Cq), 149.47 (Car), 138.76 (Car), 136.41 

(Car), 134.84 (Cq), 133.58 (Car), 130.44 (Car), 130.01 (Car), 129.22 (Car), 128.21 (Car), 127.48 

(Car), 125.28 (Car), 121.87 (Cq), 121.07 (Car), 112.19 (Car), 110.71 (Cvin). 

 

(Z)-2-(4-(thiophen-3-yl)benzylidene)indolin-3-one (6.71) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 93%, mp 255-257 oC. 1H NMR (400 MHz, DMSO-d6) δ 

= 9.88 (s, 1H, NH), 8.03 (s, 1H, H2’’), 7.84 (d, J = 8.3 Hz, 2H, 2H2’), 

7.78 (d, J = 8.3 Hz, 2H, 2H3’), 7.67 (s, 2H, H4’’+H5’’), 7.59 (d, J = 7.6 

Hz, 1H, H4), 7.53 (t, J = 7.6 Hz, 1H, H6), 7.16 (d, J = 7.6 Hz, 1H, H7), 

6.93 (t, J = 7.6 Hz, 1H, H5), 6.67 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6) δ = 186.25 

(C=O), 154.05 (Cq), 140.77 (Cq), 136.33 (Car), 134.89 (Cq), 134.23 (Cq), 132.89 (Car), 130.58 

(Cq), 127.36 (Car), 126.49 (Car), 126.18 (Car), 124.12 (Car), 121.86 (Car), 120.04 (Cq), 119.81 

(Car), 112.64 (Car), 109.62 (Cvin). 
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(Z)-2-(4-(1-methyl-1H-pyrazol-4-yl)benzylidene)indolin-3-one (6.72) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 92%, mp 247-249 oC. 1H NMR (400 MHz, DMSO-d6) δ 

= 9.82 (s, 1H, NH), 8.26 (s, 1H, H3’’), 7.98 (s, 1H, H5’’), 7.73 (d, J = 

8.1 Hz, 2H, 2H2’), 7.67 (d, J = 8.1 Hz, 2H, 2H3’), 7.59 (d, J = 7.5 Hz, 

1H, H4), 7.52 (t, J = 7.5 Hz, 1H, H6), 7.15 (d, J = 7.5 Hz, 1H, H7), 

6.92 (t, J = 7.4 Hz, 1H, H5), 6.65 (s, 1H, Hvin), 3.88 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-

d6) δ = 136.14 (Car), 135.96 (Car), 130.38 (Car), 128.05 (Car), 125.00 (Car), 123.81 (Car), 

119.45 (Car), 112.36 (Car), 109.83 (Cvin), 38.51 (CH3). 

 

(Z)-2-(biphenyl-3-ylmethylene)indolin-3-one (6.73) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 93%, mp 173-175 oC. 1H NMR (400 MHz, DMSO-

d6) δ = 9.90 (s, 1H, NH), 8.00 (s, 1H, H2’), 7.77-7.74 (m, 3H, 

H4+H4’+H6’), 7.76-7.49 (m, 6H, H5’+2H2’’+2H3’’+H4’’), 7.40 (t, J = 

7.5 Hz, 1H, H6), 7.16 (d, J = 7.6 Hz, 1H, H7), 6.93 (t, J = 7.6 Hz, 1H, H5), 6.74 (s, 1H, Hvin). 13C 

NMR (101 MHz, DMSO-d6) δ = 136.19 (Car), 129.29 (Car), 128.71 (Car), 128.48 (Car), 128.07 

(Car), 126.80 (Car), 126.65 (Car), 123.91 (Car), 119.60 (Car), 112.45 (Car), 109.58 (Cvin). 

