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Abstract 

Keratin K2 is a 66 kDa type II intermediate filament protein expressed in 

differentiating keratinocytes of the epidermis with a very low-level expression in 

normal oral mucosa. In the epidermis it is expressed in the upper granular and 

spinous layers and is considered a marker of terminal differentiation. It is known 

to be upregulated in pre-cancerous lesions of the oral cavity. However, the 

mechanism of its induction in dysplasia and its role in oral cancer is not known. 

As it is only expressed in vivo, being down-regulated in cultured keratinocytes, 

there are no reported studies on the functions of this protein. Point mutations in 

this protein are associated with the skin condition Ichthyosis Bullosa of Siemens 

(IBS). 

Keratin filaments are in a constant state of assembly and disassembly to maintain 

cell stability and support. Keratins’ reorganisation and dynamics are affected 

mainly by their state of phosphorylation which explains the difference between 

health and disease and the molecular interactions between different keratin pairs 

as well as with other cytoplasmic proteins. Heat shock was shown to re-organises 

the keratin network which is mediated by phosphorylation. 

A model has been developed to study keratin filaments dynamics by introducing 

keratin K2, into a simple epithelial cell line, MCF-7 (breast carcinoma cell line) 

which lacks K2 expression but expresses other keratins including K8, K18 and 

K19. Introduction of K2 into MCF-7 cytoplasm allows it to bind and fully integrate 

into the pre-existing network. To understand the mechanism of K2 integration into 

the pre-existing filaments, the stability of the network and its phosphorylation 

state using two phosphatase inhibitors, Calyculin A (CL-A) and Okadaic Acid 

(OA) was studied. To investigate the response of keratin cytoskeleton to stress, 
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the effect of heat shock on filaments reorganisation was studided using 

immunocytochemistry and live cell imaging. 

The expression of K2 mRNA and protein was investigated in keratinocytes cell 

lines as well as in normal human epidermal keratinocyte (NHEK) along with other 

terminal differentiation keratins, K1 and K10. The absence of serum lipids (SLP) 

and phenol red (PR), which are generally used in culture medium, had a 

significant effect on the expression of these keratins at both mRNA and protein 

levels in NHEK. The effect was different compared to immortalised cell lines, 

which could be explained by immortalisation methods altering gene response. 

Adding back retinoic acid (ATRA) to the culture medium differentially affected the 

expression of these genes. Adding PR back into PR-free culture medium in NHEK 

did reduce the expression of K1 and K10 but not K2. 

To further investigate the effect of SLP, RA and PR, the post-transcriptional 

stability of K2, K10 and K1 mRNAs using Actinomycin D (AD) in NHEK cells was 

studied. Interestingly, K2 mRNA was stabilised whereas K1 and K10 mRNAs 

were destabilised by ATRA. These observations explain the differential effect of 

ATRA on the expression of these genes previously reported in the literature. 

Further investigations are required to decipher the mechanism(s) regulating 

transcriptional changes affected by different culture conditions and by RA. The 

aim of this project is to study keratin dynamics and the role of lipids on 

keratinocyte differentiation and mRNA stability. 
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CHAPTER 1 

1. Introduction. 

Epithelial cells form the outer most layer of skin and lining of internal mucosa, so 

they are considered to be the first line of defence against different types of every 

day environmental stresses. In order for the epithelial cells to perform this function 

as a stress barrier, they need to be stiff yet flexible at the same time. All eukaryotic 

cells including the epithelial cells share a protein network called the cytoskeleton, 

which is a complex network of tubules and filaments made of fibrous proteins 

distributed throughout the cytoplasm. The cytoskeleton is composed of three 

major components: microtubules (MT), intermediate filaments (IFs) and 

microfilaments (MF or stress fibers). MFs are the thinnest, 5-7 nm in diameter 

and are made of G-actin that assembles to form these filaments. MTs are the 

thickest with 20 nm thickness and are made of α- and β-tubulin subunits. They 

are both polarised and highly dynamic, so mainly involved in intracellular 

transport and movement of particles and organelles. IFs on the other hand form 

7-10 nm thick filaments, and as they are the least dynamic they are mainly 

involved in cell stability and mechanical stress absorption (Moll et al., 2008, 

Bragulla and Homberger, 2009, Gefen and Weihs, 2015). IFs represent one of 

the largest and most complex cytoskeletal network systems that are encoded in 

humans, by about 65 known genes. Some of them have the ability to bind to 

desmosomes and hemidesmosomes to provide strength and support of epithelial 

cells under different physiological conditions. Expression is cell-type-specific, so 

their function is also cell specific i.e. different cells express different types of IFs. 

Epithelial cells for example, express keratins while mesenchymal cells express 

vimentin and not the other way around. Keratins in epithelial cells provide support 

while vimentin aids in cellular migration. IFs are grouped, based on their structural 
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homology, into six different types, I-IV are cytoplasmic, type V is nuclear and VI 

is present only in the eye lens (Gefen and Weihs, 2015, Omary, 2009). 

Types I and II Acidic and neutral to basic keratins. 

Type III Desmin, Vimentin, GFAP (glial fibrillary acidic protein). 

Type IV Neurofilaments. 

Type V Nuclear lamins. 

Type VI Bfsp1 (Filensin), Bfsp2 (Phakinin) in the lens of the eye. 

IF proteins have their own features that make them different from MT and MF. 

They are highly insoluble proteins in normal buffers and high salt solutions but 

can be solubilised in chaotropic agents, such as 8 M urea or 6 M guanidine- 

hydrochloride (GuHCl) that weakens the hydrophobic interactions in proteins and 

leads to their denaturation (Herrmann et al., 2007). Keratins (Ks) are expressed 

in a tissue-specific manner for example, K5/14 are mostly found in the basal layer 

of multi-layered epithelium whereas the K1/10 pair is found in suprabasal 

epithelial layers. Some keratins are only expressed under certain physiological 

conditions, e.g. K6 and K16 are expressed during wound healing and certain 

hyperproliferative conditions such as psoriasis and pathological scarring and not 

expressed in normal epidermis (Bloor et al., 2003, Machesney et al., 1998, 

Omary, 2009). Likewise, K8 and K18 are not expressed in normal stratified 

epithelia but they are expressed in large quantities in metastatic cancer lesions 

(Haines and Lane, 2012, Bloor et al., 2003, Eichner et al., 1986). 
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1.1. Nomenclature and classification. 

Keratins were first named and classified by Moll and co-workers in 1982, based 

on their isoelectric point and molecular weight as determined by 2-dimensional 

polyacrylamide gel electrophoresis. In this classification, the keratin family was 

divided into two types, type I and type II, based on their biochemical properties. 

Those which were acidic (isoelectric point < pH 5.5) were called type I, and those 

which were basic or neutral (isoelectric point > pH 6.0) were classified as type II. 

Keratins are usually expressed in pairs of a type I and type II partner. Type I are 

keratins K9-K18 while type II are K1-K8 (Table 1.1). Type I human keratins cluster 

is found on chromosome 17 q21.2 except K18, which is the only type I keratin 

found within the type II keratin locus on human chromosome 12. For type II 

human keratins, the cluster is found on chromosome 12q13.13 (Arin, 2009, 

Waseem et al., 1990). This nomenclature of Moll et al (1982) was not 

accommodating the newly discovered keratins when the whole human genome 

was sequenced, and new keratin genes were identified (Moll et al., 1982). A new 

nomenclature was developed which accommodated the 54 human KRT genes 

(28 type I and 27 type II) and some pseudogenes, it also gives space for KRT 

genes that are yet to be discovered as shown in (Table 1.2) (Gu and Coulombe, 

2007, Schweizer et al., 2006). Keratins are not only classified according to 

isoelectric point (acidic and basic), they can be classified based on other criteria 

as shown in Figure 1.1. (Rao et al., 2014). 
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Table 1.1. Numbering of keratins categories.  (Schweizer et al., 2006).  

 

 

 

Table 1.2. Nomenclature of human keratin proteins, old and new.  (Gu and Coulombe, 2007) 

 

 

Old protein designation New protein designation Old protein designation New protein designation
Type I epithelial keratins Type I epithelial keratins Type II epithelial keratins Type II epithelial keratins

K9 K9 K1 K1

K10 K10 K2e K2

K12 K12 K3 K3

K13 K13 K4 K4

K14 K14 K5 K5

K15 K15 K6a K6a

K16 K16 K6b K6b

K17 K17 K6e/h K6c

K18 K18 K7 K7

K19 K19 K8 K8

K20 K20 K6irs1 K71

K23 K23 K6irs2 K72

K24 K24 K6irs3 K73

K25irs1, K10C, HIRSa1 K25 K6irs4 K74

K25irs2, K10D K26 K6hf K75

K25irs3, K10B, hIRSa3.1 K27 K2p K76

K25irs4, hIRSa2 K28 K1b K77

Type I hair keratins K5b K78

Ha1 K31 K6l K79

Ha2 K32 Kb20 K80

Ha3-II K33b Type II hair keratins

Ha4 K34 Hb1, K2.9 K81

Ha5 K35 Hb2 K82

Ha6 K36 Hb3,K2.10 K83

Ha7 K37 Hb4 K84

Ha8 K38 Hb5,K2.12 K85

K39 Hb6, K2.11 K86

K40
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Figure 1.1. Keratin classifications. (Rao et al., 2014) 
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1.2. Structure. 

All IFs share the same basic structure although their functions vary according to 

their expression site within the tissue as well as their PTMs. Keratin polypeptides 

are made of three functional domains, a central helical rod domain flanked by the 

N-terminal head and the C- terminal tail domains on either side. The rod domain 

is made up of around 300 amino acids and is highly conserved among all types 

of IFs whereas C- and N-terminal domains differ from one type of filament to 

another as shown in (Figure 1.2). The α-helical coiled-coil rod domain is made up 

of four heptad repeat-containing regions named 1A,1B, 2A and 2B, separated by 

a short, non-coiled flexible linkers, L1, L12 and L2.  All vertebrate cytoplasmic IF 

proteins rod domains contain around 310 residues and the sizes of the individual 

α-helical segments are absolutely conserved (Strelkov et al., 2002). Sub-domains 

1B and 2B sequences are important for heterodimerisation and stabilising the 

coiled-coil structure of keratin IF. Local variations in the heptad repeat regions 

could affect IF structure assembly (Godsel et al., 2008, Wu et al., 2000, Herrmann 

et al., 2000). There are two main conserved regions in the coiled-coil structure, 

the first region is 26 residues long in the 1A segment and contains 8 residues in 

them that are highly conserved named the helix initiation motif (HIM). The second 

highly conserved sequence is located at the very end of the 2B segment and 

contains 32 residues in which 13 of them are extremely conserved named helix 

termination motif (HTM). These two motifs are common sites for human point 

mutations that affects dimer-dimer interactions as in various skin blistering 

conditions, HIM is more commonly affected than HTM (Strelkov et al., 2002, 

Pittenger et al., 2007). Sub-domain 2B contains a segment called ‘‘stutter’’ in 

which an additional four amino acids are inserted at the end of a heptad, 

interrupting the regular seven amino acids pattern of the dimer coiled-coil 
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domains as one of the discontinuities in this region. The conserved location of 

this stutter in 2B is highly important in all IFs and affects dimer stability (Strelkov 

et al., 2002, Herrmann and Aebi, 2016, Arslan et al., 2011). The head and tail 

domains are non-helical, and they are made up of short sequences of amino 

acids that differ from one keratin to another. Head and tail domains play an 

important role in keratin filaments self-assembly, lateral elongation and binding 

of keratins to other proteins and structural elements inside the cell (Wilson et al., 

1992). Type I keratins usually have longer head and tail domains than type II. 

Most IFs form homodimers except keratins which form heterodimers of type I and 

II polypeptides arranged in register and parallel fashion. These dimers then 

arrange anti-parallel making the keratin filaments a non-covalently associated 

tetramers with no specific orientation or polarity (Deek et al., 2016). These 

tetramers join to form unit length filaments (ULFs) which are 60 nm long. ULFs 

later anneal longitudinally to form filaments that are loosely arranged and larger 

in size than mature filaments. The diameter of the ULF is around 16 nm that later 

undergoes compaction to reach the 10 nm diameter of IF as shown in Figure 1.3 

(Godsel et al., 2008). This complex structure gives keratin filaments its unique 

rigidity and insolubility in normal cells (Moll et al., 2008, Bragulla and Homberger, 

2009, Snider and Omary, 2014, Bray et al., 2015). 

 

Figure 1.2. Intermediate filament structural domains. 
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Figure 1.3. Keratin unit length formation (ULF). (Godsel et al., 2008). 

 

 

1.3. Keratin dynamics. 

Keratin filaments regulate several intracellular mechanisms operating during 

wound healing and apoptosis along with mechanical stability and stress 

absorption in normal conditions. These functions require that the filaments should 

be in a constant state of polymerisation and depolymerisation (Kolsch et al., 

2010). Keratin polymerisation begins at the cell periphery at focal adhesion sites 

close to the cell membrane as nucleation centers, which can only be seen under 

super-resolution microscopy. These oligomers start to elongate as they move 

towards the nucleus and integrate into filamentous keratins to form bundles close 

to the nuclear envelope. Some filaments start to dissociate back to soluble 

particles and start the keratin cycle all over again (Haines and Lane, 2012, Snider 

and Omary, 2014, Kim et al., 2015a) (Figure 1.4 and 1.5). Keratin dynamics is a 

process that is highly regulated by phosphorylation. Site-specific phosphorylation 
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of keratins usually takes place at serine/threonine amino acids present in the 

head and tail domains. The localisation of a phosphate group mostly within the 

head or tail domain of the IF monomers is of significant importance. It has been 

found to alter the solubility, polymerisation and network-forming tendencies of the 

IF structures. Hyperphosphorylation could be correlating to complete network 

breakdown in some cases (Deek et al., 2016). Keratin phosphorylation is 

regulated by protein kinases and phosphatases. Excess phosphorylation of 

keratin filaments can lead to their disassembly into globules or interferes with 

their lateral elongation process as in Lamins IF during mitosis (Inagaki et al., 

1996). Keratins are phosphorylated on serine residues more than threonine and 

tyrosine with serine being their main phosphorylation sites during mitosis (cell 

division). Phosphorylation during cell division allows keratin filaments to be re-

organised and easily distributed into daughter cells. In K8, serine 73 (S73) on the 

head domain is the main phosphorylation site during stress (a substrate of p38 

α-kinase), while serine 431 (S431) is mostly a phosphorylation site that is highly 

phosphorylated during mitosis. Point mutations in K8 and K18 major 

phosphorylation sites where serine is replaced by glutamic acid (Glu, E) results 

in shorter filaments and weaker interconnections between keratin polypeptides 

(Omary et al., 1998, Toivola et al., 2002). Phosphorylation plays an important role 

in filament elongation and assembly, as shown in hereditary keratin disorders 

presenting weaker easily disturbed keratin cytoskeletons (Deek et al., 2016). 

Phosphorylation is also critical for keratin nucleation and assembly into the 

existing networks because p38 mitogen activated protein kinase (MAPK) 

inhibition prevents the formation of keratin precursors at the cell periphery (Woll 

et al., 2007, Haines and Lane, 2012). Keratin dynamics and reorganisation allows 

newly synthesised or exogenous keratins to be smoothly introduced into the 
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endogenous network. When a new keratin is introduced into a cell it forms 

globules that are rapidly integrated into the endogenous network which 

reorganises to allow full integration and binding of both types (Miller et al., 1991, 

Miller et al., 1993b). 

 

Figure 1.4. Cycle of keratin assembly and disassembly. (Haines and Lane, 2012). 

 

 

 

Figure 1.5.  Steps of keratin K13 cycle in vulvar carcinoma derived A431 cell line. (Leube et 
al., 2011). 
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1.4. Keratin functions. 

Keratins have a broad range of intracellular functions that can be categorised into 

two major types, mechanical and non-mechanical functions. 

 Mechanical functions of keratins. 

Keratins being the most abundant cytoskeletal proteins in skin and epithelial 

lining, need to be able to withstand mechanical forces applied on these tissues. 

Despite their flexibility, keratins are described as the ‘’bones’’ of keratinocytes 

(Magin et al., 2007). They spread all over the cytoplasm, binds to MT and MF 

components of the cytoskeleton and form a cage like structure around the 

nucleus (Haines and Lane, 2012). Keratins are also anchored to desmosomes 

and hemidesmosomes via desmoplakin and plectin respectively, to ensure a 

strong scaffold and permit stress dissipation into neighboring cells (Magin et al., 

2007, Haines and Lane, 2012). In keratin mutation disorders such as 

Epidermolysis Bullosa Simplex (EBS) and Epidermolysis Hyperkeratosis (EHK), 

tissue fragility is the main issue due to loss of anchorage to desmosomes and 

hemidesmosomes that decreases the tissue stability and leads to epithelial 

sloughing (Gu and Coulombe, 2007, Pan et al., 2013). 

 Non-mechanical functions of keratins. 

Recently it has been discovered that keratins are much more than simply a stress 

barrier, as they play an important role in many cellular processes including 

signaling, protein transport, cell adhesion, apoptosis, growth and wound healing 

along with a role in cancer which will be discussed later in part (1.7). Membrane 

trafficking is an important keratin non-mechanical function, where melanin 

granules bind to the head domain of keratins and move from the cell periphery 

toward the nucleus in a centripetal fashion. This allows melanin pigments to 
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accumulate around the nucleus and protect the DNA from UV light (Gu and 

Coulombe, 2007). In a group of rare disorders associated with mutations in K5 

and K14, the skin shows patches of hyper and hypo-pigmentation areas due to a 

defect in melanosome trafficking, although the exact mechanism is not fully 

understood (Haines and Lane, 2012). Keratin expression has an impact on 

epithelial cell growth and proliferation during differentiation and wound healing. 

The 14-3-3α is an adaptor protein that binds to the head domain of keratin 

polypeptides and activates the protein kinase mammalian target of rapamycin 

(mTOR) signalling that enhances cell growth and proliferation. K17 null mice 

embryos show delayed wound healing and smaller cell size at the wound edges 

which is accompanied by reduction in mTOR kinase activity (Kim et al., 2006). 

During epithelial differentiation and wound healing keratin expression changes 

rapidly from K5/K14 to K1/K10 during differentiation or changes to K6/K16/K17 

during wound healing which affects the cell size (Magin et al., 2007). During the 

cell cycle keratins play an important role, since mitosis is controlled by multiple 

cascade. During cell division, the protein kinase 2 and cyclin B (Cdc2/Cyclin B) 

complex undergoes phosphorylation and dephosphorylation. Its phosphorylation 

is activated by Cdc25 phosphatase that needs to bind to the 14-3-3α protein for 

its activation. Phosphorylation of keratins by growth-promoting kinases attracts 

the 14-3-3α protein out of the nucleus where it binds to the head domain and 

allows Cdc25 to bind and become activated. This binding allows keratins to 

reorganise during mitosis as K18 null mice show arrest in S/G2 phase of 

hepatocellular cells with 14-3-3α accumulating inside the nucleus (Margolis et al., 

2006, Omary et al., 2006, Magin et al., 2007). 
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 Apoptosis and Keratins. 

Besides the mechanical and non-mechanical roles that keratins play inside the 

cells, they are also involved in cellular apoptosis. Apoptosis is defined as 

programmed cell death by which unnecessary cells are removed from a tissue 

and this could be part of a normal physiological process (embryogenesis) or 

during disease situations. Failure of apoptosis can lead to abnormal cell growth 

as is the case during cancer progression. Keratin proteins play an important role 

in cellular apoptosis. Type I keratins could bind to tumour necrosis factor receptor 

type 1-associated DEATH domain protein (TRADD) when phosphorylated, and 

down regulate the death inducing signal that is needed for apoptosis. It has been 

suggested that lack of a type II keratin could results in the absence of its other 

type I keratin pair and this could lead to activation of Fas- mediated apoptotic 

pathway, which would allow caspases to break down keratin filaments by 

proteolysis at specific site on the rod domain (Caulin et al., 1997, Kim and 

Coulombe, 2007). Keratins functions are summarised in Figure 1.6. (Magin et al., 

2007). 
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Figure 1.6. Structural and regulatory functions of keratins.  (Magin et al., 2007). 

 

1.5. DNA transcription, translation and post translational 

modifications. 

DNA transcription, which is the synthesis of RNA, and the translation of 

messenger RNA (mRNA) into proteins is called gene regulation. Gene regulation 

is one of the most important steps that controls growth, differentiation and 

apoptosis of all cells and drive the complexity of a living organism. Transcription 

of a template DNA strand is carried out by a specific enzyme called RNA 

polymerase (RNA pol), which with transcription factors initiates the process of 

transcription that results in formations of transcripts (hnRNAs). These hnRNAs 

are modified in the nucleus before being exported into the cytoplasm as mature 

mRNA. Once the mRNA is in the cytoplasm, it undergoes a series of post-

transcriptional modifications allowing this mRNA to be either stabilised (translated 

into protein) as shown in Figure 1.7, or degraded. These steps are highly 
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controlled and monitored by several factors and pathways that regulate this 

process depending on the physiological needs of each cell (Atwater et al., 1990, 

Guhaniyogi and Brewer, 2001, Taylor, 2006, Guo, 2014). Once the polypeptide 

is made and released from the ribosomes, it undergoes a series of PTMs such 

as phosphorylation, glycosylation etc. 

 

 

 

 

Figure 1.7. Steps in transcription and translation of eukaryotic genes. (Nature education 
2013). 
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PTM is a biochemical process of covalently adding a small molecule onto a 

selected amino acid residue after protein synthesis. This modulates and widens 

the range of possible functions of a particular protein inside the cell. There are 

more than 200 different types of PTMs that have been identified and affect a wide 

range of cellular functions, such as metabolism, signal transduction, and protein 

stability. Glycosylation, sumoylation, acetylation, ubiquitylation and 

phosphorylation are described in the literature as the most common types of 

PTMs found in natural proteins. Among these types of PTMs, phosphorylation is 

considered to be the main PTM found in keratin proteins. In this process, a 

phosphate group is added onto a specific serine, threonine or tyrosine residue in 

the polypeptide. These sites are mostly located at the end domains of the IF 

protein secondary structure including keratins (Toivola et al., 2002). Keratins can 

undergo phosphorylation in response to various types of stresses. In a 

physiological stress condition such as mitosis, phosphorylation is reversible and 

after reorganisation of keratin filaments into daughter cells, phosphatases take 

over and dephosphorylate the polypeptide, so keratins are converted back to their 

normal filamentous state. In case of keratin mutation, cells will be unable to 

withstand stress as filaments breakdown leading to loss of cellular integrity and 

strength (Magin et al., 2007, Snider and Omary, 2014). Phosphorylation is carried 

out and regulated by a group of kinases and phosphatases and they are activated 

in response to specific stimuli. Mechanical and chemical stresses as well as 

growth factors and cytokines are considered phosphorylation inducers (Inagaki 

et al., 1996, Kim et al., 2015b, Kim et al., 2015a). The regulation of keratin 

phosphorylation will be discussed in Section 1.6. Sumoylation is a type of PTM 

that is carried out by small ubiquitin-like modifier (SUMO) and affects IF solubility 

and assembly. Keratin sumoylation is carried out in hyperphosphorylated, 
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oxidative and apoptotic stress conditions and affects keratin dynamics. 

Glycosylation involves introducing β-N-acetyl glucosamine (GlcNAc) into Ser/Thr 

residues of IF proteins by O-GlcNAc transferase (OGT). It has been shown that 

glycosylation plays a role in activating kinases that phosphorylate keratins and 

therefore play a role in preserving tissue stress responses. Lysine acetylation of 

IFs plays a role in changing their response to metabolic alterations (Snider and 

Omary, 2016). There are other PTMs that are not well understood and their roles 

on IFs are not yet clear such as ubiquitination, transamidation and adenosine 

diphosphate (ADP) -ribosylation for example (Snider and Omary, 2014). 

 

1.6. Keratin filaments phosphorylation, regulation and 

stress response.  

 Keratin phosphorylation. 

PTMs regulate keratin reorganisation and their association with other proteins 

inside an epithelial cell (Coulombe and Omary, 2002). Phosphorylation is 

considered to be the key regulator compared with other modes of PTM to affect 

keratin properties such as solubility and structural stability (Omary et al., 2006). 

In general, the basal level of phosphorylation of keratins is low but if the cells are 

undergoing mitosis or being exposed to certain cellular stresses such as, drug-

induced apoptosis, shear stress, heat stress and treatment with phosphatase 

inhibitors (that act on protein phosphatase 1 (PP1) and/or PP2A), the level of 

phosphorylation rises significantly. Okadaic acid (OA), Calyculin-A (CL-A) and 

Orthovanadate (OV) are the most commonly used phosphatase inhibitors in 

keratin dynamic studies (Yatsunami et al., 1993, Windoffer and Leube, 2004). So 

phosphorylation ensures keratin resiliency which is a vital need for epithelial cells 
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(Inagaki et al., 1996). Keratin phosphorylation mainly occurs at Ser > Thr > Tyr 

residues either on head or tail domains, but the number of phosphates binding to 

each keratin molecule is dependent on cell type, keratin involved and 

physiological status of the cell. Keratin phosphorylation is regulated by a balance 

between phosphatases and kinases activities and most keratin phosphorylation 

studies are performed by inducing hyperphosphorylation (Paul et al., 1997). 

Among different keratin phosphorylation sites, human keratin K8 phosphorylation 

sites are well studied and characterised. Keratin 8 is mainly phosphorylated at 

S23, S73, and S431 but only the S73 phosphorylation is regulated by p38 and c-

jun-N-terminal kinase, both members of the MAPK family (Karantza, 2011a). 

 Stress-activated protein kinases. 

Stress-activated protein kinases (SAPKs) are a group of kinases that are only 

activated by stress, where they mediate signal transduction of an extracellular 

stimulus to the nucleus in order to facilitate gene transcription as a stress 

response. They are homologues of the p42 and p44 isoforms of MAP kinase and 

they play a significant role in cellular proliferation, differentiations as well as 

regulating keratins phosphorylation under stress (Paul et al., 1997). MAPKs are 

c-jun N-terminal kinases (JNKs) and p38 MAP kinase and they play a critical role 

in keratin reorganisation and disassembly, but they are not activated by the same 

type of stress. The phosphorylated p38 kinase has been shown to co-localise 

with phosphorylated S73 of K8 treated with OV phosphatase inhibitor in vitro 

indicating its role in filaments breakdown (Woll et al., 2007). Another study has 

shown the role of p38 MAP kinase in filaments breakdown by using p38 MAP 

kinase inhibitor prior to OV treatment. This study has shown that keratin filament 

breakdown was prevented by p38 MAP kinase inhibitor treatment and not by 
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MAPK inhibitor. This indicates the specific role of p38 kinase but not JNK, in this 

type of stress (Strnad et al., 2003). However, JNK have been shown to be 

involved in phosphorylating S73 on K8 in vitro in Fas-receptor mediated signalling 

pathway (a pro-apoptotic pathway) (He et al., 2002). 

 Heat Shock proteins and stress response. 

Heat shock proteins (HSPs) are a group of chaperone proteins that protect 

cellular proteins from damage and denaturation or misfolding induced by stress 

(Kregel, 2002). HSPs are associated with cellular thermotolerance (a state of 

being relatively unaffected by heat), they are activated when cells are exposed to 

sub-lethal levels of heat which induces thermotolerance. Collapse of cytoskeletal 

filaments and protein denaturation associated with heat shock can be prevented 

or minimised by the thermotolerance affect induced by HSP70 (Mizzen and 

Welch, 1988, Welch and Mizzen, 1988, Shyy et al., 1989). It has been shown that 

HSP70 can also reduce p38 kinase activity which is the main kinase affecting 

keratin reorganisation under stress acting as a pro-apoptotic protein. p38 kinase 

inhibition therefore enhances cell survival and this could be through caspase 

inactivation (Gabai et al., 1997, Beere, 2004). 

 

1.7. Keratin phosphorylation in cancer. 

Recent studies have shown a functional role of keratins in the field of 

carcinogenesis beside their well-known role as a diagnostic and prognostic tool 

(Karantza, 2011b). Phosphorylation of IFs leads to reorganisation of keratin and 

vimentin filaments around the nucleus. One of the pathways that induces these 

filaments phosphorylation is the activation of JNK and Erk kinases by a natural 
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lipid Sphingosyl-phosphorylcholine (SPC). SPC has also been shown to increase 

cellular migration through an epithelial-mesenchymal transition (EMT)-like 

manner. Isolated cancer cells showed keratin re-organisation patterns similar to 

SPC treated cells. This has been shown in ovarian cancer patients and pancreatic 

cancer cells as well. It was explained by K8 and K18 phosphorylation on certain 

serine motifs that leads to enhanced cellular elasticity and migration (Beil et al., 

2003). As a result, SPC could be used as treatment target of the migratory and 

invasive machinery that it provides for cancer cells as well as being a promising 

tool in studying keratin organisation and metastatic potential of these cells (Holle 

et al., 2017). 

 

1.8. Keratinocyte differentiation. 

The epidermis is the first line of defence against various type of abuses to which 

human body is routinely exposed to. It acts as a tough barrier against 

environmental, mechanical and chemical insults. It is made of four different highly 

regulated layers. The basal layer is composed of highly proliferative cells that 

undergo a series of morphological and physiological changes as they move 

upward toward the surface. The suprabasal layers where cells start to get larger 

and flatter are the spinous and granular layers. The granular layer is called so 

due to the intracellular enclosed lamellar granules that later secrete lipids and 

proteins forming lamellar discs filling the intercellular spaces around corneocytes. 

This structure gives skin its toughness and resilience and protects against water 

loss. Corneocytes are enucleated cells that make the outer most layers of 

epidermis. They contain keratins, cross-linked proteins and transglutaminases 

(TGM1) (Madison, 2003). Keratinocytes undergo a process called differentiation 
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through their journey up to the surface. This differentiation process is guided and 

well regulated by a number of factors that allows a smooth transition of basal cells 

to supra-basal ones and ending with corneocytes that later desquamate allowing 

skin renewal to take place (Fuchs, 1993). Differentiation-specific keratins are 

found in suprabasal layers of the epithelium-associated with terminal 

differentiation and loss of proliferative capability of the cell. Their distribution and 

expression differs in normal and diseased epithelium at the level of gene and 

protein expression. In normal stratified epithelium, K1/K10 and K4/K13 are 

expressed in suprabasal layers of keratinised and non-keratinised epithelium, 

respectively. In oral dysplastic and squamous cell carcinoma this expression is 

changed. In mildly dysplastic lesions keratin expression could be more than their 

expression in normal tissues while in poorly differentiated lesions keratin 

expression is often reduced or almost not present (Kartasova et al., 1992, Bloor 

et al., 2000, Hansson et al., 2001). Differentiation-specific keratins play a role in 

physiological processes other than being markers of terminal differentiation of 

epithelial tissues. In epidermis, K1/K10, K2/K10 and K1/K9 are the most 

abundant pairs of keratins found in its suprabasal layer. K1/K10 pair is found all 

over the hairy skin while K2/K10 pair is at stress bearing areas such as palms 

and soles and the tail of mice (Fischer et al., 2016). Knocking out one of these 

keratins in mice leads to skin hyperkeratosis and inflammation although loss of 

K2/K10 leads to overexpression of K1/K9 in that area but there is still loss of 

normal skin structure and stratum corneum formation (Fischer et al., 2016). The 

loss of K2 is less severe than K1, this could be due to the fact that K1 is covering 

almost the entire body while K2 is more expressed in stress bearing areas. In 

humans, mutation in KRT1 or KRT10 results in EHK while ichthyosis bullosa of 

siemens (IBS) is the result of KRT2 mutation (Fischer et al., 2016). Loss of K2 in 
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epidermis causes hyperkeratosis, water loss and inflammation with aggregations 

of K10 in some areas that are not partially compensated by K1. On the other hand 

loss of K10 aggregates K2 and it causes more severe forms of skin 

hyperkeratosis as K2 binds only to K10 and there is no evidence showing its 

binding to K9 or any other type I keratin (Fischer et al., 2014). Keratin K2 is 

normally expressed in the spinous and granular layers of the epidermis in most 

of the body parts but it is down-regulated in the case of squamous metaplasia 

and carcinomas, or in cultured cell lines in vitro (Collin et al., 1992, Bloor et al., 

2003). 

