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In this paper we derive generalized forms of the Camassa-Holm (CH) equation from a Boussinesq-type equation
using a two-parameter asymptotic expansion based on two small parameters characterizing nonlinear and dis-
persive effects and strictly following the arguments in the asymptotic derivation of the classical CH equation.
The resulting equations generalize the CH equation in two different ways. The first generalization replaces
the quadratic nonlinearity of the CH equation with a general power-type nonlinearity while the second one
replaces the dispersive terms of the CH equation with fractional-type dispersive terms. In the absence of both
higher-order nonlinearities and fractional-type dispersive effects, the generalized equations derived reduce to
the classical CH equation that describes unidirectional propagation of shallow water waves. The generalized
equations obtained are compared to similar equations available in the literature, and this leads to the observation
that the present equations have not appeared in the literature.
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1. Introduction

In the present paper, starting from a Bousinesq-type equation and strictly following the arguments
in the asymptotic derivation of the celebrated Camassa-Holm (CH) equation, we derive a general-
ized CH equation, with both a general power-type nonlinearity and a fractional-type dispersion, for
small-but-finite amplitude long waves. The generalized CH equation derived includes, as a special
case, the classical CH equation

vτ +κ1vζ +3vvζ − vζ ζ τ = κ2(2vζ vζ ζ + vvζ ζ ζ ) (1.1)
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widely recognized in the literature on shallow water waves [3, 7, 13–15, 18]. The CH equation (1.1)
derived as a model for unidirectional propagation of small amplitude shallow water waves is an
infinite-dimensional Hamiltonian system that is completely integrable [4,5]. An interesting property
of the CH equation is that for a wide class of initial data the spatial derivative of the solution becomes
unbounded in finite time while the solution remains uniformly bounded and this property is used
to relate the CH equation to wave breaking in the hydrodynamical interpretation [6]. Moreover, the
CH equation admits non-smooth peakon-type (solitary or periodic) traveling wave solutions and it
was shown that these solutions are orbitally stable [8, 19]. There are also studies that derive the CH
equation as an appropriate model equation for nonlinear dispersive elastic waves (see [10, 11] and
the references therein).

In recent years, various generalizations of the CH equation have appeared in the literature. This
growing literature focuses mainly on modified forms of the CH equation. The typical exercise in
those studies is to replace the quadratic nonlinear term vvζ in the CH equation with the cubic
one v2vζ or with a general power-law nonlinearity vpvζ without changing the other terms (see
for instance [20, 23, 24]). This approach is not fully satisfactory and it deserves some discussion.
Minimally, it seems that whether or not the proposed models to be asymptotically correct is not
sufficiently clear. At that point, no one at all could miss the fact that the CH equation is shaped
asymptotically by the balance among nonlinear steepening, linear dispersion and nonlinear disper-
sion. Of these three effects, nonlinear steepening and linear dispersion are captured by the third
and fourth terms, respectively, on the left-hand side of (1.1) while nonlinear dispersion is captured
by the terms on right-hand side of (1.1). In a certain asymptotic regime, it is natural to expect that
the changes in the nonlinear term vvζ of (1.1) (that is, the changes in nonlinear steepening) lead
to modifications in the terms on the right-hand side of (1.1), which characterize nonlinear disper-
sive effects. Our main impetus in the present study is the need for an asymptotically correct model
(on formal asymptotic grounds) of the CH equation with a general power-type nonlinearity. To this
end, starting from a Boussinesq-type equation, using a double asymptotic expansion in two small
parameters and following the approaches in [7, 10, 14, 15, 18] we derive formally a generalized
CH equation under the assumption of a general power-type nonlinearity, which seems not to be in
the literature. At this point we should point out that, based on the integrability, different forms of
the modified CH equation with cubic nonlinearity have appeared in the literature [12, 21, 22]. In
those studies the starting point is to obtain integrable generalizations of the CH equation using the
existence of a bi-Hamiltonian structure [12, 22] or the existence of infinite hierarchies of higher
symmetries [21]. However, contrary to the previous studies, the present study has been originally
motivated by the desire of the authors to derive a modified CH equation under the assumption of
a general power-type nonlinearity by strictly following the arguments in the asymptotic derivation
of the classical CH equation. At the end, we find that, even in the case of cubic nonlinearity, the
modified CH equation derived here differs from those presented in the literature and a different
form of the nonlinear dispersive terms affects the integrability of it. The second goal of the present
study is to derive CH-type equations driven by fractional dispersion. In a recent study [10], starting
from a Boussinesq-type equation, a fractional-type CH equation with quadratic nonlinearity was
derived for small-but-finite amplitude long waves. Our aim here is to extend the prior analysis to a
fractional-type CH equation with power-type nonlinearity.

