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Glossary of common terms used in Water Framework Directive.  
 

Artificial water body: body of surface water created by human activity. 

Biological Quality Element:	
   group of organisms (e.g. phytoplankton, macroalgae, 

angiosperms, benthic invertebrate fauna, and fish) that can be used to assess the ecological 

status of a water body.  

Coastal water: surface water on the landward side of a line, every point of which is at a 

distance of one nautical mile on the seaward side from the nearest point of the baseline from 

which the breadth of territorial waters is measured, extending where appropriate up to the outer 

limit of transitional waters. 

Ecological Status: expression of the quality of the structure and functioning of aquatic 

ecosystems associated with surface waters. It is categorised on five classes: high, good, 

moderate, poor or bad. 

Ecological Quality Ratio: numerical expression of the ecological status. It should be quantified 

into a single numerical value between 0 and 1, which represents the ratio between the current 

and the reference (i.e. pristine or near-pristine) condition. 

Ecoregion: relatively large areas of land or water, which contain characteristic, geographically 

distinct assemblages of natural communities and species. 

Geographical Intercalibration Group: group of Member States that share ecological types of 

rivers, lakes and coastal/transitional waters within an ecoregion, and can thus compare 

monitoring results between themselves. 

Heavily modified water body: body of surface water, which as a result of physical alterations 

by human activity is substantially changed in character. 

Reference condition: biological, chemical and morphological conditions associated with no or 

very low anthropogenic pressure. It can be inferred from historical datasets, spatial 

comparisons, modelling or may be derived using combination of these methods.  

Surface water: discrete and significant element of surface water such as a lake, a reservoir, a 

stream, river or canal, part of a stream, river or canal, a transitional water or a stretch of coastal 

water. 

Transitional waters: bodies of surface water in the vicinity of river mouths which are partly 

saline in character as a result of their proximity to coastal waters but which are substantially 

influenced by freshwater flows. 

Water body:	
  discrete and significant element of surface or ground water.  

  



	
  



List of abbreviations.  
 

AACD  Absolute Average Class Difference 

AMOVA  Analysis of MOlecular VAriance 

ANOSIM  ANalysis Of SIMilarities 

ANOVA ANalysis Of VAriance  

BQE  Biological Quality Element   

CARLIT  CARtography of LITtoral rocky-shore communities 
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MarMAT  Marine Macroalgae Assessment Tool 
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PCA  Principal Component Analysis  
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Abstract 
Resumen 

 



"If I were called in  

to construct a religion 

I should make use of water" 

 

Philip Arthur Larkin 

(Collected Poems of Philip Larkin, 1989) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cystoseira elegans and Sargassum vulgare in Cabo de Gata. Julio 2011. Photograph by Antonio Bermejo Lacida  
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Abstract 

According to the Water Framework Directive (WFD), the ecological status of European 

coastal waters must be assessed using different biological quality elements (BQE). One of the 

four proposed BQE is based on the composition and abundance of the marine macroalgae. 

Because of the biogegraphical differences along the European coasts, six ecoregions have 

been considered for biological indices development (Atlantic, Baltic, North Sea, Barents Sea, 

Norway Sea and Mediterranean Sea). The geographical position of Andalusia (Southern Spain), 

as a transition zone between the Atlantic and the Mediterranean Sea implies some technical 

and theoretical difficulties. Coastal waters of Andalusia belong to two different ecoregions, and 

their evaluation can be carried out with up to seven different macroalgal based indices. 

Moreover, the existence of a natural gradient along this coast interferes in the final value of the 

indices.  

The main objectives of this thesis were: i) the adaptation and comparison of indices based 

on macroalgae for the assessment of the ecological status in coastal waters of Andalusia; and 

ii) the provision of useful information for management about the ecology and the biogeography 

of littoral communities in southern Iberian Peninsula. 

The first objective is addressed in three chapters. In chapters 1 and 2, the Reduced Species 

List (RSL) and CARtography of LITtoral communities (CARLIT) indices were adapted to the 

particularities of Andalusian coasts. Afterwards, both indices were compared in the Strait of 

Gibraltar and the western Alboran Sea (chapter 3). The results showed that these indices were 

suitable to assess the ecological status in Andalusian coastal waters, and they yielded similar 

results. Overall, the ecological status of Andalusian water bodies (WBs) was good or high, 

excepting some highly modified WBs. 

The second block is focused on the ecology and biogeography of macroalgal communities in 

southern Iberian Peninsula. In chapter 4 the biogeographical patterns of the Alboran Sea were 

studied based on the landscape and the species composition of littoral and upper-sublitoral 

communities, and compared to regional oceanographic patterns. The results pointed out the 

influence of regional oceanographic patterns in the littoral communities, and the existence of 

three different subregions: western, central and eastern Alboran. In chapter 5, considering the 

ecological importance of Cystoseira mediterranea, C. amentacea and C. tamariscifolia, a 

genetic approach based on microsatellites was developed to assess the taxonomic identity and 

the genetic structure of these populations along the southern Iberian Peninsula. The preliminary 

results suggest that only a genetic entity, probably C. tamariscifolia, is present in the Alboran 

Sea. Furthermore, these populations showed a moderate differentiation among them, being the 

most genetically diverse populations those in western and central Alboran. The knowledge of 

these ecological and biogeographic patterns will be essential for a proper management (e.g. 

design a network of marine protected areas) and to interpret the results yielded by indices 

based on macroalgae. 
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Resumen 
 

De acuerdo con la Directiva Marco del Agua (DMA), el estado ecológico de las masas de 

agua costeras de Europa se tiene que evaluar mediante diferentes elementos de calidad 

biológicos. Uno de los cuatro elementos de calidad propuestos se basa en la composición y 

abundancia de las comunidades de macroalgas. Debido a las diferencias biogeográficas 

existentes a lo largo de las costas europeas, se han considerado seis grandes ecorregiones 

para el desarrollo y aplicación de estos índices (Atlántico, Báltico, Mar del Norte, Mar de 

Barents, Mar de Noruega y Mediterráneo). La situación de Andalucía como zona de transición 

entre el Atlántico y el Mediterráneo supone una serie de dificultades tanto técnicas como 

conceptuales a la hora de abordar su estudio, ya que, al pertenecer sus aguas a dos 

ecorregiones, su evaluación puede llevarse a cabo hasta con siete índices distintos. Además, la 

existencia de un gradiente natural a lo largo de estas costas interfiere en los valores de los 

indicadores. 

Los objetivos generales de esta tesis fueron: i) la adaptación y comparación de índices 

basados en macroalgas para la estimación del estado ecológico de las costas andaluzas; y ii) 

la aportación de información útil para la gestión sobre la ecología y biogeografía de las 

comunidades litorales en estas costas. 

El primer objetivo se trata en un primer bloque formado por tres capítulos. En los capítulos 1 

y 2, los índices "Reduced Species List" (RSL) y "CARtography of LITtoral communities" 

(CARLIT) se adaptaron para la evaluación del estado ecológico en las aguas costeras 

andaluzas. En el capítulo 3, los índices se compararon en el estrecho de Gibraltar y oeste del 

mar de Alborán. Los resultados indicaron que estos índices fueron adecuados para la 

evaluación del estado ecológico y mostraron resultados comparables. En términos generales, 

el estado ecológico de los cuerpos de agua andaluces fue bueno o muy bueno exceptuando 

algunos cuerpos de agua altamente modificados.  

En el segundo bloque se estudia la ecología y biogeografía de las comunidades de 

macroalgas del sur de la Península Ibérica. En el capítulo 4 se analiza el paisaje y la 

composición específica de las comunidades litorales de la costa norte del mar de Alborán y su 

relación con la oceanografía de la zona, identificándose tres subregiones: Alborán occidental, 

Alborán central y Alborán oriental. En el capítulo 5, dada la importancia ecológica y para la 

gestión de Cystoseira mediterranea, C. amentacea y C. tamariscifolia, se estudió la identidad 

taxonómica y la estructura genética en el sur de la península ibérica de las diferentes 

poblaciones de este grupo de especies utilizando microsatélites. Los resultados preliminares 

sugieren que solo una especie está presente en el mar de Alborán, probablemente C. 

tamariscifolia, en lugar de tres como actualmente se supone. Estas poblaciones mostraron una 

diferenciación moderada entre ellas, siendo las poblaciones del oeste y centro del mar de 

Alborán las que presentaron una mayor diversidad genética. Toda esta información ecológica y 

biogeográfica será clave para una adecuada gestión (por ejemplo,  para el diseño de una red 

de áreas marinas protegidas) e interpretación de la información dada por los índices basados 

en macroalgas. 
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Resumo 
 

De acordo com a Directiva do Quadro da Água (DQA), o estado ecológico das massas de 

água costeira europeias avalia-se por meio de diferentes elementos de qualidade biológica. Um 

dos quatro elementos de qualidade proposto é baseado na composição e abundância das 

comunidades de macroalgas. Devido às diferenças biogeográficas existentes junto às costas 

europeias, definiram-se seis grandes ecorregiões (Atlântico, Báltico, Mar do Norte, Mar de 

Barents, Mar da Noruega e Mediterrâneo). A situação da Andaluzia como zona de transição 

entre o Atlântico e o Mediterrâneo, representa uma série de dificuldades, tanto técnicas como 

conceituais na abordagem do seu estudo. Devido às suas águas pertencerem a duas 

ecorregiões diferentes, a sua avaliação pode ser realizada com sete índices diferentes. Além 

disso, a existência de um gradiente natural ao longo destas costas interfere  nos valores e nos 

indicadores. 
Os objetivos gerais desta Tese de Doutoramento foram: i) adaptar e comparar os índices 

baseados em macroalgas destinados a estimar o estado ecológico das costas andaluzas; e ii) 

fornecer informações úteis para a gestão relativa à ecologia e biogeografia das comunidades 

litorais destas costas. 

O primeiro objectivo é abordado préviamente e formado por três capítulos. Nos capítulos 1 e 

2, os índices RSL e CARLIT foram adaptados para a avaliação do estado ecológico das águas 

costeiras andaluzas atlânticas e mediterrâneas. No capítulo 3, os índices foram comparados 

entre si no Estreito de Gibraltar e a oeste do Mar Alborán, dando resultados semelhantes. Os 

resultados indicaram que estes índices foram adequados para avaliar o estado ecológico e 

mostraram resultados comparáveis. Em termos gerais, o estado ecológico das massas de água 

da Andaluzia foi bom ou alto, com excepção de alguns corpos de água altamente modificados. 

O segundo bloco fornece informações sobre a ecologia e biogeografia do sul da 

Península Ibérica. No capítulo 4 estuda-se a paisagem e a composição específica das 

comunidades litorais da costa norte do Mar de Alborán e a sua relação com a oceanografia da 

área, identificando-se três sub-regiões: Alboran ocidental, central e oriental. No capítulo 5, dada 

a importância ecológica e para a gestão de Cystoseira mediterranea, C. amentacea e C. 

tamaricifolia, estudou-se a identidade taxonómica e a estrutura genética, no sul da Península 

Ibérica de diferentes populações deste grupo de espécies utilizando microssatélites. Os 

resultados preliminares sugerem que uma única entidade genética está presente no Mar de 

Alborán, sendo provavelmente C. tamariscifolia. Além disso, estas populações mostraram uma 

diferenciação moderada entre elas, sendo as populações da zona a oeste e ao centro do Mar 

de Alborán as que apresentam uma maior diversidade genética. Toda a informação ecológica e 

biogeográfica obtida irá ser a chave para uma adequada gestão (por exemplo, no planeamento 

de uma rede de áreas marinhas protegidas) e interpretação através dos índices baseados em 

macroalgas. 
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"Las cosas que comunalmente pertenecen a todas las criaturas que biuen en 

este mundo, son estas; el ayre, e las aguas de las lluvia, e el mar, e su 

ribera..." 

 

Alfonso X el sabio 

(Ley de las Siete Partidas, S. XIII) 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Algeciras Bay. June 2012. Photograph by Antonio Bermejo Lacida 
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General introduction  

The footprint of man is easily visible in the coastal zone, where human activities have been 

historically concentrated (Lotze et al., 2006) since the early years of the human civilization. 

More than the 40% of the world´s population is settled within 150 kilometres of the coast (UN, 

2014). The Atlantic coast of Europe and the Mediterranean basin have been inhabited for 

millennia, being the alteration of environmental conditions and anthropogenic pressures 

stronger than in other coastal areas of the world (Airoldi and Beck, 2007; Coll et al., 2010); thus 

the European estuaries and coastal areas are among the most severely degraded coastal 

temperate systems worldwide (Lotze et al., 2006). To prevent further deterioration of the 

environment and to protect the natural heritage, the European Union has adopted different 

international conventions and has developed a wide legislative framework that directly or 

indirectly protect the coastal environment, its associated biodiversity and other natural 

resources (Table 1).  
 
Table 1- Summary of main protection initiatives adopted by the European Union and State Members that directly or 

indirectly address issues related to the protection of Iberian marine coasts (modified from Airoldi and Beck, 2007). 

 
Initiative Description 

Ramsar 
Convention 

Ramsar Convention on Wetlands, Ramsar (1971). Provides the framework for the conservation and wise use of wetlands 
of international importance especially as waterfowl habitat. Includes salt marshes and some lagoon systems and marine 
waters to a depth of 6 m. 

Bonn Convention 
Convention on the Conservation of Migratory Species of Wild Animals, Bonn (1979). Intergovernmental treaty, aiming to 
conserve terrestrial, marine and avian migratory species throughout their range. 

Rio Convention 
Convention on Biological Diversity, Rio de Janeiro (1992). Provides legal framework for biodiversity conservation and 
sustainable development. The Jakarta Mandate (1995) leads activity in marine biodiversity management and 
conservation. 

Bern Convention 
Convention on the Conservation of European Wildlife and Natural Habitats, Bern (1979). Aims at preserving wild flora and 
fauna and their natural habitats through national programmes using the co-operation between European States. 

ICES Convention 
Convention for the International Council for the Exploration of the Sea, Copenhagen (1964). Coordinates and promotes 
marine research in the North Atlantic, including the Baltic Sea and North Sea, and the Common Fisheries Policy on the 
protection of the marine environment and the regulation of fisheries. 

OSPAR 
Convention 

Convention for the Protection of the Marine Environment of the northeast Atlantic, Paris (1992). Merged the 1972 Oslo 
Convention on dumping waste at sea and the 1974 Paris Convention on land-based sources of marine pollution. It guides 
the protection of the marine environment of the northeast Atlantic and the identification of priority habitats and species. 

Barcelona 
Convention 

Amended in 1995 as the Convention for the Protection of the Marine Environment and the Coastal Region of the 
Mediterranean, Barcelona (1976). Provides legal framework to Mediterranean Action Plan (1975), under UNEP Regional 
Seas Programme. Aims to control human impacts and protect the marine and coastal Mediterranean environments.  

Birds Directive 
(79/923/EEC) 

Council Directive on the Conservation of Wild Birds. Identifies 194 endangered species and subspecies of birds for which 
the E.U. Member States are required to designate Special Protection Areas (SPAs). Over 4000 SPAs have been 
designated to date, covering 8% of E.U. territory. 

Habitats Directive 
(92/43/EEC) 

Council Directive on the Conservation of Natural Habitats and of Wild Fauna and Flora. Aims to protect wildlife species 
and habitats, which have conservation that requires the designation of Special Areas of Conservation (SACs). These 
sites, together with the SPAs of the Birds Directive, make up the NATURA 2000 network, currently covering about 15% of 
E.U. coasts. Marine habitats broadly defined, and few marine species listed. 

Shellfish Waters 
Directive 
(79/923/EEC) 

Council Directive on the Quality Required of Shellfish Waters. Aims to ensure a suitable environment for shellfish harvest. 
Member States are required to designate coastal and brackish waters that need improvement to support shellfish 
fisheries. 

Water Framework 
Directive 
(2000/60/EC) 

Integrates and updates existing E.U. water legislations (e.g., Discharges of Dangerous Substances, Urban Waste Water 
Treatment, Nitrates Directive) and provides for water management. The Water Framework Directive requires surface and 
ground water bodies - such as lakes, streams, rivers, estuaries, and coastal waters - to be ecologically sound by 2015. 

Marine Strategy 
Directive 
(2008/56/EC) 

The proposed directive aims to define common objectives and principles at E.U. level to achieve good environmental 
status of the European marine environments by 2020, which is in line with the objetives of Water Framework Directive. It 
will establish European Marine Regions as management units for implementation. 
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In this sense, the Water Framework Directive (WFD), which is inspired in the US Clean 

Water Act (Hering et al., 2010), supposed an important innovation for the assessment of the 

water quality in Europe, as this Directive represents a change in the scope of water 

management from the local scale to the basin one (Apitz et al., 2006). The WFD is mainly 

based on an ecological approximation rather than a traditional physico-chemical one, with 

ecosystems at the center of the management decision (Borja, 2005). The ultimate objective of 

this legislation is the achievement of a good ecological status (or good ecological potential in 

modified water bodies) for surface waters by 2015. Conversely, member states must develop 

necessary actions to solve this situation and reach a good ecological status of their waters. This 

ecological status is understood as an expression of the quality of the structure and functioning 

of aquatic ecosystems associated with surface waters, taking into account the physico-chemical 

nature of the water and sediments, the flow characteristics of the water and the physical 

structure of the water body.  

The implementation of the WFD is a challenge for managers in general and ecologists in 

particular due to the complex requirements of the Directive concerning biological indicators 

(Hering et al., 2010): i) ecological status should be quantified into a single numerical value 

between 0 and 1, the Ecological Quality Ratio (EQR), which represents the ratio between the 

current and the reference (i.e. pristine or near-pristine) condition; ii) EQR should show a 

significant relationship with anthropogenic pressures and iii) classification should encompass 

five status classes (high, good, moderate, poor and bad). Furthermore, to ensure adequate 

comparability, the different indices developed within a determined geographical area 

(ecoregion) must be intercalibrated. These requirements have received criticism (Moss, 2007; 

Dufour and Piégay, 2009; Hering et al., 2010; Lopez y Royo et al., 2011) related to: the lost of 

information due to the integration of all ecological variables in an unique value; the impossibility 

to find pristine or near-pristine habitats in Europe; the difficulties to define anthropogenic 

pressures due to the diversity of human-induced disturbances (e.g. acidification, eutrophication, 

heavy metals, invasions by alien species, pollution by organic compounds and by organic 

matter and so on); and the concerns due to the intercalibration based on partial comparisons 

between methodologies for ecological assessment with different philosophies developed in 

different geographical areas. Nevertheless, this innovative point of view of the WFD has been 

welcomed and seen as an opportunity by many researchers, increasing knowledge of the 

biodiversity and the ecology of European surface waters. For instance, almost 4,000 peer-

reviewed papers have resulted from research projects associated with the implementation of the 

Directive (query ‘Water Framework Directive’ in SCOPUS at 04/01/2014). 

 

Why this interest in WFD? 

 

Human-induced disturbances and their effects on the environment must be understood at a 

global and a local scale in order to comprehend natural processes and interactions with 

anthropogenic activities, and to target management actions effectively (Lopez-Royo et al., 
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2009). The widespread use of indicators as informative tools in environmental management fulfil 

the objective of a comparable and replicable system of information and evaluation (OECD, 

2005). Nutrients, turbidity and heavy metals are usually used as variables to define the water 

quality in consequence of the visible effects of eutrophication and the chemical pollution in 

marine nearshore ecosystems at a local scale, the risk for human health and the negative 

impact in economic activities such as tourism or fishing. A considerable effort has been made 

by the international community to monitor the distribution of these variables in the sea and to 

determine their effects on marine ecosystems. However, analyses of water samples may give 

accurate, but local and transient information. Furthermore, this approach cannot determine the 

long-term effect of pollutants (in broad sense) on benthic communities (McCormick and Cairns, 

1994; Licata et al., 2004). In contrast, biological indicators avoids drawbacks associated with a 

direct survey of pollutants in water samples, such as the need to repeat the samplings 

periodically or the fluctuation in pollution levels (Ostapczuk et al., 1997). Moreover, biological 

indicators may indicate the long-term effects of pollutants in benthic communities when these 

pollutants cannot be measured or have disappeared from the environment (Licata et al., 2004). 

The most important theoretical advantage is that bioindicators are a direct measurement of the 

pollution effects in organisms, which is often the main goal of the studies. Therefore, the use of 

bioindicators can yield a more integrated response than that provided by physico-chemical 

indicators.  

 

Why macrophyte communities? 

 

In the context of the WFD, one of the four biological quality elements (BQEs) proposed for 

coastal waters are macroalgae. The use of macrophytes as bioindicators to assess pollution in 

the marine environment has been proved successful in many ecological studies (e.g. Orfanidis 

et al., 2001; Leoni et al., 2006; Arévalo et al., 2007). The sedentary condition of attached 

macrophytes integrates the effects of long-term exposure to different anthropogenic pressures 

resulting in a decrease or even disappearance of the most sensitive species and their 

replacement by highly resistant, nitrophilic and/or opportunists species (e.g. Borowitzka, 1972; 

Diez et al., 1999). Very different stressors can produce directly or indirectly impacts in rocky 

shore communities dominated by macrophytes (Crowe et al., 2000): nutrient pollution (Arévalo 

et al., 2007), thermal pollution (Teixeira et al., 2012), heavy metals (Castilla, 1996; Sales et al., 

2011), overfishing (Thibaut et al., 2005; Coll et al., 2010), harvesting (Ugarte, 2011), trampling 

(Milazzo et al., 2002; Rita et al., 2011), siltation/turbidity (Thibaut et al., 2005; Echavarri-Erasun 

et al., 2007) or alien species introduction (Montefalcone et al., 2010), among others.  

Marine macrophytes are conspicuous elements for many temperate coasts (Lüning, 1990). 

They are an ecologically relevant group for littoral and upper sublittoral communities as are the 

primary structural link in the ecosystem food web (Norderhaug et al., 2007; Mangialajo et al., 

2008; Vizzini, 2009). In addition, they form an irregular landscape of distinct habitats providing a 

complex set of interspersed physical and biological environments (fig. 1) that affect the 
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development and maintenance of the associated fauna (Tuya et al., 2012). Consequently, 

changes in composition and abundance of littoral macrophyte communities will have significant 

effects in shore ecosystems (e.g. Dayton et al., 1992; Serio et al., 2006; Tuya et al., 2009).  
 

 
 

Fig. 1.- Different sublittoral marine systems dominated by structural complex macrophytic communities, A: subtidal kelp 

forest of Laminaria ochroleuca in Tarifa island (30 m of depth; Photography by G. Mourente), B: subtidal macroalgal 

assemblage dominated by Cystoseira spinosa in Cala del Toro (Cabo de Gata Natural Park; 10 m of depth); C: Shallow 

Posidonia oceanica meadow in Los Escullos (Cabo de Gata Natural Park; 2 m of depth); D: Upper-sublittoral meadow 

of Cystoseira amentacea var. stricta in Isleta del Moro (Cabo de Gata Natural Park; 0.20-0.30 m of depth). 

 

It is remarkable that seagrasses and seaweeds of the orders Tilopteridales, Laminariales 

and Fucales, some of the most important bioengineering species in the Mediterranean and 

Atlantic phytal zone (Lüning, 1990; Giaccone et al., 1994; Figueroa et al., 2014; Pérez-lloréns et 

al., 2014), are suffering a general decline (Thibaut et al., 2005; Diaz-Almela et al., 2007; 

Fernández, 2011; Pérez-lloréns et al., 2014). This is producing a simplification in the structural 

complexity of shore communities and the landscape homogenization (i.e. habitat destruction or 

degradation). In this sense, habitat destruction or degradation is considered the most important 
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threat to the diversity, structure, and functioning of marine coastal ecosystems and to the goods 

and services they provide (Lotze et al., 2006; Airoldi and Beck, 2007; Coll et al., 2010). The 

implementation of the WFD offers a good opportunity for the assessment of the intensity and 

extension of this phenomenon.  

Thus, macrophyte communities have many desirable attributes as indicators of ecosystem 

integrity and environmental change, because they are: i) sensitive to different anthropogenic 

pressures, yielding an integrative response; ii) ecologically and socially relevant; iii) broadly 

extended along European coast; and iv) present in almost all ecological situations (from pristine 

to highly degraded environment). However, inherent limitations should be considered to assess 

properly the ecological status (see below). 

 

Some considerations about indices based on macroalgal communities 

 

Indices based on macroalgal communities can be used to assess the extent of biological 

changes from reference conditions. However, the causes of this change can be difficult to 

determine due to the integrated response of these communities and the cumulative impacts in 

natural conditions (McCormick and Cairns, 1994). Moreover, the non-linear response and the 

time of response of the community to some stressors (Knowlton, 2004) make difficult to propose 

specific management measures to avoid ecosystem degradation. For this reason, the WFD 

considers that the ecological status has to be evaluated using BQEs supported by 

hydromorphological and physico-chemical quality elements, as the information supplied by the 

BQEs is different and complementary to the physico-chemical assessment.  

Macroalgal communities are sensitive to an array of anthropogenic pressures. These 

pressures are superimposed on those caused by natural environmental factors (Crowe et al., 

2000). In this sense, quite often most of the community change is unexplained even when the 

whole environmental variables are included (e.g. nutrients, temperature, salinity, tidal range...). 

In fact, variability in environmental and biological factors, and biogeographic patterns are major 

drivers of community structure (Moss, 2007). Thus, the knowledge of ecological and 

biogeographic patterns of a studied region is necessary to define homogeneous sets and 

reference conditions (Karr, 1999), reducing the influence of natural variability in the final result 

of the biological indices. 

To address the reduction of the influence of this biological variability in the ecological 

assessment, the WFD divided the European waters in relevant eco-regions (Mediterranean, 

Baltic, Black Sea and Atlantic). In these eco-regions, coastal waters have been classified 

according to environmental characteristics to delimit different types (IES, 2009). In spite of this 

practical classification, it is of little value to develop a single indicator, even based on the same 

BQE, to assess the ecological status of all coastal waters within the same eco-region. There are 

biogeographic differences, which may not be acknowledged by indices that are developed for a 

particular area. In this sense, Guinda et al. (2008) pointed out that, although the water 

framework directive considers the Northeast Atlantic as an entire ecoregion, the Iberian coastal 
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marine ecosystem are clearly different from northern coastal areas (EEA, 2006). Furthermore, 

despite Alboran Sea is included in the Mediterranean ecoregion (IES, 2009), the biogeographic 

particularities of this area makes necessary to define new reference conditions and to propose 

methodological adjustments (Ballesteros et al., 2007). Accordingly, when a biological indicator 

designed in one sub-region is intended to be applied in others, it should be modified and 

reassessed (Ballesteros et al., 2007; Juanes et al., 2008). On the other hand, although Member 

States (MS) are allowed to use their own national classification systems, adequate 

comparability and consistence has been searched through the process of intercalibration, 

undertaken by the different MS within an eco-region (European Commission, 2000 – Annex V). 

However, in particular, border areas, as the Gibraltar Strait, the intercalibration between indices 

developed for different eco-regions is necessary to manage coastal waters and to avoid any 

bias in the ecological status. This fact is especially important considering legal implications 

when a good ecological status is not achieved (European Commission, 2000). 

 

To reach a good ecological status 

 

The ultimate aims of the WFD are the prevention of further deterioration of marine habitats 

and the restoration of degraded water bodies. Restoration can be understood in different ways, 

from treatment of symptoms to treatment of ultimate cause, being the latter the most suitable 

interpretation (Moss, 2007). Restoration actions should put their efforts into reduce direct 

interventions minimizing intrusive actions and favouring natural resilience and recovery of littoral 

ecosystems. Thus, a deep scientific knowledge about the biogeographic and ecological patterns 

of littoral and upper sublittoral communities is necessary for a proper assessment and 

management of coastal water bodies, identifying the ultimate cause of degradation and the 

potential of natural recovery of littoral ecosystems. For instance, the knowledge about the 

coupling between regional oceanography and littoral communities is a first step to forecast the 

possible effects of climate exchange in these communities (Boaventura et al., 2002; Blanchette 

et al., 2008). The study of genetic structure patterns of habitat forming species with limited 

dispersion, growth, and/or recolonization abilities as Astroides calycularis (Goffredo et al., 2010; 

Casado-Amezúa et al., 2012), Cystoseira spp. (Susini et al., 2007; Mangialajo et al., 2012) or 

Posidonia oceanica (Gobert et al., 2006; Alagna et al., 2013) is essential for the design of a net 

of Marine Protected Areas (MPA) to favour natural recolonization and to accomplish with 

protection needs of these species, or to identified proper donors populations for an hypothetical 

restoration (e.g. Sales et al., 2011; Gianni et al., 2013) avoiding problems as genetic 

contamination or homogenization.   

In summary, the present study is intended to apply and to reassess two indices based on 

macroalgae in two biogeographical areas of the coast of southern Spain; and to gain an insight 

into the ecology and biogeography of littoral communities, and population genetics of Cystoseira 

ericaefolia in these areas, which is essential for a better interpretation of the indices and the 

management of coastal water bodies. 



  

Objectives 
Objetivos y estructura de la tesis 

 



"The Directive is a truly revolutionary document. If its spirit is respected, it can 

be an early step in the sort of changes that are ultimately necessary for the 

survival, in reasonable comfort, of a large human population." 

 

Brian Moss  

(Shallow lakes, the water framework directive and life.  

What should it all be about? Hydrobiologia (2007) 58 4: 381-394) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Microscopic surface view of Gayralia oxysperma. April 2010. Photograph by Ricardo Bermejo Lacida 
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Objectives and structure of the thesis 

The main goals of this PhD Thesis are: 

 

1. Application and reassessment of the Reduced Species List (RSL) index, which is based 

on the species richness of seaweed assemblages on intertidal rocky seashores to 

assess the ecological status under the Water Framework Directive in the Atlantic coast 

of Southern Spain. 

2. Application and reassessment of the Littoral and sublittoral Cartography (CARLIT) 

index, which is based on the cartography of littoral and upper sublittoral communities to 

assess the ecological status under the Water Framework Directive in the Mediterranean 

coast of Southern Spain. 

3. Comparison between CARLIT and RSL indices based on seaweed assemblages in the 

boundary between two ecoregions (Gibraltar Strait and western Alboran). 

4. Study of the effect of meso-scale oceanographic patterns on the biogeographical 

variability of seaweed assemblages on rocky seashores along the Alboran Sea. 

5. Study of the genetic patterns and taxonomic identity of the habitat forming species of 

Cystoseira ericaefolia-group along southern Iberian Peninsula. 

 

To address the objectives, the results of the thesis have been structured in five chapters: 

 

Chapters 1 and 2 address the first and second of the main objectives proposed, respectively. 

In chapter 1, the reduced species list (RSL; Wells et al., 2007) index is applied and reassessed 

in the Atlantic coast of Andalusia (Bermejo et al. 2012). Similarly, in chapter 2 the cartography 

of littoral and upper sublittoral communities (CARLIT; Ballesteros et al., 2007) is adapted to the 

Mediterranean coast of Southern Spain (Bermejo et al. 2013). 

Subsequently, in chapter 3 these indices are compared in Western Alboran Sea and the 

Gibraltar straight, where both indices can be applied (Bermejo et al. 2014). The principal aim of 

this chapter was to ensure comparability among methodologies and to guarantee that the two 

indices provide equivalent ecological quality assessment. 

In chapter 4 is assessed the link between oceanographic patterns and littoral and upper 

sublittoral communities in the Alboran Sea (Bermejo et al., submitted).  

Finally, in chapter 5, the habitat-forming populations belonging to the Cystoseira ericaefolia-

group, constituted by three species (C. amentacea, C.mediterranea and C. tamariscifolia), are 

analysed based on preliminary results obtained using a genetic approach through microsatellite 

markers. 
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Objetivos y estructura de la tesis 
 

Los principales objetivos de esta tesis doctoral han sido: 

 

1. El desarrollo y adaptación del índice RSL (Reduced Species List), el cual está basado 

en el estudio de la composición y riqueza específica de las comunidades intermareales 

rocosas dominadas por macroalgas para la estimación del estado ecológico de las 

aguas costeras del Atlántico andaluz, en el contexto de la Directiva Marco del Agua 

(DMA).  

2. El desarrollo y adaptación del índice CARLIT (CARtografía LIToral), el cual está 

basado en el cartografiado de las comunidades de la zona litoral y sublitoral somera 

para la estimación del estado ecológico de las aguas costeras del Mediterráneo 

andaluz, en el contexto de la DMA.  

3. La Comparación los índices CARLIT y RSL en la zona de transición entre el Atlántico y 

el Mediterráneo (Estrecho de Gibraltar y parte Occidental del Mar de Alborán). 

4. El estudio del efecto de patrones oceanográficos de meso-escala en la biogeografía de 

las comunidades rocosas de macroalgas a lo largo del Mar de Alborán. 

5. El estudio de los patrones genéticos de las especies formadora de hábitats 

pertenecientes al grupo Cystoseira ericaecifolia a lo largo del Sur de la Península 

Ibérica. 

 

Estos objetivos se abordan a lo largo de los 5 capítulos que componen el presente trabajo 

de la siguiente manera: 

Los capítulos 1 y 2 se centran en los dos primeros objetivos propuestos. El capítulo 1 está 

dedicado a la adaptación del índice RSL (Reduced Species List; Wells et al., 2007) a la costa 

atlántica andaluza (Bermejo et al., 2012). Y el capítulo 2 a la adaptación del índice CARLIT 

(Ballesteros et al., 2007) a la región mediterránea andaluza (Bermejo et al., 2013). 

En el capítulo 3 se comparan ambos índices en la zona del estrecho y oeste del Mar de 

Alborán (Bermejo et al., 2014). El objeto de este ejercicio fue asegurar la coherencia y 

comparabilidad de los valores de calidad ambiental obtenidos por ambos índices. 

El capítulo 4 se evalua la relación entre los patrones oceanográficos y las comunidades 

litorales y sublitorales superiores en el Mar de Alborán (Bermejo et al., sometido). 

El capítulo 5 se centra en el estudio genético de las comunidades de Cystoseira del grupo 

ericaecifolia (C. amentacea var. stricta, C. mediterranea y C. tamariscifolia) utilizando 

microsatélites.  
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Objectivos e estrutura da tese 
 

Os principais objectivos desta tese de doutoramento foram: 

 

1 . O desenvolvimento e adaptação do índice RSL (Reduced Species List), o qual é baseado 

no estudo da composição e riqueza específica das comunidades intertidais rochosas 

dominados por macroalgas para estimar o estado ecológico das águas costeiras andaluzes do 

Atlântico, no âmbito da Directiva do Quadro da Água (DQA). 

2. O desenvolvimento e adaptação do índice CARLIT (Cartografia Litoral), com base no 

mapeamento das comunidades da zona litoral e sublitoral superficial para estimar o estado 

ecológico das águas costeiras andaluzes do Mediterrâneo, no contexto da DQA . 

3 . A comparação entre os índices RSL e CARLIT na zona de transição entre o Atlântico e o 

Mediterrâneo (Estreito de Gibraltar e parte ocidental do Mar de Alborán) . 

4. O estudo do efeito de padrões oceanográficos de meso-escala na biogeografia das 

comunidades rochosas de macroalgas ao longo do Mar de Alborán. 

5. O estudo dos padrões genéticos de espécies formadoras de habitats pertencentes ao grupo 

Cystoseira ericaecifolia ao longo do sul da península Ibérica. 

 

Estes objectivos são abordados em todos os 5 capítulos que compõem o presente 

trabalho da seguinte forma: 

Os capítulos 1 e 2 centram-se sobre os dois primeiros objectivos propostos. O capítulo 

1 é dedicado à adaptação do índice RSL (Reduced Species List; Wells et al., 2007) para a 

costa Atlântica andaluza (Bermejo et al., 2012). E o capítulo 2 à adaptação do índice CARLIT 

(Ballesteros et al., 2007) para a região do Mediterrâneo andaluz (Bermejo et al., 2013). 

No capítulo 3, os dois índices são comparados na zona do Estreito e a oeste do Mar de 

Alboran (Bermejo et al., 2014). O objectivo deste exercício foi garantir a coerência e a 

comparabilidade dos valores de qualidade ambiental obtidos por ambos os índices. 

No capítulo 4 avalia-se a relação entre os padrões oceanográficos e  as comunidades 

litorais e sublitorais superiores no Mar de Alboran (Bermejo et al., submetido). 

O capítulo 5 centra-se no estudo genético das comunidades de Cystoseira do grupo 

ericaecifolia (C. amentacea var. stricta, C. mediterranea e C. tamariscifolia) usando 

microssatélites. 

 



	
  



 
 
 
 
  

Chapter 1 
Application and reassessment of the reduced species list index for 
macroalgae to assess the ecological status under the Water Framework 

Directive in the Atlantic coast of Southern Spain 
 



 
 
"Pocas regiones hay tan dignas de un estudio detenido, desde el punto de vista 

botánico, como la provincia de Cádiz. Centinela avanzado de la Península 

Ibérica, casi tocando con las próximas costas africanas, su flora presenta un 

carácter especial que no puede confundirse con ninguna otra; y si es así en lo 

que á flora terrestre se refiere, aún es más en cuanto con la flora marina se 

relaciona. En sus costas se confunden las aguas del Mediterráneo y el 

Atlántico, y las algas de ambos mares son arrojadas por las tempestades á sus 

playas. Es el país de promisión para el algólogo..." 

 

Romualdo González Fragoso 

(Plantas Marinas de la Costa de Cádiz, 1886) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trafalgar daybreak. October 2008. Photograph by Ignacio Hernández Carrero 
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Directive in the Atlantic coast of Southern Spain 
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ABSTRACT 

 

According to the Water Framework Directive (WFD) macroalgae are one of the Biological 

Quality Elements proposed to assess the ecological status of coastal water bodies. In the case 

of the North East Atlantic coastal shores, two methodologies have been implemented (RSL – 

reduced species list – in the U.K.; CFR – quality of rocky bottoms – in the Spanish Cantabric 

Sea). However, the ecological differences between these shores and the Atlantic coasts of 

Southern Spain imply a reassessment of these indices when applied to this water body. In this 

study, the RSL index has been reassessed for the rocky shores of the Atlantic coast of 

Andalusia (south-western Spain). In addition, an ecological and a morphological approximation 

to this index have been compared. After successive field sampling in the period 2006–2010, a 

reduced species list was developed for this shore. Based on anthropogenic pressures (water 

turbidity, nutrients, metal concentration and the distance to sources of stress), 19 sites along the 

coast were classified in five quality status (high, good, moderate, poor and bad) as proposed in 

the WFD. According to this classification the RSL index was calibrated. Finally, the results of the 

reassessed RSL-index were compared with the water quality. Overall, most of the elements 

yielded a significant relationship with the water quality and showed significant differences 

among the ecological quality classification. The less significant boundary among ecological 

status is the one lying between good and high. The results showed that both approximations of 

the RSL index were suitable to assess the ecological status, being the ecological approximation 

more suitable. Furthermore, the data analysis pointed out the existence of two coastal fringes 

with a different intertidal composition of algal species: Atlantic Cádiz and the Strait of Gibraltar. 

 

Keywords: Biological indicators; Macroalgae; North East Atlantic; Rocky shore; Water 

Framework Directive; Water Quality. 

 

INTRODUCTION 

 

Multiple activities producing very different stressors concur in coastal areas. Most of the 

national and international institutions have identified population density, urbanization, 

agriculture, tourism, industry, fisheries and marine transport as the main pressures on the 

coastal zone (Casazza et al., 2002; EEA, 1999; UNEP, 1996). These pressures can change the 
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aquatic conditions producing different forms of pollution (e.g. acidification, eutrophication, heavy 

metals, invasions by alien species, pollution by organic compounds and by organic matter) and 

degrade the environment. In this sense, one of the main reasons that explain the regression of 

marine nearshore ecosystems is the organic and nutrient enrichment as a consequence of 

domestic wastes (Flechter, 1996). Hering et al. (2010) identified the eutrophication as the most 

important pressure in European marine ecosystems, being the reduction of nutrient loads the 

main restoration measure. This pressure can change the underwater light regime and substrate 

type (Nielsen et al., 2002; Schubert and Forster, 1997) implying a simplification of the 

architectural complexity of the communities (Arévalo et al., 2007). In addition, the increase of 

heavy metals introduced via polluted rivers, marine outfalls and through the deliberate dumping 

of wastes in coastal waters contributes to the overall deterioration of coastal ecosystems. In 

fact, anthropogenic releases of some heavy metals in aquatic ecosystems have been estimated 

to be up to three orders of magnitude greater than the natural inputs (Chase et al., 2001; 

Gheggour et al., 2002; Schindler, 1991). For these reasons, nutrients, turbidity and heavy 

metals are usually used to define the water quality. In this sense, a considerable effort has been 

made by the international community to monitor the distribution of nutrients, turbidity and heavy 

metals in the sea and to determine their effects on marine ecosystems. For instance, in the 

case of Andalusia (southern Spain) this monitoring has been carried out since 1988 onwards. 

However, analyses of water samples may give accurate, but local and transient information. 

Furthermore, this approach cannot determine the long-term effect of these pollutants on benthic 

communities (Licata et al., 2004). 

Bioindicators have several noteworthy advantages compared to physico-chemical indicators. 

The most important is that bioindicators are a direct measurement of the pollution effects in 

organisms, which is often the main goal when assessing the effect of a pollutant. Secondly, 

bioindicators may indicate the long-term effects of pollutants in benthic communities when they 

cannot be measured or have disappeared from the environment (Licata et al., 2004). In 

addition, the use of bioindicators avoids drawbacks associated with a direct survey of 

contaminants in water samples, such as the need to periodically repeat numerous water 

drawings because of continuous movement of the waters and the fluctuation in contaminant 

levels (Ostapczuk et al., 1997). Therefore, the use of bioindicators can yield a more integrated 

response than physico-chemical indicators do. 

Thus, the Water Framework Directive (WFD, 2000/60/EC) supports the use of biological 

indicators to assess water quality. Furthermore, to prevent further deterioration of marine 

habitats, WFD requires the assessment of the ecological status of surface waters to implement 

management plans. In the case of coastal water bodies, the ecological status has to be 

evaluated using different biological quality elements (BQEs; phytoplankton, macroalgae, marine 

angiosperms and benthic invertebrates), and supported by hydromorphological and physico-

chemical quality elements. For the purposes of the WFD, the European coastal waters have 

been divided in relevant eco-regions (Mediterranean, Baltic, Black Sea and Atlantic) that include 

different biogeographic regions and subregions. In these regions, the coastal waters have been 
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classified according to environmental characteristics to delimit different types (IES, 2009). In 

spite of this practical classification, it is of little value to develop a single indicator, even based 

on the same BQE, to assess the ecological status of all coastal waters of the same eco-region. 

There are biogeographical differences in these large eco-regions, which may not be 

acknowledged by indices that are developed in particular areas. For instance, in the case of the 

BQE macroalgae, Guinda et al. (2008) pointed out that although the WFD considers the 

Northeast Atlantic as an entire eco-region, the large marine ecosystems project (LME), initiated 

to support the global objectives of Agenda 21, clearly distinguishes the Iberian coastal marine 

ecosystem from northern coastal areas (EEA, 2006). Accordingly, when a biological indicator 

designed in one sub-region is used in others, this indicator may be reassessed. 