In normal oral epithelium, K2 has very low levels of expression in most of the oral 

cavity regions and complete absence in the buccal mucosa and floor of the 

mouth. In the case of mild dysplasia, K2 protein level is low while its mRNA is 

strongly expressed. Keratins K1/10 expression is induced in mild and moderately 

differentiated oral squamous cell carcinoma (OSCC) while all differentiation 

specific keratins were almost lost in poorly differentiated OSCC. Little is known 

about the mechanism by which the KRT2 gene and hence mRNA is induced and 

its role in dysplasia (Bloor et al., 2003). 

It has been shown that ectopic expression of the differentiation specific K10 (full 

length) into the basal layer of epidermis inhibited cell proliferation. This happens 

through the impaired activity of phosphoinositide 3-kinase (PI3K) preventing cell 

cycle progression (Santos et al., 2002). Interestingly, when K10 end domains 

were fused into the K14 helical rod domain (basal keratin) in the basal layer of 

the epidermis a totally opposite result was observed. Cells were highly 

proliferative and were showing high susceptibility to develop benign tumours. 

This demonstrates the differences between the end domains of different keratins 

(Chen et al., 2006). 
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1.9. The mechanism of keratinocyte differentiation. 

Keratinocyte differentiation starts when the basal cells attached to the underlying 

dermis/ connective tissue begin to lose their calcium activated intercellular 

junctions or plaques. Basal keratins comprising K5 and K14 are downregulated 

while a new set of differentiation–specific keratins, K1 and K10, are induced as 

the cell moves through the differentiation process. At the upper spinous and 

granular layer, K2 expression is induced, and it is considered to be a terminal 

differentiation marker. The induction of new keratins as the cell moves toward the 

surface is tissue- as well as site-specific, since in skin of palms and soles there 

is induction of K9 in addition to K1 and K10 in the suprabasal layers whereas K6 

and K16/K17 are induced supra-basally during wound healing (Fuchs, 1993). 

The process of keratinocyte differentiation is tightly regulated at the gene level by 

a family of regulator proteins called transcription factors. There are different 

transcription factors that play an important role in keratinocyte differentiation but 

amongst these proteins, activator proteins one (AP-1) is the most widely studied. 

The AP-1 transcription factor family are composed of mainly Jun and Fos proteins 

that form homo (Jun-Jun) or heterodimers (Jun-Fos) that bind to the AP-1 binding 

site on the DNA (Han et al., 2012). This binding regulates various keratinocyte 

key functions such as proliferation, differentiation and apoptosis (Han et al., 

2012). It has been shown that TAM67 (a dominant negative form of c-Jun) 

suppresses some markers of terminal differentiation by binding to AP-1 binding 

sites (Han et al., 2012). This binding prevents or reduces AP-1 from binding to its 

site and therefore inactivating differentiation pathways (Han et al., 2012). One of 

the major signalling pathways controlling keratinocyte differentiation is the MAPK 

pathway. Upstream regulators of MAPK such as protein kinase C (PKC) tends to 

phosphorylate MAPK once a differentiation stimulus is initiated. Phosphorylated 
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MAPK in turns phosphorylates and activates certain transcription factors that 

allow them to bind to their response elements on the target gene promotor and 

enhance their transcription. The PKC/AP-1 pathway shown in Figure 1.8 (Eckert 

et al., 2013). 

 

 

Figure 1.8. The PKC/AP-1 pathway. (Eckert et al., 2013). 

 

1.10. Factors regulating keratinocyte differentiation. 

 Calcium. 

Calcium is a well-known regulator of keratinocyte differentiation. It has a 

concentration gradient through the epidermal layers with low concentrations in 

the basal layer where differentiation markers are supressed and a higher 

concentration as the cells move supra-basally where differentiation markers are 

activated specially in the granular layer. Calcium tends to play a major role as a 

differentiation inducer and a proliferation suppressor in keratinocytes (Boyce and 

Ham, 1983, Pillai et al., 1990, Eckert et al., 1997). The induction of keratinocyte 

differentiation by calcium could be regulated by a genomic or non-genomic 
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pathway (Elsholz et al., 2014). The presence of high concentration of extracellular 

calcium above 0.1 mM (so called “calcium switch”) rapidly activates desmosomal 

junction formation (non-genomic pathway) which increases the strength of cell-

cell adhesion that promotes a signalling cascade for epidermal differentiation and 

increases the production of differentiation-specific proteins such as K1, K10, 

involucrin, filaggrin or TGM1 (Hennings and Holbrook, 1983, Hennings et al., 

1980, Yuspa et al., 1989, Gibson et al., 1996). High calcium levels trigger 

phospholipase C (PLC) and PKC pathways by increasing inositol 1,4,5-

triphosphate (IP3) and diacylgricerol (DAG) levels inside the cell (Karlsson et al., 

2010). This in turns activates AP-1 and certain differentiation markers which is 

the genomic regulation pathway (Matsui et al., 1992, Elsholz et al., 2014). 

 Phorbol esters. 

Phorbol esters, such as phorbol 12-myristate 13-acetate (PMA, also referred to 

as TPA), are well-known skin tumour promoters along with being potent inducers 

of keratinocyte differentiation. They act as a DAG analogue and directly activate 

the PKC/AP-1 pathway. Phorbol esters are known not only to induce 

differentiation, they also inhibit cell proliferation, elevate intracellular Ca2+ 

concentration and downregulate retinoid receptors in keratinocytes (Karlsson et 

al., 2010, Papp et al., 2003, Castagna et al., 1982b). While PMA treatment 

induces expression of late differentiation markers such as filaggrin and loricrin, it 

downregulates early differentiation markers, such as K1 and K10, both in vitro 

and in vivo (Papp et al., 2003, Bose et al., 2013, Lichti and Yuspa, 1988b, Dlugosz 

and Yuspa, 1993b). 
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 Steroid hormones. 

Steroid hormones such as cortisol, oestrogen and the active form of vitamin D 

(1,25-dihydroxyvitamin Dӡ) have a major effect on keratinocyte differentiation. 

Vitamin D is a calcium regulating hormone that activates epidermal terminal 

differentiation markers to stimulate the formation of the cornified skin layer (Bikle, 

2012). Vitamin Dӡ binds to its nuclear receptor VDR and directly promotes 

terminal differentiation, which is the most studied and well-known pathway. It 

could be that other indirect pathways are involved in vitamin D induced 

differentiation, such as PKC through activation of G protein coupled receptors 

pathways, that  acts by inhibiting early differentiation marker expression in favour 

of late differentiation markers (Palazzo et al., 2017, Eckert et al., 1997). The effect 

of vitamin Dӡ on differentiation is dependent on the calcium concentration and the 

cell density (Svendsen et al., 1997b). 

 Estrogen. 

Estrogen plays a major role in many age-related processes such as poor wound 

healing that requires proliferating keratinocytes. Estrogen replacement therapy 

(ERT) is known to reverse this process and allows better healing and 

epithelialisation. Estrogen binds to estrogen receptors (ERs), either ER-α or ER-

β, which are nuclear receptors that bind to DNA and have the ability to either 

repress or induce the target genes. In keratinocytes, oestrogen binds to ER-β 

more than ER-α receptor. Cells stimulated with the ER-α agonist had similar 

expression of different keratins while cells treated with ER-β agonist show lower 

expression of differentiation specific keratins. The expression of keratin K10 is 

downregulated or not expressed at all after oestrogen treatment (Sheng et al., 

2008, Perzelova et al., 2016). Other genes that are not involved in the terminal 
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differentiation process such as KRT19 are shown to be induced by estrogen 

treatment. K19 is one of the keratins believed to be important in wound healing 

(Choi et al., 2000). 

 Retinoids/Retinoic acid (RA). 

Retinoids (RA), are a group of vitamin A derivatives that play a key role in 

regulating cellular growth, differentiation and apoptosis in vivo and in vitro. One 

of the main targets of RA is the epidermal layer of skin. The mechanism of action 

and signalling pathways of RA were studied after the discovery of its receptors. 

RA receptors are ligand-activated nuclear hormone receptors and these 

receptors are categorised into 2 families, the retinoic acid receptors (RAR), and 

retinoid X receptors (RXR). Each family has different forms and multiple isotypes. 

In the epidermis, the major forms expressed are RXRα, RARγ and RARα so the 

predominant heterodimer will be RARγ/RXRα. These receptors are mainly 

expressed in the differentiated layers of the epidermis suggesting they function 

mainly in keratinocyte terminal differentiation. Recent studies on RARs also 

indicate their role in lamellar body formation needed by differentiating 

keratinocytes, this suggests that any abnormality in retinoid signalling could result 

in an abnormal keratinocyte phenotype. It has been shown that calcium and PMA 

induced differentiation also play a role in the retinoid signalling (Karlsson et al., 

2010). Members of the retinoid receptor subfamily can form both homo- and 

heterodimers, which means that two different receptors can cooperatively bind to 

the recognition element on the DNA (Fisher et al., 1995).These dimers bind to a 

specific sequence on the DNA called retinoic acid response elements (RAREs) 

that affect and regulate the target genes. The RA effect could be direct by binding 

to specific genes or indirect by modulating the effect of other transcription factors, 
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such as AP-1, that could affect these genes (Lee et al., 2010, Benkoussa et al., 

2002, Schule et al., 1991). One of the well-studied effects of RA on epidermis is 

the inhibition of keratinocyte early and late stage differentiation markers. 

Transglutaminase I enzyme (TGMI), which is responsible for the assembly of the 

cornified envelope in skin, is supressed after RA treatment as well as other 

terminal differentiation markers such as filaggrin and loricrin. The expression of 

the keratin family of genes is also regulated by RA where some genes are 

supressed (KRT1 and KRT10) whereas others are induced (KRT15 and KRT19) 

(Lee et al., 2010). The mode of action of Vitamin A on keratinocytes is shown in 

Figure 1.9. 

 

Figure 1.9. Mode of action of vitamin A on keratinocytes. (Park, 2015). 
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High Cell Density. 

High cellular density especially more than 95% confluency has also been shown 

to induce the expression of both early (K1, K10) and late (filaggrin, loricrin, SPRR-

1) differentiation markers in keratinocytes in vitro even at low calcium 

concentrations (Poumay and Pittelkow, 1995). Cell density-mediated induction of 

differentiation markers has been associated with PKC activation. Recent studies 

have shown other factors to be involved in response to increased cell-cell contact, 

such as downregulation of c-Myc which is involved in cell-cycle progression as 

well as upregulation of Notch1 that regulates interactions between physically 

adjacent cells (Poumay and Pittelkow, 1995, Lee et al., 1998a, Kolly et al., 2005a, 

Newton, 2010a). 

 

1.11. Keratin disorders. 

Keratin-associated diseases guided researchers to the importance and different 

functions of keratins in humans. Keratin disorders are mainly dominant negative 

mutations in which a mutated gene product antagonises the effect of the wild-

type allele. They are rare conditions affecting the skin and some internal organs 

such as the liver (Strnad et al., 2008), eye lens (Haines and Lane, 2012) and 

intestine (Owens and Lane, 2004). Any tissue could be affected but for skin 

blistering disorders mutations in K5/K14 and K1/K10 are the most common. 

Mutations in the basal keratins K5/K14 are associated with a skin blistering 

condition called EBS shown in Figure 1.10 (Haines and Lane, 2012). The severity 

of this condition depends on the site of mutation in the polypeptide, more severe 

forms are associated with mutations affecting the helix initiation peptide (HIP) and 

helix termination peptide (HTP) of rod domain while mutations elsewhere produce 
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milder and more localised lesions limited to sites where mechanical stresses are 

applied such as palms and soles (Letai et al., 1993, Homberg et al., 2015). 

Epithelial cells in the basal layer are proliferative, they differentiate as they grow 

upward and keratin expression changes as the cells differentiate. K5/K14 are 

mainly in the basal layers and mutations in them lead to EBS in which blisters are 

formed at the basal layer (Bolling et al., 2011, Jerabkova et al., 2010). K1/K10 

are found in the suprabasal layers and mutations in them cause EHK disease 

(Rothnagel et al., 1993). In this condition the suprabasal cells rupture and 

cytokines are released around the normal basal cell layer that will start to hyper-

proliferate causing the skin to become thick and fragile. This thick and spongy 

epidermis is highly susceptible to bacterial and fungal infection as well as being 

disfiguring and devastating for the patient (Arin, 2009, McLean and Moore, 2011). 

Mutation in K2, which is a late terminal differentiation keratin, leads to a skin 

blistering condition named IBS. It is less common than EHK and it lacks the 

erythroderma shown in EHK but it shows skin pigmentation in flexor areas (Moll 

et al., 2008, Ang-Tiu and Nicolas, 2012). 

In simple epithelial keratins found in liver, pancreas and gut, K8/K18 plays a major 

role as stress absorbing proteins. Mutations in KRT8 or KRT18 lead to apoptosis 

and severe liver diseases in which keratins are absent or unable to perform their 

functions. Inflammatory bowel diseases are another example of mutated keratin 

disorder in the gut in which the protective barrier is lost and epithelial permeability 

increases resulting in inflammation. This is usually due to KRT8 mutation as any 

role for K18 has not yet been shown (Arin, 2009). A list of human keratins 

disorders is shown in Table 1.3. 
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Figure 1.10. Epidermolysis Bullosa Simplex.  In EBS, keratinocytes in the basal epithelial 
layer are split and separated from dermis causing blisters. (Haines and Lane, 2012). 

Table 1.3. List of human keratins disorders. (Haines and Lane, 2012). 

 

 

The maturation of the oral mucosa is slightly different than skin as the oral 

epithelium shows two patterns of maturation depending on the site and function 

in the oral cavity. Epithelium in the oral cavity could be either keratinised or non-

keratinised, with maturation of the latter involving the formation of a surface layer 

of keratins (Figure 1.11). If the surface layer retains nuclei it well be para-

keratinised but if the nuclei are absent it will be classified as an ortho-keratinised 

epithelium. The masticatory mucosa (including hard palate and gingiva) is 
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keratinised with epithelium firmly attached to the underlying tissues while the 

lining mucosa (including soft palate, lips, buccal and alveolar mucosa, ventral 

surface of the tongue and the floor of the mouth) is normally non-keratinised and 

supported by elastic connective tissues. The dorsum of the tongue is made of 

specialised mucosa, which is a combination of both keratinised and non-

keratinised epithelia. Generally, lining mucosa cover 60%, masticatory mucosa 

25% and the specialised mucosa 15% of the surface of the oral cavity (Collins 

and Dawes, 1987). Furthermore, the oral epithelium differs from the skin 

epithelium by its greater thickness, moist surface and relative lack of appendages 

(except salivary and, occasionally, sebaceous glands) (Presland and Dale, 2000, 

Squier and Kremer, 2001). 

 

  

Figure 1.11. Keratin expression in different layers of skin and oral mucosa. (Presland and 
Jurevic, 2002). 

 

Besides the well-known genetic keratin disorders, some keratin disorders could 

be acquired in which abnormal keratinisation takes place. Several genetic 

conditions in the oral cavity could be due to mutation or abnormalities in keratin 

filament associated proteins (KFAP) such as desmosomes. Pemphigus and 
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dyskeratosis congenita are two examples of these conditions. Acquired oral 

keratin disorders could be due to a variety of factors as infections, immune 

mediated lesions, neoplastic and reactive lesions like nicotine stomatitis for 

example. Figure 1.12 shows the classification of oral keratin disorders. 

 

 

Figure 1.12. Classification of oral keratin disorders.  (Rao et al., 2014). 

 

1.12. Keratins in cancer. 

Due to their tissue- and differentiation-specific expression patterns, keratins 

serve as excellent diagnostic markers in neoplastic as well as non-neoplastic 

diseases. In cancers, keratins were used as diagnostic markers, but recent 

studies have shown that keratin expression can also be used for prognostic 

purposes (Trask et al., 1990) (Harbaum et al., 2012). Keratin expression is 

maintained in tumor epithelial cells and this property makes it easier to identify 

the tumor site of origin. Knowing the origin of cancer can help to classify and later 
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modulate the line of treatment and this could also affect the prognosis of the case. 

For example, in adenocarcinoma (epithelial cancer of glandular tissues) there is 

expression of K8/K18/K19 while K7 and K20 expression varies. In colorectal 

carcinoma, K7 and K20 are expressed but their reduction is associated with 

highly invasive forms as it indicates EMT and metastatic spread (Karantza, 

2011b, Wauters et al., 1995). Soluble keratin polypeptides circulating in the blood 

and bone marrow can be used to evaluate cancer progression and response to 

treatment. Elevated levels of K18 gives an indication of a good prognosis with 

less invasiveness and low metastatic potential, while reduced levels of K8/K20 in 

colorectal cancer indicates a poor prognosis (Magin et al., 2007, Arin, 2009). 

Keratin 19 and 17 are used as a diagnostic and prognostic marker in oral 

squamous cell carcinoma, K17 expression correlates with lymph node metastasis 

in which 6-fold increase in lymph node metastasis is shown when K17 is 

expressed. A high survival rate was shown when both keratins are downregulated 

(Coelho et al., 2015). 

Many studies have shown the role of keratins in cell invasion and migration that 

contributes to tumor metastasis in distant organs. Phosphorylation of certain 

keratin residues leads to disassembly of keratin filaments into globules that 

affects the cell rigidity as well as its binding to cell anchorage proteins. These 

changes allow the cell to move much more freely and metastasise away from the 

site of origin. This mechanism is regulated by the activation of cancer promoting 

and EMT pathways (Karantza, 2011b, Yamaguchi et al., 2005, Kim et al., 2015a). 

Keratins have a protective role in epithelium that allows the cell to withstand 

different forms of stresses that could lead to cell death. Chemotherapy is used to 

kill cancer cells, which could be through activating death inducing signaling and 

Fas- mediated apoptosis. Cells lacking keratin expression are more sensitive to 
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chemotherapeutic drugs (Karantza, 2011b). In well-differentiated oral squamous 

cell carcinomas (OSCCs) the expression of K1/10, and K4/13 is increased. On 

the other hand, poorly differentiated OSCCs do not show any significant 

expression of these keratins but do express keratin K19. Moderate to poorly 

differentiated cancers that shows intermediate histology could express K8/18 and 

sometimes K5 and K6 which indicates a highly metastatic tumor with a low 

survival rate. Keratin K14 can be used to distinguish squamous cell carcinomas 

from mucoepidermoid carcinoma as it shows an extremely strong expression only 

in the former condition. In areas of metaplasia shown in both carcinomas, keratin 

K10 is used to distinguish between them as it shows positive staining in 

squamous cell carcinoma but not mucoepidermoid carcinoma. To differentiate 

mucoepidermoid carcinoma from other salivary gland tumors, keratin 13 

expression is considered useful. K19 expression reflects differentiation and can 

assist in predicting the clinical outcome (Shetty and Gokul, 2012). 

 

1.13. Keratinocyte differentiation and cancer 

(Differentiation Therapy). 

Even though significant progress has been made in the field of cancer diagnosis 

and therapy, cancer remains a major medical problem. Existing therapies for 

cancer lack ideal outcomes, mostly explained by the fact that cancer involves 

different genetic alterations as well as being distinct from one site of the body to 

another. These genetic alterations result in the loss of proliferative control of cells 

which is one of the defining features of cancer. The most commonly and widely 

used treatment options for most cancers are surgery, radiotherapy and 

chemotherapy and these options depends on the lesion type, site and extension. 
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Non-surgical treatment modalities are mainly acted by damaging cellular DNA 

which is a non-specific and a highly toxic mode of action. In order to reduce 

therapeutic complications, new treatment modalities have been introduced as 

adjuncts to conventional chemotherapy or radiotherapy such as differentiation 

therapy and angiogenesis inhibition as well as immunotherapy (Leszczyniecka et 

al., 2001). Cells with poorer differentiation ability are able to stimulate tissue 

renewal by cellular proliferation, which is of huge importance in reducing the rate 

of tumour growth and expansion. p53 is a gene that codes for a protein which 

regulates the cell cycle and therefore functions as a tumour suppressor, it induces 

apoptosis and cell cycle arrest. It has been shown that p53 has the ability to 

induce terminal differentiation in keratinocytes with no effect on apoptosis 

(Guinea-Viniegra et al., 2012) . It could be promising to use FOS/AP-1 inhibition, 

and p53 activation with TACE/NOTCH1-activating therapies in differentiation of 

skin SCCs. Similar approaches have been used in studies to modulate 

differentiation in breast cancer stem cells, so this strategy may hold great promise 

for future cancer treatment modalities (Guinea-Viniegra et al., 2012). 

 

1.14. Aim and objectives of the study. 

1. The main aim is to study keratin dynamics and the role of lipids on 

keratinocyte differentiation and mRNA stability. 

2. To test whether differentiation-specific keratins can integrate into the pre-

existing keratin network and whether this integration is static or dynamic. 

3. To develop an in-vitro model to study the dynamics of differentiation-

specific keratin filaments. 
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4. To determine keratin filaments stability, which is affected in many keratin-

associated disorders, by using phosphatase inhibitors. 

5. To study the effect of heat shock on keratin filament reorganisation. 

6. To investigate the role of serum lipids and phenol red (PR) in the growth 

medium on the expression of differentiation-specific keratins. 

7. To determine the mRNA stability of differentiation-specific keratins under 

different experimental conditions. 

8. To investigate the influence of retinoic acid (RA) on the expression of 

differentiation-specific keratin genes. 

9. To measure the promotor activity of KRT2 and KRT1 in normal epidermal 

keratinocytes under different growth conditions. 
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2. Materials and Methods. 

2.1. Cell culture. 

 Cell Culture Media. 

DMEM. Dulbecco's Modified Eagle Medium was supplemented with 10% foetal 

calf serum (FCS) (v/v), 50 IU/ml penicillin and 50 µg/ml PS (Penicillin-

Streptomycin mixture) with or without Phenol-Red. 

RM+ Medium. Rheinwald-Green Modified, also called FAD medium was 

designed for growing primary keratinocytes and human squamous cell carcinoma 

cell lines (Rheinwald and Green, 1975, Rheinwald and Green, 1977). It is a 3:1 

(v/v) mixture of  DMEM media and Ham’s F12 supplemented with 10% FCS, 50 

IU/ml penicillin, 50 µg/ml streptomycin, 5 μg/ml insulin, 5 μg/ml transferrin, 0.4 

μg/ml hydrocortisone, 10-10 M cholera enterotoxin, 2 x 10-11 M liothyronine, 1.8 x 

10-4 M adenine and 10 ng/ml epidermal growth factor (EGF). In this study RM+ 

medium was used to culture HaCaT, NHEK, N/TERT, NEB-1, and T103C. 

Live cell imaging medium. The Live Cell Imaging Solution is optically clear, 

used to keep cells healthy for up to 4 hours during imaging and to provide clearer 

images. It is a sterile solution made of (140 mM NaCl,2.5 mM KCl,1.8 mM CaCl2 

,1.0 mM MgCl2, 20 mM HEPES). It is buffered with HEPES at pH 7.4. Agents for 

cell treatments were added into the pre-warmed live cell imaging medium prior to 

recording (Ettinger and Wittmann, 2014). 

 Cells used. 

MCF-7 is a human breast epithelial cell line that expresses three distinct keratins: 

K8, K18 and K19 (Taylor-Papadimitriou et al., 1989, Mackinder et al., 2012) were 

used in this study, grown in DMEM containing 10% FCS and 1% PS.  
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NHEK (normal human epidermal keratinocytes) were kindly provided by 

Professor Eric Parkinson of QMUL. They were bought commercially (Gibco, UK) 

and originated from expansion of keratinocytes derived from a pool of a minimum 

of three neonatal foreskins. Normal keratinocytes were cultured in a RM+/feeder 

system. In the RM+/feeder system keratinocytes were co-cultivated with 3T3 

fibroblasts irradiated with the sub-lethal dosage of gamma radiation (60 Gy), cells 

were grown in RM+ medium containing Hyclone II serum (Okazaki et al., 2003, 

Erdmann et al., 2017, Huang et al., 2006). This culture method supports 

differentiated phenotype of keratinocytes, essentially mimicking the in vivo 

features, and was first developed by Rheinwald and co-workers (Rheinwald and 

Green, 1977). 

HaCaT is a keratinocyte cell line derived from histologically normal human adult 

skin keratinocytes spontaneously transformed by prolonged cultivation at low 

Ca2+ concentration (0.2 mM) and moderately high temperature (38.5°C). Despite 

multiple chromosomal alterations, HaCaT cell line maintains a non-tumorigenic 

and non-invasive phenotype. HaCaT keratinocytes exhibit normal keratinocyte 

morphology and differentiation profile with regular distribution of differentiation-

specific markers (Wilson, 2014, Deyrieux and Wilson, 2007, Fusenig and 

Boukamp, 1998). 

N/TERT are human epidermal keratinocytes immortalised by ectopic expression 

of the telomerase catalytic subunit (hTERT) and subsequent spontaneous events 

leading to the loss of p16INK4a expression. N/TERT keratinocytes retain normal 

growth control mechanisms and have been shown to be able to initiate the 

program of terminal differentiation and to form a differentiated epithelium both in 

organotypic culture and xenografts in mice (Smits et al., 2017, van Drongelen et 

al., 2014). 
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NEB-1 are derived from an unaffected relative of a patient suffering from the 

recessive form of EBS (Morley et al., 2003). This cell line was immortalised using 

a construct expressing HPV16 genome (lacking only the late genes) and was 

drug-selected with G418 (Morley et al., 2003, D'Alessandro et al., 2011). In this 

study, NEB-1 cells were grown without the 3T3 fibroblast feeder. 

T103C derived from primary keratinocytes from biopsies of normal buccal and 

gingival tissues and were immortalised by HPV16 (Sexton et al., 1993, Bryan et 

al., 1995).  

Cell line used for retroviral packaging. Phoenix A (amphotropic) is a retrovirus 

packaging cell line based on the 293T cells (human embryonic kidney cells 

expressing SV40 Large T antigen). Phoenix A cells are capable of producing gag-

pol and envelope proteins for retroviruses and the resulting amphotropic 

retroviruses can infect most mammalian cells, including human cells (Swift et al., 

2001, Lamers et al., 2006).  

Normal dermal fibroblasts were kindly provided by Dr. Amir Sharili of QMUL 

and were used for organotypic co-cultures with keratinocytes.  

3T3 fibroblasts were kindly provided by Professor Eric Parkinson of QMUL to be 

used as feeders for co-culturing normal skin keratinocytes. Cells were grown in 

DMEM with 10% donor bovine serum containing 50 IU/ml penicillin and 50 µg/ml 

streptomycin. These cells were irradiated to be used as feeder cells for growth 

and expansion of NHEK. These cells were grown to confluence before being 

irradiated using 60 Gy of γ radiation to stop their proliferation irreversibly (QMUL 

radiation facility). Irradiated cells were stored in liquid nitrogen and thawed when 

needed. 
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 Culturing cells. 

All cells were routinely maintained at 37˚C in a humidified atmosphere of 5% CO2 

+ 95% air and grown in 10-cm dishes or T25, T75 and T175 flasks (as required) 

in the appropriate growth medium. Material and equipment used in cell culture 

are shown in Table 2.1. 

2.1.3.1. Cell passaging. 

Both normal keratinocytes and keratinocyte cell lines were routinely passaged 

upon reaching approximately 70 - 80% confluence to prevent them from 

undergoing density-dependant differentiation (Drozdoff and Pledger, 1993, 

Poumay and Pittelkow, 1995, Darlington, 2008, Masters and Stacey, 2007). For 

normal keratinocytes, KEB-11 and NEB-1 cell lines cultured in RM+/feeder 

system, the cells were first incubated with 0.02% (w/v) EDTA in phosphate 

buffered saline (PBS) and followed by vigorous pipetting of the liquid against the 

dish surface in order to remove the feeder fibroblasts. All keratinocyte cell lines 

were incubated for 5 min at 37°C with 0.02% (w/v) EDTA/PBS (to weaken cell 

adhesion), followed by incubation at 37°C with 0.05% (w/v) trypsin/0.01% (w/v) 

EDTA/PBS until the cells completely detached from the surface of culturing 

vessels. The trypsin was neutralised by the addition of serum-containing medium 

and the cell suspension was pelleted by centrifugation at 800 rpm. The 

supernatant was aspirated, and the cell pellet was re-suspended in fresh medium. 

Cells were counted using the haemocytometer and plated out for new 

experiments, transferred into new flasks for propagation or cryopreserved for later 

use.  Fibroblasts and all other cell lines were passaged in a similar way as 

described above. However, the incubation with 0.02% (w/v) EDTA/PBS was 

omitted, commercial trypsin-versene mix was used instead of 0.05% (w/v) 
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trypsin/0.01% (w/v) EDTA/PBS and centrifugation after inactivating the trypsin 

was carried out at a higher speed (1000 rpm).  

2.1.3.2. Use of Rho-associated kinase inhibitor (ROCKi). 

Prior to experimental use, NHEK maintained in the RM+/feeder system were 

routinely propagated in the presence of 10 µM of Y-27632, a Rho-associated 

kinase inhibitor (ROCKi). The addition of 5 – 10 µM ROCKi to keratinocyte culture 

medium, in presence of the feeder layer, has been shown to extend indefinitely 

but reversibly their lifespan and prevent the early onset of differentiation that limits 

their experimental use. This phenomenon has been described as a reversible 

reprogramming/immortalisation of keratinocytes that neither affects their 

phenotype and karyotype nor induces tumorigenicity (Chapman et al., 2010, Liu 

et al., 2012). 

Table 2.1. Material and equipment used in cell culture. 

Cell culture reagents/equipment Catalogue # Supplier 

Adenine hemisulfate salt A3159-25G Sigma-Aldrich, UK 

Donor bovine serum (DBS) 16030074 
ThermoFisher Scientific, 

UK 

Dulbecco’s Modified Eagle’s Medium 

4.5g/L Glucose, w/ L-Glutamine (DMEM) 

LZBE12-604F UK supplier: SLS Ltd 

BE12-604F 

 

Lonza, Belgium 

 
Dulbecco’s Modified Eagle’s Medium 

4.5g/L Glucose, w/o phenol red, w/o L-

Glutamine (phenol red-free DMEM) 

31053-028 Life Technologies, UK 

Dimethyl sulfoxide (DMSO) D1435 Sigma-Aldrich, UK 

Epidermal growth factor (EGF) E9644-.5MG Sigma-Aldrich, UK 

Ethylenediaminetetraaceticacid, 

tetrasodium salt (EDTA) 
ED4SS Sigma-Aldrich, UK 

Foetal Calf Serum (FCS) 02-00-850 First Link Ltd., UK 

SH30066.03 GE Healthcare, US 
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HyCloneTM FetalCloneTM II Serum (FCII 

serum) 
UK supplier: SLS Ltd 

Ham’s F-12 Medium w/L-Glutamine 
BE12-615F Lonza, Belgium 

LZBE12-615F UK supplier: SLS Ltd 

Insulin from bovine pancreas I5500-500MG Sigma-Aldrich, UK 

Ham’s F-12 Medium w/L-Glutamine 

without Phenol red 
HFL05-500ML Caissson Labs, USA 

L-Glutamine 200 mM (100x) 25030-081 Life Technologies, UK 

Penicillin-Streptomycin (Pen Strep) 15070-063 Life Technologies, UK 

Phosphate Buffered Saline  

(Dulbecco A) (PBS) 
BR0014G Oxoid, UK 

Holo-Transferrin bovine T1283-100MG Sigma-Aldrich, UK 

Trypsin 
TRL 

LS003702 
Worthington, US 

Trypsin-EDTA mix (1x) 

LS003703 
UK supplier: Lorne 

Laboratories Ltd 

BE17-161E Lonza, Belgium 

Y-27632 (ROCKi) 
LZBE17-161E UK supplier: SLS Ltd 

SCM075 EMD Millipore, UK 

Mitomycin C M0503 Sigma-Aldrich, UK 

Cryotubes 1.8 ml 368632 Thermo Scientific, UK 

Haemocytometer Neubauer-improved 0630010 Marienfeld-Superior, DE 

HeraeusTM MultifugeTM X 3R centrifuge 75004515 Thermo Scientific, UK 

Phase-Contrast Microscope  Hund Wetzlar Wilovert 

Mr. FrostyTM Freezing Container 5100-0001 Thermo Scientific, UK 
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2.2.Cell treatments. 