In this study, using a two-parameter asymptotic expansion and following the procedures
described in the literature, we show that the unidirectional propagation of small-but-finite ampli-
tude long wave solutions of the generalized fractional improved Boussinesq equation is governed



Generalized Camassa-Holm Equations

by the generalized fractional CH equation. In the absence of fractional dispersion, a reduced ver-
sion of this full equation gives the generalized CH equation, including the modified CH equation
with cubic nonlinearity as a special case. Furthermore, in the case of the quadratic nonlinearity, the
generalized CH equation reduces to (1.1). As a by-product of the present derivation we also derive
generalized forms of both the Korteweg-de Vries (KdV) equation [17] and the Benjamin-Bona-
Mahony (BBM) equation [1]. The important point to note here is that the asymptotic derivation of
the CH-type equations requires a double asymptotic expansion in two small parameters character-
izing nonlinear and dispersive effects. However, the asymptotic derivations of the KdV and BBM
equations do not necessarily have this property; assuming that the two parameters are equal, they
can be derived using a single-parameter asymptotic expansion as well.

The paper is organized as follows. In Section 2, introducing slow variables and using a double
asymptotic expansion, the generalized fractional CH equation with both a general power nonlin-
earity and fractional derivatives is derived from a Boussinesq-type equation. In Section 3, special
cases of the generalized fractional CH equation are discussed and the unidirectional wave equations
derived are presented in the original coordinates.

2. Derivation of The Generalized Fractional Camassa-Holm Equation

In this section we present a formal derivation of the generalized fractional CH equation using a dou-
ble asymptotic expansion. To this end we study the asymptotic behavior of unidirectional, small-but-
finite amplitude, long wave solutions of the fractional improved Boussinesq equation with power-
type nonlinearities:

utt −uxx +(−D2
x)

νutt = (up+1)xx, p≥ 1, (2.1)

where p is an integer, ν may not be an integer and the operator (−D2
x)

ν is defined in terms of the
Fourier transform operator F and its inverse F−1 by (−D2

x)
νq = F−1(|ξ |2νFq). In [9], the local

well-posedness of solutions to the Cauchy problem defined for (2.1) imposes the restriction ν ≥ 1.
For a connection of (2.1) with nonlinear dispersive elastic waves, we refer the reader to [10]. Notice
that, when ν = 1, (2.1) reduces to the improved Boussinesq equation

utt −uxx−uxxtt = (up+1)xx. (2.2)

Before starting our analysis, we need to remark upon the following fact. Let us consider the trans-
formation q(x) = Q(X) with X = δx where δ is a positive constant. In [10], using the Fourier
transform and and its inverse, it has been shown that the operator (−D2

x)
ν scales as δ 2ν so that

(−D2
x)

νq(x) = δ 2ν(−D2
X)

νQ(X).
Henceforth, we shall consider only right-going, small-but-finite amplitude, long wave solutions

of (2.1). Assume that ε > 0 and δ > 0 are two small independent parameters, not necessarily of the
same order of magnitude. By performing the scaling transformation

u(x, t) = εU(Y,S), Y = δ (x− t), S = δ t (2.3)

to (2.1), we obtain

USS−2UY S +δ
2ν(−D2

Y )
ν(USS−2USY +UYY ) = ε

p(U p+1)YY (2.4)

for U(Y,S). It is obvious from (2.4) that the parameters ε and δ can be regarded as measures of
nonlinear and dispersive effects, respectively. That is, ε can be taken a typical (small) amplitude of
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waves whereas δ is taken a typical (small) wavenumber. There is a considerable literature on the
asymptotic derivation of the CH equation [7,10,14,15,18] and we apply similar ideas to obtain the
generalized fractional CH equation. We consider a double asymptotic expansion of the solution of
(2.4) in the form

