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Abstract Colour image smoothing is a challenging task
because it is necessary to appropriately distinguish be-

tween noise and original structures, and to smooth noise

conveniently. In addition, this processing must take into

account the correlation among the image colour chan-

nels. In this paper, we introduce a novel colour image
denoising method where each image pixel is processed

according to an eigenvector analysis of a data matrix

built from the pixel neighbourhood colour values. The

aim of this eigenvector analysis is threefold: (i) to man-
age the local correlation among the colour image chan-

nels, (ii) to distinguish between flat and edge/textured

regions, and (iii) to determine the amount of needed

smoothing. Comparisons with classical and recent meth-

ods show that the proposed approach is competitive and
able to provide significative improvements.

Keywords Colour image filter, Colour image smooth-

ing, Eigenvectors, Gaussian noise, Principal Compo-

nents, Vector Filter.

1 Introduction

Image denoising is a topic which has been extensively

studied in the fields of computer vision and digital im-

age processing. The denoising (or filtering) step is es-
sential for almost every computer vision system because

noise can significantly affect the visual quality of the

images as well as the performance of most image pro-

cessing tasks. Also, in the last years the use of colour
images has gained much attention within the computer

vision field and therefore colour image denoising has

become an important research topic.

Address(es) of author(s) should be given

Among the different sources of noise in digital imag-
ing, probably the most common one is the so-called

thermal noise, which is due to the Charge-Coupled De-

vice (CCD) sensor malfunction. This kind of noise is

modelled as additive white Gaussian noise. Therefore,

the presence of thermal (or Gaussian) noise can be
simulated by adding random values from a zero-mean

Gaussian distribution to the original values of each im-

age channel independently, where the standard devia-

tion, s, of the Gaussian distribution characterizes the
noise intensity [1]. Many methods for reducing image

Gaussian noise from colour images have been proposed

in the literature, all of them sharing the following goals

[1]-[4]:

1. Flat regions should be as smooth as possible, so that

the noise is completely removed.

2. Edges and details should be preserved as much as

possible, avoiding blurring and sharpening.

3. Texture should not be lost, which means that tex-
ture should not be confused with noise.

4. No colour artifacts should be introduced in the de-

noising process. That is, no new colours different

from the original ones in the image should appear
after the denoising process.

The earliest approaches for Gaussian noise smooth-

ing were based on a linear approach. These methods,

such as the Arithmetic Mean Filter (AMF) [1], are able

to suppress noise, because they take advantage of its
zero-mean property, but they blur edges and texture

significantly. This fact motivated the development of

many nonlinear methods that try to overcome this draw-

back by detecting image edges and details and smooth-
ing them less than the rest of the image.

Within the nonlinear methods, a wide class of them

uses averaging to take advantage of the zero-mean prop-
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erty of the noise. This class includes the well-known

Bilateral Filter (BF) [5] and its variants [6]-[10]. Also,

the works in [11,12] use an averaging operation which

is restricted to the (fuzzy) peer group members for each

image pixel. Other methods are developed using fuzzy
logic or soft switching methods, such as those in [13]-

[22]. Several methods based on different optimizations

of weighted averaging are proposed in [23]-[26]. Another

important family of filters are the partition based filters
[26]-[28] that classify each pixel to be processed into sev-

eral signal activity categories which, in turn, are asso-

ciated to appropriate processing methods. Other filters

follow a regularization approach [29]-[38] based on the

minimization of appropriate energy functions by means
of Partial Differential Equations (PDEs). Wavelet the-

ory has also been used to design image filtering methods

[39]-[48]. The combination of collaborative and wavelet

filtering is proposed in [49,50], and a method using
the wavelet transformation and data regularization is

proposed in [51]. Other recent methods make use of

a combination of image analysis techniques for image

segmentation followed by an appropriate smoothing of

each image region [52]-[54]. In addition, other methods
based on Principal Component Analysis (PCA) in the

image spatial domain [55]-[58] have been studied.

On the other hand, it should be pointed out that

in the context of colour images, goal 4 in the above
list is specially important. It is well-known that colour

artifacts may be introduced if the correlation among

the image channels is not taken into account [1]-[3].

