
Column Generation Algorithms for Airline Network Revenue
Management Problems

Aybike Ulusan

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/32328972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Column Generation Algorithms for Airline Network Revenue
Management Problems

Approved by:

Prof. İlker Birbil
(Thesis Supervisor)

Assoc. Prof. Tonguç Ünlüyurt

Assoc Prof. Özgur Gürbüz

Date of Approval:

Acknowledgements

First of all I would like thank to my thesis supervisor İlker Birbil for his ever ending
encouragement and support. Without his wisdom and his guidance I would have never
been able to earn a master’s degree or write a thesis.

I am thankful to many of our faculty members for their helpful advices and support. In
addition, I would like to express my sincere gratitudes to Assist. Prof. İbrahim Muter, fac-
ulty member of Bahçeşehir University. Also I am grateful to my dear colleagues Nurşen,
Semih, Halil, Belma, Cansu, Ceren, Esra and Rabia, for sharing their experiences and for
their endless emotional support. Especially I am thankful to my dearest colleague, Deniz
Beşik for her contributions and her vital suggestions during the entire process.

I would like to thank to TÜBİTAK for providing me the financial support.
Finally, I would like to thank to my family for believing in me from the very beginning

and standing by me through thick and thin.

iii

© Aybike Ulusan 2014

All Rights Reserved

Column Generation Algorithms for Airline Network Revenue
Management Problems

Aybike Ulusan

Industrial Engineering, Master’s Thesis, 2014

Thesis Supervisor: Prof. İlker Birbil

Keywords: airline revenue management, column generation, linearization,
origin-destination based decomposition.

Abstract

At the heart of the airline revenue management problem (ARM) lies the seat allocation
problem, which has the ultimate aim of finding the right combination of passengers that
will result in maximum profit. Due to the dynamic nature of the problem, optimal seat
allocations can change continuously over the reservation period. In addition, widely used
bid-price booking control policy which necessitates the dual information is obliged to be
updated as the demand and capacity values adjust over the reservation period. Thus, in
order to make changes in an interactive basis, it is crucial to solve the seat allocation
problem in a small amount of time.

This study embodies column generation algorithms applied to ARM problems. Network-
based ARM problems are computationally hard to solve even if the airline network is
small. However, in this study we challenged ourselves with large-scale airline networks.
For computational efficiency, the network is divided into subnetworks by means of date
and time information. The overall network is decomposed to origin destination pairs,
so that each pair is treated as a single-leg problem. The resulting seat allocation mod-
els (static, dynamic and deterministic linear programming) having a non-linear objective

v

function are linearized by means of the transformation technique proposed by Dantzig
which embodies a transformation only by means of additional decision variables. Since
column generation can not cope with problems extending row-wise, Dantzigs formulation
is the perfect fit. After applying column generation, the numerical results for the models
is demonstrated.

vi

Havayolu Gelir Yönetimi Problemleri için Kolon Türetme Algoritmaları

Aybike Ulusan

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Prof. Dr. İlker Birbil

Anahtar Kelimeler:havayolu gelir yönetimi, kolon türetme, doğrusallaştırma,başlangıç
ve bitiş çiftlerine ayrıştırma.

Özet

Havayolu gelir yönetimi problemlerinin özünde, doğru yolcu kombinasyonlarını bu-
larak kârı enbüyükleme amacı olan kapasite dağıtım problemi bulunmaktadır. Prob-
lemin dinamik doğası yüzünden en iyi kapasite dağılımları rezervasyon süresi boyunca
değişiklik gösterir. Rezervasyon süresi boyunca talep ve kapasite değerlerinin değişmesi
yüzünden ikincil bilgiye ihtiyacı olan alım fiyatı rezervasyon konrol stratejisi sürekli
olarak güncellenmelidir. Bu sebeplerden ötürü, kapasite dağıtım problemi olabilidiğince
hızlı çözülmelidir ki, verilerde olan en ufak bir değiliklik ile kapasite dağıtımları güncelle-
nebilsin.

Bu çalışma, havayolu gelir yönetimi problemlerine uygulanan kolon türetme algorit-
malarını bünyesinde bulundurmaktadr. Ağ esaslı gelir yönetimi problemlerinin çözülmesi,
havayolu ağı ne kadar küçük olursa olsun hesaplama yükü bakımından oldukça zordur.
Yine de, biz bu çalışmada kendimizi büyük ölçekli havayolu ağlarından oluşan problem-
leri çözmekle sınadık. Daha verimli hesaplama yapabilmek adna, büyük ölçekli havayolu
ağını gün ve zaman bilgisinden yararlanarak daha küçük ağlara böldük. Ayrıca, hava-
yolu ağını başlangıç ve bitiş çiftlerine ayrıştırarak, ağ esaslı problemi her bir çift için
tek bacak problemi haline getirdik. Bu işlemler sonunda oluşturduğumuz doğrusal ol-
mayan amaç fonksiyonuna sahip olan modeller (statik, dinamik ve deterministik doğrusal

vii

programlama) öncelikle Dantzig’in ileri sürdüğü teknik ile doğrusal hale getirildi. Bu
teknik fazladan kısıtlama getirmeden doğrusal olmayan amaç fonksiyonunu sadece ilave
değişkenler yardımıyla doğrusallaştırır. Daha sonrasında uygulayacağımız kolon türetme
algoritması üretilen her kolonla birlikte eklenmesi gereken kısıtlamalarla başa çıkamadağından
Dantzig’in yöntemi bizim için oldukça uygundur. Kolon türetme algoritması uygulandıktan
sonra, her model için sayısal sonuçlar verildi.

viii

Contents

1 Introduction 1
1.1 Problem Definition . 3
1.2 Motivation . 3
1.3 Contributions . 4
1.4 Outline . 5

2 Literature Review 6

3 Mathematical Models 9
3.1 Generic Model . 9
3.2 Static Model . 11
3.3 Dynamic Model . 12
3.4 Deterministic Linear Programming Model 13

4 Solution Approach 16
4.1 Dantzig’s Formulation . 16
4.2 Column Generation . 19
4.3 Applications to Mathematical Models 23

4.3.1 Deterministic Linear Programming Model 24
4.3.2 Static and Dynamic Models . 28

5 Computational Study 32
5.1 Simulation Setup . 35
5.2 Benchmarking Strategies . 37
5.3 Numerical Results . 38

6 Conclusion and Future Research 45

ix

List of Figures

4.1 Illustration of a piecewise convex function. 18
4.2 Illustration of the piecewise objective function of a DLP. 24
4.3 Illustration of the airline network adjusted for PSP. 27
4.4 Illustration of the DF on piecewise objective function of the static model. 29

5.1 Distribution of subnetworks with respect to the number of legs. 34
5.2 Distribution of subnetworks with respect to the number of OD-pairs in

thousands. 34
5.3 Distribution of subnetworks with respect to the number of itineraries in

thousands. 35
5.4 The average computational times of DLPB with n = 1 and n = 3. 39
5.5 The average number of columns in the problems when they are proved

optimal. 39
5.6 The average computational times of DLPA and DLPB. 41
5.7 The average computational times of STA, STB and STC. 42
5.8 The average computational times of DYA, DYB and DYC. 43
5.9 The number of columns after the linearization schemes used in STA &

DYA and STB & DYB. 43
5.10 The number of rows after the linearization schemes used in STA & DYA

and STB & DYB. 44

x

List of Tables

5.1 Descriptive Statistics of the 105 subnetworks. 35
5.2 Ratio of the average computational times of the strategies embodying

solving the overall network with bounded simplex algorithm and by means
of column generation approach. 42

xi

Chapter 1

Introduction

Revenue management (RM) can be defined as the art of selling each product to the right
customer at the right time for the best price with the objective of maximizing the revenue
generated from a limited capacity of a product over a finite horizon. RM originated from
the airline industry, particularly after the Airline Deregulation Act in 1979. As the deregu-
lation loosened the control of airline prices, airline executives encountered the inevitable
decision making process to maximize the total revenue gained. The tactical planning
problem of managing limited seat inventories among the various fare classes is referred
as seat inventory control (seat allocation) problem in the RM literature.

Airline seat inventory control constitutes allocating seats to different fare classes so
that with the right combination of the passengers on the flights, the revenue gained would
be maximized. Ever since the potential profitability of RM in airline industry was recog-
nized many mathematical models have been proposed. These models can be divided into
two; the models which incorporate leg-based and network-based seat allocation problems.
However, prior to elaboration of these problems, the basic concepts that arise in airline
revenue management (ARM) problems will be explicated. As widely known, airline com-
panies offer tickets for many origin destination itineraries in various fare classes. Looking
from the customers’ end, there are only a couple of classes; business, economy and other
widely known fare class selections. However, this is not the case from the companies’
end. The fare class number can increase up to 20 or more. This increase relates to airline
executives struggling with the famous seat allocation problem have to differentiate classes
according to the discount levels with various sale conditions and restrictions. An origin-
destination itinerary may either be composed of a single flight or multiple interconnected
flights and we will refer to these as single-leg and multiple-leg itineraries respectively.

1

That is to say, the term leg stands for a flight from one city to another.
The central problem tackled in the leg based models is how to optimally allocate the

capacity of a single-leg to various classes. The first mathematical approaches to ARM
were focused on single-leg problems. Generally single-leg problems can be divided into
two classes: static and dynamic models. Dynamic models can cope with the changes in
the arrival of the demand, whereas the static models are not responsive to the volatility
of the demand. Remaining capacity of the aircraft and the remaining amount of time in
the reservation period are the two significant factors that affect the arrival of the demand.
In travel industry as well as in airline industry, reservation systems provide various con-
trivances to control availability. In other words, the optimal allocation of seat inventories
are translated into booking control policies. However, in this study we only focus on
finding the optimal seat allocations and the process upon finding these allocations, de-
termining a convenient booking control policy, is out of our scope. Bid-price strategy
is another significant booking control policy that we refer to several times throughout
the thesis. Bid-price is a threshold value which is set for each leg in the network. Sim-
ply, it reflects the opportunity cost of reducing the capacity of a specific leg by one seat.
Upon finding optimal seat capacities, bid-price policy asserts that a booking request for an
origin-destination itinerary is accepted only if its fare exceeds the sum of the bid-prices of
the legs the requested itinerary traverses. In single-leg ARM problems, commonly used
controlling policies make use of booking limits, protection levels and bid-prices.

Network-based seat inventory control is aimed at optimizing the seat allocation prob-
lem on a complete network of flight legs. Many practical seat allocation problems ob-
served in the airline industry are network based, however single-leg based models also
play an important role. The fundamental reason is the difficulty of solving network based
seat allocation problems. In order to overcome this difficulty, several approximation meth-
ods based on decomposition and mathematical programming are proposed. One of the
most prominent decomposition methods is the leg-based decomposition which is effec-
tive when locally optimizing the airline network. Clearly, this decomposition method
undermines the network effects of shared aircraft capacities among multi-leg itineraries
between origin-destination (OD) pairs. In this thesis, we adopted the approach proposed
by Birbil et al. (2013), which decomposes the network into OD pairs so that each pair can
be treated as a single-leg seat allocation problem.

The following sections cover the definition of the capacity allocation problem as well
as our contributions embodying the employed solution approaches and the incentives that
motivated us to use these approaches.