 Phosphatase inhibitors. 

OA and CL-A are well known selective phosphatase inhibitors especially for 

serine-threonine PP1 and PP2A with CL-A being more potent on PP2A than OA 

(Dounay and Forsyth, 2002, Takuma et al., 1993). OA and CL-A were dissolved 

in DMF (N, N-Dimethylformamide) at stock concentrations of 604 µM and 99.1 

µM, for OA and CL-A respectively, and stored at -20˚C. Cells were grown in full 

medium (DMEM supplemented with 10% FCS and 1% PS) prior to any treatment, 

cells were counted and seeded in 12-well, 6-well or 35 mm cell culture dishes 

based on the planned experiment. After 24 h, the medium was removed and 

replaced with fresh medium containing the desired working concentration of each 

drug. The same volume of DMF was used for all experiments as vehicle control. 

After drug treatment, medium containing the drug was removed and cells were 

either fixed, lysed or live imaged in live cell imaging medium. 

 Heat shock treatment. 

To perform heat shock stress experiments on epithelial cells, the MCF-7 cell line 

was used.  Cells were seeded on coverslips at a density of 10,000 cells/coverslip 

for immunostaining or 50,000 cells/35 mm glass bottom dishes for live cell 

imaging and 500,000/35 mm dishes used for collecting lysates for western 

blotting. The cells were cultured in full medium (DMEM supplemented with 10% 

FCS and 1% PS) in an atmosphere of 5% CO2 + 95% air overnight, next day the 

cells were exposed to 43˚C for 30 min over a metal rack in a pre-adjusted water 

bath. Prior to placing the plates in the water bath, the medium was changed with 

a 43˚C preheated medium and the culture plates were sealed using a parafilm all 

around the edges and placed inside the water bath. After applying heat shock, 
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the dishes were removed from the water bath covered with a tin foil and placed 

in a 37˚C incubator for recovery. The time for recovery varied from 15 min to 6 h 

or more. For live cell imaging experiments, the medium was replaced after 

recovery with the Live Cell Imaging Medium pre-warmed to 37˚C containing the 

drug of interest (OA or CL-A) and the dishes were placed immediately on the 

imaging stage set at 37˚C, cells with well spread keratin filaments (no granules) 

were selected for imaging. Three confocal z planes were chosen, videos were 

recorded for 3 h, and frames were taken every 30 sec for both bright field and 

fluorescence for AcGFP ( fluorescence tag attached to K2 to make it visible under 

confocal microscope) (Strnad et al., 2003). For immunostaining experiments 

requiring heat shock, the same procedure was followed but after recovery periods 

the cells were fixed either immediately or after a certain time of incubation with a 

drug. For western blotting experiments, the same procedure was followed but 

after applying a drug or after a certain recovery time, cell lysates were collected 

and stored at -80˚C until all lysates of the same experiment were collected to be 

processed at the same time.  

 Use of charcoal stripped FCS. 

It has been known for years that retinoids play an important role in cell 

proliferation and differentiation. RA bind to RA receptors which are transcriptional 

factors that could affect the gene expression of differentiation-specific keratins 

(Balmer and Blomhoff, 2002). 

To remove serum lipid, charcoal-treateted stripping of FCS was used in this 

study, different keratinocytes cell lines were used and compared to normal 

keratinocytes (Cao et al., 2009). Cells were grown in their normal culturing media 

containing normal FCS either in DMEM or RM+. On day of experiment, cells are 

trypsinised, counted and seeded in 6-well plates at a density of 200,000 cell/well 
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using regular FCS medium. Next day when cells are fully attached, the medium 

was changed to charcoal stripped FCS containing medium hereafter referred as 

SLP- (serum lipids free medium). Normal FCS containing medium were used on 

controls referred as SLP+ (serum lipids containing medium). After 72 h, the 

medium was removed, and the cells were lysed for mRNA extraction or WB 

assay. In some experiments, cells were seeded in 12- well plates using RM+ 

(Hyclone II serum) until attached then medium changed to SLP- and next day 

treatment was done. 

 Use of phenol-red free medium. 

Phenol-red is used in most of tissue culture media as a pH indicator. It is known 

to have an estrogenic-like effect and could bind to estrogenic receptors which are 

transcriptional factors and affect some cellular functions and regulate genes 

expression (Hofland et al., 1987, Welshons et al., 1988, Glover et al., 1988). In 

this study, phenol-red free medium was used to grow different keratinocytes, the 

culture method is the same as mentioned earlier (section 2.2.3). In this set of 

experiments phenol-red containing medium was used as a control. Phenol-red 

containing and phenol–red free medium were used either with or without the 

charcoal stripped FCS. 

 All-trans-Retinoic acid. 

NHEK cells were seeded in a 12 well plate, next day cells were treated with 

different concentrations of all-trans-Retinoic acid (ATRA) for 24 hours in charcoal 

treated RM+ medium with and without PR. ATRA was first dissolved in DMSO 

and diluted using ethanol, 1µM, 2µM, 3µM working concentrations were used in 

first experiment and only 1µM were used in later ones as 3 concentrations didn’t 
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show any significant difference in their effect. DMSO/EtOH was used as a vehicle 

control (0.003%/0.03% v/v maximum).  

 β- Estradiol. 

NHEK cells were seeded in 12 well plate, next day cells were treated with different 

concentrations of β- Estradiol (ED) for 24 hours in PR free RM+ medium. ED was 

dissolved in DMSO (stock concentration 100mM) and further diluted in culture 

medium to working concentrations of 10nM, 50nM, 100nM, 500nM, 1µM. DMSO 

was used as a vehicle control (0.001%). 

 Phenol Red. 

Phenol red (PR) was added in phenol free RM+ culture medium at concentration 

similar to PR concentration in commercially available normal culture medium 

(0.01 mg/ml). NHEK were cultured in this medium for 3 days either with or without 

adding 1µM of ATRA in the last 24h before collecting cell lysates for qPCR. For 

ATRA treated cells, DMSO/EtOH were used as a vehicle control (0.001%/0.01%), 

for PR added cells, PR free medium were used to grow cells as a control. 

 Actinomycin D. 

 Actinomycin D (AD) was dissolved in water. NHEK with irradiated feeder 

fibroblasts were seeded in 12 well plates and treated next day with 2µg/ml AD for 

different time points up to 4 hours with or without prior treatment with 1µM ATRA 

for 24 hours, DMSO was used as a vehicle control (0.01%). 

Reagents and equipment used in cell treatments are shown in Table 2.2. 
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Table 2.2. Reagents and equipment used in cell treatments. 

Cell culture reagents/equipment Catalogue # Supplier 

Okadaic acid (sodium salt) 19-130 Sigma-Aldrich, UK 

Calyculin A C-3987 LC Laboratories, USA 

DMF (N, N-Dimethylformamide) D4551 Sigma -Aldrich, UK 

Foetal Bovine Serum, charcoal stripped 12676029 Thermo Scientific, UK 

all-trans-Retinoic acid (ATRA) R2625 Sigma-Aldrich, UK 

β-Estradiol E8875 Sigma-Aldrich, UK 

Phenol red P3532 Sigma-Aldrich, UK 

Actinomycin D 11805-017 Gibco, UK 

 

2.3. Organotypic cultures. 

Organotypic cultures (OTs) or 3D cultures are a method of culturing epithelial 

cells in a skin equivalent model in which cells grow in a multilayer system 

(stratification) allowing a much better in vitro tissue model. These keratinocytes 

grow at an air-liquid interface in which they get their nutrients from the medium 

underneath the collagen-fibroblast stroma only while facing air from the top (Oh 

et al., 2013). Structural support was provided by a simple collagen/fibroblast 

stroma. Fibroblasts are used to produce extracellular matrix that allow normal 

tissue organisation and keratinocyte differentiation (Okazaki et al., 2003). As we 

are looking at terminal differentiation keratins, 3D models will be an ideal model 

to study the effect of different factors diffused through the collagen stroma 

reaching keratinocytes in a way similar to the in vivo situation (Margulis et al., 

2005). Cells used in OT cultures were cultured in their appropriate media prior to 

setting up the 3D model system. An insert-based method of OTs was used in this 

study in which inserts (pore size 0.4 µm) were placed in 12-well plates. Collagen 

solution was prepared on ice 4 mg/ml in full DMEM either with or without phenol-
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red. 0.5 N NaOH was used to neutralise the solution. Primary dermal fibroblasts 

were trypsinised, counted and spun down. The fibroblast pellet containing the 

required number of 100,000 cells/insert was resuspended into the full DMEM with 

or without phenol-red. Re-suspended cells were added in collagen solution and 

mixed gently without creating bubbles. On each insert, 400 µl of collagen mix was 

added and plate was left in 37˚C incubator for 1 h allowing collagen mix to solidify. 

In the meantime, keratinocytes were trypsinised, counted and a pellet containing 

the required number of keratinocytes (500,000 cells/insert) was re-suspended in 

RM+ medium (with or without phenol-red) and (with normal or charcoal stripped 

FCS), 300 µl/ insert. The cell suspension was slowly pipetted on top of each 

fibroblast-containing collagen matrix inserts. RM+ medium (2 ml) was then added 

underneath the inserts and the plate was returned to 37°C incubator. Next day, 

medium was aspirated from inside and outside of each insert and 1 ml of RM+ 

(with or without phenol-red) and (with normal or stripped FCS) was added 

underneath the inserts only. The cells were allowed to grow at an air-liquid 

interface for 10 days allowing stratification, the medium underneath the inserts 

was changed every day (Parenteau et al., 1992). Reagents and equipment used 

in organotypic cultures are shown in Table 2.3. 

 Paraffin embedding. 

OTs were harvested at day 10 and fixed in 4% (w/v) paraformaldehyde/PBS for 

1 h at RT. After fixation, OTs were cut out of the inserts using a sharp blade and 

placed into a special cassette for paraffin processing. These cassettes were 

emerged in 70% ethanol until processing took place and tissues were embedded 

in paraffin blocks using the Tissue-Tek system available at the Centre for 

Cutaneous Research, QMUL. Later, paraffin blocks were cut into 5µm thick 

sections. Tissue sections were then stained with haematoxylin and eosin (H & E) 
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as described in the following section or processed for immunostaining using 

primary and fluorescent tagged secondary antibodies as described in section 

2.4.2.2 (Canene-Adams, 2013). 

 Haematoxylin and Eosin (H & E) staining. 

Haematoxylin is a basic blue dye (hematein and aluminium ions) that stains 

basophilic cell structures, such as nucleic acids in the nucleus. On the other hand 

eosin is a pink acidic dye that stains acidophilic structures inside tissues such as 

proteins (Feldman and Wolfe, 2014). Before Haematoxylin staining, paraffin-

embedded sections were first deparaffinised with xylene (paraffin solvent) by 

treating twice for 3 min each. These sections needed to be gradually rehydrated 

by immersing them into containers having decreasing strengths of ethanol (100%, 

90%, and 70%), rinsed with distilled H2O and stained with haematoxylin for 3 – 5 

min. Excess stain was washed off with running tap H2O and the slides were 

dipped 2 – 7 times in acid alcohol to differentiate nuclei and non-nuclear 

structures, acid alcohol was washed by immersion in running tap H2O for 5 min 

to oxidise the dye. The sections were then emerged in eosin to counterstain for 

2 min, washed with running tap H2O. Tissues were dehydrated by emerging 

slides into increasing concentrations of ethanol (70%, 90% and 100%) and finally 

incubated with xylene. After the xylene clearing step that removes all wax 

residues, slides were mounted with DPX mounting medium and imaged using 

Leica Epi DM4000 microscope (equipped with a DFC350 digital camera and 

20x/0.5 objective lenses) or using Nikon Eclipse 80i microscope (equipped with 

an MBF CX900 digital camera and 20x/0.75 objectives). The images were 

acquired by Metamorph (Leica Epi DM4000) or PictureFrame (Nikon Eclipse 80i) 

imaging systems using standard bright-field (BF) imaging settings and processed 

using the ImageJ software. 
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Table 2.3. Reagents and equipment used in organotypic cultures. 

 

 

2.4.Protein analysis techniques. 

 Western blotting (WB). 

2.4.1.1. Protein extraction and quantification. 

Cells were seeded in 6-well plates with the required media for each experiment. 

When cells became ready to be lysed, medium was removed, and cells were 

washed twice with cold PBS. Lysis buffer (4% (w/v) SDS, 20% (v/v) glycerol, 125 

mM Tris-HCl, pH 6.8) was added (200 µl/well) on ice, cell lysates were then 

collected using cell scrapers into 1.5 ml Eppendorf. The lysates were either 

sonicated 5 seconds X 3, heated (95 – 100°C) for 5 min on a metal block to 

denature the proteins and spun at 15000 rpm for 10 min to remove cell debris 

and stored at -80°C for later use. For measuring the protein concentration in each 

Reagents / equipment used Catalogue # Supplier/Company 

Collagen type I, rat tail, high 
concentration (10.97 mg/ml) 

354249 
Corning, USA 

UK supplier: SLS Ltd 

Paraformaldehyde GPR 294474L (BDH) VWR, UK 

Shandon™ Cryomatrix™ embedding 
resin 

6769006 Thermo Scientific, UK 

Sodium hydroxide S8045 Sigma-Aldrich, UK 

Antigen retrieval buffer 10X S1699 DAKO, UK 

Bright OTF5000 Cryostat  Jencons-PLS, USA 

Leica Epi DM4000 Epi-fluorescence 
microscope 

 Leica Microsystems, UK 

Leica RM2235 Rotary Mictotome  Leica Microsystems, UK 

Millicell® Hanging Cell Culture Inserts PIHT15R48 Merck Millipore, UK 

Nikon Eclipse 80i microscope  Nikon, UK 

S35 Feather microtome blades, 
stainless steel 

207500000 
pfm medical ag, 
Germany 

SuperFrost® Plus Menzel-Gläser 
adhesion microscope slides 

J1800AMNZ Thermo Scientific, UK 

Tissue embedding cassettes  Tespa 

Tissue-Tek® TEC® Tissue Embedding 
Console System 

 Sakura 

Tissue-Tek® VIP® Vacuum Infiltration 
Tissue Processor 

 Sakura 
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lysate, Lowry’s assay was performed using DC Protein Assay Kit with a standard 

bovine serum albumin (BSA) dilution series (0 – 1.4 µg/µl). This assay is a 

colorimetric assay in which proteins react with an alkaline copper tartrate solution 

and Folin’s reagent and this reaction results in a coloured compound whose 

absorbance is directly proportional to the amount of protein present in the cell 

lysate (Lowry et al., 1951, Hess et al., 1978). The BSA standards and protein 

lysates were mixed with protein assay reagents in a 96-well plate, incubated at 

RT for 15 min. By using a CLARIOstar microplate reader, the absorbance of 

standards and samples was measured in duplicate at 650 nm. The protein 

concentrations were then calculated from the BSA standard curve (BSA 

concentrations vs absorbance). After measuring the protein concentration, the 

reducing agent 2-mercaptoethanol that breaks disulphide bonds in proteins was 

added. A tracking dye bromophenol blue in ethanol 0.1% (w/v) were also added 

to the protein lysates.  

2.4.1.2. Protein separation by SDS-PAGE, transfer on nitrocellulose and                  

protein detection. 

Cell lysate samples with known protein concentrations were loaded into a pre-

cast 4-12% (w/v) polyacrylamide NuPage® gels with the first well loaded with a 

dual-colour protein ladder. In all our WB experiments glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as a loading control. By using a 

constant voltage of 80 V for the first 30 min and a 125 V for 90 min the proteins 

were separated electrophoretically on (SDS-PAGE) in a NuPage® MES SDS 

running buffer. Proteins separated on the gel were transferred electrophoretically 

onto nitrocellulose membranes at 30 V at RT for 90 min in a transfer apparatus 

filled with transfer buffer (25 mM Trizma base, 192 mM glycine and 20% (v/v) 

methanol). After proteins being transferred (checked by coloured molecular 
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weight ladder transfer), the membranes were blocked using (5% (w/v) skimmed 

dry milk in Tris buffered saline (TBS: 15 mM Trizma base, 137 mM NaCl, pH 7.5) 

containing 0.1% (v/v) Tween 20 (TBST) for 30 min at room temperature (RT) on 

a shaker. After blocking, the membranes were incubated with primary antibodies 

diluted in the blocking buffer overnight at 4˚C on a roller mixer. Next day, the 

membranes were washed using TBST (3 x 5 min each) at RT on a shaker. Later, 

they were incubated with the peroxidase-conjugated secondary antibodies 

diluted in the blocking buffer for 1 h at RT on a roller mixer. After 3 TBST washes 

(5 min each) were performed on a shaker at RT, the membranes were ready for 

the protein detection step. ECL Prime Detection Reagent was used according to 

the manufacturers’ instructions. The membranes were then imaged using 

ChemiDoc™ MP imager and Images were analysed using the ImageJ or Image 

Lab software. If re-probing was required, the membranes were incubated in a 

readymade concentrated stripping buffer for 20 min in a 37˚C water bath, washed, 

blocked and the same WB procedure was followed. Reagents and equipment 

used in protein analysis (WB) are shown in Table 2.4. Primary and secondary 

antibodies used in WB are listed in Tables 2.5 and Table 2.6 respectively. 
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Table 2.4. Reagents and equipment used in protein analysis (WB). 

Reagents/equipment Catalogue # Supplier/company 

2-Mercaptoethanol M3148 Sigma-Aldrich, UK 

Amersham ECL Prime Western 
Blotting Detection Reagent 

RPN2232 GE Healthcare, UK 

Bromophenol blue sodium salt B6131 Sigma-Aldrich, UK 

DCTM Protein Assay Reagents 
package 

500-0116 Bio-Rad, UK 

Dried skimmed milk (99.5%) 
UK FF 005M 
EC 

Marvel, Premier 
International Foods, UK 

Glycerol bidistilled 99.5% (w/v) 
AnalaR NORMAPUR 

24388.260 VWR, UK 

Glycine G8790 Sigma-Aldrich, UK 

Immobilon Western 
Chemiluminescent HRP Substrate 

WBKLS0500 Merck Millipore, UK 

Methanol NORMAPUR  20847.320 VWR, UK 

NuPAGE® MES SDS running buffer 
(20X) 

NP0002 Life Technologies, UK 

PageRuler™ Prestained Protein 
Ladder, 10 to 180 kDa 

26616 
Thermo Fisher Scientific, 
UK 

Precision Plus ProteinTM Dual Color 
Standards 

161-0394 Bio-Rad, UK 

Protein Assay Standard II (bovine 
serum albumin) 

500-0007 Bio-Rad, UK 

Sodium chloride GPR Rectapur® 27800.360 VWR, UK 

Sodium dodecyl sulfate (SDS)  161-0301 Bio-Rad, UK 

SuperSignal™ West Femto 
Maximum Sensitivity Substrate 

34094 Thermo Scientific, UK 

Trizma® base 33742 Sigma-Aldrich, UK 

Trizma® hydrochloride (Tris-HCl) T3253 Sigma-Aldrich, UK 

Tween® 20 P2287 Sigma-Aldrich, UK 

Restore™ PLUS Western Blot 
Stripping Buffer 

46430 Thermo Fisher Scientific, 
UK 

ChemiDoc™ MP System 17001402 Bio-Rad, UK 

Protein ladder 161-0374 Bio-Rad, UK 

CLARIOstar Microplate Reader 430-0673 BMG LABTECH, UK 

Nitrocellulose Membrane 0.45 µm 
pore size 

N8392 Sigma-Aldrich, UK 

NuPAGE™ 4-12% Bis-Tris Protein 
Gels, 1.5 mm, 15-well 

NP0336BOX 
Life Technologies, UK 
 

NuPAGE™ 4-12% Bis-Tris Protein 
Gels, 1.5 mm, 10-well 

NP0335BOX 
Life Technologies, UK 
 

NuPAGE™ 4-12% Bis-Tris Protein 
Gels, 1.0 mm, 12-well 

NP0322BOX  

Cell scraper 25cm 734-2602 VWR, UK 

PowerEase® 500 Power Supply EI8700 Life Technologies, UK 

QBT2 Block Heater  Grant 

Roller Mixer SRT6  Stuart, UK 

Sponge pads for Blotting EI9052 Life Technologies, UK 

XCell II™ Blot Module EI9051 Life Technologies, UK 

XCell SureLock® Mini-Cell EI0001 Life Technologies, UK 

Sonicator (SONIPREP 150) 71100-1129-06 MSE, UK 
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Immunofluorescence (IF) staining and live cell imaging.  

2.4.2.1. Immunocytochemistry (ICC). 

Cells required for ICC experiment were trypsinised, counted and 50,000 

cells/coverslip seeded on top of collagen coated (10 µg/ml, 2h, 37˚C) sterile round 

glass coverslips placed in 12-well plate. On the top of each coverslip 50-100 µl of 

cells were added and left in a 37˚C incubator to attach. Once cells were fully 

attached, the coverslips are flooded with 1ml of culture medium and returned to 

37˚C incubator. Next day, the cells were either washed with PBS and fixed or 

treated with a certain drug added to a required media and incubated for certain 

time before washing and fixing. For fixation, 1:1 (v/v) acetone/methanol was used 

at RT for 10 min, coverslips were then left to air dry. Fixed cells attached to cover 

slips were either used for immunofluorescence (IF) straight away or left in PBS 

at 4˚C for a few days or stored at -80°C for later use. Before incubating the 

coverslips with a primary antibody, the cells were blocked for 1 h at RT using 

(10% (v/v) normal goat serum (NGS) in washing buffer (0.1% Tween-20/PBS 

(v/v) to prevent non-specific binding of antibodies. For blocking, 20µl of the 

blocking buffer was placed as a drop on top of flat a surface covered with parafilm 

in which coverslips (cells facing up) were placed on top. After blocking, the cells 

were incubated in primary antibodies diluted in blocking buffer overnight at 4˚C in 

a moisturised and covered metal tray. Next day, coverslips were washed (3 x 5 

min each) with the washing buffer [0.1 % (v/v) Tween -20 in 1x PBS + few crystals 

of sodium azide] and incubated with suitable secondary antibodies diluted in the 

blocking buffer in the dark for 1 h at RT. All primary and secondary antibodies 

used in these experiments are listed in Tables 2.5 and 2.6, respectively. Following 

another wash with the washing buffer (2 x 5 minutes each), the cover slips were 

dipped in ddH₂O and stained using 1 µM DAPI (4', 6-diamidino-2-phenylindole; 
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nuclear counterstain) in PBS for 15 min and finally mounted onto microscopic 

slides using a DAPI free mounting medium. On some occasion, a mounting 

medium with DAPI was used in which the separate DAPI staining step was 

omitted. Stained samples were imaged using either a Leica Epi DM5000 

microscope or Leica Epi DM4000 equipped with a DFC350 FX digital camera 

under 20x/0.5 NA and/or 40x/0.75 NA objective lenses. The images were 

acquired by Metamorph imaging system and processed using the ImageJ 

software. 

2.4.2.2. Immunohistochemistry (IHC). 

Tissue sections (normal skin or OTs) bound to glass slides were first 

deparaffinised by treating with xylene twice for 5 min each. The sections were 

gradually rehydrated by emerging them into containers with decreasing strengths 

of ethanol (100%, 90%, and 70%), rinsed with distilled H2O and washed in PBS 

for 5 min. After washing, the antigen was retrieved by placing the slides in 1 X 

antigen retrieval buffer and boiling (95˚C) for 30 min. Later, slides were left for 

another 30 min at RT to cool down and then washed using PBS for 10 min and 

later washing buffer [ 0.2% (v/v) TX-100/PBS] 2X 5 min each. The tissue sections 

on the slides were then encircled with a Liquid Blocker Pen and blocked using a 

blocking buffer [10% NGS/5% BSA/washing buffer (v/v/v)] for 1 h at RT. The 

tissue sections were then incubated with primary antibodies overnight at 4°C and 

the following day the slides were washed with the washing buffer or with PBS (3 

x 5 min each) and then probed with the secondary antibodies in the dark for 1 h 

at RT. The primary and secondary antibodies were diluted in the blocking buffer 

as described for ICC (section 2.4.2.1). After washing traces of the secondary 

antibodies using washing buffer (3 x 5 min each), the tissue sections were quickly 

dipped in ddH₂O, dried and stained for DAPI for 15 min at RT. Slides were then 
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mounted using a mounting medium, left to dry at RT for 2 h and stored at 4˚C for 

later imaging.  

2.4.2.3. Live cell imaging. 

Live cell imaging is a powerful technique allowing visualisation and tracking of 

intracellular tagged or stained proteins as well as monitoring their behaviour and 

dynamics over a chosen period of time (Ettinger and Wittmann, 2014). In this 

study AcGFP tagged keratin K2 was visualised in MCF-7 cells over a period of 

hours under different experimental conditions. Cells used for live imaging were 

counted and 500,000 cell/dish were seeded in glass bottomed 6-cm dishes. Next 

day or when cells reached between 50%-70% confluence, growth conditions for 

the cells were altered before imaging the cells. The medium was changed to pre-

warmed clear live cell imaging medium with or without experimental treatment. 

Live cell imaging was carried out immediately on a confocal microscope (Nikon 

ECLIPSE TE2000-S) equipped with a spinning disk for recording rapid movement 

of particles within a live cell over a period of time. IQ Live Cell Imaging Software 

(Andor iQ3) was used for acquisition and visualisation. Image frames or snaps 

were recorded every 30 seconds and a minimum of 3 different z planes were 

taken for each image. Videos and montages were made using the Image J 

software. 

Material used in immunofluorescence and live cell imaging shown in Table 2.7. 
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Table 2.5. Primary antibodies used in WB, ICC and IHC.  

Antigen (clone) Type Host Catalogue #, supplier Dilution 

K1 monoclonal mouse RCK103 Abcam, UK 
 

IHC 1:100 
WB 1:1000 

K2 monoclonal mouse ab19122 Abcam, UK 
 

ICC/IHC 1:20 
WB 1:200-1:500 

K10 monoclonal rabbit ab76318 Abcam, UK IHC 1: 
WB 1:2000 

K14 (LL001) monoclonal mouse in-house Not diluted 

K15 (EPR1614Y) monoclonal rabbit ab52816 Abcam, UK IHC 1:100 

K15 (LHK15) monoclonal mouse in-house IHC 1:100 

K8/K18 (LE61) monoclonal mouse in-house ICC not diluted 

K8/K18 (LE65) monoclonal mouse in-house ICC not diluted 

K8/K18 (A4B/B3) monoclonal mouse in-house ICC not diluted 

Cornifin polyclonal rabbit ab123237 Abcam, UK IHC 1:100 

Loricrin polyclonal rabbit ab85679 Abcam, UK IHC 1:100 

Involucrin monoclonal mouse ab68 Abcam, UK IHC 1:100 

Hsp70 (5A5) monoclonal mouse ab2787 Abcam, UK WB1:1000 

K8(M20) monoclonal mouse ab9023 Abcam, UK WB 1:1000 

K8/p73 monoclonal rabbit ab32579 Abcam, UK WB 1:4000 

K8/p431 monoclonal rabbit ab59434, Abcam, UK WB 1:4000 

Filaggrin polyclonal rabbit ab81468, Abcam, UK IHC 1:100 

Flag monoclonal mouse F3165, Sigma 
Aldrich, UK 

WB 1:2000 
ICC 1:100 

GAPDH polyclonal rabbit ab9485, Abcam, UK WB 1:4000 

 

Table 2.6. Secondary antibodies used in WB, IF and IHC. 

Antibody  Type Host Catalogue #, supplier Dilution 

anti-mouse IgG,  
peroxidase-conjugated  

polyclonal goat AP124P, Millipore, 
UK  

WB 
1:600 

anti-mouse IgG,  
peroxidase-conjugated 

polyclonal shee
p 

NA931V, Sigma 
Aldrich, UK 

WB 
1:5000 

anti-rabbit IgG,  
peroxidase-conjugated 

polyclonal goat AP132P, Millipore, 
UK 

WB 
1:6000 

anti-mouse IgG (H+L), Alexa 
Fluor® 488-conjugate 

polyclonal goat A-11029, Life 
Technologies, UK 

ICC/IH
C 1:100 

anti-rabbit F(ab')2 IgG (H+L), 
Alexa Fluor® 488-conjugate 

polyclonal goat A-11070, Life 
Technologies, UK 

ICC 
1:100 

anti-mouse IgG (H+L), Alexa 
Fluor® 633-conjugate 

polyclonal goat A-21052, Life 
Technologies, UK 

ICC 
1:500 

anti-mouse IgG (H+L), Alexa 
Fluor®569-conjugate 

polyclonal goat A-11005, Life 
Technologies, UK 

ICC 
1:100 
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Table 2.7. Material used in immunofluorescence and live cell imaging. 

Reagents/ Equipment Catalogue # Supplier 

Acetone AnalaR NORMAPUR® 20066.330 VWR, UK 

DAPI, dilactate D9564 Sigma-Aldrich, UK 

Normal goat serum (NGS) ab7481 Abcam, UK 

Collagen type I rat tail (100 mg/28.1ml) 08-115 Cell Signalling, UK 

ProLong® Gold Antifade Mountant with 
DAPI 

P36935 
Thermo Fisher Scientific, 
UK 

Shandon™ Immu-Mount™ 9990402 Thermo Scientific, UK 

VECTASHIELD Antifade Mounting 
Medium with DAPI 

H-1200 
Vector Laboratories Ltd, 
UK 

Live cell imaging medium A14291DJ 
Thermo Fisher Scientific, 
UK 

VECTASHIELD Antifade Mounting 
Medium without DAPI 

H-1400 
Vector Laboratories Ltd, 
UK 

ImmuEdgeTM Pen H-4000 Vector Laboratories, UK 

Antigen revival buffer 10X S1699 DAKO,UK 

Microscopic glass slides 0.8-1 mm 1156-2203 Fisherbrand,UK 

Glass bottom dishes (FluoroDish™) 06062015 WPI, UK 

Leica Epi DM4000 Epi-fluorescence 
microscope 

 Leica Microsystems, UK 

Zeiss 710 Z2 confocal microscope  Zeiss, UK 

Confocal microscope (spinning disc) TE2000-S Nikon, UK 
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2.5. Gene analysis techniques. 

 Total RNA isolation and qPCR. 

Cells were seeded at the desired density 200,000 cells /well in 12-well plates in 

full RM+ medium, when cells were attached medium was changed to 4% serum 

containing RM+ medium either charcoal stripped or unstripped medium for 

overnight. In some experiments phenol free medium was also used. Next day, 

fresh medium was added plus treatment (AD with or without ATRA) for different 

time points, cells were then washed with PBS or PBS containing 0.02% EDTA to 

remove feeder fibroblasts before lysing the cells. RNeasy (QIAGEN, UK) was 

used to extract total RNA, RLT lysis buffer plus Marcaptoethanol was used to lyse 

the cells. Equal volume of 70% ethanol was added on the lysates and transferred 

into the RNA extraction columns. Cells were spun for 15 seconds maximum 

speed and washing buffers provided in the kit was used according to 

manufacturer’s instructions. Once RNA was extracted, concentration was 

measured using NanoDrop spectrophotometer and 1µg of RNA was used for 

cDNA synthesis using qPCRBIO cDNA Synthesis Kit, PCR Biosystem, UK. 

mRNA isolation and cDNA synthesis will be discussed in the following section 

2.5.2. 

 mRNA extraction and cDNA synthesis.  