This implies that the component-wise application of

gray-scale methods is not appropriate for colour im-
age processing. A well established solution is the vector

approach, which processes images by treating them as

vector fields [1]-[3],[5],[9]-[13]. However, it is also known

that the denoising capability of vector methods may
be inferior to that of the component-wise approaches,

for instance, in the case of the Vector Median Filter

(VMF) [59] versus the component-wise median or the

robust vector median methods [60,61]. This means that

the development of alternative methods is also inter-
esting. For instance, the work in [14] proposes a differ-

ent method to manage inter-channel correlation which

is based on analyzing the observed differences between

colour component couples, and the method in [32] mod-
els the correlation by means of colour-ratio constraints.

In this paper, we introduce a new local technique

using weighted pixel averaging to approach the colour

image denoising problem based on a well known lin-

ear algebra tool: eigenvectors. Local eigenvector analy-
sis allows to process the correlation among the colour

channels as well as to determine a set of smoothing

weighting coefficients to perform the denoising opera-

tion. Each image pixel is processed using a data matrix

built from its local neighbourhood colour component

values. Eigenvector analysis performed on the data ma-

trix provides the necessary information to transform the

original data matrix into a new one composed by a new
set of uncorrelated variables that can be now processed

in a componentwise fashion. Also, eigenvector analysis

provides information on the data variance of the new

set of variables that we can use to appropriately smooth
each one of the new variables, preserving original data

and reducing noise. It should be pointed out that the

proposed method is completely different from previous

PCA methods, as those in [55]-[58], because our anal-

ysis is performed in the signal value domain instead of
the image spatial domain.

The rest of the paper is organized as follows: Sec-

tion 2 gives the details about the proposed method; Sec-

tion 3 presents the experimental results and a system-
atic comparison against other state-of-the-art methods,

which shows that the proposed technique significantly

outperforms other local methods of the same family and

it is able to compete with non-local methods; Finally,

conclusions are drawn in Section 4.

2 Colour image denoising based on eigenvector

analysis

2.1 Local data matrix and eigenvector analysis

The colour image F, which is represented in the RGB

colour space, is processed using a sliding filtering win-

dow of size N ×N where N = 2n+ 1 and n = 1, 2, . . ..
The sliding window is centered on each pixel to be pro-

cessed, denoted by F0, which is defined by the tern

(FR
0
, FG

0
, FB

0
) of its three RGB colour components. The

rest of the neighbour pixels in the filtering window are

denoted as Fi, i = 1, . . . , N2 − 1.
Using the colour component values of the pixels in

the filtering window we build a data matrix D of size

N2 × 3 where the columns of the matrix are associated

to the colour components which are considered as the
variables of the data whereas the rows are associated

to the pixels that represent the samples in the data set.

The main novelty of the method introduced in this pa-

per is that an analysis of the D matrix is used to: (i)

appropriately process the correlation among the image
channels, and (ii) to conveniently smooth the noise in

the image while preserving the original structures. We

propose to perform an eigenvector analysis based on

the information provided by the matrix D. For this, we
find the eigenvectors, also called characteristic vectors

or principal components, ofDTD, where T denotes ma-

trix transponse. This procedure is behind well-known
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methods such as Singular Value Decomposition (SVD),

Independent Component Analysis (ICA) or Principal

Component Analysis (PCA) [62,63].

The method of principal components is based on

a key result from matrix linear algebra: since DTD is
a symmetric matrix, it may be reduced to a diagonal

matrix L by premultiplying and postmultiplying it by a

particular orthonormal matrixO such that the diagonal

elements of L are called the characteristic roots, latent
roots or eigenvalues, and the columns of O are called

the characteristic vectors, eigenvectors or latent vectors

of DTD [62,63]. That is, a vector v is an eigenvector

of DTD if and only if it satisfies that

DTDv = λv, (1)

where λ is a scalar called the eigenvalue correspond-

ing to v and, for convenience, v is taken so that it is

unitary. Eigenvalues λi of D
TD can be obtained as the

solutions of the equation

det(DTD− λI) = 0, (2)