The use of macroalgae as bioindicators to assess pollution in the marine environment has 

been proved successful in many ecological studies (e.g. Borowitzka, 1972; Díez et al., 1999; 

Gorostiaga and Díez, 1996). The sedentary condition of attached macroalgae integrates the 

effects of long-term exposure to nutrients and/or other pollutants resulting in a decrease or even 

disappearance of the most sensitive species and their replacement by highly resistant, 

nitrophilic or opportunists species (Díez et al., 1999; Murray and Littler, 1978; Tewari and Joshi, 

1988). Therefore, macroalgal communities arise as a useful tool to analyze changes in water 

quality (Fairweather, 1990). Furthermore, as macroalgal communities provide habitat and 

canopy cover for a wide variety of intertidal organisms (e.g. Pavia et al., 1999), changes in 

these communities will have significant effects on shore ecosystems (e.g. Hereu, 2004). For 

these reasons, the WFD proposed, among others BQE (see above), the use of composition and 

abundance of macrophyte communities to develop bioindicators to assess ecological quality of 

European coastal waters. 

So far, two indices, based on the study of macroalgal communities along intertidal rocky 

shores, have been proposed for Atlantic coastal waters: reduced species list (RSL; Wells, 2008; 

Wells et al., 2007) and quality of rocky bottoms (CFR; Guinda et al., 2008; Juanes et al., 2008). 

The RSL index utilises five elements to describe ecological status: species richness of a 

reduced species list; proportion of red algae; proportion of green algae; ESG (ecological status 

group) ratio, and proportion of opportunist species (Wells et al., 2007). The RSL index is based 

on species occurrence while CFR index uses the relative abundance of species. This fact is 

very important when results are analyzed, because the sensibility and spatio-temporal scale 

depend on it. For this reason RSL is less sensitive but more robust and can be used in meso-

scale studies (Bermejo, 2009). Furthermore, the RSL index is less subjective and more precise 

than the CFR index (Guinda et al., 2008). These characteristics suggest that the RSL index may 

be more suitable to assess the ecological status of coastal waters. In spite of this, the 

preliminary results obtained for this index in the northern coast of Spain were worse than the 

result obtained for CFR when a pollution gradient was assessed (Guinda et al., 2008). However, 

the same authors proposed that to achieve a good calibration and validation of both indices, 

further analyses should be carried out at a different geographical location and against different 

types of pollution sources. 
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Some elements used in the RSL-index have been previously discussed (Arévalo et al., 2007; 

Guinda et al., 2008). For instance, the classification of species in two ESG, based on the 

functional form groups of macroalgae proposed by Littler and Littler (1980) and Littler et al. 

(1983) may have some limitations, as functional forms were originally suggested to predict 

productivity and other ecological attributes (e.g. grazing resistance, competitive abilities, 

reproductive effort); however, the resistance to pollution cannot be directly deduced from 

morphological features of the species (Arévalo et al., 2007). This has sometimes led to assign a 

particular species to different ESG (e.g., Corallina, ESG-I by Orfanidis et al., 2001 and ESG-II 

by Ballesteros et al., 2007) or to give them an opportunistic character (e.g. Ceramium, 

considered opportunist by Guinda et al., 2008 and non-opportunist by Wells et al., 2007). On 

the other hand, the proportion of rhodophyta evidenced problems in adjusting due to the 

biogeographical and ecological differences between northern cold and southern temperate 

waters (Guinda et al., 2008). 

Therefore, in this framework, this study pursues a double objective: (i) to apply and reassess 

the RSL index to the Atlantic coast of southern Spain and (ii) to compare the values of this index 

with the previous classification of the water quality based on concentration of nutrients, metals 

turbidity and distance to sources of stress at a spatial meso-scale. 

 

MATERIALS AND METHODS 

 

From March of 2008 to April of 2010, 19 sites located along the Atlantic coast of southern 

Spain were sampled (Fig. 1). The field samplings were carried out during spring and summer, 

coinciding with the peak growth of littoral communities (Ballesteros, 1992). In each site, a 

stratified sampling, registering all subhabitats, was carried out to obtain amacroalgal species list 

(Wells et al., 2007). Each sampling lasted approximately 1 h and was carried out during the low 

tide along 50–60m width of the whole rocky intertidal shore. When identification of specimens in 

situ was impossible, they were taken to the laboratory for a detailed observation. The taxonomic 

nomenclature used followed AlgaeBase (Guiry and Guiry, 2010). At each sampling site, 

physical characterization of the shore was estimated according to Wells et al. (2007). 

 

Reduced species list 

 

A reduced species list for Atlantic coasts of Andalusia was elaborated from the full species 

list obtained at each site. According to Wells et al. (2007) this list was composed of species with 

the most significant contribution to the overall species composition of rocky shores in this 

geographical area; moreover, the number of species from this RSL was directly proportional to 

the total species richness at different localities. This list acts as a surrogate to the production of 

a full species list, which requires a higher level of taxonomic expertise. Therefore, the species or 

taxa included must meet three requirements: (i) they must be easily identifiable; (ii) taxa 

associations were considered when these macroalgae had the same ecological requirements 
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and/or taxonomic identification was difficult (i.e. Delesseriaceae group included the genera 

Acrosorium, Cryptopleura and Haraldiophyllum); and (iii) these taxa must by perennials and not 

seasonals. For this reason, easily identifiable seasonal species were excluded from the list (i.e. 

Liagora spp.; Hypnea musciformis). 

 

 
 
Fig. 1.- Geographical distribution of the different sampling points along the coast of Cadiz (Andalucía, southern Spain). 

1- Punta Pegina, 2- Rota, 3- Aculadero, 4- La Puntilla, 5- Caleta (facing west from an isthmus), 6- Caleta (facing east 

from an isthmus), 7- El Chato, 8- Sancti Petri, 9- Roche, 10- Cala del Aceite, 11- Zahora, 12- Trafalgar, 13- Playa de la 

Hierbabuena, 14- Piscinas de Bolonia, 15- Isla de Tarifa, 16- Punta Camorro, 17- Punta Carnero, 18- Puerto de 

Algeciras, 19- Playa del Guadarranque. Black dots represent sample stations of “Plan de Policía de Aguas” for 

Andalusian shores. 

 

To identify different ecological or biogeographic areas based on the species composition of 

macroalgal communities according to the RSL, a cluster analysis “between-group linkages” 

using Dice index was applied among sites (Dice, 1945). “Puerto de Algeciras (18)”, “La Puntilla 

(4)” and “Aculadero (3)” sampling sites were excluded from the cluster analysis because they 

presented some physical and ecological particularities (see below) that limited the growth of 

macroalgal communities. Moreover, “La Caleta left (5)” and “La Caleta right (6)”, and “Roche 

(9)” and “Cala del Aceite (10)” were aggregated due to the nearness of these sites and to 

facilitate the interpretation of the results. 
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Reassessment of the RSL elements 

 

To apply the RSL index (Wells et al., 2007) in the southern coast of Spain the proportion of 

red algae was substituted for the number of red algae (Guinda et al., 2008), the ESG ratio was 

replaced with the proportion of ESG-I (Hernández, 2008; Ivesa et al., 2009) whereas two 

different approximations were proposed for the opportunists and for the ESG classification: (i) 

morphological approximation: to calculate the proportion of ESG-I, the reduced species list was 

classified in ESG-I and ESG-II (Orfanidis et al., 2001). When species were previously classified, 

this indication was followed (Guinda et al., 2008; Juanes et al., 2008; Orfanidis et al., 2003; 

Orlando-Bonaca et al., 2008). The same criterion was followed to classify the species as 

opportunists (Guinda et al., 2008; Orfanidis et al., 2003; Orlando-Bonaca et al., 2008). (ii) 

Ecological approximation: to estimate the different elements of the index, species were 

classified in two ecological groups based on ecological abilities (Grime, 1977) and according to 

ecological and sintaxonomic considerations previously described (Arévalo et al., 2007; 

Giaccone et al., 1993; Giaccone et al., 1994a,b). To classify species as opportunists, the 

criterion of Wells et al. (2007) was followed (UKTAG, 2009). In addition, based on data from the 

Atlantic coast of Cadiz, and according to the scoring system proposed by Wells et al. (2007) a 

new “correction factor” was calculated to obtain the species richness. In this case, chalk shore 

was removed of the scoring system because this substrate does not exist on the western coast 

of Andalusia (Vergara et al., 2006). According to Wells (2008), the application of the shore 

description is not as straight forward as the rest of the components as it only acts as a 

correction for the level of species richness, and not the proportions of green, red, and 

opportunist or the ESG ratio. Its inclusion into the element as a single component bares too 

much the weighting for the system; therefore it only needs to be incorporated into the final 

species richness value. 

A preliminary quality status classification of the sites in five classes was established based 

on the distance to sources of stress and physico-chemical variables provided by the Water 

Policy Plan (WPP) for the Andalusian coast between 2004 and 2008. These sources of stress 

must be considered because high nutrients or turbidity values can be either natural or 

anthropogenically induced; therefore, the use of these distances can reflect this fact. The 

following sources of stress were taken into account: mouth of rivers, harbours, industries and 

urbanizations (e.g. López y Royo et al., 2009; Pinedo et al., 2007). Distances to the sources 

were calculated over aerial photographs using GIS. On the other hand, the WPP monitoring 

network provided data of available nutrients in the water column (ammonium, nitrate, nitrite, 

phosphate), turbidity (total suspended solids) and metal content index (MCI) in selected sites 

along Andalusian coast (Fig. 1). The MCI is calculated as the geometric mean of Cr, Ni, Mn, Cu, 

Cd, Pb, As, Hg and Zn concentrations and provided an overall estimation of the metallic content 

of the sites. In some cases a linear interpolation (Eq. (1)) was applied to calculate data in sites 

further away than 3 km from the nearest WPP sample station (Fig. 1): 
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CS = C1 + (C2 − C1) × 
D1,S
D1,2

       (1) 

 

where CS is the concentration in the interpolated site; C1 is the concentration in the WPP 

sample station 1; C2 is the concentration in WPP sample station 2; D1,S is the distance between 

the WPP sample station 1 and the interpolated site; and D1,2 is the distance between sampling 

stations 1 and 2. 

 

Based on these distances to sources of stress and physicochemical variables, a cluster 

analysis was applied using the Ward method and squared Euclidean distance. To avoid a bias 

in the classification and to assure that all variables have the same weight, they were normalized 

and re-scaled between 0 and 1 for the different elements. To clarify the cluster analysis, an 

assessment of anthropogenic pressures was done according to López y Royo et al. (2009). 

Considering the cluster and the pressure analysis, the quality status of the sampled sites was 

classified as high, good, moderate, poor and bad, as proposed in the WFD. Finally, this 

preliminary classification was later used to establish the boundary levels among the different 

ecological status classes (ESCs) for each element used in the index. The mid point between the 

upper and lower points of variance from adjacent quality classes was used to adjust the range 

of the different elements that compose this index according to Eqs. (2) and (3) (Wells, 2008): 

 

LC = 
(X1 + S1) + (X2 + S2)

2
         (2) 

 

when the value of the element increased with increasing EQR 

 

LC = 
(X1 - S1) + (X2 + S2)

2
        (3) 

 

when the value of the element decreased with increasing EQR 

 

where LC is the limit between two adjacent ESC; X1 is the mean of lower ESC; S1 is the 

variance of lower ESC; X2 is he mean of upper ESC; and S2 is the variance of upper ESC. 

 

The value of the ecological quality ratio (EQR) for the RSL index was calculated for each 

station considering the range of the different elements calibrated previously from Atlantic shores 

of Andalusia and the following equations proposed by Wells (2008). Eq. (4) was used when the 

value of the element increased with increasing EQR (species richness, proportion of red algae 

and proportion of ESG-I), while Eq. (5) was used when the value of the element decreased 

when EQR increased (proportion of green algae and proportion of opportunists): 
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EQR =  
value – lower CR

CW
x EQR BW  + lower EQR BR                       (4) 

 

EQR = upper EQR BR - 
value – lower CR

CW
x EQR BW              (5) 

 

where CR was the class range, CW the class width, BR was the EQR band range and BW was 

the EQR band width.  

 

Response of the RSL elements 

 

Finally, to analyze the response of the different elements in accordance with the water 

quality, a correlation analysis was performed between the gross value of the elements used to 

calculate the RSL index and the quality water value (QW). The QW was defined as the 

maximum value between MCI and eutrophication status, previously normalized and re-scaled 

between 0 and 1. Eutrophication status was obtained as the mean value of all physico-chemical 

variables related with the eutrophication (ammonium,nitrate, nitrite, phosphate and total 

suspended solids). In addition, a correlation analysis was performed between the gross values 

of the elements used to calculate the RSL index and the gross values of physico-chemical 

variables. Furthermore, oneway Analysis of Variance (ANOVA) was used to test the effects of 

pressures in RSL elements. In this case, bad (Puerto de Algeciras; 18) and poor (Aculadero; 3; 

La Puntilla; 4) statuses were excluded because the number of sites for these statuses was less 

than 3. To comply with Shapiro–Wilk normality test the proportion of green seaweeds was cube 

transformed. Thus, the factor water quality was fixed in three levels: moderate, good and high. 

All elements were homocedastic and Tukey test post hoc analysis was applied. In all cases, 

significance was set at 5% probability. 

 

RESULTS 

 
Reduced species list 

 

The RSL for the Atlantic coast of Andalusia consisted of 56 species/genera of macroalgae: 

12 green, 14 brown and 30 red algae (Table 1). In the case of the morphological approximation, 

20 species were classified as ESG-I, 36 and ESG-II and 8 as opportunists, whereas in the 

ecological approximation 26 species were classified as ESG-I, 30 as ESG-II and 5 as 

opportunists. In both approximations all the green algae were considered as ESG-II excepting 

Flabellia petiolata. In addition, most of the greens were considered opportunists. Comparing 

both approximations it can be seen that one brown and nine red algae were classified in 

different way. In 8 of these 10 cases, the divergences between both approximations consisted 

in the classification as ESG-I by the ecological approximation of species classified as ESG-II by 

the morphological approximation. 
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Table 1- Reduced species list of macroalgae for the Atlantic southern Spanish coast, Ecological Status Group (ESG) 

and opportunistic character. 

 

CHLOROPHYTA 
Bryopsis spp. 

Chaetomorpha spp. 

Cladophora spp. 

Codium spp erect* 

Codium spp encrusting** 

Codium bursa 

Derbesia spp. 

Flabellia Petiolata 

Pedobepsia simplex 

Enteromorpha spp. 

Ulva spp. 

Valonia utricularis 

 

 

 

OCHROPHYTA 

Cladostephus spongiosus 

Colpomenia sinuosa 

Cystoseira compressa 

Cystoseira spp. 

Cystoseira usneoides 

Dictyota dichotoma 

Dictyopteris polypodioides 

Fucus spiralis 

Halopteris spp. 

Saccorhiza polyschides 

Padina pavonica 

Laminaria ochroleuca 

Ectocarpus & Sphacelaria 

ESG morph. 
II (o) 

II (o) 

II (o) 

II 

II 

II 

II (o) 

I 

II 

II (o) 

II (o) 

II 

 

 

 

ESG morph. 

II 

II 

I 

I 

I 

II 

II 

I 

II 

I 

I 

I 

II (o) 

ESG eco. 
II 

II (o) 

II 

II 

II 

II 

II (o) 

I 

II 

II (o) 

II (o) 

II 

 

 

 

ESG eco. 

I 

II 

I 

I 

I 

II 

II 

I 

II 

I 

I 

I 

II (o) 

RHODOPHYTA 

Delesseriaceae*** 

Asparagopsis armata 

Botryocladia botryoides 

Caulacanthus ustulatus 

Ceramium spp. 

Chondracanthus Acicularis 

Corallina sp. 

Gelidium  microdon 

Gelidium spinosum 

Gelidium corneum 

Gelidium pusillum 

Gymnogongrus & Ahnfetiopsis 

Halopithys incurva 

Halurus equisetifolius 

Hildenbrandia rubra 

Jania rubens 

Laurencia obtusa 

Lithophyllum byssoides 

Lithophyllum dentatum 

Lithophyllum incrustans 

Nemalion helminthoides 

Lomentaria articulata 

Osmundea pinnatifida 

Osmundea hybrida 

Peyssonnelia spp. 

Plocamium cartilagineum 

Pterocladiella capillacea 

Pterosiphonia complanata 

Rhodymenia & Schottera 

Sphaerococcus coronopifolius 

ESG morph. 

II 

II 

I 

II 

II (o) 

II 

I 

II 

II 

II 

II 

I 

I 

II 

I 

I 

II 

I 

I 

I 

II 

II 

II 

II 

I 

II 

II 

II 

I 

II 

ESG eco. 

I 

II 

I 

I 

II 

II 

II 

I 

II 

I 

II 

I 

I 

II 

I 

I 

II 

I 

I 

I 

I 

II 

I 

II 

I 

II 

II 

II 

I 

II 

 

 (o) Species considered as opportunists  

* Erect Codium: C. tomentosum, C. fragile, C. vermilara and C. decorticatum  

**Encrusting Codium: C. adhaerens and C. effusum.  

*** Deleseiraceae: Acrosorium uncinatum, Cryptopleura ramulosa or Haraldiophyllum bonnemaisonnii. 

 

According to the data obtained for this RSL along the rocky shores of the Atlantic coast of 

Andalusia, two ecological regions were identified based on the results of the Hierarchical-

Cluster analysis of presence–absence of the species in the sampling sites (Fig. 2). The first 

region corresponded to the Strait of Gibraltar; the second corresponded to the western shores 

(Atlantic region) of the Cadiz coast. The boundary between both regions was situated between 

the localities 13 and 14 (Fig. 1) near Barbate. Accordingly, a total of 50 species of the RSL were 

found in the Strait of Gibraltar region and 49 species in the Atlantic region. The former 

evidenced a higher percentage of brown algae (31%) than the later (23%). In contrast, the 
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proportion of red algae was similar in both regions (Strait of Gibraltar 49%; Atlantic 52%). The 

two ecological regions shared 42 species, with 8 species exclusive to the Strait of Gibraltar 

region and 7 exclusive to the Atlantic one. 

 
 
Fig 2.- Dendrogram depicting mutual similarities of flora of the different sites sampled. (2) – Agregate site (2 sampling 

stations). 
 

Reassessment of the RSL elements 

 

The species richness (species from the RSL; Fig. 3, Eq. (6)) showed a significant correlation 

with the shore description (p-value = 0.011; r = 0.492; n = 26). Thus, based on the scoring 

system of the shore characteristics, a correction factor (CF) for species richness was calculated 

from the non-linear relationship between the species richness and the scores of the shore 

description (Fig. 3; Eqs. (6) and (7)). This factor was based around an average shore 

description of 13, which corresponded to an expected richness of 23 species (Eq. (6)). The CF 

was calculated as the ratio between the expected species richness for the mean shore 

description of Andalusian Atlantic shores (23 species), and the expected species richness for 

any particular case (Eq. (7)). Finally, the corrected species richness was calculated by 

multiplying the observed species richness by the correction factor (Eq. (8)): 

 

 
 
Fig. 3.- Exponential model for the relationship between shore description value and species richness. 
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Expected species richness = 6.3371 × e0.0982·Shore score                     (6) 

 

CF = 
23

expected species richness
                                               (7) 

 

Corrected species richness = CF × observed species richness                (8) 

 

The identification and analysis of physico-chemical variables and the distance to sources of 

stress led to a classification of the sampling sites in five quality status groups (Fig. 4; Table 2): 
 

 
 

Fig 4.- Dendrogram depicting mutual similarities of the water quality of the different sites sampled.  

 

High (4 sites) for Punta Carnero (17), Punta Camorro (16), Isla de Tarifa (15) and Piscinas 

de Bolonia (14, see site codes in Table 1). These sites showed the lowest values for nutrients, 

suspended solids and metal concentration; moreover, they were located in “El Estrecho” Natural 

Park where the marine and coastal environment is globally less influenced by anthropogenic 

pressures. Except Punta Carnero that showed high anthropogenic pressures due to the 

proximity of Algeciras harbour (6.72 km), the other places was subjected to low (15, 16) and 

none (14) pressures. 

Good (8 sites) for Punta Pegina (1), El Chato (7), Sancti Petri (8), Roche (9), Cala del Aceite 

(10), Zahora (11), Trafalgar (12) and Hierbabuena (13). In general terms, these places showed 

lower values for physico-chemical variables than moderate, poor and bad ecological status, and 

were further to sources of stress. Anthropogenic pressures were assessed as low (1, 7) and 

moderate (8, 9, 10, 11, 12, 13) in these localities. 
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Moderate (4 sites) for the rocky shores of Rota (2), La Caleta (5, 6) and Guadarranque (19). 

In this group, except Rota (2) that showed moderate anthropogenic pressures, the other sites 

(5, 6, 19) were subjected to industrial (19) or urban (5, 6) high pressures. 

Poor (2 sites) for El Aculadero (3) and La Puntilla (4). These sampled points are close to the 

Guadalete River subjected to high anthropogenic pressures related to this river and the 

presence of a large shipyard and Cadiz harbour in the nearness. Moreover, the physico-

chemical variable showed higher values than those in moderate status. 

Bad (1 site) for Puerto de Algeciras (18). This site showed the highest value for nutrients, 

suspended solids and heavy metal concentration. The existence of a discharge point of sewage 

outfall without treatment and the proximity of the massive Algeciras harbour suggested that 

environmental conditions here were clearly the worst among all sampling sites prospected. 
 

Table 2- Mean ± standard deviation of the different physico-chemical variables and distances to sources of stress used 

to define a preliminary classification. 

 

 

Class 
Bad 

Poor 

Moderate 

Good 

High 

NH4
+ 

(µM) 
5.24 

3.18 ± 0.53 

1.06 ± 0.71 

0.88 ± 0.29 

1.29 ± 0.82 

NO3
- 

(µM) 
13.58 

10.02 ± 0.19 

8.06 ± 0.45 

9.03 ± 1.48 

7.25 ± 0.00 

NO2
- 

(µM) 
0.28 

0.46 ± 0.06 

0.30 ± 0.04 

0.28 ± 0.06 

0.17 ± 0.02 

PO4
3- 

(µM) 
0.81 

0.39 ± 0.04 

0.33 ± 0.14 

0.23 ± 0.09 

0.31 ± 0.02 

SS 

(mg·L-1) 
15.67 

14.42 ± 0.59 

14.70 ± 1.45 

13.23 ± 1.62 

9.49 ± 0.24 

 

Class 
Bad 

Poor 

Moderate 

Good 

High 

Urban.  

(Km) 
0.00 

0.00 ± 0.00 

0.08 ± 0.15 

1.19 ± 0.78 

1.26 ± 1.38 

Harbour  

(Km) 
0.40 

0.95 ± 0.21 

0.27 ± 0.34 

4.98 ± 4.58 

6.07 ± 6.87 

River  

(Km) 
3.10 

1.85 ± 0.35 

5.60 ± 3.01 

8.11 ± 5.39 

25.60 ± 12.25 

Industry 

(km) 
2.9 

6.25 ± 0.35 

6.12 ± 4.49 

29.63  ± 13.29 

28.10  ± 14.07 

ICM 

(ng·L-1) 
0.00070 

570 ± 50 

530 ± 20 

490 ± 40 

440 ± 10 

 

From this classification of water quality, the boundaries between classes of ecological status 

for the different elements of the RSL index were established (Table 3). This was achieved by 

the mid point, rounded off to the five multiple in elements expressed in percents, between the 

upper and lower error bars (calculated from standard deviation) of adjacent quality status 

classes. However, when these elements did not present the expected trend for some ecological 

status (proportion of opportunist for both approach and proportion of ESG-I from morphological 

approxi- mation) the limits were calculated as the midpoint between the lower limit of the lower 

status and the upper limit of the higher status. 
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Table 3- The metric scoring system with classification status ranges for macroalgae species richness, red algae, ESG-I, 

green algae and proportion of opportunists. 

 

Common elements 
Corrected species richness 

Number of red seaweeds 

Proportion of green seaweeds 

 
RSL - morphological 

Proportion of ESGI 

Proportion of opportunists 

EQR-RSL 

 

RSL - ecological 
Proportion of ESGI 

Proportion of opportunists 

EQR-RSL 

Bad 
< 10 

< 5 

> 0.55 

 

 

< 0.25 

> 0.35 

< 0.20 

 

 

< 0.15 

> 0.30 

< 0.20 

Poor 
11 - 19 

6 - 9 

0.55 - 0.35 

 

 

0.25 - 0.30 

0.35 - 0.25 

0.20 - 0.35 

 

 

0.15 - 0.25 

0.30 - 0.15 

0.20 - 0.40 

Moderate 
20 - 26 

10 - 13 

0.35 - 0.25 

 

 

0.30 - 0.325 

0.25 - 0.20 

0.35 - 0.60 

 

 

0.25 - 0.35 

0.15 - 0.10 

0.40 - 0.60 

Good 

27 - 29 

14 - 18 

0.25 - 0.20 

 

 

0.325 - 0.35 

0.20 - 0.15 

0.60 – 0.75 

 

 

0.35 - 0.40 

0.10 - 0.05 

0.60 - 0.75 

High 
> 29 

> 18 

< 0.20 

 

 

>0.35 

< 0.15 

> 0.75 

 

 

> 0.40 

< 0.05 

> 0.75 

 

Response of RSL elements 

 

The regression analysis between the different elements used to calculate the RSL index and 

the water quality (Table 4) indicated that species richness was one of the most sensitive, 

showing the expected trend and significant correlations with the QW estimated according to 

physico-chemical parameters (R2 = 0.564; p < 0.001). On the other hand, the corrected species 

richness also showed a significant linear regression with the water quality (p = 0.028), although 

with a lower coefficient of determination (R2 = 0.253). 

 
Table 4- Coefficients of determination for the regression analysis between the elements of the RSL index and the water 

quality  * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001. 

 

Common elements 
Species richness 

Corrected species richness 

Number of rhodophyta 

Proportion of red seaweeds 

Number of green seaweeds 

Proportion of green seaweeds 

 

R2 
0.564*** 

0.253* 

0.540*** 

0.313* 

0.161 

0. 550*** 

 

Approximation elements 
Number of ESG-I 

Number of ESG-II 

Number of opportunists 

Proportion of ESG-I 

Proportion of opportunists 

EQR-RSL 

Morphological 
0.415** 

0.463*** 

0.001 

0.541*** 

0.581*** 

0.554*** 

Ecological 
0.641*** 

0.392** 

0.058 

0. 735*** 

0.588*** 

0.581*** 
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The proportion of green algae also showed a significant regression, increasing from 

unpolluted to polluted sites (R2 = 0.550; p < 0.001). This trend was not attributed to the 

reduction in then number of green algae, as it can be seen by its lack of regression (R2 = 0.161; 

p > 0.05). In the same manner as the proportion of greens, the proportion of opportunists 

decreased when the water quality increased (R2 = 0.581 and p < 0.001; for the morphological 

approximation and R2 = 0.588 and p < 0.001; for the ecological one), and this tendency was not 

attributed to the reduction in the number of opportunists (R2 = 0.001 and p > 0.05; 

morphological approximation, R2 = 0.058 and p > 0.05; ecological one). In contrast, the 

proportion of red algae was one of the least sensitive elements, showing a lower strength of the 

straight-line relationship between this element and the water quality (R2 = 0.313; p = 0.013). 

There was a clear gradient between the number of red algae and the water quality (R2 = 0.540; 

p < 0.001). However, it was not reflected in the proportion of red algae, because the number of 

species increased as well; thus, the proportion of reds did not show a clear variation with the 

water quality. 

The proportion of ESG-I showed the expected trend, increasing with the water quality, and 

showing a significant linear regression for both the morphological and ecological approximations 

(R2 = 0.514 and p = 0.001; morphological and R2 = 0.735 and p < 0.001; ecological). However, 

the ecological approximation evidenced a better relationship than the morphological one. In 

both approximations, the number of ESG-I (R2 = 0.415 and p = 0.003; morphological and R2 = 

0.641 and p < 0.001; ecological) and ESGII (R2 = 0.463 and p = 0.001; morphological and R2 = 

0.392 and p = 0.004; ecological) species yielded a direct and significant relationship with the 

improvement in water conditions. 

The regression values between the water quality and the final EQR value of the RSL index 

for the morphological (R2 = 0.554; p < 0.001) and ecological (R2 = 0.581; p < 0.001) 

approximations were quite similar; showing in both cases a direct linear regression with water 

quality. Hence, it can be stated that the integration of all information in the final score for the 

RSL showed a significant trend. 

The correlation matrix between the gross values of the different physico-chemical 

parameters used to define the water quality, and the gross values of the elements used to 

calculate the RSL (Table 5) showed significant correlations for most of the cases. The 

concentration of nitrite and of suspended solids (SS) were the less correlated parameters with 

the different elements used to assess the ecological status. Conversely, the concentration of 

ammonium and the metallic content index (MCI) were the best correlated with the elements 

used in RSL-index. 

In the case of the elements used to calculate the RSL, the matrix indicated that all of them 

showed the expected trend (Table 5). Moreover, the elements “number of reds” and “the 

ecological approximation for proportion of ESG-I” showed significant correlations with all 

physico-chemical parameters. In contrast, in general terms the corrected species richness 

showed the lowest correlations. 
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Table 5- Correlation matrix of the gross values of the elements used in RSL and the gross values of the different 

parameters used to define the water quality. Suspend Solids (SS), Metallic Content Index (MCI). * p-value < 0.05; ** p-

value < 0.01; *** p-value < 0.001. 

 

Common elements 
Corrected species richness 

Number of red seaweeds 

Proportion of green seaweeds 

 

RSL - morphological 

Proportion of ESG-I 

Proportion of opportunists 

EQR-RSL 

 

RSL - ecological 
Proportion of ESG-I 

Proportion of opportunists 

EQR-RSL 

NH4
+ 

-0.839*** 

-0.747*** 

0.788*** 

 

 

-0.766*** 

0.883*** 

-0.885*** 

 

 

-0.743*** 

0.905*** 

-0.833*** 

NO3
- 

-0.435* 

-0.699*** 

0.666** 

 

 

-0.674** 

0.704*** 

-0.618** 

 

 

-0.761*** 

0.710*** 

-0.661** 

NO2
- 

-0.117 

-0.492* 

0.303 

 

 

-0.110 

0.215 

-0.378 

 

 

-0.479* 

0.340 

-0.449* 

PO4
3- 

-0.759*** 

-0.493* 

0.674** 

 

 

-0.813*** 

0.780*** 

-0.789*** 

 

 

-0.656** 

0.711*** 

-0.672** 

SS 

-0.240 

-0.537** 

0.520* 

 

 

-0.430* 

0.403* 

-0.513* 

 

 

-0.706*** 

0.401* 

-0.572** 

MCI 

-0.747*** 

-0.743*** 

0.795*** 

 

 

-0.671*** 

0.744** 

-0.811*** 

 

 

-0.820*** 

0.705*** 

-0.812*** 

 

The EQR-RSL for both approximations showed very similar results, both of them having 

significant correlations with all the physico-chemical parameters, except in the case of nitrites 

for the morphological approximation. These results confirmed that this index integrated all the 

ecological information. 

As it can be seen from the ANOVA results of the gross values of each element used in the 

RSL index (Table 6), there were significant differences in the mean values between moderate, 

good and high status for 4 of the 7 elements analysed. The proportion of ESG-I (morphological 

approximation), proportion of opportunists (ecological approximation) and corrected species 

richness showed the worst response and was not sensitive to the quality status. In addiction, 

the Tukey test revealed that the proportion of opportunist (morphological approximation) 

showed differences between moderate and good status but not between moderate and high, 

thus the trend was not the expected. On the other hand, the proportion of green seaweeds 

showed the best results and evidenced significant differences between moderate and good, and 

moderate and high status. Furthermore, none of the elements showed differences between 

good and high quality status. Finally, the most remarkable findings were that: (i) the RSL-index 

showed, for both approximations, a better response than the elements separately showing 

significant differences between moderate and good, and moderate and high ESC, and (ii) the 

inexistence of significant differences between good and high status, in the post hoc analysis for 

RSL values. 
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Table 6- Results of the ANOVA analysis between the different Ecological Status Class (ESC). Bad status was excluded 

from the analysis. Proportion of opportunists was transformed to comply with normality test (squared root 

transformation). Mean and standard deviation (SD) for each ESC and the results of the post hoc Tukey test are also 

indicated. 

 

Common elements ESC Mean SD ANOVA (sig.) Tukey 

 

Corrected species 

richness 

 

 

Number of red 

seaweeds 

 

 

Proportion of green 

seaweeds 

 

RSL-morphological 

 

Proportion of ESG-I 

 

 

 

Proportion of 

opportunists* 

 

 

EQR-RSL 

 
 

RSL-ecological 
 

Proportion of ESG-I 

 

 

 

Proportion of 

opportunists* 

 

 

EQR-RSL 

 

Moderate 

Good 

High 

 

Moderate 

Good 

High 

 

Moderate 

Good 

High 

 

 

Moderate 

Good 

High 

 

Moderate 

Good 

High 

 

Moderate 

Good 

High 

 

 

Moderate 

Good 

High 

 

Moderate 

Good 

High 

 

Moderate 

Good 

High 

24 

29 

27 

 

13 

15 

19 

 

0.32 

0.23 

0.20 

 

 

0.33 

0.34 

0.33 

 

0.19 

0.11 

0.14 

 

0.55 

0.71 

0.73 

 

 

0.33 

0.36 

0.45 

 

0.09 

0.05 

0.07 

 

0.56 

0.70 

0.78 

5 

6 

4 

 

1 

3 

2 

 

0.05 

0.04 

0.03 

 

 

0.06 

0.05 

0.05 

 

0.06 

0.04 

0.04 

 

0.01 

0.07 

0.10 

 

 

0.06 

0.06 

0.06 

 

0.03 

0.03 

0.03 

 

0.08 

0.08 

0.08 

 

0.280 

 

 

 

0.010 

 

 

 

0.001 

 

 

 

 

0.856 

 

 

 

0.049 

 

 

 

0.024 

 

 

 

 

0.022 

 

 

 

0.174 

 

 

 

0.007 

 

X 

X 
X 

 
X 

X 
 

 
X 

 
 

 
 

X 
X 

X 
 

X 
 

X 
 

X 
 

 
 

 
X 

X 
 

 
X 

X 
X 

 
X 

 

 

 
 

 
 

X 
X 

 
 

X 
X 

 
 

 
 

 
 

 
X 

X 
 

 
X 

X 
 

 
 

X 
X 

 
 

 
 

 
 

X 
X 

 

Overall, the RSL index based on the ecological approximation was more sensitive to the 

quality status than the RSL index based on the morphological approach (Table 7), with 79% of 

the sites showing the same classification. The RSL based on the morphological approximation 

classified a lower number of the sites (68%) in the same ESC that the ecological status given by 
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the preliminary classification. On the other hand, the percentage of localities classified in the 

same way using both approximations was 74%. Furthermore, differences between RSL 

approximations and preliminary quality status never produced differences in ecological status 

higher than one ESC. Some localities (“Punta Pegina” (1) and “El Chato” (7)) evidenced the 

same ecological status under the two approximations of the RSL index but this status was 

different taking into account the preliminary classification.  
 

Table 7- Estimated classifications of the water quality for each sampling site and final EQR-RSL results obtained by 

each alternative. See name of localities in table 1. 

 

 

DISCUSSION 

 

There are marked differences in the community features and the characteristics of the 

phycological flora composition along the Atlantic coasts of southern Iberian Peninsula (Fischer-

Piette, 1958). This has been attributed to the influence of large rivers in the most western part, 

and differences in solar irradiance between the Strait of Gibraltar and the surroundings of Cádiz 

Bay (Fischer-Piette, 1958; Seoane-Camba, 1965). Despite these biogeographic differences, the 

response of the RSL index was suitable and it was not necessary recalculate boundaries 

between the different status classes for the different elements in the two regions (Strait of 

Gibraltar and Atlantic). This fact could be explained by the similarity between their flora (76% 

taxa of RSL were common in both regions) and because the two regions are represented by 

similar numbers of species in the proposed reduced list (50 for the Gilbraltar Strait and 49 for 

the Atlantic region). 

 

Locality 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Ecological-EQR 
0.74 

0.67 

0.32 

0.30 

0.56 

0.49 

0.84 

0.72 

0.74 

0.55 

0.64 

0.67 

0.71 

0.87 

0.78 

0.81 

0.68 

0.08 

0.51 

Ecological-ESC 
GOOD 

GOOD 

POOR 

POOR 

MODERATE 

MODERATE 

HIGH 

GOOD 

GOOD 

MODERATE 

GOOD 

GOOD 

GOOD 

HIGH 

HIGH 

HIGH 

GOOD 

BAD 

MODERATE 

Morphological-EQR 
0.68 

0.68 

0.32 

0.34 

0.56 

0.54 

0.83 

0.73 

0.76 

0.63 

0.64 

0.64 

0.77 

0.85 

0.77 

0.70 

0.60 

0.06 

0.42 

Morphological-ESC 
GOOD 

GOOD 

POOR 

POOR 

MODERATE 

MODERATE 

HIGH 

GOOD 

HIGH 

GOOD 

GOOD 

GOOD 

HIGH 

HIGH 

HIGH 

GOOD 

GOOD 

BAD 

MODERATE 

Preliminary Quality 
GOOD 

MODERATE 

POOR 

POOR 

MODERATE 

MODERATE 

GOOD 

GOOD 

GOOD 

GOOD 

GOOD 

GOOD 

GOOD 

HIGH 

HIGH 

HIGH 

HIGH 

BAD 

MODERATE 
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The results presented in this study suggested that the RSL index maybe a suitable indicator 

to assess the ecological status of Atlantic coastal waters of southern Spain. In this sense, all the 

elements used to calculate the RSL index were sensitive to the water quality, as shown by the 

significant relations given in Tables 4 and 5. Overall, the integration of all elements in the RSL 

index showed a better response than the elements separately. Moreover, both alternatives of 

the RSL-index showed significant differences between moderate and good, and moderate and 

high ESC. In contrast, significant differences were not found between good and high ecological 

status. Therefore, the two adapted alternatives of RSL index for the Atlantic coasts of southern 

Spain responded adequately when they were used to estimate the ESC, although the ecological 

alternative was more sensitive to the water quality and must be chosen when the assessment is 

going to be carried out. 

However, some questions arise from the results: Is this index sensitive enough for 

accomplishing the requirements of the WFD? Are all the elements used in RSL index suitable to 

assess the ecological status in the Atlantic coast of Southern Spain? Does this index integrate 

the environmental implication and importance of each indicator in the Atlantic coast of 

Andalusia? These questions will be discussed below. 

 

Is the RSL index sensitive enough for accomplishing the requirements of the WFD? 

 

Neither of the two alternatives to the RSL index can distinguish significantly between good 

and high water quality. However, considering that the WFD points out that all European surface 

waters should achieve the objective of a good ecological status by 2015, the most important fact 

is that proposed indices may discriminate between moderate and good, and moderate and high 

ecological status, as this index does. Moreover, bearing in mind a dynamic point of view on 

ecological succession (Orfanidis et al., 2005), the relationship between the taxonomic 

composition of the seaweed community and the physico-chemical water characteristics or 

pressures is not univocal. For instance, it is well documented that elevated concentrations of 

nitrogen and phosphorus in the water column do not necessarily indicate highly eutrophic 

conditions; neither do low concentrations necessarily indicate absence of eutrophication 

(Cloern, 2001). In this sense, the locality of “El Chato”, classified good according to physico-

chemical data, was previously classified as high under subjective ESC based on expert 

knowledge of each of the sites irrespective of their species numbers and considering the 

proximity and magnitude of direct and indirect effluent discharges (Bermejo, 2009), and as low 

pressures subjected according López y Royo et al. (2009) criteria. These facts suggest that 

water quality may not always be accurately enough to discriminate, at least, between good and 

high ecological status. 
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Are all the elements used in RSL index suitable to assess the ecological status in the 

Atlantic coasts of Southern Spain? 

 

Species richness showed a higher correlation with the water quality than corrected species 

richness. This result could be related with the fact that thenumberof high and good ESC is 

bigger than the number of low ESC (Fig. 3). It produces a bias that affect negatively to the 

corrected species value and it could be one of the reasons that explain the worse results 

obtained with the corrected species richness. Another matter is the fact that turbidity in the 

Atlantic coast of southern Spain was correlated with the ecological status in a lot of sampling 

sites. This occurs because the majority of the dumping activities take place in rivers, which also 

produces natural turbidity in the coast. For this reason, it was not possible to correct the effects 

of natural turbidity in macroalgae communities in the Atlantic coast of Southern Spain. Other 

issues related with this consideration are: (i) sometimes it is impossible to distinguish between 

natural and anthropogenic turbidity when they occur at the same time; (ii) the water turbidity can 

be very different at short time scales; (iii) it can be difficult to establish the limits between turbid 

and clear waters. Furthermore, the ecological differences between the northern and southern 

coast of Europe suggest that the factors considered in the scoring system related to physical 

structure of the intertidal and number of subhabitats should be reassessed to the Atlantic coasts 

of Andalusia. Therefore, the intertidal scoring system should be re-calculated for the southern 

Atlantic coast of Spain. 

The results regarding the proportion and number of red macroalgae are in accordance with 

the results given by Guinda et al. (2008) for the northern coast of Spain, where the correlation 

between number of red algae and the water conditions was higher than that using the 

proportion of reds. This fact could be related to differences of the intertidal algae community 

composition between northern cold waters, where brown algae are dominant, and southern 

temperate waters, where red algae predominate (Boaventura et al., 2002; Fischer-Piette, 1963; 

Lüning, 1990). In this sense, many brown macroalgal species in the northern European coasts 

are large, cartilaginous and relatively hardy, and more likely to remain constant independently of 

environmental conditions (Wells et al., 2007). In contrast, a significant and direct correlation 

between the water quality and the number of brown algae (R2 = 0.490; p < 0.001) was observed 

in the southern coast of Spain. Hence, these biogeographical and ecological differences, and 

the increase in species richness in relation to the improvement of water conditions, could 

explain why less satisfactory results were recorded when the proportion of red algae was 

considered. Furthermore, two different biogeographic zones have been described in the Atlantic 

coast of Andalusia (Seoane-Camba, 1965). The zone near the Strait of Gibraltar is 

characterised by amore “northern” phycological flora. In this sense, based on RSL data 

obtained from this study, this zone showed a R:P (rhodophyta:phaeophyceae) index (Feldmann, 

1937) of 1.77 while this ratio in the Atlantic zone was computed as 2.67. This index is used to 

classify the flora in a latitudinal gradient, showing an inverse relation to latitude (R/P < 2 for 

cold-temperate zones; R/P > 4 for tropical zones; Báez et al., 2004). Therefore, considering the 
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special condition of the shores of southern Spain, the element “proportion of red algae” was 

replaced by its absolute number, which is less sensible to the effect that biogeographic changes 

and the increment of species richness have in the proportion of red algae. 