 

(Z)-2-((4'-fluorobiphenyl-3-yl)methylene)indolin-3-one (6.74) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 95%, mp 297-299 oC. 1H NMR (400 MHz, 

DMSO-d6) δ = 8.98 (s, 1H, NH), 7.95 (s, 1H, H2’), 7.84-7.80 

(m, 2H, 2H2’’), 7.74 (d, J = 7.6 Hz, 1H, H4), 7.64-7.52 (m, 4H, 

H6+H4’+H5’+H6’), 7.36-7.32 (m, 2H, 2H3’’), 7.16 (d, J = 7.6 Hz, 1H, H7), 6.95 (t, 1H, J = 7.6 Hz, 

H5), 6.73 (s, 1H, Hvin). 13C NMR (101 MHz, DMSO-d6) δ = 186.44 (C=O), 162.08 (CF), 154.31 

(Cq), 139.93 (Cq), 136.47 (Car), 136.23 (Cq), 123.84 (Cq), 134.71 (Cq), 129.57 (Car), 129.10 
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(Car), 128.70 (Car), 128.25 (Car), 126.81 (Car), 124.18 (Car), 120.07 (Cq), 119.87 (Car), 115.64 

(Car), 112.69 (Car), 109.74 (Cvin). 

 

 (Z)-2-((4'-methylbiphenyl-3-yl)methylene)indolin-3-one (6.75) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 94%, mp 201-202 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 9.88 (s, 1H, NH), 7.91 (s, 1H, H2’), 7.71 

(d, J = 7.6 Hz, 1H, H4), 7.65-7.52 (m, 6H, 

H6+H4’+H5’+H6’+2H2’’), 7.30 (d, J = 7.8 Hz, 2H, 2H3’’), 7.12 (d, J = 7.6 Hz, 1H, H7), 6.94 (t, J = 

7.6 Hz, 1H, H5), 6.72 (s, 1H, Hvin), 2.35 (s, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ = 

186.62 (C=O), 154.43 (Cq), 141.02 (Cq), 137.22 (Cq), 136.96 (Cq), 136.61 (Car), 134.85 (Car), 

134.78 (Car), 129.69 (Car), 128.49 (Car), 128.24 (Car), 126.96 (Car), 126.79 (Car), 124.30 (Car), 

120.17 (Cq), 120.01 (Car), 112.84 (Car), 110.15 (Cvin), 20.84 (CH3). 

 

(Z)-2-((4'-chlorobiphenyl-3-yl)methylene)indolin-3-one (6.76) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 90%, mp 189-191 oC. 1H NMR (400 MHz, 

DMSO-d6) δ = 9.89 (s, 1H, NH), 7.97 (s, 1H, H2’), 7.82-7.73 

(m, 4H, H4’+H6’+2H2’’), 7.67-7.52 (m, 5H, H4+H6+H5’+2H3’’), 

7.16 (d, J = 7.6 Hz, 1H, H7), 6.94 (t, J = 7.6 Hz, 1H, H5), 6.73 (s, 1H, Hvin). 13C NMR (101 MHz, 

DMSO-d6) δ = 186.13 (C=O), 154.30 (Cq), 139.62 (Cq), 138.59 (Cq), 136.49 (Car), 134.91 (Cq), 

134.74 (Cq), 132.64 (Cq), 129.64 (Car), 129.04 (Car), 128.91 (Car), 128.83 (Car), 128.27 (Car), 

126.77 (Car), 124.19 (Car), 119.88 (Car), 112.68 (Car), 109.63 (Cvin). 
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(Z)-2-((4'-(trifluoromethyl)biphenyl-3-yl)methylene)indolin-3-one (6.77) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 91%, mp 228-230 oC. 1H NMR (400 

MHz, CDCl3) δ = 7.76 (d, J = 7.7 Hz, 1H, H4), 7.69 (s, 1H, 

H2’), 7.62 (d, J = 8.5 Hz, 2H, 2H2’’), 7.55-7.47 (m, 4H, 

H6+H4’+H5’+H6’), 7.33 (d, J = 8.5 Hz, 2H, 2H3’’), 7.02-6.97 (m, 2H, H5+H7), 6.91 (s, 1H, Hvin), 

6.88 (br, 1H, NH). 13C NMR (101 MHz, CDCl3) δ = 186.51 (C=O), 164.86 (Cq), 153.15 (Cq), 

148.98 (Cq), 140.95 (Cq), 139.25 (Cq), 136.27 (Car), 135.68 (Cq), 135.46 (Cq), 129.77 (Car), 

128.58 (Car), 128.39 (Car), 128.28 (Car), 127.28 (Car), 125.12 (Car), 121.70 (Cq), 121.41 (Car), 

120.86 (Car), 112.04 (Car), 111.03 (Cvin). 