2

1.1 Problem Definition

This section embodies the definition of the general seat inventory control problem. The
objective of this problem is to maximize the revenue generated from the supply of origin-
destination itineraries. These itineraries may be either composed of a single flight or
multiple interconnected flights. All in all, each itinerary may have multiple fare classes
subjected to various ticket prices. All the flight legs in an airline network have a certain
capacity and the problem is to allocate the limited flight leg capacity to itineraries in
the most profitable way. Consequently, for each origin-destination itinerary there are
unique decision variables which indicates the seat allocations. Hence, each seat in each
flight leg is reserved only for that origin-destination itinerary. In this study, network-
based seat inventory control problem is solved via decomposing the network into origin-
destination pairs. That means every multi-leg route is represented as an OD-pair. Thus,
after allocating capacities to each OD-pair, the network-based seat allocation problem
boils down to solving a single-leg seat allocation problems. Birbil et al. (2013) proposed
a generic mathematical model incorporating the OD based decomposition. We also use
the same decomposition approach in this thesis and created our models accordingly.

1.2 Motivation

The objective in revenue management is to maximize profits. An airline revenue man-
agement problem is about finding the optimal booking control policy that will yield the
maximum profit. In other words, the fundamental airline revenue management decision
is whether to accept a booking request or not.

At the heart of the airline revenue management problem lies the seat inventory control
problem. One of the significant characteristics of this problem is that the booking requests
have a probabilistic nature. Seasonal changes, holidays, hour of day, day of week are
just some factors that create these fluctuations in the demand. Upon solving the seat
inventory control problem and finding the optimal seat allocations to various class fares;
these allocations are translated into a booking control policy so that a justifiable decision
shall be made. However, due to the dynamic nature of the demand a decision made in one
second may not be the optimal decision for the next. Therefore, one should continuously
monitor the seat inventory control system and should make adjustments to seat allocations
when needed (Williamson, 1992). In other words, it is crucial that the solution time of a
network seat inventory control problem is small enough to make rapid adjustments.

3

Consider a widely used booking control policy, the bid-price. It is a very simple
method for managing seat inventories, and it is very easy to implement, hence it is widely
used in ARM. Basically, bid-price is a shadow price for the capacity constraint. According
to this policy, a booking request for an itinerary is accepted only if its fare exceeds the
sum of bid-prices of the flight legs traversed by that specific itinerary. Once a booking
request for an itinerary is accepted, that itinerary is designated as open to booking and
fill up its capacity based on the booking control policy proposed with the initial bid-
prices. However, for the sake of making decisions based on the current status of the
reservation period, bid-prices should be updated after every accepted booking request.
This necessitates to solve the seat allocation problem as quickly as possible.

In addition to that, Durham (1995) emphasizes the importance of making rapid deci-
sions by reporting that at peak times, large computer reservations systems must cope with
five thousand transactions per second. Hence, the decision of whether to accept a booking
request or not must be reached within milliseconds of the request’s arrival. Thus, the seat
allocation problem should attain a rapid solution.

While solving large-scale network-based seat inventory control problems, simplex
algorithm solving the overall problem data may not reach to optimality within the desired
time frame. In this study, our ultimate goal is to solve large-scale network-based seat
inventory control problems quickly. Thus, we propose to use column generation approach
which may significantly reduce the solution time in large-scale problems. In addition, we
divide the airline network into subnetworks in order to make use of the parallel capacity
power.

1.3 Contributions

The fundamental contribution we made in this study is proving that the solution time of
a large-scale network-based seat allocation problem can be diminished by effective man-
agement of the columns in the problem. We adopted column generation (CG) approach
while managing the columns in the problem. This approach prefers to reach to optimality
by solving a small set of the problem data several times, hence computationally it is a
more efficient approach than solving the entire network at once.

First of all we introduce the mathematical models that are covered throughout the
study. Static and dynamic models are two different seat allocation problems which have
discrete concave functions. In order to apply column generation, we transform these two
non-linear programming models to linear programming models. There are many differ-

4

ent transformation strategies; they either transform the function by means of additional
constraints or additional variables or both. Since our focus is applying merely column
generation, we need to make transformations only by increasing the number of deci-
sion variables. Dantzig (1956) proposed a transformation technique which only increases
the problem size column-wise. By using Dantzig’s formulation (DF), we linearize our
static and dynamic models and then apply column generation. In addition, we empha-
size the relation between Dantzig’s formulation and the well-known deterministic linear
programming model. Then we discuss that if the non-linear seat allocation model with
deterministic demand is linearized by means of DF, then the resulting model is the famous
deterministic linear programming model (DLP).

In this study; static, dynamic seat allocation models and DLP formulation is solved
on a large-scale airline network data retrieved from a Turkish airline company. The data
is divided into subnetworks by means of the real date and time information. The sub-
network structure is exploited when solving the pricing subproblem (PSP) and generating
itineraries for the airline network. We report extensive numerical results on a realistic size
airline network.

1.4 Outline

The outline of the study is as follows. A general overview of the airline revenue manage-
ment problems is given in Chapter 3. The mathematical models of the three problems that
are covered throughout the study is given in Chapter 3. Chapter 4 incorporates a method
for linearizing the resulting non-linear programming models. In addition, column gener-
ation approach is explicated throughout the section. The deviation from the conventional
column generation approach and its adaptation to the variations of the generic model are
also discussed. The airline network data as well as the generation of the booking requests
that we used in our computational study are given in Chapter 5. In addition, solving
the ARM problems by column management is compared to solving the whole network
at once by an off-the-shelf optimization solver. Finally, in Chapter 6 we emphasize the
driven conclusions and give some final remarks on the study as well as on the possible
future work.

5

Chapter 2

Literature Review

The fundamental goal of this thesis is to solve seat allocation problems in a small time so
that changes in the booking control policy can be done on an interactive basis. As men-
tioned before, the framework proposed by Birbil et al. (2013) is used while constructing
the problems, so that the single-leg methods are extended to a network setting. After the
multi-leg airline network is decomposed to its OD-pairs, the non-linear cost function of
the models are linearised by means of additional decision variables, constraints or both.
The resulting models are solved via column generation. An important remark is that, in
these models we do not consider overbooking, cancellations, customer choice behaviour
or robustness. We begin with a brief account of the seat allocation problems and then
review the ARM literature. Afterwards, we discuss solution approaches for the resulting
models. Once more, it should be noted that our emphasis is on applying column genera-
tion technique when the objective function is non-linear but piecewise linear concave.

At the heart of airline revenue management lies the seat inventory control problem.
This problem depends on finding the best trade-off between the revenue gained through
greater demand for the discounted seats against the opportunity cost when full-fare reser-
vation requests which are denied due the accepted discounted sales. Therefore, solution
methods for the seat allocation problem are concerned with the estimation of these oppor-
tunity costs and finding the best control policy maximizing the gained revenue.

The seat inventory problem can be approached from a variety of perspectives; one
stream of papers focus on controlling the seat inventories over individual flight legs
whereas the other focuses on controlling over the entire airline network. Developments in
the field of leg-based models start with Littlewood (1972) where he propose a seat inven-
tory control rule with only two fare classes. He asserts that as long as the revenue value

6

of the discount fare bookings exceeds the expected revenue of future full fare bookings,
the discounted sales should be accepted. Littlewood’s two fare class model is generalized
by Belobaba (1987). He propose the Expected Marginal Seat Revenue (EMSR) method
to solve static single-leg problems when there are more than 2 fare classes. However,
EMSR method is merely a heuristic, it can not yield optimal booking limits when all
classes are considered. Later on Brumelle and McGill (1993) investigate this heuristic
and propose a solution methodology to find the optimal seat allocations. A significant
assumption while finding the optimal allocations is made on the arrival of the booking re-
quests. All the mentioned researchers assume that booking requests come in sequentially
in the order of increasing fare level. That is to say, low fare passengers arrive before high
fare passengers, and this assumption is vital when finding optimal seat allocations. On
the other hand, dynamic solution methods do not assume such arrival patterns. Lee and
Hersh (1993) are the first researchers who relax this assumption and formulate a dynamic
model as a Markov decision process.

Clearly, maximizing individual leg revenues is not the same as maximizing the total
network revenue. Williamson (1992) illustrate this statement with a small example and
we refer the reader to her study for a detailed discussion. The first mathematical model
for the network seat allocation problem with deterministic demand is proposed by Glover
et al. (1982). They model the problem using a minimum cost network flow formula-
tion and their primary focus is on the network effects rather than stochastic elements. A
drawback in their formulation is the lack of discrimination of the routes within a specific
OD-pair. In other words, the model is applicable only when the passengers are path indif-
ferent. The formulation is advantageous because it is easy to solve, large network prob-
lems can be optimized in a short amount of time. Wang (1983) proposes an algorithm
for sequential allocation of seats under uncertain demand when there are multiple fares
and multiple flight legs. Demand uncertainty is also considered by Wollmer (1986) in a
large-scale mathematical model. He incorporates the expected marginal seat revenues to
the objective function as cost coefficients and for a greater efficiency in the solution, this
formulation can be converted into a minimum cost network formulation. Curry (1990)
extends Glover’s approach into a two stage method and aims at incorporating the nesting
of the fare classes within each OD-pair. The optimization problem uses piecewise lin-
ear approximations to the revenue function. Similar to Curry (1990), Birbil et al. (2013)
propose an OD-based decomposition approach and convert the problem into a single-leg
problem for each OD-pair. In this thesis, we adopt their approach when constructing our
models with a non-linear objective function.

7

As stated before, the objective function of the seat allocation problem is piecewise
linear thus non-linear. Besides the seat allocation problems, there are many problems
in the management and engineering field having a piecewise linear objective function.
Thus, there exist many studies which have conducted research on piecewise linear func-
tions. Most notably, we can mention the transformation techniques. These techniques
either incorporate additional variables, additional constraints or both. These extra vari-
ables and constraints determine the solution efficiency of the problem, as we also illustrate
by means of numerical results. A superior transformation technique of a piecewise linear
function can reduce the problem size and enhance the computational efficiency in a sig-
nificant way (Lin et al., 2013). Consider a piecewise function with a single variable x and
m + 1 breakpoints. A widely used transformation technique necessitates adding extra m
binary variables and extra 4m constraints. However, when m is large this representation
of piecewise functions can increase the computational burden in a significant way. An-
other transformation framework using fewer binary variables with respect to the aforesaid
traditional method is proposed by Li et al. (2009). However, Vielma et al. (2010) studied
the framework proposed by Li et al. (2009) and stated that the transformation technique
proposed is computationally inferior to the standard transformation method even though
the number of binary variables are fewer. Hence, the extra number of constraints required
in the linearization process obviously impact the computational performance. Another
technique is proposed by Dantzig (1956) which incorporates a transformation only by
means of additional variables.