With respect to the proportion of green algae, Guinda et al. (2008) found similar results 

analysing the different elements of the RSL index along a pollution gradient in the north of 

Spain. Moreover, this element showed similar values in Cadiz and the British Isles to establish 

the Ecological Quality Ratio; in addition, when the RSL proposed by Wells et al. (2007) is 

analyzed, 83% of the green algae (Flores-Moya et al., 1995a), 63% of the reds (Conde et al., 

1996) and 50% of brown algal species (Flores-Moya et al., 1995b) were also recorded in the 

Andalusian coast. These facts suggest that: (i) green algae show, in the European Atlantic 

coast, a more cosmopolitan distribution than red and brown ones; and (ii) green algae show 

similar ecological functions along the European coasts. According to Littler and Littler (1980) 

and Littler et al. (1983) chlorophytes can behave as opportunists or early colonizers, because 

they are very tolerant to environmental disturbances and stress situations. It is noteworthy that 

green species can thrive in simple substrates like small rocks or non-specific hard substrates, 

and they are present in virtually all water conditions. Therefore, green algae depend less on 

biogeographic factors, water quality or intertidal structure than red and brown algae. The 

proportion of green algae decreases in parallel to the improvement of environmental conditions, 

when late-successional brown and red species thrive in a large number. Hence, the similarity 

between the results obtained for the different regions, and the highly significant correlation with 

the water quality for this untransformed element, suggest that it could be very useful when 

results from different areas in the same eco-region are compared. 

The ESG-I ratio is based on the assignment of any species found in a sample to a “late 

successional species” (ESG-I) or a “opportunist species” (ESG-II) group according to its 

morphology (Orfanidis et al., 2001), and based on the functional-form group model of 

macroalgae described by Littler and Littler (1980). The functional form group hypothesis was 

originally proposed to predict, from morphological features of the species, the productivity and 

other ecological attributes (e.g. grazing resistance, competitive abilities, reproductive effort), but 

not resistance to pollution (Arévalo et al., 2007). Although ESG-I ratio can be a preliminary 

approximation for indices based on abundance, or when a functional classification is used 

instead of a taxonomic one, when a reduced species list exists it is better to classify the species 

according to ecological abilities based on Grime’s theory (1977) and according to local 

ecological and sintaxonomic data (Padilla and Allen, 2000; Arévalo et al., 2007; Tables 4 and 

5). Besides, it is preferable to use the proportion of ESG-I instead of ESG-I ratio, because in the 

first case its value is limited between 0 and 1, and this fact is very important when the index 

must be calculated or calibrated (Hernández, 2008; Ivesa et al., 2009). In this case, the 

classification of the macroalgal species based on ecological and sintaxonomic data to calculate 

the proportion of ESG-I showed a significant correlation with the water quality. In contrast, the 

classification of different species based on morphological data to calculate the proportion of 

ESG-I evidenced a worse coefficient of determination. Furthermore, Guinda et al. (2008), using 
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an ecological approximation to define the ESG groups, observed that although the results 

improved, these were insufficient to justify the usefulness of this indicator in the northern coast 

of Spain. In contrast, this element has shown a suitable response in the southern coast of 

Spain, and then its use is clearly justified.  

Opportunistic species are those that present high growth rates and can thrive in ruderal sites 

(Littler et al., 1983) where great variations of physico-chemical variables exist. Nevertheless, 

some differences have been observed in the classification according to different authors 

(Juanes et al., 2008; Orfanidis et al., 2001; UKTAG, 2009), which can be very important for the 

final response of the element for two reasons: (i) proportion of opportunists use few species and 

the absence of a species produce a large change in the final result because biomass is not 

considered in this index; (ii) some species considered opportunists by some authors (Juanes et 

al., 2008; Orfanidis et al., 2001) did not show an opportunistic behaviour in the southern coast 

of Spain (e.g. Bryopsis spp., Cladophora spp., Ceramium spp.). In this case, differences were 

not found between the results for the proportion of opportunists based on morphological data 

(Juanes et al., 2008; Orfanidis et al., 2001) or in a more ecological approach (UKTAG, 2009). 

As an example, Arévalo et al. (2007) and Wells et al. (2007) considered filamentous or sheet-

like groups such as most of the members of the order Ceramiales, which only thrive in good to 

high ecological status sites, as opportunists for the morphological classification. Considering the 

opportunist definition, these species should not be included in this group. However, bearing in 

mind a morphological classification, these species are classified as opportunist. In contrast, the 

ecological classification, based on plant strategies in response to perturbations, did not classify 

these species as opportunist. 

The results found in this study and others (Guinda et al., 2008), and the considerations 

about the proportion of ESG-I and opportunists species (Arévalo et al., 2007; Wells et al., 2007) 

strengthen the idea that the use of an ecological approximation is better than a morphological 

one in order to classify the different species into ecological groups. Moreover, the accurate 

classification of different species is specially important in methods based on the taxonomic 

composition of the community, as all species have the same importance in the final result; in 

contrast, an erroneous classification of species that represent residual biomass in the 

communities does not produce a large error in indices based on species abundance. In this 

study and in others cases (Arévalo et al., 2007; Guinda et al., 2008; Wells et al., 2007) the most 

conflicting group was the red algae; the majority of misclassifications between ecological groups 

correspond with this taxonomic division. Nonetheless, the resistance to pollution can be 

considered as a continuous; hence the adscription of a species to ESG-I or ESG-II is a key 

issue and may lead to disagreement. One possible solution could be classifying species at a 

bigger scale. For instance, the BENTIX index for macroinvertebrates (Simboura and Zenetos, 

2002) classifies species in three groups (“sensitive”, “indifferent” or “tolerant”). Macroalgae 

could also be classified as “ruderals”, “stress-tolerants” and “competitors” according to Grime 

(1977). Assigning values to each group (i.e. ruderals = 0, stress-tolerants = 0.5 and competitors 

= 1), and dividing the summation between the species richness gives an element similar to the 
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proportion of ESG-I. This element is also limited between 0 and 1. 

 

Does this index integrate the environmental implication and importance of each element? 

 

The EQR-RSL values for the morphological and ecological alternatives showed the expected 

trend with water quality, and yielded one of the highest coefficients of determination in the 

regression analysis (Table 4). Moreover, both EQRs presented a significant correlation with all 

elements used to define the water quality (except nitrites in the case of morphological 

approximation; Table 5), being these alternatives especially sensitive to the elements related 

with eutrophication (ammonium, nitrates, phosphates) and heavy metal contamination (metal 

content index). In addition, the ANOVA and Tukey’s analysis showed significant differences 

between moderate and good, and moderate and high ecological status (Table 6). In general 

terms the RSL showed the best response, because although the proportion of ESG-I (ecological 

alternative) showed the highest correlation with the physico-chemical variables, this element 

could not distinguish between moderate and good status, which is very important to comply with 

WFDs requirements. 

The high correlations with elements related to the eutrophication (ammonium, nitrate, 

phosphate) and heavy metal contamination (metal content index) suggested that the RSL index 

is sensitive to pollution. In the case of the eutrophication, the negative effects of this pressure at 

a community level have been proved as a recurrent topic in the literature (e.g. Arévalo et al., 

2007; Borowitzka, 1972; Seridi et al., 2007). However, although there are many studies about 

the effects of heavy metals in macroalgae at the organism level (e.g. Haug et al., 1974; 

Haritonidis and Malea, 1995; Villares et al., 2001), due to the nature of these pollutants, it is 

more difficult to track these effects at the community level, being this topic very scarce in the 

literature (e.g. Castilla, 1996; Sales, 2010). Furthermore, in southern andalusian coasts, 

nutrients and heavy metals showed significant correlations (r = 0.844; p < 0.001), and the 

effects of these variables cannot be discriminated; for this reason this results must be taken 

carefully. 

 

Beyond the WFD 

 

The adaptation and application of RSL-index will improve the present knowledge of 

phycological flora of the southern Atlantic Spain. In fact, during the present work 6 species have 

been cited for the first time in Cádiz, 3 in the region (Andalusia), and the presence of Solieria 

chordalis has been confirmed in Andalusia (Bermejo et al., 2010). The application of the RSL-

index will also help the understanding of the composition, structure and functioning of the 

ecosystem in each site, being possible the monitoring of ecological changes in the long term 

(Wells et al., 2007). These data can be a baseline for measuring the response of the distribution 

of these species to global change (Boaventura et al., 2002). This fact is particularly important 

considering the special condition of the Iberian limits between the Atlantic Ocean and the 
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Mediterranean Sea. This database can also provide valuable information to identify community 

features that can be important for management and conservation programmes (Underwood, 

1991), as the presence of threatened or invasive species, or particular sites from a 

biogeographic point of view. 

In conclusion, the RSL-index showed consistent results in relation to those expected from 

the water quality analytical monitoring. However, this index did not discriminate clearly between 

good and high status classes. To achieve a better calibration and validation of this index, further 

analyses and intercalibration exercises should be carried out to adjust the intertidal scoring 

system along the Andalusian coast. 
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Chapter 2 
Application of the CARLIT index along a biogeographical gradient in the 

Alboran Sea (European Coast) 



"Yo, 

que en la piel tengo el sabor 

amargo del llanto eterno, 

que han vertido en ti cien pueblos 

de Algeciras a Estambul, 

para que pintes de azul 

sus largas noches de invierno. 

A fuerza de desventuras, 

tu alma es profunda y oscura." 

 

Joan Manuel Serrat 

(Mediterráneo, 1971) 
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ABSTRACT 

 

An index, based on littoral communities assemblages (CARLIT), was applied to assess the 

ecological status of Northwestern Mediterranean coastal waters, following the requirements of 

the European Water Framework Directive. The biogeographical particularities of the Alboran 

Sea suggested a reassessment of this index, and that was the main objective of this work. Due 

to these biogeographical particularities, two regions were proposed in the studied region, with 

new reference conditions for each region. Subsequently, by means of a multivariate analysis, 

littoral community abundances and the CARLIT index were compared with factors related to 

geomorphology, biogeography and anthropogenic pressures. Overall, the biogeographical 

component determined the distribution of littoral communities. In contrast, the ecological status 

yieded by the index only was significantly related to anthropogenic pressures. The results 

pointed out that the reassessment of the CARLIT index was suitable to evaluate the ecological 

status of the Alboran Sea. 

 

Keywords: Biological indicators; Littoral communities; Alboran Sea; Water Framework Directive; 

Macroalgae; CARLIT index. 

  

INTRODUCTION 

 

Most of the international environmental institutions have identified population density, 

urbanization, agriculture, tourism, industry, fisheries and marine transport as the main pressures 

on the coastal zone (Casazza et al., 2002; EEA, 1999; UNEP, 1996). These pressures can 

change aquatic habitats producing different forms of pollution (e.g. overgrazing, eutrophication, 

heavy metals, invasions by alien species, organic compounds) and degradation of the 

environment. The effects of this environmental degradation have been observed in littoral 

ecosystems, involving the disappearance of sensitive ecosystem engineer species, simplifying 

the architectural complexity of the communities (e.g. Arévalo et al., 2007; Orfanidis et al., 2001), 

and homogenizing ecosystems (e.g. Airoldi and Beck 2007; Coll et al., 2010). In this sense, 

different seaweeds of the order Fucales and seagrasses, some of the most important 

bioengineering species in the Mediterranean phytal zone (Feldmann, 1937; Giaccone, 1973), 

are suffering a general decline (Delgado et al., 1999; Diaz-Almela et al., 2007; Serio et al., 
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2006; Thibaut et al., 2005). These macrophytes provide habitat and canopy cover for a wide 

variety of organisms (Mangialajo et al., 2008; Vergés et al., 2009; Vizzini, 2009); consequently, 

any impact in these communities will have significant effects on shore ecosystems (e.g. Hereu, 

2004). Therefore, habitat destruction or degradation is considered the most important threat to 

the diversity, structure, and functioning of marine coastal ecosystems and to the goods and 

services they provide in the Mediterranean Sea (Claudet and Fraschetti 2010; Coll et al., 2010; 

Lotze et al., 2006).  

The European Water Framework Directive (WFD 2000 ⁄ 60 ⁄ EC) requires the use of 

biological elements to assess the ecological status of a particular Water Body with the goal of 

maintaining and improving aquatic environments, avoiding further degradation. For coastal 

waters in the context of the WFD one out of the three biological quality elements (BQEs) 

proposed are benthic macrophytes. In this context, two indices, based on the study of 

macroalgal communities along intertidal rocky shores, have been proposed for Mediterranean 

coastal waters: the cartography of littoral and upper-sublittoral benthic communities (CARLIT; 

Ballesteros et al., 2007) and the Ecological Evaluation Index (EEI; Orfanidis et al., 2001, 2011). 

The CARLIT index estimates the ecological status (ES) of a given water body from the 

cartography of the commonest littoral and upper-sublittoral communities along rocky shores. 

The communities are sorted in different sensitivity levels (SL) according to ecological and 

syntaxonomic considerations previously described (Ballesteros et al., 1984; Bellan-Santini, 

1968; Belsher, 1977; Boudouresque, 1985; Pinedo et al., 2007) and the ES is calculated 

considering the length of coast occupied for each community. On the other hand, the EEI index 

(Orfanidis et al., 2001, 2011) is based on point measurements (replicates of quadrats) of the 

relative percentage of cover of late-successional species and opportunistic ones. Our 

preliminary studies showed that both indices are sensitive to anthropogenic pressures in the 

Andalusian coast (Bermejo et al., unpublished), but CARLIT showed some methodological 

advantages. For instance, the application of CARLIT generates a cartography of littoral and 

upper-sublittoral communities; which, in itself, can be an important tool for the management of 

coastal areas, especially in marine protected areas (García-Gómez et al., 2003), and for 

conservation programmes of threatened and protected species such as Posidonia oceanica or 

Cystoseira spp. Moreover, the CARLIT methodology uses a continuous measure, which may be 

more accurate for the purpose of the WFD. In this sense, the considered spatial scale reduces 

the uncertainty in the ecological assessment associated with the high horizontal and depth-

related heterogeneity shown by macrophytic communities, which have been identified as the 

most important source of misclassifying of ES (Mascaró et al., 2013). In addition, the CARLIT 

follows a non-destructive methodology, which is essential for preservation, considering that 

recolonization of rocky bare substrates for some late successional species is very slow 

(Mangialajo et al., 2012; Thibaut et al., 2005) and repetitive, destructive samplings could be a 

threat to local populations. On the other hand, the simultaneous use of both flora and fauna 

makes this index more sensitive, providing better evidences of changes in the community 

structure (Díez et al., 2012; Underwood, 1996). For these reasons, since habitat destruction is 
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possibly the most important threat to the biodiversity in the Mediterranean Sea (Claudet and 

Fraschetti 2010; Coll et al., 2010; Lotze et al., 2006) and a global phenomenon (Novacek and 

Cleland, 2001; Pimm et al., 1995) occurring at extended spatial scales (Claudet and Fraschetti 

2010), the scale used by CARLIT makes this methodology very useful to assess and monitor 

Mediterranean coasts. Due to all these reasons, the CARLIT index has already been 

acknowledged in Spain, France, Italy and Croatia (MED-GIG, 2011) 

The geographic location of the southern Iberian Peninsula involves singular biogeographic 

and ecological conditions, receiving climatic influences from the Atlantic Ocean and the 

Mediterranean Sea. Accordingly, Pérès and Picard (1964) divided the Mediterranean Sea in 

four subregions, being Alboran sea one of those. Many marine ecologists have highlighted the 

particularities of the Alboran Sea, as it is considered a soft transition between the 

Mediterranean and the Atlantic (Báez et al., 2004; Ballesteros et al., 2007), where some typical 

Mediterranean assemblages are frequent scarce or absent, and North Atlantic macroalgal 

species such as Cystoseira tamariscifolia, Fucus spiralis, Fucus vesiculosus and Laminaria 

ochroleuca are present (Conde 1989; Flores-Moya et al., 1995). For these reasons, Ballesteros 

et al. (2007) stated clearly that reference conditions developed for the Northwestern 

Mediterranean coast were not valid for the Alboran Sea. 

Thus, in this framework, this study pursues three objectives: i) to define proper reference 

conditions to apply the CARLIT index in the Alboran Sea; ii) to assess the sensitivily of CARLIT 

to anthropogenic pressures in the coastal zone, and the influence of natural variability in the 

results yielded by the index; and iii) to estimate the ecological status of the coastal water bodies 

of the Alboran Sea (European shores) using this methodology.  

 

MATERIAL AND METHODS 

 

Sampling sites and procedure 

 

This study was carried out in 37 sites along the coast of southern Spain in the Alboran Sea, 

where more than 60 kilometres of rocky shores and exceptionally sheltered sedimentary coasts 

dominated by seagrasses or macroalgae were sampled (Fig. 1). Shores were visited from June 

to August 2011, coinciding with the peak growth of littoral communities (Ballesteros, 1992). The 

sampling survey consisted of a run of the different stretches of coast on foot and snorkelling. 

Each stretch of coast was divided in sectors based on littoral and upper-sublittoral communities 

(or combination of both types of communities; Table 1) and geomorphological categorized 

information obtained in the field (slope, morphology and natural/artificial substrate; see 

Ballesteros et al., 2007). The initial and final points of the different sectors were marked using a 

Geographical Positioning System (GPS; Magellan Triton 400). The minimal length of coast 

surveyed was 20 metres (according to X. Torras, com. pers.). Subsequently, using a 

Geographical Information System (GIS) and orthophotographs from the REDIAM (net of 

environmental information of the government of Andalusia; Southern Spain), these sectors were 
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divided again considering the coastline orientation and the degree of wave exposure measured 

as the perpendicular distance to the nearest coast. Finally, the length of each sector was 

measured. The final result is a partition of the rocky shoreline in several sectors defined 

according to littoral and upper-sublittoral communities and geomorphological characteristics, as 

in Ballesteros et al. (2007). The final result is a partition of the rocky shoreline in several sectors 

defined according to littoral and upper-sublittoral communities and geomorphological 

characteristics, as in Ballesteros et al. (2007): in this case, the geomorphological characteristics 

considered were defined based on coastline morphology, coastline slope, coastline orientation, 

substrate nature and degree of wave exposure. 

 

 
 

Fig. 1.- Geographical distribution of the different sampling points along the coast of Mediterranean coast of southern 

Spain. 1- Camarinal; 2- Punta Paloma; 3- Punta Camorro; 4- Guadalmesí; 5- Cala Arenillas; 6- Punta Carnero; 7- Bahía 

de Algeciras; 8- Puerto de Algeciras; 9- Guadarranque; 10- Torreguadiaro; 11- Calahonda; 12- Faro de Calaburras; 13- 
Torrequebrada; 14- La Araña y Rincón de la Victoria; 15- Torrox; 16- Nerja; 17- Maro y Cerro Gordo; 18- Peñon del 

santo (Almuñecar); 19- Caletón (Salobreña); 20- Cala Rijana; 21- Castel de Ferro; 22- Cala del Ruso; 23- La Alcazaba; 
24- Adra; 25- Guardias Viejas; 26- Roquetas de Mar; 27- Playa de las olas (Almería); 28- Cabo de Gata; 29- San José; 

30- Isleta del Moro; 31- Cala Carnaje; 32- El Playazo (Rodalquilar); 33- El Algarrobico; 34- Playa de Mojácar; 35- 
Villaricos; 36- Cala Panizo; 37- San Juan de los Terreros. Open dots- sites that not accomplish with reference 

conditions; Black dots- sites that accomplish with reference conditions. 
 

The CARLIT index (Ballesteros et al., 2007) is based on the cartography of littoral and 

upper-sublittoral communities of the rocky shoreline in different sectors, each one characterized 

by a community or combination of communities with a sensitively level according to ecological 

and sintaxonomic considerations previously described (Ballesteros et al., 1984; Bellan-Santini, 

1968; Belsher, 1977; Boudouresque, 1985; Pinedo et al., 2007). Due to the influence of the 

natural geomorphological variability in the development of several littoral and sub-littoral 
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communities (Ballesteros, 1992), the CARLIT index proposes different reference conditions for 

each Geomorphological Relevant Situation (GRS), which permit the correction of this natural 

variability. These GRSs are defined as the combination of the most relevant geomorphological 

factors determining the littoral and upper-sublittoral communities in reference sites with no, or 

very minor, disturbance from human activities. Thus, the environmental quality assessment of a 

stretch of coast is estimated as a ratio between the environmental quality in a particular site and 

the environmental quality in a reference site with similar geomorphological characteristics. For a 

detailed description of the CARLIT procedure see Ballesteros et al (2007). 
 

Table 1- Summarized description and sensitivity levels of the main community categories distinguished in the monitored 

coasts (modified from Ballesteros et al., 2007). 

 
Code 

Ac 

Lb 

SG 5 

OC 

Ce 5 

Ce 4 

SG 3 

SG 5- 

Ce 3 

Fs 

Ce 2 

Cc 

SG 3- 

SG 1 

Ce 1 

SG 1- 

Co 

J 

My 

Li 

Ul 

Cy 

Community 

Dense populations of Astroides calycularis 

Build-ups of Lithophyllum byssoides 

Seagrasses meadows*  

Populations of Cystoseira** different C. compressa and C. ericaefolia group 

Continuous belt of Cystoseira ericaefolia group*** 

Discontinuous belt of C. ericaefolia group 

Abundant patches of dense stands of seagrasses 

C. nodosa or Z. noltii meadows on death matte of P. oceanica 

Abundant patches of dense stands of C. ericaefolia group 

Populations of Fucus spiralis 

Abundant scattered specimens of C. ericaefolia group 

Populations of C. compressa 

Abundant patches of C. nodosa or Z.noltii on death matte of P. oceanica 

Rare scattered stands of seagrasses 

Rare scattered specimens of C. ericaefolia group 

Rare scattered stands of C. nodosa or Z. noltii on death matte of P. oceanica 

Belt of Corallina spp. without C. ericaefolia group 

Belt of Haliptilon/Jania spp. without Cystoseira ericaefolia group 

Belt of mussels (Mytilus spp.) without Cystoseira ericaefolia group 

Belt of Lithophyllum incrustans and other encrusting corallines 

Upper sublittoral belts of Ulva spp. and Cladophora spp. 

Communities dominated by Cyanobacteria and Derbesia tenuissima 

SL 

20 

20 

20 

20 

20 

19 

15 

15 

15 

15 

12 

12 

12 

10 

10 

8 

8 

8 

6 

6 

3 

1 

 

*   Seagrasses- Cymodocea nodosa (Cn), Posidonia oceanica (Po) or Zostera noltii (Zn). 

**  Others Cystoseira- C.elegans (Cel), C.foeniculacea (Cf), C.sauvegeuana (Cs), C.spinosa (Csp), C.mauritanica (Cm). 

*** Cystoseira ericaefolia group– Cystoseira tamariscifolia, C.amentacea var. stricta and C.mediterranea. 

 

The ecological differences between the Alboran Sea and the Northwestern Mediterranean 

imply a reassessment and redefinition of GRSs (Ballesteros et al., 2007). On the other hand, in 

the Alboran Sea the presence and the abundance of several littoral and upper-sublittoral 

communities respond mostly to the presence of a biogeographical natural gradient (Conde, 

1989; Báez et al., 2004; Ballesteros and Pinedo, 2004). In this sense, to reduce the influence of 

this natural gradient in the final result of the CARLIT index, the studied area was divided in 

different ecological or biogeographical regions with proper reference conditions. Therefore, 
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before to apply CARLIT index, ecological or biogeographical regions were identified and 

reference conditions were redefined for each identified region.  

 

Identifying ecological regions in European Alboran coast 

 

The ecological differences between the Alboran Sea and the Northwestern Mediterranean 

imply the inclusion of several common community categories from the former in the original 

Northwestern Mediterranean list (Ballesteros et al., 2007). Moreover, due to the ecological 

importance and the sensitivity of seagrasses to anthropogenic pressures, the degree of 

development of seagrass meadows was also considered to improve the sensitivity of the 

methodology (Table 1).  

To identify ecological or biogeographic regions based on the percentages of rocky shore 

occupied by perennial littoral and upper-sublittoral communities, a cluster analysis using group 

average linking of Bray-Curtis similarity index (Bray and Curtis, 1957) was applied among the 

37 sites. Subsequently, an analysis of species contribution to similarity (SIMPER; Clarke and 

Gorley, 2006) was carried out to detect which species contributed most to the dissimilarity 

among the identified regions.  

 

Reference conditions 

 

Reference sites were chosen from marine protected areas and sectors that fulfilled the 

criteria proposed by the Mediterranean Geographical Intercalibration Group (Med-GIG) for 

macroalgae: i) population density with settlements lower than 1000 ind/km2 in the next 15 km 

and/or more than 100 habitats/km2 in the next 3 km within that area (winter population); ii) no 

more than 10% of artificial coastline; iii) no harbour (more than 100 boats) within 3 km; iv) no 

beach regeneration within 1 km; v) no industries within the 3 km; vi) no fish farms within the 1 

km; vii) no desalination plants within 1 km; and viii) no evidence of Cystoseira forest regression 

due to other unconsidered impacts. In this case, the reference sites (black dots, Fig. 1) chosen 

were the undisturbed areas of El Estrecho Natural Park (1-5), Maro-Cerro Gordo Natural Area 

(17), Cala Rijana (20), Cabo de Gata Natural Park (28-32), Cala Panizo (36), and San Juan de 

los Terreros (37). 

To define reference conditions in Alboran Sea, the five geomorphological factors for 

reference sites were combined, obtaining different real situations characterized by one unique 

combination of geomorphological categories (e.g. high continuous coast, vertical, south, natural, 

> 1000 m). Based on the percentage of coast occupied by each community category for each 

real situation, an Analysis of Similarity (ANOSIM) and a non-metric multidimensional scaling 

(MDS) analysis (Clarke and Warwick, 2001) were performed to identify the most relevant 

geomorphological factors for each region. Subsequently, a value of Ecological Quality (EQ) was 

assigned for each identified GRS in reference places according to eq.1, being these values 

considered the highest possible (i.e., reference condition).  
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EQ = Σ (li*SLi) / Σ li                                                           (1) 

 

where EQ is the environmental quality of a particular stretch of coastline; li is the length of 

the coastline occupied by the community category I and SLi is the sensitivity level of the 

community category i. 

 

Ecological assessment  

 

According to the WFD, the ecological status has to be expressed in terms of ecological 

quality ratios (EQR). This ratio indicates the relationship between the value of the BQE (i.e., 

macroalgae) recorded for a given water body and the value for this element in the reference 

conditions applicable to that body, yielding a value between zero and one, with high ecological 

status represented by values close to one. In this case, the EQR was calculated for the stretch 

of coast studied according to eq. 2 (Ballesteros et al., 2007). 

 

EQR = ( Σ(EQSSi/EQRSi)*li) / Σ li                                                (2)                                                 

 

where i is the situation; EQSSi is the EQ in the study site for the situation i; EQRSi is the EQ in 

the reference sites for the situation i; and li is the coastal length in the study coast for the 

situation i. 

 

Response of CARLIT to natural and anthropogenic pressures 

 

To test the sensitivity of CARLIT along Alboran Sea, values of 10 environmental variables 

related to the morphology of the coastline, biogeographic factors and anthropogenic pressures, 

were obtained for each sampled locality. Variables related to the morphology of coastline (% 

artificial coast; % of coastline constituted by blocks; % of coastline constituted by high coast; 

and % of coastline constituted by low coast) were measured in situ. The mean temperature of 

seawater was obtained from REDIAM. The tidal range in each locality was obtained from the 

annual tide table of 2011 elaborated by the “Instituto Hidrográfico de la Marina Española”. The 

percentage of urban, agricultural (irrigated), industrial and natural land was calculated on ca. 9 

km2 between the coastal line sampled and 3 km inland. When the stretch of the surveyed coast 

was shorter than 3 km, this was located in the middle of the corresponding coastal fringe. The 

software used for this purpose was QGIS and the necessary geographical information was 

obtained from REDIAM. Subsequently, using the data for these ten variables a Principal 

Component Analysis (PCA) was used to reduce the number of variables avoiding repetitive 

information. The PCA solution was rotated, using Varimax rotation method, to make easier the 

interpretation of the results. Finally, this information was used to assess the response of 

CARLIT to natural and anthropogenic pressures, performing a Spearman correlation analysis 
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between the percentages of coastline occupied for each community class found and the EQR 

value of CARLIT, and the obtained principal components. 

On the other hand, to validate and make comparable our results with previous studies (e.g. 

Bermejo et al., 2012; López y Royo et al., 2011; MED-GIG, 2011), the response of CARLIT 

against antropogenic pressure was examined with two indices: Land Use Simplified Index 

(LUSI; Flo et al., 2011) and the methodology proposed by López y Royo et al. (2009). Both 

indices are based on the surface occupied for urban, agriculture and industrial activities, 

providing the former a quantitative solution, and a qualitative solution the latter. Finally, the 

response of CARLIT to anthropogenic pressures was evaluated: i) using a Pearson correlation 

analysis between the EQR value of CARLIT and total value of LUSI; and ii) performing one-way 

Analysis of Variance (ANOVA) to test the effects of human pressures estimated according to 

López y Royo et al. (2009) in the EQR. In the ANOVA, all classes complied with Shapiro–Wilk 

normality test and were homocedastic. A post hoc analysis (Tukey test; Zar 1984) was applied. 

In all cases, significance was set at 5% probability. 

 

Ecological Status of water bodies from European Alboran coast 

 

Based on the stretches of coast studied, an assessment of the Ecological Status (ES) was 

performed in 2 Atlantic water bodies and 18 Mediterranean ones, which were previously defined 

by the Government of Andalusia. The criteria of correspondence between the EQR and ES 

were the same that in Ballesteros et al. (2007): 0-0.25 (bad), 0.25-0.40 (poor), 0.40-0.60 

(moderate), 0.60-0.75 (good) and 0.75-1 (high). 

 

RESULTS 

 

Defining ecological regions in European Alboran coasts 

 

The new littoral and upper-sublittoral communities, which are proposed to be included in the 

classification list of CARLIT for the Mediterranean coast of southern Spain, are reported in 

Table 1.  It includes now: the vulnerable Cnidaria, Astroides calycularis, which is highly sensitive 

to pollution and it is included in the red list of invertebrate species in Andalusia (Moreno et al., 

2008), thus the maximum sensitivity level (SL=20) was assigned to this specie; and F. spiralis, 

which is present in the western Alboran region, where it has the distribution limit in the 

Mediterranean European coast (Conde, 1989), and it seems be more sensible to high pollution 

levels than in others areas (López-Rodríguez et al., 1997; Wilkinson et al. 2007); for these 

reasons the sensitivity level was set at 15 (SL= 15); Moreover, to improve the sensitivity of the 

CARLIT index, seagrasses were divided in six categories: 5, 5-, 3, 3-, 1 and 1-, according to a 

decreasing coverage and sensitivity level (SL= 20, 15, 15, 12, 10 and 8, respectively).   
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According to the percentage of coast occupied for the littoral and upper-sublittoral 

community categories in each site, three outliers and two ecological regions were identified 

corresponding to an arbitrary slice in the dendrogram arising from the cluster analysis at a 

Bray–Curtis similarity of 55% (Fig. 2). The first region corresponded to the western Alboran Sea 

(from 1 to 20); the second one corresponded to the eastern shores of Alboran Sea (from 20 to 

37). The boundary between both regions was situated between the localities 20 and 25, and 

temperature seems to play an important role in this division (Fig. 2). Accordingly, the SIMPER 

analysis (Table 2) showed that P. oceanica, Cystoseira ericaefolia and Mytilus spp. were the 

species that more contributed to the dissimilarity between the two regions (approximately 20% 

each one). In western Alboran Sea, P. oceanica was rare and C. ericaefolia was less frequent 

than in eastern Alboran waters; these species were found forming stands and scattered belts. In 

contrast, Mytilus was an important component of littoral communities in the western area. In the 

Eastern region, C. ericaefolia and P. oceanica were present more frequently and generally 

forming dense continuous belts and meadows, whereas Mytilus was rare. Moreover, the 

absence of F. spiralis and Lithophyllum byssoides in the Eastern region must be highlighted, 

along with Cystoseira mauritanica. In the western Alboran Sea, neither Cystoseira elegans, C. 

sauvegeuana nor C. spinosa were found. On the other hand, the three outliers can be 

attributable to high levels of pollution in site 8 (Algeciras harbour), high percentage of artificial 

coast in site 24 (Adra), and the special conditions of the intertidal in site 34 (Mojácar, where the 

intertidal zone was composed for scattered metric and decimetric blocks).  

 

 
 
Fig 2.- Dendrogram depicting mutual similarities of littoral and sub-littoral communities of the different sampled 

locations. Coloured dots refer to the mean sea surface temperature (ºC) in each locality. 
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Table 2- Results of SIMPER on benthic communities contributing to average dissimilarity between ecological regions. 

Average dissimilarity = 50.31. 

 

 

Community 

P. oceanica 

C. ericaefolia 

Mytilus spp. 

Corallina spp. 

C. compressa 

L. byssoides 

C. nodosa 

Western area 
Av. Abundance 

0.02 

0.22 

0.36 

0.90 

0.05 

0.13 

0.01 

Eastern area 
Av. Abundance 

0.49 

0.51 

0.03 

0.82 

0.17 

0.00 

0.15 

 

% Contribution 

21.49 

18.38 

18.11 

12.10 

7.98 

6.45 

6.40 
 

Defining reference conditions  

 

In western Alboran region (1-20), combining the five geomorphological factors used for 

reference sites, 50 different real situations were found. The results of the ANOSIM (Table 3) 

and MDS analysis showed that “coastline morphology” (Fig. 3) and “degree of wave exposure” 

(Fig. 4) were the most important variables determining the community categories in reference 

sites of this region, being the second variable more relevant. For coastline morphology, the 

most important differences were found between high coast (HC) and low coast (LC) (Fig. 3). In 

addition, LC situations showed a higher dispersion than HC ones. In the case of degree of wave 

exposure, “>1000 meters” and “between 0 and 500 metres” of perpendicular distance to the 

nearest coast were the commonest. On the other hand, “500-1000 metres” situation was rare. 

For this reason, only two categories of “degree of wave exposure” were considered: “>1000 

meters” and “<1000 metres” of perpendicular distance to the nearest coast. Therefore, for the 

western Alboran coast, eight GRS were obtained combining these variables (Table 4). 

 
Table 3- Results of ANOSIM for each geomorphological factor and area, based on different situations resulting from all 

the available combinations of the geomorphological variables considered in reference sites in Western and Eastern 

Alboran region according to the percentage of coast occupied by each community category for each situation. Bold 

letters mean significant correlations at: * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001. 

 

 

Geomorphological factor 
Coastal morphology 

Slope 

Natural/Artificial 

Orientation 

Wave exposure 

Western area 

Global R statistic 
0.133** 

-0.023 

n/a 

0.086 

0.186*** 

Eastern area 

Global R statistic 
0.231*** 

-0.060 

-0.255 

0.081 

0.144** 

 

In the case of eastern Alboran (21-37), 51 different real situations were obtained from the 

combination of the geomorphological factors. As in western Alboran, “coastline morphology” 

(Fig. 5) and “degree of wave exposure” (Fig. 6) were the most important variables determining 

the community categories found in the reference sites. However, in this case “coastal 
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morphology” showed a higher ANOSIM R-value (Table 3) suggesting a larger influence of this 

factor in the communities. Also in this region, degree of wave exposure was based on the two 

categories considered above. Therefore, for the eastern Alboran coast eight GRS were 

obtained (Table 4). 
 

 
  

Fig. 3 (left).- MDS analysis showing the distribution of different situations resulting from all the available combinations of 

the geomorphological variables considered in reference sites in Western Alboran region according to the percentage of 

coast occupied by each community category for each situation. High coast, low coast, metric blocks and decimetric 

blocks are indicated with different symbols and colours. 

Fig. 4 (right).- MDS analysis showing the distribution of different situations resulting from all the available combinations 

of the geomorphological variables considered in reference sites in Western Alboran region according to the percentage 

of coast occupied by each community category for each situation. The categories of “wave exposure” are indicated with 

different colours. 

 

 
 

Fig. 5 (left).- MDS analysis showing the distribution of different situations resulting from all the available combinations of 

the geomorphological variables considered in reference sites in East Alboran region according to the percentage of 

coast occupied by each community category for each situation. High coast, low coast, metric blocks and decimetric 

blocks are indicated with different symbols and colours. 

Fig. 6 (right).- MDS analysis showing the distribution of different situations resulting from all the available combinations 

of the geomorphological variables considered in reference sites in eastern Alboran region according to the percentage 

of coast occupied by each community category for each situation. The categories of “wave exposure” are indicated with 

different colours. 
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Table 4 shows the EQ values for each GRS in the two regions. Overall, eastern Alboran 

showed higher values than western Alboran, especially in exposed localities. It is remarkable 

that HC showed the lowest EQi value in the Western region; by contrast, it obtained the highest 

EQi in the Eastern region. The DB was the most rare, less abundant GRS for both regions (less 

than 5% of surveyed references shores). 
 
Table 4- Ecological quality values (EQi) calculated for the four geomorphological relevant situations in reference 

conditions for each ecological region. HC- High Coast; LC- Low Coast; MB- Metric Blocks; DB- Decimetric Blocks. Exp- 

>1000 m: No Exp- <1000 m. 

 

GRS 

Exp   HC 

Exp   LC 

Exp   MB 

Exp   DB 

No Exp   HC 

No Exp   LC 

No Exp   MB 

No Exp   DB 

EQi Western 

10.2 

17.3 

14.6 

11.6 

12.0 

14.7 

9.6 

7.1 

Long 

2900 

13550 

7760 

1080 

930 

1020 

690 

90 

EQi Eastern 

19.3 

17.9 

18.8 

16.0 

16.9 

12.9 

8.0 

8.0 

Long 

1190 

3070 

630 

190 

1230 

770 

110 

30 

 

The comparison of MDS results showed that the most important differences regarding 

coastal morphology were between HC and LC for both regions (Fig. 3 and 5). Nonetheless, in 

the Western region, the dispersion of points was high for LC and low for HC (Fig. 3). 

Conversely, in the Eastern region the dispersion for HC and LC points was similar (Fig. 5). In 

the case of “degree of wave exposure” (Fig. 4 and 6) the most important differences were found 

between “>1000 metres” and “between 0-500 metres”, being the dispersion higher in “>1000 

meters” in both regions. 

 

Response of CARLIT to natural and anthropogenic pressures 

 

The results of the PCA, carried out with ten parameters related to geomorphology, 

biogeography and human pressures in all the sampling stations, showed a decreased, but 

relatively closed contribution of the first four axes (C1 = 28.9%; C2 = 19.4%; C3 = 18.8%; and 

C4 = 15.5%) to the explanation of total variance (82.6%). As it can be seen in Table 5, the first 

component (C1) was positively correlated to the percentage of artificial coast, the percentage of 

coastline constituted by blocks and the percentage of surface occupied by agriculture, and 

inversely related to the percentage of natural surface, thus, it is related to morphological and 

agriculture pressures. The second component (C2) was directly related to the mean 

temperature and inversely to the tidal range, both parameters could be considered related to 

biogeography. The component C3 was positively related to the percentage of low coast and 

negatively to the percentage of high coast, showing geomorphological information. The fourth 

component (C4) was directly related to the percentage of urban and industrial surface, and 

negatively to the percentage of natural surface, being related to urban and industrial pressures. 
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Table 5- The coefficients of the rotated principal components, using varimax rotation method, for the ten variables.  

 

Variable 
% Artificial coast 

% Blocks 

% High coast 

% Low coast 

Tidal range 

Temperature 

% Urbanization 

% Natural 

% Industrial 

% Agriculture 

C1 
0.791 

0.655 
-0.352 

-0.249 

-0.361 

-0.142 

0.297 

-0.882 
-0.131 

0.846 

C2 
0.053 

0.380 

-0.267 

-0.095 

0.778 

-0.887 
0.486 

-0.162 

0.087 

-0.239 

C3 
0.112 

0.409 

0.784 

-0.957 
-0.267 

-0.141 

-0.149 

0.117 

0.189 

-0.075 

C4 
-0.038 

-0.363 

0.321 

0.038 

0.178 

-0.077 

0.582 

-0.499 

0.820 

-0.094 

 

The Spearman correlation matrix between the four components and the percentage of 

coastline occupied by the different categories of communities showed that C2 was the 

component that showed the highest number of significant correlations, with 15 out of 29 

community classes (Table 6). In contrast, C3 was the component that presented the lowest 

number of correlations to the community classes; 4 out of 29. The C1 and C4 yielded significant 

relationship with 10 and 6 communities respectively. 

The EQR values of water bodies showed significant correlations with components C1 (rho = 

-0.486, p-value <0.001) and C4 (rho = -0.322, p <0.05), but not with C3 and C2 (Table 6). Thus, 

CARLIT index seems be more correlated to agriculture pressures and morphological alteration 

of rocky shores, than to urban and industrial pressures. However, when the correlation analysis 

was performed separately in the two regions, it was observed that: i) in western Alboran, C2 

(rho = 0.385; p-value < 0.05) and C4 (rho = -0.726; p-value < 0.001) correlated significantly with 

EQR; ii) conversely, in eastern Alboran correlation was only significant with C1 (rho = -0.705; p-

value < 0.001), pointing out differences in anthropogenic pressures between western Alboran, 

where urban and industrial pressures were higher, and eastern Alboran, where agriculture 

pressures and morphological alteration of rocky shores were more relevant. 

The comparison between CARLIT and the indices of anthropogenic pressures confirmed 

that CARLIT was sensitive to human pressures in the European coast of Alboran Sea. In this 

sense, the ANOVA (Table 7) indicated that there were significant differences in the mean values 

of EQR between high, moderate, low and none anthropogenic pressure levels assessed 

according to López y Royo et al. (2009). The Tukey´s test revealed that a high-pressure level 

showed significant differences with the others. Overall, this high level was related to the 

presence of industrial activities or industrial harbours. The moderate-pressure level evidenced 

significant differences with the absence of pressures, but not with low-pressure levels. The low-

pressure level only showed significant differences with the high-pressure one. On the other 

hand, the Pearson correlation between EQR values and LUSI index was significant (r = -0.652; 

p-value <0.001). Furthermore, the correlation strength was higher in the western Alboran (r = -

0.799, p-value <0.001) than in Eastern region (r = -0.436, p-value < 0.05).  
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Table 6- Spearman correlation matrix of the principal components obtained, and the different communities used to 

calculate the CARLIT index. Bold letters mean significant correlations at: * p-value < 0.05; ** p-value < 0.01; *** p-value 

< 0.001. 

