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Aeroacoustic investigation of an oscillating airfoil in the pre- and post-stall
regime
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Abstract

The present study describes an experimental investigation of the aerodynamic and aeroacoustic character-

istics of a sinusoidally oscillated NACA 0012 airfoil. The experiments were conducted in an aeroacoustic

wind tunnel with a uniquely designed Kevlar-walled test section. Prior to experiments, these Kevlar walls

were calibrated carefully and shown to provide reliable and accurate aerodynamic and aeroacoustic mea-

surements. Two different regimes of interest, namely the pre- and post-stall angle of attack regimes, have

been examined for lift curve polars, far-field noise spectra and unsteady surface pressure spectra. Interest-

ingly, when the lift curve polar hysteresis is small at pre-stall angles of attack, the unsteady surface pressure

spectra of the oscillating airfoil can be predicted with satisfactory accuracy using a position-based weighted

averaging approach from its static counterparts. On the other hand, such a method becomes invalid at

post-stall angles due to the presence of a significant dynamic stall hysteresis. Instead, an increase in the

mean surface pressure and far-field noise spectra is observed at dynamic stall conditions. Furthermore, a

short-time Fourier transform analysis reveals that the increase of the surface pressure spectra is a direct

result of the periodic production and convection of dynamic stall vortices.

Keywords: Oscillating airfoil aeroacoustics, Kevlar-walled anechoic tunnel, Dynamic stall, Unsteady

surface pressure fluctuations, NACA 0012 airfoil, Trailing edge noise.

1. Introduction

The World Health Organization (WHO) has highlighted in their 2018 report that environmental noise is

now Europe’s second biggest environmental health threat after air pollution [2]. In most applications con-

cerning aerodynamic noise, airfoil self-noise is a major component and contributor to environmental noise,
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such as helicopters and wind turbines, etc. The existing noise pollution can have various adverse health5

effects, including cardiovascular diseases, hearing impairment, tinnitus and mental health problems [2, 3]. In

order to reduce the noise emissions from airfoils, various passive and active techniques are being researched

and implemented, such as trailing edge serrations, porous treatments and boundary layer blowing [4–10].

In order to propose more silent airfoils, researchers and engineers utilize various techniques including10

aeroacoustic wind tunnel testing and computational modelling. However, at present the majority of aeroa-

coustic wind tunnel testing is limited to static airfoil tests, i.e. fixed at a specific angle of attack (AoA),

while engineering machinery regularly encounters dynamically changing inflow conditions, regarding local

angle of attack, turbulence intensity, etc, which can result in the occurrence of dynamic stall [11]. In the case

of wind turbines, Smith et al. have hypothesized that dynamically changing wind conditions and possibly15

stall can cause “other amplitude modulation”, described as a low frequency thumbing noise [12]. An analysis

by Oerlemans also revealed that non-uniform inflow caused by wind shear, topology, large-scale turbulence,

wind veer and wake operation can lead to rapidly changing AoAs and OAM for wind turbines [13], with

similar conclusions also reached in other studies [14, 15]. With a practical interest, Oerlemans et al. also

conducted field tests on a 94 m diameter wind turbine to investigate different noise reduction strategies [16].20

They found that under normal operating conditions the dominant noise emission is due to the trailing edge

noise from the outboard region of wind turbine blades, and that both trailing edge serrations and airfoil

geometry changes could reduce the overall noise levels. In a laboratory environment, Zajamsek et al. con-

ducted a study of rotating NACA 0012 airfoils for AoAs of up to α = 10 ◦ and rotor tip Reynolds numbers

of up to Rec = 240,000. [17] Their investigation determined the dominant noise source to be trailing edge25

noise originating in the outer section of the rotor and was able to predict the noise emissions by employing

a modified Brooks, Pope and Marcolini [18] airfoil self-noise model.

While the aerodynamics of pitching airfoils, in particular dynamic stall has been studied thoroughly

over the years [11, 19–21], and modelled to various degrees of accuracy (see Holierhoek et al. [22] for an30
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overview), there is currently a rather limited number of aeroacoustic investigations of pitching airfoils. Na-

garajan et al. [23] computationally studied the flow past an oscillating NACA 0012 airfoil at a Reynolds

number of Rec = 130,000 using large eddy simulation and unsteady RANS approaches, but rather few aeroa-

coustic results were reported. Siegel et al. conducted a dynamic stall experiment at a Reynolds number of

Rec = 800,000 utilizing a NACA64-618 airfoil oscillating in pitch about its quarter-chord [24]. The largest35

noise increase was found at the cut-off frequency of the anechoic chamber at f = 200 Hz. Additionally,

particle image velocimetry measurements synchronized with a single microphone were used to pinpoint the

flow-field locations that correlate substantially with the far-field pressure fluctuations, which were shown to

correspond to the separated flow field region. A more recent experimental work by Zhou et al. investigated

the laminar vortex shedding noise under dynamic excitation of a NACA 0012 airfoil for zero mean AoA at a40

low Reynolds number of Rec = 66,000 [25]. Zhou et al. found a decrease in the tonal vortex shedding peak,

while the broadband noise near the vortex shedding peaks was observed to increase.

By utilizing a Kevlar-walled test section that allows accurate aeroacoustic and aerodynamic investiga-

tions of dynamically oscillating airfoils, the present study aims to: (a) provide a detailed investigation on the45

oscillating airfoils in both pre- and post-stall regimes, including a substantial examination of the unsteady

surface pressure spectra, and a comparison with the static scenarios throughout the oscillation cycle, (b)

propose a position-based weighted averaging technique to estimate surface pressure spectra of oscillating air-

foils using static fixed AoA spectra and examine its validity at both pre- and post-stall regimes, and finally

(c) shed some light on the relationship between the flow field physics and the surface pressure statistics of50

dynamically stalled airfoils.