Pioneered by Dantzig and Wolfe (1960), column generation approach allows to solve
large-scale linear programming problems. The main idea is to generate columns as needed
to improve the objective function value. For the first time, Gilmore and Gomory (1961)
put this technique to actual use and apply it to a cutting-stock problem. Nowadays, col-
umn generation is a prominent method to cope with a huge number of variables (Lübbecke
and Desrosiers, 2005). Conventional column generation can be applied when the number
of constraints in the problem is fixed. Recently, Muter et al. (2013), propose a simul-
taneous row and column generation approach which can cope with problems that grow
both column-wise and row-wise. These problems have a special structure, where the con-
straints depend on the variables. In this thesis, the three models we solve have a piecewise
objective function and one of the adopted solution strategies is column generation which
requires a fixed number of constraints and a linear objective function. Hence, we employ
Dantzig’s formulation to avoid constraints depending on variables. Extensive discussion
on this topic is made under Chapter 4.

8

Chapter 3

Mathematical Models

In this chapter, first of all we give a generic model of the OD-based seat allocation problem
as set forth by Birbil et al. (2013). Then we explicate three models that fit to this generic
model. These are static, dynamic and deterministic linear programming models.

In practice, an important issue is where to use these models since all models have some
drawbacks. Therefore, when choosing the convenient model for a certain application, one
should consider the assumptions of all models, and decide on which set of approximations
are more acceptable and what data is available in that application (McGill and Van Ryzin,
1999).

3.1 Generic Model

A generic solution approach to network-based seat allocation problem is given by decom-
posing the network into OD-pairs (Birbil et al., 2013). Let S = {1, . . . , S} denote the
set of OD-pairs on the airline network and J = {1, . . . , J} be the set of flight legs. The
available seat capacity for each flight leg j ∈ J is denoted as Cj ∈ Z+. Moreover the
parameter ajs is defined as

ajs =

{
1, if flight leg j is on OD-pair s;
0, otherwise.

Thus, one can give the generic model as follows

maximize
S∑

s=1

φs(xs), (3.1)

9

subject to
S∑

s=1

ajsxs ≤ Cj, j ∈ J , (3.2)

xs ∈ Z+, s ∈ S, (3.3)

where xs denotes the capacity that will be allocated to OD-pair s. Solving this problem
for every OD-pair s ∈ S is the same as solving a single-leg problem with xs capacities.

Clearly, the main concern is to allocate capacities in such a way that the total revenue
is maximized. It is assumed that the function xs 7→ φs(xs) is a discrete concave function.
The first set of constraints (3.2) ensures for each flight leg j ∈ J the capacity of the
aircraft is not exceeded. In other words the number of seats allocated to an OD-pair
should not exceed the bottleneck capacity. The bottleneck capacity can be defined as,

Bs = min
j∈J
{Cj | ajs = 1}.

That is to say for a specific OD-pair, bottleneck capacity equals to the minimum of the
flight leg capacities involved in that OD-pair. Constraint (3.3) ensures that the allocated
capacities are integer values.

There are multiple fare classes in each OD-pair. For a specific OD-pair s ∈ S ,
the maximum number of fare classes is Is and the set of fare classes is denoted by
Is = {1 . . . , Is}. Let us assume that the first class is the cheapest fare class; the rev-
enue generated from the first class is the lowest, and class Is is the highest fare class.
Hence for a specific OD-pair s, we have

0 < r1s < r2s < . . . < rIs−1s < rIss.

The no-sales class is simply represented by 0 with r0 = 0.
The solution of the generic model is the capacity allocation to each OD-pair, xs. How-

ever, static and DLP models compute the capacities allocated to various fare classes within
an OD-pair as well. In order to observe the partitioned seat allocations, we can denote the
relation between the number of reserved fare class i seats in OD-pair s by xis. Then we
obtain

xs =
Is∑
i=1

xis. (3.4)

As a result of relation (3.4), the seat capacity constraints (3.2) in the generic model can

10

be written as
S∑

s=1

ajs

Is∑
i=1

xis ≤ Cj, j ∈ J .

Due to the discrete concave nature of the objective function (3.1), the model we are
facing is a non-linear programming model. In addition to that, the decision variables
have to be integers which complicates the problem even more. In fact Birbil et al. (2013)
showed that problem (3.1)-(3.3) is NP-hard (2013, p.11). Hence, we attack the problem
by relaxing the integrality constraint. Upon solving the relaxation of the linear program-
ming model, the optimal values of the decision variables may have fractional values.
Thus, we round down the values of the decision variables.

Besides providing computational convenience, another significant advantage of using
the linear relaxation of (3.1)-(3.3) is the procurement of the shadow prices. That is to
say, the resulting dual variables demonstrate the impact of a change in the capacities of
the flight legs to the revenue function. Actually, this is the same as using the bid-price
control. Notice that, dual variables attain the same value whether the relaxation is solved
or the corresponding integer programming model is solved.

3.2 Static Model

The static model we employ in our study makes several assumptions that are worth indi-
cating. The first assumption is that requests for different classes are independent random
variables. The primary advantage of this assumption is the analytical convenience it pro-
vides. The second assumption is that the demand for a given class does not depend on the
capacity control. Third, the static model neglects the group bookings. Finally, we do not
consider overbooking, cancellations and customer choice behaviour.

As stated in the first assumption the demand for each fare class can be expressed as
a random variable. Let random variable Dis be the demand for fare class i in OD-pair s.
Consequently, for each realization Dis(ω), the number of occupied seats by fare class i
in OD-pair s is denoted by min{xis,Dis(ω)}. Hence, the expected number of occupied
seats of fare class i in OD-pair s is E[min{xis,Dis}]. The static model of the proposed
decomposition approach then becomes

maximize
S∑

s=1

fs(xs), (3.5)

11

subject to
S∑

s=1

ajsxs ≤ Cj, j ∈ J , (3.6)

xs ∈ Z+, s ∈ S, (3.7)

where

fs(xs) = max

{ Is∑
i=1

risE[min{xis,Dis}] |
Is∑
i=1

xis ≤ xs, xis ∈ Z+, i ∈ Is
}
. (3.8)

Notice that for every s ∈ S the objective function (3.8) is the same as solving a single-leg
seat allocation problem with a flight leg capacity xs. For a given xs, (3.8) can calculate
the optimal number of reserved seats for each of the fare classes in OD-pair s, which is
the partitioned booking limits. Birbil et al. (2009) propose a fast static algorithm to solve
fs(xs), and in our study we use the same algorithm to solve the cost function and obtain
the expected marginal revenue values computed from a unit increase in the allocated ca-
pacities. In addition, the solution specifies the optimal partitioned allocations for every
possible capacity value in OD-pair s ∈ S; for every intermediate value in {1, . . . , Bs} par-
titioned allocations are computed. In Chapter 4, we will scrutinize on how the relaxation
of the static model is solved.

3.3 Dynamic Model

Before elaborating on the mathematical formulation of the dynamic model, let us state
the assumptions that we adopted. First, it is assumed that at each time period at most one
request for a fare class of an OD-pair arrives. Second, we do not consider overbooking,
cancellations and customer choice behaviour as in the static model. Also, throughout the
thesis, we assume that in the dynamic model capacity allocations to OD-pairs are set at the
beginning of the reservation period. In other words, as the capacity of an OD-pair is being
depleted throughout the reservation period we do not adjust the capacity allocations with
respect to the remaining capacities. Adversely, a complete dynamic model designates
capacity allocations along the whole period, as stated in the common literature (McGill
and Van Ryzin, 1999). However the complete dynamic model is intractable even in small-
scale problems because keeping track of the remaining capacities leads to an explosion of
the state space (McGill and Van Ryzin, 1999).

Let gts(xs) be the expected optimal revenue for OD-pair s with available capacity xs

12

from period t to the departure of the last period. The dynamic model of the proposed
decomposition approach can be given as

maximize
S∑

s=1

g1s(xs), (3.9)

subject to
S∑

s=1

ajsxs ≤ Cj, j ∈ J , (3.10)

xs ∈ Z+, s ∈ S. (3.11)

Let T be the length of the reservation period and T̂ be the number of discretization
periods (epochs). In addition, ξt denotes the random revenue generated at time t and its
discrete density is given by

P(ξt = ri) = pit, i = {0, 1, . . . , Is}, t = {1, 2, . . . , T}.

Thus, dynamic programming recursion in order to calculate the cost function (3.9) can
be given as

gts(xs) = E[max{ξt + gt+1
s (xs − 1), gt+1

s (xs)}] (3.12)

which has the following boundary condition

gT̂s (xs) =

{
E[ξT̂], if xs > 0;

0, if xs = 0.

For the above optimal value function, Lautenbacher and Stidham Jr (1999) have shown
that for any given t, the function gt+1

s (xs)−gt+1
s (xs−1) is nonnegative and nonincreasing

in xs. Note that the dynamic model (3.9)-(3.11), has a discrete concave objective function
xs 7→ g1s(xs), thus it is a special case of the generic model (3.1)-(3.3).

3.4 Deterministic Linear Programming Model

Suppose that, the expected demand dis ∈ Z+ for fare class i in OD-pair s is given. Then
we obtain the following mathematical programming model

13

maximize
S∑

s=1

hs(xs), (3.13)

subject to
S∑

s=1

ajsxs ≤ Cj, j ∈ J , (3.14)

xs ∈ Z+, s ∈ S, (3.15)

where min{xis, dis} is the number of occupied seats and

hs(xs) = max

{ Is∑
i=1

ris[min{xis, dis}] |
Is∑
i=1

xis ≤ xs, xis ∈ Z+, i ∈ Is
}
. (3.16)

Note that, again the objective function xs 7→ hs(xs) is discrete concave, so (3.13)-
(3.15) fits to the generic model. Wollmer (1986), McGill and Van Ryzin (1999), de Boer
et al. (1999) discuss that the previous model can be rewritten as

maximize
S∑

s=1

Is∑
i=1

rismin{xis, dis}, (3.17)

subject to
S∑

s=1

ajs

Is∑
i=1

xis ≤ Cj, j ∈ J , (3.18)

xis ∈ Z+, s ∈ S, i ∈ Is. (3.19)

An equivalent integer programming formulation is then becomes,

maximize
S∑

s=1

Is∑
i=1

risxis, (3.20)

subject to
S∑

s=1

ajs

Is∑
i=1

xis ≤ Cj, j ∈ J , (3.21)

xis ≤ dis, s ∈ S, i ∈ Is (3.22)

xis ∈ Z+, s ∈ S, i ∈ Is. (3.23)

At this point, we can assert the equivalence of problems (3.13)-(3.15) and (3.20)-
(3.23). This assertion may be demonstrated in various ways. For instance, a proof may

14

be find in Birbil et al. (2013). We will discuss and show the equivalence of (3.13)-(3.15)
and (3.20)-(3.23) from a different point of view in Chapter 4.

Relaxing the integrality constraints (3.23), problem (3.20)-(3.23) becomes the well-
known deterministic linear programming (DLP) in the literature (Williamson, 1992), (Wollmer,
1986). It is common practice to solve and use DLP for benchmarking rather than the inte-
ger programming problem (3.17)-(3.19). The reason is that, when the number of decision
variables and constraints gets larger, (3.17)-(3.19) becomes really hard to solve. On the
other hand, DLP is computationally very efficient to solve. A significant disadvantage of
DLP is that, it neglects the uncertainty of the demand forecast and approximates demand
by its mean.