Cells were seeded at the desired density of 200,000-500,000 cells/well in 12-well 

or 6-well plates, allowed to grow until they reached 60-70% confluence after 

which they were washed with PBS and lysed at the indicated time points after an 

experimental treatment or a specific media incubation. Lysates were either stored 

at -80 ˚C or subjected to mRNA extraction. Dynabeads® mRNA DIRECT™ kit 

was used to extract polyadenylated (polyA) mRNA according to the 
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manufacturer’s instructions. Total RNA was added to the Dynabeads /Binding 

Buffer suspension, mixed thoroughly and rotated on a mixer for 10 minutes at 

room temperature to allow mRNA to anneal to the oligo (dT) on the beads. Tubes 

then were placed on a magnetic rack until the solution was clear. Supernatant 

was discarded and tubes were removed from the magnet and washed twice with 

buffers A and B. After removing the washing buffer, tubes were taken out of the 

magnetic rack and eluted using 20 μl elution buffer (10 mM Tris-HCl, pH 7.5). 

Tubes were heated to 80°C for 2 minutes and placed immediately on the magnet. 

Eluted mRNA was transferred to a new RNase-free tube. 

The concentration of mRNA extracted was measured using a NanoDrop 

spectrophotometer at a setting of 40 OD at 260nm for 1µg/ml of mRNA. For cDNA 

synthesis, 50ng of pure mRNA was reverse transcribed using Reverse 

Transcriptor High Fidelity cDNA Synthesis kit with a master mix containing 

different components shown in the Table 2.8 or a qPCRBIO cDNA Synthesis Kit 

was used according to manufacturer’s instructions in which all components are 

ready mixed and this removes the need for user optimisation of these critical 

factors. 

Table 2.8. Master mix components for cDNA synthesis. 

Component Volume [µl] 

mRNA (diluted with 10mM Tris-HCl, pH 8.0) (50ng) 13.0 

Reaction buffer (5x) 4.0 

dNTP mix (10 mM each dATP, dCTP, dGTP, dTT) 2.0 

Random hexamer + oligo(dT)18 primer mix 0.8 

Protector RNase inhibitor 0.4 

Reverse transcriptase 0.4 

Total volume 20 ± 0.6 

  

The reverse transcription reaction protocol was as follows: 42°C for 30 min, 85°C 

for 5 min and 4°C for 5 min. The resulting cDNA was diluted using 140 μL 
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nuclease-free distilled H2O (1:8) (250 ng/μL) of cDNA. Diluted cDNA can be used 

straightaway for qPCR gene expression analysis or stored at -20°C for later use.  

 Real-time quantitative PCR (qPCR). 

Five or 10 µM forward and reverse (F/R) primer mixes were made by mixing equal 

volumes of forward and reverse primer stocks (100 µM) with suitable amount of 

nuclease-free H2O. For PCR amplification 384-well white plates were used with 

a total volume of 5 μl per well consisting of components shown in Table 2.9. 

Table 2.9. qPCR master mixture. 

Component Volume [µl] 

SYBR Green  2.5 

5 or 10 µM F/R primer mix 0.5 

cDNA template 2.0 

Total volume 5.0 

 

The cDNA samples were loaded into the bottom of the wells, followed by a 

mixture of SYBR Green and F/R primers added at the top wall of each well (in 

triplicates). Plates were well sealed, centrifuged and the plate was inserted into 

the LightCycler 480 machine for qPCR according to the protocol shown in Table 

2.10.  

Table 2.10. Conditions used for qPCR using Roche Light Cycler LC480. 

Step Function Temperature  Duration 

Denaturation  melting (hot start) 95°C 5 min 

Touch-down (8 cycles) gradual reduction of 
0.6°C/cycle to maximise 
primer specificity 

95°C 10 s 

66 – 60°C 6 s 

72°C 6 s 

Amplification (55 cycles) melting 95°C 10 s 

primer annealing 60°C 6 s 

product extension 72°C 6 s 

data acquisition 76°C 1 s 

Melting analysis melting 95°C 30 s 

cooling/annealing 65°C 30 s 

continuous data acquisition 65 – 99°C gradual 
increase 

Termination cooling 40°C 5 s  
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The relative quantification of mRNA gene expression was measured using 

LightCycler® 480 software (release 1.5.0). For normalisation, POLR2A and YAP1 

were used as reference genes. The stability of these reference genes in a wide 

range of keratinocytes (normal and cell lines) and under different cellular 

conditions make them a good choice to be used for this purpose (Gemenetzidis 

et al., 2009). Data ware plotted and statistically analysed using Microsoft Excel 

(t- test) as well as Anova.  

 Validation of the primers. 

Primers used for qPCR in this study were synthesised by Sigma-Aldrich, UK and 

they were either custom-designed or selected from previous studies. Lyophilised 

oligonucleotides were resuspended in the appropriate volume of 10 mM Tris-HCl, 

pH 8.0 to make 100 µM stock of primers and they were stored at -20°C. Forward 

and reverse primers were diluted in qPCR water to a working concentration of 10 

µM and stored at -20°C as well. To test the specificity of a primer set for a certain 

gene, a cell line that is known to express our gene of interest was used and its 

cDNA template was used in a qPCR reaction using a 96-well plate. Components 

used are shown in Table 2.11. 

Table 2.11. Master mixture used for primer validation. 

Component Volume [µl] 

SYBR Green  25.0 

5 or 10 µM F/R primer mix 7.0 

cDNA template 5.0 

Nuclease-free H2O 15.0 

Total volume 50.0 ± 2.0 

 

Primer pairs that were giving only a single melting peak in the PCR reaction were 

chosen. QIAquick Gel Extraction Kit were used and the concentration of amplified 
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DNA was measured using the NanoDrop spectrophotometer. Based on the total 

number of DNA copies, the following standard dilutions of the amplified DNA were 

prepared with 25 µg/ml tRNA: 1011, 109, 107, 106, 105, 104, 103 and 102 DNA 

copies/2 µl. Using this dilution series, a standard qPCR reaction with a total 

volume of 5 µl was performed to measure the efficiency of a particular primer pair 

using a standard curve. A value of 2.00 is considered to be an ideal efficiency, in 

which the amount of the target PCR product doubles with each PCR cycle 

(Tellmann, 2006).  

All qPCR primers used in this thesis are listed in Table 2.12. 

Reagents and equipment used in gene analysis are shown in Table 2.13. 

Table 2.12. List of the primers used in qPCR. 

Target 
gene 

Forward primer sequence 
(5’-3’) 

Reverse primer sequence 
(5’-3’) 

Amplicon 
Size 
(bp) 

KRT1 
CGGAACTGAAGAACATGC
AG 

CATATAAGCACCATCCACAT
CC 

128 

KRT2 
GCCTCCTTCATTGACAAGG
T 

CGGGTGCCAACATTCATT 95 

KRT10 
AAACCATCGATGACCTTAA
AAATC 

GCGCAGAGCTACCTCATTC
T 

134 

KRT14 
CGACCTGGAAGTGAAGAT
CC 

GTCCACTGTGGCTGTGAGA
A 

124 

POLR2A 
AGGAGTTTCGGCTCAGTG
G 

AGGTTCTCCAAGGGACTGC 128 

YAP1 ACTGCTTCGGCAGGTGAG 
TCGTCATTGTTCTCAATTCC
TG 

128 

cMyc CACCAGCAGCGACTCTGA 
CTGTGAGGAGGTTTGCTGT
G 

138 

18sRNA 
GCAATTATTCCCCATGAAC
G 

GGCCTCACTAAACCATCCAA 123 

 

Table 2.13. Reagents and equipment used in gene analysis. 

Reagents/ equipment  Catalogue # Supplier 

Dynabeads® mRNA DIRECTTM Purification kit 61011, 61012 
Life 
Technologies, UK 

LightCycler® 480 SYBR Green I Master 04707516001 Roche, UK 

qPCRBIO SyGreen Blue Mix Lo-ROX PB20.15-20 
PCR Biosystems, 
UK 

QIAquick Gel Extraction kit 28706 QIAGEN, UK 
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Transcriptor High Fidelity cDNA Synthesis kit 05081955001 Roche, UK 

tRNA R8505 
Sigma-Aldrich, 
UK 

Water DNase-, RNase-, protease-free 
(nuclease-free H2O) 

W4502 
Sigma-Aldrich, 
UK 

LightCycler® 480 Instrument  Roche, UK 

LightCycler® 480 Multiwell Plate 96 04729692001 Roche, UK 

LightCycler® 480 Multiwell Plate 384 04729749001 Roche, UK 

Mini Plate Spinner MPS 1000TM  Labnet, USA 

NanoDropTM 1000 Spectrophotometer  
Thermo 
Scientific, UK 

Veriti® 96-Well Fast Thermal Cycler  
Applied 
Biosystems 

qPCRBIO cDNA Synthesis Kit PB30.11-10 PCR Biosystems, 
UK 

RNeasy 74104 QIAGEN, UK 

 

2.6. Cloning and gene transfer. 

 Basic techniques. 

2.6.1.1. Restriction digestion. 

DNA was digested with one or two restriction enzymes in the presence of the 

appropriate reaction buffer. If required, bovine serum albumin (BSA) was added 

to prevent the adhesion of the enzymes to the walls of the reaction tubes. When 

the DNA digestion included two different enzymes requiring two different buffers, 

the insert and the vector were digested with the first enzyme, precipitated and 

only then digested with the second enzyme. The mixture was incubated at 37°C 

for several hours or overnight followed by addition of 1U of shrimp alkaline 

phosphatase and a further incubation of 30 min. The shrimp alkaline phosphatase 

treatment removed the 5’ phosphate from the linearised vector end eliminating 

the possibility of self-ligation. This would reduce the number of false positive 

colonies following transformation. 

2.6.1.2. Agarose gel electrophoresis. 

DNA fragments were separated using agarose gel electrophoresis. Briefly, 1 – 2 

% (w/v) agarose (depending on the size of the DNA fragments) gels were 
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prepared by dissolving the appropriate amount of agarose in TBE (Tris-Borate-

EDTA) buffer. Ethidium bromide (EtBr; 0.5 µg/ml) was added to the buffer for 

visualisation of DNA under UV light. An appropriate casting tray with a suitable 

comb was washed, dried and assembled. It was cooled by keeping it in a freezer 

for 10-15min. The casting tray was removed from the freezer and hand warm 

melted agarose was poured. After the gel had solidified, which took about 20 min, 

it was submerged in 1x TBE buffer in the gel tank containing 20µl EtBr. Samples, 

previously mixed with 6x DNA dye, were loaded onto the gel and run at 100 V for 

time required for sufficient separations of the bands. DNA ladder (1 kb or 100 bp) 

was used as a standard to size DNA bands. DNA fragments were then visualised 

under a UV transilluminator using G:BOX system and images were acquired with 

the Genesnap software. Reagents and equipment used for agarose gel 

electrophoresis shown in Table 2.14. 

Table 2.14. Reagents and equipment used for agarose gel electrophoresis. 

Reagents/equipment Catalogue # Supplier/company 

1 kb DNA Ladder N3232L NEB, UK 

100 bp DNA Ladder 15628-050 InvitrogenTM, UK 

UltraPure™Agarose 16500-500 Invitrogen, UK 

Ethidium bromide solution E1510 Sigma-Aldrich, UK 

SYBR® Safe DNA Gel 
Stain 

S33102 Thermo Fisher Scientific, UK 

TBE Buffer (10x) A0972,5000PE AppliChem GmbH, Germany 

G: BOX  Syngene, UK 

 

2.6.1.3. Ligation. 

Both the insert (cDNA of interest) and the vector were digested with the same set 

of restriction enzymes in appropriate reaction buffer. If needed, the target 

sequence was amplified by PCR using specific primers and 2 x Q5® Master 

Mixture containing high fidelity Q5® thermostable DNA polymerase, dNTPs, Mg2+ 

and a proprietary broad-use buffer. In most cases the digested vector was treated 
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with alkaline phosphatase to dephosphorylate 5’ DNA ends to prevent its re-

circularisation during ligation. The digested insert and vector DNAs were run on 

a 1% (w/v) agarose gel/1x TBE buffer to separate the fragments of interest. 

Agarose gel electrophoresis was performed as described in 2.6.1.2, except that 

wells were wide enough to fit 50 – 100 µl of the sample. When complete 

separation of bands was achieved, they were visualised using a long wavelength 

UV lamp and excised from the gel with a scalpel. The insert/vector DNA was 

extracted using QIAquick Gel Extraction kit according to manufacturer’s protocol. 

Afterward, the insert DNA was ligated into the vector DNA in the presence of the 

ligation buffer (50 mM Tris-HCl, 10 mM MgCl2, pH 7.5), 2 mM ATP, 10 mM DTT 

and 10U T4 DNA ligase. A control ligation reaction containing only the vector 

(with no insert) was set up alongside to determine the degree of self-ligation. Both 

the reaction and control ligation mixtures were incubated at RT for 4 h. The 

ligation mixtures were then diluted 1:3 with either H2O or 10mM Tris-HCl buffer, 

pH 8.0 and used for transformation of NEB Stable competent cells. Reagents 

used for DNA ligation shown in Table 2.15. 

Table 2.15. Reagents used for DNA ligation.   

Reagents Catalogue # Supplier 

Antarctic Phosphatase or Shrimp alkaline 
phosphatase 

M0289S NEB, UK 

T4 DNA ligase M0202L NEB, UK 

QIAquick Gel Extraction Kit 28706 QIAGEN, UK 

 

2.6.1.4.  Competent cells transformation and preparation of mini- and maxi 

DNA preps. 

E. coli competent cells (either NEB stable or Stl2) were thawed on ice and 

incubated with the diluted ligation mixtures (prepared as described in section 

2.6.1.3) containing vector and insert or vector alone for 30 min, followed by a heat 

shock at 42°C for 25-45 sec (time depending on the E.coli strain). Thereafter, 500 
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µl of S.O.C. medium containing high concentration of glucose was added and the 

E. coli were incubated at 30°C for 1 – 2 h under shaking (300 rpm) to allow them 

to recover. The transformed bacteria were then plated onto pre-warmed agar 

plates [1.5% (w/v) agar in Lysogeny Broth; Luria-Bertani (LB)] containing 100 

µg/ml ampicillin and these were incubated upside down overnight at 30°C. Next 

day, single colonies were picked with a sterile loop and suspended into 10 – 20 

ml of LB medium containing 100 µg/ml ampicillin. LB medium was prepared by 

dissolving 5 g yeast extract, 10 g tryptone and 10 g NaCl per litre of distilled water 

and sterilised by autoclaving. Tubes with colonies were incubated overnight at 

30°C in an incubator shaker at 300 rpm. The following morning, tubes were 

centrifuged at 4000 rpm for 30 min at 4°C and the supernatants were discarded. 

The bacterial pellets were lysed, and DNA was purified using the isopropanol 

DNA precipitation method or using the QIAprep Spin Miniprep kit according to 

manufacturer’s protocol. DNA samples were later digested with appropriate 

restriction enzymes and processed for DNA gel electrophoresis to identify clones 

carrying the correct insert. These clones were sequenced by the dideoxy method 

for confirmation and the correct ones were used for “maxi DNA prep”, which was 

performed using QIAGEN Plasmid Maxi kit according to manufacturer’s protocol. 

Reagents and equipment used in preparing mini and maxi DNA preps are shown 

in Table 2.16. 
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Table 2.16. Reagents and equipment used in preparing mini and maxi DNA preps. 

Reagents/equipment  Catalogue # Supplier/company 

UltraPure™Agarose 16500-500 Invitrogen, UK 

Ampicillin sodium salt A0166 Sigma-Aldrich, UK 

Bacto™ Tryptone 211705 BD Biosciences, UK 

BBL™ Yeast Extract 211929 BD Biosciences, UK 

MAX Efficiency® Stbl2™ Competent Cells 10268-019 Invitrogen, UK 

NEB Stable Competent E. coli (High 
Efficiency) 

C3040I NEB, UK 

QIAGEN Plasmid Maxi Kit 12163 QIAGEN, UK 

QIAprep Spin Miniprep Kit 27106 QIAGEN, UK 

Heraeus™ Multifuge™ 3SR+ - Thermo Scientific, UK 

Incubator shaker G25 - 
New Brunswick 
Scientific, USA 

Incubator Labheat - Boro Labs, UK 

Sorvall® RC-5C Plus Superspeed 
Centrifuge 

- Beckman Coulter, US 

 

SOC medium preparation. Two grams of tryptone, 0.5gm yeast extract, 50 mg 

NaCl, 0.5ml of 2M MgCl2 and 1ml of glucose is dissolved in a total volume of 

100ml of distilled water. The solution is sterilised by filtration and aliquoted in 5ml 

aliquots. 

 Transfection and luciferase reporter assay. 

2.6.2.1. Transfection. 

HaCaT keratinocytes were seeded at150,000 cells/well in 24 well plates in full 

DMEM (10% FCS, 1%PS). When cells are 50-70 % confluent, the medium was 

changed to fresh full medium and the cells were transfected with 1,2 and 3 µg of 

plasmid DNA (Plpc-puro-AcGFP) using different transfection reagents for 

optimisation experiments. For example, Viromer Red, X-Fect transfectin reagent, 

TransIT®keratinocyte reagent, DreamFect ™Gold,Helix-N and Promofectin were 

all used according to manufacturer’s instructions (Table 2.17). In some wells, 

Magnitofection CombiMag was used with these reagents with the aid of a 

magnetic plate to increase transfection efficiency. The transfection efficiency was 

assessed by monitoring green fluorescent protein tag (GFP) expression using 
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Nikon Eclipse TE2000-S microscope equipped with a camera. High and low 

calcium containing medium were used to see if calcium levels could affect 

transfection efficiency. High calcium was1.8 mM while low calcium was 0.01-0.03 

mM. 

For Luciferase experiments, HaCaT cells were seeded at 100,000 cells/ well in 

24- well plates in full DMEM (10% FCS and 1% PS). Next day, when cells reached 

50-70% confluency, Viromer Red transfection reagent was used with total DNA 

used (2µg) for 48 hours before measuring the luciferase activity. 

2.6.2.2. Constructs used for luciferase reporter assay. 

AP-1 luciferase reporter construct and its mutant form were generated by ligation 

of a HPLC-purified oligonucleotide containing six copies of the AP-1 responsive 

element [TGA(C/G)TCA] (Angel et al., 1987) or its mutant form [TAA(C/G)TAA] 

(Wade et al., 1992) into KpnI and BglII sites of the pGL4.26 vector. This vector 

can be used in luciferase enhancer activity measurement as it contains a minimal 

promoter (Brown et al., 1993). To prepare K10 and K2 luciferase reporter 

constructs, multiple fragments of K10 and K2 promoter (F1 – F8) were amplified 

by PCR and cloned into KpnI and HinDIII sites of pGL4.14 vector which lacks any 

eukaryotic promoter activity. These constructs were made by my supervisor, Prof. 

Ahmad Waseem, who kindly provided them for this work. Other 

constructs/vectors used in this study, including TAM67/pcDNA3 pUC, Renilla 

CMV, pGL4.14 K14, pGL.4.14, pGL4.26 were also provided by my supervisor, 

Prof. Ahmad Waseem. 

2.6.2.3. Luciferase reporter assay. 

Cellular activity of the transcription factor AP-1 and the K2 and K14 promoter 

were measured by luciferase reporter assay. HaCaT keratinocytes and HEK293 
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cells were seeded in 24-well plates at 100,000 cell/well and transfected with 2µg 

of AP-1 promoter in pGL4.26 vectors (expressing firefly luc2 (Photinus pyralis)) 

or K2,K14 promotors in pGL4.14 vectors again expressing firefly activity. pRL 

Renilla Luciferase Control Reporter Vector (plasmid expressing Renilla 

luciferase) was used as an internal control to normalise the values of the 

experimental reporter gene (firefly) for variations that could be caused by 

transfection efficiency and sample handling. Viromer Red transfection reagent 

was used and pUC18 DNA was added to keep the total amount of transfected 

DNA constant in all samples. After 48 hours, the DNA-containing medium was 

replaced with appropriate amount of fresh culture medium (containing 10nM PMA 

in DMSO or 0.01% DMSO as a vehicle control) for up to 8 hours for AP-1 

transfected cells before being lysed for luciferase activity measurement. Cells 

transfected with K2 and K14 vectors were lysed after 48 hours of transfection to 

measure luciferase activity. To measure luciferase activity, cells were washed 

with PBS, incubated with 250 µl passive lysis buffer (PLB) for 45 min on gentle 

shaker at RT and assayed for luciferase activity using Dual-Luciferase® Reporter 

Assay System. Luciferase Assay Reagent II (LARII) (50µl) was added to 10 µl 

lysate, previously transferred to black plates with optical bottom, and firefly 

luminescence was measured. Subsequently, the firefly luminescence was 

quenched by adding 50 µl Stop&Glo reagent in Stop&Glo buffer and Renilla 

luminescence was measured to correct for transfection variability. Lysates were 

also normalised for variations in protein concentration determined by DC Protein 

Assay Kit (section 2.4.1.1). All measurements were conducted using FLUOstar 

Optima Microplate Reader and analysed using Microsoft Excel 2010.  
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Table 2.17. Reagents used in transfection and luciferase assay. 

 

 Retroviral transduction. 

2.6.3.1. Retrovirus production using Phoenix A cells transfection. 

Twenty-four hours prior to transfection, 1.5 – 3 x 106 of Phoenix A cells(human 

embryonic kidney cell line, a second generation retrovirus producer cell line) were 

seeded onto 10-cm collagen-coated (10 µg/ml for 1h at 37°C) dishes. Next day, 

a mixture of target plasmid DNA (15 µg) and transfection reagent TransIT®-LT1 

(45 µg) was incubated for 15 min at RT in a total volume of 1.5 ml with PBS or 

DMEM. The DNA/TransIT®-LT1 complex was added dropwise into the medium 

covering the cells. The cells were incubated for the following 24 – 36 h and, after 

becoming approximately 80% confluent, they were trypsinised and seeded in 

collagen-coated T75 flasks. After allowing Phoenix A cells to attach, suitable 

antibiotic was added to the medium to select the successfully transfected cells. 

Phoenix A cells transfected with an empty vector and un-transfected Phoenix A 

Reagents/equipment Catalogue # Supplier 

Dual-Luciferase® Reporter Assay 
System 

E1980 Promega, UK 

pRL-TK vector E2241 Promega, UK 

Viromer Red Transfection 
Reagent 

VR-01LB-01 
Lipocalyx, Promega, 
UK 

X-Fect transfection reagent PT5003-2 
Clontech laboratories, 
UK 

TransIT®-Keratinocytes reagent 81054927 Mirus, UK 

DreamFect ™Gold DG80040 OZ Biosciences, UK 

Magnitofection CombiMag CM20025 OZ Biosciences, UK 

Helix-N™ HX10030 OZ Biosciences, UK 

Promofectin 
PK-CT-2000-
10 

Promokine, UK 

FLUOstar Optima Microplate Reader  BMG Labtech, UK 

Microscope Nikon Eclipse  TE2000-S Nikon 

Nunc™ MicroWell™ 96-Well Optical-
Bottom Plates 

265301 Thermo Scientific, UK 

Renilla CMV vector E2261 Promega, UK 

pGL4.14 vector E6691 Promega, UK 

pGL4.26 vector E8441 Promega, UK 

PMA P1585 Sigma-Aldrich, UK 
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cells were used as controls. After few days of drug selection, Phoenix A cells 

were trypsinised and re-plated into three collagen-coated T175 flasks. When they 

became almost 100% confluent, remnants of the antibiotic were washed away, 

and the cells were incubated with 14 ml of fresh medium for exactly 24 h at 32°C. 

This is an optimal temperature for production of viral particles (Kotani et al., 1994, 

Anson, 2004). The retroviral supernatants were collected, spun down at 4300 rpm 

for 20 min at 4oC and snap-frozen in liquid nitrogen. Cryovials with viral 

supernatants were stored at -80°C until use. Medium in T175 flasks was 

replenished and the same cycle of collecting the supernatants was repeated two 

more times. The transfection efficiency was assessed by monitoring GFP 

expression using Nikon Eclipse TE2000-S inverted microscope equipped with a 

digital camera. 

2.6.3.2. Transduction of MCF7 cell lines. 

MCF7 cells were seeded in a 6-well plate at about ≤ 50% confluence at the time 

of transduction. Next day, cells were incubated with fresh medium containing 5 

µg/ml Hexadimethrine bromide (polybrene) for 10 min at 37°C. Polybrene is a 

polymer used to increase the efficiency of retrovirus-mediated gene transfer by 

enhancing adsorption of the viral particles onto the cell membranes (Davis et al., 

2002, Swift et al., 2001). Polybrene-containing medium was replaced with 

retroviral supernatant containing the same concentration of polybrene (5 μg/ml). 

The plates were immediately centrifuged at 1000 rpm for 1 – 1 h at 32°C and 

incubated at 32°C for the following 24 h. Subsequently, the retroviral supernatant 

was replaced with fresh culture medium and the plates were further grown for 2 

– 3 days at 37°C for viral integration and expression of the transduced genes. 

The transduced cells were trypsinised, plated in T75 flasks and cultured for few 
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weeks with drug selection. Reagents used in retroviral transduction are shown in 

Table 2.18. 

Table 2.18. Reagents used in retroviral transduction. 

Reagents Catalogue # Supplier 

Collagen Type I, rat tail 08-115 Merck Millipore, UK 

Hexadimethrine bromide 
 (Polybrene) 

107689 Sigma-Aldrich, UK 

TransIT®-LT1 Transfection 
Reagent 

MIR 2300 
Mirus Bio, US 

UK supplier: Cambridge BioScience 

 

2.6.3.3. Drug selection. 

Depending on the vector used for transfection/transduction, a suitable antibiotic 

(hygromycin, G418 or puromycin) was added into the cell culture medium for as 

long as necessary to select successfully transfected or transduced cells. The 

optimal antibiotic concentration was determined for each cell type by performing 

a kill curve. Briefly, cells plated in 6/12-well plates were cultured in the presence 

of incremental amounts of the appropriate antibiotic and their vitality was 

examined daily using Nikon Eclipse TE2000-S inverted microscope equipped 

with a camera. Reagents and equipment used in drug selection are shown in 

Table 2.19. 

Table 2.19. Reagents and equipment used in drug selection. 

Reagents/ Equipment Catalogue # Supplier 

G418 disulfate salt A1720 Sigma-Aldrich, UK 

Hygromycin B solution from 
Streptomyces hygroscopicus 

H0654 Sigma-Aldrich, UK 

Puromycin dihydrochloride A11138-03 Gibco®, UK 

Inverted Microscope (Nikon Eclipse) TE2000-S Nikon, UK 

 

2.7. Statistical analysis. 

Statistical analyses were performed using Microsoft Excel 2010 and Graph Pad 

Prism 7. All data are expressed as standard error of the means (n=3), statistical 
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significance was determined with unpaired Student’s t-test or Anova (one-way or 

two-way) calculating p-values on raw data. 
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3. Results I. Keratin filament dynamics, heat stress 

response and role of phosphorylation in live epithelial 

cells. 

3.1. Introduction. 

Around one third of cellular proteins undergo phosphorylation, a process in which 

a phosphate group is added onto a protein in order to modify its function 

according to the need of the cell. It is one of the PTMs that takes place after 

proteins are synthesised. Kinases and phosphatases are the key players in this 

process and they are both regulated by other enzymes that are activated by the 

cellular response to various stimuli (Sefton and Shenolikar, 2001). 

Phosphorylation of proteins can be a normal physiological event as well as 

happening during a disease process and its function can be to control the cell 

fate at the end of a cellular response. In epithelial cells, phosphorylation of 

keratins can change the functional and physical characteristics of the cell. For 

example, filaments re-organise around the nucleus in response to stress as a 

result of filaments phosphorylation. Phosphorylation plays a role during cell 

growth as well, Phosphorylation regulates cell growth by allowing the adaptor 

protein such as members of 14-3-3 family of proteins to bind to phosphorylated 

intermediate filaments, that later binds to other factors facilitating polarised 

cytoskeletal assembly during cell migration, changing the function from being a 

structural support protein to a cell migration facilitating protein (Snider and 

Omary, 2014). During mitosis and metastasis, phosphorylation does take place 

allowing the filaments to break into a soluble form giving cells the chance to split 

or move freely through the basal (or basement) membrane. This change in the 

physical properties of the epithelial cells is an example of the important role that 

phosphorylation plays in controlling cellular fate (Kim et al., 2015a). 
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Phosphorylation sites in keratins are located mostly in the head and tail domains 

and the addition of a phosphate group at these sites increases keratin solubility. 

Phosphorylation of keratins will increase the negative charges on the polypeptide, 

which will induce repulsive forces thereby affecting filament stability and allowing 

the filaments to breakdown into globules and become more soluble. These 

changes are needed temporarily in some cellular conditions such as during cell 

division, intracellular  trafficking and cell migration (Yatsunami et al., 1993). This 

property also allows other exogenous keratins to incorporate into the network 

without affecting normal cell physiology and homeostasis (Windoffer et al., 2011). 

However, permanent breakdown of filaments could be a sign of EMT that allows 

the cell to move freely as in the case of cancer metastasis (Kim et al., 2015a, 

Snider and Omary, 2014). So, maintaining a balance between phosphorylation 

and dephosphorylation is necessary for the cell to maintain normal functions. 

Phosphatase inhibitors are well known pharmacological agents used to study 

protein phosphorylation. Serine and threonine phosphatase inhibitors are widely 

used, and this has enabled researchers to look at their effect on protein dynamics 

and functions. OA and CL-A are used to inhibit Ser/Thr PP1 and PP2A with CL-

A being more potent on PP2A than OA (Dounay and Forsyth, 2002, Takuma et 

al., 1993).  

Tissue homeostasis is a physiological process in which there is a balance 

between cellular growth and cell death. When cells are exposed to stress, this 

equilibrium is disturbed, and a stress response is activated leading either to cell 

survival (if stress can be encountered) or cell death pathways are induced. There 

are many different types of stresses that a cell may experience, some are intrinsic 

in nature that the cell faces during normal physiology such as during mitosis, for 

example. Stress could also be extrinsic as certain environmental changes that 
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could directly or indirectly affect cellular functions, and it could be physical or 

chemical in nature (Toivola et al., 2010). Elevated temperature, more than 5oC 

above normal body temperature, heavy metals, oxidants that generate free 

radicals, certain drugs and bacterial/viral infections are considered different forms 

of stresses (Fulda et al., 2010). The response of a cell towards a stress differs 

depending on the type and strength of the stress, the cell may move toward a 

protective response that stops cell death, and this is mediated through the 

activation of pro-survival pathways. One of the key factors playing a role in this 

pathway is the heat shock factor 1 (HSF1), which is a transcriptional factor 

distributed in the nucleus and the cytoplasm. In normal physiological conditions 

HSF1 exists as a monomer inactivated by binding to a constitutive form of heat 

shock proteins (HSPs) in the cytoplasm. When the cells are subjected to a type 

of stress such as heat shock, the complex of HSF1 with HSP become misfolded 

and start to denature and this leads to dissociation of HSF1 from its HSP 

counterpart to form a trimer that enters the nucleus and binds to its heat shock 

element on the target gene to induce transcription (Morimoto, 1993). This 

response is quick and takes only few minutes and leads to synthesis of heat 

shock proteins that play a role in cell survival. HSF1 is inactivated after returning 

the cell to normal physiological temperature through negative regulation by HSP. 