The paper is organized as follows. Section 2 provides an overview of the experimental setup, measurement

techniques and the NACA 0012 airfoil. Section 3 presents the aerodynamic and acoustic characterization

of the setup. Subsequently, four sinusoidally oscillating airfoil test cases with varying reduced frequencies,55

in the pre- and post-stall regimes, will be presented and analysed in terms of lift coefficient, far-field noise
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and surface pressure spectra in section 4. The mean and time dependent surface pressure spectra discussed

in section 4 are believed to be one of the first investigations of dynamic stall in terms of unsteady pressure

fluctuations. Lastly, the concluding remarks are given in section 5.

60

2. Experimental setup

This section provides a brief description of the measurement details and the test section mounted in

the aeroacoustic wind tunnel facility at the University of Bristol, including the Kevlar-walled test section,

dynamic turntable, beamforming array, far-field microphone arc as well as the instrumented NACA 001265

airfoil. Kevlar-walled test sections are widely used in various anechoic wind tunnel facilities [26, 27], in

order to reduce the flow deflection, while enabling far-field noise measurements. The temperature-controlled

aeroacoustic wind tunnel is anechoic for frequencies above 160 Hz, and was used with a nozzle with the exit

dimensions of 500 mm in width and 775 mm in height. The anechoic chamber has external dimensions of

7.9 m in length, 5.0 m in width and 4.6 m in height. Further details regarding the anechoic wind tunnel70

facility can be found in Mayer et al. [28].

2.1. Test section

An upstream and side view rendering of the test setup arrangements, aimed at enabling dynamic oscil-

lation capabilities in an anechoic environment are illustrated in Fig. 1. A Nidec 095E3E-FM servo motor75

driven by a M700 Nidec servo drive with a MCi210 application module, associated SKF bearings and a

zero backlash EK2 R+W coupling are mounted rigidly on two Aluminum strut stands on the sides of the

Kevlar-walled test section. These far-field measurements are conducted using either a beamforming array

or a microphone arc secured overhead of the test section.

80
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(a)

(b)

Figure 1: Schematic drawings of the experimental setup including surrounding anechoic chamber; (A) servo motor, (B) coupling
and bearing, (C) NACA 0012 airfoil, (D) tensioned Kevlar cloth, (E) beamforming array and (F) nozzle: (a) upstream view
and (b) side view.

The utilized servo motor and servo drive provide sufficient torque to sinusoidally oscillate the airfoil

about its quarter-chord axis and to simultaneously balance any occurring moments, such as the aerodynamic

pitching moment. In order to provide a smooth ramp up at the beginning of the oscillation, the sine curve
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is implemented as,

αg(t) = αmin + Â(1− cos(2πΩt)), (1)

where αmin denotes the minimum geometric AoA, Â is the oscillation amplitude and Ω is the oscillation85

frequency. A mean AoA is defined as α0 = αmin + Â. The maximum torque enables dynamic testing to

occur up to a reduced frequency of kr = 0.1 at a free stream velocity of U∞ = 20 m s=1 and a maximum

amplitude of Â = 10 ◦, where the reduced frequency is defined as,

kr =
cπΩ

U∞
, (2)

where c is the airfoil chord length. According to McCroskey [29] a reduced frequency factor of kr & 0.05 is

required to achieve fully unsteady flow conditions using sinusoidal oscillations, as employed in this study.90

The servo motor is controlled remotely via a Modbus TCP/IP connection and the output from its internal

20 bit resolution optical encoder is recorded throughout the test duration.

The Kevlar-walled test section, as seen in Fig. 1, has a total streamwise length of 1500 mm, leaving a

distance of approximately 1700 mm to the inlet plane of the anechoic chamber collector. Significant care has95

been taken to ensure the flow wetted areas are smooth and gap free to avoid any erroneous noise sources.

At the top and bottom of the test section, bespoke tension frames are used to tension the K0120 style,

plain woven Kevlar 49 fabric with a thickness of 0.12 mm. The tension in both weave directions is uniformly

set to 15 N cm=1 and measured repeatedly using a Newman ST1E tension meter during the testing, and

readjusted if necessary. The far-field noise measurements for this setup can be achieved using (a) a large100

beamforming array or (b) a microphone arc spanning from polar angles of θ = 30 ◦ to θ = 140 ◦, if the noise

levels exceed the respective background noise levels. The polar angle (θ) is defined as the angle between

free stream vector and the trailing edge to microphone vector, with θ = 90 ◦ referring to the microphone

vertically above the airfoil. For further details about the mechanical details and design procedures of the
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whole setup, the reader is referred to Mayer et al. [1].105

2.2. NACA 0012 airfoil

A hollow NACA 0012 airfoil with a chord length of c = 300 mm is mounted in the first window of the

Kevlar-walled test section, at a distance of one chord from the nozzle exit plane. The airfoil is held in place110

by the servo motor and supported by two bearings. An airfoil-based coordinate system with its origin at

the midspan of the leading edge is defined: x describes the chordwise direction, y the spanwise direction

and z the vertical direction. Circular side plates are used to provide a smooth inner surface and the NACA

0012 airfoil is tripped at approximately x/c = 0.1 on both the suction and the pressure sides by means

of a 6 mm wide and 0.5 mm thick zig-zag 3D turbulator trip tape by Glasfaser-Flugzeug-Service GmbH115

[30]. The airfoil is equipped with 87 pressure taps distributed over the airfoil, with a denser distribution

of tappings near the leading edge in order to finely resolve the pressure distribution in this region. The

airfoil is also fitted with unsteady pressure transducers located at the midspan, i.e. y/c = 0, in order to

measure the unsteady pressure exerted on the surface of the airfoil. The majority of the unsteady pres-

sure measurements are carried out using Knowles FG-23629-P16 condenser microphones in a direct sensing120

fashion, while in the trailing edge area, where little space is available, the measurements are performed in

a remote sensing configuration. All microphones are placed under a pin hole of 0.4 mm diameter to avoid

attenuation [31]. Moreover, all direct and remote sensing microphones were calibrated in magnitude and

phase with reference to a G.R.A.S. 40PL microphone, following the procedure established by Mish [32]. The

reference microphone itself was calibrated using a 42AA Pistonphone by G.R.A.S. The uncertainty of the125

surface pressure fluctuation measurements were determined to be 1.5 dB for a 95 % confidence interval using

a Student’s t-test [33]. Lastly, it is useful to note that the unsteady surface pressure fluctuation spectra

of the NACA 0012 airfoil have previously been validated against experimental data by Garcia-Sagrado [1, 34].
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2.3. Data acquisition and post-processing130