 

(Z)-2-((4'-(trifluoromethoxy)biphenyl-3-yl)methylene)indolin-3-one (6.78) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 92%, mp 223-225 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 9.92 (s, 1H, NH), 7.93 (s, 1H, H2’), 

7.84-7.70 (m, 5H, H4+H4’+H6’+2H2’’), 7.65-7.43 (m, 5H, 

H4+H6+H7+H5’+2H3’’), 6.98 (t, J = 7.6 Hz, 1H, H5), 6.78 (s, 1H, Hvin). 13C NMR (101 MHz, 

DMSO-d6) δ = 186.45 (C=O), 152.98 (Cq), 144.80 (Cq), 141.82 (Car), 141.46 (Cq), 139.33 (Cq), 

135.27 (Cq), 129.57 (Car), 128.17 (Car), 127.28 (Car), 126.87 (Car), 126.12 (Car), 125.13 (Cq), 

123.13 (Car), 121.78 (Cq), 121.16 (Car), 121.01 (Car), 120.22 (Cq), 114.23 (Car), 109.56 (Cvin). 

 

(Z)-2-(3-benzylbenzylidene)indolin-3-one (6.79) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

oil, yied 96%. 1H NMR (400 MHz, CDCl3) δ = 7.73 (d, J = 7.7 Hz, 

1H, H4), 7.47 (t, J = 7.7 Hz, 1H, H6), 7.38-7.31 (m, 4H, 

H2’+H4’+H5’+H6’), 7.27-7.17 (m, 5H, 2H2’’+2H3’’+H4’’), 6.98-6.93 

(m, 2H, H5+H7), 6.82 (s, 1H, Hvin), 6.71 (br, 1H, NH), 4.04 (s, 2H, CH2). 13C NMR (101 MHz, 

CDCl3) δ = 186.61 (C=O), 153.19 (Cq), 142.43 (Cq), 140.69 (Cq), 136.24 (Car), 135.46 (Cq), 
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135.06 (Cq), 130.19 (Car), 129.46 (Car), 129.33 (Car), 129.17 (Car), 128.79 (Car), 127.32 (Car), 

126.51 (Car), 125.17 (Car), 121.86 (Cq), 120.79 (Car), 112.04 (Car), 111.71 (Cvin), 41.85 (CH2). 

 

(Z)-2-(3-(quinolin-3-yl)benzylidene)indolin-3-one (6.80) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as 

orange solid, yied 94%, mp 266-268 oC. 1H NMR (400 

MHz, DMSO-d6) δ = 9.95 (s, 1H, NH), 9.37 (s, 1H, H2’’), 

8.76 (s, 1H, H4’’), 8.20 (s, 1H, H2’), 8.09 (d, J = 8.1 Hz, 2H, 

H4’+H6’), 7.89-7.79 (m, 3H, H4+H5’’+H8’’), 7.70-7.61 (m, 3H, H5’+H6’’+H7’’), 7.55 (t, J = 7.7 Hz, 

1H, H6), 7.17 (d, J = 7.7 Hz, 1H, H7), 6.95 (d, J = 7.7 Hz, 1H, H5), 6.78 (s, 1H, Hvin). 13C NMR 

(101 MHz, DMSO-d6) δ = 186.43 (C=O), 154.29 (Cq), 149.70 (Car), 146.90 (Cq), 137.86 (Cq), 

136.52 (Car), 135.12 (Cq), 134.78 (Cq), 133.33 (Car), 132.39 (Cq), 129.84 (Car), 129.74 (Car), 

129.39 (Car), 128.71 (Car), 128.50 (Car), 127.62 (Cq), 127.22 (Car), 127.13 (Car), 124.22 (Car), 

120.03 (Cq), 119.92 (Car), 112.67 (Car), 109.47 (Cvin). 