where det denotes the matrix determinant. Then,

given the non-null eigenvalues λi, we can obtain [62,
63] three associated eigenvectors vi from the eigenvalue

equations

(DTD− λiI)vi = 0, (3)

that can be considered as an alternative set of or-

thogonal coordinate axes. Transforming the original da-

ta by means of the coordinate axis provided by the

eigenvectors implies transforming the original correlated

variables into a new set of variables which are uncorre-
lated. Geometrically, this procedure is simply a princi-

pal axis rotation of the original coordinate axis about

their means [62,63]. Therefore, if we denote by V the

3×3 orthonormal matrix that has as columns the three
eigenvectors of DTD denoted as V1, V2, and V3, the

mentioned transformation is performed by multiplying

D by V so that

U = DV, (4)

where U denotes the matrix containing the trans-

formed data, also called scores matrix, and each pixel

Ui, i = 0, . . . , N2 − 1 is now represented by the tern

Ui = (U1

i , U
2

i , U
3

i ). Moreover, note that, since V is or-
thonormal, it is fulfilled that

UVT = D. (5)

Now, we can directly operate on the values of U to

reduce the noise. Notice that now the columns of U are

associated to a new set of uncorrelated variables that

we will denote as U1, U2, and U3, and which are associ-

ated to the eigenvectors V1, V2, and V3, respectively.
This implies that we can safely apply componentwise

methods to reduce the noise independently in each of

the new variables. In particular, we propose to apply

the method described in Section 2.2 which, as it will be
explained in the following, is devised to take advantage

of the information provided by this eigenvector analy-

sis. Finally, denoised data need to be transformed again

into the RGB space. According to Eq. (5), this can be

done by simply multiplying the data in the transformed
space by the matrix VT.

It should be stressed that, even though from a strictly

theoretical point of view obtaining 3-component eigen-

vectors from small datasets does not guarantee useful
results for the low ratio of data samples per variable,

in our case, we see that the results for small filtering

windows (3 × 3, which means 9 data) are satisfactory

and useful. This is probably due to the strong corre-

lation among the colour channels and the high spatial
redundancy (spatial correlation) shown in digital im-

ages. Data could be increased by using a larger filtering

window, but it is known that large windows lead to

undesired blurring in the image and, consequently, we
prefer to use small ones. Note that a number of works

already exist where eigenvectors are computed satisfac-

torily even with a much lower ratio of data samples

per variable. For instance, this happens in PCA-based

modelling of industrial batch processes [64,65], where
thousands of variables are analyzed using less than a

hundred samples. So, this practice is quite common, in-

deed.

2.2 Denoising method

To devise an appropriate denoising method using the

information from the previous eigenvector analysis we

take advantage of the following properties of the eigen-
vectors: (i) eigenvectors are obtained as orthogonal lin-

ear combinations of the original variables; (ii) these

linear combinations are obtained so that the sample

variance of the original data is maximized [62,63]. This

means that one of the eigenvectors, also called the first
principal component, is obtained so that its direction

corresponds to the direction of maximum sample vari-

ance in the original variable space; then, another eigen-

vector, called the second principal component, is ob-
tained as the vector whose direction is orthogonal to the

previous one and that maximizes the remaining vari-

ance, and so forth.
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In colour images, edges, texture and image details

can be seen as correlated variations of the RGB val-

ues. On the other hand, since Gaussian noise in the

image channels is commonly assumed to be indepen-

dent, variations due to noise are uncorrelated. Then,
because of the explanation above, correlated variations

due to edges or image details, can only be associated

to one of the eigenvectors Vi since, otherwise, the new

variables would not be uncorrelated. An example of this
is given in Figure 1 (see supplementary material) where

we show an edge in a colour image along with the origi-

nal colour component values and the result after apply-

ing the eigenvector transformation on the data (for a

better visualization, only the R and G values are used).
On the other hand, Figure 2 (see supplementary ma-

terial) corresponds to a flat region of a colour image

where it can be seen that this effect is not observed.

Also, because of the sample variance maximization
feature, we can identify the new variable U i associ-

ated to the eigenvector that explains the correlated data

variation due to an edge or image detail as the variable

U i that fulfills that σ(U i) >> σ(U j) and σ(U i) >>

σ(Uk), where σ denotes the sample standard deviation.