U(Y,S;ε,δ ) =U0(Y,S)+ ε
pU1(Y,S)+δ

2νU2(Y,S)+ ε
p
δ

2νU3(Y,S)+O(ε2p,δ 4ν) (2.5)

as ε→ 0, δ → 0. Furthermore we require that the unknowns Un (n = 0,1,2, ...) and their derivatives
decay to zero as |Y | →∞. Inserting the asymptotic solution (2.5) into (2.4) and equating coefficients
of the corresponding powers of ε p and δ 2ν , we get a hierarchy of partial differential equations for
the functions Un (n = 0,1,2, ...). The leading-order term U0 is governed by the first-order linear
partial differential equation

(DS−2DY )U0S = 0. (2.6)

Because of our assumption that only the right-going waves will be considered, we have U0S = 0
which implies U0 =U0(Y ). The next order term U1 satisfies

(DS−2DY )U1S− (U p+1
0 )YY = 0 (2.7)

at O(ε p). But, by differentiating this equation with respect to S, we notice that U1SS also satisfies
(2.6). Again, our assumption on the right-going waves implies that U1SS = 0. Using this result we
get

U1S =−
1
2
(U p+1

0 )Y . (2.8)

At order δ 2ν , it is found that, with the use of U0S = 0, the governing equation for U2 is

(DS−2DY )U2S +(−D2
Y )

νU0YY = 0. (2.9)

Differentiation of (2.9) with respect to S and a similar argument as in (2.7) yield U2SS = 0. This
implies that

U2S =
1
2
(−D2

Y )
νU0Y (2.10)

is the solution of (2.9). At O(ε pδ 2ν), with the use of U1SS = 0, we get

(DS−2DY )U3S +(−D2
Y )

ν(U1YY −2U1SY ) = (p+1)(U p
0 U2)YY . (2.11)

When we differentiate this equation twice with respect to S, we see that U3SSS satisfies the same
equation as (2.6). Again, our assumption on the right-going waves implies that U3SSS = 0. If we
differentiate (2.11) with respect to S and substitute (2.8), (2.10) and U3SSS = 0 into the resulting
equation, we obtain

U3SS =−
1
4
(−D2

Y )
ν(U p+1

0 )YY −
1
4
(p+1)[U p

0 (−D2
Y )

νU0Y ]Y . (2.12)

Using this result in (2.11), U3S is found in the form

U3S =−
p+1

2
(U p

0 U2)Y +
1
2
(−D2

Y )
νU1Y +

3
8
(−D2

Y )
ν(U p+1

0 )Y −
p+1

8
U p

0 (−D2
Y )

νU0Y . (2.13)

For our purposes, the higher-order terms in the asymptotic expansion will not be needed in the later
analysis.
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Now, differentiating both sides of (2.5) with respect to S once and using all the results obtained
above in the resulting equation we get

US = ε
pU1S +δ

2νU2S + ε
p
δ

2νU3S +O(ε2p,δ 4ν)

= −ε p

2

[
U p+1

0 +(p+1)δ 2νU p
0 U2

]
Y
+

δ 2ν

2
(−D2

Y )
ν (U0 + ε

pU1)Y

+
ε pδ 2ν(p+1)

8
[
3(−D2

Y )
ν(U p

0 U0Y )−U p
0 (−D2

Y )
νU0Y

]
+O(ε2p,δ 4ν). (2.14)

Using U0S = 0, (2.8) and (2.10) in (2.14) and keeping all terms up to O(ε p,δ 2ν), we get

US +
ε p

2
(U p+1)Y −

δ 2ν

2
(−D2

Y )
νUY −

ε pδ 2ν(p+1)
8

[
3(−D2

Y )
ν(U pUY )−U p(−D2

Y )
νUY

]
= 0
(2.15)

for U(Y,S;ε,δ ). Notice that, for p = 1 and ν = 1, this equation reduces to

US +
ε

2
(U2)Y +

δ 2

2
UYYY +

εδ 2

4
[3(UUY )YY −UUYYY ] = 0. (2.16)

The crucial observation for (2.16) is that it is not the CH equation in its standard form. In Ref. [10],
(2.16) has been converted into the standard form of the CH equation in two stages. First, (2.16)
has been rewritten in a moving frame of reference. Second, to incorporate the term UYY S of the CH
equation into (2.16), a classical trick which was proposed to derive the BBM equation [1] from the
KdV equation [17] has been performed. In the remaining part of this section this approach will be
extended to (2.15).