Acoustic near- and far-field

All measurements were conducted at a set temperature of 20 ◦C and a free stream velocity of U∞ = 20 m s=1,

which corresponds to a Reynolds number of Rec = ρU∞c/µ = 420,000, where ρ is the air density and µ

is the dynamic viscosity of air. The measurements from all unsteady surface pressure transducers were

conducted simultaneously at a sampling frequency of 215 Hz via five 16-channel National Instruments PXIe-135

4499 sound and vibration modules, mounted in a National Instruments PXIe-1062Q chassis. All data for

the fixed static AoA airfoil configuration (Ω = 0 Hz, Â = 0 ◦) have been recorded for 32 s, while in the case

of dynamically varied AoAs, the measurement duration was set to 50 oscillation periods (t = 50/Ω). The

recorded unsteady pressure transducer signals were processed in the time domain to account for the sen-

sitivity and phase calibration curves obtained prior to the experiment. Additionally, the unsteady surface140

pressure measurements were corrected using the method proposed by Corcos in order to compensate for

the high frequency attenuation due to the finite pin hole size [31]. Subsequently, the power spectral density

(PSD) is estimated via Welch’s method with a Hanning window and 50 % overlap. Frequency dependent

window sizes of 213, 211 and 28 samples are used to obtain smooth yet well-resolved spectra, resulting in

frequency bin sizes of ∆f = 4 Hz, 16 Hz and 128 Hz, respectively. Additionally, time dependent short-time145

Fourier transforms were calculated using a Hanning window with a length of 3000 samples and an overlap

of 75 %, which resulted in a frequency resolution of ∆f = 8 Hz and time domain resolution of ∆t = 2.3 · 10=2 s.

Static pressure

Two synchronized Chell MicroDaq-32 pressure scanners were used for measuring the static pressure. The150

data were collected at a sampling frequency of 1000 Hz and for the same sampling duration as the unsteady

pressure transducers. The uncertainty of the pressure coefficient, ∂Cp, was determined following the method

by Kline and McClintock [35] and was determined to be 0.064 for a free stream velocity of U∞ = 20 m s=1.

The static pressure measurements are averaged for the fixed airfoil cases and phase averaged for the oscil-

lating airfoil cases. The static pressure distributions are integrated in order to calculate the sectional lift155
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coefficient, Cl, and sectional pitching moment coefficient, Cm, around the airfoil quarter-chord, assuming

that the surface tangential shear forces are negligible for these quantities.

Far-field beamforming array

The beamforming array is made from 73 microphones (Panasonic WM-61A) distributed along 9 arms160

with 8 microphones each, and an additional microphone in the center of the array, as illustrated in Fig. 2.

The measurement uncertainty of the Panasonic microphones was calculated to be 1.5 dB for a 95 % confi-

dence interval using a Student’s t-test [33]. For the present study, the center of the beamforming array is

aligned with the trailing edge of the NACA 0012 airfoil, at a distance of 1 m for an AoA of α = 0◦. The

beamforming microphone data were recorded at a sampling frequency of 214 Hz for consistent sampling165

durations as the unsteady pressure transducers. Subsequently, the recorded data were calibrated and the

open source software package Acoular was used to calculate the functional beamforming maps [36, 37]. The

spatial resolution on the rectangular beamforming evaluation grid is 2.5 mm and the cross power spectral

density matrix is calculated using Welch’s method using a block size of 211 with a Hanning window and 50 %

overlap. The vertical distance from the beamforming microphone plane to the trailing edge of the airfoil170

was adjusted to account for the trailing edge movement at non-zero AoAs. For the oscillating airfoil cases,

the vertical distance corresponding to the mean AoA, α0, was employed for the noise location analysis.
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Figure 2: Beamforming geometry with 73 microphones and NACA 0012 airfoil planform at α = 0◦.

3. Kevlar wall test section characteristics175

3.1. Acoustic properties

Kevlar cloth is known to cause sound attenuation, particularly at high-frequencies [38]. Hence, in order

to correct the far-field noise results, the attenuation of sound waves through the tensioned Kevlar cloth

needs to be quantified and later applied to the measured data. Similarly, the boundary layers developed

on the inside of the Kevlar windows introduce additional noise attenuation which needs to be taken into180

account. The procedure to correct for these effects, established by Devenport et al. [39], will be followed

in this paper. All acoustic tests involve a Teufel Boomster speaker, incorporating 2 tweeters, 2 mid-range

drivers and a subwoofer loudspeaker placed below the test section and driven with white noise. The speaker

noise was quantified to be at least 20 dB higher than any flow background noise for all frequencies greater

than 160 Hz (cut-off frequency of the anechoic chamber) and all flow speeds investigated. This setup will185

be used to evaluate the transmission loss of (a) the Kevlar cloth and (b) the boundary layer forming on the

Kevlar cloth.

Firstly, the far-field noise results at θ = 90 ◦ with and without the Kevlar test section without any flow
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(U∞ = 0 m s=1) allow the transmission loss of the Kevlar cloth, ∆Kevlar, to be established in the form of190

∆Kevlar = 9.365 ∗ 10−3

(
f

1000

)2

, (3)

where f is the frequency. Figure 3 (a) shows a comparison between the narrowband experimental transmis-

sion loss, the quadratic data fit and the results obtained by Devenport et al. [39]. It can be seen that the

experimentally obtained narrowband data were characterized by oscillatory behavior which is in agreement

with Li et al. [26], Devenport et al. [39] and Jaeger et al. [38], and that the quadratic data fit is in close

agreement with the quadratic data fit obtained by Devenport et al. [39].195

Secondly, the far-field noise results of a microphone at θ = 90 ◦ above the test section with the Kevlar win-

dows and flow velocities of 10 m s=1, 20 m s=1 and 30 m s=1 are used in comparison with the no-flow results.