15

Chapter 4

Solution Approach

The fundamental goal of this study is to solve problems on large-scale networks. In this
chapter, we discuss how column generation can be used to solve such problems. Before
we elaborate on column generation, let us remark that column generation can not cope
with non-linear problems. Therefore, our first step is converting any non-linear problem
into a linear programming problem. We begin with a brief explanation of the linearization
scheme proposed by Dantzig, and then continue with the column generation approach.
Finally, we will elaborate on how to apply of Dantzig’s linearization scheme (Dantzig’s
formulation) and column generation to the relaxation of the static (3.5)-(3.7), dynamic
(3.9)-(3.11) and deterministic linear programming (3.20)-(3.23) problems.

4.1 Dantzig’s Formulation

Recall the static model, (3.5)-(3.7) with the objective function (3.8) and the dynamic
model (3.9)-(3.11) with the objective function (3.12). As stated before both of these
objective functions, xs 7→ fs(xs) and xs 7→ g1s(xs) are discrete concave for every OD-
pair s ∈ S . We define discrete concave function as polyhedral concave so that each
piece in these functions are linear in terms of xs. Any piecewise-linear program can be
converted to an equivalent linear program (Charnes and Lemke, 1954), (Dantzig, 1956),
(Dantzig et al., 1958), (Ho, 1985). All of these transformations either increase the number
of variables and constraints by defining at least one variable for each linear piece in each
objective term, or one simple constraint for each linear piece, or both. After obtaining a
linear programming model, they are solved by the simplex algorithm. Another algorithm
to solve a piecewise-linear program without converting it into a linear program is proposed

16

by Fourer (1985). By extending the simplex algorithm Fourer (1985) proposes piecewise-
linear simplex algorithm.

However, merely applying simplex algorithm may fall short when solving large-scale
networks. As mentioned, in this study the airline network we are solving is huge. There-
fore, in our study we adopted the column generation approach to attack these large net-
works. In the following section, this approach is discoursed in detail, but in order to fully
comprehend the reason behind selecting DF, we first briefly explain CG approach in the
light of the linearizing schemes.

The main motivation of column generation is to avoid unnecessary columns from the
basis by initiating the solution process with a small set of columns and introducing new
ones that will improve the solution. Hence, if a non-basic variable becomes a basic vari-
able the problem will enlarge column-wise and not row-wise. In other words, in order for
column generation to be a convenient solution approach, the new basic variable should
not introduce new constraints to the problem. If it does, the dual information can not be
computed correctly hence the reduced cost which will determine the new basic variables
will be unknown. Now suppose that, with each variable entering to the basis, a constraint
associated with that variable is introduced into the problem. These problems said to have
column dependent rows. In order to cope with additional variables and additional con-
straints at the same time, simultaneous row and column generation should be applied.
We refer the reader to Muter et al. (2013), in which they propose a framework to solve
problems with column dependent rows. Thus, merely CG will not be sufficient if the non-
linear model is transformed to a linear model with additional constraints. Hence, we focus
on converting the non-linear models into linear ones by means of additional variables but
no new constraints. Dantzig (1956) proposes a linearizing scheme by means of additional
variables. In this thesis, we also apply his method. We refer to this method as Dantzig’s
formulation.

Before discoursing on how to apply DF to the problems tackled in this study, let us
first discuss how problems with a non-linear objective function are converted into linear
models by using DF. Consider a situation in which the objective function has the form

n∑
s=1

φs(xs),

where xs ≥ 0 and φs(xs) is a piecewise linear convex function. Let us assume, the number
and the length of the pieces are fixed and there are ks pieces for each φs(xs), and the length
of each piece is denoted by uis, i ⊆ 1, . . . , ks . Figure 4.1 illustrates a piecewise convex

17

function; slopes of the pieces are denoted by αis and widths of the pieces are denoted by
uis, i ⊆ 1, . . . , ks.

Figure 4.1: Illustration of a piecewise convex function.

Due to convexity, the slope of the pieces follow αis ≤ αi+1s, i ⊆ 1, . . . , ks for each
s. The main trick in DF is to introduce nonnegative decision variables ∆is to each piece
in the function. In other words, for each function s the number of decision variables xsis
replicated by the number of intervals. Hence, the decision variable xs can be rewritten as

xs = ∆1s + ∆2s + . . .+ ∆ks. (4.1)

By employing this approach and substituting the value of xs into objective function
φs(xs), we get the following linear objective function

φ(xs) =
n∑

s=1

k∑
i=1

αis∆is (4.2)

where 0 ≤ ∆is ≤ uis. Simply, ∆(i+1)s can not attain a value larger than 0 without ∆is

hitting its upper bound uis. In other words, ∆(i+1)s can not be a basic variable unless
the variables corresponding to the pieces with smaller slopes are all non-basic variables.
Notice that, among all the decision variables corresponding to each piece of the piecewise
function, only one of them can be designated as a basic variable. This manner of treat-
ing convex piecewise functions increases the number of variables without increasing the
number of constraints. However, it is the number of constraints that, as a rule, determines
the work in the simplex method (Dantzig, 1956). Therefore, we may conclude that this
transformation technique is also advantageous in terms of computational burden.

The following section explains the column generation approach in general, and then
investigates its application to OD-based ARM problems. The application of DF to the

18

mathematical models is discussed in section Section 4.3.

4.2 Column Generation

Column generation technique is pioneered by Dantzig and Wolfe (1960) and Gilmore and
Gomory (1961). It is frequently employed when solving large-scale linear programming
problems; CG does not intend to solve a large-scale problem at once, it reaches to opti-
mality gradually by solving subproblems at each iteration. LP is initialized with a feasible
initial basis, a small set of columns which is referred as restricted master problem (RMP).
At each iteration, RMP is enlarged by means of additional columns that will lead the
solution to optimality. This iterative solution approach is employed until the problem is
proved optimal.

Conventionally the columns that will be added to RMP are found through solving a
pricing subproblem (PSP). Suppose we are trying to solve a standard LP problem. Simply,
PSP is a subproblem which has the objective of minimizing the reduced costs of columns
that exist in RMP. Hence, when PSP is solved to optimality, the solution will specify the
column which improves the objective function value at most. Upon solving PSP, if the
objective function value is negative, there exists a column with a negative reduced cost.
Thus, when this column is added to the RMP, the objective function value of the problem
improves.

While implementing CG, DLP is solved to optimality by introducing new columns
by means of a PSP. Despite other models, DLP has an advantage of making use of the
given revenues for each flight leg. Therefore, with the assumption of setting the total
revenue gained from an OD-pair as the summation of the revenues gained by the flight
legs traversed by that OD-pair, a shortest path problem as PSP can generate a new OD-pair
from scratch. Note that, an OD-pair corresponds to columns in RMP.

However, it is not always possible to find a suitable PSP for the problem. Actually, this
is the problem we encounter while applying CG to static and dynamic models. In these
models, we lack the information of the expected marginal revenue of the flight legs in a
specific OD-pair. In addition, the expected marginal revenue of an OD-pair as a whole
is missing as well. In order to calculate these, one has to know the flight legs traversed
by that OD-pair; thus the OD-pair should be known. However, without the associated
revenue information PSP can not generate an OD-pair. In order to overcome this prob-
lem, we created all possible OD-pairs, meaning all possible columns, and calculated their
expected marginal revenues. Among the set of all columns, a column can be selected

19

manually based on the magnitude of the improvement it makes to the objective function
and added to the RMP. Algorithm 1 is the pseudocode of the algorithm we proposed to
generate all the OD-pairs with a maximum of three flight legs. We restricted the number
of stops by three since itineraries with more than three legs is quite rare. The algorithm
basically connects the nodes until the number of nodes exceeds the maximum number
of nodes; three. All the nodes have unique labels which indicates the previous possible
paths to reach each node and the number of arcs traversed with these paths. In the end, the
number of labels accumulated in the sink node is the same as the number of all paths with
a maximum of 3 nodes. To sum it up, we can easily say that, in this study the adopted
column generation approach is divided into two types with respect to the procurement
strategy of the column that is added to the RMP.

After pointing out two variations of the column generation approaches, let us retrace
our steps and investigate what it is meant by the greatest improvement and discuss ways to
calculate this greatest improvement. Simply, for a standard LP, the greatest improvement
in the objective function may be obtained through the column which has the most nega-
tive reduced cost. Of course, that specific column is just the illustration of the non-basic
variable which has the greatest affirmative impact on the objective function value when
designated as a basic variable. However, in our case, the obtained linear programming
models via DF have decision variables which are bounded above. Then, for a minimiza-
tion problem, the column with a negative reduced cost will not improve the solution if the
decision variable associated with that column is a non-basic variable on its upper bound.
The bounded simplex method asserts that, for a minimization problem, a change in a
decision variable’s value on its lower bound will improve the objective function if the
associated reduced cost is negative. In addition, a change in a decision variable’s value
on its upper bound will improve the objective function if the associated reduced cost is
positive. Therefore, while we are checking for columns with a negative reduced cost, we
also have to check whether the associated decision variable is a non-basic variable on its
lower bound or not. Also it is certain that, a column associated with a non-basic variable
on its upper bound is already among the columns in the RMP. Hence, it wouldn’t be true
if that column is procured as the next column that will be added to the RMP.

Upon observing that the improvement in the objective function is measured by means
of the reduced cost, let us go one more step back and discuss how to calculate the reduced
cost. Let us remind that, for the given standard LP,

20

Algorithm 1: Finding all the itineraries with a maximum of 3 nodes.
1 index=1 // Initialization
2 LabelNumber[index]=1 // First Label
3 maxnode=3
4 PreviousLabel[index]=0
5 NumberofArc[index]= 0
6 NodeLabel[source]=1 // Label numbers on each node
7 S ← ∅
8 forall the node v in V do
9 NodeLabel[v]=undefined

10 end

11 while S 6= V do
12 forall the nodes v in V do
13 L ← All Labels of node v
14 A ← All adjacent nodes of v

// for every adjacent node
15 forall the nodes u in A do
16 if u== sink then
17 maxnode ++ // Imposing connection with u & sink

18 end
// Traverse all labels

19 forall the labels l in L do
20 if NumberofArc[l] < maxnode then
21 index ++
22 NodeLabel[u]= NodeLabel[u]

⋃
index

23 LabelNumber[index]=index
24 PreviousLabel[index]= LabelNumber[l]
25 NumberofArc[index]= NumberofArc[l]
26 end
27 end
28 end
29 end
30 S = S

⋃
{v}

31 maxnode −−
32 end

33 Backtrack all the labels accumulated in the sink node and find all the itineraries.

21

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = bi, i = {1, . . . ,m},

xj ≥ 0, j = {1, . . . , n},

the reduced cost is equal to
c̄ = c− yTA,

where y denotes the optimal dual variables associated with each constraint.
Going back to the ARM problem, let us first emphasize that, for convenience we con-

vert the concave objective functions of the tackled ARM problems to convex functions.
It is simply done by multiplying the functions with −1. From now on, we will presume
a minimization objective for the tackled ARM problems. Consider a specific OD-pair s
with Is fare classes. That means that OD-pair has Is itineraries. These itineraries are
composed of same flight legs, since they belong to the same OD-pair, however their
revenues change so do their reduced costs. Consequently, the problem of according to
which itinerary’s revenue the reduced costs should be calculated emerges; because we are
seeking for an OD-pair which yields the greatest improvement, but each OD-pair has Is
different reduced costs. We prefer to calculate the reduced costs with the cost parameters
associated with the highest fare class. Hence, each OD-pair’s objective function improve-
ment is evaluated according to a single reduced cost. Upon finding an OD-pair, along
with the highest fare class itinerary, all other itineraries corresponding to the rest of the
fare classes of that OD-pair are added to the RMP whether they have a negative reduced
cost or not. The other fare classes may not improve the solution; and if that is the case,
simplex algorithm takes care of it, and specify them as non-basic variables on their lower
bounds. Hence, the solution is not affected if we add all itineraries of an OD-pair to RMP.
Notice that, the highest fare class corresponds to the first piece having the lowest slope
of the piecewise convex objective function. Therefore, we can apply the same idea to the
linearized static and dynamic models and state that the reduced costs are calculated by
means of the expected marginal revenues of increasing the OD-pair capacity from 0 to
1, which again indicates the first piece. These points are emphasized within Section 4.3
once more. Also, this method is not the only way to handle multiple itineraries. Other
possible ways are demonstrated as a future work in Chapter 6.