Synthesis of HSPs after the heat shock leads to thermotolerance, which is the 

ability of the cell to withstand severe heat shock after being subjected to a mild 

one. Thermotolerance is a characteristic of HSPs that bind to misfolded proteins 

after the heat shock to prevent aggregation. Thermotolerance starts within a few 

hours after the mild heat shock and lasts for a few days (Dorion and Landry, 

2002). 
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HSPs are a large family of chaperon proteins, which under physiological 

conditions act as pro-survival proteins when cells are put under stress. Among 

the HSP family, HSP70 is a well-studied highly conserved group that is made up 

of four different members (HSP72, HSP73, HSP75, and HSP78) that share the 

same protein sequence but they are synthesised in response to different stimuli 

(Kregel, 2002). HSP70 is constitutively expressed inside the cell even when there 

is no heat shock and this form of HSP70 is named HSC70 while the inducible 

form is HSP72. When cells are subjected to stress, HSPs undergo post-

translational modifications that change their configuration allowing HSF1 to be 

detached and activated. This allows synthesis of the inducible HSPs that in turn 

switch on the stress protective function inside the cell. Keratins are affected in 

response to certain types of stresses that could induce phosphorylation and affect 

their dynamics and organisation (Liao et al., 1997, Kim et al., 2015a). After 

exposure to heat shock, which is a form of stress, MAPKs are activated as the 

stress response and in the case of keratin filaments, p38 MAPK plays an 

important role in phosphorylating certain keratin residues. Keratin 

phosphorylation leads to formation of granules, which are associated with p38 

MAPK when assayed using antibodies. Phosphorylation of K8 on S73 residue is 

mediated by p38 kinase, and this has been shown by using K8 phosphoserine 

antibody that shows co-localisation of keratin granules (formed in response to 

treating cells with a phosphatase inhibitor) with phosphorylated p38. Keratins 5 

and 6 are also phosphorylated on S73 by p38 MAPK exactly as K8 but they are 

also phosphorylated on threonine residues as well (Toivola et al., 2002). Treating 

the cells with a p38 inhibitor showed more stable filaments that are unable to form 

granules when treated with phosphatase inhibitors (Liao et al., 1997). 
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In this chapter the role of introducing an exogenous keratin (K2) that was tagged 

at the N-terminus (head domain) into the pre-existing keratin network of MCF-7 

cells was investigated, its integration and its effect on both filament dynamics as 

well as stability were studied. MCF-7 cells do express K8/K18/K19 but not K2 

(Godfroid et al., 1991). K2 construct was available in the lab made by my 

supervisor Professor Ahmad Waseem. Besides being ready to use, K2 is an 

interesting keratin to be studied, as it has been shown to be downregulated after 

several passages in cultures of skin biopsies with no studies done on factors that 

might be regulating this downregulation. K2 is a terminal differentiation marker of 

stratified epithelium and it is upregulated in pre-cancerous hyperkeratotic oral 

lesions, more investigations were done on  this protein starting from its integration 

and stability. To investigate the effect of phosphorylation, phosphatase inhibitors 

were used and the level of filaments breakdown among MCF-7 cells transduced 

with K2 were compared with empty vector control cells. Stress induces 

phosphorylation through activating SAPKs, and heat shock is a type of stress that 

our keratins face every day. The role of HSPs on keratin phosphorylation and 

breakdown in transduced MCF-7 cells in response to heat shock was studied. 

Epithelial cells generally are not very efficient in taking up DNA, so transfection 

could not be used to introduce K2 tagged to AcGFP or FLAG expression vectors 

into cells. An alternative strategy of packaging the AcGFP-K2 or FLAG-K2 

(shorter tag) into recombinant retroviruses was used, which was transduction into 

MCF-7 cells. The transduced AcGFP-K2 MCF-7 cells produced green fluorescent 

keratin cytoskeleton while the FLAG-K2 transduced ones were stained using 

secondary antibodies that recognises anti-FLAG primary antibody. 

Cells used in this chapter are MCF-7 cells, grown in DMEM with 10% FCS and 

1% PS in 37°C incubator unless mentioned elsewhere. Drugs were dissolved in 
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DMF (0.05%), for immunostaining images a Leica DM5000B or DM4000 Epi-

fluorescent upright microscope was used and Spinning disc confocal microscope 

was used to record live cell imaging video. More details of experimental 

procedures are described in Materials and Methods. 

 

3.2. Integration of Keratin K2 into the pre-existing keratin 

network of MCF-7 cells. 

Transducing MCF-7 cells with AcGFP-K2, turned the keratin cytoskeleton in 

MCF-7 into green under a fluorescence microscope (Figure 3.1) suggesting that 

AcGFP-K2 might have integrated to the pre-existing keratin network, since K2 on 

its own, as any other keratin, would not form filaments (Bragulla and Homberger, 

2009). To provide evidence that AcGFP-K2 had integrated into the pre-existing 

keratin network, the AcGFP-K2 transduced MCF-7 were immunostained with the 

monoclonal antibody mAb (LE65), which reacts with the endogenous keratin 

network containing K8 and K18/19 (Waseem et al., 1997), and counter stained 

the cells with AF-633-labelled rabbit anti-mouse IgG. The AF-633 staining 

produced a red cytoskeletal network as shown in Figure 3.1. When the AcGFP 

staining was merged with the AF-633 staining, the filaments overlapped perfectly, 

and the keratin network turned yellow in colour (Figure 3.1 d) suggesting the K2 

fusion protein had integrated into the pre-existing network. AcGFP is a large 

protein molecule with a molecular weight of about 26kDa which would make the 

molecular weight of the AcGFP-K2 fusion protein to about 96kDa. To 

demonstrate that the presence of such a large AcGFP protein molecule at the N-

terminus of K2 will not affect its integration into the pre-existing network, another 

fusion protein was produced in which a much smaller non-fluorescent tag 3X 
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FLAG was linked to K2 protein at the N-terminus. This fusion protein, termed 

FLAG-K2, was transduced into MCF-7 and the cells were incubated with anti-

FLAG (mAb) as well as LE65 (mAb). Double labelling the cells with AF-488 and 

AF-633 allowed the cells to be visualised in the green for FLAG tag as well as in 

red channel for endogenous keratins K8/K18. As shown in (Figure 3.1 h), the 

FLAG-K2 and LE65 staining overlaps perfectly with the resultant stating turning 

into yellow suggesting that K2 had integrated into the pre-existing keratin 

cytoskeleton. This set of experiments shows that keratin integration is 

independent of the size of the tag at the N-terminus. To further demonstrate that 

K2 has been introduced inside the MCF-7 cells protein analysis was performed 

by western blotting using mouse anti-K2 that gave rise to an immunoreactive 

band of around 70 kDa only in cells transduced with AcGFP-K2 (>70 kDa) or 

FLAG-K2 (<70 kDa) as shown in Figure 3.2 (A) which also confirmed the 

specificity of the antibody. The specificity of the antibody was also determined 

using immunofluorescence staining in Figure 3.2 (B) in which MCF-7/FLAG-K2 

cells only showed green filaments network compared to untransduced MCF-7 or 

MCF-7 transduced with an empty vector MCF-7/FLAG-C. 
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Figure 3.1. Integration of Keratin K2 into MCF-7 keratin network. MCF-7 cells transduced 
with AcGFP-K2 or FLAG-K2 were grown in full medium (DMEM, 10% FCS,1%PS). The AcGFP 
tagged K2 gave green fluorescence, the FLAG tagged K2 was stained in green using anti-FLAG 
antibody and AF-®488. The endogenous keratins were stained in red using mouse monoclonal 
LE65 antibody and AF-® 633 rabbit anti-mouse. Nuclei were stained with DAPI in blue and 
overlapping is shown as Merge. This figure shows full integration of K2(green) with endogenous 
keratins(red) as the network is turning yellow in d and h. Leica DM5000B Epi-fluorescence 
microscope and DFC350 camera were used for recording images. (Scale bar = 20 µm). 
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Figure 3.2. Specificity of K2 antibody. (A) MCF-7 cells untransduced and transduced with 
AcGFP-K2 or AcGFP-C, FLAG-K2 or FLAG-C were grown in full medium (DMEM, 10% 
FCS,1%PS), lysed for protein analysis by western blotting using anti-K2 mouse antibody. GAPDH 
was used as a loading control. (B) Immunostaining of MCF-7 cells and MCF-7 transduced with 
FLAG-K2 or FLAG-C were stained with the same K2 antibody, AF-®488 was used as secondary 
antibody showing green fluorescence. Nuclei were stained with DAPI in blue and overlapping is 
shown as Merge. This figure shows the specificity of K2 antibody as it only reacted with MCF-
7/FLAG-K2 cells in WB and immunostaining. Leica DM5000B Epi-fluorescence microscope and 
DFC350 camera were used for recording images. (Scale bar = 20 µm). 

 

 



 

106 
CHAPTER 3 

3.3. Integration of K2 into the simple epithelial keratin 

network did not affect normal cell physiology of MCF-7 

cells. 

 Mitosis. 

The complete integration of AcGFP-K2 into MCF-7 cytoskeleton as shown in the 

previous section and the resultant labelling of the keratin network allowed us to 

monitor filament dynamics in live MCF-7 cells. The growth profile of MCF-7 cells 

containing the integrated AcGFP-K2 in their cytoskeleton did not change 

suggesting that exogenous K2 did not affect the growth characteristics. Further 

investigation was done to show whether integration of AcGFP-K2 into the pre-

existing keratin network of MCF-7 affected their ability to undergo mitosis. MCF-

7/AcGFP-K2 cells were grown in glass bottom dishes suitable for live cell imaging 

and replaced the medium with the clear imaging medium just before recording. 

Live imaging of these cells was carried out using spinning disk confocal 

microscope equipped with a stage that can be maintained at a constant 

temperature. In most cells, keratin filaments were spread across the cytoplasm 

reaching to the cell membrane. As a labelled cell began to undergo mitosis, the 

keratin cytoskeleton started to condense, and the cell started to round up. The 

filaments closer to the membrane started to break into globules and the cell 

rounding continued leading to complete disruption of filaments into globules. As 

the cell started to divide the keratin globules were equally distributed into the two 

halves just before cytokinesis. As shown in Figure 3.3 the keratin cytoskeleton 

started to repolymerise and extend once cells had started to spread following 

cytokinesis. This indicates that the integration of K2 into the endogenous network 

of MCF-7 cells didn’t affect the normal physiological processes such as cell 

division. 
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Figure 3.3. Reorganisation of keratin filaments during mitosis. MCF-7 cells expressing 
AcGFP-K2 were grown in full medium (DMEM, 10% FCS,1%PS), in glass bottom dishes for time-
lapse recording. At the beginning, the filaments were spread across the cell reaching the cell 
membrane (0 min), filaments starts moving toward the nucleus (48.3 min), cell started to round 
up (55 min and 1.2 h) and filaments condensed around the nucleus, breakdown of filaments into 
granules at the periphery (1.2 h), granules all over the cytoplasm, soluble form (1.5 h), starts 
dividing, daughter cells have keratin in granular form (2.3-2.5 h), granules started to join forming 
squiggles at the cell periphery (3h). This figures shows stages of keratin reorganisation inside the 
cell during mitosis. Spinning disk confocal microscope was used for recording images. (Scale bar 
= 10µm). 

 

 Dynamic equilibrium of keratin network. 

Fluorescent-labelled keratin filaments in MCF-7 expressing AcGFP-K2 cells were 

used to show that K2 becomes part of the normal turnover of keratin cytoskeleton 

and this cycle was not affected by introducing K2 into the network. In live cells, 

keratin filaments appear to be in a continuous dynamic state. Time-lapse 

microscopy showed that keratin globules exist mostly at the cell periphery where 

focal adhesions are located. As shown in Figure 3.4 these globules slowly merge 

with the existing filaments, which are constantly moving towards the nucleus and 

disappear. This perhaps indicates that the filaments constantly undergo 

disassembly near the cell periphery and undergo assembly and condensation as 

they move closer to the nucleus. 
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Figure 3.4. Time-lapse microscopy of keratin assembly and dis-assembly in the cytoplasm. 
(A) MCF-7 cells expressing AcGFP-K2 form globules mostly at the cell periphery. A globule is 
formed at 3.5 min (shown by an arrow), which slowly starts to integrate into filaments and 
completes the integration in 1.3 h. Another globule is shown in 1.7 h that is integrating into the 
network at 3h. (B) The keratin filaments that are spread across the cytoplasm constantly move 
towards the nucleus away from the cell periphery as a band. This band contains only filaments 
and could constitute the polymerisation zone for the filaments in the cytoplasm. This figure shows 
the integration of keratin granules into existing network and its directionality. Spinning disk 
confocal microscope was used for recording images. (Scale bar = 10 µm). 
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3.4. Keratin hyperphosphorylation breaks down 

filaments in MCF-7 cells (use of phosphatase inhibitors). 

To investigate the disruption of keratin network by phosphorylation, un-

transduced MCF-7 cells were treated with two inhibitors, OA and CL-A the potent 

inhibitors of PP1 and PP2A. The disrupted filaments were visualised by 

immunostaining using LE65 (mAb) and AF-488 labelled anti-mouse secondary 

antibody. Different concentrations of both inhibitors were tested, and images 

shown are for concentrations that showed breakdown of the filaments while cells 

were still attached. For OA the working concentration was 300 nM incubated for 

3 h (Figure 3.5), while for CL-A the working concentration was 2 nM for 1h 

(optimisation data shown in Figure A.1 in appendix), suggesting a more potent 

effect of CL-A compared to OA. Filaments breakdown as a result of phosphatase 

inhibitors treatment is shown in Figure 3.6. 

 

Figure 3.5. Keratin filament disruption at different concentrations of OA. MCF-7 cells were 
grown in full medium (DMEM, 10% FCS,1%PS), treated with different concentration of OA for 3 
h. The Number of cells with disrupted keratin network were converted into percentage and plotted 
against OA concentrations. The criteria used for OA effect was when filaments started to 
breakdown and show fluorescent granules in the cytoplasm. Around 500 cells were counted and 
investigated for filament disruption at each concentration. STAT: n=3, Error bars=SEM, one-way 
ANOVA= **** significance, p-value (p≤0.0001=****). 
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Figure 3.6. Disruption of endogenous keratin network induced by phosphatase inhibitors 
(OA and CL-A). MCF-7 cells grown in full medium (DMEM, 10% FCS,1%PS), treated with 300nM 
OA for 3 h showed breakdown of filaments into granules starting at the cell periphery. A more 
extensive breakdown was shown using 2 nM of CL-A for one hour. DMF treated cells for up to 3 
hours are shown as a vehicle control. All cells were immunostained with mAb LE65 and AF-® 
488-labelled anti-mouse secondary antibody. Nuclei are stained with DAPI in blue and 
overlapping of immunostaining with DAPI is shown as Merge. This figure shows that CL-A is more 
potent than OA in breaking down keratin filaments. Leica DM5000B Epi-fluorescence microscope 
and DFC350 camera were used for recording images. (Scale bar = 20 µm). 
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3.5. Filament breakdown in MCF-7 cells expressing 

AcGFP-K2 or FLAG-K2 using phosphatase inhibitor CL-

A: role of phosphorylation. 

 Analysis of CL-A induced keratin phosphorylation by 

immunostaining. 

To study the effect of phosphatase inhibitors on MCF-7 cells expressing AcGFP-

K2 or FLAG-K2 , 2nM CL-A inhibitor for only 30 min was used (not 1h as used for 

untransduced cells) as at this time point filaments were already breaking down in 

AcGFP-K2 transduced cells (1h in AcGFP-K2 was rounding up and lysing some 

cells as shown in Figure A.2 in appendix). In FLAG-K2 transduced cells the same 

time point was used for comparison. The cellular cytoskeleton was labelled with 

3x FLAG without (Figure 3.7A) or with the attached K2 using retroviral 

transduction (Figure 3.7B). The transduced cells were treated with 2nM CL-A in 

DMF for 30 min (d, e, f and m, n, o) or 0.05% DMF as vehicle control (g, h, I and 

p, q, r) or without any treatment (a, b, c and j, k, l). The MCF-7 cells expressing 

only the FLAG tag (Figure 3.7A, a-i) will not label the cytoskeleton as the construct 

does not contain keratin cDNA. These cells were immunostained with mouse 

LE65 (mAb) followed by AF-488 anti-mouse secondary antibody to visualise the 

endogenous cytoskeleton (Figure 3.7A, a-i). On the other hand, the keratin 

cytoskeleton of MCF-7 cells transduced with FLAG-K2 should label the 

cytoskeleton as the K2 protein will integrate into the pre-existing keratin network 

and will label the cytoskeleton with anti-FLAG antibody followed by AF-488 

labelled anti-mouse secondary antibody (Figure 3.7B, j-r). As shown in Figure 

3.7B the keratin cytoskeleton in all panels appeared identical to those transduced 

with only FLAG vector control (Figure 3.7A) suggesting that the presence of K2 

did not alter the organisation in MCF-7 keratin network. Furthermore, the keratin 
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network organisation in MCF-7 cells treated with 2nM CL-A for 30min remained 

identical to those untreated or treated with DMF as vehicle control. These 

observations suggest that 2nM CL-A does not induce enough phosphorylation to 

cause disruption of keratin filament network. To investigate if increasing the size 

of the tag would amplify the effect of CL-A, 3x FLAG was replaced with AcGFP, 

which is about 10 times larger than the former. Cells transduced with vector 

control virus and expressing only AcGFP were stained with LE65 mouse mAb 

and AF-488 to visualise the endogenous keratin network. AcGFP-K2 cells did not 

require any further immunostaining as K2 was integrated into the pre-existing 

keratin network which was lighting up green on the fluorescence microscope. The 

MCF-7 cells transduced with AcGFP-C or AcGFP-K2 were treated with 2nM CL-

A in DMF for 30 min (d, e, f and m, n, o) or 0.05% DMF as vehicle control (g, h, i 

and p, q, r) or without any treatment (a, b, c and j, k, l). Immunofluorescence 

analysis showed filament breakdown in AcGFP-K2 cells after treating these cells 

with 2nM CL-A in about 30 min compared to AcGFP-C (Figure 3.8A; compare d, 

e and f with m, n and o). On the other hand, filaments in untreated or vehicle 

treated controls were intact. Comparing the data presented in Figure 3.7(m, n, o) 

with Figure 3.8 (m, n, o) clearly show that 2nM CL-A did not influence the 

filaments when a smaller tag, 3x FLAG was used. However, the same treatment 

disrupted the filaments when a much larger tag, AcGFP was used at the N-

terminus. These observations suggest that integration of keratin polypeptides into 

pre-existing filaments is not dependent on the size of tag since both 3x FLAG and 

AcGFP tagged K2 polypeptides were integrated into the pre-existing filaments. 

However, the size of the tag does determine the stability of the integrated 

cytoskeleton, smaller tagged keratins do not influence stability whereas larger 

sized tags appear to destabilise the cytoskeleton (Figure 3.7 and 3.8). The 
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mechanism of destabilisation could involves change in the protein conformation 

due to integration of a bigger tag (AcGFP,26 kDa) plus (≈70kDa) K2 of keratins 

into the cytoskeleton, perhaps exposing more phosphorylation sites that can be 

phosphorylated by the action of CL-A. Hyperphosphorylation of the exposed 

Ser/Thr sites due to AcGFP-K2 integration would collapse the endogenous 

cytoskeleton. This hypothesis is supported by the observation presented in 

section 3.4 that untagged MCF-7 cells required a much longer treatment with CL-

A to breakdown filaments compared to tagged cells.  
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Figure 3.7. MCF-7/ FLAG-K2 and Vector control transduced MCF-7 cells treated with 2nM 
CL-A. Cells were grown in full medium (DMEM 10% FCS and 1%PS). Later medium was replaced 
by 2 nM CL-A containing medium for 30 min. No filaments breakdown was seen in these two 
types of transduced cells. Cells expressing Flag control vector were fixed and stained with LE65. 
Anti-FLAG mAb was used to stain FLAG-K2 cells. AF-488 labelled anti-mouse was used as a 
secondary antibody for LE65 and anti-Flag antibodies. Nuclei were stained with DAPI in blue, 
overlapping of DAPI and green shown as Merge. Control is untreated cells and vehicle control is 
DMF treated cell. This figure shows that the presence of FLAG tag didn’t affect filaments stability 
Leica DM5000B Epi-fluorescence microscope model and DFC350 camera were used for 
recording images (Scale bar=20 µm).  
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Figure 3.8. Keratins in MCF-7/ AcGFP-K2 filaments breakdown after 2nM CL-A treatment. 
Cells were grown in full medium (DMEM 10% FCS and 1%PS). Later medium was replaced by 2 
nM CL-A containing medium for 30 min. AcGFP-K2 expressing cells shows filaments breakdown 
compared to AcGFP-C and (FLAG-K2 and FLAG-C) in Figure 3.7. Cells were fixed and stained 
with LE65 for those expressing AcGFP as control while those expressing AcGFP-K2 were 
showing green fluorescence due to integration of K2 into the pre-existing keratin network. AF-488 
was used as a secondary antibody for LE65. Nuclei were stained with DAPI in blue, overlapping 
of DAPI and green shown as Merge. Control is untreated cells and vehicle control is DMF treated 
cell. This figure shows that the presence of AcGFP tag did affect filaments stability. Leica 
DM5000B Epi-fluorescence microscope equipped with DFC350 camera was used for image 
recording images. (Scale bar=20 µm). 
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 Analysis of CL-A induced keratin phosphorylation by 

western blotting. 

To further investigate the role of the tag in inducing hyperphosphorylation using 

CL-A phosphatase inhibitor, the transduced cells of Figure 3.7 and 3.8 were used 

and treated them with 5nM CL-A for increasing times, 1h, 2h and 4h before 

collecting lysates for protein analysis by western blotting. Keratin 8, an 

endogenous keratin of MCF-7 cytoskeleton, is known to be phosphorylated on 

residue S73 in response to stress (Toivola et al., 2002), which was discussed in 

detail in section 3.1. To monitor endogenous CL-A induced keratin 

phosphorylation K8 phosphorylation was used as detected by mAb targeting 

these phosphorylation sites in western blotting to investigate different 

phosphorylation levels induced by CL-A.  

Both MCF-7/AcGFP-K2 and MCF-7/FLAG-K2 cells showed increased 

phosphorylation of S73 and S431 sites compared to their control cells at 2h and 

4h of treatment each compared to vehicle or untreated controls (Figure 3.9 A, B). 

Quantification of WB in Figure 3.10 showed no statistical significance in the level 

of phosphorylation of S73 and S431 on both MCF-7/AcGFP-K2 and MCF-

7/FLAG-K2 cells using Two-way ANOVA. These data indicate that the size of the 

tag did not affect the level of phosphorylation and the breakdown that was seen 

in Figure (3.7B, m-o) was not a result of higher levels of phosphorylation.  
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Figure 3.9. Western blot showing hyperphosphorylation of K8 induced by CL-A in MCF-7 
transduced cells.  Cells were grown in full medium (DMEM, 10%FCS,1% PS), treated with 5nM 
CL-A for different time points (1h, 2h, 4h). Control is untreated cells; vehicle are cells treated with 
0.05% DMF. FLAG-K2 cells show more phosphorylation of pK8/S73 and pK8/S431 compared 
with FLAG-C (A). Similarly, AcGFP-K2 cells shows stronger phosphorylation of pK8/S73 and 
pK8/S431 compared with AcGFP-C after 4h treatment (B). GAPDH was used as loading control. 
This figure shows that filaments breakdown seen earlier is not due to hyperphosphorylation. 
ChemiDoc™Biorad imaging system was used for protein detection.  
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Figure 3.10. Western blot quantification of Figure 3.9.  Quantification of WBs shown in Figure 
3.9 after normalisation to loading control and later to Vehicle control values. Data for untreated 
control was taken arbitrarily as 1, other treated values (5nM CL-A up to 4h) are shown as fold 
expression. (A) FLAG-K2 and FLAG-C and (B) AcGFP-K2 and AcGFP-C. 
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 Effect of K2 on migration of MCF-7 cells. 

The effect of introducing K2 into MCF-7 cells with both tags (FLAG vs AcGFP) on 

cell migration using the scratch assay was investigated. As hyperphosphorylation 

breaks down filaments into globules that allow the cell to be less rigid and more 

flexible and easy to move (a phenomenon seen during EMT), a hypothesis was 

made that having a high molecular weight protein (K2) tagged either to AcGFP 

or FLAG that allows more phosphorylation to take place compared to vector 

control cells as shown in Figure 3.7 – 3.9 will allow cells to move faster. This was 

based on the fact that keratin nucleation takes place at the focal adhesion sites 

and that globules can bind to some focal adhesion components such as integrin 

and may play a role in cell migration (Windoffer et al., 2011). Transduced MCF-7 

cells were plated to about 100% confluence and treated with 40 µg/ml Mitomycin 

C to inhibit proliferation. A scratch was made in the middle of the plate using a 

pipette tip and first set of images were recorded immediately and that was taken 

as 0 h recording (Figure 3.11 A). The scratch was imaged at regular intervals and 

several time points were taken up to a maximum of 96 h. From the images taken 

the surface area unoccupied by migrating cells was calculated using the image J 

software. The surface area of 0 h for all cells were calculated using the surface 

area measuring tool in image J and converted into 100%. Other time points areas 

were subtracted from the 0 h time area and converted into percentage. This 

percentage was used to measure wound closure over time as shown in (Figure 

3.11,B) It is clear that cells expressing K2 showed faster movement compared 

with cells transduced with the empty vector. FLAG-K2 transduced MCF-7 cells 

were showing higher percentage of wound closure, and therefore faster 

migration, compared to AcGFP-K2 which could probably be explained by being 

easier to bind to focal adhesion component than a bigger tag. Further 
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experiments are required on co-localisation with focal adhesion components and 

the role of different size tags in binding to focal adhesion proteins. 
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Figure 3.11. Wound closure of MCF-7 cells transduced with (AcGFP-K2, FLAG-K2, AcGFP 
control and FLAG control).  (A) MCF-7 cells stably expressing different constructs were plated 
in 12 well plates until 100% confluent. Scratch was made in the middle of the well after inhibiting 
proliferation using 40µg/ml mitomycin C, images were recorded at different time intervals. Nikon 
Eclipse TE 2000-S microscope was used (scale bar=200µm). (B) Graph showing wound closure 
in term of percentage of scratch area in 4 different transduced MCF-7 culture samples used in 
this experiment. This figure shows that FLAG-K2 cells migrate faster than other cells. STAT: n=3, 
Error bars=SEM, Two -way ANOVA was used between each group and its control and between 
AcGFP-K2/FLAG-K2, p-values (p≤0.001=***, p≤0.0001=****). 

AcGFP-K2/AcGFP-C (p≤0.001=***), FLAG-K2/FLAG-C (p≤0.0001=****),  

AcGFP-K2/FLAG-K2 (p≤0.0001=****). 

 

3.6. Role of heat shock stress on keratins organisation 

and phosphorylation. 

 Effect of heat shock on endogenous filaments network of 

MCF-7. 

MCF-7 cells were grown in full medium (DMEM, 10% FCS, 1% PS) in a 37˚C 

incubator and next day the medium was changed to 43˚C pre-warmed medium 

and cells were incubated in a 43˚C water bath for 30 min and later transferred to 

37˚C incubator for 15 min recovery as described in section 2.2.2 in materials and 

methods section. Cells were fixed with acetone/methanol and stained with LE65 

mAb detecting K8/K18 (endogenous keratins) and AF-488 as a secondary 

antibody. As shown in Figure 3.12, in MCF-7 cells that were heat shocked the 
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filaments were more condensed around the nucleus compared to spread-out 

network before the heat shock. 

 

Figure 3.12. Effect of heat shock on endogenous keratins in MCF-7 cells. MCF-7 cells grown 
in full medium (DMEM + 10%FCS + 1%PS) on collagen coated glass coverslips were given a 
heat shock of 43˚C for 30 min followed by a 15 min recovery at 37˚C. MCF-7 cells before heat 
shock were used as control. The endogenous keratin network was stained using LE65 mAb and 
AF-488 (Green), Nuclei were stained with DAPI in blue and overlapping was shown as Merge. 
This figure shows that heat shock allowed keratin filaments to move and condense around the 
nucleus. Leica DM5000B Epi-fluorescence microscope and DFC350 camera were used for 
recording. (Scale bar =20 µm). 
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 Stabilisation of endogenous keratin network in MCF-7 cells 

following heat shock. 

As phosphatase inhibitors were used to induce phosphorylation of keratin 

polypeptides in our experiments, different concentrations of CL-A were tested on 

MCF-7 endogenous keratins over different time intervals and 2 nM for 1 h was 

used as it breaks down the filaments without affecting cell viability as mentioned 

in section 3.3 and shown in Figure 3.6. In this set of experiments, two sets of 

MCF-7 cells were used. One set was treated with 2nM CL-A while the other set 

was given a heat shock for 30 min at 43˚C then allowed to recover for 15 min at 

37˚C followed by treatment with 2 nM CL-A for 1 h. As shown in Figure 3.13 (a, 

b, c) treating MCF-7 cells with 2 nM CL-A for 30min caused almost complete 

collapse of filaments into globules. However, when these cells were given a prior 

heat shock followed by 2 nM CL-A treatment (HS + 2nM CL-A) the filaments were 

still spread and no sign of filament breakdown into globules was observed (sign 

of phosphorylation) suggesting that heat shocking the cells before CL-A 

treatment protected the cytoskeleton against phosphorylation induced filament 

breakdown, which could be explained by thermotolerance (the ability of cells to 

withstand another stress after being subjected to a former heat shock), which is 

explained in more details in section 3.1. 
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Figure 3.13. Effect of 2nM CL-A on MCF-7 keratin filaments with and without heat shock. 
MCF-7 cells were grown in full medium (DMEM + 10% FCS + 1% PS) on collagen coated glass 
coverslips, cells were treated with 2nM CL-A for 1 h and shows breakdown of filaments into 
smaller globules (a, b, c). Another group of cells were heat-shocked at 43˚C for 30 min with 15 
min recovery at 37˚C then treated with 2nM CL-A 1h (d, e, f). DMF treated cells for 1 h was used 
as control (g, h, i). All cells were fixed using acetone/methanol (1:1) and immunostained using 
LE65 mouse mAb detecting the endogenous keratins and AF-488 was used as a secondary 
antibody. DAPI stained in blue and overlapping is shown as ‘Merge’. This figure shows that heat 
shock protect or delay filaments breakdown caused by CL-A. Leica DM5000B Epi-fluorescence 
microscope and DFC350 camera were used for recording. (Scale bar =20 µm). 
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 Recovery of MCF-7 cytoskeleton containing AcGFP-K2 

after heat shock. 

The effect of heat shock on the endogenous network of untransduced MCF- 7 

cells was investigated in (section 3.6.1) but to be able to track the changes and 

dynamics of keratin filaments after heat shock, AcGFP-K2 tagged MCF-7 cells 

were used, which labelled the cytoskeleton with a green fluorescent tag (AcGFP) 

to allow us to visualise and live track any changes as shown in section 3.3. Cells 

were grown in full DMEM medium on glass bottom live imaging plates. Next day, 

the medium was changed to 43°C pre-warmed medium and incubated in a water 

bath set at 43°C for 30 min for the heat shock (same procedure as used for un-

transduced MCF-7 cells, sections 3.6.1 and 3.6.2). After the heat shock, plates 

were moved immediately to a spinning disk confocal microscopic stage 

maintained at 37°C and started the recording. In Figure 3.14 images were taken 

every 10 min to track the changes. The bright field imaging was used to show 

that cells were normally spread out and not affected by heat shock up to 30 min. 

The overlapping images clearly show that keratin filaments (green) have moved 

toward the nucleus and condensed around it but it slightly started to move back 

toward the periphery as pointed by a white arrow at 10 min. This could be part of 

the recovery phase after the shock as the spinning disk temperature was 

maintained at 37°C. Therefore, to track the recovery of the filaments and their 

spreading to the cell periphery a longer time was needed. The same cells (MCF-

7 expressing AcGFP-K2) were used under the same conditions but the cells were 

left to recover for 15 min in a 37°C incubator before starting the recording (Figure 

3.15). The bright field imaging showed no change in cell membrane periphery 

overtime, but the filaments were moving toward the periphery of the cell as shown 
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by yellow arrow pointing at the cell membrane that at 0 min there was no filament 

reaching that point but after 30 min the filaments spreads back reaching to the 

cell membrane. 