This permits an estimate of the noise transmission attenuation due to the presence of the boundary layer

on the inside of the tensioned Kevlar. Devenport et al. [39] established the boundary layer losses as200

∆Bl =
(
1− e−βf

)(
ε1M + ε2M

2
)
, (4)

where M is the Mach number, β = 1.057 ∗ 10−3 and ε1 and ε2 are empirically obtained constants. A least

squares data fit resulted in ε1 = 14.51 and ε2 = −0.23. The fact that the value of ε2 is two orders of

magnitude below the value of ε1 shows that at low velocities, the boundary layer losses scale almost linearly

with the free stream velocity. Note that extra care has to be taken to divide the losses, both transmission

loss, ∆Kevlar, and boundary layer loss, ∆Bl, by a factor of 2, as the sound field passes through two tensioned205

Kevlar cloths. An overview of the total far-field attenuation for flow velocities of U∞ = 10 m s=1, 20 m s=1

and 30 m s=1 is shown in Fig. 3 (b).
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(a) (b)

Figure 3: (a) Kevlar transmission loss and (b) combined far-field noise attenuation.

3.2. Aerodynamic properties

The majority of both open and closed test section wind tunnel test results require to be corrected for a210

multitude of effects, including solid blockage, wake blockage, streamline curvature and buoyancy corrections

in order to obtain equivalent free air results [40]. The use of tensioned Kevlar walls also requires wind tunnel

corrections. Kevlar walled test sections have several unique features and are considered to be open-closed

hybrid test sections from a wind tunnel correction point of view. The permeability of the Kevlar cloth leads

to the possibility of air entering and leaving the test section and the pressure difference across each Kevlar215

window results in varying Kevlar cloth deflections. These effects have been investigated analytically and

numerically with a hybrid panel method by Devenport et al. [39, 41]. In this work, a model developed by

Devenport et al. [41] to capture the change in the AoA is used, as

αe = αg(1− δ), (5)

where αe is the effective AoA, αg is the geometric AoA and δ is the correction factor. The correction factor

is defined as,220

δ =
sgn(Cl)C

αgU∞

(
ρU2
∞|Cl|cA
2πh

)n
, (6)
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where, Cl is the uncorrected lift coefficient, sgn is the signum function, C = 0.03879, n = 0.5734, A = 1 and

h is the test section height.

(a) (b)

Figure 4: A comparison of the effect of the angle of attack correction, based on Eq. 5, for (a) sectional lift coefficient (Cl) and
(b) sectional pitching moment coefficient (Cm).

Figure 4 shows the lift and quarter chord pitching moment coefficient polar plots for a chord-based

Reynolds number of Rec = 420,000 for varying geometric (αg) and effective (αe) AoAs for statically fixed225

airfoils. The results are also compared against viscous XFoil calculations [42] and experimental data for a

NACA 0012 airfoil obtained by Sheldahl and Klimas for a Reynolds number of Rec = 3.6 · 105 [43]. It is

discernible in Fig. 4 that the corrected lift coefficient and pitching moment data collapse very well with the

experimental data by Sheldahl and Klimas [43], with regards to the lift curve slope in the linear AoA region,

maximum lift coefficient, stall AoA and pre-stall pitching moment increase. This confirms the validity of230

the AoA correction method for the present experimental setup without an additional blockage correction.

The lift curve slope in the linear AoA region, |αg| < 6 ◦, also matches with the XFoil simulation results,

revealing that the corrected AoA is a true free air AoA. As expected, however, XFoil overpredicts both the

maximum lift coefficient, Cl,max and maximum lift AoA, as previously noted for instance by Coder and

Maughmer [44]. In the post-stall region, |αg| > 16 ◦, the measured lift and moment coefficients start to235

deviate from the experimental data by Sheldahl and Klimas [43]. These small deviations in the post-stall
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region could be indicative of the fact that a separation blockage correction is required to account for the

separated flow region in the wake of the airfoil. However, it is believed that the blockage corrections are

relatively smaller in comparison with larger facilities such as the Virginia Tech Stability tunnel, since the

Kevlar cloth dimensions are smaller and therefore deflections during operation are more limited.240

4. Results and discussion

Most airfoil aeroacoustic studies are performed using static airfoils, however, aeroacoustic tests under

dynamic motion are assumed to become essential when changes in the inflow conditions or the use of rotat-245

ing airfoils are considered. This section will investigate the surface pressure spectra, far-field noise spectra

and lift coefficient changes for four oscillating test cases, namely for α0 = 5 ◦ and 12 ◦, Â = 4 ◦ as well as

Ω = 0.5 Hz and 2 Hz, and compare the data to those of a static airfoil at comparable mean angles of attack.