We first consider the moving frame

X = aY +bS, T = cS (2.17)

where a, b and c are positive constants to be determined later. And we rewrite (2.15) in the new
coordinate system with U(Y,S) =V (aY +bS,cS) =V (X ,T ):

cVT +bVX +
aε p

2
(V p+1)X −

δ 2νa2ν+1

2
(−D2

X)
νVX

− (p+1)ε pδ 2νa2ν+1

8
[
3(−D2

X)
ν(V pVX)−V p(−D2

X)
νVX
]
= 0. (2.18)

Then, inserting the relation

(−D2
X)

νVX =− c
b
(−D2

X)
νVT −

aε p

2b
(−D2

X)
ν(V p+1)X +O(δ 2ν ,ε p

δ
2ν) (2.19)

obtained from (2.18) into again (2.18), we eliminate the term (−D2
X)

νVX in favor of (−D2
X)

νVT .
Thus, (2.18) becomes

VT +
b
c

VX +
aε p

2c
(V p+1)X +

δ 2νa2ν+1

2b
(−D2

X)
νVT

− (p+1)ε pδ 2νa2ν+1

8c

[
(3− 2a

b
)(−D2

X)
ν(V pVX)−V p(−D2

X)
νVX

]
= 0. (2.20)

Inserting the scaling transformation

v = εV, X = δζ , T = δτ (2.21)
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into (2.20) remove the parameters ε and δ from (2.20) and gives

vτ +
b
c

vζ +
a
2c

(vp+1)ζ +
a2ν+1

2b
(−D2

ζ
)νvτ

− (p+1)a2ν+1

8c

[
(3− 2a

b
)(−D2

ζ
)ν(vpvζ )− vp(−D2

ζ
)νvζ

]
= 0. (2.22)

We note that, for p = 1 and ν = 1, this equation reduces to

vτ +
b
c

vζ +
a
2c

(v2)ζ −
a3

2b
vζ ζ τ +

a3

4c

[
(3− 2a

b
)(vvζ )ζ ζ − vvζ ζ ζ

]
= 0. (2.23)

In [10] it has been shown that this equation can be converted to the CH equation (1.1) with special
values of κ1 and κ2 when the parameters a, b and c are chosen such that the following three con-
ditions are satisfied. The first condition requires that the ratio of the coefficients of the terms vζ vζ ζ

and vvζ ζ ζ must be 2:1. The second and third conditions say that the coefficients of the terms vvζ

and vτζ ζ are 3 and -1, respectively. These conditions are widely used in the literature [7, 14, 15]
and we refer the reader to [18] for more detailed discussions on these conditions. We now follow a
similar procedure to fix the free parameters a, b and c appearing in (2.22). Under similar conditions
for (2.22) we get

a =

(
2√
5

)1/ν

, b =
2
5

(
2√
5

)1/ν

, c =
1
3

(
2√
5

)1/ν

. (2.24)

Notice that, for these values of a, b and c, (2.20) and (2.22) reduce to

VT +
6
5

VX +
3
2

ε
p(V p+1)X +δ

2ν(−D2
X)

νVT +
3(p+1)ε pδ 2ν

10
[
2(−D2

X)
ν(V pVX)+V p(−D2

X)
νVX
]
= 0,

(2.25)
and

vτ +
6
5

vζ +
3
2
(vp+1)ζ +(−D2

ζ
)νvτ =−

3(p+1)
10

[
2(−D2

ζ
)ν(vpvζ )+ vp(−D2

ζ
)νvζ

]
, (2.26)

respectively. We henceforth call (2.26) the generalized fractional CH equation because for p = 1 it
reduces to the fractional CH equation presented in [10] (see equation (4.10) of [10]). Furthermore,
when both p = 1 and ν = 1, (2.26) reduces to the CH equation (1.1) with κ1 = 6/5 and κ2 = 9/5. To
the best of our knowledge (2.26) has never appeared in the literature prior to the present work. The
main distinction between the generalized fractional CH equation, (2.26), and previous works on the
CH-type equations is that (2.26) includes both power nonlinearities and fractional dispersion.