22

As a final remark, we want to underscore that the discussed application of CG em-
bodies a single network. In this study, we are dividing a large-scale airline network to
subnetworks, and we diminish our computational burden in a significant way by solving
these subnetworks separately but at once instead of solving a large-scale network. We are
exploiting the subnetwork structure in two ways; while generating a new column by solv-
ing a PSP, and while generating all the OD-pairs of the whole airline network. Generation
of all the OD-pairs is in the picture when discussing CG applied to static and dynamic
models, whereas solving PSP directly interests DLP. Divided airline network is embar-
rassingly parallel, therefore one can solve independent small networks instead of solving
a huge network.

Until now we discussed to solve an ARM problem with a single airline network. In
order to consider all the subnetworks, all of the discussed solution steps should be done for
each and every subnetwork. For instance, while trying to find a column to add to the RMP,
we investigated the column providing the maximum improvement for each subnetwork.
That is to say, at each iteration every subnetwork offers OD-pairs which are eligible to be
added to RMP. Consequently, at each iteration PSP is solved for each small subnetwork.
At each iteration, we preferred to enlarge the RMP with the itineraries of OD-pair(s) from
each subnetwork. However, another one can prefer to choose a single OD-pair among all
subnetworks and decide to add to the RMP. As explicated before, when there are several
options, we selected the path which will bring us closer to our goal, this does not mean
there is a single truth.

4.3 Applications to Mathematical Models

In this section, the application of DF and CG to the mathematical models are discussed;
the solution steps are demonstrated in detail. We caution the reader once more that from
now on, all the models having a concave objective function are treated as convex func-
tions. The conversion is done by taking the negative of the maximization objective func-
tion. Initially, DLP is discussed. This is because, DF and CG can be applied more con-
veniently to DLP. As mentioned DLP does not suffer from the lack of a PSP, its cost
parameters are predefined. Hence, the column generation approach can be applied in the
conventional way. Afterwards, applications of DF and CG to static and dynamic models
are discussed.

23

4.3.1 Deterministic Linear Programming Model

Now, consider the case where the expected demand dis is given, so that we can drop off
the expectation from the objective function and obtain the problem (3.13)-(3.15) having a
piecewise linear objective function Recall that, an equivalent integer programming prob-
lem with a linear objective function is given in (3.20)-(3.22). As the term ”equivalent”
indicates, the optimal objective values of the problems (3.13)-(3.15) and (3.20)-(3.22) are
the same. This statement was explicated in Section 3.4 followed by mentioning the proof
of this statement can be done in various ways. Now, we show that this proposition can be
demonstrated by means of DF. We indicate how DF applied on (3.13)-(3.15) can result to
the problem (3.20)-(3.22).

The objective function of (3.13)-(3.15) xs 7→ hs(xs) is discrete convex. Let us demon-
strate the objective function (3.16) with a piecewise linear graph. For simplicity, suppose
that OD-pair s has 3 fare classes and the revenue gained through fare class i is denoted by
ris. Due to convexity, the following inequality is trivial;

0 < r1s < r2s < r3s.

Figure 4.2: Illustration of the piecewise objective function of a DLP.

The above graph is a small illustration of the function (3.16) which takes values with
respect to the allocated capacities. One could plainly see that, the number of breakpoints
is equal to the number of fare classes; once the maximum number of reserved seats for a
fare class is reached, reservation of seats of the other fare class begins. For a fare class i,
the number of reserved seats can have the maximum value of dis. Therefore, as observed
in the graph, x-axis values of every breakpoint is equal to the cumulative value of the

24

associated demands. Note that, gained revenue from a unit capacity increase for a fare
class is different with respect to other fare classes. On the other hand, each piece is linear
in terms of the allocated capacities.

Recall DF, which transforms a piecewise objective function into a linear objective
function by introducing additional variables to every piece in the objective function. Let
us apply DF to the small example that is discussed in the preceding paragraph. Since
there are 3 pieces, there are 3 additional variables which are introduced to every piece.
Let xis denotes the variable associated with the ith piece. These 3 additional variables add
up to the total number of reserved seats for OD-pair s which is denoted by xs and can be
denoted as

xs = x1s + x2s + x3s. (4.3)

Also the following inequality is trivial

xis ≤ dis, s ∈ S, i ∈ {1, 2, 3}.

To sum it all up, once we write
∑Is

i=1 xis instead of xs and introduce the generalized
adaptation of (4.3) as a constraint to the problem (3.13)-(3.15), the resulting problem
becomes (3.20)-(3.23).

Once we rewrite problem (3.13)-(3.15); either by benefiting from the DF approach
or simply by reasoning the qualifications of the problem, the resulting problem becomes
a linear programming problem. The next step is to employ CG in order to solve the
relaxation of (3.20)-(3.23).

We benefit from the columns of the identity matrix while constructing the initial basis
for DLP. Note that, each column of the identity matrix corresponds to different OD-pairs
with single flight legs. Each unique column of the identity matrix is replicated by the
number of fare classes associated with that specific OD-pair. Consequently, for every
OD-pair the number of itineraries is the same as the number of fare classes. After the
initial basis is constructed, the problem is solved to optimality and the dual information
is obtained. The dual variables associated with (3.21) indicate the shadow prices of a unit
capacity increase for each flight leg j ∈ J . As mentioned before, these dual variables
are used to calculate the reduced cost associated with each OD-pair. The next step in
our solution strategy is to find a column with the lowest reduced cost, and one can easily
calculate the reduced cost by means of the dual variables and the revenues for each flight
leg. As mentioned, while solving static and dynamic models, the cost parameters in the
objective function are uncertain unless an itinerary is given. However, the revenues for

25

each flight leg j ∈ J are given in DLP, so instead of generating all possible itineraries and
investigating their reduced costs, we benefit from a PSP in order to generate a column with
the most negative reduced cost. We specify our PSP as the shortest path problem for a
directed network G = (V,A). We restrict the number of nodes with 3 since we presumed
that the maximum number of legs in an OD-pair con not exceed 3. This presumption
is explained in detail in Chapter 5. Algorithm 2 demonstrates the pseudocode that we
propose to find the shortest path with a maximum of 3 nodes.

Algorithm 2: Finding the shortest path with a maximum of 3 nodes.
1 forall the nodes v in V do
2 dist[v]=infinity
3 previous[v]=undefined
4 end

5 dist[source]=0
6 numbernode[source]=0
7 maxnode=3
8 Q ← V

9 while Q 6= 0 do
10 u = node in Q with minimum dist[]
11 while numbernode[u] > 3 do
12 Q = Q \ {u}
13 u = node in Q with minimum dist[]
14 end

15 forall the neighbours v of u do
16 if dist[u]+ c(u, v) < dist[v] then
17 dist[v]= dist[u]+ c(u, v)
18 previous[v]=u
19 end
20 end
21 end

The algorithm we propose aims to find the shortest path from a source node s to the
sink node t ∈ V . Notice that, this algorithm is nothing but the Dijkstra’s shortest path
algorithm with an additional constraint on the number of arcs traversed. Retracing to our
problem DLP, the next step in the solution strategy is to designate a non-basic variable
as a candidate to be a basic variable. In other words, a column should be generated in
order to be added to the RMP and this column should have the minimum reduced cost.
The fact that each flight leg corresponding to each node in our network has an associated

26

dual variable, we can specify each arc cost as the dual variable for a specific flight leg
subtracted from that revenue gained by the highest fare class of that specific flight. Once
we connect source node to each node, and each node to the sink node by directed arcs,
our problem of finding the shortest path becomes finding the route which has the smallest
reduced cost. However, for each OD-pair the number of reduced costs is the same as
the number of fare classes, since each fare class have different revenues. Remember
the discussion in Section 4.2 about calculating the reduced cost for the decision variable
which corresponds to the first piece in the objective function. Again, for each OD-pair
s ∈ S we calculate the reduced cost by benefiting from the first class’ revenue. Next step
is to add all the itineraries of the selected OD-pair to the RMP. The PSP and RMP are
solved iteratively until a column with a negative reduced cost is not found. And if not
found, the problem is proved optimal. Note that, we only discussed the case of adding a
single OD-pair to RMP from each subnetwork at each iteration. However, the number of
OD-pairs may vary depending on the preference of the researcher conducting the study.

Figure 4.3: Illustration of the airline network adjusted for PSP.

Figure 4.3 is a small illustration of a network where nodes indicate the flight legs, rj
denotes the revenues gained by flight leg j ∈ J and yj is the associated dual variable with
flight leg j ∈ J . In the shortest path problem, the arc costs are additive. That is to say,
ultimate path cost is the sum of the arc costs traversed by this path. Looking back to an
airline network problem, this may not always be the case. Consider a multi-leg itinerary
from İstanbul to Van with a single stop in Ankara. Suppose, the cost of both single flight
legs is 100 TL. Airline executives adopt two different approaches while calculating the
cost of the itinerary from İstanbul to Van. While certain major airline companies calculate

27

it by simply adding up the single flight leg’s prices, so the total price will be 200 TL in our
example, the others make a certain discount on the sum of the single flight leg’s prices. In
our example, we assume that the price of a multi-leg itinerary is additive, so that shortest
path is a convenient pricing subproblem.

In common practice, DLP is one of the mostly preferred models because of the dual
information it provides. Williamson (1992) investigates the DLP model for establishing
the marginal revenue values for incremental seats on different flight legs, and these con-
struct the basis for the bid-price booking control policy. Recall the primary disadvantage
of the bid-price policy, which is the lack of control of the number of bookings when an
itinerary is open for booking. In order to overcome this drawback, the bid-prices should
be updated with the updated capacity information and demand information. Hence, the
dual variables should be calculated in as small time possible to make adjustments in an
interactive basis. CG approach pays off in terms of computational time. Numerical results
are demonstrated in Chapter 6.