This section will also explore whether the unsteady surface pressure spectra for oscillating airfoils can be

deduced from fixed AoA surface pressure spectra, and hence, determine the conditions for which dynamically250

oscillating tests become indispensable. The airfoil oscillation frequencies of Ω = 0.5 Hz and 2 Hz correspond

to the reduced frequency values of kr = 0.024 and 0.094, respectively. The two dynamic test cases with

α0 = 5 ◦ are representative of an airfoil operating in the pre-stall AoA regime, whereas the two dynamic test

cases with α0 = 12 ◦ are representative of dynamic stall. When the airfoil was oscillated, it was observed

that the deflection of the Kevlar cloth varied periodically at the oscillation frequency Ω, due to the changes255

in the differential pressure loading on the Kevlar cloth, but no separate movements were obvious. While

the Kevlar cloth deflection was small in the case of this setup, a dedicated investigation of the unsteady

loading on the Kevlar walls and any associated unsteady aerodynamic corrections is believed to be beneficial.
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4.1. Lift coefficient260

Figure 5 presents the static sectional lift coefficient as well as the phase-averaged sectional lift coefficient

for the four chosen dynamic test cases. An upstroke and downstroke motion is characterized by an upward

and downward movement of the airfoil leading edge and therefore increasing and decreasing AoAs, respec-

tively. For a mean AoA of α0 = 5 ◦ and an amplitude of Â = 4 ◦, Fig. 5 (a) reveals that the lift coefficient

of the oscillating airfoil, for Ω = 0.5 Hz and 2.0 Hz, closely resembles that of the static airfoil, both during265

the upstroke and downstroke portions of the cycle. The higher oscillation frequency, Ω = 2.0 Hz, results in a

slight lift hysteresis, as analytically predicted by Theodorsen [45], while any lift polar hysteresis is effectively

absent for the Ω = 0.5 Hz case.

(a) (b)

Figure 5: Mean static and phase averaged oscillating airfoil lift coefficient polar plots: (a) α0 = 5 ◦, Â = 4 ◦, Ω = 0.5, 2.0 Hz

and (b) α0 = 12 ◦, Â = 4 ◦, Ω = 0.5, 2.0 Hz.

These observations, however, change considerably for the airfoil undergoing dynamic stall (α0 = 12 ◦),270

where significant hysteresis is observed for both Ω = 0.5 Hz and 2.0 Hz, see Fig. 5 (b). In general, during

the upstroke motion the lift coefficient significantly exceeds the maximum lift coefficient of the static airfoil

due to the emergence of a dynamic stall vortex and a delay in boundary layer separation due to a reduced

adverse pressure gradient arising from the pitching motion around the quarter-chord [46]. The dynamic
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stall vortex forms near the leading edge and results in a sudden and strong pressure decrease on the suction275

side of the airfoil and associated lift increases, and subsequently is convected downstream. In the following

downstroke portion of the cycle, the flow reattaches, starting from the leading edge [29]. Increasing the

reduced frequency of the pitch motion increases the hysteresis phenomenon, as illustrated in Fig. 5 (b),

where the maximum lift coefficient observed is Cl = 1, 1.2 and 1.6 for Ω = 0 Hz (fixed AoA), Ω = 0.5 Hz and

Ω = 2.0 Hz, respectively. It is also evident that for Ω = 2.0 Hz, the reattachment occurs at approximately280

α = 8 ◦, as opposed to α = 10 ◦ for Ω = 0.5 Hz. This delayed reattachment and the aforementioned increase

in maximum lift coefficient result in a significantly larger lift curve hysteresis for Ω = 2.0 Hz.

4.2. Far-field noise

While the development of appropriate noise measurement techniques for dynamic airfoils is outside the285

scope of the current work, the basic beamforming and direct far-field noise measurements can demonstrate

the importance of the topic and provide first insights. This section investigates the noise origin from the

airfoil via beamforming maps and also presents narrowband spectra for the two dynamic stall cases. Firstly,

1/3 octave band functional beamforming maps at a center frequency of f = 1587 Hz are presented in Fig.

6 for the static AoAs of αg = 5 ◦ and 12 ◦ as well as for the two oscillating airfoil cases with Ω = 2.0 Hz,290

Â = 4 ◦ and α0 = 5 ◦, 12 ◦. It was verified that the servo motor and associated equipment noise does not

exceed the background noise of the wind tunnel with the Kevlar section in place. It can clearly be seen that

for all four cases the main noise sources correspond well with the trailing edge location of the airfoil, with

the noise peak for αg = 12 ◦ and α0 = 12 ◦ being slightly upstream of the airfoil trailing edge planform due

to the forward movement of the trailing edge at non-zero AoAs. Similar observations were made for other295

frequencies (not presented for brevity). The presence of trailing edge dipolar noise sources during stall was

previously discussed by Moreau et al. [47]. The maximum observed noise level of 31.5 dB for the oscillating

airfoil case at α0 = 5 ◦ is very much comparable to that for αg = 5 ◦, while a clear maximum noise level

increase of 3 dB can be observed for the dynamic stall case, i.e. α0 = 12 ◦, compared to the static airfoil

at αg = 12 ◦. It is crucial to note that the purpose of the functional beamforming maps is to locate the300
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dominant noise source and that the levels displayed are influenced by the point spread function of the array

as well as the functional beamforming parameters used. Due to the width of the point spread function of

the beamforming array at low frequencies and its physical size, it was not possible to distinguish the noise

sources in the beamforming maps for low and medium frequencies. As will be shown in Sec. 4.3, the maxima

of the surface pressure fluctuation spectra occur at frequencies of a few hundreds and a few tens of hertz for305

the pre- and post-stall test cases, respectively. Therefore, beamforming cannot be utilised in this case to ob-

tain meaningful spectra including the far-field noise peaks and hence, narrowband analysis will be employed.

(a) (b)

(c) (d)

Figure 6: Corrected functional beamforming results at a center frequency of f= 1587 Hz in 1/3 octave bands: (a) αg = 5 ◦, (b)

α0= 5 ◦, Â= 4 ◦, Ω= 2 Hz, (c) αg = 12 ◦, (d) α0= 12 ◦, Â= 4 ◦, Ω= 2 Hz. (For interpretation of the colors in the figure, the reader
is referred to the web version of this article.)