 

Cy 

My 

Li 

Ul 

Co 

Lb 

Fs 

Ce 1 

Ce 2 

Ce 3 

Ce 4 

Ce 5 

Cc 

Cel 

Cf 

Ch 

Cs 

Csp 

Cm 

Po 1 

Po 3 

Po 5 

Cn 1 

Cn 3 

Cn 3- 

Cn 5 

Cn 5- 

Zn 1 

Ac 

EQR 

C1 

-0.062 

0.285* 
-0.136 

0.386** 
-0.375* 

-0.528*** 
-0.387** 

0.048 

-0.206 

0.081 

-0.027 

-0.245 

-0.228 

-0.292* 
-0.001 

-0.456** 
-0.057 

0.031 

-0.518*** 

0.125 

0.312* 

-0.394** 
0.119 

-0.252 

0.094 

-0.064 

0.018 

-0.078 

-0.037 

-0.486*** 

C2 

-0.106 

0.457** 
0.313* 

-0.200 

0.196 

0.526*** 
0.579*** 

0.335* 
-0.013 

-0.037 

-0.292* 

-0.657*** 
-0.425** 

-0.367* 
-0.152 

0.202 

-0.347* 

-0.265 

0.540*** 

0.043 

-0.514** 

-0.590*** 
-0.258 

-0.409** 
0.172 

-0.348* 
-0.214 

-0.156 

0.023 

-0.159 

C3 

-0.214 

0.149 

0.005 

0.194 

0.141 

-0.246 

-0.239 

-0.040 

-0.041 

-0.085 

0.052 

-0.020 

-0.120 

0.045 

-0.357* 

-0.198 

-0.376* 

-0.265 

-0.220 

0.020 

-0.270 

0.135 

-0.192 

-0.174 

-0.125 

-0.359* 
0.117 

0.016 

0.380* 

0.015 

C4 

-0.188 

0.488*** 
0.253 

0.245 

-0.224 

-0.449** 
-0.389** 

-0.239 

-0.111 

-0.226 

-0.089 

0.163 

-0.171 

-0.135 

0.121 

-0.351* 
0.075 

0.078 

-0.463** 

-0.033 

-0.157 

0.052 

-0.033 

0.132 

0.219 

0.025 

0.064 

-0.062 

-0.116 

-0.322* 

 

Table 7- Results of the ANOVA analysis between the different anthropogenic pressure levels obtained according to 

López y Royo et al. (2009) and EQR for CARLIT. Mean and standard deviation (SD) for each pressure level and the 

results of the post hoc Tukey test are also indicated. 

 

Pressure level 

High 

Moderate 

Low 

None 

Mean 

0.56 

0.76 

0.85 

0.94 

SD 

0.15 

0.14 

0.09 

0.07 

ANOVA (sig.) 

 
<0.001 

Tukey 

 
 

X 
X 

 
X 

X 

X 
 

 

Ecological Status of European coasts of Alboran Sea 
 

Among the 20 water bodies assessed (Table 8; Fig. 7), 11 yielded a high ES, 6 were 

estimated as good, 2 as moderate and 1 as poor. In the water bodies with moderate or poor ES, 
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the longitude of rocky shore transects studied was lower than 900 m, and all cases were located 

in Algeciras Bay, where it exists a conspicuous environmental degradation due to urban and 

industrial pressures (Bermejo et al., 2012; Díaz-de Alba et al., 2011; Morales-Caselles et al., 

2007). When localities were considered instead water bodies, 21 showed a high ES, 11 were 

estimated as good, 4 as moderate and 1 as poor. The locality with poor ES (9) and two of these 

four localities with moderate ES (7 and 8) were sited in Algeciras Bay. The other two localities 

with moderate ES were located in Torrox (12) and Villaricos (32), in water bodies that were 

estimated as in good ES. 
 

Table 8- Values of EQR, LUSI, pressure level (PL) assessed according López y Royo et al. (2009) and longitude of 

coast sampled in meters corresponding to the 37 localities studied, and EQR and ES values to 20 water bodies from 

Andalusia for the year 2011. *-Reference site. 

 

Site EQR LUSI PL Long WB EQR ES 
1* 
2* 

0.94 
0.93 

0 
0 

None 
None 

2490 
4690 

1 0.94 High 

3* 
4* 

0.82 
0.89 

1 
0 

Low 
Low 

4570 
4910 

2 0.88 High 

5* 0.85 1 Moderate 3600 3 0.85 High 

6 0.74 2.5 High 2100 4 0.74 Good 

7 0.49 5 High 830 5 0.49 Moderate 

8 0.41 5 High 180 6 0.41 Moderate 

9 0.37 3.75 High 800 7 0.37 Poor 

10 
11 
12 

0.88 
0.73 
0.98 

1 
3 
2 

Moderate 
Moderate 
Moderate 

1220 
1880 
660 

8 0.82 High 

13 0.78 3.75 Moderate 880 9 0.78 High 

14 0.70 3 Moderate 1690 10 0.70 Good 

15 
16 

0.44 
0.69 

3 
4 

Moderate 
Moderate 

370 
900 

11 0.62 Good 

17* 0.80 1 Low 6730 12 0.80 High 

18 0.80 1.5 Moderate 1230 13 0.80 High 

19 0.67 2 High 1500 14 0.67 Good 

20* 
21 
22 
23 

0.89 
0.82 
0.70 
0.63 

1.25 
2 
3 

1.25 

Low 
Low 

Moderate 
Low 

1030 
3210 
710 
950 

15 0.78 High 

24 
25 

0.74 
0.66 

5 
3.75 

Moderate 
Moderate 

1400 
1700 

16 0.70 Good 

26 
27 

0.68 
1.00 

4 
2.5 

Moderate 
Moderate 

710 
450 

17 0.80 High 

28* 
29* 
30* 
31* 
32* 

0.90 
0.90 
0.99 
1.00 
0.79 

0 
1.25 
1.25 

0 
0 

None 
Low 

None 
None 
None 

1310 
1600 
1170 
600 
490 

18 0.92 High 

33 
34 
35 

0.68 
0.95 
0.45 

0 
1 
3 

High 
Low 
High 

1190 
900 

1930 
19 0.63 Good 

36* 
37* 

1.00 
0.92 

1 
2 

None 
Low 

560 
1490 

20 0.94 High 
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Fig. 7.- Ecological Status of coastal water bodies along the Mediterranean coast of Andalusia in 2011. 

 

DISCUSSION 

 

The CARLIT index is a useful tool to estimate the ecological status in the Northwestern 

Mediterranean Sea (Asnaghi et al. 2009; Ballesteros et al. 2007; Mangialajo et al. 2007). 

However, this index has some limitations that must be considered: i) The CARLIT index cannot 

assess shorelines which are completely sandy (Ballesteros et al., 2007); ii) the assessment of 

coastlines with low percentages of rocky shores may be undervalued due to the lower structural 

complexity of their upper-sublittoral macroalgal stands, which often lack extensive Cystoseira 

assemblages (Ballesteros et al, 2007); iii) This index has been developed for Mediterranean 

rocky shores with narrow tidal ranges. In oceanic environments where the tidal range is wider 

and the period is semidiurnal, this methodology can hardly be applied and it must be modified 

(Mangialajo et al., 2007). In addition, according to Ballesteros et al. (2007) the biogeographical 

differences between Alboran and Northwestern Mediterranean Sea precluded the use of 

reference conditions developed for the Mediterranean, so specific reference conditions had to 

be developed for the Alboran Sea. Furthermore, the position of the Alboran Sea, in transition 

between the Atlantic and the Mediterranean, confers to these water bodies particular dynamic 

and physico-chemical characteristics (Cano, 1977, 1978); this is also influenced by the special 

orographic features of this area, which produces complex oceanographic and meteorological 

conditions (García-Lafuente et al., 1998; García-Lafuente and Ruiz 2007). These particular 

conditions determine the distribution of seaweeds along the Alboran Sea (Conde, 1989), which 

can be considered as a soft transition between the Mediterranean and the Atlantic region (Báez 

et al., 2004; Ballesteros and Pinedo, 2004). For these reasons, besides considering different 

reference conditions than those in Northwestern Mediterranean, the Alboran Sea must be 

divided into different regions with own specific reference conditions to avoid the influence of this 

biogeographical gradient.  
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Considering the limitations of CARLIT and the special biogeographical conditions of the 

Alboran Sea, some questions must be addressed: Is the CARLIT methodology suitable to 

assess the ES in Mediterranean coastal waters of Andalusia? How many regions must be 

considered to define the reference conditions? Is the index sensitive enough to anthropogenic 

pressures in Alboran?  

 

Is CARLIT methodology suitable to assess the ES in the European coastal waters of Alboran 

Sea? 

 

The Mediterranean coast of Andalusia is divided into 35 water bodies defined according to 

their typology and their anthropogenic pressures and impacts (Fig. 7), as proposes the WFD. 

Seven water bodies are transitional and CARLIT cannot be applied. Furthermore, nine of the 

remaining water bodies are completely devoid of natural rocky shores. It is remarkable that six 

out of nine water bodies without natural rocky shore were very small and highly modified -mainly 

inner parts of harbours and marinas- and they do not represent the ecological quality of open 

waters. For these reasons, Ballesteros et al. (2007) did not consider these types of water 

bodies. Nevertheless, if highly modified waters are considered, these 6 water bodies could be 

assessed using the CARLIT index because artificial rocky shores and man-made structures, 

where some littoral and upper-sublittoral communities could be found, are present (Blanfuné et 

al., unpublished). Thus, 19 (or 25 if harbours and marinas are considered) out of 28 coastal 

water bodies could be assessed in Andalusia, comprising most of the areas of the European 

coasts of the Alboran Sea. 

However, due to special environmental and ecological conditions of the Alboran Sea, some 

methodological modifications are needed to apply the index. The tidal range, the swell, the 

structural complexity of intertidal, and the low development of intertidal assemblages hinder the 

sampling using a boat in the western Alboran. Thus, samplings were carried out on foot and 

snorkelling. Furthermore, the rocky shores of western Alboran Sea show a naturally lower 

structural complexity of their littoral and upper-sublittoral (20-30 centimetres) macroalgal stands, 

which often lack extensive Cystoseira spp. assemblages or Posidonia meadows (Table 2). To 

assess accurately this region it was necessary to increase the sensibility of CARLIT. This was 

addressed by increasing the spatial resolution of the index (20 m instead 50 m as in Ballesteros 

et al, 2007), and the depth surveyed (2 m instead of the 20-30 cm considered in Northwestern 

Mediterranean). In this way, additional sublittoral communities were monitored making the index 

more sensitive due to the increase in data availability, which might be useful for the 

management of sublittoral threatened organisms (e.g. P. oceanica, A. calycularis, Cystoseira 

spp.). However, this procedure implies higher costs in sampling effort and time consuming, 

which may reduce spatial scale by the survey of random representative subsectors of coast for 

each water body instead of covering the whole coastline (Ballesteros et al., 2007). These 

modifications can also be useful to apply the index in other places where the tidal range is 

higher than in the Mediterranean Sea. In this sense, the CARLIT index was successfully applied 
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in two Atlantic water bodies (up to 1.8 metres of maximum tidal range; water bodies 1 and 2, 

Table 8). On the other hand, when reference conditions in eastern Alboran, which is more 

similar to the Northwestern Mediterranean coast than western Alboran, were compared to 

references conditions proposed by Ballesteros et al. (2007), higher ES values were recorded for 

the water bodies in the Alboran Sea (Table 4). This fact could be explained by the 

methodological modifications stated above. In our study, smaller stands were considered as 

meadows (20 metres) in comparison to those considered by Ballesteros et al. (2007) (50 

meters), which could produce an EQ overestimation (Mangialajo, com. pers.). Moreover, the 

greater water depth considered led to the inclusion of seagrass meadows more frequently in the 

data set, therefore increasing EQ. 

 

How many regions must be considered to define the reference conditions in Alboran Sea? 

 

In this study two ecological or biogeographical regions were found: western and eastern 

Alboran (Fig. 2; Table 2). The limit was placed between the localities 20 (Cala Rijana) and 25 

(Guardias Viejas). In this sense, Álvarez-Cobelas et al. (1989), based on marine floristic 

composition, also identified an edge close to these localities (see Fig. 1). Similar results were 

found based on population genetic for very different organism like oysters (Saavedra et al., 

1993), mussels (Quesada et al., 1995), seagrasses (Alberto et al., 2008) or fishes (Bargelloni et 

al., 2003) between Mediterranean and Atlantic populations. This limit seems to be related to the 

Almeria-Oran oceanographic front (Tintore et al., 1988), which acts as hydrogeographical 

barrier between Atlantic and Mediterranean. 

In this case, the boundary localities chosen were Cala Rijana (20) and Castel de Ferro (21) 

because of the biggest change in landscape were observed between these localities. 

Temperature and tidal range seem to be key factors to explain the differences in distribution and 

development of the most littoral and upper-sublittoral communities along the Alboran Sea (Table 

6; Fig. 2). The main differences in landscape between these regions were due to the species P. 

oceanica, C. ericaefolia, Mytilus and, to a lesser extent, Corallina spp. Considering that 

oligotrophic conditions favoured the development of P. oceanica and C. ericaefolia 

assemblages (Arévalo et al., 2007; Giaccone et al., 1993; Giaccone et al., 1994a,b; Pinedo et 

al., 2007), and the oppose behaviour is expected for Mytilus beds (Arévalo et al., 2007; 

Ballesteros et al., 2007; Pinedo et al., 2007). The higher abundance of Mytilus and the lower 

development C. ericaefolia and P. oceanica assemblages besides the lower mean seawater 

temperature of western Alboran must be related to deep-water upwellings, which are common 

in this area (Rodríguez, 1990). It is remarkable that the presence of these upwellings was also 

proposed to explain the dominance of big suspension feeders in deep waters of “La Herradura” 

(Fig. 1, site 17; Cebrián and Ballesteros, 2004). All these facts reflect the importance of the 

upwellings in Alboran Sea determining the spatial patterns of distribution and abundance of 

these littoral and sublittoral habitat-forming species, which play a fundamental role in the 

ecosystem determining different biotic interaction and abiotic environmental conditions. 
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Nevertheless, others hydrodynamic factors seem to be also important for the development of 

littoral and upper sublittoral communities. The differences between reference conditions defined 

for the western and eastern Alboran Sea (Fig. 3, 4, 5 and 6; Table 4) suggest different 

hydrodynamic conditions. In this way, the Eastern region yielded higher EQ values for reference 

conditions than the Western one for HC, metric and decimetric blocks (MB and DB) in wave 

exposed conditions. This fact was related to the stronger hydrodynamic conditions (waves and 

tides) in the western Alboran. For example, the high waves that produce the movement of 

blocks and make the settlement harder for littoral organisms (e.g. Juanes et al. 2008) are more 

frequent in western Alboran than in the Eastern region. Furthermore, the higher development of 

communities dominated by C. ericaefolia is also probably favoured to the lower tidal range in 

the Eastern region (e.g. Mangialajo et al., 2012). Therefore, these facts point out to the 

existence of a natural gradient along Alboran Sea and revealing the importance of considering 

these two regions when CARLIT is applied. 

 

Is CARLIT index sensitive enough to anthropogenic pressures? 

 

The results obtained in this study suggest that CARLIT is a suitable indicator to assess the 

ES of Mediterranean coastal waters in the European coasts on the Alboran Sea. The lack of 

correlation of EQR values (Table 6) with geomorphological and biogeographical components 

(C3 and C2), and the significant relationship with anthropogenic pressures (C1 and C4) 

indicated that the index avoided the effects of natural pressures and it is sensitive to 

anthropogenic ones. Nevertheless, the heterogeneous distribution of human activities between 

eastern and western Alboran and the integrated response of littoral and sublittoral rocky shore 

communities to pressures make difficult the assessment of the sensitivity of CARLIT to 

anthropogenic pressures separately. For these reasons, the LUSI index and the approach by 

López y Royo et al. (2009) were more reliable for this purpose. Furthermore, these 

methodologies have been previously used to assess the response of different ecological indices 

(e.g. Bermejo et al., 2012; López y Royo et al., 2011; MED-GIG, 2011). 

The high correlation between EQRs and LUSI and the significant differences in EQR (Table 

7) for the different pressure levels assessed according to López y Royo et al. (2009), support 

the idea that CARLIT was sensitive to anthropogenic pressures in the European coasts of the 

Alboran Sea. Moreover, the EQR and the ecological status obtained with CARLIT in the Strait of 

Gibraltar (localities 1-9) were similar to the results obtained by Bermejo et al. (2012) using the 

RSL index for macroalgae (Wells et al., 2007) although CARLIT usually yielded slightly higher 

EQR values (Table 9) and some disagreements were identified for lower ecological status. 

These results are in accordance with those obtained in the intercalibration process for the North 

Atlantic Geographical Intercalibration Group (NEA-GIG), where a modification of the RSL 

boundaries suggested by Bermejo et al. (2012) was proposed to avoid an underestimation in 

the final EQR value (NEA-GIG, 2011). In any case, further analyses and intercalibration 

exercises should be carried out to confirm this issue. On the other hand, the correlation 
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between EQRs and LUSI was lower in the Eastern region than in the Western one. This could 

be explained by: i) differences in the resilence of communities (e.g. Viaroli et al., 2008); ii) 

differences in the effect and the intensity of agriculture and urban pressures; iii) differences in 

the gradient of human pressures considered in Eastern and Western regions; iv) physico-

chemical conditions (e.g. local strong currents can disperse the pollutants faster, thus 

maintaining low levels of contaminants); and v) recent historical events of community 

degradation that produce indefinite or very long term (relative to human timescales) changes in 

marine ecosystems (e.g. Knowlton, 2004).  
 

Table 9- EQR and ecological status values obtained for RSL (Bermejo et al., 2012) and CARLIT indices in six localities 

in the Strait of Gibraltar subregion.  

 

Locality 

1 

2 

3 

4 

5 

6 

7 

8 

9 

RSL 

0.86 – High 

0.83 – High 

0.77 – High 

0.78 – High 

0.67 – Good 

0.57 – Moderate 

0.40 – Moderate 

0.08 – Bad 

0.52 – Moderate 

CARLIT 

0.94 – High 

0.93 – High 

0.87 – High 

0.89 – High 

0.85 – High 

0.74 – Good 

0.49 – Moderate 

0.41 – Moderate 

0.37 – Poor 

 

Overall, European coastal waters of the Alboran Sea evidenced good or high ES (Fig. 7; 

Table 8). Exceptionally, three water bodies in Algeciras Bay showed moderate or poor 

ecological status. This could be explained for natural characteristics of these water bodies, 

anthropogenic pressures and methodological causes: i) natural causes would be related to the 

geomorphology of the area, which have low hydrodynamic and high water renewal time, and 

thus is more susceptible to water pollution processes. In addition, two rivers flow into this Bay, 

affecting the water quality; ii) The bay is severely industrialised (Díaz-de Alba et al., 2011; 

Morales-Caselles et al., 2007; Morillo et al., 2007; Sánchez de la Campa et al., 2011), so that 

water bodies were classified as modified or highly modified; iii) The CARLIT index allows to 

localise small sewage outfalls and other environmental pressures at a reduced scale, which is 

extremely important in the establishment of accurate management plans (Ballesteros et al., 

2007). However, when the ES was estimated for a particular water body, the EQR values can 

be dependent on the spatial scale. For instance, the presence of a degraded stretch of coast in 

a small water body will have noteworthy consequences on the final scores. In contrast, the 

same degraded stretch of coast in a greater water body could be unnoticed (Table 8, 35 – 

Villaricos, and 15 – Torrox).   
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Beyond the WFD 

 

The application of CARLIT will aid in the understanding of the composition, structure and 

functioning of the coastal ecosystem, making feasible the monitoring of ecological changes in 

the long term (Wells et al., 2007). This data set can be a baseline for measuring the response of 

the distribution of considered species and communities to global change (Boaventura et al., 

2002). This fact is particularly important considering: i) the special condition of Alboran Sea as 

the limit between the Atlantic Ocean and the Mediterranean Sea (Alberto et al., 2008; Conde, 

1989); ii) that habitat destruction or degradation as the most important threat to the diversity, 

structure, and functioning of marine coastal ecosystems and the goods and services they 

provide in the Mediterranean Sea (Claudet and Fraschetti, 2010; Coll et al., 2010; Lotze et al., 

2006); iii) that some of the species recorded are protected by specific national or international 

legislation (e.g. Convention for the Protection of the Marine Environment and the Coastal 

Region of the Mediterranean).  

In conclusion, although temperature and tidal range were the most important factors to 

explain the distribution of littoral and upper-sublittoral communities along the Alboran Sea, the 

CARLIT index was sensitive to anthropogenic pressures. In practise, two regions should be 

considered to accurately assess the ecological status of the European coastal waters of the 

Alboran Sea, encompassing the natural variations that occur over the coast. However, although 

the CARLIT index was sensible to anthropogenic pressures, the EQR values and the final 

ecological status can be dependent on the length of rocky shore in the water body assessed. 
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Chapter 3 
Comparison of two indices based on macrophyte assemblages to assess the 
ecological status of coastal waters in the transition between the Atlantic and 

Mediterranean eco-regions 



"Y mientras tanto,  

no hay nada más exacto que la vida 

y sin embargo no la comprendemos." 

 

Miguel Sánchez Robles 

(El Tiempo y la Sustancia, 2000) 
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ABSTRACT 
 
Several indices based on the composition and abundance of aquatic flora have been developed 

to assess the ecological status of coastal waters along the European coasts in the context of 

the Water Framework Directive. This Directive pointed out the intercalibration of indices based 

on the same biological element within an eco-region to ensure the consistency and 

comparability among them. For a better management of coastal areas in the transition zone 

between two eco-regions, the comparison of indices developed for each eco-region may also be 

necessary. The aim of this work was to compare two indices based on macrophytes that have 

been proposed for two different and adjoining eco-regions: the RSL (Reduced Species List) in 

the Atlantic eco-region and the CARLIT (Cartography of littoral and upper sublittoral 

communities) in the Mediterranean. These indices were applied in 14 sites in the transition 

between the Atlantic Ocean and the Mediterranean Sea, where a wide range of anthropogenic 

pressures can be found, from high (Algeciras Bay) to almost negligible (“El Estrecho” Natural 

Park). Overall, both indices were sensitive to anthropogenic pressures and suitable to assess 

the ecological status. The comparison between indices suggested a bias in the assessment of 

the ecological status between good and high classes due to a different definition of high 

ecological status class between RSL and CARLIT. In addition, the most important 

disagreements between indices were found in the most degraded localities. The results 

showed, however, a high comparability between RSL and CARLIT despite their marked 

conceptual and methodological differences. 

 

Keywords: Macroalgae; Atlantic Ocean; Mediterranean Sea; Water Framework Directive; RSL; 

CARLIT. 

 

INTRODUCTION 
 

The European Water Framework Directive (WFD 2000/60/EC) requires the use of biological 

elements to assess the ecological status (ES) of a particular water body with the goal of 

maintaining and improving aquatic environments, avoiding further degradation. In the case of 

coastal water bodies (WBs), macroalgae have been one of the four biological quality elements 

(BQEs) proposed.  
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Macroalgal communities are sensitive to an array of anthropogenic pressures (e.g. 

Borowitzka, 1972; Gorostiaga and Díez, 1996; Díez et al., 1999), but they may be confounded 

by variability caused by natural environmental factors (Crowe et al., 2000), which may be major 

drivers of community structure (Moss, 2007). To avoid the influence of this natural variability in 

the ecological assessment, the WFD divided the European waters in relevant eco-regions 

(Mediterranean, Baltic, Black Sea and Atlantic) and coastal water bodies were classified 

according to environmental characteristics to define different types (IES, 2009). In spite of this 

practical classification, all the particularities of an entire eco-region cannot be taken into account 

(e.g. Guinda et al., 2008) and it is not possible to develop a single indicator, even based on the 

same BQE, to assess the ES of all coastal waters within the same eco-region. Furthermore, 

there is also the age-old problem of those carrying out the monitoring, which are often unwilling 

to change from their usual practices (Hering et al., 2010). As a result, several indices have been 

developed for each ecoregion for the same BQE in the framework of the WFD. 

Although Member States are allowed to use their own national classification systems, 

adequate comparability and consistency has been sought through the process of 

intercalibration, undertaken by the different Member States within an eco-region (European 

Commission, 2000 – Annex V). In consequence, intercalibration between indices developed for 

different eco-regions is not necessary under the WFD. However, in border areas, the 

comparison between indices developed for different eco-regions can be useful for local 

management of coastal waters and for the identification of possible biases in the ES 

assessment. This becomes particularly important considering legal implications when a good 

ES is not reached for a water body (European Commission, 2000).  

Due to the geographical position of the Strait of Gibraltar, on the boundary between the 

Atlantic and the Mediterranean eco-regions, up to seven indices based on the BQE macroalgae 

could be applied: five developed for the North East Atlantic ecoregion: CFR (Guinda et al., 

2008; Juanes et al., 2008;), RSL (Wells et al., 2007), CCO (NEA GIG, 2011), RICQI (Díez et al., 

2012), MarMAT (Neto et al., 2012); and two in the Mediterranean: EEIc (Orfanidis et al., 2001; 

Orfanidis et al., 2011) and CARLIT (Ballesteros et al., 2007). This diversity of indices based on 

macroalgal assemblages reflects the suitability of this BQE as bioindicator and the importance 

of biogeographical differences in the assessment of the ES. In Mediterranean coasts of 

Southern Spain, the CARLIT methodology was considered the most suitable (Bermejo et al., 

2013). The index follows a non-destructive methodology and it generates useful cartography of 

littoral and upper-sublittoral communities (Ballesteros et al., 2007). In Atlantic coasts of 

Southern Spain, the RSL was the methodology chosen because it produces an appropriate 

assessment of the ecological status based on the macrophyte community features of this region 

(Bermejo et al., 2012). 

The present work was intended to perform a direct comparison between a Mediterranean 

(CARLIT) and an Atlantic (RSL) index in the transitional area between these two ecoregions. 

The goals of this study were: i) to check the sensitivity of both indices, RSL and CARLIT, to 

anthropogenic pressures assessed according to Mediterranean and North-East Atlantic 
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Geographical Intercalibration Groups (Med GIG and NEA GIG) and ii) to evaluate the 

comparability between these indices in the transition zone, in order to ensure the consistency of 

the ecological assessment in the Mediterranean and Atlantic coast of southern Spain. 

 

MATERIAL AND METHODS 

 

Study area 

 

Samplings were conducted in the Strait of Gibraltar (Fig. 1), the boundary zone between the 

Atlantic and Mediterranean eco-regions, from May to July 2011 (excepting Algeciras harbour -

2010-, and Torreguadiario -2012-), coinciding with the seasonal peak of growth in littoral 

macroalgal communities (González, 1994). The study was carried out in 14 sites covering a 

wide range of anthropogenic disturbances (Fig. 1): El Estrecho (Strait of Gibraltar) Natural Park 

(1-8), Algeciras Bay (9-11) and Western Alboran (12-14). 

 

 
 
Fig. 1.- Geographical distribution of the different sampling points along the European Coast of the Strait of Gibraltar and 

Western Alboran Sea. The geographical border proposed by the WFD between Atlantic and Mediterranean ecoregions 

is indicated with the black line. 1- Camarinal; 2- Piscinas de Baelo; 3- Punta Paloma; 4- Tarifa island; 5- Tarifa harbour; 

6- Punta Camorro; 7- Punta Carnero; 8- Punta San García; 9- Algeciras Bay; 10- Algeciras harbour; 11- Guadarranque 

river mouth; 12- Torreguadiaro; 13- Cala de Mijas; 14- Calaburras. Open dots- sites in highly modified water bodies; 

Black dots- sites in natural water bodies. 

 
The Strait of Gibraltar Natural Park is the sector where the marine and coastal environment 

is less influenced by anthropogenic pressures. Only point source anthropogenic pressures 

associated with towns (i.e., Tarifa) and residential areas (sites 4-8), as well as diffuse pressures 

related to marine traffic and industrial activities from Algeciras Bay (sites 7 and 8) are found. In 
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contrast, Algeciras Bay supports a high population density and it is heavily industrialised 

(Morales-Caselles et al., 2007; Morillo et al., 2007; Díaz-de Alba et al., 2011), being the most 

disturbed sector studied. Furthermore, the geomorphology of this sector determines a lower 

hydrodynamic exchange and favours higher water renewal times in comparison with more 

exposed zones, making the sector more susceptible to water pollution. Finally, anthropogenic 

pressures are lower in western Alboran than in Algeciras Bay. The human disturbances are 

associated with the urbanization of the coast. Despite this anthropogenic impact that may affect 

littoral and upper sublittoral communities, it is remarkable the presence of a Site of Community 

Importance (Council Directive 92/43/EEC on the Conservation of natural habitats and of wild 

fauna and flora) due to the biogeographical importance of Calahonda (13) and Calaburras (14), 

which have been proposed as the limit between the Atlantic and the Mediterranean for the 

northern coast of Alboran Sea (Conde, 1989; González, 1994; García-Raso et al., 2010). 

Although each sector has their own particularities due to the transitional character of this 

region, the general intertidal zonation pattern of benthic communities along the studied area can 

be divided into three main fringes: i) the upper littoral, which is dominated by the small barnacle 

Chthamalus stellatus, small caespitose red seaweeds (i.e. Gelidium pusillum, Chondracanthus 

acicularis, Osmundea hybrida), Fucus spiralis, and Ulva spp.; ii) the low littoral dominated by 

Corallina spp. and Mytilus spp.; and iii) the upper sublittoral characterized by Cystoseira spp., 

Asparagopsis spp., Halopithys incurva, Sphaerococcus coronopifolius, or Halopteris scoparia 

among others (Seoane-Camba, 1965; Conde, 1984; Pérez-Llorens et al., 2012). 

 

CARLIT and RSL indices 

 

In each site, two different methodological approaches to assess the ES of coastal waters 

based on macroalgal rocky-shore communities were applied and compared: the CARLIT 

(Ballesteros et al., 2007; Bermejo et al., 2013) and the RSL indices (Wells et al., 2007; Bermejo 

et al., 2012). 

The RSL index was developed by Wells et al. (2007) for the coasts of the British Isles. This 

is a multimetric index based on species occurrence from a reduced species list. In this case, the 

index was applied considering the modifications proposed by Bermejo et al. (2012) for the 

Atlantic coast of southern Spain. The main modifications include the use of formal transects of 

50-60 m instead undefined stretches of coast, the adaptation of the reduced species list 

(including two species of seagrasses: Cymodocea nodosa and Posidonia oceanica) and the 

scoring criteria for each of the five elements that compose this index (Corrected species 

richness, number of red algae, proportion of green algae; proportion of late successional 

species -ESG I-; and proportion of opportunist species) for the studied area. However, the ES 

classification of the different localities was fulfilled according to the further modifications posed 

by the NEA GIG (2011) resulting from the intercalibration process (Table 1) (European 

Commission, 2013).  
 
 
 



Chapter 3 91 
 

Table 1- Boundaries for the classification of Ecological Status in the RSL (after NEA GIG, 2011) and CARLIT 

(Ballesteros et al., 2007) indices. ESC: Ecological Status Class. EQR: Ecological Quality Ratio.  
 

ESC 

High 

Good 

Moderate 

Poor 

Bad 

EQR RSL 

1.00 - 0.75 

0.75 - 0.48 

0.48 - 0.40 

0.40 - 0.20 

0.20 – 0.00 

EQR CARLIT 

1.00 - 0.75 

0.75 - 0.60 

0.60 - 0.40 

0.40 - 0.25 

0.25 – 0.00 

 

The CARLIT index was developed by Ballesteros et al. (2007) for the NW Mediterranean 

Sea. This methodology is a unimetric index that estimates the ES from the cartography of the 

commonest littoral and upper-sublittoral communities along the entire rocky shores of a Water 

Body, which is divided in different sectors, each one characterized by a community category or 

combination of communities with a sensitivity level (SL). For this study, the CARLIT index was 

applied according to the adaptation proposed by Bermejo et al. (2013) for this area, which 

included new community categories and reference conditions. Moreover, this adaptation 

included some important methodological modifications from Ballesteros et al. (2007) such as: i) 

samplings were carried out by walking and snorkelling instead on boat; ii) the spatial resolution 

was increased (20 m instead 50 m); and, iii) the depth considered in our study was increased up 

to 2 m instead of 20-30 cm. Furthermore, as it was not possible to survey the whole rocky 

coastline, data were collected in continuous sampling units between 0.5 and 1.5 km, except for 

Algeciras harbour, where the length of natural rocky shore was only 180 m. The boundaries 

used for ES classification of the different localities are reported in Table 1 (Ballesteros et al., 

2007; Bermejo et al., 2013). 

 

Anthropogenic pressures assessment 

 

Anthropogenic pressures were estimated in each site using the methodologies proposed by 

the NEA GIG and Med GIG. For the Atlantic eco-region, the NEA GIG (2011) proposed an 

anthropogenic pressures assessment system (NEA-PA). This methodology is based on a semi-

quantitative assessment of three types of pressures (urban, industrial and diffuse discharges) 

considering the distance to punctual sources of pollution and the intensity of these pressures 

(e.g., population equivalent in the case of discharges). A total of 4 or 5 levels were defined (0 – 

no pressure to 4 – very high) for each type of pressure. In this case, the criteria used to define 

diffuse pressures were clarified based on López y Royo et al. (2009), and further limits for urban 

and industrial discharged were established (Table 2). The final value of the anthropogenic 

pressure was the sum of the three types of pressures considered. Theoretically, this index 

offers a quantitative value between 0 at the best and 11 in the worst situation.  

Land Use Simplified Index “LUSI” (Flo et al., 2011) is the methodology used by the Med GIG 

(2011) to estimate anthropogenic pressures. This scoring system is based on the analysis of 

aerial images considering urban, agricultural and industrial surface, degree of water 
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confinement in each site and the influence of rivers. The LUSI provides a quantitative estimation 

of pressures between 0 at the best and 8.75 in the worst situation. 
 

Table 2- Scoring system used to assess the pressures related to industrial and urban discharges (extracted from Annex 

1 of Lisbon NEA-GIG meeting), and diffuse pressures. High Risk pressures (HRP) were considered chemicals, paper 

mills and others included in the IPPC (International Plant Protection Convention). 

 
Urban and industrial discharges 

 Distance (m) 

Population equivalent 

<2000 

2000-10000 

10000-15000 

>15000 (or HRP) 

 

2500-1500 

0 

0 

0 

1 

 

1500-500 

0 

0 

1 

2 

 

500-100 

0 

1 

2 

3 

 

100-50 

1 

2 

3 

4 

 

<50 

2 

3 

4 

4 

 

Diffuse pressures 

 Distance (m) 

Pressure 

River mouths 

Industrial habours 

Commercial harbours 

Marinas 

>5000 

0 

0 

0 

0 

5000-2500 

1 

1 

0 

0 

2500-1000 

2 

2 

1 

0 

1000-500 

3 

3 

2 

1 

<500 

3 

3 

3 

2 

Land use in one km2 >90% Natural (0) 
>50% Natural or 

>90% Agriculture (1) 
>50% Urban (2) >90% Urban (3) 

 

Data analyses 

 

To test the sensitivity of the elements used to calculate the RSL and CARLIT indices, and to 

identify possible disagreements between the methodologies used to estimate anthropogenic 

pressures, a Spearman correlation analysis was performed between the EQR values provided 

by both indices, and the total value of anthropogenic pressures. This analysis was also 

performed for the absolute values of the elements that compose the RSL and CARLIT indices. 

In all cases significance was set at 5% probability. 

Additionally, the comparability of both indices was assessed, using a Pearson correlation 

analysis between the EQR values provided by both methodologies and the two approaches 

proposed in the intercalibration exercise: the boundary bias and the class agreement (European 

Commision, 2011).  

The boundary bias was defined as the deviation in the relative positioning of relevant class 

boundaries (high-good and good-moderate) measured by the magnitude and direction of 

deviation by a class boundary of one method relative to the average boundary position derived 

from all methods participating in the exercise (European Commission, 2011). This value is 

expressed in class equivalents and it should not exceed 0.25 units.  

To calculate the boundary bias, a linear equivalence model was performed based on the 

EQRs obtained by each method. In this case, the EQR value of the RSL was selected as the 

common metric or the dependent variable, considering that this index was previously 
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intercalibrated in the NEA GIG for southern Spain (NEA GIG, 2011). Based on this regression, 

CARLIT boundaries were expressed in the common metric (EQR RSL) and the BIAS between 

both methodologies was calculated according to equation 1 (Option 2; Birk et al., 2011): 

 

(1) BIAS =  (lBPx - lABP) / (CWx) 

 

where lBPx is the lower boundary position for the “x” index in the common metric for the studied 

class; lABP is the lower average boundary position considering all methods in the common 

metric; and CWx is the width of the class in which the lABP value would be classified for the 

studied method "x" (see more details in Birk et al., 2011). 

On the other hand, the class agreement was performed using the absolute average class 

difference (AACD, European Commission, 2011). The AACD was calculated by averaging 

scores, considering the difference in class obtained and the number of classes between 

evaluations, i.e. a value of 0 is assigned to sites evaluated in the same class by both 

classification systems, 1 to sites with one class difference between classification systems, 2 to 

sites with two classes differences, and so on. The criterion proposed for sufficient comparability 

between classification systems is less than a half class difference (0.5) considering only upper 

class boundaries (high-good and good-moderate) according to the general principles of 

comparability analysis (European Commission, 2011). 

 

RESULTS 
 

The values for LUSI and NEA-PA showed a high degree of correlation in the studied area (ρ 

= 0.939; p < 0.001). This suggests that anthropogenic pressures were estimated similarly in 

both ecoregions despite the differences between those methodologies. In general terms, RSL 

and CARLIT were sensitive to anthropogenic pressures, obtaining worse ecological quality 

values at the sites located in Algeciras Bay, where the marine and coastal environment is more 

disturbed by human activities, and the highest ecological quality values in the El Estrecho 

Natural Park, where the human pressures are lowest (Table 3; Fig. 2 a, b). Despite the marked 

differences between the two methodologies the obtained results were quite similar in the 

qualitative assessment of the ES. Nevertheless, it is important to notice that the EQR values 

yielded by CARLIT were overall higher than the EQR values yielded by RSL.  
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Fig. 2 – Relationship between the EQR results obtained by the RSL and CARLIT indices, and the anthropogenic 

pressures values assessed according to NEA GIG (NEA-PA) (A) and Med GIG (LUSI) (B). 
 
Table 3- Scores of anthropogenic pressures according to the LUSI and NEA-PA indices, EQR and ES values rendered 

by RSL and CARLIT. Name of localities as in Fig 1. * - Highly modified water body. Localities with controversial results 

are shaded. 

 
Locality NEA-PA LUSI EQR-RSL EQR-CARLIT ES-RSL ES-CARLIT 

1 0 0 0.80 0.95 High High 

2 0 0 0.86 1.00 High High 

3 0 0 0.84 0.92 High High 
4 2 1 0.80 0.70 High Good 

5 2 1 0.62 0.70 Good Good 

6 1 0 0.83 0.95 High High 

 7 2 1 0.69 0.95 Good High 

8 2 2.5 0.57 0.70 Good Good 

9* 3 5 0.40 0.49 Moderate Moderate 

10* 7 5 0.11 0.41 Bad Moderate 

11* 5 3.75 0.52 0.37 Good Poor 

12 2 1 0.63 0.88 Good High 

13 4 3 0.61 0.74 Good Good 

14 3 2 0.75 0.91 High High 

 
 
RSL index 

 

The values of all elements used to calculate the RSL index showed the worst values in 

Algeciras Bay whereas the best results were found in El Estrecho Natural Park (Table 4). The 

correlation analysis between the metrics considered in the RSL index, and anthropogenic 

pressures indicated that all elements were correlated significantly with anthropogenic pressures, 

according to the expected trend (Table 5). Proportion of green algae and proportion of 

opportunists were the elements with the lowest correlation coefficients. It is remarkable that the 
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integration of all information in the final score for the RSL showed the highest value of 

Spearman coefficient for anthropogenic pressure values. 
 
Table 4- Values of the elements used in the RSL index. * - Highly modified water body. 

 
 

Locality 

1 

2 

3 

4 

5 

6 

7 

8 

9* 

10* 

11* 

12 

13 

14 

Species 
richness 

32 

35 

39 

40 

28 

35 

32 

25 

23 

7 

19 

21 

25 

30 

Corrected Species 
richness 

26 

33 

32 

32 

23 

28 

25 

23 

22 

7 

18 

23 

24 

28 

Number of 
red algae 

17 

19 

20 

22 

16 

18 

20 

14 

12 

2 

13 

13 

10 

14 

Proportion of 
green algae 

0.125 

0.171 

0.179 

0.225 

0.214 

0.171 

0.219 

0.160 

0.348 

0.571 

0.263 

0.190 

0.200 

0.170 

Proportion 
of ESGI 

0.469 

0.514 

0.513 

0.400 

0.357 

0.486 

0.375 

0.320 

0.174 

0.000 

0.316 

0.381 

0.440 

0.430 

Proportion of 
opportunists 

0.031 

0.057 

0.077 

0.075 

0.107 

0.029 

0.093 

0.160 

0.130 

0.429 

0.105 

0.095 

0.087 

0.071 
 

Table 5- Values of ρ coefficients for the Spearman correlation matrix between the elements of the RSL index and 

values of anthropogenic pressures according to LUSI and NEA-PA. * p < 0.05; ** p < 0.01; *** p < 0.001.  

 
Elements 

Corrected species richness 

Number of red algae 

Proportion of green algae 

Proportion of ESG I  

Proportion of opportunist 

EQR RSL 

Gross elements 
Species richness 

Number of green algae 

Number of ESG I 

Number of ESGII 

Number of opportunist 

LUSI 

-0.792*** 

-0.787*** 

0.615* 

-0.837*** 

0.770** 

-0.890*** 

 

-0.799*** 

-0.122 

-0.901*** 

-0.378 

0.362 

NEA-PA 

-0.728** 

-0.761** 

0.645* 

-0.746** 

0.626* 

-0.803*** 

 

-0.764** 

-0.258 

-0.860*** 

-0.452 

0.211 

 

In the case of proportion of green seaweeds, the positive and significant correlation with 

anthropogenic pressures was not due to an increase in the number of green seaweeds in 

disturbed sites, as there was a lack of correlation of number of green seaweeds with 

anthropogenic pressures (Table 5). In the same manner, the proportion of opportunist species 

showed a direct correlation with the pressure level that was not related to an increase in the 

number of opportunist species in degraded sites. In contrast, the negative correlation between 

the proportion of ESG I and human disturbances was associated with a decrease in the number 

of late successional or perennial species, as showed by the significant and negative correlation 

between the number of ESG I and anthropogenic pressures. The number of opportunist and 

pollution tolerant species (ESG II; see Orfanidis et al. (2001) and Arévalo et al. (2007)) did not 
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show a significant correlation with human pressures (ρ = -0.378 for LUSI; ρ = -0.452 for NEA-

PA; p > 0.05), but showed a negative trend, decreasing when pressures were high. On the 

other hand, the corrected species richness and the species richness yielded similar results as 

the correction factor is based on the physical complexity of the intertidal, and this complexity 

was very similar among the sampled localities (data not shown). 