4.3.2 Static and Dynamic Models

Recall the static model, (3.5)-(3.7) and dynamic model, (3.9)-(3.11). Both of the models
are discussed under the same roof since both of the models have very similar mathe-
matical models; the only difference is the objective functions. Hence, besides the cost
parameter calculations, all the solution steps for both of the problems are the same. Pri-
marily, we discuss how DF fits into these models. For each OD-pair s ∈ S these problems
have a piecewise linear convex function, therefore the derivative is nondecreasing. Slopes
and widths of the pieces in these functions are the primary determinant of the functions’
structures. The width of each piece is equal to 1, and there are Bs pieces for an OD-pair
s. Also, the nondecreasing slopes are equal to the expected revenue gained from a unit
increase in the capacity. The justification of these models’ structure is done in the fol-
lowing manner. The integer decision variable, xs denotes the allocated number of seats to
OD-pair s, and clearly it can not exceed the bottleneck capacity Bs. Thus, (3.5) and (3.9)
will take different values for all intermediate values of xs ∈ {1, . . . , Bs}. In addition as
the value of xs gets larger, the expected marginal revenue that is gained by a unit increase
in seat capacities increases due to convexity. Hence, we conclude that the width of each
piece is 1 and the slopes of the pieces are the expected marginal revenues gained by a
unit increase in capacity associated with each OD-pair s ∈ S. Consequently, there are Bs

pieces, since xs increases one by one and the maximum value it can get is Bs .

28

Now, consider the DF approach which transforms a non-linear function to a linear
function without changing the number of constraints but by increasing the number of
decision variables. As asserted in DF, the linearization is done by introducing a new
decision variable to each piece in a piecewise function, and replacing the original decision
variable xs by the summation of the new decision variables. Hence for each OD-pair
s ∈ S , the number of decision variables is equal to the bottleneck capacity Bs, and xs is
out of the picture. The following graph summarizes how DF is applied to a small static or
dynamic problem; αks denotes the slopes of the pieces and zks, k ∈ {1, . . . , Bs} denotes
the new decision variables introduced to each piece.

Figure 4.4: Illustration of the DF on piecewise objective function of the static model.

Upon converting the static model (3.5)-(3.7) and the dynamic model (3.9)-(3.11) into
a linear programming problem with additional variables we obtain the following model

minimize −
S∑

s=1

Bs∑
k=1

αkszks, (4.4)

subject to
S∑

s=1

ajs

Bs∑
k=1

zks ≤ Cj, j ∈ J, (4.5)

zks ∈ {0, 1}, s ∈ S, k ∈ {1, . . . , Bs}, (4.6)

where αks denotes the expected marginal revenue for each interval k ∈ {1, . . . , Bs},
s ∈ S, and zks is the decision variable associated with each piece k. Notice that, as the
bottleneck capacity increases the problem grows drastically with the additional decision
variables. Thus, solving the relaxation of the static and dynamic seat allocation model
becomes equivalent to solving (4.4)-(4.6) with relaxing the integrality constraint. The

29

fractional values of the decision variables are managed by rounding them down to the
nearest integer. Note that, even though the proposed model looks exactly the same for the
static and dynamic problems, the computation of the cost parameters vary.

The only missing information that prevents us to solve this problem is the value of
the expected marginal revenues. While calculating these we use two different algorithms
proposed by Birbil et al. (2009). Since the objective functions of the static and dynamic
model varies, the computation of the expected marginal revenues differ as well as their
value. These two different algorithms are explained in Birbil et al. (2009) in a detailed
way.

Once we constructed our model, we solve it by means of column generation. Since
the input data is quite large even if a single network is used, the simplex method is not the
most efficient way to attack this problem. That is why, we benefited from CG approach.
Upon relaxing the integrality constraint (4.6), we initiate CG with a feasible initial ba-
sis. As in DLP, we set our RMP from the columns of an identity matrix. Hence, each
unique column in the basis corresponds to an OD-pair with a single flight leg. Recall that,
each OD-pair s has Bs decision variables, itineraries, with different expected marginal
revenues. Therefore, we replicate each unique column of the identity matrix by the value
of the bottleneck capacity corresponding to that specific OD-pair and conclude that the
replicated identity matrix is the initial RMP. After the construction of the initial RMP,
we solve this subproblem to optimality and obtain the dual information. Recall that, the
dual variables are used to compute the reduced cost associated with each OD-pair not in-
cluded in the basis. For the relaxation of (4.4)-(4.6), the reduced cost of the kth itinerary
belonging to OD-pair s is calculated as follows

c̄ks = αks − yTA.s,

where αks denotes the expected marginal revenue of the kth piece belonging to OD-pair s
andA.s demonstrates the itinerary of the OD-pair swhere the flight legs used are indicated
by 1 and otherwise by 0. So basically, the reduced cost for a specific itinerary of an
OD-pair s is equal to dual variables associated with the flight legs used in that OD-pair
subtracted from the expected marginal revenue of that itinerary.

As discussed before, the algorithms proposed by Birbil et al. (2009) has the capability
of calculating the expected marginal revenue of a specific OD-pair only when the used
flight legs in that OD-pair are given. This assertion establishes the basis of our assumption
while employing column generation. We assume that we know all the possible OD-pairs

30

of the problem so that we can calculate their expected marginal revenues. Once all the
OD-pairs are generated their reduced costs are calculated. In order to detect the OD-pair
yielding the greatest improvement, all OD-pairs should be compared with respect to a
single measure. However, for each OD-pair s, there are k itineraries, hence k reduced
costs, k measures. The same discussion in DLP applies here as well. In order to calculate
a single reduced cost value for an OD-pair, we specify the cost component of the reduced
cost as the expected marginal revenue gained from the first piece of the function of that
OD-pair.

Afterwards, by means of the dual variables and the expected marginal revenues of the
first pieces, the reduced cost for every OD-pair is calculated. Suppose there are several
OD-pairs having a negative reduced cost value. Theoretically this means among the set of
non-basic variables on their lower bounds, several of them yields a negative reduced cost,
hence upon entering the basis they will definitely improve the objective function value.
After calculating the reduced cost for every OD-pair, we investigate which OD-pair can
yield the greatest improvement; has the most negative cost. We conclude the first iteration
by enlarging the initial basis with all the itineraries associated with the selected OD-pair.
Then, again the problem is solved to optimality via simplex method and with the new
dual information new OD-pairs enter the basis. Until an OD-pair with a negative reduced
cost is not found, this process is carried on. Note that, we only explained the situation
of adding a single OD-pair from each subnetwork to RMP in every iteration. However,
there is no restriction on the number of columns that will be added to RMP. It may vary
depending on the researchers desire.

Actually, this type of column generation may be referred as a incomplete column gen-
eration by some researchers. The reason is, new columns are not generated by means of
a PSP. Thus, the computational efficiency gained by the PSP is lost; instead of procur-
ing a column with the most negative reduced cost by solving a simple PSP, the solution
approach undergoes the process of generating all the possible OD-pairs, calculating their
reduced costs and comparing them. However, despite all these computational burden
overall computation time of this column generation approach is better than solving an en-
tire network all at once. The numerical results pertaining the computation times are given
in Chapter 5.

31

Chapter 5

Computational Study

The necessity to solve seat allocation problems as fast as possible constitutes our primary
incentive to conduct this study. In this chapter, we prove that if the tackled seat allocation
problem is a large-scale problem, solving the whole problem data at once is not an efficient
approach. On the other hand, solving the problem in partitions by managing the columns
is more advantageous in terms of computational time. We first begin by explaining the
airline network data, continue with setting up the arrival of booking requests, explicate
the benchmarking strategies and finally demonstrate the numerical results.

In this study, we use a real network data structure obtained from a major Turkish
airline. This data includes the actual flight legs scheduled for 105 days. All of these flights
are single-leg flights, and their departure and arrival times as well as their capacities are
included in the data. However, the number of fare classes for each flight leg and their
prices are not included. Therefore, first of all we generate the number of fare classes for
each flight leg. Afterwards, we generate a ticket price value for each flight leg by taking
the real life ticket prices into account. These prices generate for each flight leg serve as a
basis price; this price was scaled for every fare class in that flight leg. In other words, this
basis price is set as the revenue gained from the lowest fare class. The revenues for the
remaining fare classes are generated through using the following equation,

rij = Base Price + Base Price× i− 1

Ij

where Ij is the number of fare class in flight leg j and i denotes the fare class.
Another significant absence in the data is the information of OD-pairs. By OD-pairs,

we mean the routes from an origin to a destination which can be composed of a single

32

or multiple flight legs. On the other hand, itinerary term is used for every route having
a different revenue. Thus, an OD-pair will have multiple itineraries traversing the same
flight legs but having different revenues. Since the information of the OD-pairs is missing,
we can not specify the flight legs which can be connected. Thus, we lack the adjacency
information of the flight legs. We create the adjacency information of the flight legs
by taking the time, date and terminal information of the flight legs. Clearly, an OD-
pair can not be composed of multiple legs that have inconsistent arrival and departure
terminals. For instance, consider two connecting flights. If the first flight arrives to city
A, the second flight must depart from city A. As mentioned before, the network consists of
flight legs scheduled for the upcoming 105 days given along with the departure and arrival
times. While generating the adjacency of the flight legs, we make use of the given time
and date information and restrict the connection of flights. For convenience, we allow
the connection of the flights which have a maximum of 10 and a minimum of 1 hour
interval between the arrival and departure times. After the generation of the adjacency
of the flight legs, we put restrictions on the OD-pairs that are generated by means of the
adjacency information. First of all, we introduce a restriction on the duration of the entire
journey. We restrict this duration with 2 days. That is to say, a passenger must arrive at the
desired destination within 48 hours. Without this constraint, there is a possibility that a
passenger who is trying to go from city A to city B will begin her journey on day 1 and will
arrive to her destination in 105 days. This restriction constitutes the fundamental reason
of dividing the networks into subnetworks composed of the flight legs of 2 consecutive
days. Secondly, the number of stops is restricted. Without this constraint, an OD-pair
may be composed of excessive amount of flights. In order to be realistic, we allow a
maximum number of 3 stops. This restriction is used when generating the OD-pairs for
every network by means of the proposed algorithm in Section 4.2. Since an itinerary can
not be composed more than 3 legs, the shortest path algorithm proposed in Section 4.3.1
is endorsed to find paths with a maximum number of 3 legs.

The overall network is composed of 1, 850, 328 OD-pairs and 59, 781 legs. To best of
our knowledge, this is by far the largest number of OD-pairs among those reported in the
airline revenue management literature. The largest network that we are aware of is studied
by Birbil et al. (2013), and this network includes 678 flight legs and 5, 000 OD-pairs.

However, in this thesis we do not attack the whole network at once. To facilitate the
solution process, we divide the network to subnetworks by taking the restriction imposed
on the duration of the journey into account. This restriction presumes that an OD-pair
can not be composed of flights which have more than 48 hours in between. Therefore, we

33

divided the overall network to 105 subnetworks and each of this networks include flights
in two consecutive days. For instance, first subnetwork includes the flights in days 1 and
2, the second network includes flights in days 2 and 3 etc.

To give an idea of our network structure, the following three figures report the fre-
quency of the subnetworks in the specified intervals for the number of flight legs, OD-
pairs and itineraries respectively.

Figure 5.1: Distribution of subnetworks with respect to the number of legs.

Figure 5.2: Distribution of subnetworks with respect to the number of OD-pairs in thou-
sands.

34

Figure 5.3: Distribution of subnetworks with respect to the number of itineraries in thou-
sands.