 

(Z)-2-(3-(thiophen-3-yl)benzylidene)indolin-3-one (6.81) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 93%, mp 202-204 oC. 1H NMR (400 MHz, DMSO-d6) 

δ = 9.88 (s, 1H, NH), 8.02-8.01 (m, 2H, H2’+H2’’), 7.72-7.68 (m, 

4H, H4’+H6’+H4’’+H5’’), 7.60 (d, J = 7.8 Hz, 1H, H4), 7.56-7.50 (m, 

2H, H6+H5’), 7.16 (d, J = 7.8 Hz, 1H, H7), 6.94 (t, J = 7.8 Hz, 1H, H5), 6.71 (s, 1H, Hvin). 13C 

NMR (101 MHz, DMSO-d6) δ = 136.27 (Car), 129.32 (Car), 128.09 (Car), 127.58 (Car), 126.96 

(Car), 126.32 (Car), 126.01 (Car), 123.98 (Car), 121.52 (Car), 119.67 (Car), 112.51 (Car), 109.64 

(Cvin). 
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(Z)-2-(3-(1-methyl-1H-pyrazol-4-yl)benzylidene)indolin-3-one (6.82) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 94%, mp 212-213 oC. 1H NMR (400 MHz, CDCl3) δ 

= 7.80 (s, 1H, H2’), 7.75 (d, J = 7.8 Hz, 1H, H4), 7.66 (s, 1H, 

H3’’), 7.62 (s, 1H, H5), 7.47 (t, J = 7.8 Hz, 1H, H6), 7.43-7.39 (m, 

3H, H4’+H5’+H6’), 7.02 (d, J = 7.8 Hz, 1H, H7), 6.97 (t, J = 7.8 Hz, 1H, H5), 6.86 (br, 2H, 

Hvin+NH), 3.94 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ = 186.76 (C=O), 153.42 (Cq), 

136.63 (Car), 136.35 (Car), 135.73 (Cq), 135.51 (Cq), 133.54 (Cq), 129.82 (Car), 127.55 (Car), 

127.39 (Car), 126.85 (Car), 125.77 (Car), 125.18 (Car), 122.72 (Cq), 121.82 (Cq), 120.82 (Car), 

112.21 (Car), 111.40 (Cvin), 39.26 (CH3). 

 

(Z)-2-benzylidene-5-phenylindolin-3-one (6.83) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 91%, mp 234-236 oC.  1H NMR (400 MHz, CDCl3) δ 

= 8.00 (s, 1H, H4), 7.75 (d, J = 8.1 Hz, 1H, H6), 7.59-7.57 (m, 

4H, 2H2’+2H2’’), 7.49-7.42 (m, 4H, 2H3’+2H3’’), 7.38-7.32 (m, 

2H, H4’+H4’’), 7.08 (d, J = 8.1 Hz, H7), 6.91 (br, 2H, Hvin+NH). 

13C NMR (101 MHz, CDCl3) δ = 186.68 (C=O), 152.49 (Cq), 140.20 (Cq), 135.82 (Cq), 135.41 

(Car), 134.82 (Cq), 134.27 (Cq), 129.67 (Car), 129.41 (Car), 129.04 (Car), 128.78 (Car), 127.28 

(Car), 126.79 (Car), 123.34 (Car), 122.32 (Cq),112.38 (Car), 112.08 (Cvin). 

 

(Z)-2-benzylidene-5-phenoxyindolin-3-one (6.84) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 91%, mp 212-214 oC. 1H NMR (400 MHz, CDCl3) δ 

= 7.82 (s, 1H, H4), 7.77-7.68 (m, 4H, 2H2’+2H2’’), 7.48-7.27 

(m, 7H, H6+2H3’+2H3’’+H4’+H4’’), 7.03 (d, J = 7.6 Hz, 1H, H7), 

6.85 (br, 2H, Hvin+NH). 13C NMR (101 MHz, CDCl3) δ = 186.55 (C=O), 151.98 (Cq), 141.02 

(Cq), 136.05 (Car), 135.34 (Cq), 134.09 (Cq), 133.02 (Cq), 129.02 (Car), 128.95 (Car), 128.87 
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(Car), 128.34 (Car), 128.03 (Car), 126.22 (Car), 124.08 (Car), 122.44 (Cq), 112.01 (Car), 110.98 

(Cvin). 