Figure 7 displays the narrowband far-field noise spectra measured directly using a microphone located
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at θ = 90 ◦, 1.75 m away from the airfoil. The corrected far-field noise spectra are presented for both the310

pre- and post-stall test cases. Unfortunately, due to the large nozzle height required to achieve realistic flow

conditions up to high AoAs, while maintaining a low blockage, the signal-to-noise ratio is relatively low,

especially for high frequencies, f > 1000 Hz, as observed for the far-field noise spectra when compared to

the background noise spectrum. The far-field noise spectrum, for αg= 5 ◦, see Fig. 7 (a), appears to be of

broadband nature and the highest noise increase is observed in the frequency range of 300 Hz to 600 Hz. As315

it will be shown in Sec. 4.3, this frequency range is in agreement with the highest surface pressure fluctuation

levels near the trailing edge. The far-field noise spectra for the two oscillating airfoils with α0= 5 ◦ reveal

small noise increases over the static airfoil at αg= 5 ◦ for frequencies between 200 Hz to 400 Hz, while being

very similar to each other.

320

This is in contrast with the dynamic stall far-field noise spectra displayed in Fig 7 (b), where the largest

far-field noise increases are observed at the cut-off frequency of the anechoic chamber, i.e. f = 160 Hz. In

agreement with previous stall noise experiments by Laratro et al. [48] and dynamic experiments by Siegel

et al. [24], the stall noise spectra display a substantial low frequency noise increase, which is also observed

in the surface pressure spectra shown in Sec. 4.3. The dynamic stall noise case with Ω= 0.5 Hz exceeds the325

background noise by approximately 7 dB at f = 160 Hz. An increased oscillation frequency of Ω= 2.0 Hz

further increases the airfoil noise by 3 dB at f = 160 Hz. This increase is hypothesized to be a direct result

of the increased hysteresis found in the lift curve polar, see Fig. 5 (b), due to a dynamic stall vortex with

elevated vorticity levels. However, as it will be shown in Sec. 4.3, the main changes in the surface pressure

spectra during dynamic stall occur at frequencies below the cut-off frequency of the anechoic chamber, and330

as a result, the presented far-field noise spectra cannot fully show the characteristics of the far-field noise

spectra. As a result, no attempts have been made at present to perform short-time Fourier transform anal-

yses, similar to those presented in Sec. 4.3 for the surface pressure fluctuations.
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(a) (b)

Figure 7: Narrowband far-field noise spectra: (a) α0= 5 ◦, Â= 4 ◦, Ω= 0.5 and 2 Hz; αg= 5 ◦, (b) α0= 12 ◦, Â= 4 ◦, Ω= 0.5 and
2 Hz; αg= 12 ◦.

4.3. Mean surface pressure fluctuation PSD spectra335

A better understanding of the noise generation mechanism can be gained by studying the unsteady

surface pressure spectra. According to Amiet’s model [49], the far-field trailing edge noise is directly related

to the surface pressure PSD and that any change in this quantity can lead to changes in the far-field noise.

Moreau et al. also found that trailing edge dipolar noise sources are the likely fundamental noise generation

mechanism for stall noise [47]. This section presents the mean unsteady surface pressure spectra results340

for the four dynamic test cases considered in this study and selected static AoA cases. More importantly,

position-based weighted mean surface pressure spectra are calculated for the oscillating airfoil cases to

provide an assessment of whether it is feasible to estimate the mean surface pressure spectra for oscillating

airfoils using surface pressure fluctuation spectra from statically fixed airfoils. First of all, the weighting is

performed as follows,345

φpp(f) = Ω

∫ 1/Ω

0

φpp,s
(
f, αg(t)

)
dt ≈ lim

N→∞

m=N−1∑
m=0

1

N
φpp,s

(
f,
αg
(
m+1
ΩN

)
− αg

(
m

ΩN

)
2

)
, (7)

where φpp(f) denotes the position weighted mean, N is an arbitrary number of segments used per oscilla-

tion cycle, 1/(NΩ) is the corresponding evaluation resolution, φpp,s
(
f, αg

)
describes the fixed AoA surface

pressure PSD and αg was previously defined in Eq. 1. The angle of attack dependent fixed AoA spectra,
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φpp,s
(
f, αg

)
, were determined via a cubic spline interpolation from experimental measurements conducted

in AoA increments of ∆αg = 1 ◦.350

All results, including those for the oscillating airfoil cases, have been obtained using Welch’s power spec-

trum approximation and therefore present the average energy content in the surface pressure fluctuations.

Figure 8 displays surface pressure spectra corresponding to the pre-stall regime, namely α0 = 5 ◦, Â = 4 ◦

and Ω = 0.5 Hz and 2 Hz, as well as the fixed AoA surface pressure spectra for the mean, maximum and355

minimum AoAs observed during the oscillating motion, i.e. αg = 1◦, 5◦ and 9◦. The figure illustrates that

for the considered pressure transducer locations of x/c = 0.53, 0.73, 0.90 and 0.99, the pressure spectra levels

of the dynamic test cases exceed those of the minimum and mean static AoA at low and mid frequencies by

up to 5 dB, while being lower than the spectrum of the maximum AoA case. However, at high frequencies

the dynamic test case spectra resemble the mean and minimum AoA spectra more closely, albeit a few360

decibels lower. At the same time, the dynamic spectra are substantially higher than the maximum AoA

spectrum at high frequencies. The peak frequency of the oscillation test cases also corresponds to the peak

frequency of the maximum AoA surface pressure spectrum.

The weighted average approximation of the oscillating cases, calculated on basis of fixed AoA pressure365

spectra, i.e Eq. 7, matches the measured spectra for the lower oscillation frequency of Ω = 0.5 Hz very well,

with a difference of less than 0.5 dB observed throughout the whole frequency range considered. Hence, the

weighted average approach can be utilized to predict the surface pressure spectra of oscillating airfoils in the

pre-stall regime with good degree of confidence. Fundamentally, this corroborates further the observation

that the lift coefficient polar plot for Ω = 0.5 Hz matches that of the static lift curve, see Fig. 5, indicat-370

ing similar flow field characteristics. Considering the Ω = 2.0 Hz case, it is clear that at medium to high

frequencies, i.e. f > 500 Hz, the pressure spectra resemble that of the oscillating case with Ω = 0.5 Hz and

therefore also matches the weighted average approximation, while surface pressure PSD increases of up to

3 dB can be observed at low frequencies. It is assumed that the shed vorticity during the dynamic motion,
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which is responsible for the slight hysteresis in the lift curve, see Fig. 5, is also responsible for this increase.375

(a) (b)

(c) (d)

Figure 8: Surface pressure fluctuation PSD for αg = 1◦, αg = 5◦, αg = 9◦, αg(t) = 5◦+4◦sin(πt) and αg(t) = 5◦+4◦sin(4πt):
(a) x/c = 0.53, (b) x/c = 0.70, (c) x/c = 0.90 and (d) x/c = 0.99.