 

Figure 3.14. Time-lapse imaging of MCF-7 cells expressing AcGFP-K2 following heat 
shock.  MCF-7 cells stably expressing AcGFP-K2 were grown in full medium (DMEM + 10% FCS 
+ 1% PS) for 48 h at 37˚C then subjected to a heat shock at 43˚C for 30 min without any recovery 
period. Recording started immediately after the shock and snaps at 10 min intervals were taken. 
Bright field snaps are shown in the top set. AcGFP fluorescent cells shown in the second and 
composite of bright field and AcGFP sets are shown as overlap (A). Compared to cells before 
heat shock (B) reorganisation of filaments around the nucleus away from the cell periphery as a 
response to the heat shock was clear. This figure shows that keratin filaments move toward the 
nucleus after heat shock. Spinning disk confocal microscope was used for recording. (Scale bar 
=20µm). 
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Figure 3.15. Time-lapse imaging of AcGFP-K2 expressing MCF-7 cells following heat shock 
and recovery.  MCF-7 cells stably expressing AcGFP-K2 were grown in full medium (DMEM + 
10% FCS + 1% PS) for 48 h at 37˚C then subjected to a heat shock at 43˚C for 30 min and 15 
min recovery at 37˚C. Recording started after the recovery period and snaps were taken at 10 
min intervals, bright field snaps are shown in the top set. AcGFP fluorescent cells shown in second 
and composite of bright field and AcGFP are shown as overlap. Compared to cells in Figure 3.14 
reorganisation of filaments back toward the cell periphery during recovery can be seen. This figure 
shows that recovery time after heat shock allows keratin filaments to spread out to cell periphery. 
Spinning disk confocal microscope was used for recording. (Scale bar =20µm). 

 

 

 Stabilisation of MCF-7 cytoskeleton containing AcGFP-K2 

after heat shock. 

In this set of experiments, MCF-7 cells expressing AcGFP-K2 were seeded on 

glass bottom dishes for live imaging and after 48 h the culture medium was 

replaced with live cell imaging clear medium containing 300 nM OA and plates 

were placed under the spinning disc microscope to start recording. The live cell 

imaging of keratin filaments showed that the filaments started to breakdown into 

globules at around 7 min after drug application and the breakdown continued in 

other cells as well and increased overtime until the whole keratin network was 



 

129 
CHAPTER 3 

turned into globules after 3 h (Figure 3.16). AcGFP-K2 transduced MCF-7 cells 

treated with OA were compared to another group of cells that was heat shocked 

for 30 min 43˚C followed by 15 min recovery at 37˚C prior to OA treatment. In 

both Figures 3.16 and 3.17 the same time frames were selected for better 

comparison so, it can be seen in Figure 3.17 that only after one hour of drug 

treatment, filaments started to break down but on later time points breakdown 

looks similar in heat treated and untreated cells. These observations support the 

data shown in Figure 3.13 in which heat shocked MCF-7 cells treated with 2 nM 

CL-A showed no breakdown in the first hour. A hypothesis that something was 

delaying the breakdown of filaments was made and this could be by inhibiting 

phosphorylation pathways (breakdown of filaments) and as the type of stress that 

was applied is heat, heat shock proteins (HSPs) were predicted to be playing a 

role and this was investigated in the next set of experiments. As mentioned in 

section 3.4 that CL-A is more potent and takes less time to breakdown filaments 

compared to OA but in this set of experiments ,tracking  changes slowly overtime 

was needed as well as more time for HSPs was allowed to be activated, as a 

result  OA was used.  
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Figure 3.16. Treatment of AcGFP-K2 expressing MCF-7 cells with OA.  AcGFP-K2 
transduced MCF-7 cells were grown in full medium (DMEM +10% FCS +1% PS) at 37˚C on glass 
bottom dishes suitable for live imaging and after 48 h medium was replaced with live cell imaging 
medium containing 300nM OA and recording started immediately for 3 h. Frames were selected 
at different time intervals in which changes were pronounced. Filaments spread with no 
breakdown in 0 min, after around 7.8 min filaments started to break into small globule at cell 
periphery. More cells are involved, and more breakdown of filaments are seen over time up to 3h 
(arrows in zoomed in images of a and b are showing keratins granules or breakdown). This figure 
shows breakdown of filaments due to OA treatment. Spinning disk confocal microscope was used 
for recording. (Scale bar =20 µm). 
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Figure 3.17. Treatment of AcGFP-K2 expressing MCF-7 with OA after heat shock.  AcGFP-
K2 expressing MCF-7 cells were grown in full medium (DMEM + 10% FCS + 1% PS) at 37˚C 
incubator on glass bottom dishes suitable for live imaging and after 48 h the medium was replaced 
by 43˚C warmed medium and cells were heat shocked at 43˚C for 30 min followed by 15 min 
recovery at 37oC. After the heat shock the medium was replaced with live cell imaging medium 
containing 300nM OA and recording started immediately for 3 h. Frames were selected with the 
same time intervals as in Figure 3.16 for comparison. No filament breakdown was seen before 
1.2 h. At 1.2 h breakdown started as shown by an arrow (arrow in zoomed in image a is showing 
keratins granules or breakdown). More cells were involved, and more breakdown of filaments was 
observed over time. This figure shows that heat shock delayed filaments breakdown caused by 
OA treatment. Spinning disk confocal microscope was used for recording. (Scale bar =20 µm).  
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 Role of heat shock protein 70 (HSP70) in keratin 

phosphorylation induced by heat shock in MCF-7 cells. 

As shown in sections 3.6.2 and 3.6.4 that heat treatment either delays or inhibits 

breakdown of filaments when phosphorylation is induced by OA or CL-A 

phosphatase inhibitors and a hypothesis was made that HSP may be playing a 

role in this phenomenon. So, MCF-7 cells were grown in full medium (DMEM + 

10% FCS +1% PS) at 37˚C. Next day, medium was replaced by 43˚C pre-warmed 

medium and cells were heat shocked for 30 min in a 43˚C water bath. Recovery 

periods varied from 0h to 6h and this was done by replacing the medium with pre-

warmed medium at 37˚C and incubating for different time intervals. At each time 

point, the cells were washed twice with PBS and lysates were collected. Cells 

prior to heat shock were used as a negative control. WB analysis was performed 

using SDS gel electrophoresis and pK8/S73, pK8/S431, K8, K2 and HSP70 

primary antibodies were used to detect the level of phosphorylation and the level 

of these proteins in transduced MCF-7 cells after heat shock followed by 

recovery. Figure 3.18 (A, B) shows K8 phosphorylation in transduced MCF-7 

cells, in AcGFP-K2 cells there is an increase in pK8/S431 compared to pK8/S73 

after heat shock and up to 1h recovery time. Later pK8/S431 showed a lower yet 

stable pattern up to 6 hours of recovery. pK8/S73 showed same pattern as 

pK8/S431 in these cells with less protein expression. HSP70 showed higher 

expression after heat shock and a stable expression throughout recovery time. In 

comparison AcGFP-C/MCF-7 cells were showing high expression of pK8/S73 

and pK8/S431 after heat shock and 1h recovery time while HSP70 was showing 

low expression. At 2 h recovery and up to 6 h, pK8/S73 and pK8/S431 were 

showing gradual decrease in protein expression with pronounced increase in 

HSP70. This indicates that HSP70 could affect phosphorylation thereby making 
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the filaments more stable and less prone to break down. In the case of AcGFP-

K2 a stable pattern of HSP70 expression was observed with very slight reduction 

of pK8/S431 which indicates a role of K2 itself in changing the cytoskeletal 

conformation that could affect the availability of different phosphorylation sites. In 

conclusion, pK8/S431 is more phosphorylated compared to pK8/S73 after heat 

shock. Phosphorylation of both sites is reduced after 2 h recovery and up to 6 h 

and this reduction is more prominent in AcGFP-C cells. K8 antibody (M20) was 

used to detect total K8 in both cell types while K2 antibody was used to show 

cells expressing K2.  
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Figure 3.18. Heat shock effect on keratin phosphorylation in AcGFP-K2 and AcGFP-C 
transduced MCF-7 cells. AcGFP-K2 and AcGFP-C cells were grown in full medium (DMEM + 
10% FCS +1% PS) at 37°C, after 48 h medium was replaced by 43˚C pre-warmed medium for 30 
min followed by 1h, 2h, 4h, and 6h recovery at 37oC. Lysates were collected for WB analysis 
using K8, pK8/S73, pK8/431, HSP70 and K2 primary antibodies to detect the level of these 
proteins after heat shock and recovery (A). Quantification of the blots in A are shown as fold 
expression in (B). GAPDH is used as a loading control. This figure shows that as heat shock 
increases , phosphorylation on S73 and S431 decreases. ChemiDoc™Biorad imaging system 
was used for protein detection. 
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3.7. Discussion and conclusion. 

Keratins are dynamic and that means they are in an ongoing cycle of assembly 

and disassembly which gives them the ability to perform their wide range of 

functions within epithelial cells. During cell division, apoptosis, membrane 

trafficking, migration and wound healing keratin reorganisation is needed, and 

they are considered the major stabilising protein of the cytoskeleton (Strnad et 

al., 2001). This dynamic behaviour allows new keratin proteins to be introduced 

and integrated into an existing endogenous network without affecting cell stability 

(Windoffer et al., 2011). In normal human epidermis, changes in keratin gene 

expression take place as cells migrate from the basal layer that expresses 

K5/K14 upward during stratification. Keratins K5/K14 downregulates and a new 

set of suprabasal keratins, K1/K10, start to be activated and integrate into the 

existing network. In this process, new keratins are introduced and start to replace 

the existing ones (Waseem et al., 1999). This phenomenon was used to introduce 

a new keratin K2 into an existing network of K8/K18/K19 in MCF-7 allowing K2 to 

integrate into the network to be able to study the dynamics of this keratin in this 

cell-based model. Full integration of AcGFP and FLAG tagged K2 into MCF-7 

was shown using retroviral transduction that allowed us to use this cell line as a 

model to study keratin filaments dynamics. 

The cycle of assembly and disassembly of keratin polypeptides in cytoskeleton 

is basically a process of phosphorylation and dephosphorylation. This has been 

shown in previous studies in which phosphatase inhibitors were used to induce 

phosphorylation (Paramio, 1999, Toivola et al., 1997). Reorganisation of 

filaments during mitosis (physiological condition) in AcGFP-K2 MCF-7 cells were 

shown by live cell imaging using spinning disk confocal microscopy. During 

mitosis, filaments start to dis-assemble into small globules that allows the cell to 
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be more flexible for mitosis. After the cell division, the globules start to join at the 

periphery of the cell forming short filaments that later elongate while moving 

toward the nucleus forming a cage like structure (Figure 3.3 and 3.4) (Windoffer 

and Leube, 2004). When MCF-7 were treated with PP1A and PP2A phosphatase 

inhibitors OA and CL-A, keratin filaments show breakdown into granular 

structures while controls showed regular spread of filamentous keratin structure 

as shown in Figure 3.6. This is consistent with previous studies where keratin 

phosphorylation had been reported to be induced by OA treatment in 

keratinocytes (Yatsunami et al., 1993).  

The state of phosphorylation of keratins inside the cell has to be balanced in order 

for the cell to function normally. This is regulated by kinases and phosphatases 

activities that stabilises the keratin network. If this balance is lost, deregulation of 

these enzymes occur as in the case of cancer, cells start to behave differently as 

their migration, proliferation and differentiation are affected (Bononi et al., 2011). 

Using phosphatase inhibitors does induce hyperphosphorylation that leads to 

filament breakdown and a weaker network inside the cell as shown in Figure 3.6, 

3.13 and 3.16. In toxic liver disease, Mallory bodies are seen due to 

hyperphosphorylation and this has been shown primarily due to p38 kinase 

pathway activation which also play a role in other intermediate filaments 

aggregations that are seen in various diseases, including cardiac myopathy and 

numerous neurodegenerative disorders (Schutte et al., 2004, Woll et al., 2007). 

p38 is considered to be the major filament regulating signalling pathway involved 

in keratin phosphorylation and organisation in various physiological and stress or 

disease induced situations. S73 in the head domain of K8 is considered a major 

phosphorylation site by p38 kinase and it could also be phosphorylated through 

other pathways such as Jun kinases (JNKs). In K8 , S23 and S431 are also well 
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known phosphorylated sites they are activated under basal conditions or by 

SAPKs (JNKs and MAPK), respectively, while p38 phosphorylates only S73 (Woll 

et al., 2007). Phosphorylation of K8/S73 (on head domain) which is highly 

conserved among type II keratins and K8/S431 (on tail domain) as being well-

known phosphorylation sites on K8 were investigated. MCF-7 cell line that 

expresses K8 was used, so antibodies against these well-known phosphorylation 

sites were used to study phosphorylation in our cell model (Toivola et al., 2002).  

Although integration of a big protein (K2) that is around 70kDa into the cell tagged 

to a big tag such as AcGFP did not affect the normal cell division process or the 

directionality of the filaments moving inside the cell nor the globules integration 

into the network, it did affect the stability of the network. Using CL-A to induce 

phosphorylation that breakdown filaments into globules required less time in cells 

expressing AcGFP-K2 compared to cells expressing a smaller tag FLAG-K2 as 

well as the empty vector control tag AcGFP-C or FLAG-C. This could be 

explained by having a big protein tag that may change the conformation of the 

existing network allowing more phosphorylation sites to be exposed to the drug 

allowing more breakdown of the filaments (Figure 3.8). As in phosphorylation, 

there is an increase in negative charge either on head or tail that prevent the 

interaction of these parts with the negatively charged rod domain opening the 

protein structure. Seemingly, these changes could allow disassembly of the 

filaments and break them up into globules which is believed to be happening in 

wider scale in AcGFP-K2 tagged cells (Omary et al., 2006). However, there is an 

alternative explanation for the deleterious effect of the tag at the N-terminus of 

K2 on filament stability. In the filament assembly model, the rod domain of 

heterotypic keratins first associate as heterodimers followed by anti-parallel 

association into tetramers. In this model it has been shown that the head domains 
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fold back and interact with the rod domains. Although it has been shown to occur 

in vimentin (Aziz et al., 2010), a similar situation is likely to happen in other 

intermediate filaments due to highly conserved structure of these polypeptides 

(Bray et al., 2015). In such a situation when rod domains are packing tightly into 

filaments the size of head domain will be critical. Small tags such as 3x FLAG will 

be tolerated whereas large tags such as AcGFP will still be allowed to assemble 

into filaments, but they are likely to affect inter-rod domain association causing 

the filaments to destabilise which will be more obvious when filaments are 

hyperphosphorylated (Bray et al., 2015, Aziz et al., 2010). So introducing a large 

protein as K2 into the network attached to AcGFP did allow more breakdown of 

filaments compared to a smaller tag (FLAG) but according to data shown from 

WB (Figure 3.9 and 3.10) , phosphorylation is not the main cause of filaments 

disassembly as phosphorylated S73 and S431 of K8 didn’t show any significant 

difference between cells transduced with different sized vectors. The folding of 

heads domain back into the rod domain with a bigger tag that interfere with inter-

rod binding is the most reasonable explanation of the weaker filament of AcGFP 

tagged K2 cells. This need more investigations and transduction of the same cell 

line with different parts of K2 constructs. Immunostaining was performed on a 

fixed time point (30 min) that was clear to show breakdown of AcGFP-K2 

expressing cells but not to other cells, indicating that FLAG-K2 expressing cells 

as well as vector control cells requires a longer treatment time presumably 1h 

treatment as needed by un-transduced MCF-7 showed in Figure 3.6.  

A different type of stress that also activates stress kinases and phosphorylates 

the main phosphorylation sites on K8 was also studied. MAPK is a group of stress 

kinases that phosphorylates other proteins in response to different types of 

stresses (Paul et al., 1997). As our focus was on heat shock type of stress which 
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also leads to activation of the MAPK pathway (Rouse et al., 1994) MCF-7 cells 

subjected to a sub-lethal heat shock of 43˚C for 30 mi. It was shown using 

immunostaining and time-lapse confocal microscopy that keratin filaments 

started to reorganise and move toward the nucleus and condense around it in 

response to heat shock. This reorganisation requires phosphorylation of keratin 

filaments that is later balanced during recovery by phosphatases and the 

filaments started to spread back toward the cell periphery as in Figure 3.12 and 

3.15 (Shyy et al., 1989). In EBS, an inherited keratin mutation disorder, keratins 

form aggregates when subjected to heat stress and it takes longer time to re-

spreads after removing the insult compared to normal keratin containing cells. 

This delay in keratin remodelling gives more time for cytolysis if subjected to any 

other type of stress during this time (Morley et al., 1995). 

HSF1 heat shock transcription factor is activated after stress by hyper 

phosphorylation and its activation leads to synthesise of HSPs (Guettouche et 

al., 2005). HSPs are considered pro-survival proteins that protect the cell from 

lysis induced by stress-induced phosphorylation (Lanneau et al., 2008). If MCF-

7 cells were exposed to heat shock before inducing phosphorylation by 

phosphatase inhibitors, breakdown of filaments by phosphorylation is delayed or 

inhibited (Figures 3.13 and 3.17). This could be due to the effect of HSPs that act 

as inhibitors of the pro-apoptotic pathway regulated by MAPKs (Gabai et al., 

1997). Protein expression of HSP70 was measured in transduced MCF-7 cells 

subjected to heat shock and recovery for different time intervals. At the same time 

the protein level of pK8/S73 and pK8/S431 which are the main phosphorylation 

sites affected by p38 stress activated MAPK were checked (Toivola et al., 2002) 

and it shows that phosphorylation levels were either stabilised or reduced after 2 

h of recovery from heat shock while the level of HSP70 was stabilised or 
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increased overtime. This supports the hypothesis that HSP70 could be blocking 

or inhibiting the action of MAPK phosphorylating S73 and S431 on K8 (Gabai et 

al., 1997) and this phenomenon is most likely to induce thermotolerance in which 

a first heat shock taken by the cell produce a series of cascades that aim to 

protect the cell from a second stress (which is phosphatase inhibitor treatment in 

our case) that lasts for few days only (Landry et al., 1982, Dorion and Landry, 

2002). These findings must be confirmed by treating the cells with SB203580 a 

p38 MAPK inhibitor to determine the protective effect as shown by heat shock 

prior to phosphorylation induction. This has been done on epidermal 

keratinocytes, in which light was used on these cells before treating with OV 

tyrosine phosphatase inhibitor (Strnad et al., 2003, Woll et al., 2007). Light gives 

a form of protection against phosphorylation and breakdown of keratin filaments 

that can be used as a therapeutic approach in skin fragility disorders caused by 

keratin mutations.  

In conclusion, this chapter compares the phosphorylation of endogenous keratin 

network in MCF-7 cells (K8/K18/K19) with keratin network of MCF-7 cells after 

transduction with a differentiation specific type II keratin K2.  

• AcGFP-K2 transduced cells showed breakdown at lower doses and 

less incubation time with phosphatase inhibitors compared with un-

transduced cells or FLAG-K2 and vectors controls in 

immunostaining. MCF-7 cells transduced with AcGFP-K2 or FLAG-

K2 were compared to their empty vector transduced cells (control) 

in which all cells show almost same level of phosphorylation at S73 

and S431 on K8 protein compared to their control, shown by WB in 

Figure 3.9.  
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• Heat stressed MCF-7 untransduced or AcGFP-K2 transduced cells 

did show delayed breakdown of their filaments after inducing 

phosphorylation by OA or CL-A treatment shown by live cell 

imaging, immunostaining and WB. 

• In wound closure experiment, MCF-7/FLAG-K2 cells were 

migrating faster than its control and faster than MCF-7/AcGFP-K2 

cells. 
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4. Results II. Expression of differentiation-specific 

keratins in response to serum lipids, all trans-retinoic 

acid and phenol red. 

4.1. Introduction. 

Skin is a core barrier between the inner body and the outer environment, it 

absorbs the effects of environmental stresses including UV light, chemicals and 

microbes as well as protecting against water body loss (Madison, 2003). It is a 

multi-layered organ that is made up of two main compartments, the epidermis 

and the dermis. Each compartment plays a unique role, as the epidermis is the 

uppermost layer, it directly faces different environmental insults and it primarily 

functions as a barrier. On the other hand, the dermis lies underneath and it is rich 

in blood vessels, nerves and fibroblasts so it provides support to the epidermis 

which runs the biological functions of the skin (Park, 2015). The epidermis is 

made up of stratified epithelial cells (keratinocytes), arranged in a multi-layered 

fashion in which the basal layer is the deepest and the only mitotically active 

layer. Cells move upward as they divide until they become shed off on the skin 

surface through a process called epithelial differentiation (Bragulla and 

Homberger, 2009). In keratinocytes, keratin intermediate filaments account for 

about 80% of the epithelial cellular content (Pekny and Lane, 2007). Keratins play 

different roles inside the cell from acting as resilient stress absorber to playing a 

critical role in the progression of cancer and other diseases (Magin et al., 2007, 

Karantza, 2011b). As keratin expression is tightly regulated, different layers 

express different types of keratins. In skin, the basal keratins constitute the K5 

and K14 pair, when basal keratinocytes which are attached to the underlying 

connective tissue containing dermis begin to lose their calcium activated 

intercellular junctions or plaques, differentiation starts to take place and keratin 
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expression changes. Cells start to flatten and a new set of differentiation–specific 

keratins, K1 and K10, are induced as the cells move up to begin the programme 

of differentiation. At the upper spinous and granular layers, another keratin K2 is 

synthesised and is classified as one of the terminal differentiation markers (Wang 

et al., 2016). The synthesis of new keratins as the cells move toward the surface 

is a tissue-specific as well as a physiological process. For examole, in the skin of 

palms and soles (Palmoplantar) there is induction of K9 in addition to K1 and K10 

in the suprabasal layers while K6 and K16 are induced supra-basally during 

wound healing (Fuchs, 1993, Moll et al., 2008). 

The differentiation process is tightly regulated at the level of genes by a family of 

transcription factors. Transcription of genomic DNA to RNA, which means turning 

on certain genes is a key process in gene expression that identifies cells from 

each other and give each cell its unique identity (Guo, 2014). The synthesised 

mRNA is then translated into proteins which are the functional products of the 

genes. In keratinocyte, differentiation-specific genes produce differentiation-

specific proteins such as involucrin, loricrin, cornifin and a  set of differentiation-

specific keratins which can be used to identify these cells from their 

undifferentiated counterparts (Lee et al., 1998b). There are several factors that 

affect the process of keratinocyte differentiation that will be discussed in detail in 

this chapter.  

Retinoids /Retinoic acid (RA), a group of vitamin A derivatives that play a key 

role in regulating cellular growth, differentiation and apoptosis of several cell 

types in vivo and in vitro. One of the main targets of RA is the epidermal 

compartment of skin (Torma, 2011). It is a widely used therapeutic drug for 

different skin conditions as it is known to induce proliferation and modulate 

keratinocyte differentiation, although its suppressive effect on certain genes 



 

145 

CHAPTER 4 

differs in vivo and in vitro (Gendimenico and Mezick, 1993). The mechanism of 

action and signalling pathways involving RA have been studied after the 

discovery of RA receptors, which are ligand-activated nuclear hormone 

receptors. These receptors are categorised into 2 families, the retinoic acid 

receptors (RAR), and retinoid X receptors (RXR). Each family has 3 different 

forms which can form functional homo and heterodimers (α, β, γ). These 

receptors have different ligand specificities. Normal RAR ligands include both all-

trans RA (ATRA) and 9-cis RA (9cRA). On the other hand, RXR interact with 

9cRA, but not ATRA. Both RAR and RXR bind to RARE located in gene 

promoters as heterodimers (RAR·RXR) mainly (RARα/RXRγ) or RXR 

homodimers (RXR/RXR). These receptors are mainly expressed in the 

differentiated layers of the epidermis proposing to have their role in terminal 

differentiation (Di et al., 1998, Lefebvre et al., 2005, Jho et al., 2005). The latest 

studies on RARs are also indicating their role in lamellar body formation needed 

by differentiating keratinocytes, suggesting that any abnormality in retinoid 

signalling pathways could result in forming abnormal keratinocytes phenotype. 

Retinoid signalling is greatly altered upon keratinocyte differentiation and the 

effects depend on how cellular differentiation is commenced. Calcium treatment 

increases RARγ and RXRα expression while PMA treatment reduced protein and 

mRNA expression of RARγ and RXRα suggesting that the effect of PMA on 

retinoid receptors is either translational or post-translational (Karlsson et al., 

2010). The RA effect could be either direct by binding to specific genes or indirect 

by modulating the effect of some other transcription factors that in turn affect the 

target genes (Lee et al., 2009). One of the well-studied effects of RA in epidermis 

is the inhibition of both early and late stage differentiation markers (Fuchs and 

Green, 1981, Eichner et al., 1992). Transglutaminase 1 (TGM1) enzyme, which 
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is responsible for the assembly of the cornified envelope in skin, is supressed 

after RA treatment as well as other terminal differentiation markers such as 

filaggrin and loricrin(Marvin et al., 1992, Hohl et al., 1991). Keratin family of genes 

are also regulated by RA in which some genes such as KRT1 and KRT10 are 

supressed whereas other genes KRT13, KRT15  and KRT19 are induced (Lee et 

al., 2009). The effect of RA on the expression of late differentiation keratins in 

culture of human skin keratinocyte compared to skin samples is highly variable. 

For example, KRT1 was shown to be downregulated, or in some cases 

unaffected, in skin samples treated with topical application of RA cream while its 

protein expression was unchanged. A similar expression pattern was shown by 

K10 with mRNA downregulation on skin samples treated with RA but 

immunostaining showing either no change or downregulation of protein. K2 

mRNA levels were also reduced with no change or undetectable protein levels 

following RA treatment (Torma, 2011, Rosenthal et al., 1992, Virtanen et al., 

2000, Rosenthal et al., 1990). In human epidermal keratinocyte cultures, the 

expression profile of these keratins exhibited a wide range of variations 

depending on the culture conditions, RA concentrations, cell line used and keratin 

protein detection method. K1 and K10 were expressed in a similar manner in 

which using high concentrations of RA (1µM) was downregulating mRNA and 

protein expression profile when serum free medium or low serum containing 

medium were used. The expression of keratin K2 was not detectable at the 

protein level, mRNA for K2 was upregulated at early time points and 

downregulated at late time points of adding low concentrations of RA to low 

serum containing or serum free culture medium. K2 also revealed higher levels 

of downregulation when treated with Tazarotene (a member of the acetylenic 

class of retinoids, sold as topical cream or gel) compared to other retinoids which 
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presented almost no difference (Torma, 2011, Karlsson et al., 2010, Kopan et al., 

1987, Lee et al., 2009, Fuchs, 1993, Hsia et al., 2008). In the literature, there 

were many variables used in growing cells or taking biopsies and analysing them 

that ended up with these controversies about the effect of RA on different keratin 

expression.  

Calcium is a well-known regulator of keratinocyte differentiation. It has a 

concentration gradient through the epidermal layers with low concentrations at 

the basal layer where differentiation markers are supressed. Higher 

concentration is shown as we move supra-basally where differentiation markers 

are activated specially at the spinous and granular layers. Calcium tends to play 

a major role as a differentiation inducer and a proliferation suppressor in 

keratinocytes (Boyce and Ham, 1983, Eckert et al., 1997, Pillai et al., 1990). 

Phorbol ester, such as phorbol 12-myristate 13-acetate (PMA, also referred to 

as TPA), is a well-known skin tumour promoter along with being a potent inducer 

of keratinocyte differentiation. They act as a diacyl glycerol (DAG) analogue and 

directly activate PKC/AP-1 pathway. Phorbol esters are known not only to induce 

differentiation, they inhibit cell proliferation, elevate intracellular Ca2+ and 

downregulate retinoid receptors in keratinocytes (Castagna et al., 1982a, Papp 

et al., 2003, Karlsson et al., 2010). While PMA treatment induces expression of 

late differentiation markers such as filaggrin and loricrin, it downregulates early 

differentiation markers, such as K1 and K10, both in vitro and in vivo  (Lichti and 

Yuspa, 1988a, Dlugosz and Yuspa, 1993a, Papp et al., 2003, Bose et al., 2012). 

Steroid hormones as cortisol and the active form of vitamin D (1,25-

dihydroxyvitamin Dӡ) have major effects on keratinocyte differentiation. The 

active form of vitamin D is a calcium regulating hormone, it activates epidermal 
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terminal differentiation markers and stimulate the formation of the cornified skin 

layer. Vitamin Dӡ binds to its nuclear receptor, VDR, and directly promotes 

terminal differentiation, this is the most considered and well-known pathway. It 

could be that other pathways are involved in vitamin D induced differentiation 

such as PKC and G protein pathways as well (Bikle, 2011, Eckert et al., 1997). 

The effect of vitamin Dӡ on differentiation is dependent on the calcium 

concentration and the cell density (Svendsen et al., 1997a). 

Estrogen plays a major role in many age-related processes. Wound healing is 

one example that requires proliferating keratinocytes and is highly affected by low 

estrogen levels. Estrogen replacement therapy is known to reverse this process 

and allows better healing and epithelialisation. Estrogen binds to estrogen 

receptors either ER-α or ER-β which are nuclear receptors that binds to DNA and 

has the ability to either repress or induce target genes (Perzelova et al., 2016, 

Merlo et al., 2009). In keratinocytes, estrogen binds to ER-β more than ER-α, 

cells stimulated with the ER-α agonist had similar expression of different keratins 

while cells treated with ER-β agonist show lower expression of differentiation-

specific keratins. The direct effect of estrogen on keratin expression is not yet 

clear with some evidence suggesting upregulation of KRT2, KRT14 and KRT19 

genes in human scalp skin after β-Estradiol treatment (Ramot et al., 2009, Choi 

et al., 2000). 

High cellular density especially 100% confluency has also been shown to 

induce the expression of both early (K1, K10) and late (Filaggrin, loricrin, SPRR-

1) differentiation markers in keratinocytes in vitro. Cell density-mediated induction 

of differentiation markers has been associated with PKC activation. Recent 

studies have shown other factors to be involved in response to increased cell-cell 

contact, as downregulation of c-Myc which is involved in cell-cycle progression 
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as well as upregulation of Notch1 that regulates interactions between physically 

adjacent cells (Lee et al., 1998b, Poumay and Pittelkow, 1995, Kolly et al., 2005b, 

Newton, 2010b). 

To attain more detailed knowledge on the role of lipids especially SLP, ATRA and 

estrogen on the expression of differentiation-specific keratins K1, K2 and K10, 

different types of keratinocytes cultured in different conditions of lipid-free or 

phenol-free medium were used. To study the effect of these different conditions, 

qPCR and protein analyses using WB and immunofluorescence staining of 3D 

cultures of NHEK were used. To specifically study the effect of the main active 

lipid ingredient in the FCS ATRA was added back to the charcoal treated serum 

at different concentrations and the effect was measured using qPCR and WB. 

The effect of PR removal was performed based on some studies that reveal an 

estrogenic like activity of PR that could play a role in keratin gene expression 

(Ramot et al., 2009, Merlo et al., 2009, Choi et al., 2000, Sheng et al., 2008, 

Perzelova et al., 2016, Welshons et al., 1988). 

In this chapter, different keratinocyte cell lines and NHEK were used and grown 

in RM+ medium under different conditions containing normal or charcoal stripped 

serum with and without PR. These studies were complemented by growing NHEK 

cells in charcoal stripped serum with and without ATRA. The expression of 

different keratins was analysed in 2– and 3- dimensional cultures using WB, 

qPCR and immunostaining. 

4.2. Expression of different keratins in skin. 

In this set of experiments, the pattern of expression of the main keratin proteins 

as well as late differentiation markers in the human epidermis was investigated. 