 

(Z)-5-benzyl-2-benzylideneindolin-3-one (6.85) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

solid, yied 92%, mp 203-205 oC. 1H NMR (400 MHz, CDCl3) δ 

= 7.61 (s, 1H, H4), 7.57 (d, J = 7.9 Hz, 2H, 2H2’’), 7.47 (t, J = 

7.9 Hz, 2H, 2H3’’), 7.38-7.20 (m, 7H, H6+2H2’+2H3’+H4’+H4’’), 

6.94 (d, J = 7.6 Hz, 1H, H7), 6.87 (s, 1H, Hvin), 6.79 (br, 1H, NH), 3.98 (s, 2H, CH2). 13C NMR 

(101 MHz, CDCl3) δ = 186.70 (C=O), 152.00 (Cq), 140.96 (Cq), 137.30 (Car), 135.94 (Cq), 

134.93 (Cq), 134.02 (Cq), 129.64 (Car), 129.35 (Car), 128.97 (Car), 128.74 (Car), 128.63 (Car), 

126.41 (Car), 124.99 (Car), 122.08 (Cq), 112.21 (Car), 111.67 (Cvin), 41.35 (CH2). 

 

(Z)-2-benzylidene-6-phenoxyindolin-3-one (6.86) 

Purified by TLC (Toluene/EtOH = 80:20). Obtained as orange 

oil, yied 89%. 1H NMR (400 MHz, CDCl3) δ = 8.02 (d, J = 8.3 

Hz, 1H, H4), 7.57-7.43 (m, 5H, H7+2H2’+2H2’’), 7.53 (t, J = 7.6 

Hz, 2H, 2H3’), 7.36-7.24 (m, 5H, H5+ H4’+2H3’’+H4’’), 6.91 (s, 

1H, Hvin), 6.85 (br, 1H, NH). 13C NMR (101 MHz, CDCl3) δ = 186.54 (C=O), 150.41 (Cq), 

144.26 (Cq), 137.02 (Cq), 134.87 (Cq), 131.05 (Car), 130.02 (Car), 129.18 (Car), 128.23 (Car), 

127.34 (Car), 125.08 (Cq), 124.01 (Car), 122.89 (Car), 121.01 (Cq), 118.83 (Car), 112.03 (Car), 

110.84 (Car). 
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8.8.  Biological assays 

8.8.1.  Biological activity against P. falciparum W2 and FCR3 strains 

Compounds were assayed against human red blood cells infected with 1% ring stage 

W2 -strain P. falciparum synchronized with 5% sorbitol. These cells were incubated 

with tested compounds in 96-well plates at 37 oC for 48 hours in RPMI-1640 medium 

supplemented with 25 mM HEPES pH 7.4, 10% heat inactivated human serum (or 

0.5% Albumax/2% human serum), and 100 μM hypoxanthine under an atmosphere 

of 3% O2, 5% CO2, 91% N2. After 48 hours, the cells were fixed in 2% formaldehyde in 

PBS, transferred into PBS with 100 mM NH4Cl, 0.1% Triton X-100, 1 nM YOYO-1, and 

then analyzed in a flow cytometer (FACSort, Beckton Dickinson; EX 488 nm, EM 520 

nm). Values of IC50 were calculated using GraphPad PRISM software. 

 

8.8.2.  Biological activity against P. falciparum Dd2 and 3D7 strain 

Laboratory-adapted P. falciparum Dd2 and 3D7 strains were continuously cultured 

as previously described360, with minor modifications. Parasites were cultivated on 

human erythrocytes suspended in RPMI 1640 medium supplemented with 25 mM 

HEPES, 6.8 mM hypoxanthine and 10% AlbuMAX II, at pH 7.2. Cultures were 

maintained at 37 oC under an atmosphere of 5% O2, 3–5% CO2, and N2 and 

synchronized by double sorbitol treatment prior to the assays 361. Staging and 

parasitaemia were determined by light microscopy of Giemsa-stained thin blood 

smears. The antimalarial activity of the inhibitors and CQ were determined using the 

SYBR Green I assay as previously described. Stock solutions of the drugs (10 mM) 

were prepared in DMSO and serially diluted in complete media. Parasitized 

erythrocytes at the early ring stage were added to a final 1% parasitaemia and 3% 

hematocrit to each triplicate well of a 96-well plate, and incubated for 48h at 37 oC 

prior to growth assessment with SYBR Green I nucleic acid. Each compound was 

analyzed at a final concentration range of 0-50 µM (0.2% DMSO), whereas CQ was 

assayed at a concentration range of 0-10 µM. SYBR Green I fluorescence was 
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quantified using a multi-mode microplate reader (Dynex Triad) and analyzed by 

nonlinear regression using GraphPad Prism 5 demo version. 