Figure 9 investigates the effects of dynamic stall on the time-averaged surface pressure spectra at the

chordwise positions of x/c = 0.53, 0.73, 0.90 and 0.99. Results are presented for an airfoil oscillating with

α0 = 12 ◦, Â = 4 ◦ and Ω = 0.5 Hz and 2 Hz. For ease of comparison, the surface pressure spectra for the

mean, maximum and minimum AoA observed during the oscillating motion, i.e. αg = 8◦, 12◦ and 16◦ are380

also included. In general, the dynamic stall case with an oscillation frequency of Ω = 2 Hz exceeds that of
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the lower oscillation frequency of Ω = 0.5 Hz by up to 4 dB for all chordwise positions and range of frequen-

cies. For the microphone location closest to the trailing edge (x/c = 0.99), this difference increases further

to 6 dB for frequencies of f ≤ 50 Hz. Toward the rear of the airfoil, namely for x/c > 0.70, the surface

pressure spectra for the Ω = 2 Hz test case and α0 = 16 ◦, display a narrow peak at f =40 Hz to 44 Hz. The385

corresponding Strouhal numbers, Sth = fcsin(α)/U∞, utilising the projected frontal height at α = 16 ◦ are

found to be between 0.17 to 0.18, which matches previously observed values for vortex shedding [47, 50].

In comparison to the surface pressure spectra for fixed AoAs, it is evident that for x/c = 0.53 and 0.7,

both dynamic stall spectra on one hand follow the surface pressure spectrum of αg = 16 ◦ at low frequencies,390

f < 100 Hz, and on the other hand, the spectrum of αg = 8 ◦ for about f > 450 Hz, whereas exceeding all

static AoA spectra for the frequency range in between. For the two chordwise pressure transducers located

closer to the trailing edge, i.e x/c = 0.90 and 0.99, the dynamic stall pressure spectra follow the general

trend of the surface pressure spectrum at αg = 16 ◦, with the surface pressure spectrum for Ω = 2.0 Hz

matching or exceeding the aforementioned static AoA spectrum. This is a marked difference to the pre-stall395

regime oscillation cases, where the surface pressure spectra for the oscillating airfoil cases never exceeded

all presented fixed AoA surface pressure spectra. Hence, it does not come as a surprise that the weighted

average spectra, based on Eq. 7, match substantially less well with the dynamic stall surface pressure spectra,

than it was the case in the pre-stall regime, with deviations reaching up to 15 dB at frequencies f < 500 Hz.

However, at higher frequencies the weighted average spectra approximate the dynamic stall spectrum for400

Ω = 0.5 Hz very well, while underpredicting the spectrum for Ω = 2.0 Hz by approximately 3 dB. This can

also be explained in light of the lift coefficient polar results, shown earlier in Fig. 5 (b), revealing a sub-

stantial hysteresis for both dynamic stall cases. Since the lift coefficient for the dynamic stall cases deviates

notably from the static lift curve polar, the weighted averaged approach based on static AoAs becomes less

valid. The flow fields of the dynamically stalled airfoil is characterized by the dynamic stall vortex from405

the leading edge, which cannot be reproduced using fixed AoA airfoil testing. The results also suggest that

the pitching movement and the formation of the dynamic stall vortex are more influential on the unsteady
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loading at lower frequencies.

(a) (b)

(c) (d)

Figure 9: Surface pressure fluctuation PSD for αg = 8◦, αg = 12◦, αg = 16◦, αg(t) = 12◦ + 4◦sin(πt) and αg(t) =
12◦ + 4◦sin(4πt): (a) x/c = 0.53, (b) x/c = 0.70, (c) x/c = 0.90 and (d) x/c = 0.99.

The observations in this subsection regarding the unsteady loading acting on pitching airfoils can be use-410

ful for a range of applications, such as helicopters and wind turbine blades. The results clearly indicate that

one should not approximate surface pressure spectra by utilizing the static AoA surface pressure spectrum

at the mean AoA, as this will result in an overprediction of the peak frequency and a substantial underpre-

diction of the spectrum peak. Using a position weighted approximation approach, however, it is possible

23



to obtain an accurate estimate of the surface pressure spectrum from the fixed airfoil surface pressure PSD415

dataset unless dynamic stall occurs, in which case the averaged spectra can severely underpredict the low

and medium frequencies. It is also worthwhile to point out that the observed spectral energy content increase

for the dynamic stall cases (α0 = 12 ◦) is assumed to be at least partially responsible for the dynamic stall

noise increase. Additionally, other quantities, such as the spanwise surface pressure coherence spectra are

known to play an important role in noise generation mechanisms, which could lead to either an increase or420

a reduction of the effect of the surface pressure spectra changes.

4.4. Short-time Fourier analysis

This section investigates the time dependent energy-frequency content of the surface pressure fluctua-

tions due to the boundary layer flow structures, measured at x/c = 0.90. The analysis is performed using a425

short-time Fourier transform (STFT) approach. All results in this section are presented for five oscillation

periods, with the short-time Fourier transform results normalized by p0 = 20 · 10=6 Pa. Additionally, each

figure also contains the corresponding AoA as a function of time (tΩ), for a duration of five oscillations at

the bottom, while the graph on the right hand side displays the mean, maximum and minimum values of

the surface pressure STFT analysis observed over 50 oscillation cycles. This analysis aims to correlate the430

instantaneous surface pressure spectra with flow field events as discussed in Section 4.1.