We close this section by stating (2.26) in the original coordinates x and t. We first observe that
(2.3), (2.17), (2.21) and (2.24) provide the coordinate transformation between (ζ ,τ) and (x, t) in
the form

ζ =

(
2√
5

)1/ν

(x− 3
5

t), τ =
1
3

(
2√
5

)1/ν

t. (2.27)

Using this coordinate transformation and introducing w(x, t) = v(ζ ,τ), we convert (2.26) to

wt +wx +
1
2
(wp+1)x +

3
4
(−D2

x)
νwx +

5
4
(−D2

x)
νwt =−

p+1
8

[2(−D2
x)

ν(wpwx)+wp(−D2
x)

νwx].

(2.28)
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In the following section we will take a closer look at some special cases of the generalized fractional
CH equation.

3. Some Special Cases

In this section we state some important particular cases of the generalized fractional CH equation
(2.26). We also derive generalized forms of the KdV [17] and BBM [1] equations. From the point of
view of the KdV and BBM equations, the main difference between our approach and similar studies
in the literature is that the generalized equations derived here include both power nonlinearities and
fractional dispersion.

3.1. The generalized Camassa-Holm equation

When ν = 1, (2.26) reduces to the generalized CH equation

vτ +
6
5

vζ +
3
2
(vp+1)ζ − vζ ζ τ =

3(p+1)
10

[
2(vpvζ )ζ ζ + vpvζ ζ ζ

]
. (3.1)

Even though various generalizations of the CH equation have been proposed in the literature, this
equation is different from those studied thus far because of the different form of the terms on the
right-hand side of (3.1). Using the coordinate transformation (2.27), we can write (3.1) in the origi-
nal reference frame as follows

wt +wx +
1
2
(wp+1)x−

3
4

wxxx−
5
4

wxxt =
p+1

8
[2(wpwx)xx +wpwxxx] (3.2)

with w(x, t) = v(ζ ,τ).

3.2. The modified Camassa-Holm equation

When p = 2, (3.1) reduces to the modified CH equation

vτ +
6
5

vζ +
9
2

v2vζ − vζ ζ τ =
9
10
[
2(v2vζ )ζ ζ + v2vζ ζ ζ

]
. (3.3)

Although there is a growing literature on modified forms of the CH equation, this equation seems
to be new in the literature. For instance, the modified CH equation proposed in [12,22], which is an
integrable generalization of the classical CH equation, includes extra terms on the right-hand side.
With the use of the coordinate transformation (2.27) we can rewrite (3.3) in terms of the original
variables as

wt +wx +
3
2

w2wx−
3
4

wxxx−
5
4

wxxt =
3
8
[2(w2wx)xx +w2wxxx] (3.4)

with w(x, t) = v(ζ ,τ).
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3.3. The generalized fractional BBM equation

We now seek an asymptotic solution of (2.4) in the form

U(Y,S;ε,δ ) =U0(Y,S)+ ε
pU1(Y,S)+δ

2νU2(Y,S)+O(ε2p,ε p
δ

2ν ,δ 4ν) (3.5)

This means that the terms of order ε pδ 2ν are neglected in all calculations in the previous section.
Then, instead of (2.26), we get the generalized fractional BBM equation

vτ +κ1vζ +
3
2
(vp+1)ζ +(−D2

ζ
)νvτ = 0, (3.6)

with κ1 = 3a2ν/2 (where a is an arbitrary positive constant). It is interesting to note that, in the
special case p = 1, (3.6) reduces to one discussed in [16]. In the original reference frame (x, t), (3.6)
becomes

wt +wx +
1
2
(wp+1)x +

3
4
(−D2

x)
νwx +

5
4
(−D2

x)
νwt = 0 (3.7)

with w(x, t) = v(ζ ,τ) and a = (4/5)1/(2ν).

3.4. The generalized fractional KDV equation

Similarly, using (3.5) instead of (2.4) and neglecting all the terms of ε pδ 2ν , we reach the following
equation

US +
ε p

2
(U p+1)Y −

δ 2ν

2
(−D2

Y )
νUY = 0 (3.8)

instead of (2.15). We call (3.8) the generalized fractional KdV equation because for p = 1 it reduces
to the fractional KdV equation that is well analyzed in the literature, see, for instance, [2]. In the
original reference frame (x, t), (3.8) takes the following form

wt +wx +
1
2
(wp+1)x− 1

2
(−D2

x)
νwx = 0 (3.9)

with w(x, t) = v(ζ ,τ).
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