In such a case, since data represented by U i is associ-

ated to image edge or detail information and it is also

noisy, this variable should not be excessively smoothed,

whereas U j and Uk can be safely smoothed since they
do not bear image information but mainly noise. On

the other hand, in flat image regions where only un-

correlated variations due to noise in the data are ob-

served, it is expected that the variances of U i, U j and
Uk are similar, that is, σ(U i) ≈ σ(Uk) ≈ σ(U j) , which

means that the three variables can be safely smoothed.

This fact is shown in Figure 3 (see supplementary mate-

rial) where we give two gray-scale images correspond-

ing to two noisy images where the gray level of each
pixel is proportional to the maximum of σ(U i), σ(U j),

and σ(Uk). We can easily see that brightest image ar-

eas correspond to image edges and details. According

to this, we devise the denoising method to smooth these
brighter areas less than the darker ones.

As mentioned in the Introduction, we aim at apply-

ing a weighted averaging operation in order to smooth

each component independently. Then, to smooth each
component of the pixel represented by the tern U0 =

(U1

0
, U2

0
, U3

0
), the operation given by the following ex-

pression is applied:

Û i
0
=

N2
−1
∑

p=0

W i
pU

i
p

N2
−1
∑

p=0

W i
p

, i = 1, 2, 3. (6)

where i refers to the colour channel and p to the

pixel number in the neigbourhood window around a

pixel.

According to above, the weights W i
p should be com-

puted so that the component U i
0
is less smoothed when

σ(U i) >> σ(U j) and σ(U i) >> σ(Uk), and more smoothed

otherwise. For this, we define the normalized standard

deviation σn of a variable U i as

σn(U
i) =

σ(U i)
3
∑

j=1

σ(U j)

. (7)

To appropriately perform the averaging, the weights

W i
p should be computed using a decreasing function on

|U i
p − U i

0
| so that only U i

p values close to U i
0
receive

high weights. For this, we use the following exponen-

tial based expression, but any other decreasing function
could be used instead, as well:

W i
p = exp

(

−
|U i

p − U i
0
|σn(U

i)

D

)

, (8)

where D > 0 is a filter parameter that tunes the

global smoothing capability of the method. It can be

seen that larger values ofD imply that values ofW i
p will

be closer to 1 and, therefore, the smoothing capability is

higher. Conversely, for lower values of D, the smoothing

capability decreases. The appropriate setting of D will

be experimentally studied in Section 3.1. Note that the
value given by σn(U

i) is also related to the smoothing

capability: for lower values of σn(U
i) the smoothing

capability increases whereas for higher values of σn(U
i)

the smoothing performed is lower. Consequently, the

desired behaviour is achieved.
Finally, the processing scheme proposed in Sections

2.1 and 2.2 is summarized in Algorithm 1.

3 Experimental results and comparisons

In the experimental section we have used the test im-

ages Pills, Parrots, Lenna, Beach, Headphones, Flower,

and Grass. We have extracted patches (Fig. 4, see sup-

plementary material) of the original images with differ-

ent (small) sizes and texture and detail content to test
the methods against different varieties of spatial fre-

quencies and also to better appreciate the performance

differences among different parameter settings and fil-

tering methods. These images have been corrupted with
noise using the classical white additive Gaussian model

[1]. Each colour image channel has been contaminated

independently with a varying standard deviation, s, of
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Algorithm 1: Colour image denoising method

based on eigenvector analysis

1 foreach Image pixel F0 do

2 Extract the N ×N neighbourhood around

F0 and build the N2 × 3 matrix D

3 Obtain the eigenvalues λi as the solutions of
Eq. (2)

4 Compute the eigenvectors vi using the

eigenvalues λi and Eq. (3)

5 Obtain the N2 × 3 matrix U by applying

the eigenvector transformation on the data
matrix D according to Eq. (4)

6 Compute σn(U
i), i = 1, 2, 3 and the weights

W i
p as explained in Eq. (7) and Eq. (8),

respectively.
7 Compute Û0 = (Û1

0
, Û2

0
, Û3

0
) according to

Eq. (6)

8 Obtain the smoothed RGB pixel F̂0 from

Û0 by inverting the eigenvector

transformation according to Eq. (5) as

F̂0 = Û0V
T

9 end

the Gaussian distribution, which represents the noise
intensity.