Descriptive Statistics
Minimum Maximum Mean Median

Number of OD-pairs 14,893 22,759 17,847 18,095
Number of Flight Legs 365 613 566 572
Number of Itineraries 73,636 150,694 108,091 107,614

Table 5.1: Descriptive Statistics of the 105 subnetworks.

Notice that, the features of the subnetworks do not vary that much besides some out-
liers. As far as it is observed from the histograms, most of the subnetworks have similar
characteristics. The ultimate aim is to solve the entire network with 105 subnetworks
which corresponds to 3.5 months. However, in order to indicate the impact of the solu-
tion approach, we begin by solving a segment of the entire network and then we enlarge
the problem by merging the existing network with the flight legs of the consecutive days.
Since the consecutive subnetworks consist flight legs of the consecutive days, for conve-
nience, we merge the subnetworks consecutively. Recall that, we have 105 subnetworks
and as the number of networks merged gets larger, the overall network size grows drasti-
cally.

5.1 Simulation Setup

Once we generate our network structure, the only missing information to solve the prob-
lems is the arrival of reservation requests since the actual demand distributions are not

35

specified. So, we simulate the arrival of reservation requests in a planning horizon of
length T (Birbil et al., 2013).

We assume that the requests for OD-pair s ∈ S arrive according to a homogeneous
Poisson process with rate λs. Let pis(t) denotes the probability of a request for OD-pair
sarrives at time t. Clearly, pis(t) ≥ 0 and

∑Is
i=1 pis(t) = 1 for all s ∈ S. Hence, by using

multinomial probabilities which are changing over time, pis(t), i = 1, . . . , Is, 0 ≤ t ≤ T ,
each arriving request is labelled as a certain fare class request. While setting the multino-
mial probabilities, we consider the fact that in reality lower fare class requests arrive more
frequently in the early periods than the higher fare classes. The multinomial probabilities
are given as

pis(t) =
(vTis − v0is)t+ Tv0is∑Is
j=1(v

T
js − v0is)t+ Tv0js

, i = 1, . . . , Is,

where 0 ≤ v0Iss < v0Is−1s < . . . < v01s, and 0 ≤ vT1s < vT2s < . . . < vTIss. These parameters
are predefined. Now we discuss how we simulate the arrival of reservation requests. First
of all, during the planning horizon T,we generate the arrival time of a booking request for
each OD-pair. Then, we set the minimum time among the booking request times as the
next event time. Afterwards, by using the multinomial probabilities the fare class of the
request is found and booking policy is applied. When the number of reservations for all
periods in the specific OD-pair are updated, the simulation will carry on with determining
the next event time. The following demonstrates the estimated arrival rate µj , for each
flight leg j ∈ J

µj =
Cj

TSj

,

where Sj denotes the number of OD-pairs in which flight leg j is used. By using the
estimated arrival rates, we calculate the arrival rate for an OD-pair s as follows

λs =

∑Js
j=1 µj

Js

where Js denotes the number of flight legs that are used by OD-pair s.

36

5.2 Benchmarking Strategies

In this section, we scrutinize on the benchmarking strategies. As mentioned several times
throughout the thesis, there are three models that are solved; DLP (3.20)-(3.23), static
(3.5)-(3.7) and dynamic (3.9)-(3.11). Different solution methods to these problems con-
stitute our benchmarking strategies. Illustrative methods of these strategies are explained
below.

1. Deterministic Linear Programming (DLPA): Recall the DLP (3.20)-(3.23) which
is a widely used model due to its simplicity and the dual information it provides.
This strategy embodies the solution of (3.20)-(3.23) via simplex algorithm. All the
itineraries of the seat allocation problem, the whole problem data, is solved at once.

2. Deterministic Linear Programming with Column Generation (DLPB): This strat-
egy embodies the column generation approach to DLP (3.20)-(3.23). As a subpric-
ing problem to obtain an OD-pair having the minimum reduced cost, the proposed
shortest path algorithm with fixed nodes, Algorithm 2 is used. The cost coefficients
for the shortest path problem are set as the revenues gained from the highest fare
class of a flight leg. The shortest path problem is solved for every subnetwork and at
each iteration OD-pair(s) obtained from every subnetwork is added to the problem
with all of its itineraries.

3. Static Model with Additional Variables & Constraints (STA): Recall the static model,
(3.5)-(3.7) with the piecewise objective function (3.8). This strategy linearizes the
piecewise objective function by adding each piece of the function as a constraint to
the problem. Additional constraints are bounded with auxiliary decision variables,
and the new objective function in constituted as the summation of all the auxiliary
variables. The overall problem is solved via simplex algorithm.

4. Static Model with Additional Variables (STB): This strategy linearizes the piece-
wise objective function of the static model (3.8) via introducing an additional vari-
ables to each piece. Note that, this is Dantzig’s formulation explicated in Chapter
4. The overall problem is solved via bounded simplex algorithm.

5. Static Model with Additional Variables and Column Generation (STC): This strat-
egy merges the linearization technique proposed by Dantzig and column generation
approach. After linearizing the static problem with DF, CG approach is applied.

37

At each iteration of the CG, OD-pair(s) that are added to the problem are obtained
through scanning the reduced costs of all the OD-pairs. Thus, before initializing
CG, all the OD-pairs are generated through the proposed algorithm, Algorithm 1.

6. Dynamic Model with Additional Variables & Constraints (DYA): Recall the dy-
namic model (3.9)-(3.11). The objective function of this model is computed through
the dynamic recursion given it equation 3.12. The same linearization technique and
solution strategy with STA is applied to this dynamic model.

7. Dynamic Model with Additional Variables (DYB): This strategy is the same strat-
egy with STB except the objective function of the model tackled. The same lin-
earization technique and solution methodology of STB is applied to dynamic model.

8. Dynamic Model with Additional Variables and Column Generation (DYC): This
strategy embodying both DF and CG is the same strategy as STC except it is applied
on dynamic model.

5.3 Numerical Results

In this thesis, a PC with 3.40 GHz Core-i7− 4770 CPU, 16 GB of RAM is used. CPLEX
12.6 is used as a solver and MATLAB R2012b is used for coding the algorithms. We test
the benchmarking strategies with the problems having different sizes. In order to empha-
size the impact of the solution approach, each benchmarking strategy is solved for the seat
allocation problem of k = 5, 10, 15, 30, 45, 60, 75, 90, 105 days. This is nothing but con-
structing the problems by merging the first 5, 10, 15, 30, 45, 60, 75, 90, 105 subnetworks.
For instance, in order to create a seat allocation problem of 30 days, first 30 subnetworks
are merged. Before explicating the numerical results, let us indicate the values of the
several parameters used. Firstly, multinomial probabilities, vTis and v0is for each s ∈ S are
uniformly distributed from the interval (0, 3Is) and then sorted. The reservation period
length is set as T = 100 and the discretization mesh size is set to 1.0e − 1. The aver-
age column numbers and computational times for different benchmarking strategies are
reported over 5 simulation runs.

We begin by illustrating the results for the first two benchmarking strategies; DLPA
and DLPB. As mentioned earlier, while conducting column generation the number of
columns that are added to the problem in each iteration can vary and can affect the com-
putational time. In order to observe this impact, we solve DLPB in twofolds: first by

38

setting the number of entering OD-pairs from each subnetwork to n = 1 and then n = 3.
Figure 5.4 specifies the average computational times for the 8 instances when n = 1 and
then n = 3.

Figure 5.4: The average computational times of DLPB with n = 1 and n = 3.

Figure 5.5: The average number of columns in the problems when they are proved opti-
mal.

Figure 5.5 illustrates the total number of columns on a logarithmic plot for the three
benchmarking strategies (the number of columns in the vertical axis for the problems with

39

different sizes are given in logarithmic scale). Notice that, the number of columns indicate
the total number of itineraries in the problems when the problems are declared optimal.
Even though the column numbers are scaled on a logarithmic basis, the difference be-
tween the number of columns of DLPA and DLPB strategies can be observed clearly. It
is easy to see that, the problem size DLPA is solving is huge with respect to DLPB. On
the other hand, it is really hard to observe a significant difference between the two DLPB
strategies; DLPB with n = 1 reaches to optimal with slightly less number of columns.

One can observe from Figure 5.4 as the size of the network gets larger, DLPB with
n = 3 outperforms DLPB with n = 1 even though it reaches optimal with more columns.
Thus, at each iteration DLPB with n = 1 solves a slightly bigger problem. This is due
to the trade-off between reaching optimality with a fewer number of iterations and with a
smaller set of columns. In our case, diminishing the number of iterations by adding more
columns at every iteration is more advantageous. This is because, the overall network
solved at every iteration is very large and the number of extra columns is small with re-
spect to the size of the overall network. This also explains why DLPB with n = 3 draw
away from DLPB with n = 1 as the network size gets larger. So, instead of enlarging
the network with a single OD-pair from each subnetwork, adding multiple OD-pairs can
also increase the computational efficiency. The only question is what will be the limit on
the number of columns added in each iteration; if the computational burden of the unnec-
essary columns surpass solving the entire network, the limit can be levelled down and if
not levelled up. For convenience we had set n to 3 and illustrate the comparison between
DLPA and DLPB accordingly. We report in Figure 5.7 the average computational times
of DLPA and DLPB. As Figure 5.6 illustrates, as the network size gets larger the aver-
age computational times of the two strategies get close to each other. When the problem
is solved for approximately 2 months, that is to say when the number of subnetworks
merged is around 60, the computational times of two strategies coincide, and after this
point DLPB begins to outperform DLPA. At this point with 60 subnetworks, the num-
ber of legs equal to 33, 317 and OD-pairs equal to 965, 115. Consequently we can state
that, after a certain size, simplex algorithm falls short when solving a problem to opti-
mality. On the other hand, CG is computationally more efficient when solving large-scale
networks.

Table 5.2 reports the ratio of the average computational times of the six benchmark-
ing strategies; DLPA, DLPB, STB, STC, DYB and DYC, so that the column generation
approach and solving the overall network can be compared numerically.

Figure 5.9 reports the number of columns, decision variables, in the problems after

40

Figure 5.6: The average computational times of DLPA and DLPB.

the linearization schemes proposed by the STA (DYA) and STB (DYB) strategies. On
the other hand, Figure 5.10 reports the number of rows, constraints in the problems after
the linearization schemes proposed by STA (DYA) and STB (DYB) strategies. As ob-
served, the number of additional variables introduced to STB (DYB) is a lot more than
STA (DYB), however the number of constraints introduced to STA (DYA) are more than
STB (DYB). Thus, we can state that in our case it is the number of constraints that deter-
mines the computational burden rather than the decision variables. Another comparison
is made between STB (STC) and DYB (DYC). STC (DYC) embodies column generation
technique when solving the static (dynamic) model. The number of OD-pairs that are
added to the RMP at each iteration from each subnetwork is set to n = 3. Figure 5.7
and 5.8 clearly demonstrates that STC (DYC) outperforms STB (DYB) as the problem
size increases. This is due to the advantage CG approach provides when solving large-
scale networks. After a certain problem size, the computational burden of the simplex
algorithm increases drastically as the problem size gets larger. On the other hand, CG
approach shows a rather steady increase because the problem CG solves is a subset of the
overall problem. Thus, the increase in the problem size CG is tackling is smaller than
the increase in the overall problem size. Recall that, the same discussion is valid for the
DLPA and DLPB strategies as well.