 

8.8.3.  Biological activity against S. cerevisiae 

Activity against S. cerevisiae was performed using the microdilution method362. The 

culture compounds were obtained from Oxoid (Hampshire, UK) and Biokar 

Diagnostics (Beauvais, France). S cerevisiae was incubated with the tested 

compounds, based on serial dilutions, in YPG medium (glucose 1.0% w/v, yeast 

extract 0.5 % w/v, peptone 0.5% w/v) in 96-well plates for 48 hours at 30 oC. After 

48 hours, the absorbance was measured at 600 nm in a spectrofluorimeter (Zenith 

Anthos 3100). All assays were performed in triplicate and in three independent 

experiments. Values of IC50 were calculated using GraphPad PRISM Software. 

 

8.8.4.  Hemozoin-like crystals growth inhibition 

Inhibition of hemozoin-like crystals formation by tested compounds was assessed 

using the previously described in vitro method325. In short, a hemozoin-like crystals 

stock suspension was sonicated for 3 minutes and diluted in fresh broth medium to 

the final concentration of 2 µM (heme equivalents) in the wells of a 96-wells plate. 

Stock solutions of tested compounds were prepared at 25 mM in DMSO while stock 

solutions of CQ (positive control) and gentamicin (negative control) were prepared 

at 100 mM in distilled water. All solutions were 0.22 μm-filtered previous to being 

diluted to 0-1000 µM final concentrations in the wells. Plates were incubated at 37 

oC in a 5% CO2 atmosphere for 5 days to observe the presence or absence of crystal 

growth. All tests were performed in triplicate. 
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8.8.5.  In vitro drug combination assay 

Analysis of the combination effects of inhibitors with CQ were determined by a modified 

fixed ratio isobologram method337-339, 363. Initially, the 50% inhibitory concentration (IC50) 

values of the individual test compounds were determined. Subsequently, dose-response 

experiments at 2-fold dilutions were run for different drug combinations (IC50 ratios 

equals 5:0, 4:1, 3:2, 2:3, 1:4 or 0:5) and their IC50s in the combination determined. The 

fractional inhibitory concentration (FIC; FIC50 = IC50 of drug in the combination/IC50 of 

drug when tested alone) of each drug was calculated and plotted as an isobologram. 

 

8.8.6.  Cytochrome bc1 complex activity 

Mitochondria from P. falciparum 3D7A strain were isolated by a method that employed 

nitrogen cavitation, differential centrifugation and a sucrose density gradient. 

Cytochrome bc1 complex activity was measured as the reduction of cytochrome c. The 

reduction of cytochrome c was monitored by the increase in absorbance at 550 nm. An 

appropriate amount of purified mitochondria was diluted in an assay mixture containing 

50 mM KH2PO4 pH 7.4, 0.2 mM EDTA, 1 mM NaN3, 2.5 mM KCN, 250 mM Sucrose and 50 

μM cytochrome c. The reaction was started by the addition of 25 μM decylubiquinol. To 

measure the non enzymatic reduction of cytochrome c by decylubiquinol, 800 nM 

myxothiazol and 100 nM antimycin A were added. SoftMax Pro software provided data 

acquisition. Non-linear regression analysis was used to fit the normalized results of the 

dose response curves and IC50s were determined using the Grafit5 software package364. 

 

8.8.7.  Growth inhibition assays 

ScURA1 gene from S. cerevisiae was amplified from genomic DNA and cloned into vector 

pLN-14. P. falciparum Dd2attB strain was transfected by electroporation and stable 

transfectants were selected with blasticidin. Dd2attB_yeastDHODH and its parental strain 

Dd2attB were used in these assays. The sensitivity of P. falciparum-infected erythrocytes 
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to various drugs was determined using the [3H]hypoxanthine incorporation method with 

an inoculum size of 0.5% parasitemia and 2% hematocrit. Plates are incubated at 37 oC, 

5% CO2, 5% O2, 95% N2. After 24h of incubation, [3H]hypoxanthine was added and plates 

were incubated for another 24 h. After that period, plates were harvested on a glass fiber 

filter using a TOMTEC Cell harvester 96. Filters were dried and melt on scintillator sheets 

and the incorporated radioactivity was quantified by use of a Wallac Microbeta Trilux 

(Model 1450 LS- Perkin Elmer). The Dd2 cell line containing yeast DHODH and its parental 

strain were cultured in the absence and in the presence of proguanil (1 µM). Non-linear 

regression analysis is used to fit the normalized results of the dose response curves and 

IC50s determined using the Grafit5 software package364. 