To assess the performance of a filtering process, we

use five different measures each of them accounting for a

different point of view of assessment: the Mean Absolute
Error (MAE) [1] to measure the detail preserving abil-

ity; the Peak Signal to Noise Ratio (PSNR) [1] for the

noise suppression ability; the Normalized Colour Differ-

ence (NCD) [1] for the colorimetric preservation ability;

the generalization to colour of the popular structural
similarity measure [67] named Fuzzy Colour Structural

Similarity (FCSS) [68]; and the perceptual difference

inspired in the image colour appearance model iCAM

(iCAMd) [69], which we have used setting for all images
5 degrees of visual angle as visualization conditions.

3.1 Parameter setting

In order to choose the appropriate adjustment of the

filter parameter D in Eq. (8), we have experimentally

analyzed the filter performance in terms of PSNR as a
function of D using the images Pills and Lenna (Fig.

4 (a),(c), see supplementary material). They have been

contaminated with varying standard deviation s of Gaus-

sian noise. For each value of s ∈ [1, 30], we have ex-
perimentally determined the optimal setting for D in

terms of the PSNR quality measure. The obtained re-

sults, which are shown in Fig. 5 (see supplementary

material), suggest that for values of the noise standard

deviation s in [1, 30], an appropriate value of D can

be set proportionally to s in the [1, 25] interval. So,

roughly, D can be set according to the linear relation

D =
5

6
s,

where the standard deviation of the corrupting Gaus-

sian noise s can be estimated using the method in [66].

Also, in Fig. 6 (see supplementary material), we repre-

sent the performance in terms of PSNR as a function
of D for four noisy images. It can be seen that it is

not necessary to optimally set D in order to achieve a

superior performance and, therefore, the proposed au-

tomatic setting for D is sufficient.

3.2 Comparison with state-of-the-art methods

The performance of the proposed filter is compared
against the following filters: Bilateral Filter (BF) [5],

Adaptive Nearest Neighbour Filter (ANNF) [13], Chro-

matic filter [23] (CHRF), Fuzzy Vector Median Filter

(FVMF) [15], Peer Group Averaging (PGA) [11], Fuzzy
Directional Derivative Filter [18] (FDDF), Fuzzy Noise

Reduction Filter [14] (FNRF), Fuzzy Wavelet Denois-

ing method (FWD) [42], Collaborative Wavelet Filter

(CWF) [49,50], and Colour Regularization Filter (CRF)

[32]. All filters have been applied on a 3× 3 filter win-
dow in an iterative fashion with the same stop condi-

tion: the method stops when it reaches the maximum

performance in terms of PSNR, ignoring the iteration

for which PSNR decreases for the first time. For each
method, the parameter setting advised by the respec-

tive authors has been employed, tuning experimentally

when necessary.

Experimental results are presented in Tables 1-7

(see supplementary material). In each table, the best
result for each noise level and performance measure is

written in red, and the second best, in blue. These Ta-

bles show that the proposed method exhibits one of the

best overall performance for all quality measures, im-
plying that the proposed method achieves a good noise

reduction without introducing colour artifacts, as well

as it properly preserves image details, colors and im-

age structures. From these results, it is easy to iden-

tify a group of filters, most of them based on averaging
pixel values for smoothing, with performance signifi-

cantly lower than the rest: BF, ANNF, CHRF, FVMF,

PGA, and FDDF filters. On the other hand, the fuzzy

filters FWD and FNRF, and the CRF show a better
performance than the group before. More specifically,

FNRF and CRF are able to yield a competitive perfor-

mance in some cases: FNRF performs very well for im-
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ages with a higher spatial frequency content when they

are contaminated with medium to high noise intensi-

ties; CRF also performs competitively when the noise

intensity is high, specially in terms of structural simi-

larity. However, the best performance is achieved by the
non-local method CWF and the proposed method, as

they rank first or second in more than 70% of the cases.