41

Number of Subnetworks
DLPA

DLPB(n = 3)

STA

STB

DY A

DY B
5 0.535 0.659 0.680

15 0.602 0.741 0.793
30 0.609 0.845 0.923
45 0.828 0.909 0.948
60 0.931 1.142 1.189
75 1.757 1.649 1.688
90 3.835 2.797 2.885

105 6.368 4.961 5.081

Table 5.2: Ratio of the average computational times of the strategies embodying solving
the overall network with bounded simplex algorithm and by means of column generation
approach.

Figure 5.7: The average computational times of STA, STB and STC.

42

Figure 5.8: The average computational times of DYA, DYB and DYC.

Figure 5.9: The number of columns after the linearization schemes used in STA & DYA
and STB & DYB.

43

Figure 5.10: The number of rows after the linearization schemes used in STA & DYA and
STB & DYB.

44

Chapter 6

Conclusion and Future Research

In this study, we consider network-based seat inventory control problems, and propose
a solution approach to solve these problems. We use a large-scale airline network data
retrieved from a large Turkish airline company. The magnitude of the airline network
data leads us to the idea of attacking a subset of the ARM problems instead of solving the
overall problem data at once. Therefore, at the heart of our solution approach lies column
generation.

Initially, the data structure is prepared. The large-scale airline network data is divided
into subnetworks by means of the given date and time information. The subnetworks
are independent from each other and this feature of the data structure is exploited when
solving the PSP and generating all the possible OD-pairs. After organizing the data, the
network-based problems are decomposed based on their origin and destinations so that
solving a seat allocation problem for a fixed OD-pair corresponds to solving a single-
leg seat allocation problem. Static, dynamic and DLP formulations are introduced in
the light of the OD based decomposition. Since CG approach can not cope with non-
linear objective functions, the objective functions of the static and dynamic models are
linearized by means of introducing additional variables, which is referred as Dantzig’s
formulation. We use two variations of the column generation approach; these vary in
terms of the procurement strategy of the OD-pair that will be added to RMP. Shortest
path problem as PSP is adopted to generate an OD-pair with the smallest reduced cost
while solving DLP model with CG approach. Both while generating the OD-pairs and
solving the PSP, the subnetwork structure is exploited. Instead of finding a shortest path
on the whole network, shortest problem is solved on subnetworks in parallel. By this
way, we do not only decrease the computational burden in a significant way, but also find

45

several short paths. The set of the obtained paths from the subnetworks is not specifically
the first k shortest paths, since a single subnetwork can constitute the first k shortest
paths, but only one of them is generated. However, due to the similar characteristics of
the subnetworks, without loss of generality we assumed that the set does not necessarily
consist the best k paths, but it certainly consists paths having a total length close to the
shortest path. In short, by solving several shortest path problems, several powerful paths
to improve the objective function are found. On the other hand, solving several shortest
path problems on a large-scale network can be very incommodious. Static and dynamic
models suffer from a vicious cycle due to the used algorithms proposed by Birbil et al.
(2009) while computing the objective function values; if an OD-pair is not known the
revenue gained from that OD-pair can not be computed, however if the revenues are not
known an OD-pair can not be generated. Thus, unlike DLP shortest path problem can
not be set as the pricing subproblem. Therefore, with the given adjacency information all
OD-pairs are computed, with all the itineraries all the cost coefficients so as the reduced
costs are computed. Based on the reduced costs, OD-pairs eligible to enter the basis
are detected. New columns that improves the objective function of the seat allocation
problems are computed either by means of a PSP or generating all the reduced costs and
optimal seat allocations are found when column generation dictates the non-existence of
the columns with a negative reduced cost.

The computational study conducted on a set of real life instances illustrates for a large-
scale network column generation approach performs better. In addition, linearization
techniques increasing the number of constraints adversely affects the computational time
more than the linearization techniques increasing the number of decision variables.

Now, let us mention the possible future work. Recall DF, which linearizes the piece-
wise separable functions without adding any constraints. The fundamental reason behind
selecting DF is the inadequacy of CG when column-dependent-rows exist. If the lin-
earization method enlarges the problem both column-wise and row-wise, row generation
should be applied in addition to column generation. This is referred as simultaneous row
and column generation (RCG) and proposed by Muter et al. (2013). As a future study,
a strategy adopting linearization technique with merely additional variables and applying
CG can be compared with a strategy adopting a linearization technique both incorporating
additional variables and constraints and applying RCG.

As explicitly discussed in Chapter 4, while computing the reduced cost of an OD-pair,
the cost coefficient of the first piece in the piecewise objective function is used. After-
wards, when an OD-pair is selected to be added to the RMP based on its reduced cost,

46

all itineraries of that specific OD-pair is added to the RMP. However, not all of these
itineraries are supposed to improve the objective function. Some of the decision variables
corresponding to those itineraries are going to be designated as non-basic variables on
their lower bounds, and won’t have any effect on the objective function. Hence, adding
them to the RMP would only increase the problem size. A way to avoid the unneces-
sary growth of the problem size is to start calculating the reduced costs with the first
piece’s revenues and then keep adding a single itinerary from the OD-pairs until an OD-
pair with a negative reduced cost does not exist. Then, the reduced costs are calculated
with the revenues of the second piece. The same process is continued until the OD-pairs
with a negative cost is investigated for all the pieces. This method will only add the
itineraries that will improve the solution, there won’t be any unnecessary columns in the
basis. Therefore, the problem will reach optimality with a smaller set of columns with
respect to our method of adding all the itineraries. However, the time spent on calculating
the reduced costs for every piece may be longer than the gained time on solving a smaller
set of columns, which creates a trade-off between the two approaches.

As mentioned, with the information of the flight legs in OD-pairs, an algorithm pro-
posed by Birbil et al. (2009) can compute the expected marginal revenues of OD-pairs.
Since the total expected revenue is from an origin to destination, we can not apply short-
est path as a PSP. However, if this expected revenue can be fractioned in such a way that
it demonstrates the expected revenues of a unit capacity increase for the legs traversed
by that OD-pair, the network would have a convenient structure for the application of
the shortest path problem. Hence, instead of computing the reduced costs manually and
finding columns, shortest path problem can generate new OD-pairs, columns. However,
fractioning of the expected revenues is a challenging task and requires a series of as-
sumptions hence loses its credibility. That is why it is excluded in this study, but can be
proposed as a future work.

47

Bibliography

Belobaba, P. (1987). Air travel demand and airline seat inventory management. Technical
report, Cambridge, MA: Flight Transportation Laboratory, Massachusetts Institute of
Technology.

Birbil, Ş. İ., Frenk, J., Gromicho, J. A., and Zhang, S. (2009). The role of robust optimiza-
tion in single-leg airline revenue management. Management Science, 55(1):148–163.

Birbil, Ş. İ., Frenk, J., Gromicho, J. A., and Zhang, S. (2013). A network airline revenue
management framework based on decomposition by origins and destinations. Trans-

portation Science.

Brumelle, S. and McGill, J. I. (1993). Airline seat allocation with multiple nested fare
classes. Operations Research, 41(1):127–137.

Charnes, A. and Lemke, C. E. (1954). Minimization of non-linear separable convex func-
tionals. Naval Research Logistics Quarterly, 1(4):301–312.

Curry, R. E. (1990). Optimal airline seat allocation with fare classes nested by origins and
destinations. Transportation Science, 24(3):193–204.

Dantzig, G., Johnson, S., and White, W. (1958). A linear programming approach to the
chemical equilibrium problem. Management Science, 5(1):38–43.

Dantzig, G. B. (1956). Recent advances in linear programming. Management Science,
2(2):131–144.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Oper-

ations research, 8(1):101–111.

de Boer, S. V., Freling, R., and Piersma, N. (1999). Stochastic programming for multiple-
leg network revenue management. Technical report, Econometric Institute Research
Papers.

48

Durham, M. J. (1995). The future of sabre. Handbook of Airline Economics, NY, pages
485–491.

Fourer, R. (1985). A simplex algorithm for piecewise-linear programming i: Derivation
and proof. Mathematical Programming, 33(2):204–233.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-
stock problem. Operations research, 9(6):849–859.

Glover, F., Glover, R., Lorenzo, J., and McMillan, C. (1982). The passenger-mix problem
in the scheduled airlines. Interfaces, 12(3):73–80.

Ho, J. K. (1985). Relationships among linear formulations of separable convex piecewise
linear programs. In Mathematical Programming Essays in Honor of George B. Dantzig

Part I, pages 126–140. Springer.

Lautenbacher, C. J. and Stidham Jr, S. (1999). The underlying markov decision process in
the single-leg airline yield-management problem. Transportation Science, 33(2):136–
146.

Lee, T. C. and Hersh, M. (1993). A model for dynamic airline seat inventory control with
multiple seat bookings. Transportation Science, 27(3):252–265.

Li, H.-L., Lu, H.-C., Huang, C.-H., and Hu, N.-Z. (2009). A superior representation
method for piecewise linear functions. INFORMS Journal on Computing, 21(2):314–
321.

Lin, M.-H., Carlsson, J. G., Ge, D., Shi, J., and Tsai, J.-F. (2013). A review of piecewise
linearization methods. Mathematical Problems in Engineering, 2013.

Littlewood, K. (1972). Forecasting and control of passengers. AGIFORS Symposium

Proceedings, 12:95–117.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation. Oper-

ations Research, 53(6):1007–1023.

McGill, J. I. and Van Ryzin, G. J. (1999). Revenue management: Research overview and
prospects. Transportation Science, 33(2):233–256.

49

Muter, İ., Birbil, Ş. İ., and Bülbül, K. (2013). Simultaneous column-and-row generation
for large-scale linear programs with column-dependent-rows. Mathematical Program-

ming, 142(1-2):47–82.

Vielma, J. P., Ahmed, S., and Nemhauser, G. (2010). A note on a superior representation
method for piecewise linear functions. INFORMS Journal on Computing, 22(3):493–
497.

Wang, K. (1983). Optimum seat allocation for multi-leg flights with multiple fare types.
In AGIFORS PROCEEDINGS–.

Williamson, E. L. (1992). Airline network seat inventory control: Methodologies and rev-
enue impacts. Technical report, [Cambridge, Mass.: Massachusetts Institute of Tech-
nology, Dept. of Aeronautics & Astronautics], Flight Transportation Laboratory.

Wollmer, R. (1986). A hub-spoke seat management model. Unpublished Internal Report,

Mc Donnell Douglas Corporation, Long Beach, CA.

50

	Introduction
	Problem Definition
	Motivation
	Contributions
	Outline

	Literature Review
	Mathematical Models
	Generic Model
	Static Model
	Dynamic Model
	Deterministic Linear Programming Model

	Solution Approach
	Dantzig's Formulation
	Column Generation
	Applications to Mathematical Models
	Deterministic Linear Programming Model
	Static and Dynamic Models

	Computational Study
	Simulation Setup
	Benchmarking Strategies
	Numerical Results

	Conclusion and Future Research