 

CARLIT index 

 

The proportion of coast covered by the main community categories found in the 14 sampling 

localities is presented in Table 6. Belts of mussels (Mytilus spp.) were scarce or absent in El 

Estrecho Natural Park. In this sector the macroalgae Lithophyllum byssoides and Fucus spiralis 

were important elements in upper littoral zone. Cystoseira tamariscifolia was also present, but 

this species did not form continuous belts. In contrast, in Algeciras Bay, the intertidal landscape 

was dominated by Mytilus spp. and Corallina spp., being sensitive species such as Cystoseira 

spp., seagrasses and Lithophyllum byssoides absent. Finally, in western Alboran there was a 

remarkable presence of stands of the seagrasses Posidonia oceanica and Cymodocea nodosa 

and a major development and density of Cystoseira tamariscifolia assemblages. In this sector, 

beds of Mytilus were also an important component of littoral communities. 
 

Table 6- Proportion of coast dominated or co-dominated by the main community categories described in Bermejo et al. 

(2013) for the Alboran Sea. 

 
Locality 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Ac 

0.00 

0.00 

0.00 

0.09 

0.09 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

My 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.32 

0.06 

0.27 

1.00 

1.00 

1.00 

0.25 

0.12 

Lb 

0.00 

0.80 

0.45 

0.43 

0.43 

0.73 

0.90 

0.38 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Li 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.24 

0.44 

0.00 

0.76 

0.80 

0.00 

0.00 

Co 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.90 

1.00 

1.00 

0.00 

1.00 

1.00 

0.72 

1.00 

Ul 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.86 

0.29 

0.00 

0.00 

Cc 

0.00 

0.00 

0.00 

0.00 

0.00 

0.07 

0.12 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Cf 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

0.00 

0.00 

Ch 

0.00 

0.52 

0.21 

0.00 

0.00 

0.28 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Cm 

0.00 

0.28 

0.75 

0.00 

0.00 

0.15 

0.19 

0.06 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Ct 1-2 

0.40 

0.12 

0.25 

0.00 

0.00 

0.13 

0.12 

0.32 

0.00 

0.00 

0.00 

0.07 

0.34 

0.08 

Ct 3 

0.60 

0.88 

0.75 

0.00 

0.00 

0.10 

0.11 

0.00 

0.00 

0.00 

0.00 

0.93 

0.27 

0.52 

Ct 4-5 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.05 

0.08 

Fs 

0.00 

0.00 

0.45 

0.02 

0.02 

0.16 

0.47 

0.32 

0.00 

0.00 

0.00 

0.00 

0.00 

0.12 

Po 1 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.11 

0.00 

Po 3 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.52 

0.52 

Cn 1 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.05 

Cn 3- 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.47 

0.00 

 
Ac - dense populations of Astroides calycularis, My - belts of Mytilus spp., Lb - build-ups of Lithophyllum byssoides, Li - 

belts of L. incrustants, Co - belts of Corallina spp., Ul - upper sublittoral belts of Ulva spp., Cc - populations of 

Cystoseira compressa, Cf - populations of C. foeniculacea, Ch - populations of C.humilis, Cm - populations of C. 

mauritanica, Ct 1-2 - scattered individuals of C. tamariscifolia, Ct 3 - stands of C. tamariscifolia, Ct 4-5 - continuous belt 

of C. tamariscifolia, Fs - Fucus spiralis, Po 1 - scattered stands of Posidonia oceanica, Po 3 - dense stands of P. 

oceanica, Cn 1 - scattered stands of Cymodocea nodosa, Cn 3- - dense stands of C. nodosa on death matte of P. 

oceanica. 
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The stretches of coast surveyed were classified in seven different SL according to the littoral 

and upper sublittoral communities found (Table 7). The SL 19 was rare. For this reason, SL 19 

and SL 20 were considered together for further Spearman correlation analysis. The minimum 

sensitivity level reached in this study for a stretch of coast was 6. Belts of mussels or encrusting 

corallines, without sensitive species, dominated these stretches. The proportion of coast 

dominated for very sensitive littoral and sublittoral communities (SL 19-20) was major in El 

Estrecho Natural Park, due to the presence of Lithophyllum byssoides, and in to a lesser extent, 

small patches of Cystoseira mauritanica and C. humilis. In Western Alboran, the highest 

sensitivity levels were associated with Cystoseira tamariscifolia belts. In contrast, very sensitive 

communities were absent in Algeciras Bay.  
 

Table 7- Proportion of coast classified in a determined sensitivity level according to Bermejo et al. (2013). * - Highly 

modified water bodies. 

 
Locality 

1 

2 

3 

4 

5 

6 

7 

8 

9* 

10* 

11* 

12 

13 

14 

SL 6 
0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.203 

0.593 

1.000 

1.000 

0.000 

0.000 

0.000 

SL 8 
0.000 

0.000 

0.000 

0.568 

0.568 

0.088 

0.097 

0.419 

0.407 

0.000 

0.000 

0.000 

0.115 

0.000 

SL 10 
0.242 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.041 

0.165 

0.076 

SL 12 
0.154 

0.000 

0.246 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.033 

0.086 

0.000 

SL 15 
0.604 

0.196 

0.000 

0.000 

0.000 

0.048 

0.000 

0.000 

0.000 

0.000 

0.000 

0.820 

0.583 

0.515 

SL 19 
0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.409 

SL 20 
0.000 

0.804 

0.753 

0.432 

0.432 

0.864 

0.903 

0.378 

0.000 

0.000 

0.000 

0.107 

0.050 

0.000 

 
The Spearman correlation analysis between the proportion of coast with a determined SL 

and the values of anthropogenic pressure (Table 8) showed that only the lowest and highest SL 

were significantly correlated with anthropogenic pressures. On the other hand, the integration of 

all information in the final EQR score for the CARLIT index showed the highest values of the 

Spearman coefficients for anthropogenic pressure values.   
 
Table 8- Values of ρ coefficients for the Spearman correlation matrix between the proportion of coastline with different 

sensibility and final EQR CARLIT, and values of anthropogenic pressures according to LUSI and NEA-PA. * p-value < 

0.05; ** p-value < 0.01; *** p-value < 0.001 

 
Sensitivity level 

6 

8 
10 

12 
15 

19-20 
EQR CARLIT 

LUSI 
0.772** 

0.188 

-0.068 

-0.354 

-0.329 

-0.653* 

-0.840*** 

NEA-PA 
0.640* 

0.087 

0.021 

-0.348 

-0.222 

-0.571* 

-0.782*** 



98 Chapter 3 
 

 
 

Comparability between indices 

 

The EQR values estimated by the CARLIT and RSL indices showed a significant linear 

correlation (r = 0.832; p < 0.001; Fig. 3). However, it is important to notice that the EQRs yielded 

by CARLIT were overall higher than the EQRs yielded by RSL, being the average difference 

0.11 EQR units. Considering this fact and the identical boundary for high-good ES proposed for 

RSL and CARLIT (Table 1), a bias was evident. To quantify this bias according to equation 1, 

the equivalence between CARLIT and RSL was calculated from a linear model (R2 = 0.69), 

being EQR CARLIT values transformed to EQR RSL following equation 2. 

 

(2) EQR RSL = 0.8* EQR CARLIT + 0.032   

 

 
Fig. 3 – Linear regression between the EQR results obtained by the CARLIT and RSL indices (dashed line) and 

expected trend (solid line). 

 
When boundary bias were analysed based on equation 1, it was found that the main 

disagreement between CARLIT and RSL was found between the high and good boundary 

classes, as the former index did not fulfil the criterion of comparability of less than 0.25 (bias = -

0.276 class equivalent). The rest of comparisons fulfilled this criterion. In this sense, it is 

remarkable the small bias between good and moderate ES for CARLIT (bias = 0.116) and RSL 

(bias = -0.069), which reflects the agreement in the definition of the boundary between these ES 

classes. 

The qualitative comparison of the results yielded by the two indices is shown in Table 3. 

Both indices showed the highest EQR and ES values in El Estrecho Natural Park, and the 

lowest values in Algeciras Bay. The localities with an ES lower than good were placed on 

Algeciras Bay (sites 9 and 10 for RSL; and sites 9, 10 and 11 for CARLIT). In this case, five 

discrepancies in the ES classification were identified in localities 4, 7, 10, 11 and 12. However, 

according to the general principles of comparability analysis, the discrepancy identified in site 
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10 was not considered to calculate the AACD. The estimated AACD value was 0.286, which 

showed that the class agreement between CARLIT and RSL was enough to accomplish with 

the proposed criterion of less than a half class difference (0.5) suggested in the intercalibration 

exercise for sufficient comparability.  

 

DISCUSSION 
 

Different scoring systems to assess anthropogenic pressures have been proposed by Med 

GIG (LUSI) and by the NEA GIGs (NEA-PA). The use of two different scoring systems is due to 

both environmental particularities of each ecoregion and to the different approach chosen by 

each Intercalibration group. However, as both methods aim at quantifying the same 

anthropogenic pressures, the results are highly correlated, as showed by the high Spearman 

correlation.  

There are marked differences between the RSL an the CARLIT indices, such as the spatial 

scale considered (dozens of meters vs. hundreds of meters), the biological level studied 

(species vs. communities), the aggregation strategy of the different elements (multimetric vs. 

unimetric), and on the definition of reference conditions (see below). Nevertheless, both 

methods were sensitive to anthropogenic pressures following the methodologies proposed by 

NEA and Med GIG, and were significantly correlated between them. In addition, RSL and 

CARLIT yielded comparable results according to the intercalibration guidelines (European 

commission, 2011), being the boundary bias between good and high ES the only conflictive 

result (bias > 0.25). Therefore, in general terms: i) both indices can be considered equally 

sensitive to anthropogenic pressures and they could be used to assess ES in the transitional 

area between Mediterranean and the Atlantic ecoregions; and ii) they yielded comparable and 

consistent results in ES classification of the studied localities. 

At this point, different questions arise regarding possible explanations for the divergences 

and comparability between RSL and CARLIT indices.  

 

How comparable are RSL and CARLIT indices? 

 

The results obtained in this work suggested a similar definition of the ES in relation to 

anthropogenic pressures. These indices have been developed based on the same conceptual 

framework: anthropogenic pressures can produce a decrease or even the disappearance of the 

most sensitive species, while the most tolerant taxa will remain (e.g. Borowitzka, 1972; 

Gorostiaga and Díez, 1996; Díez et al., 1999). In the case of the RSL index, this fact was 

reflected in the Spearman correlation between the gross elements and anthropogenic 

pressures, where only species richness and the number of ESG I species showed significant 

and negative correlations with the anthropogenic pressures. In the case of CARLIT index, the 

absence of very sensitive species in disturbed stretches of coast and the significant correlation 

between the proportion of coast occupied by sensitive communities and anthropogenic 
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pressures also supported this idea. Furthermore, considering the methodological differences 

between RSL and CARLIT, this high correlation also suggested that the effects of significant 

anthropogenic pressures may be reflected at different biological levels (species (RSL) vs. 

community (CARLIT) levels) and spatial scales studied (dozens of metres (RSL) vs. hundreds 

of metres (CARLIT). 

Regarding to the criteria followed in the intercalibration process, the boundary bias between 

high and good ES for CARLIT index was the only conflictive point (bias > 0.25). This bias 

reflects an important disagreement in the definition of the boundary between these ES classes 

for RSL and CARLIT. However, considering that the WFD points out that all European surface 

waters should achieve the objective of a good ecological status by 2015, the existence of a bias 

between high and good ES is not as important as a bias between moderate and good ecological 

status because of legal consequences from WFD. In any case, this bias can be attributed to an 

underestimation of ES by RSL between good and high categories. Previous studies support this 

idea based on: i) the problems to discriminate between good and high status classes pointed 

out by Bermejo et al., 2012; ii) the relatively high and positive bias obtained in the 

intercalibration process for both corrected boundaries (moderate-good bias = 0.215; good-high 

bias =0.225; NEAGIG, 2011); and iii) the fact that RSL never reached the EQR value of 1 in any 

reference site (maximum was 0.86). 

 

Which are the reasons for the divergences between RSL and CARLIT? 

 
The most important divergences between RSL and CARLIT were found in sites where the 

ES was good or high, and in places with a clear degradation of the littoral and upper sublittoral 

communities. In the first case the disagreement between RSL and CARLIT can be attributed to 

the underestimation of the ES by RSL between good and high classes, as mentioned above. On 

the other hand, the disagreements in degraded localities must be mainly related to the 

differences in the spatial scale considered and in the biological level studied for both indices. 

The fact that RSL never reached the EQR value of 1, even in undisturbed localities used to 

define reference conditions, suggest that the problems to discriminate between good and high 

ES can be attributed to an incorrect definition of the “high” category, which produces an 

underestimation in the ES. This fact mainly explains the observed bias between good and high 

ES between RSL and CARLIT. In this sense, the high Spearman correlation between RSL and 

CARLIT (ρ = 0.739; p-value < 0.01), excluding degraded localities (lower than good ES; 

localities 9, 10 and 11) from the analysis, showed that the remaining localities were ranked in a 

similar way. The similar ranking of sites supports that differences between these indices are 

mostly explained by the definition of reference conditions and not by differences in the 

assessment concept. Therefore, the adjustment of the boundary class between good and high 

ES for RSL can overcome this bias for the studied area. 

The major divergences in the ES classification were found in the degraded localities 10 and 

11. Moreover, the three most degraded localities according to the EQR values were ordered in 
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different ways by RSL (10 < 9 < 11) and CARLIT (11 < 10 < 9) with respect to the ES (Table 3). 

These disagreements can be partially attributed to the differences in the spatial scale 

considered and the biological level studied. In degraded places, where the species richness is 

usually low and some sensitive or opportunist species would be present with a residual 

biomass. The anecdotic presence of these species does not produce a large change in indices 

based on species abundance (i.e. CARLIT), but it could generate important changes in indices 

based on the taxonomic composition of the community (i.e. RSL) (Guinda et al., 2008; Bermejo 

et al., 2012). On the other hand, in places with punctual disturbances such as sewages, which 

could generate gradients in environmental conditions, the displacement of the sampling station 

some dozens of meters could produces important divergences in the final result in indices with a 

reduced sampling area (i.e. RSL) (e.g. Mascaró et al., 2013). 

 

Which are the pros and cons of the different approaches? 

 

The results suggested that both indices were sensitive to anthropogenic pressures and 

yielded comparable results. Thus, both indices can be considered equally adequate for the 

assessment of the ES in the context of the WFD in the transition zone between the 

Mediterranean and the Atlantic ecoregions. There are however strengths and drawbacks 

regarding the use of any of the two indices. 

On one hand, the RSL considers a relatively small sampling size reducing the time and effort 

of the fieldwork, which is important in places where the tidal period determines the available 

sampling time. By these reasons, the index may be easier to apply, quicker and also cheaper, 

which can very important when large coastlines must be surveyed (López y Royo et al., 2011). 

This methodology could be useful to assess the ecological status and to monitor the impact of 

punctual sources of pollution. However, the representativeness of this approach is limited 

considering the size of WBs, the high spatial variability of analysed benthic communities (e.g. 

Underwood and Chapman, 1996; Benedetti-Cecchi et al., 2001), and the existence of gradients 

in punctual anthropogenic disturbances. 

On the other hand, the spatial scale considered in CARLIT index reduces the uncertainty in 

the ES assessment (e.g. Mascaró et al., 2013). The simultaneous use of flora and fauna 

(Underwood, 1996; Díez et al., 2012), and the consideration of the qualitative abundance of 

habitat forming species (Guinda et al., 2008; O´Connor, 2013) give an idea about the structure 

and functioning of the community, providing better evidences of possible changes. In this sense, 

CARLIT will provide cartographic information to assess the evolution of marine coastal 

communities, which can be especially useful for conservation programmes of threatened and/or 

protected organisms such as seagrasses or Cystoseira species. Moreover, considering the 

purposes of the WFD, and that habitat destruction is possibly the most important threat to 

biodiversity (Pimm et al., 1995; Novacek and Cleland, 2001) occurring at extended spatial 

scales (Claudet and Fraschetti 2010), the cartography of the whole (or important part of) 

coastline maybe more accurate to assess the ecological status and to monitor coastal waters. 
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However, the application of CARLIT index can be an important challenge in coasts with wide 

intertidal ranges due to the limited sampling time available. Moreover, considering the 

necessary effort and time of the fieldwork, this methodology requires more man effort than RSL. 

In conclusion, both indices were equally sensitive to anthropogenic pressures and they could 

be used to assess ES in the Mediterranean and the Atlantic waters of the Strait of Gibraltar, 

which may render an integrated assessment of the ES of the transition zone between the 

Atlantic and the Mediterranean. Moreover, despite the discrepancies found, the results obtained 

in this work pointed out that it is possible to reach comparable ecological assessment using 

indices that are substantially different, as RSL and CARLIT are, which can be very useful for the 

management of these coastal waters. Similar results were found by Lopez y Royo et al. (2011) 

between indices developed for Posidonia oceanica for the assessment of the ES in the 

Mediterranean. On the other hand, the most important disagreements between the two indices 

were found in disturbed places. The methodological differences in the spatial scale considered 

and the biological level studied must be important factors to explain these divergences for the 

ES. 

The experimental intercalibration in border areas is a useful tool to ensure the consistency 

and comparability of indices, providing a common basis for the assessment and interpretation of 

ES and water quality (López y Royo et al., 2011). In this sense, the possibility to apply the RSL 

and CARLIT indices in the transition zone between the Mediterranean and Atlantic eco-regions 

leaves open the possibility of an experimental comparison between the Atlantic and 

Mediterranean eco-regions at a bigger scale. 
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Chapter 4 
Biogeographical patterns of littoral and upper sublittoral communities along 
rocky shores of northern coasts of Alboran Sea: coupling regional 

oceanography and benthic community patterns 



“The degrees of dissimilarity will depend on the migration of the more dominant 

forms of life from one region into another having been more or less effectually 

prevented, at periods more or less remote;- on the nature and number of the 

former immigrants;- and on the action of the inhabitants on each other in 

leading to the preservation of different modifications; the relation of organism to 

organism in the struggle for life being, as I have already often remarked, the 

most important of all relations. Thus the high importance of barriers comes into 

play by checking migration; as does time for the slow process of modification 

through natural selection.” 

 

Charles Darwin 

(The Origin Of Species, 1859). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Macro view of a stand of Fucus spiralis. Strait of Gibraltar. June 2011. Photograph by Antonio Bermejo Lacida 
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ABSTRACT 

 

Alboran Sea is the westernmost ecoregion of the Mediterranean Sea and is placed in the 

vicinity of Strait of Gibraltar, the only natural connection of Mediterranean Sea with global 

circulation. This ecoregion presents steep and highly variable environmental gradients, thus 

acting as a natural filter for species distribution in the Mediterranean. The main aim of this study 

was to evaluate the influence of regional oceanographic processes on spatial patterns of 

benthic communities along the northern coast of the Alboran Sea, proposing potential linking 

mechanisms between oceanography and community structure. The spatial structure of benthic 

communities along the northern coast of Alboran was assessed using data of landscape and 

species composition, covering the whole rocky shore. Spatio-temporal variability in coastal 

oceanography was assessed with satellite data of sea surface temperature and a high spatio-

temporal resolution analysis based on Empirical Ortogonal Functions. Three biogeographical 

subregions were identified in northern Alboran coast: western, central and eastern. The 

coincidence of these regions with oceanographic patterns and the significant correlation 

between oceanographic and biological data suggest a strong link between community features 

and oceanographic phenomena. Overall, central subregion showed the minimum species 

richness, with the landscape dominated by filter-feeders and poorer and undifferentiated flora. 

In contrast, eastern and western subregions showed higher and similar values for species 

richness, with a landscape dominated by high productive macrophytes in western Alboran and 

slow-growing ones in eastern Alboran (a footprint for Atlantic and Mediterranean 

characteristics). The divergent character of central Alboran can be related to the alternating 

occurrence of upwelling episodes and the arrival of Mediterranean waters in this subregion, 

causing short time variations in physico-chemical properties and food availability. In conclusion, 

this study supports the existence of a steep community gradient between the Atlantic and the 

Mediterranean, which is mainly driven by regional oceanographic processes. 

 

Keywords: Alboran Sea; Biogeography; Landscape; Littoral communities; Macroecology; 

Oceanography and community patterns. 
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INTRODUCTION 

 

The Mediterranean Sea is the largest and deepest semi-enclosed sea on Earth. This sea is 

an important marine biodiversity hot spot, as a consequence of its geological and climatic 

history (Coll et al., 2010; Picotti et al., 2014). Two milestones have been especially important 

shaping the present Mediterranean biodiversity: i) the Messinian salinity crisis (Krijgsman et al., 

1999; Duggen et al., 2003), and ii) the climatic oscillations in the Quaternary (Bianchi & Morri, 

2000; Hewitt, 2000, 2004). The closure of the Rifean and Baetic gateways about 6 M years ago 

left the Mediterranean Sea completely isolated. Its negative water balance transformed it into a 

series of hypersaline lakes (i.e. Messinian salinity crisis), producing a massive extinction of the 

previous biota. Afterwards, the opening of the Strait of Gibraltar (5.3 Ma) allowed the 

recolonisation of species of Atlantic origin. Since this date, the Strait of Gibraltar has been the 

unique natural communication of the Mediterranean Sea with the rest of global circulation. The 

alternation of the ice ages with the warm interglacials periods during the whole Quaternary 

(from 1.8 Ma to the present) resulted in different immigration waves of Atlantic biota of boreal or 

subtropical origin into the Mediterranean (Rodríguez, 1982; Bianchi & Morri, 2000; Figueroa et 

al., 2014). In this sense, the Alboran Sea played an important role in the conformation and 

maintenance of the Mediterranean biodiversity, both in the past and the present, as a selective 

barrier for Atlantic and Mediterranean species (e.g.  Bargelloni et al., 2003). 

The Alboran Sea is the westernmost Mediterranean ecoregion (Spalding et al., 2007). It is 

considered a transition area between the Mediterranean Sea and the Atlantic Ocean (Báez et 

al., 2004; Ballesteros et al., 2007). This is why some typical Mediterranean assemblages are 

scarce or absent whereas north-east Atlantic macroalgal species such as Cystoseira 

tamariscifolia, Fucus spiralis or Laminaria ochroleuca are present (Conde, 1989; Flores-Moya et 

al., 1995a). Different biogeographical limits have been recognised in this sea based on the 

presence-or-absence of species datasets or population genetic studies for particular taxa 

(Álvarez-Cobelas et al., 1989; Conde, 1989; Quesada et al., 1995; Alberto et al., 2008). 

However, the mechanisms and the importance of the linking processes between oceanographic 

conditions and biogeographical variations in species and communities remain unknown.  

The integration of biogeography and ecology supposes an opportunity to link local and 

regional scales, improving the knowledge about the causes of distribution patterns at the 

community level (Briggs, 2007). Recent studies in various geographical locations have begun to 

integrate ecology with biogeography at mesoscale (tens to hundreds of kilometres), providing 

empirical evidences to support that geographical variations in structure and composition of 

intertidal benthic populations are strongly linked with oceanographic patterns (Bustamante & 

Branch, 1996; Broitman et al., 2001; Blanchette et al., 2008). Oceanographic processes control 

the distribution of food, nutrient, and propagules (Blanchette et al., 2006), and the patterns of 

hydrodynamics, temperature or salinity. These processes may affect in different ways marine 

benthic organism and their biological relationships, determining the composition and structure of 

benthic communities across regional scales (Schiel, 2004).  
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In the Alboran Sea the main forcing of the hydrodynamics is the Atlantic Jet and its intensity 

(Renault et al., 2012). This jet feeds a complex pattern of anticyclone oligotrophic gyres in this 

region: a more constant and stable Western Alboran Gyre (WAG) and a less frequent Eastern 

Alboran Gyre (EAG). The intensity of the Atlantic inflow varies seasonally, being reinforced 

during summer when the evaporation in the Mediterranean basins is maxima (Renault et al., 

2012), and constituting a stable circulation system with both gyres (WAG and EAG). Associated 

to the gyres, coastal upwelling processes are described along the north-western coast of the 

Alboran Sea (Parada & Canton, 1998; Macías et al., 2008). Furthermore, upwelling processes 

are partly dependent on meteorological conditions, being enhanced during westerly winds 

situations (Macías et al., 2008). These complex oceanographic patterns increase the spatial 

and temporal variability in the area, generating environmental gradients, which could affect 

littoral and sublittoral assemblages and their spatial patterns. 

The present study aims to analyse spatial patterns of littoral and upper sublittoral community 

structure and composition in relation to oceanographic conditions and coastal geomorphology 

along the northern coast of the Alboran Sea. The study suggests potential mechanisms linking 

the observed patterns of community structure with the prevailing oceanographic conditions.  

 

MATERIAL AND METHODS 

 

Field collection of data 

 
This study was carried out between 2010 and 2013, in 27 sites along the northern coast of 

the Alboran Sea (Fig. 1). To reduce the influence of anthropogenic pressures, degraded sites 

were avoided according to Bermejo et al. (2013). The field samplings were carried out during 

spring and summer, coinciding with the peak of growth in littoral communities (González, 1994). 

At each site, a stretch of coast of different length was surveyed to define the littoral and upper 

sublittoral landscape according to Bermejo et al. (2013). Moreover, a stratified sampling was 

carried out to obtain a macrophyte species list, except sites 3, 10, 16, 20, 22, 23 and 26, where 

it was not possible for sampling time limitation.  
 

Landscape and coastal morphology. 

 

The sampling survey consisted in a run of the different stretches of coast, between 500 and 

1500 m, on foot and snorkelling. Each stretch of coast was divided in sectors based on littoral 

and upper-sublittoral communities (Table 1) and coast morphology (categorized in Low Coast, 

High Coast and Blocks). The initial and final points of the different sectors were marked using a 

Geographical Positioning System (GPS) Magellan Triton 400. The minimal length of coast 

surveyed was 20 m. In each sector a value of abundance (Table 2) was recorded for each one 

of the 18 species considered in Table 1. Subsequently, using a Geographical Information 

System (GIS) and orthophotographs from the environmental information network of the 
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autonomic government of Andalusia, southern Spain (REDIAM), the length of each sector and 

the perpendicular distance to the nearest coast was measured. Considering this distance, each 

sector was classified as exposed (distance >1000m) or non exposed (distance <1000 m). The 

final result is a partition of the rocky shoreline in several sectors defined according to littoral and 

sublittoral communities and geomorphological characteristics (Ballesteros et al., 2007; Bermejo 

et al., 2013). The final relative species abundance (RA) for each site was estimated according 

to equation 1. 

 

RA = Σ(L x Ab)/TL     (1) 

 

where L is the sector lenght, Ab is the abundance value according to table 2, and TL is the 

total length of the stretch of coast surveyed. 

 
Fig. 1.- Geographical distribution of the sampling points along the northern coast of the Alboran Sea. 1- Camarinal; 

2- Punta Paloma; 3- Guadalmesí; 4- Punta Carnero; 5- Torreguadiaro; 6- Calaburras; 7- Torrequebrada; 8- La Araña y 

Rincón de la Victoria; 9- Nerja; 10- Maro 11- Cerro Gordo; 12- Almuñecar; 13- Salobreña; 14- Cala Rijana; 15- Castel 

de Ferro; 16- Cala del Ruso; 17- La Alcazaba; 18- Guardias Viejas; 19- Almería; 20- Cabo de Gata; 21- San José; 22- 
Isleta del Moro; 23- Cala Carnaje y El Playazo; 24- El Algarrobico; 25- San Juan de los Terreros; 26- Cala Salitrona; 27- 

Cabo de Palos. Open dots- sites that not accomplish with reference conditions; Black dots- sites that accomplish with 

reference conditions. 
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Table 1- Species list of sessile invertebrates, seagrasses and seaweeds considered for landscape description of 

Alboran Sea.  

Code 

 
Ac 

My 

 

Cn 

Po 

Zn 

 

Cp 

Co 

Ce 

Ct 

Cc 

Cf 

Chh 

Chm 

Cm 

Cs 

Csp 

Fs 

Lb 

Species 

Sessile invertebrates 

Astroides calycularis 

Mytilus spp. 

Seagrasses 

Cymodocea nodosa 

Posidonia oceanica 

Zostera noltii 

Seaweeds 

Caulerpa prolifera 

Corallina spp. 

Cystoseira elegans 

Cystoseira ericaefolia* 

Cystoseira compressa 

Cystoseira foeniculacea 

Cystoseira humilis var. humilis 

Cystoseira humilis var. myriophylloides 

Cystoseira mauritanica 

Cystoseira sauvegeuana 

Cystoseira spinosa 

Fucus spiralis 

Lithophyllum byssoides 

 

* Cystoseira ericaefolia group – Cystoseira tamariscifolia, C. amentacea var. stricta and C. mediterranea. 

 

Table 2- Scale of relative abundance according the degree of population development for each considered specie. 
 

Relative abundance 

Continuous belt or meadow 

Almost continuous belts or meadows 

Abundant patches or stands 

Abundant scattered specimens 

Rare scattered specimens or stands 

Absence 

Value 

5 

4 

3 

2 

1 

0 

 
Species composition. 

 

In each site, a stratified sampling, registering all subhabitats, was carried out to obtain a 

species list of marine macrophytes. Each sampling was carried out along 50–60 m width of the 

whole rocky intertidal shore. When identification of specimens in situ was impossible, they were 

taken to the laboratory for a detailed observation. To identify small seaweeds (e.g. small 

Ceramiales and epiphytes), three replicates of quadrats of 17x17 cm2 were taken, scraping off 

all organisms from the surface. To decrease community variability due to environmental factors, 

quadrats were taken in horizontal intertidal (between 0 and 30º) in the upper-most level of sub-

littoral zone, avoiding very sheltered zones. The samples were kept in 5% formalin. 
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Subsequently, samples were carefully sorted in the laboratory, and algae were identified to the 

genus/species level. The taxonomic algal nomenclature used followed AlgaeBase (Guiry & 

Guiry, 2013). 

 

Sea surface temperature (SST) 

 
The SST was obtained from images taken by the Advanced Very High Resolution 

Radiometer on board National Oceanic and Atmospheric Administration series satellites. 

Particularly, 8 days-averaged images with 4x4 km resolution were extracted using the 

PO.DAAC Ocean ESIP Tool (http://poet.jpl.nasa.gov/). Temporal data set covered from 2003 to 

2009, using 314 images (45 images per year). The coastal pixels close to land may give 

erroneous SST values; thus, SST data were taken in ocean pixels contiguous to the coastal site 

studied.  

 
 Tidal range 

 

The tidal range in each site was estimated based on the data provided by "Puertos del 

Estado" (http://www.puertos.es/) for six harbours from the studied area (Tarifa, Algeciras, 

Málaga, Motril, Almería, and Alicante), and the distance following the coastline between 

sampling sites and harbours. In this case, only the major four tidal components were considered 

(M2, S2, N2 and K1). Subsequently, the tidal range for each site was calculated based on a 

linear interpolation considering the distance between the sampling point and the adjacent 

harbours. 

 

Data analyses 

 

To examine geographical patterns of community similarity, the Vegan package for R and 

PRIMER 6 (Plymouth Routines in Multivariate Ecological Research) software were used. In all 

statistical analysis significance was set at 5% probability. 

 

Identifying oceanographic regions  

 

Empirical Orthogonal Function (EOF) analysis was applied aiming to describe the spatio-

temporal variation of SST in the region of interest (Fig. 1). The EOF analysis provides a 

description of the spatial and temporal variability of a time series in terms of orthogonal 

functions called empirical modes (Emery & Thompson, 1998). Aiming to search for the variation 

of temporal patterns, the temporal mean was removed in the EOF analysis, following the 

“temporal EOF” described by Lagerloef & Bernstein (1988). This ‘‘temporal EOF’’ is suggested 

more appropriate when analyzing structures associated with the temporal variability in a 

particular area. A Singular Values Decomposition method was used following Björnsson & 
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Venegas (1997). To assess if the calculated modes were statistically significant, the distance-

error concept (Equation 3; North et al., 1982) was used: 

   

δλ = λ x (2/N)0.5     (2) 

 

where λ is the eigenvalue and N is the number of images used in the EOF analysis (N=314). 

A mode is considered significant only if the difference between its associated eigenvalue and 

the next one is bigger than δλ.  

 

Identifying biogeographical subregions  

 

To identify biogeographic subregions, two cluster analysis using group average linking were 

carried out: i) one based on landscape data using Bray-Curtis similarity index (Bray & Curtis, 

1957) among 27 sites; and ii) one based on species composition data using Dice index (Dice, 

1945) among 21 sites. In both cases, a SIMPROF test using 10,000 permutations was run for 

the dendrogram to indicate significant group structure.  

 

Agreement between biogeographic and oceanographic subregions  

 

To test the concordance between biogeographic and oceanographic subregions, a weighted 

kappa analysis (Cohen, 1960) following the scale proposed by Monserud & Leemans (1992) 

was applied.  

 

Variation in landscape and species composition  

 

Analyses of Similarity (ANOSIM; Clarke & Warwick, 2001) were performed to test for 

differences in landscape and in species composition among oceanographic areas. Pairwise 

ANOSIM comparisons were made between areas, using 10,000 simulations in each case. 

Moreover, to detect what species most contributed to landscape dissimilarity among the 

oceanographic areas, an analysis of species contribution to similarity (SIMPER; Clarke & 

Gorley, 2006) was carried out. On the other hand, a corological analysis was performed based 

on the species composition for each identified area. For this purpose, taxa were classified in 

four groups according to the geographic distribution and climatic affinities based on previous 

studies (González & Conde, 1991; Bárbara et al., 2005; Serio et al., 2006) and distribution data 

from Algaebase (Guiry & Guiry, 2013). The considered groups were: Mediterranean, Warm-

Temperate, Cold-Temperate, and Wide-Distributed species. The floristic similarity between 

areas was calculated using the Dice index (Dice, 1945). 
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Assessing the influence of environmental factors in littoral and upper sublittoral landscape 

 

In addition to the influence of oceanographic conditions, the natural geomorphological 

variability of the coastal environment may also play an important role in the development of 

littoral and upper sublittoral communities (Ballesteros et al., 2007). Thus, to assess the relative 

importance of these factors in the landscape patterns, a multivariable analysis was performed. 

In this case, environmental variables related to the morphology of the coastline (% of coastline 

constituted by blocks; % of high coast; % of low coast; % of wave exposed coast) and 

oceanographic conditions (average SST and tidal range) were considered (Appendix S1). A 

non-metric multidimensional scaling (MDS) analysis (Clarke & Warwick, 2001) was performed 

based on landscape data for each site, and subsequently, the environmental variables 

considered were fitted onto the MDS using the function "envfit" of the Vegan package for R 

(Oksanen et al., 2012). The significance of fitted variables was assessed based on 10,000 

permutations. 

 

RESULTS 

 

Oceanographic regions  

 

The climatologic distribution of the temporal-average SST showed main hydrological 

structures in the area (Fig. 2). These structures include an upwelling zone along the 

northwestern coast of Alboran and the WAG. The EAG was not so easily detected. Regarding 

the northern coast of the Alboran Sea, temporal-averaged SST image of the area showed a 

longitudinal gradient: Minimum value (17ºC) was found in the upwelling area, from the Strait of 

Gibraltar to Cape Calaburras; in contrast maximum averaged coastal SST (19.5 ºC) was found 

close to the Cape of Palos. 

 

 
Fig. 2.- Temporal averaged Sea Surface Temperature spatial distribution along the Alboran Sea.  

 

Nevertheless, climatological average SST can mask underlying spatio-temporal patterns in 

the region; thus EOF analysis was carried out to analyze this information. The results of the 
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EOF analysis are shown in Fig. 3 and Appendix S2. Only the first three modes were statistically 

significant. The modes explained, respectively, 29%, 6% and 4% of the normalized variance. 

The spatial coefficients of the different modes represent the extension and the influence of the 

processes in the studied area. Thus, the value of the spatial coefficient is directly related to the 

intensity of the phenomenon in the area (Appendix S2). The temporal amplitude of the EOF 

modes indicates when a phenomenon is relevant and its relative importance (Fig. 3def). To 

facilitate the interpretation of spatio-temporal patterns of SST in this area, homogeneous areas 

were defined using a limit of 0.015 for the spatial coefficients (Fig. 3 abc). 
 

 
Fig. 3.- a, b and c - Homogeneus regions based on the highest absolute values of the spatial coefficient  for each 

mode: a-mode 1; b-mode 2; c-mode-3; d, e and f – Temporal coefficients of the three first modes of the EOF and 

monthly averages series (grey line).  
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The first mode showed highly positive values in the southeast and easternmost part of the 

area, mainly from Cape Sacratif to the Cape of Palos (Fig. 3a). In the rest of the northern coast 

(from the Strait of Gibraltar to Cape Sacratif), values were almost null or slightly negative. The 

second mode (Fig. 3b) marked a region in a wide band along the Spanish coast, with high 

positive values from the Strait of Gibraltar to Punta Entinas. The third mode (Fig. 3c) presented 

two well-differenced areas: positive values in a northern coastal-strip (from Malaga to Cape 

Palos) and negative values from Calaburras Headland to the Strait of Gibraltar.  

Regarding the temporal coefficients of the significant modes, the mode 1 presented the 

highest absolute values and a clear seasonal signal, being positive during summer and negative 

in winter (Fig. 3d). On the other hand, modes 2 and 3 presented scattered patterns with similar 

absolute values; this high variability is especially enhanced during summer period (Fig. 3ef). 

Nevertheless, some trends could be observed as mode 3 showed the same behaviour than 

mode 1; the monthly average was slightly positive during summer (Fig. 3df). Temporal 

coefficients of mode 2 presented the opposite behaviour of modes 1 and 3, presenting negative 

monthly-averaged values during summer (Fig. 3e).  

Therefore, three homogenous areas with different dynamics along the northern coast of 

Alboran Sea can be defined as a result of the combination of the three modes, as will be 

discusssed below: i) from the Strait of Gibraltar to Calaburras Headland (western Alboran; sites 

from 1 to 6), ii) from Calaburras Headland to Punta Entinas (central Alboran; sites from 7 to 17), 

and iii) from Punta Entinas to the Cape of Palos (eastern Alboran; sites from 18 to 27, Fig. 1).  

 

Biogeographic subregions 

 

According to the landscape, three biogeographic subregions were identified by the 

SIMPROF test corresponding to a slice in the dendrogram arising from the cluster analysis at a 

Bray–Curtis similarity around 60% (Fig. 4a). Overall, the first cluster corresponded to the 

sampling stations located in the Strait of Gibraltar (from 1 to 4; see Fig. 1); the second one 

grouped the sites placed between the Strait of Gibraltar and the nearby Cape Sacratif (from 5 to 

14); and the last one and more differentiated corresponded to the stations sited eastwards Cape 

Sacratif (from 15 to 27).  

The second cluster analysis based on species composition (Fig. 4b) differed slightly from the 

previous one. In this case, the limits between clusters are displaced eastward in comparison 

with the landscape results. The first cluster (from 1 to 6) showed its eastern limit in Calaburras 

Headland instead of the Strait of Gibraltar, and the second in Punta Entinas (from 7 to 17) 

instead of Cape Sacratif. In this case, the eastern subregion was also the most differentiated. 

The weighted kappa analysis yielded a "very good" or "excellent" agreement between 

oceanographic subregions and biogeographic ones identified in the Alboran Sea (Fig. 4) based 

on landscape (kappa = 0.752) and species composition (kappa = 0.924). 
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Fig. 4.- Dendrogram depicting mutual similarities of littoral and sub-littoral communities of the sampled locations. Solid 

lines show the different groups formed by the SIMPROF analyses. a- Dendrogram based on landscape dataset; b- 
Dendrogram based on species composition.  

 

Variation in landscape and species composition  

 
The ANOSIM indicated that landscape (R = 0.564; p-value < 0.001) and species composition 

(R = 0.810; p-value < 0.01) differed significantly along the Alboran Sea, being these differences 

significant for all pairwise comparisons between the different oceanographic subregions 

identified (table 3). 
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Table 3- Results of ANOSIM pairwise comparisons between oceanographic regions identified in Alboran Sea according 

to landscape data and species composition. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001 
 

Regions 

western-central 

western-eastern 

central-eastern 

R-landscape 

0.387* 

0.767*** 

0.689*** 

R-species composition 

0.705*** 

0.853** 

0.937*** 

 
Landscape 
 

The SIMPER analysis (table 4) based on landscape data showed that Posidonia oceanica, 

Cystoseira ericaefolia and Mytilus spp. were the species that most contributed to the 

dissimilarity between the oceanographic subregions identified (table 4 and Fig. 5). The eastern 

subregion was the most differentiated area in comparison with the western and central Alboran 

Sea, (Fig. 5, table 3 and 4). In this subregion, C. ericaefolia and P. oceanica were present more 

frequently, usually forming dense continuous belts and meadows, whereas Mytilus was rare. In 

contrast, Mytilus was an important component of littoral communities in the western and central 

Alboran Sea, especially between the Strait of Gibraltar and Cape Sacratif. In these areas, P. 

oceanica was rare and C. ericaefolia was less abundant than in eastern Alboran; these species 

were found forming stands and scattered belts. On the other hand, the absence of notorious 

elements of the typical community from the Strait of Gibraltar, as Lithophyllum byssoides, Fucus 

spiralis or Cystoseira mauritanica, which were absent eastward Calaburras Headland, and the 

importance of Mytilus beds in littoral assemblages of central Alboran, were the most important 

elements to explain the dissimilarity between western and central Alboran. 

 

 
 
Fig. 5.- Geographical pattern of distribution and abundance for the species that contributed most to the dissimilarity 

between biogeographical subregions. Numbered study sites are referenced and located in Fig. 1. 
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Table 4- Results of SIMPER showing the percentage of contribution to the landscape dissimilarity for each species 

between the three oceanographic regions identified. Cut off for low contributions at 95%. Average dissimilarities: 

Western-Central Alboran = 36.82, Central-Eastern Alboran = 43.43, Western-Eastern Alboran = 48.88. 
 

 
Species 

Ac 

My 

Cn 

Po 

Zn 

Cp 

Co 

Ce 

Ct 

Cc 

Cf 

Chh 

Chm 

Cm 

Cs 

Csp 

Fs 

Lb 

Western-Central 
Alboran 

3.55 

22.93 

1.55 

8.86 

- 

- 

3.17 

- 

16.60 

5.28 

- 

- 

- 

4.78 

- 

- 

9.54 

22.16 

Central-Eastern 
Alboran 

2.95 

16.22 

7.44 

26.59 

- 

- 

11.84 

- 

19.44 

10.82 

- 

- 

- 

- 

- 

- 

- 

- 

Western-Eastern 
Alboran 

- 

10.90 

6.23 

23.03 

- 

- 

9.87 

- 

14.41 

7.02 

- 

- 

- 

3.14 

- 

- 

6.21 

14.42 

 

Species composition 

 

A total of 168 macrophyte taxa (3 seagrasses, 35 Phaeophyceae, 104 Rhodophyta, 26 

Chlorophyta) were identified (Appendix S3). Even though the number of sampled sites differed 

between western (5), central (9) and eastern (6) subregions, the results suggested a decreasing 

number of species in the central Alboran (Fig. 6). Attending to the chorological differences in 

specific composition across the Alboran Sea, it must be highlighted the increase in 

Mediterranean endemisms from the western to the eastern subregion and the decrease in 

species with cold-temperate affinity, which followed the expected trend. However, the rate of 

change between subregions was different, being more gradual for Mediterranean species and 

more abrupt for cold temperate species, especially between the western and central Alboran. 