Furthermore, we can see that the proposed method is,

in overall, better than CWF for images with a higher
spatial frequency content (more texture and small de-

tails) whereas CWF is better for the larger images that

have a lower spatial frequency content, that is, more

and larger areas of homogeneous regions. This is logi-

cal as the block matching procedure applied in CWF
finds more matches in this type of images, which al-

lows to achieve a higher denoising performance. On the

other hand, this indicates that our method lacks noise

reduction capability in homogeneous regions, which is
a point to improve in the future. Finally, it should be

stressed that the performance of the proposed method

is significantly better than other filters in the local av-

eraging family, and it is able to compete with non-local

methods.

Also, some images denoised using the most competi-

tive filters are shown in Figures 7-13 (see supplementary

material). By visually inspecting these results, we can

see that the images generated by the proposed method

are visually pleasing, specially for images with a high
spatial frequency content and from the detail and struc-

ture preservation point of view. The following points

may be stressed:

– Figure 7: All FWD, CWF, CRF and the proposed

method perform quite well in this case. It seems that

the proposed method preserves better the texture

in the image (see right-up area) whereas FWD and

CWD reduce better the noise but blur the texture
a little.

– Figure 8: In these images we can see that the FWD

and CWF methods are generating a little blurry

output images. Also, FWD has introduced some colo-
ur artifacts (next to the eye). CRF has reduced noise

well but it has also introduced a little bit of blur

around the eye and in some edges, and the proposed

method has better preserved edges and texture (spe-

cially around the eye) while appropriately reducing
the noise.

– Figure 9: Here, according to the quantitative results,

CWF performs the best: It removes the noise and

keeps all texture and details in the image. CRF and
the proposed method are able to remove the noise

but blur texture a bit. FNRF does not blur the tex-

ture but it does not remove all the background noise.

– Figure 10: In these images we can see clear perfor-

mance differences among the FNRF, FWD, CRF

and the proposed method. The FNRF does not re-

duce all noise in the image and some of the image

edges are sharpened, so, they are not perfectly pre-
served. FWD blurs the image too much and, in addi-

tion, it introduces some colour artifacts. CRF is able

to reduce well the noise but it blurs the edges in the

image. Finally, we can see that the proposed method
generates a more visually pleasing image where the

noise is reduced and the edges are preserved without

sharpening them.

– Figure 11: In this example we can see that CRF has

sometimes problems to preserve colour information
in the image, probably because of a deficient pro-

cessing of image inter-channel correlation. Also, we

see that FNRF and CWF blur the image more than

the proposed method, which is the one achieving
here the best trade-off between noise reduction and

details preservation.

– Figure 12: In this case, the noise reduction capabil-

ity of CWF stands out: CWF reduces all noise and

keeps the main details but blurs a bit smaller de-
tails. On the other hand, the noise reduction capa-

bility of FNRF is below the rest. CRF and the pro-

posed method perform quite similar, which agrees

with the results in terms of FCSS: they are best in
keeping the global image structure. While they do

not remove the noise as well as CWF, they preserve

better hair textures.

– Figure 13: In this example, it can be seen that both

FNRF and CRF are not able to properly reduce all
noise. FWD reduces the noise but the output image

is too blurry and it also contains too many colour

artifacts. The proposed method seems also here to

produce the best results since it is able to reduce
the noise but in this case some edges and texture

have been a little blurred.

4 Conclusions

In this paper, we have introduced a local method to re-

duce Gaussian noise from colour images which is based

on an eigenvector analysis of the colour samples in each

pixel neighbourhood. The proposed method employs a

local procedure both to appropriately process the cor-
relation among the colour image channels, as well as

to compute a set of weighting coefficients which are

used to smooth each pixel in the image. It performs

well in colour image denoising since it is able to re-
duce image noise while preserving image edges, tex-

ture and other details without introducing colour ar-

tifacts. Experimental results have shown that the pro-
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posed method is able to exhibit a high performance

which is competitive with respect to recent state-of-the-

art methods both from the quantitative as well as from

the visual point of view. The proposed method clearly

outperforms other local methods and it is competitive
with non-local ones.
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