Normal skin samples were obtained from discarded tissue during facial lift and 
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tummy reduction surgeries. Informed consents were obtained from all patients for 

collection of skin samples and the procedure was reviewed and approved by the 

NRES Committee London- City and East (REC ref. 09/H0704/69) and all methods 

were performed in accordance with the relevant guidelines and regulations. The 

samples were fixed in 4% (w/v) paraformaldehyde, dehydrated with increasing 

concentrations of ethanol and paraffin embedded using the facility available in 

the Centre for Cutaneous Research (Blizard Institute). The paraffin embedded 

blocks were stored at RT for later use. Tissue sample containing blocks were 

incubated at low temperature before cutting into 5 µm thick sections using a Leica 

Rotary Microtome. The sections were de-waxed with xylene followed by 

rehydration with decreasing concentrations of ethanol until they were completely 

rehydrated in PBS. The sections were then stained with (H&E) in order to 

visualise and differentiate dermis from epidermal layers as shown in Figure 4.1.  

To detect the antigen expression, the tissue sections were incubated with the 

primary antibodies against specific antigens and then stained with corresponding 

secondary antibodies. The expression of keratins K1, K2 and K10 was primarily 

detected in the suprabasal layers of the epidermis. The tissue section were also 

immunostained with two different antibodies for keratin K15 (LHK15 and 

EPR1614Y) showing staining of the basal layer of the epithelium. The LHK15 

staining gave discontinuous staining whereas EPR1614Y gave us a continuous 

staining (See Figure 4.2). Antibodies against several non-keratin differentiation 

markers including cornifin, filaggrin, loricrin and involucrin were used and it was 

found that all of them were staining only the uppermost layer of the epidermis 

plus the cornified layer as shown in Figure 4.2. 
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Figure 4.1. Haematoxylin and Eosin (H&E) staining of skin sections.  Skin was given from 
facial lift surgery (a), abdominal skin (b), fixed using 4% paraformaldehyde and processed, 
paraffin embedded and sectioned into 5 µm thick sections. Re-hydrated tissue sections were 
stained, de-hydrated and mounted using DPX mounting medium. Nikon Eclipse 80i Stereology 
Microscope was used for recording. (Scale bar =100 µm).  
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Figure 4.2. Expression of differentiation specific markers in normal skin.  Skin was made 
available following facial lift surgery, fixed and processed, cut into 5 µm thick sections, antigen 
retrieval was performed as described in the Methods and Materials. Sections were 
immunostained with primary mAb and AF- 488 labelled secondary antibodies. Leica DM4000 Epi-
fluorescence microscope with DFC350 FX digital camera was used for recording. (scale bar= 20 
µm). 
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4.3. Role of serum lipids on mRNA and protein 

expression of differentiation-specific keratins in Neb-1 

and T103C cell lines. 

In this set of experiments, the role of SLP was investigated as being one of the 

main ingredients of serum used in tissue culture and well known to affect cellular 

proliferation and differentiation. Two cell lines sharing the same immortalisation 

method originated from different tissues were used. Neb-1 is a skin keratinocyte 

cell line while T103C is an oral keratinocyte cell line (Dickson et al., 2000, Bryan 

et al., 1995). Charcoal treated FCS in RM+ medium was used to grow cells for 3 

days before collecting lysates for qPCR mRNA and WB protein analyses. Data 

were compared to cells grown in normal FCS in RM+ medium. As shown in Figure 

4.3, Neb-1 cells were showing a significant downregulation of KRT1, KRT2 and 

KRT10 when serum was stripped with charcoal (SLP-/PR+), T103C cells showed 

either downregulation of KRT2 and KRT10 or a non-significant upregulation of 

KRT1. Protein expression was not detectable except for Neb-1 K1 that showed 

clear downregulation of the protein expression when stripped serum was used as 

shown in Figure 4.3 B. 

 

 

 

 

 

 



 

155 

CHAPTER 4 

 

A 

S
L

P
+
/P

R
+

S
L

P
-/

P
R

+

0 .0

0 .5

1 .0

1 .5

K 1 0  T 1 0 3 C

F
o

ld
 E

x
p

r
e

s
s

io
n

B 

C 



 

156 

CHAPTER 4 

Figure 4.3. Influence of serum lipids on mRNA and protein expression of K1, K10 and K2 
in Neb-1 and T103C cell lines.  Cells were grown for 3 days in RM+ media either containing 
normal FCS (SLP+/PR+) or RM+ with charcoal stripped FCS (SLP-/PR+), lysates were collected 
and analysed using qPCR (A, B) and western blotting (C). Data are shown as fold expression 
normalised to the expression of the two housekeeping genes, POL2A and YAP1 under different 
growth conditions. STAT: n=3, Error bars= SEM, Student’s t-test was performed, p-values 
(ns=p>0.05, *=p<0.05, **=p<0.01). In WB analysis of the proteins in keratinocyte lysates using 
antibodies against K1, K10 and K2. GAPDH was used as a loading control.  

 

4.4. Influence of serum lipids and PR on mRNA and 

protein expression of differentiation-specific keratins in 

HaCaT and N/TERT cell line. 

In this set of experiments, the influence of SLP on the expression of three 

differentiation-specific keratins K1, K2 and K10 in two keratinocytes cell lines was 

investigated, HaCaT and N/TERT that are known to be the closest cell lines to 

normal keratinocytes and not immortalised by HPV16 as Neb-1 and T103C 

(Smits et al., 2017). Charcoal treated stripped FCS was used, which would 

remove most of the SLPs from our RM+ culture medium. PR free medium was 

also used to investigate its effect on keratin expression in conjunction with SLPs. 

HaCaT and N-TERT cell lines were grown in four different conditions of RM+ 

medium for three days before determining specific mRNA levels for KRT1, KRT2 

and KRT10 by qPCR and protein expression by western blotting. As shown in 

Figure 4.4 K1 mRNA expression was upregulated in HaCaT cells grown in lipid 

free with or without PR containing medium (SLP-/PR+, SLP-/PR-) by about 2.5 

folds. This suggests that PR does not show any significant effect on K1 

expression in the presence or absence of SLPs (Figure 4.4 A, K1). Compared 

with K1, the K10 mRNA expression was much more sensitive to SLPs, much 

higher K10 mRNA expression was observed in charcoal stripped serum 

conditions compared with the unstripped serum. It was 25- and 35- fold higher for 

K10 mRNA in (SLP-/PR+) and (SLP-/PR-), respectively, with a significant 
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difference between them suggesting that K10 mRNA was highly affected by PR. 

In the absence of PR and the full lipid containing serum (SLP+/PR-) K10 mRNA 

showed more than 10 folds increase compared with PR containing full lipid serum 

medium (SLP+/PR+) (see Figure 4.4 A, K10). Interestingly, keratin K2, which is 

also expressed in the suprabasal epidermal keratinocytes, showed a reverse 

pattern of gene expression in which the absence of PR and SLP together (SLP-

/PR-) reduced the expression while having full lipid serum in PR free medium 

increased the expression significantly (Figure 4.4 A, K2). Removal of SLP in PR 

containing medium did not show any significant difference in K2 mRNA 

expression. As expected, the mRNA expression pattern was mimicked at the 

protein level with both K1 and K10 showing higher protein expression in both 

SLP-/PR+ and SLP-/PR- conditions compared to SLP+/PR+ and SLP+/PR- 

conditions, respectively (Figure 4.4 B). Under these conditions K2 protein was 

not detectable in HaCaT cells. 

In N-TERT keratinocytes, the effect of SLPs and PR on mRNA expression of K1, 

K2 and K10 is very different compared with that observed in HaCaT cells. For K1, 

K2 and K10 mRNA, removal of PR  in the presence of serum lipids (SLP+/PR-) 

showed about 3 fold increase compared to serum lipid and PR containing medium 

(SLP+/PR+) indicating a more significant role of PR in this cell line (Figure 4.5 A). 

The WB data showed strong protein expression of K1 and K10 on SLP+/PR- 

condition compared with other conditions (Figure 4.5 B). K2 didn’t show any 

protein expression under these condition in N-Tert-1 cells. 
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Figure 4.4. Influence of serum lipids on mRNA and protein expression of K1, K10 and K2 
in HaCaT cell line.  HaCaT cells were grown for 3 days in four different RM+ media conditions, 
lipid containing FCS was added in RM+ with or without PR (SLP+/PR+, SLP+/PR-), charcoal 
stripped FCS was added with or without PR (SLP-/PR+, SLP-/PR-). Lysates were collected and 
analysed using qPCR and western blotting. (A)  Data are shown as fold expression normalised to 
the expression of the two housekeeping genes, POL2A and YAP1 under different growth 
conditions. STAT: n=3, Error bars= SEM, Student’s t-test was performed, p-values (ns=p>0.05, 
*=p<0.05, **=p<0.01, ***=p<0.001 and ****=p<0.0001). (B) WB analysis showed, absence of 
lipids and PR increases protein expression of K1 and K10 in HaCaT, using antibodies against K1, 
K10 and K2. GAPDH was used as a loading control.  
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Figure 4.5. Influence of serum lipids on mRNA and protein expression of K1, K10 and K2 
in N/TERT cell line.  N/TERT cells were grown for 3 days in four different RM+ media conditions, 
lipid containing FCS was added in RM+ with or without PR (SLP+/PR+, SLP+/PR-), charcoal 
stripped FCS was added with or without PR (SLP-/PR+, SLP-/PR-). Lysates were collected and 
analysed using qPCR and western blotting. (A) Data are shown as fold expression normalised to 
the expression of two housekeeping genes, POL2A and YAP1 under different growth conditions. 
STAT: n=3, Error bars= SEM, Student’s t-test was performed, p-values (ns=p>0.05, *=p<0.05, 
**=p<0.01 and ***=p<0.001). (B) WB analysis of the proteins in keratinocyte lysates using 
antibodies against K1, K10 and K2 showed increased expression of K1 and K10 protein in the 
absence of phenol red. GAPDH was used as a loading control  

 

 

 

A 

B 



 

160 

CHAPTER 4 

4.5. Absence of serum lipids and PR increases mRNA 

and protein expression of differentiation-specific 

keratins in NHEK. 

To explain the variations observed in HaCaT and N/TERT cell line that could be 

due to the procedure used to immortalise these cells, normal epidermal 

keratinocytes were substituted for the cell lines in future experiments. NHEK cells 

were co-cultured with 3T3 fibroblasts irradiated with sub-lethal dosage of gamma-

radiation to be used as feeder cells in RM+ medium with the same conditions 

mentioned in section 4.4 for HaCaT and N-TERT cell lines. Around 2-fold 

increase in expression of K1 mRNA was observed in SLP-/PR+ and SLP-/PR- 

conditions compared to the SLP+/PR+ control, lipid removal did allow more 

expression of K1 mRNA in the presence or absence of PR with the latter being 

more pronounced. K10 showed similar pattern with 2- and 4-folds increase in 

SLP-/PR+ and SLP-/PR-, respectively. In K1 and K10, the highest mRNA 

expression was observed when PR was removed in the absence of SLP 

suggesting their expression is sensitive to the presence of PR. On the other hand, 

expression of K2 mRNA was not altered significantly by changes in growth 

conditions by either removing SLP or PR or both. These data  were compared to 

K14, a keratin which is proliferation specific, a significant increase was observed 

in its mRNA expression in presence of charcoal stripped serum but was 

insensitive to PR (Figure 4.6 A). At protein level, the WB data showed a pattern 

similar to mRNA expression in which K1 and K10 showing highest expression in 

(SLP-/PR-). Removing SLP and PR (SLP-/PR-) had a synergistic effect on K1 

and K10 protein expression in which the removal of both at the same time showed 

much stronger effect than removing either of them. K2 protein expression 
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increased in SLP-/PR+ which further increased in SLP-/PR- condition again 

similar to K1 and K10 (Figure 4.6 B).  
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Figure 4.6.  Removal of serum lipids and PR affects mRNA and protein expression of K1, 
K10 and K2 in NHEK cells.  NHEK cells were grown with irradiated 3T3 feeder cells for 3 days 
in four different RM+ media conditions, lipid containing FCS in RM+ with or without PR (SLP+/PR+, 
SLP+/PR-), charcoal stripped FCS in RM+ with or without PR (SLP-/PR+, SLP-/PR-). Lysates 
were collected and analysed using qPCR and WB. (A) Data are shown as fold expression 
normalised to the expression of two housekeeping genes, POL2A and YAP1 under different 
growth conditions. STAT: n=3, Error bars= SEM, Student’s t-test was performed, p-values 
(ns=p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001 and ****=p<0.0001). (B) WB analysis of the 
proteins present in keratinocyte lysates using antibodies against K1, K10 and K2. GAPDH was 
used as a loading control. 

 

 

 

 

 

 

B 



 

163 

CHAPTER 4 

4.6. Influence of serum lipids and PR on keratin 

expression in NHEK grown in 3D organotypic cultures 

(OTCs).  

To study keratin protein expression in a 3D culture system, which mimics an in 

vivo situation of human skin expressing differentiation-specific markers in a way 

resembling normal skin, NHEK cells were grown in an organotypic model at an 

air-liquid interface for 10 days. Cells were grown in RM+ medium with and without 

charcoal stripped serum either in the presence or absence of PR. The OTCs 

plugs were removed and fixed using 4% (w/v) paraformaldehyde, dehydrated 

using increasing concentrations of ethanol and paraffin embedded. Later, 5 µm 

sections were cut, de-waxed, antigen retrieved and immunostained using mAbs 

specific for the keratin proteins of our interest. More detailed procedure on 

fixation, waxing and de-waxing is described in the Material and Methods section 

2.3. H & E staining were used to show the stratification and cornification of 

keratinocytes and to show the differences between the superficial layer and the 

deep fibroblast containing collagen layer shown in Figure 4.7. From the 

immunofluorescence staining shown in Figure 4.8 (A, B, C, D), the expression of 

K1, K2 and K10 showed the strongest staining when cultured in PR free RM+ 

medium with charcoal stripped serum (SLP-/PR-) supporting the previous mRNA 

and WB data shown in Figure 4.6. K14 and K15 did not show any significant 

changes in expression when the culturing conditions were altered. In Figure 4.8 

(E) a summery of the effect of different conditions on the expression of K1, K2 

and K10  was shown in one figure to make it easy to compare. 
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Figure 4.7. H&E staining of NHEK OTCs.  NHEK were grown in OTCs in an insert (pore size 
0.4 µm) based method. Primary dermal fibroblasts were used in collagen matrix to support the 
growth of NHEKs. The cells were grown at air-liquid interface for 10 days with 4 different media 
conditions (A:SLP+/PR+, B:SLP-/PR+, C:SLP+/PR- and D:SLP-/PR-),fixed in 4% (w/v) 
paraformaldehyde/PBS and paraffin embedded. Sections of 5 µm thickness were cut, de-waxed, 
re-hydrated, stained, de-hydrated and mounted using DPX mounting medium. Nikon Eclipse 80i 
Stereology Microscope was used for recording. (Scale bar =100 µm). 
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Figure 4.8. Removal of serum lipids and PR increases the protein expression of K1, K10 
and K2 in 3D NHEK cultures.  NHEK were grown in OTCs in an insert (pore size 0.4 µm) based 
method. Primary dermal fibroblasts were used in collagen matrix to support the growth of NHEKs. 
The cells were grown at air-liquid interface for 10 days with 4 different media conditions (A: 
SLP+/PR+, B: SLP-/PR+, C: SLP+/PR-, D: SLP-/PR-), fixed in 4% (w/v) paraformaldehyde/PBS 
and paraffin embedded. Sections of 5 µm thickness were cut, antigen retrieved, followed by 
immunostaining with antibodies against K1, K2, K10, K14 and K15, the nuclei were 
counterstained with DAPI in blue, overlapping is shown as merged images. Leica DM4000B Epi-
fluorescence microscope and DFC350 camera was used for recording. (scale bar = 20 μm). In E 
a summary of the effect of different culture conditions on the expression of keratins K1, K2 and 
K10 is shown. 
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4.7. Differential effect of ATRA on mRNA and protein 

expression of K1, K10 and K2 in NHEK. 

In our previous set of experiments, the role of SLPs and PR on mRNA expression 

of late differentiation markers was investigated. Although SLPs contain fatty acids 

as well as RA and their metabolites, RA has been known for its role in 

keratinocyte differentiation and has been used for years by dermatologists 

targeting various skin conditions. Based on the RA role and its importance in 

keratinocyte differentiation, the effect of adding ATRA on the expression of 

differentiation-specific keratins K1, K2 and K10 in NHEK has been studied. Cells 

were grown with irradiated feeder fibroblasts in RM+ medium containing charcoal 

stripped FCS (de-lipidised serum) either in the presence (PR+) or absence of PR 

(PR-) as shown in Figure 4.9. ATRA stocks were dissolved in DMSO for long term 

storage and further diluted in pure ethanol before use. Working concentrations of 

1 µM, 2 µM, 3 µM were used for 24 h to investigate the effect of ATRA in charcoal 

treated serum containing medium (Lee et al., 2009). After 24 h of treatment, cells 

were lysed for K1, K10 and K2 mRNA quantification using qPCR, DMSO/EtOH 

(0.003%/0.03%,v/v) was used as a vehicle control. The expression of both K1 

and K10 mRNAs were reduced by 0.5 folds with or without PR in the growth 

medium at all three ATRA concentrations (Figure 4.9 A, B). There was no 

significant difference between the 3 different concentrations as measured using 

One-way ANOVA. The K2 mRNA expression pattern was starkly different, with 

ATRA showing no effect on K2 expression in the presence of PR but showing 

significant (2 fold) increase in the absence of PR (Figure 4.9 C), supporting 

previous data (see Figure 4.6 A) showing opposite effect when lipids and PR 

were removed. To further investigate the effect of ATRA on the protein level, 

NHEK were grown with irradiated 3T3 fibroblasts as feeder in charcoal treated 
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stripped serum containing RM+ medium in presence and absence of PR. Next 

day, 1µM ATRA was added to these cells for 24 h and DMSO/EtOH 

(0.001%/0.01%, v/v) was used as a vehicle control. Cells were washed and lysed 

for WB analysis, K1, K10 and K2 mAbs were used to measure the protein 

expression after treatment and GAPDH was used as a loading control. In PR 

containing medium, K1 and K10 did not show any significant change in protein 

expression after ATRA treatment (Figure 4.10 A). On the other hand, treatment 

with ATRA for 24 h in the absence of PR did show 0.5-fold reduction in K1 

expression with no change in K10 expression (Figure 4.10 B). These data 

correlate well with the mRNA expression data shown in Figure 4.9 (A, B) in which 

K1 expression was showing a much more significant reduction compared with 

K10. This indicates that ATRA is reducing the expression of K1 and K10 on 

mRNA and protein levels in NHEK and this effect is more pronounced in the 

absence of PR. K2 did not show any protein expression and this could be due to 

the fact that K2 is a late differentiation marker and growing the cells for less than 

3 days may not be enough to have a detectable protein level of K2. 
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Figure 4.9. ATRA supresses K1 and K10 mRNA expression while K2 mRNA expression is 
increased.  NHEK cells mixed with irradiated 3T3 feeder cells were grown in charcoal stripped 
FCS containing RM+ with or without PR. ATRA stock was made in DMSO and further diluted in 
Ethanol (EtOH). The cells were grown in three different ATRA concentrations of 1 µM, 2 µM, 3 
µM and DMSO/ETOH was used as a vehicle control (0.003%/0.03% maximum) for 24 h after 
which lysates were collected for qPCR mRNA expression analysis for KRT1, KRT10 and KRT2. 
Data are shown as fold expression normalised to the expression of two housekeeping genes, 
POL2A and YAP1. STAT: n=3, Error bars=SEM, One-way ANOVA to measure the p values at 
different concentrations compared to the control (showed in figure) and between different 
concentrations of ATRA (ns). Two-way ANOVA was used to measure the statistical significance 
between PR+ and PR- groups for each keratin (K1*, K10***, K2****), p-values (ns=p>0.05, 
*=p<0.05, **=p<0.01, ***=p<0.001 and ****=p<0.0001). 

 

Figure 4.10. ATRA reduces protein expression of K1 in NHEK.  NHEK cells mixed with 
irradiated 3T3 feeder cells were grown in charcoal stripped FCS RM+ medium with or without PR. 
ATRA stock made in DMSO and further diluted in EtOH. The cells were grown and treated next 
day with 1 µM ATRA concentration for 24 h in PR containing medium (A) or PR free medium (B), 
DMSO/ETOH (0.001%/0.01%) mixture was used as a vehicle control after which lysates were 
collected for WB protein analysis. Keratins K1, K2 and K10 mAbs were used to detect the level 
of protein expression and GAPDH was used as a loading control. Data are shown as fold 
expression normalised to DMSO/EtOH control. STAT: n=3, Error bars= SEM, Student’s t-test was 
performed, p-values (ns=p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001 and ****=p<0.0001).  
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4.8. PR downregulates KRT1 and KRT10 but not KRT2 

expression in NHEK. 

The role of ATRA on both mRNA and protein expression of K1, K10 and K2 was 

examined in our previous section 4.7. Based on the data shown from sections 

4.5-4.7, a hypothesis that PR was playing a role in the regulation of genes for 

keratins K1, K2 and K10 was made, as ATRA was also showing stronger effect 

when PR is absent. To further study the role of PR on mRNA expression of KRT1, 

KRT2 and KRT10, NHEK were grew with irradiated feeder fibroblasts in PR free 

RM+ (charcoal stripped FCS) + 0.01 mg/ml of PR which is the concentration used 

in normal PR containing culture medium (Berthois et al., 1986) and (Sigma-Merck 

product information data sheet). Cells were grown in this medium for 3 days with 

or without 1 µM of ATRA in the last 24 h before lysing the cells for qPCR analysis. 

The solvent DMSO/ETOH (0.001%/0.01%, v/v) treated cells were used as control 

for ATRA treated cells. Cells grown in charcoal stripped serum medium without 

PR were used as control for cells treated with PR, as both controls have the same 

values, only one control was used in this experiment. As shown in Figure 4.11, 

the expression of K1, K0 was reduced in PR treated cells significantly while K2 

reduction was not significant. The addition of both PR and 1 µM ATRA for 24 h 

reduced the expression by almost 1-fold for K1 and K10 with no significant 

change in K2 expression confirming data shown in Figure 4.9. This shows that 

PR treatment suppresses steady state level of KRT1, KRT10 and KRT2 mRNA 

which is further supressed when ATRA is added in the case of KRT1 and KRT10 

but no effect on KRT2 expression which was shown in Figure 4.9 C when using 

PR containing medium plus ATRA treatment. 

It was concluded, that ATRA is more potent and shows a stronger effect 

compared with PR even though they work synergistically. To make it easier to 
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corelates data of this experiment to the previous ones, abbreviations of 

treatments used in this experiment and the matching medium conditions used 

before were summarised as shown in the table below. Reference genes YAP1 

and POL2 were not affected by these treatment as shown by their Cp values in 

Figure A.4 a (Appendix). 

 
 
 
 

 

 

Figure 4.11. PR supresses mRNA expression for K1 and K10 in NHEK.  NHEK cells were 
grown with irradiated 3T3 feeder in charcoal stripped FCS PR free RM+ medium. PR was 
dissolved in this medium at a concentration similar to that used in normal culture medium (0.01 
mg/ml). NHEK were cultured in this medium for 3 days either with or without 1 µM ATRA in the 
last 24 h before collecting cell lysates for qPCR gene expression analysis for KRT1, KRT10 and 
KRT2. Control cells treated with DMSO/EtOH (0.001%/0.01%). Data are shown as fold 
expression normalised to the expression of two housekeeping genes, POL2A and YAP1. STAT: 
n=3, Error bars=SEM, Student’s t-test was performed, p-values (ns=p>0.05, *=p<0.05, **=p<0.01, 
***=p<0.001 and ****=p<0.0001).  
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4.9. β-Estradiol has no effect on K1, K10 and K2 gene 

expression in NHEK. 

In the earlier experiments, it was observed that PR is having an effect on KRT1 

and KRT10 expression in NHEK and due to the structural similarity between 

impurities in PR and β-estradiol (ED), a hypothesis that PR could be mimicking 

the effect of ED was made. Therefore, investigating the effect of ED on KRT1, 

KRT2 and KRT10 expression was done. NHEK were grown with irradiated feeder 

fibroblasts cells in PR free RM+ medium with charcoal stripped FCS before ED 

was added at 10 nM, 50 nM, 100 nM, 500 nM and 1 µM concentrations for 24 h 

before lysis and qPCR analysis. As shown in Figure 4.12 the expression of the 

three keratins did not show any significant change in the presence of ED 

compared with the control. This suggests that the effect of PR observed in 

Figures 4.6- 4.11 could not be due to the structural similarity to ED as has been 

proposed previously (Hofland et al., 1987, Berthois et al., 1986). Further 

investigations using higher β-estradiol concentrations or a different ED form are 

required to reach a definitive conclusion. Reference genes YAP1 and POL2 were 

not affected by ED treatment as shown by their Cp values in Figure A.4 b 

(Appendix). 
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Figure 4.12. β-Estradiol has no effect on the expression of KRT1, KRT2 and KRT10 genes 
in NHEK. NHEK cells were grown with irradiated 3T3 feeder cells in charcoal stripped FCS PR 
free RM+ medium. β-Estradiol was dissolved in DMSO (0.001%). Concentrations of β-Estradiol 
in the range of 10 nM – 1 µM were added in the culture medium and cells were treated for 24 h 
before collecting cell lysates for expression analysis for KRT1, KRT10 and KRT2 gene by qPCR. 
Control cells were treated only with DMSO (0.001%). Data are shown as fold expression 
normalised to the expression of two housekeeping genes, POL2A and YAP1.STAT: n=3, Error 
bars=SEM, One-way ANOVA was performed, p-values (ns=p>0.05, *=p<0.05, 
**=p<0.01,***=p<0.001 and ****=p<0.0001).   

 

4.10. Discussion and conclusion. 

RA plays a fundamental role in maintaining the normal epidermal differentiation, 

it induces hyperproliferation and it is widely used as a therapeutic agent for 

treating many skin ailments (Virtanen et al., 2000, Torma, 2011). The effect of RA 

on cytokeratin expression is quite complexꓼ high concentrations of RA (10-6M) 

supresses the expression of basal keratins K5 and K14 while K19 expression is 

enhanced (Crowe, 1993). For supra-basal keratins involved in terminal 

differentiation (K1, K2, K10), the expression is either downregulated or unaffected 

by topical RA treatment on normal skin of volunteers (Virtanen et al., 2000, 

Crowe, 1993, Kopan et al., 1987). The suppressive effect of RA on certain genes 

differs markedly in vivo and in vitro (Gendimenico and Mezick, 1993). 

Keratinocyte differentiation is retinoid sensitive, with nano-molar concentration 

required to keep the normal level of differentiation while excess or reduced RA 

concentrations could respectively reduce or amplifies the terminal differentiation 

(Randolph and Simon, 1997). RA binds to serum albumin and its concentration 

in FCS is around 2 mg/ml (Napoli, 1986). Stripped FCS in which most of the lipids 

have been removed by charcoal treatment including RA have been used and the 

cells were grown in this medium for studying the role of SLPs on the expression 

of late differentiation keratins in NHEK. FCS is widely used in tissue culture to 

maintain normal cellular growth and differentiation. It contains a wide range of 

vitamins, minerals, lipids and proteins as well as other molecules that are needed 
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by the cells such as hormones and growth factors (Gstraunthaler, 2003, Zheng 

et al., 2006). These molecules will have huge impact on cellular function and 

regulation, so charcoal stripping of serum would enable us to study the effect of 

serum lipid or hormones as studying the role of steroids and RA for example 

(Sorensen et al., 1997, Wille et al., 1984, Svendsen et al., 1997b, Sikora et al., 

2016). 

In this set of experiments, the role of RA and PR on the expression of K1, K2 and 

K10 in keratinocytes was investigated either by removing lipids from the serum 

or using PR free medium or both. The experiment started with two cell lines that 

were available in the lab and immortalised by the HPV16 method (Neb-1 and 

T103C), respectively derived from skin and oral tissues (Bryan et al., 1995, 

Dickson et al., 2000). Using these cell lines no induction of late differentiation 

keratins was detected as shown in Figure 4.3 when serum was stripped so these 

cell lines were removed from our next set of experiments and HaCaT and N/TERT 

were used which are immortalised differently (HaCaT is spontaneously 

transformed by prolonged cultivation at low Ca2+ concentration (0.2 mM) and 

moderately high temperature 38.5°C while N/TERT keratinocytes immortalised 

by ectopic expression of the telomerase catalytic subunit (hTERT) and 

subsequent spontaneous events leading to the loss of p16INK4a expression) 

(Smits et al., 2017, Fusenig and Boukamp, 1998). 

As PR is known to have a weak estrogenic effect that could affect keratinocyte 

differentiation, this point of investigation was added into our study as well 

(Berthois et al., 1986, Welshons et al., 1988, Choi et al., 2000, Ramot et al., 

2009). Keratinocytes cell lines and NHEK were grown in four different conditions 

of RM+ medium as follows: 
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• SLP+/PR+ (lipid containing serum that contains PR). 

• SLP-/PR+ (charcoal stripped serum containing PR). 

• SLP+/PR- (lipid containing serum without PR). 

• SLP-/PR- (charcoal stripped serum without PR). 

Lipid removal from the serum did induce the expression of K1 and K10 in HaCaT 

with K10 being upregulated more when lipids and PR were removed from the 

medium (SLP-/PR-). N/TERT cell line data were different, in which removal of PR 

in the presence of SLP was the only condition showing upregulation of K1, K2 

and K10 mRNA levels and K1 and K10 protein levels. This difference between 

HaCaT and N/TERT could be primarily due to their immortalisation method in 

which HaCaT is a cell line that is spontaneously immortalised while N/TERT is 

immortalised through hTERT component of the telomerase gene that maintains 

the telomerase end and repress replicative senescence (downregulation of p16) 

(Dickson et al., 2000). NHEK showed the same pattern as HaCaT with both K1 

and K10 being more upregulated in SLP-/PR- condition, these changes have 

been shown at both mRNA and protein levels. Keratin K2 was showing a similar 

pattern in protein expression but no significant difference in mRNA levels. Other 

studies have shown an opposite effect when adding RA on skin or cultured 

keratinocytes in which K1 and K10 were either downregulated and in other 

studies unaffected and these findings strongly indicate that the effect that has 

been seen is primarily due to the presence of RA. Some reports have also shown 

that K2 mRNA levels were reduced and the protein levels were either unchanged 

or the protein became undetectable when skin tissue of volunteers were treated 

with RA (Torma, 2011, Rosenthal et al., 1992, Virtanen et al., 2000, Rosenthal et 

al., 1990). We have also added ATRA to charcoal stripped serum medium with 
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or without PR and the effect shown in other studies was able to be reproduced, 

where they have added RA directly on skin. Keratins 1 and 10 were 

downregulated on mRNA levels and protein which was more pronounced in PR 

free medium (Figure 4.9, 4.10).  

Estrogen has also been shown to affect some keratin gene expression as 

upregulation of KRT2, KRT14 and KRT19 genes, this has been shown in human 

scalp skin after β-Estradiol treatment (Ramot et al., 2009). PR has been shown 

to bind to estrogen receptors at concentrations lower than 0.01 mg/ml and 

induces cell proliferation of MCF-7 cells (Berthois et al., 1986, Welshons et al., 

1988), and reduced proliferation when only PR was removed from the medium. 