The number of species of warm temperate affinity was minimum in central Alboran and 

maximum in the eastern subregion. In the case of wide distributed species, the number was 

very similar for all subregions. On the other hand, the similarity between the central and western 

subregions was the highest (66%), showing eastern Alboran the most differentiated flora (56% 

of similarity with the central subregion and 54% with the western one). 
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Fig. 6.- Total number of marine macrophytes at the three identified subregions along the Alboran Sea. 

 

Assessing the influence of environmental factors in littoral and upper sublittoral 

landscape 
 

The MDS based on landscape data (Fig. 7) showed a clear geographical west-east gradient 

along the Alboran Sea. According to this, sites were distributed on the plot from the western 

sites on the right to the eastern ones on the left. In this way, the species with the most positive 

values of axis 1 (NMDS1) were more frequent in eastern Alboran such as Caulerpa prolifera, 

Cystoseira elegans, Cystoseira sauvegeuana, Cystoseira spinosa or Cymodocea nodosa. 

Conversely, the species with the most negative values of NMDS1 were typical western Alboran 

species such as Fucus spiralis, Cystoseira mauritanica, or Lithophyllum byssoides. In the case 

of central Alboran, the results showed that the major development of filter-feeders assemblages 

(Mytilus and Astroides) was the most characteristic landscape feature. On the other hand, the 

higher arrow length of the environmental variables related to oceanographic conditions 

suggested a better correlation with the landscape structure than geomorphological ones (table 

5), showing all of them significant correlations. In the case of geomorphological variables, only 

the percentage of low coast was significantly correlated with the landscape similarity (r = 0.471; 

p-value < 0.05). These results suggested that the landscape structure along the Alboran Sea 

was better explained by regional oceanography patterns than by local geomorphological 

characteristics.  
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Fig. 7.- Non-metric multidimensional ordination plot based on landscape data for each of the 27 sites within the three 

biogeographical subregions. Open triangle - western subregion; inverse grey triangle - central subregion; black square - 

eastern subregion. Species are indicated by codes referenced in Table 1. Variables are draw in dark grey when they are 

related with oceanographic conditions, and in grey when they are related to coastal morphology.  

 

Table 5- Results of fit seven environmental variables onto a non Metric Multidimensional Scaling (MDS) based on 

landscape data along Alboran Sea. NMDS1 and NMDS2 corresponded with direction cosines of the vectors, and R2 is 

the squared correlation coefficient. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001 
 

Variable 

Distance 

mean SST 

Tidal Range 

% Blocks 

% Low Coast 

% High Coast 

% Exposed Coast 

NMDS1 

0.947 

0.945 

-0.707 

-0.053 

0.011 

0.093 

-0.734 

NMDS2 

0.322 

0.326 

-0.707 

0.999 

-0.999 

0.996 

-0.675 

R2 

0.674*** 

0.655*** 

0.611*** 

0.199 

0.222* 

0.020 

0.084 

 

DISCUSSION 

 

Beyond among-site variability, the environmental conditions related to oceanographic 

patterns are the most important factors to explain the species distribution and the community 

structure along Alboran Sea (Fig. 7). The results obtained support the existence of three 

biogeographical subregions matching with oceanographic patterns (Fig. 4): western, central and 

eastern Alboran. This relationship suggests a strong link between the littoral and upper 

sublittoral communities, and the oceanic processes. The coincidence between marine species 

distribution and the main oceanographic features was suggested previously in this area (Conde, 

1989; Cebrián & Ballesteros, 2004; Bermejo et al., 2013; González-Duarte et al., 2013), but the 

mechanism underlying these spatial patterns were not studied.  
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Oceanographic processes effects on the coastal conditions  

 

At the light of the EOF analysis, the coastal conditions in the three subregions identified can 

be briefly described according to the oceanographic patters. In eastern Alboran, which 

comprises mostly the extension area of mode 1 (Fig. 3a). The prevailing coastal conditions are 

determined by the dynamics of the Mediterranean Surface Waters (MSW).  These waters are 

oligotrophic and show the broadest seasonal thermal amplitude in the Alboran Sea, oscillating 

from 25º (summer) to 14º C (winter) (Parada and Canton, 1998; Baldacci et al., 2001). 

Westward from Punta Entinas (Fig. 3a), the influence of MSW in the coastal environment 

declines significantly. In this area, dominant processes (collected in mode 2 and 3) present a 

scattered pattern with scales of variation far from seasonal cycles, more related to short-term 

atmospheric processes as wind conditions (Fig. 3ef).  

The coastal environment in western Alboran is influenced by the existence of a quasi-

permanent upwelling area associated to the WAG (Vargas-Yáñez et al., 2002; Renault et al., 

2012), being the environmental conditions relatively stable.  

By contrast, in central Alboran the coastal conditions are the most variable. This subregion 

can be affected by strong upwelling processes due to strong westerlies or an enhanced Atlantic 

Inflow (Macías et al., 2008; Renault et al., 2012) (Fig. 3b, mode 2); or can be filled with MSW 

(Fig. 3d, mode 3), especially during summer (Fig. 3ef), due to the occurrence of strong 

easterlies or southward displacements of the Atlantic Jet (Sarhan et al., 2000; Macías et al., 

2007). 

 

Biogeographical subregions 

 

The western Alboran presents the most Atlantic character (Conde, 1989). In this subregion, 

it can be found species with very different climatic affinities (Fig. 6), reflecting the importance of 

the Strait of Gibraltar as a geographical pivotal point at the junction of three ecoregions 

(Spalding et al., 2007): i) Alboran Sea, within the Mediterranean province; ii) the South 

European Atlantic Shelf; and iii) the Saharan upwelling, both within the Lusitanian province. In 

this sense, some characteristic Atlantic (e.g. C. mauritanica or Fucus spiralis) and 

Mediterranean species (e.g. P. oceanica) have their distribution limits here (Conde, 1989; 

Barceló-Martí et al., 2000). Regarding the landscape, it is remarkable the presence of shallow 

stands or forest of highly productive macrophytes such as Saccorhiza polyschides (Flores-

Moya, 2012) or Cystoseira usneoides (Barceló-Martí et al., 2000). In contrast, from site 4 to 

Calaburras Headland, Mytilus beds became an important component of the benthic 

communities; while, S. polyschides or C. usneoides populations were less frequent and deeper, 

practically disappearing eastward Calaburras (Conde, 1989; Cebrián & Ballesteros, 2004; 

Flores-Moya, 2012).  
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In central Alboran, benthic communities are neither typically Atlantic nor typically 

Mediterranean, since most genus and species defining Atlantic or Mediterranean communities 

are lacking (Cebrián & Ballesteros, 2004) or present residual biomass. This subregion showed 

the lowest species richness and the less differentiated flora. In fact, only 13 macrophytes were 

exclusive from this subregion, whereas 28 were exclusive from the western subregion and 30 

from the eastern one. In addition, considering previous studies (Flores-Moya et al., 1995a, 

1995b; Conde et al., 1996) these differences were even greater, being nine, two and eight the 

number of exclusive macroalgal taxa in the western, central and eastern Alboran, respectively. 

These facts indicate that central Alboran is a divergent boundary between the Atlantic Ocean 

and the Mediterranean Sea, at least for marine macrophytes. In this sense, it is remarkable that 

the reduction in the species number is mainly consequence of the absence of several cold-

temperate and warm-temperate species (Fig. 6), while wide distributed species remain. On the 

other hand, filter feeders as Mytilus spp., Astroides calycularis (Fig. 5) or Anemonia 

sulcata/viridis (pers. obs.) are important for the configuration of the landscape of littoral and 

upper sublittoral communities, while slow-growing (e.g. P. oceanica) or highly productive (e.g. 

S. polyschides) macrophytes are scarce or absent. This dominance of filter feeders suggests 

the existence of subsidies (phytoplankton and detritus as food for filter feeders) related to the 

presence of upwelling episodes in this subregion. In this sense, the highest surface chlorophyll 

concentrations have been reported in this area (nearby Malaga) (Macías et al., 2007). 

Eastern Alboran showed the most differentiated littoral and upper sublittoral communities 

(Fig. 4). Benthic communities found in this subregion were typically Mediterranean (Ballesteros 

& Pinedo, 2004), being the landscape dominated by slow-growing macrophytes as C. 

ericaefolia, C. nodosa and P. oceanica (Fig. 5); and showing a flora with a more warm-

temperate affinity and a major number of Mediterranean endemisms (Fig. 6). Several 

Mediterranean endemisms (e.g. Cystoseira elegans or C. spinosa) and vicariated populations of 

warm-temperate species, absent in adjacent Atlantic areas (e.g. Digenea simplex or 

Acetabularia acetabulum), present their distribution limits in this subregion (González, 1994). 

Accordingly, some authors have placed the limit between Atlantic and Mediterranean regions in 

this area (van den Hoek, 1975; Álvarez-Cobelas et al., 1989).  
 

Coupling regional oceanography and benthic community patterns  

 

The analysis of the results suggests that the oceanographical processes must be the main 

driver determining spatial patterns of the community structure and composition along the 

northern coast of Alboran Sea. Despite further comparative and experimental approaches are 

needed to evaluate potential underlying mechanisms, two preliminary and complementary 

hypotheses are proposed based on the analysis of community features and oceanographic 

conditions. 
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Functional ecological differences  

 

One major mechanistic hypothesis linking nearshore oceanography to community patterns is 

related to the spatial and temporal variability in coastal upwelling (Blanchette et al., 2006). 

Upwelling intensity has been suggested to play an important role in the balance between 

dominance by filter feeders or highly productive macrophytes (Menge et al., 2003; Schiel, 2004; 

Blanchette et al., 2006). Variable upwelling with frequent relaxation may be correlated with high 

rates of larval arrival to coast for barnacles and mussels, besides phytoplankton and detritus, 

favouring the dominance of sessile invertebrates (Menge et al., 2003). In contrast, consistently 

strong upwelling has been proposed to limit invertebrate recruitment (Bustamante & Branch, 

1996; Broitman et al., 2001) because they prevent the accumulation along coastal fronts and 

the shore arrival of planktonic larvae and phytoplankton, while allow the maintenance of high 

nutrient rich waters in the near shore, favouring the dominance of highly productive 

macrophytes. In the Alboran Sea upwelling episodes are not permanent (Fig. 3) and this 

hypothesis support the filter-feeders dominance in central Alboran, especially where upwelling 

processes are more discontinous. However, in the Strait of Gibraltar intertidal stretch of coast 

dominated by Mytilus beds are absent and the sublittoral is dominated by high productive 

macrophytes. This fact could be consequence of the particular dynamic of the Strait of Gibraltar, 

with very intense inflowing currents towards the Alboran Sea. This flow of nutrient rich waters, 

however, must prevent the accumulation of planktonic larvae and phytoplankton along coastal 

fronts. 

In eastern Alboran the landscape is dominated by slow-growing species, which are more 

competitive in oligotrophic conditions (Duarte, 1995; Cloern, 2001), such as the MSW prevalent 

in this subregion (Parada & Canton, 1998; Baldacci et al., 2001). In this sense, the capability of 

P. oceanica or C. nodosa to store nutrients (Delgado, 1985), the possibility of Cystoseira to 

remain in a latent stage during autumn and winter (Barceló-Martí et al., 2000), the presence of 

anti-hervibory defences (McMillan, 1984; Amico, 1995) and the relatively low nutrients 

requirements of these species (Duarte, 1995) must suppose an advantage for their dominance.  

 

Central Alboran as divergent boundary  

 

The alternative episodes of upwelling and MSW in the central region, favour short-time 

oscillations in temperature and nutrient availability during summer, which should cause an acute 

stress for benthic organisms. In this case, species with a narrower distribution range (i.e. cold-

temperate and warm-temperate species) seems to be the most affected in comparison with 

wide-distributed species that even increased their numbers. This suggests that temperature 

stress play a relevant role in the functioning of this divergent boundary. Furthermore, 

considering that many taxa show the maximum fertility during spring-summer in the Alboran 

Sea (González, 1994; Barceló-Martí et al., 2000) and the vulnerability of many species during 

the first life stages (Brawley & Johnson, 1991; Steen & Rueness, 2004), the oscillations in 
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temperature and nutrient availability during summer in the central subregion could hamper the 

success in seedling settlement of several macroalgal species, specially if they are in their 

distribution limits. 

 

Conclusions and future outlook  

 

This study is a first step for a better understanding of the functioning of the Alboran Sea as a 

biogeographical border between the Atlantic and the Mediterranean. The use of EOF analysis 

instead of averaged value of SST to define dynamic oceanographic conditions and the 

combination of landscape and species composition datasets at large scales to analyse 

biogeographical patterns, have supposed a good approximation for the understanding of the 

influence of oceanic conditions in littoral and sublittoral communities along this sea.  

The main conclusion is the division of Alboran Sea into three subregions. While the western 

and eastern subregions showed a marked Atlantic and Mediterranean character, respectively, 

the central subregion acts as a divergent boundary showing a poorer and less differentiated 

flora, with its landscape dominated by filter-feeders. This special character of central Alboran 

must be consequence of the alternative occurrence of upwelling episodes and the arrival of 

MSW, causing short-time variations in physico-chemical conditions, and its influence in the 

arrival of food and filter-feeders larvae.  

The knowledge about the ecological functioning of biogeographical boundaries and the 

underlying mechanisms is essential to forecast past and future changes in the distribution and 

composition of benthic communities. This fact is especially important considering the actual 

context of climate change, and the transitional character of southern Iberia as a biogeographical 

limit for many taxa (Conde, 1989; González, 1994; Boaventura et al., 2002). In this sense, this 

study provides a database useful to measure the effects of climate change, to monitor further 

habitat destruction, and to identify community features and relevant areas for management and 

conservation purposes. 

 

 
Author Contributions 

 

Conceived and designed the experiments: RBL, ERR, IH, JJV. Analyzed the data: RBL, ERR. 

Wrote the manuscript: RBL, ERR, IH, JJV. 

 

 

Acknowledgements 
 

This study has been financially supported by the contract OT 2010/102 between the University 

of Cadiz and the Environmental Division of the Autonomic Government of Andalucía (Southern 

Spain), and the project CTM2011-24482 (SEA-LIVE) of the Spanish Ministry of Science and 



128 Chapter 4 
 

Innovation; R. Bermejo and E. Ramírez-Romero helds a FPU fellowship of the Spanish Ministry 

of Education. The authors are thankful to F. Brun for statistical advice; and A Bermejo, S 

Molina, MM Chaves, G de la Fuente, M López-Mayorga and JE Espinosa for field assistance. 

This is CEIMAR Journal publication no. XX. 

 

 
 

References 

Alberto F., Massa S., Manent P., Diaz-Almela E., Arnaud-Haond S., Duarte C.M., & Serrão E. a. 

(2008) Genetic differentiation and secondary contact zone in the seagrass Cymodocea 

nodosa across the Mediterranean-Atlantic transition region. Journal of Biogeography, 35, 

1279–1294.  

Álvarez-Cobelas M., Gallardo T., & Navarro M.J. (1989) Una biogeografía de la flora de algas 

bentónicas marinas de la península Ibérica. Anales del Real Jardín Botánico de Madrid, 

46, 9–19.  

Amico V. (1995) Marine brown algae of Family Cystoseiraceae: chemistry and chemotaxonomy. 

Phytochemistry, 39, 1257–1279.  

Báez J.C., Real R., Vargas J.M., & Flores-Moya A. (2004) A biogeographical analysis of the 

genera Audoinella (Rhodophyta), Cystoseira (Phaeophyceae) and Cladophora 

(Chlorophyta) in the western Mediterranean Sea and Adriatic Sea. Phycologia, 43, 404–

415. 

Baldacci A., Corsini G., Grasso R., Manzella G., Allen J.T., & Cipollini P. (2001) A study of the 

Alboran sea mesoscale system by means of empirical orthogonal function decomposition 

of satellite data. .  

Ballesteros E. & Pinedo S. (2004) Los Bosques de algas pardas y rojas. Praderas y bosques 

marinos de Andalucía (Ed. by A.A. Luque del Villar & J. Templado). pp. 199–222. Sevilla, 

Spain.  

Ballesteros E., Torras X., Pinedo S., García M., Mangialajo L., & de Torres M. (2007) A new 

methodology based on littoral community cartography dominated by macroalgae for the 

implementation of the European Water Framework Directive. Marine pollution bulletin, 55, 

172–180.  

Bárbara I., Cremades J., Calvo S., López-Rodríguez M.C., & Dosil J. (2005) Checklist of the 

benthic marine and brackish Galician algae (NW Spain). Anales del Jardín Botánico de 

Madrid, 62, 69–100.  

Barceló-Martí M.C., Gallardo-García T., Gómez-Garreta A., Pérez-Ruzafa I.M., Ribera-Siguan 

M.A., & Rull-Lluch J. (2000) Flora phycologica iberica 1. Fucales. Universidad de Murcia,  

Bargelloni L., Alarcon J.A., Alvarez M.C., Penzo E., Magoulas A., Reis C., & Patarnello T. 

(2003) Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns 

across the Atlantic-Mediterranean divide. Journal of Evolutionary Biology, 16, 1149–1158.  



Chapter 4 129 
 

Bermejo R., de la Fuente G., Vergara J.J., & Hernández I. (2013) Application of the CARLIT 

index along a biogeographical gradient in the Alboran Sea (European Coast). Marine 

pollution bulletin, 72, 107–118.  

Bianchi C.N. & Morri C. (2000) Marine Biodiversity of the Mediterranean Sea  : Situation, 

Problems and Prospects for Future Research. Marine pollution bulletin, 40, 367–376.  

Björnsson H. & Venegas S.A. (1997) A Manual of EOF and SVD Analysis of Climatic Data.  

Blanchette C. a., Broitman B.R., & Gaines S.D. (2006) Intertidal community structure and 

oceanographic patterns around Santa Cruz Island, CA, USA. Marine Biology, 149, 689–

701.  

Blanchette C.A., Melissa Miner C., Raimondi P.T., Lohse D., Heady K.E.K., & Broitman B.R. 

(2008) Biogeographical patterns of rocky intertidal communities along the Pacific coast of 

North America. Journal of Biogeography, 35, 1593–1607.  

Boaventura D., Ré P., Cancela da Fonseca L., & Hawkins S.J. (2002) Intertidal Rocky Shore 

Communities of the Continental Portuguese Coast: Analysis of Distribution Patterns. 

Marine Ecology, 23, 69–90.  

Brawley S.H. & Johnson L.E. (1991) Survival of fucoid embryos in the intertidal zone depends 

upon developmental stage and microhabitat. Journal of phycology, 27, 179–186.  

Bray J.R. & Curtis J.T. (1957) An ordination of upland forest communities of southern 

Wisconsin. Ecological Monographs, 27, 325–349.  

Briggs J.C. (2007) Marine biogeography and ecology: invasions and introductions. Journal of 

Biogeography, 34, 193–198.  

Broitman B., Navarrete S., Smith F., & Gaines S. (2001) Geographic variation of southeastern 

Pacific intertidal communities. Marine Ecology Progress Series, 224, 21–34.  

Bustamante R.H. & Branch G.M. (1996) Large Scale Patterns and Trophic Structure of 

Southern African Rocky Shores: The Roles of Geographic Variations and Wave Exposure. 

Journal of Biogeography, 339–351.  

Cebrián E. & Ballesteros E. (2004) Zonation patterns of benthic communities in an upwelling 

area from the western Mediterranean (La Herradura, Alboran Sea). Scientia Marina, 68, 

69–84.  

Clarke K.R. & Gorley R.N. (2006) PRIMER v6: User manual/tutorial. Plymouth, UK.  

Clarke K.R. & Warwick R.M. (2001) Change in marine communities: an approach to statistical 

analysis and interpretation. PRIMER-E, Plymouth, UK.  

Cloern J.E. (2001) Our evolving conceptual model of the coastal eutrophication problem. Marine 

Ecology Progress Series, 210, 223–253.  

Cohen J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological 

measurement, 20, 37–46.  

Coll M., Piroddi C., Steenbeek J., Kaschner K., Ben Rais Lasram F., Aguzzi J., Ballesteros E., 

Bianchi C.N., Corbera J., Dailianis T., Danovaro R., Estrada M., Froglia C., Galil B.S., 

Gasol J.M., Gertwagen R., Gil J., Guilhaumon F., Kesner-Reyes K., Kitsos M.-S., 

Koukouras A., Lampadariou N., Laxamana E., López-Fé de la Cuadra C.M., Lotze H.K., 



130 Chapter 4 
 

Martin D., Mouillot D., Oro D., Raicevich S., Rius-Barile J., Saiz-Salinas J.I., San Vicente 

C., Somot S., Templado J., Turon X., Vafidis D., Villanueva R., & Voultsiadou E. (2010) 

The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PloS one, 5, 

e11842.  

Conde F. (1989) Ficogeografía del Mar de Alborán. Anales del Real Jardín Botánico de Madrid, 

46, 21–26.  

Conde F., Flores-Moya A., Soto J., Altamirano M., & Sánchez A. (1996) Check-list of Andalusia 

(S. Spain) seaweeds. III. Rhodophyceae. Acta Botanica Malacitana, 21, 7–33.  

Delgado O. (1985) Contenido de fósforo en los tejidos de fanerógamas marinas del 

Mediterráneo occidental y relación con la dinámica de cada especie. Oecologia Aquatica, 

8, 139–151.  

Dice L.R. (1945) Measures of the amount of ecologic association between species. Ecology, 26, 

297–302.  

Duarte C.M. (1995) Submerged Aquatic Vegetation in Relation to Different Nutrient Regimes. 

Ophelia, 41, 87–112.  

Duggen S., Hoernle K., van den Bogaard P., Ru L., Rüpke L., & Morgan J.P. (2003) Deep roots 

of the Messinian salinity crisis. Nature, 422, 602–606.  

Emery W.J. & Thompson R.E. (1998) Data Analysis Methods in Physical Oceanography. 

Figueroa F.L., Flores-Moya A., Vergara J.J., Korbee N., & Hernández I. (2014) Autochthonous 

Seaweeds. The Mediterranean Sea: Its history and present challenges (ed. by S. Goffredo 

and Z. Dubinsky), pp. 123–135. Springer Netherlands, Dordrecht.  

Flores-Moya A. (2012) Chapter 15. Warm Temperate Seaweed Communities: A Case Study of 

Deep Water Kelp Forests from the Alboran Sea (SW Mediterranean Sea) and the Strait of 

Gibraltar. Seaweed Biology (ed. by C. Wiencke and K. Bischof), pp. 315–327. Springer 

Berlin Heidelberg, Berlin, Heidelberg.  

Flores-Moya A., Soto J., Sánchez A., Altamirano M., Reyes G., & Conde F. (1995a) Check-list 

of Andalusia (S. Spain) Seaweeds. I. Phaeophyceae. Acta Botanica Malacitana, 20, 5–18.  

Flores-Moya A., Soto J., Sánchez A., Altamirano M., Reyes G., & Conde F. (1995b) Check-list 

of Andalusia (S. Spain) seaweeds. II. Chorophyceae. Acta Botanica Malacitana, 20, 19–

26.  

González J.A. (1994) La flora del litoral próximo a Melilla. Melilla, Spain.  

González J.A. & Conde F. (1991) Estudio florístico, fenologico, autoecologico y fitogeografico 

del macrofitobentos de la mar chica (sebcha buareg de nador, mediterráneo marroquí). 

Acta Botanica Malacitana, 16, 63–80.  

González-Duarte M.M., Megina C., Piraino S., & Cervera J.L. (2013) Hydroid assemblages 

across the Atlantic-Mediterranean boundary: is the Strait of Gibraltar a marine ecotone? 

Marine Ecology, 34, 33–40.  

Guiry M.D. & Guiry G.M. (2013)  

Hewitt G. (2000) The genetic legacy of the Quaternary ice ages. .  

Hewitt G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. 183–195.  



Chapter 4 131 
 

Van den Hoek C. (1975) Phytogeographic provinces along the coasts of the northern Atlantic 

Ocean. Phycologia, 14, 317–330.  

Krijgsman W., Hilgen F.J., Raffi I., Sierro F.J., & Wilson D.S. (1999) Chronology , causes and 

progression of the Messinian salinity crisis. Nature, 400, 652–655.  

Lagerloef G.S.E. & Bernstein R.L. (1988) Empirical orthogonal function analysis of advanced 

very high resolution radiometer surface temperature patterns in Santa Barbara Channel. 

Journal of Geophysical Research, 93, 6863–6873.  

Macías D., Bruno M., Echevarría F., Vázquez a., & García C.M. (2008) Meteorologically-

induced mesoscale variability of the North-western Alboran Sea (southern Spain) and 

related biological patterns. Estuarine, Coastal and Shelf Science, 78, 250–266.  

Macías D., Navarro G., Echevarría F., García C.M., & Cueto J.L. (2007) Phytoplankton pigment 

distribution in the northwestern Alboran Sea and meteorological forcing: A remote sensing 

study. Journal of Marine Research, 65, 523–543.  

McMillan C. (1984) The condensed tannins (proanthocyanidins) in seagrasses. Aquatic Botany, 

20, 351–357.  

Menge B. a, Lubchenco J., Bracken M.E.S., Chan F., Foley M.M., Freidenburg T.L., Gaines 

S.D., Hudson G., Krenz C., Leslie H., Menge D.N.L., Russell R., & Webster M.S. (2003) 

Coastal oceanography sets the pace of rocky intertidal community dynamics. Proceedings 

of the National Academy of Sciences of the United States of America, 100, 12229–12234.  

Monserud R. a. & Leemans R. (1992) Comparing global vegetation maps with the Kappa 

statistic. Ecological Modelling, 62, 275–293.  

North G.R., Bell T.L., & Cahalan R.F. (1982) Sampling Errors in the Estimation of Empirical 

Orthogonal Functions. American Meteorological Society, 110, 699–706.  

Oksanen J., Guillaume-Blanchet F., Roeland-Kindt P., Legendre P., Minchin R., O’Hara R.B., 

Simpson G.L., Solymos P., Henry M., Stevens H., & Wagner H. (2012) Package 

“Vegan.”255.  

Parada M. & Canton M. (1998) A study of the Alboran Sea mesoscale system by means. 

International Journal of Remote Sensing, 19, 2439–2450.  

Picotti V., Negri A., & Capaccioni B. (2014) The Geological Origins and Paleoceanographic 

History of the Mediterranean Region: Tethys to Present. The Mediterranean Sea: Its 

history and present challenges (ed. by S. Goffredo and Z. Dubinsky), pp. 3–10. Springer 

Netherlands, Dordrecht.  

Quesada H., Beynon C.M., & Skibinski D.O.F. (1995) A Mitochondrial DNA Discontinuity in the 

Mussel Mytilus galloprovincialis Lmk: Pleistocene Vicariance Biogeography and 

Secondary Intergradation. Molecular Biology and Evolution, 12, 521–524.  

Renault L., Oguz T., Pascual A., Vizoso G., & Tintore J. (2012) Surface circulation in the Alborn 

Sea (western Mediterranean) inferred from remotely sensed data. Journal of Geophysical 

Research: Oceans, 117, 19.  

Rodríguez J. (1982) Oceanografía del Mar Mediterráneo. Madrid, Spain.  



132 Chapter 4 
 

Sarhan T., García-Lafuente J., Vargas M., Vargas J.M., & Plaza F. (2000) Upwelling 

mechanisms in the northwestern Alboran Sea. Journal of Marine Systems, 23, 317–331.  

Schiel D.R. (2004) The structure and replenishment of rocky shore intertidal communities and 

biogeographic comparisons. Journal of Experimental Marine Biology and Ecology, 300, 

309–342.  

Serio D., Alongi G., Catra M., Cormaci M., & Furnari G. (2006) Changes in the benthic algal 

flora of Linosa Island (Straits of Sicily, Mediterranean Sea). Botanica Marina, 49, 135–144.  

Steen H. & Rueness J. (2004) Comparison of survival and growth in germlings of six fucoid 

species (Fucales, Phaeophyceae) at two different temperature and nutrient levels. Sarsia, 

89, 175–183.  

Spalding M.D., Fox H.E., Allen G.R., Davidson N., Ferdaña Z.A., Finlayson M.A.X., Halpern 

B.S., Jorge M.A., Lourie S.A., Martin K.D., Mcmanus E., Recchia C.A., & Robertson J. 

(2007) Marine Ecoregions of the World  : A Bioregionalization of Coastal and Shelf Areas. 

Bio Science, 57, 573–583. 

Vargas-Yáñez M., Plaza F., García-Lafuente J., Sarhan T., Vargas J.M., & Vélez-Belchi P. 

(2002) About the seasonal variability of the Alboran Sea circulation. Journal of Marine 

Systems, 35, 229–248.  

 

 
  



Chapter 4 133 
 

Appendix S1- Values of surveyed longitude (SL), percentage of high coast (%HC), percentage of low coast (%LC), 

percentage of coast constituted by blocks (%B), percentage of wave exposed coast (%EC), tidal range (TR), mean Sea 

Surface Temperature (mean SST) and distance in kilometres from site 1, for the 27 sites studied. 
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9	
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11	
  

12	
  

13	
  

14	
  

15	
  

16	
  

17	
  

18	
  

19	
  

20	
  

21	
  

22	
  

23	
  

24	
  

25	
  

26	
  

27	
  

Site	
  

Camarinal	
  

Punta	
  Paloma	
  

Guadalmesí	
  

Punta	
  Carnero	
  

Torreguadiaro	
  

Calaburras	
  

Torrequebrada	
  

Araña-­‐Rincón	
  

Nerja	
  

Maro	
  

Cerro	
  Gordo	
  

Almuñecar	
  

Salobreña	
  

Rijana	
  

Castel	
  de	
  Ferro	
  

Cala	
  del	
  Ruso	
  

La	
  Alcazaba	
  

Guardias	
  Viejas	
  

Almería	
  

Cabo	
  Gata	
  

San	
  José	
  

Isleta	
  Moro	
  

El	
  Playazo	
  

El	
  Algarrobico	
  

Terreros	
  

Cala	
  Salitrona	
  

Cabo	
  de	
  Palos	
  

SL	
  (m)	
  

1500	
  

1500	
  

1500	
  

1500	
  

1220	
  

1370	
  

600	
  

1090	
  

900	
  

1500	
  

1500	
  

1110	
  

1200	
  

1030	
  

970	
  

710	
  

880	
  

1500	
  

450	
  

1310	
  

1320	
  

1170	
  

930	
  

900	
  

1490	
  

780	
  

700	
  

%HC	
  

27.33	
  

0.00	
  

0.00	
  

0.00	
  

0.00	
  

0.00	
  

0.00	
  

77.98	
  

31.11	
  

23.33	
  

64.00	
  

73.87	
  

27.50	
  

59.22	
  

0.00	
  

12.68	
  

0.00	
  

0.00	
  

84.44	
  

71.76	
  

38.64	
  

39.32	
  

50.54	
  

2.22	
  

0.00	
  

11.54	
  

20.00	
  

%LC	
  

15.33	
  

100.00	
  

100.00	
  

84.00	
  

90.16	
  

64.96	
  

65.00	
  

12.84	
  

16.67	
  

0.00	
  

0.00	
  

13.51	
  

0.00	
  

0.00	
  

14.43	
  

0.00	
  

0.00	
  

96.00	
  

0.00	
  

28.24	
  

37.12	
  

18.80	
  

49.46	
  

87.78	
  

97.32	
  

14.1	
  

55.71	
  

%B	
  

57.33	
  

0.00	
  

0.00	
  

16.00	
  

9.84	
  

35.04	
  

35.00	
  

9.17	
  

52.22	
  

76.67	
  

36.00	
  

12.61	
  

72.50	
  

40.78	
  

85.57	
  

87.32	
  

100.00	
  

4.00	
  

15.56	
  

0.00	
  

24.24	
  

41.88	
  

0.00	
  

10.00	
  

2.68	
  

74.36	
  

24.29	
  

%EC	
  

100.00	
  

100.00	
  

100.00	
  

100.00	
  

100.00	
  

100.00	
  

100.00	
  

77.06	
  

100.00	
  

100.00	
  

88.00	
  

83.78	
  

94.17	
  

53.40	
  

100.00	
  

100.00	
  

86.36	
  

96.00	
  

100.00	
  

47.33	
  

73.48	
  

72.65	
  

59.14	
  

100.00	
  

100.00	
  

97.44	
  

70.00	
  

TR	
  (cm)	
  

162.52	
  

152.61	
  

129.07	
  

114.20	
  

98.84	
  

79.05	
  

73.12	
  

66.07	
  

60.01	
  

59.29	
  

58.57	
  

57.56	
  

56.55	
  

53.35	
  

52.17	
  

50.16	
  

48.81	
  

44.77	
  

37.71	
  

35.59	
  

34.97	
  

34.46	
  

34.15	
  

32.77	
  

30.19	
  

25.92	
  

22.97	
  

mean	
  SST	
  (ºC)	
  

18.40	
  

17.98	
  

16.94	
  

17.10	
  

17.68	
  

17.58	
  

17.96	
  

18.36	
  

18.51	
  

18.40	
  

18.40	
  

18.38	
  

18.49	
  

18.39	
  

18.64	
  

18.46	
  

18.57	
  

18.96	
  

19.33	
  

18.98	
  

19.10	
  

19.44	
  

19.41	
  

20.13	
  

19.82	
  

19.98	
  

19.15	
  

Distance	
  (km)	
  

0	
  

8	
  

27	
  

39	
  

69	
  

129	
  

147	
  

174	
  

216	
  

221	
  

226	
  

233	
  

240	
  

260	
  

267	
  

279	
  

287	
  

311	
  

353	
  

386	
  

396	
  

404	
  

409	
  

431	
  

472	
  

540	
  

587	
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Appendix S2- Spatial coefficient for each representative mode: a- mode 1; b- mode 2; c- mode-3 
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Appendix S3- Species list of macrophytes observed at each subregion identified along Alboran Sea: western, central 

and eastern. Absence: 0, Presence: 1. Climatic affinity is indicated as warm-temperate (WT), cold-temperate (CT), 

Mediterranean (Med) and Wide Distributed (WB).  
 

Distribution	
  
	
  

WT	
  
Med	
  
CT	
  
	
  

CT	
  
WT	
  
WT	
  
Med	
  
Med	
  
Med	
  
Med	
  
Med	
  
CT	
  
WT	
  
Med	
  
Med	
  
Med	
  
CT	
  
CT	
  
WD	
  
WT	
  
WD	
  
CT	
  
CT	
  
WD	
  
CT	
  
CT	
  
WT	
  
WT	
  
WD	
  
CT	
  
WT	
  
WD	
  
CT	
  
WD	
  
CT	
  
WD	
  
WD	
  
WT	
  
	
  

WT	
  
CT	
  
CT	
  
Med	
  
WT	
  
Med	
  
WD	
  
WD	
  
Med	
  
WD	
  
CT	
  
CT	
  
WT	
  
CT	
  
CT	
  
CT	
  
WT	
  
WD	
  
CT	
  
WD	
  
WT	
  
WD	
  

Species	
  
SEAGRASSES	
  

Cymodocea	
  nodosa	
  (Ucria)	
  Ascherson	
  
Posidonia	
  oceanica	
  (L.)	
  Delile	
  
Zostera	
  noltei	
  Hornemann	
  

PHAEOPHYCEAE	
  
Cladostephus	
  spongiosus	
  (Hudson)	
  C.Agardh	
  

Colpomenia	
  sinuosa	
  (Mertens	
  ex	
  Roth)	
  Derbès	
  &	
  Solier	
  
Cutleria	
  adspersa	
  (Mertens	
  ex	
  Roth)	
  De	
  Notaris	
  
Cystoseira	
  amentacea	
  var.	
  stricta	
  Montagne	
  

Cystoseira	
  compressa	
  (Esper)	
  Gerloff&Nizamuddin	
  
Cystoseira	
  elegans	
  Sauvageau	
  

Cystoseira	
  foeniculacea	
  (L.)	
  Greville	
  
Cystoseira	
  humilis	
  Schousboe	
  ex	
  Kützinng	
  

Cystoseira	
  humilis	
  var.	
  myriophylloides	
  (Sauvegeau)	
  J.H.Price&D.M.John	
  
Cystoseira	
  mauritanica	
  Sauvageau	
  
Cystoseira	
  mediterranea	
  Sauvageau	
  
Cystoseria	
  sauvageuana	
  Hamel	
  
Cystoseira	
  spinosa	
  Sauvageau	
  

Cystoseira	
  tamariscifolia	
  (Hudson)	
  Papenfuss	
  
Cystoseira	
  usneoides	
  (L.)	
  M.Roberts	
  

Dictyota	
  dichotoma	
  (Hudson)	
  J.V.Lamouroux	
  
Dictyopteris	
  polypodioides	
  (A.P.De	
  Candolle)	
  J.V.Lamouroux	
  

Ectocarpales	
  Bessey	
  
Fucus	
  spiralis	
  Linnaeus	
  

Halopteris	
  filicina	
  (Grateloup)	
  Kützing	
  
Halopteris	
  scoparia	
  (Linnaeus)	
  Sauvageau	
  
Leathesia	
  marina	
  (Lyngbye)	
  Decaisne	
  

Laminaria	
  ochroleuca	
  Bachelot	
  de	
  la	
  Pylaie	
  
Lobophora	
  variegata	
  (J.V.	
  Lamouroux)	
  Womersley	
  ex	
  E.C.Oliveira	
  

Padina	
  pavonica	
  (L.)	
  Thivy	
  
Ralfsia	
  verrucosa	
  (Areschoug)	
  Areschoug	
  
Saccorhiza	
  polyschides	
  (Lightfoot)	
  Batters	
  

Sargassum	
  vulgare	
  C.Agardh	
  
Scytosiphon	
  lomentaria	
  (Lyngbye)	
  Link	
  

Scytosiphon	
  dotyi	
  M.J.Wynne	
  
Sphacelaria	
  cirrosa	
  (Roth)	
  C.Agardh	
  
Sphacelaria	
  fusca	
  (Hudson)	
  S.F.Gray	
  
Sphacelaria	
  tribuloides	
  Meneghini	
  

Taonia	
  atomaria	
  (Woodward)	
  J.Agardh	
  
Zonaria	
  tournefortii	
  (J.V.Lamouroux)	
  Montagne	
  

RHODOPHYTA	
  
Acrosorium	
  ciliolatum	
  (Harvey)	
  Kylin	
  

Aglaothamnion	
  hookeri	
  (Dillwyn)	
  Maggs&Hommersand	
  
Ahnfeltiopsis	
  devoniensis	
  (Greville)	
  P.C.Silva&DeCew	
  

Alsidium	
  corallinum	
  C.Agardh	
  
Amphiroa	
  beauvoisii	
  J.V.Lamouroux	
  
Amphiroa	
  cryptarthrodia	
  Zanardini	
  
Amphiroa	
  rigida	
  J.V.Lamouroux	
  

Anotrichium	
  tenue	
  (C	
  Agardh)	
  Nägeli	
  
Anthithamniella	
  elegans	
  (Berthold)	
  J.H.	
  Price&D.M.	
  John	
  

Antithamnion	
  cruciatum	
  (C.Agardh)	
  Nägeli	
  
Apoglossum	
  ruscifolium	
  (Turner)	
  J.Agardh	
  

Asparagopsis	
  armata	
  Harvey	
  
Asparagopsis	
  taxiformis	
  (Delile)	
  Trevisan	
  de	
  Saint-­‐Léon	
  

Bangia	
  atropurpurea	
  (Mertens	
  ex	
  Roth)	
  C.Agardh	
  
Boergeseniella	
  fruticulosa	
  (Wulfen)	
  Kylin	
  

Bonnemaisonia	
  asparagoides	
  (Woodward)	
  C.Agardh	
  
Botryocladia	
  botryoides	
  (Wulfen)	
  Feldmann	
  
Callithamnion	
  corymbosum	
  (Smith)	
  Lyngbye	
  

Callithamnion	
  granulatum	
  (Ducluzeau)	
  C.Agardh	
  
Caulacanthus	
  ustulatus	
  (Mertens	
  ex	
  Turner)	
  Kützing	
  

Centroceras	
  clavulatum	
  (C.Agardh)	
  Montagne	
  
Ceramium	
  ciliatum	
  (J.	
  Ellis)	
  Ducluzeau	
  

Western	
  
	
  
1	
  
1	
  
0	
  
	
  
1	
  
1	
  
1	
  
0	
  
1	
  
0	
  
1	
  
0	
  
1	
  
1	
  
0	
  
0	
  
0	
  
1	
  
1	
  
1	
  
1	
  
1	
  
1	
  
1	
  
1	
  
1	
  
1	
  
0	
  
1	
  
1	
  
1	
  
1	
  
0	
  
1	
  
1	
  
0	
  
0	
  
1	
  
1	
  
	
  
1	
  
1	
  
1	
  
0	
  
1	
  
0	
  
1	
  
0	
  
0	
  
1	
  
1	
  
1	
  
1	
  
0	
  
1	
  
0	
  
0	
  
1	
  
1	
  
1	
  
1	
  
1	
  

Central	
  
	
  
0	
  
1	
  
0	
  
	
  
1	
  
1	
  
0	
  
0	
  
1	
  
0	
  
0	
  
0	
  
0	
  
0	
  
1	
  
0	
  
0	
  
1	
  
0	
  
1	
  
0	
  
1	
  
0	
  
1	
  
1	
  
0	
  
0	
  
0	
  
0	
  
1	
  
0	
  
1	
  
1	
  
0	
  
1	
  
0	
  
0	
  
0	
  
0	
  
	
  
1	
  
1	
  
1	
  
0	
  
1	
  
1	
  
1	
  
0	
  
1	
  
1	
  
0	
  
1	
  
1	
  
1	
  
1	
  
0	
  
0	
  
1	
  
1	
  
1	
  
0	
  
1	
  

Eastern	
  
	
  
1	
  
1	
  
1	
  
	
  
1	
  
1	
  
0	
  
1	
  
1	
  
1	
  
1	
  
1	
  
0	
  
0	
  
1	
  
1	
  
1	
  
0	
  
0	
  
1	
  
1	
  
0	
  
0	
  
1	
  
1	
  
0	
  
0	
  
1	
  
1	
  
1	
  
0	
  
1	
  
0	
  
0	
  
1	
  
1	
  
1	
  
0	
  
0	
  
	
  
0	
  
0	
  
0	
  
1	
  
0	
  
1	
  
1	
  
1	
  
0	
  
1	
  
0	
  
0	
  
1	
  
0	
  
1	
  
1	
  
1	
  
1	
  
1	
  
0	
  
0	
  
1	
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Appendix S3 (cont.)- Species list of macrophytes observed at each subregion identified along Alboran Sea: western, 

central and eastern. Absence: 0, Presence: 1. Climatic affinity is indicated as warm-temperate (WT), cold-temperate 

(CT), Mediterranean (Med) and Wide Distributed (WB). 