 

8.8.8.  In vitro cytotoxicity 

The cytotoxicity was assessed using general cell viability endpoint MTT (3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide)365-366. Briefly, the day before experiment 

cells NIH 3T3 (mouse embryonic fibroblast cell line, ATCC CRL-1658) or HEK 293T (human 

embryonic kidney epithelial cell line, ATCC CRL-11268) are seeded in 96 well tissue culture 

plates, in RPMI 1640 culture medium supplemented with 10% fetal serum bovine, 100 

units of penicillin G (sodium salt) and 100 μg of streptomycin sulfate and 2mM L-

glutamine, at a concentration that allow cells to grow exponentially during the time of the 

assay. Compounds to be tested are diluted in dimethylsulfoxide (DMSO) and then serially 

diluted in the culture medium. Compounds at different concentrations and DMSO are 

then added to the cells. Cells are incubated at 37 °C in humidified 5% CO2 atmosphere. 

After 48 hours, cell media containing DMSO (for control cells) or tested compound 

solution (for test cells) was removed and replaced with fresh medium containing MTT 

dye. After 3h of incubation the complete media was removed and the intracellular 

formazan crystals were solubilised and extracted with DMSO. After 15 min at room 

temperature the absorbance was measured at 570 nm in microplate reader. 

The percentage of cell viability was determined for each concentration of tested 

compound as described previously365-366. The concentration of a compound reflecting a 
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50% inhibition of cell viability (i.e. IC50) was determined from the concentration-response 

curve. This was done by applying non-linear regression procedure to the concentration 

response data using GraphPad PRISM software. 
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Appendix A – Protein sequences 

 

 

Figure 2. Sequence alignment between Rieske ISP of P. falciparum and the four potential templates. 
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Figure 3. Sequence alignment between cytochrome b of P. falciparum and the four potential templates. 
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Appendix B – Identity in Qo binding site 

 

Table 1. Comparison between the amino acid residues in Qo binding pocket for S. cerevisiae (Sc), P. 

falciparum (Pf), B. Taurus (Bt), G. gallus (Gg), R. sphaeroides (Rs) and H. sapiens (Hs). Highlighted in green 

and are the amino acid residues that are conserved in all species. 

 
Cytochrome b 

Sc I122 I125 A126 F129 L130 M139 W142 G143 V146 

Pf M116 I119 V120 F123 V124 M133 W136 G137 V140 

Bt L121 M124 A125 F128 M129 M138 W141 G142 V145 

Gg L122 M125 A126 F129 V130 M139 W142 G143 V146 

Rs L137 M140 A141 F144 M145 M154 W157 G158 V161 

Hs L121 M124 A125 F128 M129 M138 W141 G142 V145 

 

 
Cytochrome b 

Sc I147 F151 L165 F179 L182 I269 V270 P271 E272 

Pf I141 L145 I155 F169 L172 I258 V259 P260 E261 

Bt I146 L150 I164 F178 F181 I268 V269 P270 E271 

Gg I147 F151 A165 F179 L182 I269 K270 P271 E272 

Rs I162 F166 L180 F194 L197 I292 V293 P294 E295 

Hs I146 L150 I164 F178 F181 I268 K269 P270 E271 

 

 
Cytochrome b Rieske ISP 

Sc L275 F278 Y279 L282 M295 F296 I299 C180 H181 

Pf F264 F267 Y268 L271 V284 L285 L288 C319 H320 

Bt F272 A277 Y278 L281 L294 A295 I298 C138 H139 

Gg F275 A278 Y279 L282 L295 A296 V299 C236 H237 

Rs L298 F301 Y302 L305 M336 F337 I340 C150 H151 

Hs F274 A277 Y278 L281 L294 L295 I298 C238 H239 
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