Figure 10 presents the STFT results for an airfoil set at α0 = 5 ◦, oscillating at Ω = 0.5 Hz and 2 Hz, with

an amplitude of Â = 4 ◦. The results show the surface pressure spectra variation over each oscillation period,

and it is clear that low AoAs are responsible for the high frequency energy contribution, and vice versa,435

the higher AoAs contribute to the majority of the lower frequency energy (f ≤ 1000 Hz). The STFT results

appear to be of symmetric nature, relative to the maximum AoA during each cycle, with the maximum lower

frequency (f ≤ 1000 Hz) values occurring at the maximum AoA, and therefore indicating no surface pressure

fluctuation hysteresis exists. The results also show a large variation in the energy-frequency content of the

surface pressure fluctuations during each cycle, with the maximum energy level being approximately 10 dB440
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higher than the mean value across the whole frequency range investigated. This could give rise to temporary

noise increases. Comparing Figs. 10 (a) and (b), it is noticeable that the main features are comparatively

similar, which agrees well with the observation in Sec. 4.3, where only small differences between the different

oscillation frequencies were observed in the spectral shape at x/c = 0.90.

445

(a)

(b)

Figure 10: Surface pressure fluctuation short-time Fourier transform for five oscillation periods at x/c = 0.90 for αg(t) =
5◦ + 4◦sin(2πΩt): (a) Ω = 0.5 Hz and (b) Ω = 2.0 Hz.
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Next, Fig. 11 presents the STFT results for an airfoil set at α0 = 12 ◦, oscillating at Ω = 0.5 Hz and

2 Hz, with an amplitude of Â = 4 ◦. Unlike the STFT results for the lower mean angle of α0 = 5 ◦, the

high frequency energy contribution is not limited to the low AoAs during the oscillations, but can be seen

throughout each oscillation cycle, especially when flow separation takes place. As a result the STFT con-

tour plots are no longer of symmetric nature, which indicates significant differences between the upstroke450

and downstroke phases of the cycle. The difference between the maximum and minimum values observed

reaches values of up to 70 dB for α0 = 12 ◦ in comparison to 40 dB for α0 = 5 ◦, despite a consistent oscilla-

tion amplitude of Â = 4 ◦, revealing greater unsteadiness in the time-frequency energy content of the surface

pressure fluctuations. The highest value of the surface pressure PSD at low frequencies is observed during

the upstroke as well as downstroke motion for both cases at α0 = 12 ◦ and appears to be correlated with the455

formation of the dynamic stall vortex as well as the presence of flow separation, as deduced from Fig. 5.

Comparing the two displayed oscillation frequencies for α0 = 12 ◦ in Fig. 11, it can be seen that for

Ω = 0.5 Hz, the low frequency energy content for f ≤ 20 Hz decreases substantially once the flow reattaches

during the downstroke phase, while this decrease is not evident for Ω = 2.0 Hz and the energy content at460

very low frequencies appears virtually independent of time. This observation can also be clearly seen in

the reduced difference between the minimum and maximum spectra observed for these frequencies. One

can therefore conclude that the larger hysteresis, due to the higher reduced frequency, induces a relatively

longer period of flow separation during each cycle, which in turn leads to a low frequency increase (also

seen in Fig. 9). Another interesting observation for Ω = 2.0 Hz is that as the dynamic stall vortex emerges465

during the upstroke phase, an energy burst across the entire the frequency range appears, which results in

the highest surface pressure spectra values for frequencies f > 80 Hz in each cycle. This correlation between

the dynamic stall vortex and the surface pressure fluctuations therefore appears to explain the increase in

the higher frequency energy content for Ω = 2.0 Hz, as also seen in Fig. 9.

470
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(a)

(b)

Figure 11: Surface pressure fluctuation short-time Fourier transform for five oscillation periods at x/c = 0.90 for αg(t) =
12◦ + 4◦sin(2πΩt): (a) Ω = 0.5 Hz and (b) Ω = 2.0 Hz.

5. Conclusions

The presented work introduced an aeroacoustic test section with tensioned Kevlar windows and the

ability to dynamically oscillate a test object by means of a servo motor system. The setup permits near-

and far-field aeroacoustic and aerodynamic investigations. Also, the transmission loss due to the presence of

the tensioned Kevlar cloth was found to agree well with existing literature [39]. For a statically fixed airfoil475
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it was shown that it is possible to correct the geometric angle of attack to a free air angle of attack and

that blockage corrections are not required until the post-stall regime is reached. Nevertheless, it would be

highly beneficial to investigate the unsteady response of Kevlar-walled test sections to pitching airfoils and

develop appropriate corrections, if necessary.

480

Data obtained for a sinusoidally oscillated NACA 0012 airfoil revealed increases in the observed surface

pressure spectra levels compared to the surface pressure spectrum observed at the mean angle of attack, both

in the pre- and post-stall regimes. For the pre-stall oscillation cases, it was demonstrated that a position

weighted averaging results in an accurate prediction of the oscillating airfoil surface pressure spectra. In the

case of dynamic stall, a far-field noise increase of several decibel was established for a reduced oscillation485

frequency of kr = 0.094 in comparison with a reduced oscillation frequency of kr = 0.024. Equally, the

surface pressure spectra were found to exceed the spectra of the mean angle of attack substantially and were

underpredicted using the weighted average approach, likely because the flow conditions during dynamic stall

hysteresis cannot be replicated in fixed airfoil testing. It was concluded that dynamic measurements are

necessary if the angle of attack variation induces dynamic stall. This was further confirmed by a short-time490

Fourier analysis of the surface pressure fluctuations which allowed the low-frequency surface pressure spec-

trum increase to be linked to the dynamic stall vortex and a delayed flow reattachment due to the pitching

movement. The high frequency surface pressure fluctuation increase was also revealed to coincide with the

emergence and convection of the dynamic stall vortex.

495
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