 
Distribution	
  

	
  
WD	
  
Med	
  
CT	
  
WD	
  
WD	
  
WD	
  
CT	
  
CT	
  
CT	
  
WD	
  
CT	
  
WD	
  
WT	
  
WD	
  
WT	
  
WD	
  
WT	
  
CT	
  
CT	
  
CT	
  
Med	
  
WD	
  
CT	
  
WD	
  
CT	
  
WT	
  
CT	
  
CT	
  
WD	
  
WT	
  
CT	
  
CT	
  
WT	
  
CT	
  
CT	
  
CT	
  
WT	
  
Med	
  
WT	
  
WD	
  
WT	
  
CT	
  
CT	
  
WD	
  
Med	
  
WD	
  
WT	
  
CT	
  
WD	
  
CT	
  
WD	
  
CT	
  
CT	
  
CT	
  
WD	
  
WD	
  
WD	
  
WT	
  
CT	
  
WT	
  
WT	
  
WT	
  

Species	
  
RHODOPHYTA	
  

Ceramium	
  diaphanum	
  (Lightfoot)	
  Roth	
  
Ceramium	
  echionotum	
  J.Agardh	
  
Ceramium	
  cf	
  secundatum	
  Lyngbye	
  

Ceramium	
  cf	
  tenerrimum	
  (G.Martens)	
  Okamura	
  
Champia	
  parvula	
  (C.	
  Agardh)	
  Harvey	
  

Chondracanthus	
  acicularis	
  (Roth)	
  Fredericq	
  
Chondracanthus	
  teedei	
  (Mertens	
  ex	
  Roth)	
  Kützing	
  

Chondria	
  capillaris	
  (Hudson)	
  M.J.Wynne	
  
Chondria	
  coerulescens	
  (J.Agardh)	
  Falkenberg	
  
Chondria	
  dasyphylla	
  (Woodward)	
  C.Agardh	
  
Chylocladia	
  verticillata	
  (Lightfoot)	
  Bliding	
  

Corallina	
  Linnaeus	
  
Cottoniella	
  filamentosa	
  (M.A.Howe)	
  Børgesen	
  

Crouania	
  attenuata	
  (C.Agardh)	
  J.Agardh	
  
Cryptonemia	
  seminervis	
  (C.Agardh)	
  J.Agardh	
  

Dasya	
  C.	
  Agardh	
  
Digenea	
  simplex	
  (Wulfen)	
  C.Agardh	
  

Drachiella	
  spectabilis	
  J.	
  Ernst	
  &	
  Feldmann.	
  
Dudresnaya	
  verticillata	
  (Withering)	
  Le	
  Jolis	
  
Falkenbergia	
  rufolanosa	
  (Harvey)	
  F.Schmitz	
  
Gastroclonium	
  clavatum	
  (Roth)	
  Ardissone	
  
Gastroclonium	
  reflexum	
  (Chauvin)	
  Kützing	
  
Gastroclonium	
  ovatum	
  (Hudson)	
  Papenfuss	
  

Gayliella	
  flaccida	
  (Harvey	
  ex	
  Kützing)	
  T.O.Cho	
  &	
  L.J.McIvor	
  
Gelidium	
  corneum	
  (Hudson)	
  J.V.Lamouroux	
  
Gelidium	
  crinale	
  (Hare	
  ex	
  Turner)	
  Gaillon	
  

Gelidium	
  microdon	
  Kützing	
  
Gelidium	
  pusillum	
  (Stackhouse)	
  Le	
  Jolis	
  

Gelidium	
  spinosum	
  (S.G.	
  Gmelin)	
  P.C.	
  Silva	
  in	
  Silva,	
  Basson	
  &	
  Moe	
  
Gracilaria	
  cf	
  armata	
  (C.Agardh)	
  Greville	
  
Gracilaria	
  multipartita	
  (Clemente)	
  Harvey	
  
Grateloupia	
  lanceola	
  (J.Agardh)	
  J.Agardh	
  

Griffithsia	
  opuntioides	
  J.Agardh	
  
Gymnogongrus	
  crenulatus	
  (Turner)	
  J.Agardh	
  
Gymnogongrus	
  griffithsiae	
  (Turner)	
  Martius	
  

Haliptilon	
  squamatum	
  (L.)	
  H.W.Johansen	
  et	
  al.	
  
Halopithys	
  incurva	
  (Hudson)	
  Batters	
  

Haraldia	
  lenormandii	
  (Derbès	
  &	
  Solier)	
  Feldmann	
  
Herposiphonia	
  secunda	
  (C.Agardh)	
  Ambronn	
  
Hildenbrandia	
  rubra	
  (Sommerfelt)	
  Meneghini	
  
Hypnea	
  musciformis	
  (Wulfen)	
  J.V.Lamouroux	
  

Hypoglossum	
  hypoglossoides	
  (Stackhouse)	
  F.S.Collins	
  &	
  Hervey	
  
Jania	
  longifurca	
  Zanardini	
  

Jania	
  rubens	
  (L.)	
  J.V.Lamouroux	
  
Jania	
  virgata	
  (Zanardini)	
  Montagne	
  

Laurencia	
  obtusa	
  (Hudson)	
  J.V.Lamouroux	
  
Liagora	
  distenta	
  (Mertens	
  ex	
  Roth)	
  J.V.Lamouroux	
  

Lithophyllum	
  byssoides	
  (Lamarck)	
  Foslie	
  
Lithophyllum	
  corallinae	
  (P.L.	
  Crouan	
  &	
  H.M.	
  Crouan)	
  Heydrich	
  

Lithophyllum	
  incrustans	
  Philippi	
  
Lithophyllum	
  pustulatum	
  (J.V.	
  Lamouroux)	
  Foslie	
  

Lomentaria	
  articulata	
  (Hudson)	
  Lyngbye	
  
Lomentaria	
  catenata	
  Harvey	
  

Lomentaria	
  orcadensis	
  (Harvey)	
  F.S.Collins	
  
Lophosiphonia	
  reptabunda	
  (Suhr)	
  Kylin	
  

Mesophyllum	
  lichenoides	
  (J.	
  Ellis)	
  Marie	
  Lemoine	
  
Nemalion	
  helminthoides	
  (Velley)	
  Batters	
  

Neogoniolithon	
  brassica-­‐florida	
  (Harvey)	
  Setchell	
  &	
  L.R.Mason	
  
Osmundea	
  hybrida	
  (A.P.de	
  Candolle)	
  K.W.Nam	
  
Osmundea	
  pinnatifida	
  (Hudson)	
  Stackhouse	
  

Palisada	
  perforata	
  (Bory	
  de	
  Saint-­‐Vincent)	
  K.W.Nam	
  
Peyssonnelia	
  Decaisne	
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Appendix S3 (cont.)- Species list of macrophytes observed at each subregion identified along Alboran Sea: western, 

central and eastern. Absence: 0, Presence: 1. Climatic affinity is indicated as warm-temperate (WT), cold-temperate 

(CT), Mediterranean (Med) and Wide Distributed (WB). 
 

Distribution	
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Species	
  
RHODOPHYTA	
  

Peyssonnelia	
  dubyi	
  P.L.Crouan	
  &	
  H.M.Crouan	
  
Plocamium	
  cartilagineum	
  (Linnaeus)	
  P.S.Dixon	
  

Plocamium	
  raphelisianum	
  P.J.L.Dangeard	
  
Polysiphonia	
  Greville	
  

Porphyra	
  cf	
  leucosticta	
  Thuret	
  
Pterocladiella	
  capillacea	
  (S.G.	
  Gmelin)	
  Santelices	
  &	
  Hommersand	
  

Pterosiphonia	
  complanata	
  (Clemente)	
  Falkenberg	
  
Pterosiphonia	
  parasitica	
  (Hudson)	
  Falkenberg	
  
Pterosiphonia	
  pennata	
  (C.Agardh)	
  Sauvageau	
  
Pterothamnion	
  crispum	
  (Ducluzeau)	
  Nägeli	
  

Rhodophyllis	
  divaricata	
  (Stackhouse)	
  Papenfuss	
  
Rhodymenia	
  ardissonei	
  (Kuntze)	
  Feldmann	
  

Rhodymenia	
  pseudopalmata	
  (J.V.Lamouroux)	
  P.C.Silva	
  
Rissoella	
  verruculosa	
  (Bertoloni)	
  J.	
  Agardh	
  
Rytiphlaea	
  tinctoria	
  (Clemente)	
  C.Agardh	
  

Schottera	
  nicaeensis	
  (J.V.Lamouroux	
  ex	
  Duby)	
  Guiry	
  &	
  Hollenberg	
  
Scinaia	
  furcellata	
  (Turner)	
  J.Agardh	
  

Sphaerococcus	
  coronopifolius	
  Stackhouse	
  
Taenioma	
  nanum	
  (Kützing)	
  Papenfuss	
  

Trailliella	
  intricata	
  Batters*	
  
CHLOROPHYTA	
  

Acetabularia	
  acetabulum	
  (Linnaeus)	
  P.C.	
  Silva	
  
Anadyomene	
  stellata	
  (Wulfen)	
  C.Agardh	
  

Bryopsis	
  cupressina	
  J.V.Lamouroux	
  
Bryopsis	
  hypnoides	
  J.V.Lamouroux	
  

Caulerpa	
  prolifera	
  (Forsskål)	
  J.V.Lamouroux	
  
Caulerpa	
  racemosa	
  (Forsskål)	
  J.Agardh	
  
Chaetomorpha	
  aerea	
  (Dillwyn)	
  Kützing	
  

Chaetomorpha	
  ligustica	
  (Kützing)	
  Boergesen	
  
Cladophora	
  cf	
  albida	
  (Nees)	
  Kutzing	
  

Cladophora	
  cf	
  hutchinsiae	
  (Dillwyn)	
  Kützing	
  
Cladophora	
  laetevirens	
  (Dillwyn)	
  Kützing	
  

Cladophora	
  prolifera	
  (Roth)	
  Kützing	
  
Codium	
  adhaerens	
  C.Agardh	
  

Codium	
  fragile	
  (Suringar)	
  Hariot	
  
Codium	
  vermilara	
  (Olivi)	
  Delle	
  Chiaje	
  

Dasycladus	
  vermicularis	
  (Scopoli)	
  Krasser	
  in	
  Beck	
  &	
  Zahlbruckner	
  
Derbesia	
  marina	
  (Lyngbye)	
  Solier	
  

Flabellia	
  petiolata	
  (Turra)	
  Nizamuddin	
  
Halimeda	
  tuna	
  (J.Ellis	
  &	
  Solander)	
  J.V.Lamouroux	
  

Pedobesia	
  simplex	
  (Meneghini	
  ex	
  Kützing)	
  M.J.Wynne	
  &	
  Leliaert	
  
Ulva	
  clathrata	
  (Roth)	
  C.Agardh	
  

Ulva	
  compressa	
  Linnaeus	
  
Ulva	
  flexuosa	
  Wulfen	
  
Ulva	
  linza	
  Linnaeus	
  
Ulva	
  rigida	
  C.Agardh	
  

Valonia	
  utricularis	
  (Roth)	
  C.Agardh	
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Chapter 5 
Preliminary assessment of the identity and genetic population structure of 
Cystoseira ericaefolia group in southern Iberian Peninsula. 



"The extent of genetic divergence between refugial genomes varies among 

species and is a measure of the time of their separation. Populations in regions 

where lineages persist through several climatic cycles can accumulate genetic 

differences and possibly speciate. They are not affected by their relatives that 

colonize other parts, but are eliminated by climatic reversals." 

Godfrey M Hewitt  

(Genetic consequences of climatic oscillations in the Quaternary. Philosophical 

Transactions of the Royal Society of London (2004) 359: 183-195) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Octopus vulgaris in a Cystoseira amentacea stand. Cabo de Gata. August 2012.  

Photograph by Ricardo Bermejo Lacida 
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ABSTRACT 

 

The Cystoseira ericaefolia group is conformed for three closely related species: C. amentacea, 

C. mediterranea and C. tamariscifolia. The former and the latter overlap their distribution area in 

eastern Alboran Sea, where they can occur in sympatry or parapatry. However, serious 

concerns arise due to the morphological plasticity of these species and the possible existence 

of hybrids. To clarify the taxonomic situation of C. ericaefolia group in southern Iberian 

Peninsula and the possible existence of hybrids, nuclear microsatellites and mitochondrial 

markers were used. Nine sites were sampled along this area. In eight sites only one of the two 

species was found, and in one locality both species were found in parapatry. Based on 

sequences of the mitochondrial 23S obtained for several specimens from the studied area and 

others sequences of these species retrieved from GeneBank from distant Mediterranean and 

Atlantic localities, a phylogenetic analysis was developed. Genetic structure analyses based on 

microsatellites were performed to determine the levels of gene flow between the putative taxa. 

The phylogenetic analysis based on the mitochondrial 23S suggested that only one genetic 

entity was present in Alboran Sea. The analysis of the genetic population structure in the locality 

where supposedly both species were present did not show significant differences between the 

genetic entities identified. Moreover, when this parapatric population was compared with other 

populations of these species along southern Iberian Peninsula, C. tamariscifolia and C. 

amentacea from the site were more similar to each other than to the other populations. On the 

other hand, the genetic patterns along southern Iberian Peninsula suggested a relevant genetic 

flux between Atlantic and Mediterranean populations in Western and Central Alboran. In spite of 

the preliminary research, the results suggested that all specimens of C. ericaefolia found along 

Alboran Sea can be considered one specific entity, probably C. tamariscifolia.   

 

INTRODUCTION 
 

The Cystoseira ericaefolia group is conformed for three closely related species: C. 

amentacea, C. mediterranea and C. tamariscifolia (Amico et al., 1985; Barceló et al., 1994; 

Amico, 1995). The latter is an Atlantic species distributed from the British Isles to Mauritania 

and the Cape Verde archipielago, being also present in the Mediterranean Sea in areas of 

Atlantic influence (southern Spain, Sicily, Malta, Morocco, Algeria and Tunisia) (Barceló-Martí et 
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al., 2000; Guiry and Guiry, 2013; Rodríguez-Prieto et al., 2013). The other two species are 

considered Mediterranean neo-endemisms, being their distribution restricted to the western 

Mediterranean, Adriatic Sea and Aegean Sea. Bearing in mind the geological history of the 

Mediterranean Sea, C. tamariscifolia has been considered the ancestor of the other two 

species, which must be appeared independently (Amico et al., 1985; Gómez-Garreta et al., 

1994). 

These species are perennial, monoecious algae, producing sperm and large, non-motile 

eggs in hermaphroditic conceptacles (Barceló-Martí et al., 2000; Susini, Thibaut, et al., 2007). 

Fertilization is external, occurring within hours of gamete release (Guern, 1962). Zygotes are 

large and negatively buoyant; they rapidly sink, secrete adhesive wall polymers and adhere to 

surfaces at 12 h postfertilization (Guern, 1962). Thus, zygote dispersal is hypothesized to be 

very limited, as in other species of the Fucales (Clayton, 1990; Brawley et al., 1999). The C. 

ericaefolia species inhabit in wave exposed or moderately exposed places, in the littoral and 

upper sublittoral zone always near the surface (Barceló-Martí et al., 2000; Rodríguez-Prieto et 

al., 2013), forming sympatric or parapatric populations in areas where the distribution of the 

species is overlapped. In the Mediterranean Sea they constitute dense meadows, which are an 

important element of the littoral landscape, playing an essential role in the maintaining of the 

biodiversity and ecosystem functioning (Giaccone et al., 1994; Airoldi and Beck, 2007). Due to 

this ecological importance and the declined of their populations within the past few decades as 

consequence of anthropogenic disturbances (Borowitzka, 1972; Ballesteros et al., 1984; 

Thibaut et al., 2005), these species have been recently protected in the Mediterranean Sea 

(Annex II of the Barcelona Convention, COM/2009/0585 FIN). 

Between two (Barceló-Martí et al., 2000; Ballesteros & Pinedo, 2004) and three (Flores-

Moya et al., 1995) species of the C. ericaefolia group have been cited in Alboran Sea. However, 

the morphological plasticity of these species, their resemblance, and the seasonal variability in 

their appearance hamper their accurate identification (Gómez-Garreta et al., 1994). It is not 

uncommon to find individuals with intermediate morphologies that are impossible to assign 

unambiguously on the basis of morphology (Ballesteros and Catalán, 1981; Gómez-Garreta et 

al., 1994; Ballesteros and Pinedo, 2004). The observation of these morphologically intermediate 

plants in the field has been considered as evidence of natural hybridization (Sauvageau, 1912; 

Gómez-Garreta et al., 1982; Amico et al., 1985), which have been demonstrated in other 

species of the Fucales (e.g. Engel et al., 2005; Neiva et al., 2010; Zardi et al., 2011). 

Ballesteros & Catalán (1981) and Gómez-Garreta (com. pers.) pointed out the necessity to 

assess this group of species, a difficult task specially in places where the three entities have 

been reported. In this sense, Ballesteros & Pinedo, 2004 suggested that molecular tools would 

be helpful to complement conventional morphological and taxonomic approaches to clarify the 

identity of the specimens from south-eastern Iberian Peninsula. 

Microsatellite markers have been successfully used to distinct taxon units (Bergstrom et al., 

2005; Zardi et al., 2011) and/or admixture between close genetic entities (Wallace et al., 2004; 

Engel et al., 2005) in Fucus species, as well in others studies ranging from the population 
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genetic and ecology (Engelen et al., 2001) to the phylogeography of Fucales (Olsen et al., 

2010). 

Therefore, the main objectives of the present study were: i) to assess the identity of putative 

C. tamariscifolia and C. amentacea var. stricta in the Alboran Sea; and ii) to characterize the 

genetic structure of C. ericaefolia along southern Spain using six microsatellite markers 

developed by MAREE (MARine Ecology and Evolution) Research group. 

 

MATERIAL AND METHODS 

 

Sampling sites 

 

Specimens of C. tamariscifolia and C. amentacea var. stricta (hereafter referred to as C. 

amentacea) were collected in nine localities along the southern Iberian Peninsula (Fig. 1). 

These species overlap their distribution (Fig. 1, contact zone; Barceló-Martí et al., 2000) in the 

easternmost part of Alboran Sea, and they can be found forming sympatric and parapatric 

populations. In this case, only in one site (El Playazo, Almería) these species where found 

together in parapatry. Individuals of C. amentacea were found close to the surface forming a 

dense meadow, while individuals morphologically attributable to C. tamariscifolia were found 

scattered between 1 and 2 meters of deep. In the other eight sites, in two locations C. 

amentacea occurred alone, and in six C. tamaricifolia was the only species found.  
 

 

Figure 1- Geographical distribution of the different sampling points along the European Coast of the Gibraltar Strait and 

Western Alboran Sea. The geographical border proposed by the WFD between Atlantic and Mediterranean ecoregions 

is indicated with the black line. Er- Ericeia; Al- Albufeira; Ca- Cadiz; Ta- Tarifa island; Cb- Calaburras; He- Herradura; 

GV- Guardias Viejas; P- Playazo (i- intertidal; s- subtidal); Cq- Calblanque. Black dots- Populations of C. tamariscifolia; 

White dots- Populations of C amentacea; White dot with small black dot in the middle- Parapatric population of C. 

tamariscifolia and C. amentacea.   
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At each locality, between 27 and 32 individuals of C. tamariscifolia and/or C. amentacea 

were sampled. To minimize the damage to the sampled meadows of these endangered 

species, only a piece of the apical branch was collected per individual. The minimum distance 

between sampled individuals was 5 metres. After collection, samples were dried and stored in 

silica gel at room temperature. 

Identification of C. tamariscifolia and C. amentacea was based on general overall cauloid 

morphology (Barceló-Martí et al., 2000; Cormaci et al., 2012). In this case, plants formed by a 

creeping axis from which several erect axes arise (caespitose plants) were considered as C. 

amentacea (Fig. 2a). On the other hand, plants with a single axis attached to the substratum by 

a disk or by thick-branched haptera, which may be fused (non caespitose plants), were 

assigned to C. tamariscifolia (Fig. 2b).  

 

 
 

Figure 2- Habit of putative specimens of C. tamariscifolia (a) and C. amentacea (b) from El Playazo.   

 

DNA extraction genotyping and sequencing 

 

DNA was isolated from 5–10 mg of dried tissue of the apical tips with the CTAB method, but 

a silica filter plate (Milipore MultiScreen HTS, FB Cat. # MSFBN6B10) was used instead of the 

silica fines step. Six microsatellite loci that were polymorphic in C. tamariscifolia (MAREE group, 

unpublished) were used to genotype each individual.	
  The amount of template DNA used was 5 

µL of diluted 1:10. Polymerase Chain Reactions (PCRs) were perform in 10 µL volumes 

containing 25 mM MgCl2, 4 mM dNTPs, 10 µM forward primer (labeled), 10 µM reverse primer 
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(Operon), 0.5 U GOTaq (Promega), 5x GOTag polymerase buffer, and water to adjust volume 

to 10 µL per reaction. Amplifications were carried out on a Thermal Cycler 2720 (Applied 

Biosystems) using the following profile: initial denaturation at 94ºC for 5 minutes; 35 cycles of 

94ºC for 30 seconds, followed by 30 seconds at specific anelling temperature for each primer, 

and 72ºC for 40 seconds; and a final extension at 72ºC for 20 minutes. PCR products were 

determined using an ABI 3730 automated sequencer (Applied Biosystems). Alleles were scored 

using STRand Analysis Software (Locke et al., 2000). 

On the other hand, the partial mitochondrial 23S (mt 23S; c. 380-410-bp) was determined for 

eight individuals of C. tamariscifolia, three of C. amentacea, two of C. mediterranea and one of 

C. spinosa var. tenuior. Forward and reverse primers developed by Draisma et al. (2010) were 

used to amplify this gene region. The PCR reagents were the same that for microsatellite 

amplification, but the dNTPs concentration was lower, 1 mM instead 4mM.	
  PCRs were perform 

with a Thermal Cycler 2720 (Applied Biosystems) using the following profile: initial denaturation 

at 94ºC for 2 minutes; 35 cycles of 94ºC for 30 seconds, followed by 30 seconds at 50º C, and 

72ºC for 40 seconds; and a final extension at 72ºC for 5 minutes. Finally, forward, or forward 

and reverse strands were sequenced using an ABI 3730 automated sequencer (Applied 

Biosystems).  

 

Data analyses 

 

Preliminary phylogenetic analysis based on partial mitochondrial 23S 

 

To check the identity and the affinity of C. tamariscifolia and C. amentacea from southern 

Iberian Peninsula, a preliminary phylogenetic analysis based on the mt 23S was developed. In 

addition to the fourteen obtained sequences for mt 23S, other five sequences of this gene were 

retrieved from GeneBank: one sequence of C. spinosa var. tenuior from Menorca, two of C. 

tamariscifolia from Galicia (North-western Iberian Peninsula), and two of C. amentacea from 

Sicily. These nineteen sequences of four Cystoseira species (C. tamariscifolia, C.amentacea, C. 

mediterranea and C. spinosa) were aligned using MEGA 4.2 and ClustalW (Larkin et al., 2007). 

C. spinosa specimens were considered as outgroup sequences. The software Mr. Model Test 

1.1 (Posada and Crandall, 1998; Nylander, 2004) was run in PAUP* (Swofford, 2002) to select 

the best model of DNA substitution. Based on Akaike information criterion scores, the selected 

model was General Time Reversal model with substitution rates varying between among sites 

according to a gamma distribution (GTR+G). Bayesian analyses were perform using MrBayes 

(Ronquist and Huelsenbeck, 2003) according to the substitution model selected, leaving the 

remaining options as default (nst = 6; rate=gamma; statefreqpr = Dirichlet (1,1,1,1)). Two 

parallel Metropolis-coupled Markov chain Monte Carlo searches, each with four chains, were 

run for 2,000,000 generations, sampling trees and parameters every 100 generations 
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Concordance between morphological and genetic entities in "El Playazo" 

 

Departures from Hardy-Weinberg Equilibrium can be due to biological factors such as 

population structure, non-random mating and selection against hybrids. Inbreeding and selfing 

is hypothesized be frequent considering reproductive traits of these species, beside the 

occurrence of hybrids is also probable. These facts may induce linkage and Hardy-Weinberg 

disequilibrium, which may not be suitable for assignment tests in Structure software. For this 

reason, InStruct software (Gao et al., 2007) was used instead Structure (Pritchard et al., 2000) 

to assign individuals to species and to detect putative hybrids from microsatellites in "El 

Playazo". This software applies a Bayesian clustering approach similar than Structure, but 

InStruct takes into account the possibility of selfing or inbreeding. In this case, a model 

considering individual selfing rates was assumed, where there were from 1 to 5 populations (K 

clusters). Each K was replicated 4 times for 200,000 iterations after a burn-in period of 100,000, 

without any prior information on the population of origin of each sampled individual. The height 

of the modal value of ΔK distribution for the posterior probability of the data for a given K was 

used as an indicator of the strength of the signal detected by Instruct and considered as the real 

number of K cluster (Evanno et al., 2005). In this case were two the number of clusters 

considered (Fig. S1a). Subsequently, to assess if genetic and morphological entities identified 

are related, or in contrast phenotype and genotype are independent, a chi-square (χ2) test was 

carried out. 

Analysis of molecular variance (AMOVA) was used to reveal the relationships between 

individuals and putative species. The individuals were divided into three putative taxa based on 

the Bayesian assignment analysis: C. tamariscifolia, C. amentacea and hybrids. The AMOVA (n 

= 999 permutations) was computed using GenAlex 6.5 (Peakall and Smouse, 2006). 

Furthermore, the mean number of alleles, the average expected heterozygosity (He, sensu Nei 

1978), the observed heterozygosity (Ho), the number of privative alleles and departures from 

Hardy-Weinberg equilibrium were calculated for each group using GenAlex 6.5 (Peakall and 

Smouse, 2006). 

 

Genetic structure of "C. ericaefolia" along Alboran Sea 

 

Finally, to elucidate the relationships among clusters and populations, a neighbour-joining 

(NJ) tree and a Bayesian assignment analyses from microsatellites allele frequency data were 

developed. The NJ tree was based on Cavalli-Sforza and Edwards (1967) chord distances, and 

it was constructed using GenePop software. Confidence levels on tree topology were estimated 

by the percentage of 5,000 bootstraps perform from resampling allele frequencies. For the 

assignment test using Instruct, previous parameters and criteria were considered. In this sense, 

the best K values according to Evanno et al. (2005) were two and four (Fig S1b). For the 

AMOVA, localities were divided in three and five groups based on the results of the Bayesian 

assignment test: i) Atlantic (Er, Al, Ca and Ta), Western and Central Alboran (Cb, He, GV) and 
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Eastern Alboran (Pi, Ps and Cq); and ii) Portugal (Er and Al), Gulf of Cadiz (Ca and Ta), 

Western and Central Alboran (Cb, He and GV), Eastern Alboran (Pi and Ps), and Cape of Palos 

(Cq). On the other hand, a Mantel test was developed to assess the influence of geographic 

distance on population genetic differentiation measured as FST. 

 

RESULTS 
 

Phylogenetic analysis based on partial mt23S gene 

 

The partial mt23S gene data set consisted in 383 nt, four being parsimony-informative within 

the ingroup (C. ericaefolia; Table 1). The phylogeny based on the partial mitochondrial 23S 

gene did not support the morphological delimitation of C. amentacea and C. tamariscifolia (Fig. 

3). The analysis revealed that C. amentacea and C. tamariscifolia from the Atlantic coast of the 

Iberian Peninsula and the Alboran Sea are divided in two groups without geographical or 

taxonomic support. From one of these groups, a specimen of C. amentacea and putative C. 

mediterranea from the north-western Mediterranean localities emerged as a supported clade 

(posterior bayesian probability > 0.9).  
 

 
Figure 3- Phylogenetic tree of fragments of a mt 23 S gene sequences of Cystoseira ericaefolia denoting the 

phylogenetic position of C. tamariscifolia (Ct) and C. amentacea (Ca) specimens from southern Iberian Peninsula. C. 

spinosa (C. sp) was used as outgroup. Individuals are labelled as Specie_Locality_GeneBank ascension number. 

Numbers above the branches are Bayesian posterior probabilities (>50%). 
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Length of alignment 

Number of constant positions 

Number of variable positions 

Number of parsimony-informative positions 

Number of gapped positions 

All taxa 

383 

346 

37 

37 

4 

C ericaefolia  

383 

377 

5 

4 

0 

 

Table 1- Summary of alignment properties. 

 

Definition of genetic entities based on microsatellites, and their concordance with 

morphological traits 

 

The analysis showed a strong association of individuals identified as C. amentacea with one 

cluster (q1 = 0.838) and a weaker association of individuals identified as C. tamariscifolia with 

the other cluster (q2 = 0.673) (Fig. 4). In this case, individuals showing a q1
(i) equal or greater 

than 0.90 were assigned to C. amentacea and those with a q2
(i) equal or higher than 0.90 were 

assigned to C. tamariscifolia. Individuals that showed a q1
(i) between 0.10 and 0.90 were 

considered genetically intermediate between these species. Although the value of this criterion 

was somewhat arbitrary, it did not greatly affect pattern of assignements of individuals to 

clusters (Engel et al., 2005).  
 

 
Figure 4- Proportion of ancestry of each sampled individual (columns) as inferred with InStruct for six microsatellite loci 

in "El Playazo", assuming the admixture model considering individual selfing rates. 

 

The genetic cluster and cauloid number were significantly associated (χ2 = 26.23; p < 

0.0001) as can be observed in Table 2. However, the percentage of genetically intermediate 

individuals was high (approximately 26%) and no significant differences were observed between 

intertidal and subtidal (χ2 = 1.023; p > 0.05). 
 

Genetic cluster 
C. amentacea 

C. tamariscifolia 

Intermediate 

OC 
4 

18 

10 

MC 
22 

2 

6 

N 
26 

20 

16 

A 
8.67 ± 0.92 

8.17 ± 0.60 

8.83 ± 0.75 

He 
0.69 ± 0.06 

0.79 ± 0.02 

0.80 ± 0.01 

Ho 
0.58 ± 0.05 

0.66 ± 0.03 

0.68 ± 0.06 

FIS 

0.15 ± 0.05 

0.16 ± 0.05 

0.14 ± 0.09 

PA 
13 

12 

8 

SSA (> 0.05) 
3 

6 

0 

 

Table 2- Classification of "El Playazo" individuals by number of cauloids (OC - One cauloid; MC - Multiple cauloids) and 

genetic clustering results with a summary of genetic diversity statistic for each cluster. N, total number of assigned 

individuals; A, mean number of alleles per locus; He total expected heterozygosity; Ho observed heterozygosity; FIS 

Fixation index; PA, number of privative alleles; SSA (> 0.05), number of privative alleles at a frequency > 0.05. 
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Among the three groups, the allele frequency distributions was similar across loci, with the 

exception of individuals identified as C. amentacea, which showed relatively low polymorphism 

at Ct 2.7 (allele 159; frequency > 0.6) and Ct 2.8 (allele 205; frequency > 0.7) loci (Fig. 5). 

Genetic diversity in terms of mean number of alleles and expected heterozygosity was similar 

among the three clusters (ANOVA, p-values > 0.05) (Table 3). The number of alleles ranged 

from six at locus Ct 2.4 in C. amentacea to twelve at locus Ct 3.3 in intermediate group. In 

general terms, the three groups showed deficits in heterozygotes for all loci (average FIS ranged 

from 0.14 to 0.16). Departures from Hardy-Weinberg equilibrium were significant in seven out of 

the eighteen comparisons. 

The AMOVA analysis revealed that most genetic variation occurred within taxa (92%), being 

the variation among putative taxa only 8%. The fixation index FST yielded a significant, but low 

variation being the average value of 0.047, indicating little differentiation. 
 

Specie 

C. amenatacea 
 

 
 

 
 

 
 

C. tamariscifolia 
 

 
 

 
 

 
 

Intermediate 
 

 
 

 
 

 
 

Overall 

 

N 
Na 

Ho 
uHe 

FIS 
PA 

SSA (>0.05) 
 

N 
Na 

Ho 
uHe 

FIS 
PA 

SSA (>0.05) 
 

N 
Na 

Ho 
uHe 

FIS 
PA 

SSA (>0.05) 
 

FIT 
FST 

Ct2.4 

26 

6 

0.58 

0.66 

0.13 

0 

0 

 

20 

9 

0.75 

0.81 

0.08 

1 

0 

 

16 

8 

0.94 

0.77 

-0.21 

1 

0 

 

0.27 

0.05 

Ct2.7 

24 

9 

0.42 

0.60 

0.30 

2 

0 

 

19 

9 

0.58 

0.81 

0.28* 

2 

2 

 

13 

8 

0.69 

0.82 

0.15 

1 

0 

 

0.23 

0.05 

Ct2.8 

26 

6 

0.46 

0.46 

-0.01 

1 

1 

 

19 

6 

0.63 

0.72 

0.12 

0 

0 

 

16 

7 

0.75 

0.81 

0.08 

0 

0 

 

0.23 

0.03 

Ct2.9 

24 

9 

0.63 

0.86 

0.28* 

4 

1 

 

20 

8 

0.70 

0.81 

0.13 

3 

1 

 

15 

8 

0.47 

0.84 

0.44* 

2 

0 

 

0.22 

0.05 

Ct3.3 

26 

11 

0.77 

0.82 

0.06 

2 

1 

 

20 

7 

0.75 

0.82 

0.09 

2 

1 

 

16 

12 

0.63 

0.85 

0.27* 

3 

0 

 

0.26 

0.06 

Ct4.3 

25 

11 

0.64 

0.84 

0.23* 

4 

0 

 

20 

10 

0.55 

0.88 

0.38* 

4 

2 

 

16 

10 

0.63 

0.88 

0.29* 

3 

0 

 

0.22 

0.05 

 

Table 3- Summary of genetic diversity statistic for each cluster and locus. N, number of individuals; Na, number of 

alleles; Ne, efective number of alleles; Ho, observed heterozygosity; uHe, unbiased expected heterozygosity; FIS 

Fixation index (* Significant deviation from Hardy-Weinberg equilibrium, p-value < 0.05); PA, number of privative alleles; 

SSA (> 0.05), number of privative alleles at a frequency > 0.05. 
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Figure 5- Allele frequencies at the six microsatellite loci for the three taxa identified in "El Playazo": C amentacea 

(black), C tamariscifolia (white) and hybrids (grey)  

 

Genetic structure of "C. ericaefolia" along Alboran Sea 

 

The NJ tree and the assignment analysis do not support the existence of two genetic entities 

in southern Iberian Peninsula. These results revealed two distinct clades separating population 

from the Atlantic Ocean and the Alboran Sea (Fig. 6 and 7). In the case of the NJ tree, this 

separation is less clear and more complex. Although populations are grouped by geographical 

location, the highest distances occur between sites instead between groups of populations (Fig. 

6). This fact suggests that genetic variation can be related to geographical isolation. In this 

sense, the results of Mantel test (Fig. 8) showed a significant correlation between geographical 

distance and FST (Mantel r = 0.733; Fig S2). The results of FST yielded a moderate variation 

among sites, being the average value for all loci 0.128, ranging from 0.026 (Cb-He distant 80 

km) to 0.271 (Er-Cq distant 1087 km; Table S1). 

The assignment analysis for K=2 (Fig. 7) clearly revealed an Atlantic (Er, Al, Ca, Ta) and a 

Mediterranean (Pi, Ps, Cq) cluster, with a contact area in Western and Central Alboran (Cb, He, 

GV), where the two clusters are mixed. Considering K=4, the genetic structure patterns are 

similar, but Atlantic and eastern Alboran groups are divided in two subgroups, which are all 

represented in admixture in western and central Alboran.  
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Figure 6- Neighbour-joining tree based on Cavalli-Sforza and Edwards’s (1967) chord distances. Numbers (%) indicate 

robustness of given branch out of 5000 bootstrap permutations of allele frequencies. Code of localities as in Fig 1. 

 

 
 

Figure 7- Proportion of ancestry of each sampled individual (columns) as inferred with InStruct for six microsatellite loci, 

assuming the admixture model considering individual selfing rates. Code of localities as in Fig 1. 

 

The AMOVA results (Table 4) considering three areas showed that most genetic variation 

occurred within individuals (80%), being 17% the variation among population and only 3% 

among areas. Nevertheless, if five areas are considered a higher percentage of the variance is 

explained among areas (10%) and the variation among populations is reduced at 11%. In any 

case, this fact suggests a strong differentiation within populations at the spatial scale 

considered.  

All localities exhibited high positive FIS values (heterozygote deficit) (Table 5), being these 

values lower in Cadiz (Ca) and Tarifa (Ta). There was no geographical pattern of heterozygote 

deficiency. Average number of alleles per locus ranged from 4.8 in Er to 17 in Cb. Private allelic 

richness ranged from 1 in Er and Ca to 11 in Cb. Localities from western and central Alboran 

yielded the maximum values of genetic diversity in terms of mean number of alleles, and also 

were the most singular showing the maximum number of privative alleles (tables 5 and 6). By 
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contrast, Atlantic localities presented the lowest values of genetic diversity and the less 

differentiated allelic composition, despite a major number of specimens were considered (Table 

6). In eastern Alboran, the relation between privative alleles and number of alleles was maxima, 

and privative alleles had a major quantitative importance for the genetic structure of populations 

(i.e., these localities SSA showed the highest values). 
 

a) Source of variation 

Among areas 

Among localities 

Within localities  

d.f. 

2 

7 

308 

Variance 

3% 

17% 

80% 

P-value 

< 0.001 

< 0.001 

< 0.001 

b) Among areas 

Among localities 

Within localities 

4 

5 

308 

10% 

11% 

79% 

< 0.001 

< 0.001 

< 0.001 

 
Table 4- Analysis of molecular variance (AMOVA) of spatial genetic variation between the three areas identified, for six 

microsatellite markers. a) AMOVA results considering three groups of populations: Atlantic (Er, Al, Ca and Ta), western 

and central Alboran (Cb, He and GV), eastern Alboran (Pi, Ps and Cq); b) AMOVA results considering five groups of 

populations: Atlantic (Er and Al), Gulf of Cadiz (Ca and Ta), western and central Alboran (Cb and He), eastern Alboran 

(GV, Pi and Ps) and Cape of Palos (Cq). 

 

Region 

Atlantic 

Atlantic 

Atlantic 

Atlantic  

Alboran  

Alboran  

Alboran  

Alboran  

Alboran  

Alboran  

Code 

Er 

Al 

Ca 

Ta 

Cb 

He 

GV 

Pi 

Ps 

Cq 

Specie 

Ct 

Ct 

Ct 

Ct 

Ct 

Ct 

Ca 

Ca 

Ct 

Ca 

LONG 

39.002ºN 

37.082ºN 

36.478ºN 

36.058ºN 

36.506ºN 

36.737ºN 

36.696ºN 

36.858ºN 

" 

37.606ºN 

LAT 

9.364ºW 

8.257ºW 

6.264ºW 

5.710ºW 

4.642ºW 

3.755ºW 

2.852ºW 

2.004ºW 

" 

0.725ºW 

N 

24 

48 

31 

32 

32 

30 

27 

30 

32 

32 

A 

4.8 ± 1.0 

6.7 ± 0.9 

7.7 ± 0.8 

11.7 ± 0.9 

17.0 ± 2.0 

11.6 ± 1.7 

10.7 ± 0.6 

9.8 ± 1.2 

9.8 ± 1.1 

7.7 ± 1.3 

PA 

1 

2 

1 

4 

11 

3 

2 

4 

4 

8 

SSA (>0.05) 

0 

1 

1 

1 

1 

1 

1 

2 

1 

6 

FIS  

0.25 ± 0.15 

0.14 ± 0.11 

0.07 ± 0.08 

0.05 ± 0.07 

0.11 ± 0.05 

0.20 ± 0.02 

0.17 ± 0.05 

0.20 ± 0.06 

0.17 ± 0.05 

0.11 ± 0.07 

 
Table 5- Sampling locations and diversity measures for microsatellites. Code of localities can be found in Fig 1; Species 

can be C tamariscifolia (Ct) or C amentacea (Ca); LONG and LAT, Longitude and Latitude; N, number of individuals 

sampled; A, mean number of alleles per locus; PA, number of privative alleles; SSA (> 0.05), number of privative alleles 

at a frequency > 0.05; FIS, Fixation index. 

 

DISCUSION 

 

The obtained results do not support the existence of two genetic entities of C. ericaefolia in 

Alboran Sea. According to the phylogeny infer from the mt 23S (Fig. 3), individuals identified as 

C. amentacea in Alboran Sea would be closer related to C. tamaricifolia from the Atlantic Ocean 

than to Mediterranean specimens of C. mediterranea or C. amentacea (Fig 3). The analysis of 

the genetic population structure infer from nuclear microsatellites in "El Playazo", where 

supposedly both species were present, did not show important differences between the genetic 

entities identified. Moreover, when this parapatric population of C. tamariscifolia and C. 
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amentacea is compared with other populations of these species along southern Iberian 

Peninsula, C. tamariscifolia and C. amentacea from "El Playazo" are more similar to each other 

than to the other populations (Fig 6 and 7). Furthermore, the genetic patterns along southern 

Iberian Peninsula suggest an important genetic flux between Atlantic and Mediterranean 

populations in western and central Alboran (Fig 7). Therefore, in spite of the preliminary 

research, the results suggest that all specimens of C. ericaefolia found along Alboran Sea can 

be considered one specific entity, probably C. tamariscifolia.   

From the analysis of the mt 23S gene fragment, the morphological differences observed 

between C. tamariscifolia and C. amentacea from southern Iberian Peninsula lack a genetic 

basis. This analysis showed little differences between the three species belong to C. 

ericaecifolia group. In spite of this statement, some considerations must be taken in account. 

For instance, considering that incomplete reproductive isolation and hybridization can allow 

organelle exchange across species boundaries, the use of organellar DNA is not the most 

suitable to resolve the phylogeny of very close species (Coyer et al., 2006; Neiva et al., 2010). 

Moreover, the mt 23S provide few informative characters and it is more suitable to infer 

intergeneric than interspecific relationships in the family Sargaceae (Draisma et al., 2010). On 

the other hand, non type localities have been considered in the analysis for C. tamariscifolia 

(Cornwall, UK) and C. amentacea (Alger, Algeria). Furthermore, in the case of C. amentacea 

the sequences retrieved from GeneBank are specimens from Sicily, which singularities in their 

reproductive structures were pointed out by Amico et al. (1985). Thus, these results must be 

taken with caution and further studies considering nuclear markers and more locations along 

the all distribution range of these species must be developed to assess the phylogeny of this 

group of species. 

Despite the previous concerns for the phylogenetic analysis based on the mt 23S gene, the 

study of nuclear microsatellites also support the idea that only one genetic entity is found in 

southern Iberian Peninsula. Although a significant concordance between genotype and 

phenotype was found in "El Playazo", the degree of genetic differentiation was low (average FST 

= 0.047) and C. tamariscifolia and C. amentacea from "El Playazo" were more similar to each 

other than to the other populations. These facts suggest an important genetic flux between the 

two morphological entities. Furthermore, as these morphotypes occurs in parapatry in different 

environmental conditions (littoral vs. sublittoral) and canopy features (dense meadow vs. scarce 

individuals), the number of cauloids could be a phenological adaptation to the environment. In 

this sense, previous studies on others fucoids identified important morphological variations (e.g. 

branch length, number of main axes, or holdfast size) along depths, population density or wave 

exposure gradients (Arenas et al., 2002; Engelen et al., 2005; Prathep et al., 2007; Endo et al., 

2013). Thus, this trait seems to have an uncertain taxonomic value for the definition of these 

putative Cystoseira species. 

The NJ tree (Fig 6) revealed that the highest distances occur between sites instead between 

groups of populations. This fact suggests that most genetic variation must be found within 

populations, as the AMOVA results confirmed. Similar results were obtained by Susini et al. 
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(2007) comparing four populations of C. amentacea in the Ligurian Sea (NW Mediterranean). 

These authors found most genetic variation within populations (71 %). These results and the 

significant correlation between genetic (FST) and geographical distance, suggested an important 

role of distance in the genetic structure of populations along the studied area as it was expected 

attending to the reproductive traits of these species. 

The Bayesian assignment analysis identified an Atlantic and a Mediterranean clusters (Fig 

7), existing a contact area in Central Alboran. Regarding to allelic diversity, this putative contact 

area showed the highest values of allelic richness. In this sense, previous works have found in 

terrestrial animals and plants the highest diversity levels in secondary contact areas recolonized 

after glacial periods (Taberlet et al., 1998). This high genetic diversity has been attributed to the 

admixture of different linages coming from the different refuges areas. However, in this case is 

also in this area where can be found a major number of privative alleles. This fact suggests that 

this area could be a possible refuge during glacial periods instead a contact area. Nevertheless, 

this statement requires further investigation with expanded sampling area. 

Based on the obtained results so far, it can be concluded that only one specific entity 

probably C. tamariscifolia, is present in Alboran Sea. Furthermore, the obtained results provide 

a relevant source of information for the management of these threatened species in southern 

Iberian Peninsula.	
   The study of the genetic structure of threatened species with reduce 

dispersion such as C. ericaecifolia group, which play an important role in the maintaining of the 

biodiversity and ecosystem functioning (Giaccone et al., 1994; Airoldi and Beck, 2007) in littoral 

communities of the Mediterranean and the proximate coast of the Lusitanian provinces 

(Spalding et al., 2007), could yield important information to favour the resilience of littoral 

communities or to develop a suitable restoration. For instance, the understanding of genetic 

structure and connectivity patterns of these species can help to design a net of Marine 

Protected Areas (MPAs) that cover its protection needs favouring natural recolonization; or to 

identify the most suitable donor population in case of necessary ecosystem reforestation (Susini 

et al., 2007; Sales et al., 2011; Gianni et al., 2013) avoiding problems of genetic contamination 

or homogenization. In this sense, beside the deleterious effects in the genetic diversity and 

population fitness of genetic contamination and homogenization (e.g. lost of specific 

adaptations), an inadequate transplantation could destroy biogeographic genetic patterns useful 

to reconstruct the natural history of the region, which must be considered an important natural 

heritage. 
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Figure S1- Plot of L(K) and ΔK as a function of the number of clusters (K) across the 20 runs. a) First InStruct run 

considering only "El Playazo". b) Second InStruct run along the whole data set. 

 

 
 

Figure S2- Relationship between FST and geographical distance. 
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“Truth is the shattered mirror strown in myriad bits; while each believes his little 

bit the whole to own.” 

 

Richard Francis Burton 

(The Kasîdah of Hâjî El-Yerdî, 1870). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Intertidal pool dominated by Cystoseira compressa assemblage in Getares Bay. Strait of Gibraltar. Julio 2011. 

Photograph by Antonio Bermejo Lacida 
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Discussion 

This study has focused on the application and reassessment of indices based on 

macroalgae to assess the ecological status in Andalusian coasts (Southern Spain) considering 

their biogeographic singularities and relevant issues for management. The three first chapters 

dealt with the adaptation and comparison of indices based on macroalgae for the assessment of 

the ecological status in Andalusia. Chapter four and five dealt with ecological and biogeographic 

issues needed for a better understanding of the indices and the proper management of littoral 

communities in southern Iberian Peninsula. 

Overall, the results presented in this thesis suggested that the RSL (Bermejo et al., 2012 - 

chapter 1) and the CARLIT (Bermejo et al., 2013 - chapter 2) indices can be suitable indicators 

to assess the ES of Atlantic and Mediterranean coastal waters of southern Spain, respectively. 

In addition, when these indices were compared in the Strait of Gibraltar and the western 

Alboran Sea, they yielded very similar outcomes, reflecting the consistency and comparability of 

the obtained results despite the marked methodological differences (Bermejo et al., 2014 - 

chapter 3). Beyond the reassessment and comparison of indices, the analysis of the information 

provided by these studies revealed the influence of the regional oceanography in benthic 

community patterns along the Alboran Sea, being remarkable the existence of three different 

subregions coinciding with regional oceanographic features (Chapter 4). On the other hand, the 

preliminary study of the genetic structure of Cystoseira ericaefolia group (Chapter 5) offered a 

relevant issue for management, considering the important ecological role of these species and 

their sensibility to anthropogenic pressures, which usually dominate littoral assemblages in 

undisturbed or pristine ecosystems. The results suggested that there is only a genetic entity in 

the southern Iberian Peninsula, with a moderate differentiation between populations at a spatial 

scale of tens of kilometres.  

From the results obtained in this study, some questions emerge to obtain a broader vision of 

the use of indices based on macroalgae in Andalusia: Are indices based on intertidal rocky 

shore assemblages suitable to assess the ES in the coastal waters of Andalusia? Is it possible 

to use the same index based on rocky shore assemblages in the Atlantic and the Mediterranean 

coast of Andalusia? What useful information derives for the assessment of the overall ES of 

Andalusian WBs using macroalgae as a BQE? And finally, what are the implications for 

management? 

 

Are indices based on intertidal rocky shore assemblages suitable to assess the ES in 
the coastal waters of Andalusia? 

 

The major limitation of indices based on intertidal rocky shores assemblages is that they 

cannot be used in sandy shorelines (Ballesteros et al., 2007). Furthermore, in coastlines with 

low percentages of rocky shores the development of well developed macroalgal assemblages 

and the presence of sensitive species will be more difficult due to the high natural risk of local 
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extinction and the low probability of recolonization. Thus, the sensitivity of these fragile 

assemblages to anthropogenic pressures will be lower in comparison to natural risks. 

The coast of Andalusia is divided into 49 coastal water bodies defined according to their 

typology and their anthropogenic pressures and impacts according to the WFD (Fig. 1). 21 

coastal WBs belongs to the Atlantic eco-region and 28 to the Mediterranean. 
 

 

Fig. 1.- Cartographical representation of the Ecological Status of the different coastal water bodies of Andalusia 

between 2010 and 2012. 

In the Atlantic eco-region (Table 1), nine of 21 coastal WBs are completely sandy or devoid 

of natural rocky shores. Three of these coastal WBs without natural rocky shores were small 

and highly modified, and they do not represent the ecological quality of open waters 

(Ballesteros et al., 2007). Nevertheless, these modified WBs could be assessed using indices 

based on rocky shore assemblages because artificial rocky shores and man-made structures, 

where some littoral and upper-sublittoral communities can be found, are present (Blanfuné et 

al., unpublished). Thus, 12 (or 15 if harbours and marinas are considered) of 21 coastal WBs 

could be assessed in the Atlantic area. However, the western Atlantic coasts of Andalusia are 

essentially sandy (Fig. 1); thus a large coastal area (the entire province of Huelva) cannot be 

assessed properly with this BQE, which suppose an important limitation for indices based on 

rocky shore assemblages, especially considering the important industrial activity in this area 

(Fernández-Caliani et al., 1997; Grande et al., 1999; Blasco et al., 2010).  

On the other hand, in the Mediterranean eco-region (Table 2), nine of 28 coastal WBs are 

completely devoid of natural rocky shores. It is remarkable that six out of nine WBs without 

natural rocky shore, but with artificial rocky shore, were very small and highly modified -mainly 

inner parts of harbours and marinas-. Thus, 19 (or 25 if harbours and marinas are considered) 

of 28 coastal WBs could be assessed in the Mediterranean area, comprising most of the areas 

of the European coasts of the Alboran Sea. 
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Table 1- Ecological status corresponding to every Atlantic coastal water body of Andalusia, and ecological quality ratio 

(EQR) for each site sampled. NA - Non-Assessed; NRSA - Natural Rocky Shore Absent. 

 
Site EQR (RSL/CARLIT) Water body name Nature ES (RSL/CARLIT) 

- - / - Pluma del Guadiana Natural NRSA 

- - / - Isla Cirstina Natural NRSA 

- - / - Isla Cristina-Punta Umbría Natural NRSA 

- - / - Punta Umbría-Espigón de Huelva HMWB NRSA 

Espigón de Huelva - / - Espigón de Huelva-Mazagón HMWB NRSA 

- - / - Mazagón-Matalascañas Natural NRSA 

- - / - Matalascañas-PN Doñana Natural NRSA 

- - / - PN Doñana Natural NRSA 

Corrales-Faro Chipiona - / - Pluma del Guadalquivir Natural NA 

Punta Pegina 0.74 / - Pluma del Gudalquivir-Punta de Rota Natural Good / - 

Base de Rota 0.65 / - Base Naval de Rota HMWB Good / - 

Caleta derecha 

Caleta izquierda 

0.49 / -  

0.56 / - 
Bahía externa de Cádiz Natural Good / - 

Acualdero 

La Puntilla 

0.32 / - 

0.30 / - 
Desembocadura del Guadalete HMWB Poor / - 

Polvorines Fadrica  0.25 / - Bahía interna de Cádiz HMWB Poor / - 

El Chato 0.82 / - Punta de San Sebastián-San Fernando Natural Good / - 

Sancti Petri 

Roche 

Cala del Aceite 

0.69 / - 

0.74 / - 

0.56 / - 

San Fernando-Trafalgar Natural Good / - 

Caños de Meca 

Hierbabuena 

0.66 / - 

0.74 / - 
Marismas del Barbate Natural Good / - 

Barra de Barbate 0.64 / - Marismas del Barbate-Cabo de Gracia Natural Good / - 

Camarinal 

Piscinas de Bolonia 

El Mirlo 

0.80 / 0.94 

0.86 / 0.93 

0.84 / 0.93 

Cabo de Gracia-Punta de Tarifa Natural High / High 

Puerto de Tarifa - / - Puerto de Tarifa HMWB NRSA 

Isla de Tarifa 

E Puerto de Tarifa 

Punta Camorro 

0.80 / 0.88 

0.62 / 0.88 

0.83 / 0.88  

Punta de Tarifa-Cala Arenillas Natural High / High 
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Table 2- Ecological status corresponding to every Atlantic coastal water body of Andalusia, and ecological quality ratio 

(EQR) for each site sampled. NE - Non-Assessed; NRSA - Natural Rocky Shore Absent. 

 

Site EQR (RSL/CARLIT) Water body name Nature ES (RSL/CARLIT) 
Punta Carnero  0.69 / 0.94 Cala Arenillas-Punta Carnero Natural High / High 

Punta San García  0.57 / 0.93 Punta Carnero-Desembocadura del Getares Natural Good / Good 

Bahía de Algeciras 0.40 / 0.49 Desembocadura del Getares-PN Alcornocales HMWB Moderate / Moderate 

Puerto Algeciras  0.11 / 0.41 Puerto de Algeciras HMWB Bad / Moderate 

- - / - PN Alcornocales-Muelle Campamento Natural NRSA 

Refineria CEPSA 0.52 / 0.37 Desembocadura del Guadarranque HMWB Good / Poor 

- - / - Muelle Campamento-Aeropuerto Gibraltar Natural NRSA 

- - / - Puerto de La Línea de la Concepción HMWB NRSA 

- - / - Gibraltar-Desembocadura del Guadiaro Natural NRSA 

Torreguadiaro 

Cala de Mijas 

Calaburras 

0.63 / 0.88 

0.65 / 0.74 

0.75 / 0.98 

Desembocadura del Guadiaro-Punta Calaburras Natural Good / High 

Torrequebrada - / 0.78 Punta Calaburras-Torremolinos Natural - / High 

- - / - Torremolinos-Puerto de Málaga Natural NRSA 

- - / - Puerto de Málaga HMWB NRSA 

Araña-Acantilados de Rincón  - / 0.70 Puerto de Málaga-Rincón de la Victoria Natural - / Good 

Faro de Torrox 

Playa Burriana 

- / 0.44 

- / 0.69 
Rincón de la Victoria-Acantilados de Maro Natural - / Good 

Acantilados Maro  - / 0.80 Acantilados de Maro-Cerro Gordo Natural - / High 

Peñon del Santo 

Playa del Tesorillo 
- / 0.80 Cerrogordo-Salobreña Natural - / High 

Caleta - / 0.67 Salobreña-Calahonda Natural - / Good 

- - / - Puerto de Motril HMWB NRSA 

Rijana  

Castel de Ferro 

Cala del Ruso 

Alcazaba 

- / 0.89 

- / 0.82 

- / 0.70 

- / 0.63 

Calahonda-Puerto de Adra Natural - / High 

Adra 

Guardias Viejas 

- / 0.74 

- / 0.66 
Puerto de Adra-Guardias Viejas Natural - / Good 

Roquetas 

Playa de las Olas 

- / 0.68 

- / 1.00 
Guardias Viejas-Rambla de Morales Natural - / High 

- - / - Puerto de Almería HMWB NRSA 

- - / - Rambla de Morales-Cabo de Gata Natural NRSA 

Cabo de Gata 

San José 

Isleta del Moro 

Cala Carnaje 

El Playazo 

- / 0.90 

- / 0.90 

- / 0.99 

- / 1.00 

- / 0.79 

Cabo de Gata Natural - / High 

- - / - Puerto de Carboneras MWB NRSA 

El Algarrobico 

Mojácar 

Villaricos 

- / 0.68 

- / 0.95 

- / 0.45 

Puerto de Carboneras-Villaricos Natural - / Good 

Cala Panizo 

San Juan de los Terreros 

- / 1.00 

- / 0.92 
Villaricos-Límite Región de Murcia Natural - / High 
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Is it possible to use the same index based on rocky shore assemblages in the Atlantic 

and the Mediterranean coast of Andalusia? 

 

As some WBs in coastal waters of Andalusia belong to the Atlantic and others to the 

Mediterranean eco-region, up to seven indices based on the BQE macroalgae could be applied: 

five in the Atlantic ecoregion: CFR (Guinda et al., 2008; Juanes et al., 2008), RSL (Wells et al., 

2007), CCO (NEA GIG, 2011), RICQI (Díez et al., 2012), MarMAT (Neto et al., 2012); and two 

in the Mediterranean: EEIc (Orfanidis et al., 2001; Orfanidis et al., 2011) and CARLIT 

(Ballesteros et al., 2007). This diversity of indices based on macroalgal assemblages reflects 

the suitability of this BQE as bioindicator and the importance of biogeographical and ecological 

differences in the assessment of the ES. This ES must be understood as the degree of similarity 

between hypothetic undisturbed situations or reference conditions and the study site. The 

differences between the methodologies proposed in the context of the WFD (Table 3) do not 

respond only to environmental, ecological or biogeographical differences between areas (wave 

exposure, tidal range, littoral communities...). Also personal criteria and choices (Hering et al., 

2010) hamper the comparison between areas and the interpretation of the results, introducing 

more variability in the assessment of the ES. Thus, considering the objectives of the WFD and 

the natural complexity of rocky intertidal assemblages, the pros and cons of the different 

methodological characteristics are analysed: 

 

Spatial scale and replication 

 

It is remarkable the great variability in the spatial scale between methodologies developed to 

assess the ES (Table 3), from hundreds squared centimetres (e.g. EEIc) to large cartographies 

of several kilometres (e.g. CARLIT). In this sense, if a small sampling size is considered, the 

effort and time of fieldwork can be reduced, which is important in places where the tidal period 

determines time available for sampling. The use of standardised size of quadrats makes easier 

the comparison between them and gives an accurate measure of the algal cover or biomass of 

the species present in each sample. However, the representativeness of these measures is 

limited due to the high natural spatial variability of littoral communities. The zonation, patchiness 

and the hierarchical nature of spatial variability in seaweed assemblages is very important, 

occurring at scale of dozens centimetres to several metres (Levin, 1992; Benedetti-Cecchi et 

al., 2001; Bulleri et al., 2002). This vertical and horizontal spatial variability (Fig. 2) is produced 

by the effects of physical disturbances (wave exposure, sand scour or desiccation), 

microtopography, and differences in patterns of recolonisation of disturbed patches due to the 

interactive effects of a variable recruitment, grazing and pre-emption of the substratum 

(Benedetti-Cecchi et al., 2001). Therefore, to reduce the influence of this natural variability in 

the ecological assessment, some authors propose to take the samples in specific conditions 

(e.g. Pinedo et al., 2007; Díez et al., 2012), stratifying the sampling design in different levels 

according to the tidal height and/or increasing the number of replicates (e.g. Juanes et al., 2008; 
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Neto et al., 2012). However, a question arises: is the obtained information enough and 

representative to assess the ES of WBs which comprise several tens of kilometres? 
 
Table 3- Spatial scale, number of replicates, multimetric character, destructive sampling and concepts considered in the 

methodological design for the assessment of the ecological status in Atlantic and Mediterranean indices based on 

intertidal assemblages of macroalgae. CS - Community Structure; SR - Species Richness. 

 
Index 
EEIc 

MarMAT 

CCO 

RICQI 

CFR 

RSL 

CARLIT 

Spatial scale 
400 cm2 

400 cm2 

1000 cm2 

2500 cm2 

5 - 20 m 

50 - 75 m 

100s of meters 

Replicates 
1 

21 

9 

10 

3 

1 

1 

Multimetric 
No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Destructive 
Yes 

No 

No 

No 

No 

No 

No 

Concepts 
CS 

CS+SR 

CS+SR 

CS+SR 

CS+SR 

SR 

CS 

 

 

Fig. 2.- Examples of spatial variability in littoral rocky communities at different scales. A: upper intertidal codominated by 

Fucus spiralis and Ulva compressa in Punta Camorro (Tarifa); B: patchiness in upper intertidal due to the 

microtopography of the rocky shore in Punta Camorro (Tarifa); C: Intertidal platform codominated by Ulva compressa, 

Corallina spp., Cystoseira ericaefolia and Mytilus spp. (La Araña, Malaga); D: patchiness in upper intertidal 

codominated by Corallina spp., Mytilus spp. and Cystoseira ericaefolia (Almuñecar, Granada). 
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Although the effects of sewages, outfalls or other punctual disturbances can be monitored 

using punctual measures of intertidal assemblages along a gradient from the source of 

disturbance (e.g. Diez et al., 1999; Soltan et al., 2001; Seridi et al., 2007; O’Connor, 2013). This 

kind of experimental design is less appropriate than cartographies to assess the ES of WBs, 

considering the natural spatial and temporal variability of intertidal assemblages, the size of 

these WBs, and the spatial scale and gradual character of punctual anthropogenic 

disturbances. For these reasons, cartographies of littoral and upper-sublittoral communities may 

be more suitable and representative to assess the ES of WBs of tens of kilometres and monitor 

long-term changes related to anthropogenic disturbances (Ballesteros et al., 2007). 

Furthermore, these cartographies let to identify punctual sources of pollution and to estimate the 

extension of the disturbance at a landscape level. In this sense, Mascaró et al. (2013) found the 

spatial scale as the most important source of uncertainty in the assessment of the ES, being 

this factor more important than time or surveyor, and suggesting that macrophyte-based 

sampling schemes should prioritize large spatial replication over temporal replication to 

maximize the effectiveness and reliability of WB classification within the WFD.  

 

Multimetric v.s. simple indices 

 

According to Karr (1999), the principle of indices is to detect divergences from biological 

integrity attributable to human actions. The goal is not to document and understand all the 

variation that arises in natural systems. Thus, when is necessary to choose between a 

multimetric and a simple index, the first criteria considered must be the sensitivity to the 

anthropogenic pressure studied and secondly the simplicity of the index. However, this 

statement is arguable, because the utility of the information that these indices provided for 

management should be considered as important as the value of the index. In this sense, the 

interpretation of the results yielded by biological indices is essential when management actions 

are proposed (Moss, 2007; Dufour and Piégay, 2009; Lopez y Royo et al., 2011).  

 

Destructive sampling 

 

Destructive samplings allow a more precise identification of species and abundance 

quantification in the laboratory. Moreover, these samples can be stored for further analysis or 

studies. However, destructive sampling in monitoring programs pose some problems, because 

they affect the succession in the community, cause a new source of disturbance, and suppose a 

threat for local populations of some late successional species, with slow rates of natural 

recolonization (e.g. Cystoseira; Thibaut et al., 2005; Mangialajo et al., 2012).  
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Assessment concepts 

 

Macroalgal communities are sensitive to an array of anthropogenic pressures (e.g. 

Borowitzka, 1972; Diez et al., 1999; Arévalo et al., 2007). These pressures are superimposed 

on those caused by natural environmental factors (Crowe et al., 2000), which have their own 

effects in the community structure and species composition (Guinda et al., 2008; chapter 3 - 

Bermejo et al., 2014). The suitability of indices based on species composition or community 

structure (i.e. considering abundances) will depend of natural community features, which 

determine the ability of indices to avoid the influence of natural pressures and their sensitivity to 

anthropogenic pressures.  

Indices considering species abundance are easier to interpret and more informative about 

ecosystem functioning (e.g. Serio et al., 2006; Tuya et al., 2009; Asnaghi et al., 2013), than 

indices based on species composition. However, in places where natural pressures determine 

an extended and homogeneous landscape dominated by tolerant species, and sensitive 

species are restricted to singular subhabitats, indices based on species composition could be 

more suitable. For example, Corallina assemblages dominate the entire emerged rocky 

intertidal coast between the Strait of Gibraltar and Guadalquivir River (Seoane-Camba, 1965), 

being other sensitive habitat-forming species scarce and restricted to intertidal pools or caves 

(Fig. 3). In this situation, the RSL index was sensitive to anthropogenic pressures in Andalusian 

Atlantic coasts, but the CFR index, which consider species abundance, was not (Bermejo, 

2009).  

 

The case of Andalusia 

 

The results obtained in this study demonstrate that the RSL and CARLIT were suitable to the 

assessment of the ES in the coastal waters of Andalusia. Both indices follow a non-destructive 

methodology, which is essential for conservation aims, considering that recolonization of rocky 

bare substrates for some late successional species is very slow (Thibaut et al., 2005; 

Mangialajo et al., 2012). Furthermore, although the RSL shows some difficulties to discriminate 

between good and high ES (Bermejo et al., 2012 and 2014 - chapter 1 and 3), both indices 

were sensitive to anthropogenic pressures (Bermejo et al., 2012, 2013 and in press - chapters 

1, 2 and 3) and yielded comparable results (Bermejo et al., 2014 - chapter 3). Nevertheless, 

regarding the methodological characteristics of these indices, the CARLIT index shows some 

methodological advantages. For instance, the big spatial scale considered by CARLIT reduces 

the uncertainty in the ES assessment (Mascaró et al., 2013). The simultaneous use of both flora 

and fauna makes this index more sensitive, providing better evidences of changes in the 

community structure (Díez et al., 2012; Underwood, 1996). The use of relative abundance of 

habitat forming species gives an idea about the assemblage structure and functioning, which is 

not considered in indices based on species richness (O´Connor, 2013). Thus, the possibility to 

apply the CARLIT index in the Atlantic coast of Southern Spain could be considered. The use of 
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a unique index would make easier the interpretation of the results by local managers. 

Furthermore, although this point is not considered in the WFD, the application of this index in 

Atlantic WBs could be an opportunity to intercalibrate Atlantic and Mediterranean ecoregions 

(Bermejo et al., 2014 - chapter 3). However, from the legal point of view, the EU already 

consider RSL index as the authorized one in Andalusian Atlantic coasts. 
 

 

Fig. 3.- Main aspect of different emerged intertidal rocky shores along the Atlantic coast of Cadiz. Caespitose 

assemblages dominate these intertidal platforms, where Corallina is usually the main specie. A: Trafalgar (Barbate); B: 

El Chato (Cadiz); C: Sancti Petri (Chiclana); D: Punta Pegina (Rota). 

What useful information derives for the assessment of the overall ES of Andalusian 

WBs using macroalgae as a BQE?  

 

As Montefalcone (2009) pointed out, the WFD focuses on water quality in coastal and 

transitional water bodies. However, many disturbances affecting coastal ecosystems do not 

necessarily compromise directly the water quality (e.g. destructive fishing activities, overfishing, 

boat anchoring, dragging, siltation, introduction of alien species, etc.). In this sense, the interest 

on the status of coastal ecosystem must be beyond its relation to water quality, considering the 

ecological services that coastal ecosystems provide (Costanza et al., 1997) and the 

unpredictable consequences for human activities and biodiversity if thresholds or non return 

A B 

C D 
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points are reached. On the other hand, the status of an ecosystem is linked to its historical 

memory of the environmental situations in which it developed and, consequently, to all 

disturbances it suffered in the past (Knowlton, 2004; Montefalcone, 2009). The recovery of 

degraded communities, when it is possible, may take several years after the anthropogenic 

pressure that produced the disturbance cease (Thibaut et al., 2005; Ugarte, 2011; Mangialajo et 

al., 2012; Alagna et al., 2013), being not necessarily dependent on the quality water. In contrast, 

the processes that produce their degradation can act in a shorter time due to the existence of 

non-linear responses and positive feedbacks loops. These facts support the importance of the 

precautionary principle, and the need for a profound knowledge about coastal ecosystems, 

which cannot be summarised in a single value between 0 and 1. The merit of the indices 

developed in the context of the WFD is not their final value; it relies on the interpretation of this 

value and the metrics they are based on. Thus, indices should be not only sensitive to 

anthropogenic pressures but also informative to identify the causes of ecological degradation. 

This interpretation requires expert knowledge if the final objective is beyond the treatment of 

symptoms of ecological degradation. 

The periodical estimation of these indices will provide an important source of information. In 

the future, when the temporal dataset will be large enough (provided an adequate funding for 

that purpose), temporal comparison must be easier to interpret than the present space based 

comparison. This should facilitate the identification of cause-effect relations between 

anthropogenic pressures and ecosystem degradation in a long-term record, and the 

establishment of effective management measures. Furthermore, the obtained data set can be a 

baseline for measuring the response of the distribution of considered species to global change 

(Boaventura et al., 2002). This fact is particularly important considering: i) the special condition 

of the Alboran Sea as the limit between the Atlantic Ocean and the Mediterranean Sea (Alberto 

et al., 2008; Conde, 1989; chapter 4); ii) that habitat destruction or degradation as the most 

important threat to the diversity, structure, and functioning of marine coastal ecosystems 

(Claudet and Fraschetti, 2010; Coll et al., 2010; Lotze et al., 2006); iii) that some of the species 

are protected by specific national or international legislation.  

The studies conducted in this thesis have also an intrinsic value providing new records of 

biodiversity in Andalusian coasts. A total of ten new species for Andalusian marine flora were 

recorded, two new records for Almería region, beside ten new records and three confirmations 

for Cádiz region has been reported (Bermejo et al., 2010; Hernández et al., 2010, 2011; 

Bárbara et al., 2012; Bermejo et al., 2012); this information will be valuable to define a baseline 

for management purposes. 

 

What are the implications for management? 

 

According to the WFD, Member States should achieve at least a good ES for all WBs and 

prevent further deterioration by defining and implementing the necessary measures within 

integrated programmes of measures. Thus, degraded WBs (ES lower than good) should be 
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restored/recovered, reducing anthropogenic pressures causative of ecological degradation and 

favouring the retrieving of aquatic ecosystems. This restoration can be understood at different 

levels, reflected in treatment of symptoms, treatment of proximate causes, or treatment of 

ultimate causes, being the latter the most appropriate approach (Moss, 2007). This approach 

requires an extensive knowledge of littoral ecosystems to identify causal anthropogenic 

pressures, degraded areas and proposing effective actions to favour natural resilience. 

The definition of homogeneous areas with proper spatial reference conditions is the base for 

a successful assessment of the ES. The point of regional classification is to group places where 

living systems are similar at higher taxonomic and ecological levels in the absence of human 

disturbance, and where the biological responses are similar after human disturbance (Karr, 

1999). In this sense, the knowledge of biogeographic and ecological variations (Chapter 4) has 

been a key issue to define suitable reference conditions. As can be seen in chapter 3 (Bermejo 

et al., 2014) and others studies (Guinda et al., 2008; Bermejo et al., 2011; López-Royo et al., 

2011), indices different in their structure and conception could yield comparable results, if their 

rationale in the definition of anthropogenic pressures and reference conditions are similar. 

Furthermore, the biogeographic and ecological analysis of the studied area (Chapter 4) let to 

identify the mechanisms that determined the distribution of the species. This information will be 

very useful to understand or forecast the evolution of the ES associated with the climate 

change, and to distinguish between the effects of natural and anthropogenic pressures on 

littoral ecosystems.  

On the other hand, the study of the genetic structure of threatened species with reduce 

dispersion rates such as C. ericaecifolia group (Chapter 5) could yield valuable information to 

favour the resilience of littoral communities or to develop a suitable restoration. These species 

play a relevant role in the conservation of the biodiversity and ecosystem functioning (Giaccone 

et al., 1994; Airoldi and Beck, 2007) in wave exposed littoral communities of the Mediterranean 

and the proximate coast of the Lusitanian provinces (Lüning, 1990; Spalding et al., 2007). As C. 

ericaefolia group is very sensitive to anthropogenic pressures, they are suffering a general 

decline in the Mediterranean Sea remaining in pristine or undisturbed situations (Thibaut et al., 

2005; Airoldi and Beck, 2007), where these species usually dominate littoral assemblages 

(Ballesteros et al., 2007; Orfanidis et al., 2011). Therefore, the conservation and 

restoration/recovery of C. ericaefolia populations is a key issue to reach a high/good ES. Due to 

the low recovery potential of Cystoseira species (Sales et al., 2011; Tsiamis et al., 2013), some 

authors have proposed transplantation or reforestation actions to accelerate the recovery of 

littoral ecosystems, in places where populations of these species have been historically 

recorded and anthropogenic disturbances have been reduced (Susini, et al., 2007; Gianni et al., 

2013). For a proper reforestation or transplantation, the knowledge of the genetic similarity 

between populations let to know which are the best donor populations, avoiding genetic 

contamination and homogenization of populations. In this sense, besides the deleterious effects 

in the genetic diversity and population fitness due to a genetic pollution and homogenization 

(e.g. loss of specific adaptations), an inadequate transplantation could destroy biogeographic 
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genetic patterns that are useful to reconstruct the natural history of the region, which must be 

considered an important natural heritage. On the other hand, the information about the genetic 

structure and connectivity patterns of these habitat forming species with reduced dispersion 

could be an argument for the design of a network of Marine Protected Areas (MPAs) that cover 

its protection needs (Underwood et al., 2009), favouring the natural recolonization. 
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“Ítaca te ha concedido ya un hermoso viaje. 

Sin ellas, jamás habrías partido; 

mas no tiene otra cosa que ofrecerte. 

Y si la encuentras pobre, Ítaca no te ha engañado.  

Y siendo ya tan viejo, con tanta experiencia,  

sin duda sabrás ya qué significan las Ítacas.” 

 
Konstantíno Kaváfis 

(Ítaca, 1911) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intertidal pool dominated by Lithophyllum byssoides assemblage. Isla de Tarifa. Julio 2011.  
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Conclusions  
 
1. The RSL index was suitable to assess the ES in the Atlantic coast of southern Spain. This 

index shows consistent results with those expected from water quality analytical monitoring 

and anthropogenic pressures. However, the RSL index did not discriminate clearly 

between good and high status classes.  
2. The CARLIT index was suitable to assess the ES in Alboran Sea. The definition of two 

regions with different reference conditions should be considered to accurately assess the 

ES of these waters, encompassing the natural variations that occur over this coast. 

However, the EQR and the final ES can be dependent on the length of the rocky shore in 

each WB assessed. 

3. The CARLIT and RSL indices were equally sensitive to anthropogenic pressures and they 

could be used to assess the ES in the Strait of Gibraltar and western Alboran Sea. The 

possibility to apply the RSL and CARLIT indices in the transition zone between the 

Mediterranean and Atlantic eco-regions opens the possibility of an experimental 

comparison between the Atlantic and Mediterranean eco-regions at a bigger scale. 

4. Overall, Andalusian WBs showed a good or high ES according to the WFD, being 

Algeciras and Cadiz bay the most problematic areas. The existence of WBs with an ES 

lower than good in both bays will not have legal consequences as they are modified or 

highly modified WBs. 

5. The major limitation for the application of indices based on intertidal macrophyte 

assemblages in Andalusia was the existence of a length stretch of coast devoid of natural 

rocky shores in the westernmost Atlantic coast (the entire province of Huelva). 

6. Two fringes with a different intertidal composition of algal species were identified along the 

Atlantic coast of Cadiz: Atlantic Cadiz and the Strait of Gibraltar. 

7. Alboran Sea was a transitional area between Atlantic Ocean and Mediterranean sea. Three 

different subregions can be identified based on landscape and species composition: 

western, central and eastern Alboran. The regional oceanography play a key role in 

determining the structure and composition of benthic communities along these areas. 

8. The central subregion of the Alboran Sea acted as a divergent boundary showing a poorer 

and less differentiated flora, with a the landscape dominated by filter-feeders. This 

divergence could be a consequence of the alternative occurrence of upwelling episodes 

and the arrival of Mediterranean oligotrophic waters in this area. 

9. The preliminary results about the population genetic structure and taxonomy of Cystoseira 

ericaefolia group did not support the existence of differentiated genetic entities in southern 

Iberian Peninsula, existing only one species, probably C. tamariscifolia. 

10. Populations of C. ericaefolia showed a moderate differentiation in southern Iberian 

Peninsula, being the most genetically diverse populations located at western and central 

Alboran. 
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1. El índice RSL fue adecuado para evaluar el estado ecológico de las costas atlánticas del 

sur de España. Este índice mostró resultados similares a los esperados considerando las 

características físico-químicas del agua y las presiones antrópicas. Sin embargo, el RSL 

no discriminó entre los estados bueno y alto. 

2. El índice CARLIT fue adecuado para la evaluación del estado ecológico en el Mar de 

Alborán. Fue necesario definir dos regiones con diferentes condiciones de referencia para 

evitar la influencia de la variabilidad natural de esta costa, permitiendo de este modo una 

adecuada evaluación de estas aguas. Sin embargo, el valor de EQR y el estado ecológico 

final puede ser dependiente de la longitud del cuerpo de agua evaluado. 

3. Los índices CARLIT y RSL fueron igualmente sensibles a las presiones antrópicas y 

podrían ser utilizados para evaluar el estado ecológico en el Estrecho de Gibraltar y oeste 

del Mar de Alborán. La posibilidad de aplicar estos índices en la zona de transición entre 

las ecorregiones atlántica y mediterránea abre la posibilidad de una comparación entre 

estas ecorregiones a una mayor escala. 

4. En términos generales, los cuerpos de agua andaluces mostraron un estado ecológico 

bueno o alto, siendo Algeciras y la bahía de Cádiz las áreas más problemáticas. Sin 

embargo, los cuerpos de agua con un estado inferior a bueno estaban clasificados como 

altamente modificados, por lo que no existirán consecuencias legales. 

5. La mayor limitación para la aplicación de índices basados en macroalgas en las costas de 

Andalucía fue la existencia de largos tramos de costa sin sustratos rocosos naturales en la 

costa atlántica occidental (la provincia de Huelva). 

6. Dos tramos con una composición de especies de algas diferente fueron identificados a lo 

largo de la costa atlántica de Cádiz: Cádiz atlántico y estrecho de Gibraltar.  

7. El Mar de Alborán es una zona de transición entre el océano Atlántico y el mar 

Mediterráneo. Tres subregiones pueden ser identificadas a partir de su paisaje y 

composición específica: Alborán occidental, oriental y central. La oceanografía regional 

juega un papel clave en la estructura y composición de las comunidades bentónicas. 

8. La subregión central del mar de Alborán actúa como una frontera divergente mostrando 

una flora más pobre y menos diferenciada, con un paisaje dominado por filtradores. Esta 

divergencia podría ser consecuencia de la sucesión de episodios de afloramiento y llegada 

de aguas mediterráneas oligotróficas a este área. 

9. Los resultados preliminares sobre la estructura genética de las poblaciones del grupo 

Cystoseira ericaefolia no apoyan la existencia de varias entidades genéticas en el sur de la 

península ibérica, existiendo solo una especie, probablemente C. tamariscifolia. 

10. Las poblaciones de C. ericaefolia mostraron una diferenciación moderada en el Sur de la 

Península, siendo las poblaciones del oeste y centro del Mar de Alborán las que mostraron 

una mayor diversidad genética. 
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1. O índice RSL foi adequado para a avaliação do estado ecológico das costas atlânticas do sul 

de Espanha. Este índice mostrou resultados semelhantes aos esperados, considerando as 

características físico-químicas da água e das pressões antrópicas. No entanto, o RSL não 

distinguiu entre os estados bons e altos. 

2. O índice CARLIT foi adequado para a avaliação do estado ecológico no Mar de Alboran. Foi 

necessário definir duas regiões com diferentes condições de referência para evitar a influência 

da variabilidade natural desta costa, permitindo assim, uma avaliação adequada destas águas. 

No entanto, o valor de EQR e o estado ecológico final pode ser dependente do comprimento do 

corpo de água avaliado. 

3. Os índices CARLIT e RSL foram igualmente sensíveis às pressões antrópicas e poderiam 

ser utilizados para avaliar o estado ecológico no Estreito de Gibraltar e a oeste do Mar de 

Alborán. A possibilidade de aplicar estes índices na zona de transição entre as ecorregiões 

atlântica e mediterrânea abre a possibilidade de uma comparação entre estas ecorregiões a 

uma escala maior. 

4. No geral, os corpos de água andaluzes mostraram um estado ecológico bom ou alto, sendo 

Algeciras e a baía de Cádiz as áreas mais problemáticas. No entanto, os corpos de água com 

um estado inferior a bom foram classificados como altamente modificados, de modo que não 

haverão consequências legais. 

5. A principal limitação para a aplicação de índices com base em macroalgas na costa da 

Andaluzia, foi a existência de longos segmentos de costa sem substratos rochosos naturais na 

costa atlântica ocidental (a província de Huelva). 

6. Dois segmentos com uma composição de espécies de algas diferentes foram identificados 

ao longo da costa atlântica de Cádiz: Cádiz Atlântico e Estreito de Gibraltar. 

7. O Mar de Alborán é uma zona de transição entre o Oceano Atlântico e o Mar Mediterrâneo. 

Três sub-regiões podem ser identificadas a partir da sua paisagem e composição específica: 

Alboran ocidental, central e oriental. A oceanografia regional desempenha um papel 

fundamental na estrutura e composição das comunidades bentónicas. 

8 . A sub-região central do Mar de Alborán actua como uma fronteira divergente demonstrando 

uma flora mais pobre e menos diferenciada, com uma paisagem dominada por filtradores. Esta 

divergência poderia ser consequência da sucessão de episódios de afloramento e de entrada 

de águas mediterrâneas oligotróficas nesta área. 

9. Os resultados preliminares sobre a estrutura genética das populações do grupo Cystoseira 

ericaefolia não suportam a existência de várias entidades genéticas no sul da Península 

Ibérica, existindo apenas uma espécie, provavelmente C. tamariscifolia. 

10. As populações de C. ericaefolia mostraram uma diferenciação moderada no sul da 

Península, sendo as populações do oeste e centro do Mar de Alborán, as que mostraram maior 

diversidade genética. 
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Abstract	
  
	
  

According to the Water Framework Directive (WFD), the ecological status of European 
coastal waters must be assessed using different biological quality elements (BQE). One of the four 
proposed BQE is based on the composition and abundance of the marine macroalgae. Because 
of the biogegraphical differences along the European coasts, six ecoregions have been 
considered for biological indices development (Atlantic, Baltic, North Sea, Barents Sea, Norway 
Sea and Mediterranean Sea). The geographical position of Andalusia (Southern Spain), as a 
transition zone between the Atlantic and the Mediterranean Sea implies some technical and 
theoretical difficulties. Coastal waters of Andalusia belong to two different ecoregions, and their 
evaluation can be carried out with up to seven different macroalgal based indices. Moreover, the 
existence of a natural gradient along this coast interferes in the final value of the indices.  

The main objectives of this thesis were: i) the adaptation and comparison of indices based on 
macroalgae for the assessment of the ecological status in coastal waters of Andalusia; and ii) the 
provision of useful information for management about the ecology and the biogeography of littoral 
communities in southern Iberian Peninsula. 

The first objective is addressed in three chapters. In chapters 1 and 2, the Reduced Species 
List (RSL) and CARtography of LITtoral communities (CARLIT) indices were adapted to the 
particularities of Andalusian coasts. Afterwards, both indices were compared in the Strait of 
Gibraltar and the western Alboran Sea (chapter 3). The results showed that these indices were 
suitable to assess the ecological status in Andalusian coastal waters, and they yielded similar 
results. Overall, the ecological status of Andalusian water bodies (WBs) was good or high, 
excepting some highly modified WBs. 

The second block is focused on the ecology and biogeography of macroalgal communities in 
southern Iberian Peninsula. In chapter 4 the biogeographical patterns of the Alboran Sea were 
studied based on the landscape and the species composition of littoral and upper-sublitoral 
communities, and compared to regional oceanographic patterns. The results pointed out the 
influence of regional oceanographic patterns in the littoral communities, and the existence of three 
different subregions: western, central and eastern Alboran. In chapter 5, considering the ecological 
importance of Cystoseira mediterranea, C. amentacea and C. tamariscifolia, a genetic approach 
based on microsatellites was developed to assess the taxonomic identity and the genetic structure 
of these populations along the southern Iberian Peninsula. The preliminary results suggest that 
only a genetic entity, probably C. tamariscifolia, is present in the Alboran Sea. Furthermore, these 
populations showed a moderate differentiation among them, being the most genetically diverse 
populations those in western and central Alboran. The knowledge of these ecological and 
biogeographic patterns will be essential for a proper management (e.g. design a network of 
marine protected areas) and to interpret the results yielded by indices based on macroalgae. 
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