Based on these data, a hypothesis was made, that as PR is inducing proliferation 

it could be inhibiting differentiation, as part of normal cellular physiology in which 

factors that induce proliferation and cell cycle progression inhibit the cellular 

differentiation process (Suzan and Sander, 2016). A synergistic effect of 

removing PR with SLPs removal was observed that upregulated K1, K2 and K10 

in NHEK while adding PR back did reduce the expression of KRT1 and KRT10 

but not KRT2 in NHEK. The estrogenic like effect of PR using β-estradiol addition 

to the culture medium has been also investigated. Although some studies have 

shown lower expression of differentiation-specific keratins when keratinocytes 

were treated with estrogen receptor ER-β agonist, some genes that are not 

involved in terminal differentiation such as KRT19 were induced by estrogen 

treatment (Choi et al., 2000), no effect on differentiation-specific keratin gene 

expression in NHEK by β-estradiol was shown (Figure 4.12). This indicates that 

PR effect that is shown in our experiments could be due to impurities other than 

its structural similarity with β-estradiol.  
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NHEK were used to rule out any effect of immortalisation that could disturb the 

normal process of keratinocyte differentiation and affect the expression of their 

genes.  

In conclusion:  

• In NHEK, the expression of K1 and K10 after lipid removal was significantly 

upregulated at both mRNA and protein levels while K2 only showed a non-

significant reduction. At the protein level K2 was expressed slightly after 

lipids removal. 

• Removing PR and lipids seem to work synergistically as when both were 

removed from growth medium the expression went more higher than 

removing either of them. 

• K1 and K10 reacts in a similar way of response either to lipids removal or 

to ATRA and PR addition while K2 reacted in an opposite way.  

Based on the data in this chapter, a hypothesis has been made that K1 and K10 

are regulated in an inverse way compared to K2. Another hypothesis was made 

that ATRA is either activating K2 promotor and inducing more synthesis or it could 

be stabilising the mRNA after transcription. Our next set of experiments were 

planned to investigate these hypotheses. 
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5. Results III. mRNA stability of differentiation-specific 

keratinsꓼ effect of serum lipids and ATRA. 

5.1. Introduction. 

Gene regulation is a vital event for each living cell in all organisms. Genes are 

tightly regulated in mammalian cells at different levels from transcription down to 

protein synthesis and this regulation is controlled by a variety of pathways and 

regulatory factors that could affect the transcript pre- or post-transcriptionally. 

This controlled regulation results in a wide range of cellular proteins being 

synthesised in the correct time and location inside the cell giving a phenotypic 

diversity between different organisms (Newbury, 2006, Liu et al., 2014). The 

process of gene expression starts with DNA being transcribed to mRNA using the 

enzyme (RNA pol) inside the nucleus. The transcription process is divided into 

three stages (initiation, elongation and termination). In the initiation step, the 

enzyme RNA pol binds to the untranslated region (i.e. a promotor sequence at 

the start of the gene need to be transcribed) and start transcription by 

synthesising a DNA strand. This newly synthesised strand is complementary to 

one of the DNA strands (template) and this step starts at the DNAs 3’end. In 

elongation, the RNA starts to elongate as the RNA pol moves on until it hits 

transcriptional termination sequence that dissociates the polymerase and the 

transcription is terminated (Figure 5.1) (Taylor, 2006, Maraia and Arimbasseri, 

2017). There are different types of RNA polymerases to transcribe different types 

of genes. For ribosomal RNA (rRNAs) genes, RNA pol I is required, for 

messenger RNAs (mRNAs) RNA polymerase II is required and for some small 

regulatory RNAs and other small RNAs such as transfer RNAs, RNA polymerase 

III is utilised (Carter and Drouin, 2009, Kwapisz et al., 2008). 
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Figure 5.1. Gene transcription steps.  A diagram showing gene transcription steps initiation (a) 
RNA pol bind to promotor at initiation site, elongation (b) RNA pol moves on copying template 
strand to form an RNA transcript .In termination (c) the RNA pol dissociates as it reaches the 
termination site (©2014 Nature Education). 

 

http://www.nature.com/nature_education
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The single strand RNA that has been synthesised is called a Transcript which 

undergoes a series of post-transcriptional modifications before the mature mRNA 

is ready to be exported to the cytoplasm. These modifications include RNA 

splicing in which sequences corresponding to introns are removed and 

sequences corresponding to exons are joined together, a cap at the 5’ end and a 

poly-A tail at the 3’ end is added. Later, the mature mRNA is exported into the 

cytoplasm. Only 10% of the synthesised RNA sequence is converted into the 

mature mRNA as around 90% are introns which are spliced out. Interestingly, 

around 70% of the nuclear transcripts are either un-polyadenylated or poorly 

spliced (defective post-transcriptional modifications) rendering them unable to be 

exported out of the nucleus (Liu et al., 2014). Once the mature mRNA is exported 

to the cytoplasm, some pre-translational changes are made before being 

translated into polypeptides that folds into structural and functional proteins 

(Figure 5.2).  



 

187 

CHAPTER 5 

 

Figure 5.2. RNA transcription and translation.  First, DNA is transcribed having both coding 
and noncoding regions, introns will be removed, and exons joined together. Spliced mRNA is 
prepared by adding a cap and a poly-A tail on the 5’ and 3’ respectively, before being exported 
out of the nucleus. In the cytoplasm, the mRNA is ready to be translated into protein. (©2010 
Nature Education). 

 

 mRNA stability. 

As part of the gene regulation process, the stability of the mRNA being 

transcribed is critical. Part of the transcript stability is controlled inside the nucleus 

in which faulty splicing or de-adenylation takes place using nuclease enzyme, this 

destabilises the transcript product and it is no longer functional although it has 

been transcribed. Part of these RNA degradation processes takes place in the 

cytoplasm in which some enzymes can de-cap or remove the poly-A tail of the 

transcript as the exosome enzyme for example. This mRNA decay or instability 

is a highly regulated cellular process. The mRNA decay happens in response to 

http://www.nature.com/nature_education


 

188 

CHAPTER 5 

different extrinsic or intrinsic stimuli allowing the cell to stop synthesising a certain 

protein that is no longer needed by the cell or its presence could affect other 

pathways that are needed under certain conditions. Those stimuli could be either 

a developmental stimulus such as proliferation and differentiation or a response 

to an environmental trigger such as temperature, hypoxia or viral infections. 

Certain nutrients, hormones or drug treatments could also affect mRNA stability 

(Guhaniyogi and Brewer, 2001). The decay response of the mRNA should be 

rapid, allowing the cell to keep the steady state level of the mRNA needed for 

normal cellular function. The differential stability of different mRNAs allows some 

to be highly stable while others degrade rapidly, c-fos and β-globin mRNAs are 

two examples of differential stability. The mRNA of c-fos is involved in cellular 

response to external stimuli so its half-life is no longer than 30 min while β-globin 

mRNA has a half-life greater than 24 h as it is required for the synthesis of red 

blood cells (Atwater et al., 1990). The mRNA level that scientists measure in cells 

using classical methods such as qPCR and northern hybridisation is the steady 

state level of this mRNA which represents the balance between production 

(transcription) and decay and this is usually measured using real time qPCR. In 

order to study the decay rate or the mRNA stability of a certain gene we need to 

measure the decay rate or the mRNA half-life and there are a wide variety of 

methods used in the literature that can be summarised into three main techniques 

as shown in Figure 5.3. (Wada and Becskei, 2017). 
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Figure 5.3. Main classes of methods to study RNA stability.  In (a) the molecular mechanism 
affected by a specific method is shown. In transcriptional inhibition, the RNA pol is inactivated, 
and the expression of all genes is reduced. In the gene control method, a transcriptional activator 
dissociates from a specific promotor, shutting off the expression of that gene. In labelling, modified 
nucleotides introduced into the cell and incorporates into the RNA. In (b) the time course of the 
experiments is shown, for the first two methods time start at zero while in last method the increase 
of labelled mRNA is monitored after applying pulse to the nucleotides (Wada and Becskei, 2017). 

 

The most commonly used method to measure mRNA turnover is transcriptional 

inhibition. When transcription is blocked, the transcription of all genes is reduced, 

RNA starts to decay, and the rate is measured overtime. Many drugs have been 

used to block transcription, Thiolutin, α-Amantin, Triptolide and AD. Each drug 

has its advantages and limitations in which some drugs could have side effects 

other than transcriptional blockage such as thiolutin which can chelate Zn++ ions 

and inhibit metalloproteases that could affect other cellular functions. The most 

commonly used transcriptional inhibitor is AD which is an antibiotic isolated from 

Streptomyces parvulus and has been used as an anti-cancer drug as well. AD 

blocks the elongation step of mRNA synthesis in which RNA pol can no longer 

move on the DNA strand and continue the transcription. When elongation is 

blocked, RPB1 (subunit 1 of RNA polymerase II) is degraded which is mediated 

by the activation of p53, the major tumour suppressor gene. AD inhibits 
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transcription by all three RNA polymerases depending on the concentration of the 

drug used, low concentrations >0.01 µg/ml inhibits polymerase I while higher 

concentrations inhibit polymerase II. It has a fast rate of action (in minutes) with 

weak reversibility after being removed. Despite these advantages, it still has 

some limitations as it inhibits all genes non-specifically as well as its feedback 

loop in which some genes are enhanced after their initial inhibition, such as p53 

gene, which affects a number of structural proteins and play a role in cellular 

apoptosis (Bensaude, 2011). 

There are other methods to study mRNA decay such as gene control and in vivo 

labelling, but they are not commonly used. In the gene control method, 

transcription is also inhibited but in this technique the inhibition is specific to the 

gene of interest that its controlled by a promotor. Despite its low side effects, this 

method is not commonly used because each experiment ends by measuring only 

one mRNA half-life. In the metabolic labelling method, the half-life of the mRNA 

is measured by quantifying the rate at which the labelled mRNA increases or 

decreases after the labelled nucleotides is being introduced or removed. This 

could be measured using either the Approach to Equilibrium Method (AEM) or 

the Pulse-Chase Method (PCM). In the AEM, the rate of degradation is 

measured, and it corresponds with the increase in the labelled mRNA. On the 

other hand, in the PCM, the decline in the mRNA is measured that corresponds 

to the washout labelled nucleotides. In radioactive labelling of [3H]-adenine and 

[32P]-phosphate is no longer used as it induces cellular damage that affects 

mRNA stability (Atwater et al., 1990, Wada and Becskei, 2017). 

Different mRNAs can be degraded through different pathways, but also the same 

mRNA can decay differently under different conditions. The structural key 

elements in the decay process are the 3’-poly-A tail, 3’-cap untranslated region 
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(UTR), the protein coding region, 5’-UTR and 5’-cap. The poly-A tail has an 

important role in nuclear processing of the mRNA and its export to the cytoplasm. 

Once the mRNA is in the cytoplasm its stability is affected and also its ability to 

translate into protein. There are three main pathways controlling mRNA 

degradation. The first pathway is the de-adenylation pathway, the poly-A tail 

interacts with the poly-A tail binding protein (Pab1p) and this binding protects the 

mRNA from rapid degradation. Under certain conditions, de-adenylase cleaves 

the poly-A tail rendering the mRNA to be degraded by exoribonuclease enzyme. 

The second pathway deals with the 5’ cap and it’s called de-capping. In this 

pathway de-capping proteins Dcp1p and Dcp2p form a complex that cleaves the 

mRNA at the 5’-end which allow it to be further degraded by Xrn1p 

exoribonuclease. This pathway could take place after or in conjunction with de-

adenylation or could take place independently as well. The third pathway is called 

non-sense mediated decay pathway (NMD) in which endonuclease cleavage 

targets mRNA with non-sense codons or un-spliced introns. After cleavage, the 

3’-end is degraded by exosomes and the 5’-end is degraded by Xrn1p (Figure 

5.4). The eukaryotic exosome mentioned here is a ten subunit 3′ exoribonuclease 

complex responsible for many RNA processing and degradation reactions, not to 

be mistaken with the exosomes that are secreted by the cells as vesicles used 

for intercellular communication (Simons and Raposo, 2009, Newbury, 2006, 

Kramer and McLennan, 2018, Chen et al., 2008, Guhaniyogi and Brewer, 2001, 

Wada and Becskei, 2017, Schaeffer et al., 2009, Qadir et al., 2018).  
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Figure 5.4. Three main pathways controlling mRNA degradation in eukaryotes.  First 
pathway is de-adenylation in which poly-A tail is removed by deadenylase and mRNA is further 
degraded by exosome. Second pathway is de-capping at 5’end using de-capping proteins and 
the mRNA is further degraded using Xrn1p exonuclease. Third pathway endonuclease targets 
mRNA with non-sense codons or un-spliced introns and mRNA will be further degraded by Xrn1p 
exonuclease and exosome and this pathway is called non-sense mediated decay pathway (NMD). 
(Newbury, 2006). 

 

The clinical significance of studying mRNA decay has been shown in a variety of 

human diseases such as cancer and Alzheimer’s disease. In these conditions, 

certain stabilising mRNA proteins are affected either by allowing more decay or 

by stabilising mRNAs that encode unwanted proteins that leads to accumulation 

of these proteins inside the cell. The ability to study mutations of these stabilising 

components and the ability to regulate mRNA stability seems to be a promising 

novel therapeutic approach (Guhaniyogi and Brewer, 2001). 

 Promoter activity measurements. 

Another important aspect of gene regulation is the promotor activity of a particular 

gene. It is vital to understand the molecular basis of underlying gene regulation 
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mechanisms at the transcription level. The promotor sequence is the DNA region 

that guides the initiation of RNA pol II transcription accurately. The RNA pol II will 

not be able to recognise the initiation site (promotor) without the aid of some 

additional transcription factors. Under certain defined conditions the transcription 

factors bind to a promotor region allowing RNA pol II to join and start transcription 

and could determine the strength of binding of pol II to the promotor region 

(Juven-Gershon and Kadonaga, 2010, Irie et al., 2011). 

The activation of the promotor can be determined by measuring its gene products 

such as mRNA and proteins, but this method lacks the mechanism by which the 

promotor is activated. One of the most common methods to study promotor 

activity of a specific gene, is the use of a reporter gene linked to the promotor 

sequence of the gene of interest using transient transfection of a plasmid 

containing these genes. Later the expression of the reporter gene is measured 

and the most commonly used reporter genes are chloramphenicol 

acetyltransferase, β-galactosidase, firefly or renilla luciferase, alkaline 

phosphatase or green fluorescent protein (GFP) (Ducrest et al., 2002). 

Luciferase reporter gene assays have been used to measure the promotor 

activities of functional gene and is considered one of the most commonly used 

reporter gene assays. It is highly sensitive compared to other reporter genes as 

well as it lacks any endogenous activities in eukaryotic cell. The firefly luciferase 

reporter gene is attached downstream to the promotor of interest, and when the 

promotor is activated, firefly gene will be transcribed and further translated into a 

luciferase protein that can be measured using a chemiluminescent detection 

system as shown in Figure 5.5 (Yun and Dasgupta, 2014). 
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Figure 5.5. The luciferase reporter assay.  Luciferase reporter gene attached downstream to 
promotor of interest. RNA pol and transcription factors transcribe DNA to mRNA. mRNA is 
translated into the luciferase enzyme (reporter protein) that will give a light signal when activated 
using a Substrate. Light signal is =Promotor activity. (Thermo-Fisher scientific.UK).  

 

The method used to measure the stability of K1, K2 and K10 mRNAs in NHEK 

using AD will be described in this chapter. The role of ATRA on mRNA decay on 

these genes will also be investigated as well as the role of different growth 

conditions (SLP and PR) that were used in chapter 4 on the decay rate of these 

genes. To measure the promotor activity of K2 and K10 in keratinocytes, 

optimised keratinocytes transfection conditions in HaCaT were done using 

pLPC_puro-AcGFP vector. Luciferases reporter pGL4.26 and pGL4.14 vectors 

were also used for measuring the activity of AP-1 and measure activities of K2 

and K14 promotors using luciferase assay after PMA treatment or after using 

different growth conditions. Further details will be discussed in each section. 

Materials and Methods are described in chapter 2. For statistical analyses, n=3, 
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error bars represent SEM, p values are calculated using ANOVA or student t-test 

performed on raw data. 

 

5.2. mRNA stability of late differentiation keratins. 

 Measuring the stability of c-Myc mRNA and 18S rRNA after 

Actinomycin D treatment. 

To study the rate of mRNA decay of late differentiation keratin genes, the 

transcription inhibition method using AD was employed, the most commonly used 

drug to inhibit transcription. To determine whether the drug works in our hands 

and determine the optimal concentration to use for transcriptional inhibition, two 

genes were selected, c-Myc as a positive and 18S rRNA as a negative control for 

the decay process in which different concentrations of AD were used for 0-4h to 

study their decay. 18S rRNA is a ribosomal RNA that is present at high level in 

all eukaryotic cells (S represents Svedberg unit which is used to measure 

sedimentation rate of ribosomes). 18S rRNA is known to be a highly stable RNA 

that can be used as a reference gene as well (Gonzalez and Schmickel, 1986, 

Kuchipudi et al., 2012). On the other hand, c-Myc RNA is known to be highly 

unstable in mammalian cells with a half-life of 10-30 min in some cell lines after 

AD treatment. c-Myc gene is known to having a long UTR at the 3’-end that 

triggers de-adenylation (poly-A tail removal) and renders the transcript unstable 

(Atwater et al., 1990, Guhaniyogi and Brewer, 2001, Kuzyk and Mai, 2014, Miller 

et al., 2012). The concentration of AD was selected in our future experiments 

based on the AD concentration when c-Myc mRNA had completely decayed while 

18S rRNA is still stable, the assumption being that our keratin mRNA stability will 

range somewhere in between the two extremes. As shown in Figure 5.6, AD 
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dissolved in distilled water at different concentrations was used, 0.25 µg/ml, 0.5 

µg/ml, 1.0 µg/ml and 2.0 µg/ml for up to 4 h.18S rRNA was decayed by around 

half after 1 h of AD treatment at all concentrations and stayed stable for up to 4 

h. It could be that the very low concentration 0.25 µg/ml of AD started to become 

less effective after 2 h and transcription was induced again (blue line). For c-Myc, 

all four concentrations (0.25 µg/ml up to 2 µg/ml) showed similar complete decay 

after 2 h. Based on these observations, 2 µg/ml (the maximum concentration) 

were used for different time points for our experiments to ensure that transcription 

of our genes of interest will be completely inhibited. This AD concentration has 

also been used previously to study the mRNA stability of keratin K19 gene in 

keratinocytes (Crowe, 1993). 
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Figure 5.6. mRNA decay of 18S rRNA and c-Myc mRNA in NHEK after AD treatment. NHEK 
cells mixed with irradiated 3T3 feeder cells were grown in RM+ medium, starved overnight (4% 
v/v Hyclone II serum). Next day cells were treated with AD, dissolved in dd H₂O, at different 
concentration (0.25, 0.5, 1.2 µg/ml) up to 4 h before lysates were collected for measuring 
remaining 18S rRNA and c-Myc mRNA by qPCR. All data shown as fold expression normalised 
to YAP-1and POL2A, the housekeeping genes. Untreated cells were used as controls (0h). In this 
figure we are comparing a highly stable RNA (18SRNA) to an unstable RNA (c-Myc). STAT: n=3, 
Error bars= SEM, one-way ANOVA was used to measure p-values (ns=p>0.05, *=p<0.05, 
**=p<0.01 and ****=p<0.0001).In statistical analysis we are looking at relative mRNA expression 
for each concentration separately over treatment time as shown below. 
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Over time 18S rRNA c-Myc 

0.25 µg/ml * **** 

0.5 µg/ml * **** 

1 µg/ml * **** 

2 µg/ml ** **** 

 

 mRNA stability of differentiation-specific keratins in the 

presence of Actinomycin D. 

Having determined the working concentration of AD from the two genes used as 

a positive (c-Myc) and a negative (18S rRNA) control, the mRNA decay of our 

genes of interest was investigated. NHEK growing with irradiated feeder 

fibroblasts in full RM+ medium (10% HyClone II serum) were starved in 4% 

HyClone II RM+ medium overnight and next day 2 µg/ml of AD was added into 

full RM+ medium for different time points up to 4 h. At each time point, cells were 

lysed for total RNA extraction, cDNA synthesis and qPCR analyses. YAP1 and 

POL2A were used as reference genes and their cp values are shown in Figure 

5.7 B. As can be seen in Figure 5.7 A, KRT1 and KRT10 were having stable 

mRNAs up to 4 h in presence of AD. On the other hand, KRT2 was less stable 

than c-Myc after 30 min which continue to decay overtime until it was completely 

degraded after 4 h. This suggested that the decay rate of KRT2 was faster than 

KRT1 and KRT10 which were more stable over time. This fast decay rate could 

explain the low level of KRT2 mRNA expression in keratinocytes under normal 

conditions seen in chapter 4 in which no K2 protein expression under normal 

growth conditions can be detected. 
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Figure 5.7. Differential stability of K1, K10, K2 and c-Myc mRNAs in NHEK. NHEK cells mixed 
with irradiated 3T3 feeder cells were grown in RM+ medium, containing PR. Cell were treated 
with AD, dissolved in dd H₂O, at a concentration of 2 µg/ml for up to 4 h lysed for qPCR analysis 
of KRT1, KRT10, KRT2 and c-Myc gene expression analysis. All data showed as fold expression 
normalised to YAP-1 and POL2A housekeeping genes, untreated cells were used as control (A). 
Cp values of YAP-1 and POL2A are shown overtime of AD treatment in (B). STAT: n=3, Error 
bars=SEM, P values calculated using One-way ANOVA, (ns=p>0.05, ****=p<0.0001).  

 

  

K1 K2 K10 c-Myc YAP Cp POL Cp 

ns **** ns **** **** **** 

A 

B 
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 ATRA stabilises KRT2 but not KRT1 and KRT10 mRNAs. 

In our previous experiments in chapter 4 (Figure 4.9) it has been shown that 

ATRA has reduced the expression of KRT1 and KRT10 in NHEK cells grown in 

RM+ medium containing lipid stripped serum with or without PR. KRT2 on the 

other hand was showing upregulation of mRNA after ATRA treatment but only in 

PR free medium containing lipid stripped serum. To further investigate the role of 

ATRA on mRNA expression and to ask whether it’s inducing mRNA synthesis or 

it’s stabilising the mRNA that has already been synthesised in these cells, mRNA 

stability was measured in presence of ATRA. NHEK were grown with irradiated 

feeder fibroblasts in full RM+ (10% HyClone II serum), and then starved these 

cells overnight in RM+ (4% HyClone II serum). Next day the medium was 

changed to RM+ (charcoal stripped serum without PR) containing 2 µg/ml AD and 

incubated at 37oC for different time period. At each time point (30 min, 1h, 2h, 4h) 

cells were lysed, total RNA was extracted, cDNA synthesised, and mRNA 

expression was measured for each gene (KRT1, KRT2, KRT10) relative to two 

housekeeping genes YAP-1 and POL2A. In Figure 5.8, KRT1 and KRT10 are 

behaving in a similar fashion in which both genes where stable up to 4 h of AD 

treatment (blue line) while adding 1 µM of ATRA 24 h before the AD treatment 

(orange line) did cause mRNA decay for both genes. K1 mRNA was completely 

decayed after 1 h while K10 decay was about 80% at the same time point, 

suggesting that ATRA could be destabilising the mRNA of both K1 and K10 

genes. KRT2 mRNA was stabilised, and its decay was delayed around 40% in 

the presence of ATRA compared to the decay rate in the presence of AD only.  
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Figure 5.8. ATRA destabilises K1 and K10 but stabilises K2 mRNAs.  NHEK cells mixed with 
irradiated 3T3 feeder cells were grown in charcoal stripped FCS RM+ medium in PR free medium. 
ATRA was added at 1 µM for 24h prior to adding AD for up to 4 h before qPCR lysates were 
collected for KRT1, KRT10 and KRT2 gene expression analyses. DMSO/ETOH was used as a 
vehicle control (0.001%/0.01% mixture) for ATRA treated samples (A, B, C). In (D) Cp values of 
YAP-1 and POL2A is shown with and without AD treatment. All data shown as fold expression 
normalised to DMSO/ETOH control. STAT: n=3,Errpr bars =SEM, Two-way ANOVA (Time, 
Treatment) was calculated for P-values in (A, B, C) , One-way ANOVA in (D), p-
values(ns=p>0.05, *=p<0.05, **=p<0.01 and ***=p<0.001). In statistical analysis we are 
comparing the mRNA expression value either overtime in each treatment condition or the effect 
of treatment on the same time point as shown below. 

 

 

C 
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5.3. Role of serum lipids and PR on stability of K1, K2 

and K10 mRNA in NHEK. 

In our previous set of experiments in chapter 4, data was presented on the effect 

of SLPs and PR on the expression of 3 late differentiation markers K1, K10 and 

K2. A conclusion was made that lipid free serum did allow increased expression 

of K1 and K10 which was more pronounced if PR was absent. It has also been 

shown that K2 expression was unaffected under these conditions. Another 

observation that K1 and K10 mRNAs were downregulated while K2 expression 

was upregulated when ATRA was added to PR free RM+ (containing charcoal 

serum stripped) medium. Figure 5.8 C showed that the presence of ATRA 

(orange line) allowed stabilisation of K2 mRNA compared with control without 

ATRA (blue line). To further investigate the role of different serum growth 

conditions on the stability of K1, K2, K10 mRNAs, NHEK were grown with 

irradiated feeder cells under the same conditions mentioned in section 5.2.3. Next 

day, each group of cells were allowed to grow in four different conditions (same 

used in chapter 4) and AD at 2µg/ml was added for different time periods. Cells 

were lysed, total RNA was extracted, and stability was measured over time using 

mRNA expression by qPCR after AD treatment. As shown in Figure 5.9 A, B, K1 

and K10 were behaving similarly with regard to their mRNA stability. In serum 

containing conditions (SLP+/PR+ and SLP+/PR-) there was no significant 

difference between mRNA expression overtime for both K1 and K10. Removal of 

SLPs did cause higher expression of K1, more significantly when PR is removed 

Variable K1 K2 K10 

Treatment * * *** 

Time ns ** ns 

Variable YAP(AD) YAP(ATRA/AD) POL(AD) POL(ATRA/AD) 

Time * ns ** ns 
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(yellow line). A similar observation was made for K10 in which the use of stripped 

serum did allow higher expression of K10 mRNA with no significant difference 

between PR containing or PR free conditions (yellow and orange lines). From 

these observations it can be deduced that K1 and K10 mRNA is stable for up to 

4 h in presence of AD under all conditions with different expression levels in each 

condition, which was shown before in chapter 4, Figure 4.6 A. After 4 h of AD in 

serum stripped conditions, a higher expression of K1 and K10 was seen, which 

could be due to inactivation of AD, no longer active under these two conditions 

(SLP-/PR+, SLP-/PR-) as shown in (Figure 5.9 A, B). Throughout our 

experiments, expression of KRT2 was behaving differently compared to KRT1 

and KRT10 in NHEK. In this experiment, this difference can be observed as well, 

in which the expression of KRT2 is being more stable with higher expression in 

serum containing, PR free condition (gray line) but removing serum lipids (SLP-

/PR-) showed less stable mRNA overtime with lower expression (yellow line). 

These data correlate with our previous data shown in Figure 5.8 C in which cells 

treated with ATRA/AD and cells grown in SLP+/PR- in Figure 5.9 C showed 

higher KRT2 expression while cells treated with AD only in Figure 5.8 C showed 

less stable and lower expression of KRT2 similar to cells grown in SLP-/PR- in 

Figure 5.9 C. On the other hand, in the presence of PR (with charcoal stripped 

serum vs unstripped serum), the decay rate and the mRNA expression of K2 is 

the same with lower expressions compared with PR free conditions (Figure 5.9. 

C). YAP-1 and POL2A were used as reference genes, so their cp values are 

shown in Figure 5.9 D in these four different conditions treated with AD overtime, 

YAP-1 and POL2A were showing a significant difference in their cp values 

between different growth conditions as well as overtime of AD treatment 
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indicating that these genes are not stable under these conditions and they are 

not the right genes to be used as references for these experiments. 
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Figure 5.9. Effect of serum lipids and PR on mRNA stability of K1, K2 and K10. NHEK Cells 
were grown in four different conditions (SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-), next day 2 
µg/ml AD was added for up to 4 h. At each time point qPCR lysates were collected for expression 
analyses of KRT1, KRT10 and KRT2 genes. Control was used as 0 h with no AD added (A, B, 
C). In D and E, cp values of housekeeping reference genes were shown under different 
conditions. STAT: n=3, error bars=SEM, P-values were calculated using One-way ANOVA as 
shown in the table below(ns=p>0.05, *=p<0.05, **=p<0.01 and ***=p<0.001, ****=p<0.0001). In 
statistical analysis we are comparing relative values of each mRNA in each growth condition 
overtime points or comparing relative values of each mRNA in every timepoint across each growth 
condition as shown below. 

 

 

 

 

 

 

 

 

 

Condition 
overtime  

K1 K10 K2 YAP POL 

SLP+/PR+ ns ns **** *** **** 

SLP-/PR+ *** **** **** ** **** 

SLP+/PR- ns ns **** ns **** 

SLP-/PR- ** *** **** ns **** 

Time points across 
conditions  

K1 K10 K2 

0h **** **** ns 

0.5h *** **** ** 

1h **** **** * 

2h **** **** * 

4h **** **** * 
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5.4. Investigating the promotor activity of KRT1, KRT2 

and KRT10 in response to lipids and PR in culture 

medium. 

In this chapter, the results obtained using transfection of constructs containing 

promoters for KRT1, KRT2, KRT10 and their deletion fragments will be described. 

These promoters (and their fragments) were PCR amplified using specific primers 

and cloned into pGL4.14 vector which was commercially obtained from Promega 

corporation (USA). This vector is a basal vector lacking either  promoter or 

enhancer elements. One of advantages of using this vector is the ability to select 

the transfected cells using hygromycin as the vector contains hygromycin 

selection marker. The cloned inserts were sequenced through and through using 

the di-deoxy sequencing method and compared with the sequence entry in the 

Ensembl genome browser 95 databases. All PCR and cloning experiments 

described in this chapter were carried out by my supervisor, Professor Ahmad 

Waseem, before I started working on this project and were made available to me 

for this study. The cloning of AP-1 construct and its characterisation has been 

described previously (Brown et al 2014). 

 

 Optimisation of Keratinocytes transfection using AcGFP 

vector. 

As keratinocytes are known to poorly transfect, HaCaT keratinocytes transfection 

efficiency was tested using different commercially available transfection reagents 

under different conditions with our plasmid DNA. In the optimisation set of 

experiments, HaCaT keratinocytes were grown in full DMEM medium with 10 

%(v/v) FCS + 1% PS, once the cells were attached, transfection was started. To 
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quickly screen different conditions, pLPCpuro_NAcGFP vector was used and 

transfection efficiency was monitored using the transfected cells under 

immunofluorescence microscope. First, different concentrations of the plasmid 

DNA in the range of 1µg, to 3µg were used with Viromer Red as a transfection 

reagent because it is based on endocytosis of the transfection complex so likely 

to be more efficient. With 1 µg, 2 µg and 3 µg of plasmid DNA, images were 

recorded after 24h and 48 hours post transfection (see Figure 5.10 A). Another 

transfection method was also used that is called CombiMag, which is based on 

the use of magnetic nanoparticles to pull the DNA complex into the cells. It has 

been designed for use with any transfection reagent to enhance its efficiency and 

required to be used with a strong magnetic plate. 1 µg of DNA (as recommended 

by the manufacturer) has been used in conjunction with four different commonly 

used transfection reagents, Viromer Red, Dream-Fect, X-Fect, TransIT™-LT1 

and Helix-N and the images were recorded 24 h and 48 h post transfection with 

and without the use of CombiMag magnetic plate. 2 µg and 3 µg of DNA for 48 h 

showed high transfection efficiency in Viromer Red compared to 1 µg of DNA for 

24 h (Figure 5.10 A). The use of CombiMag did not improve transfection efficiency 

of HaCaT using 4 different transfection reagents for 48 h (Figure 5.10 B, C). The 

effect of calcium on the transfection efficiency was also compared. Cells were 

grown in a very low calcium containing medium (0.01-0.03mM) and compared 

the transfection efficiency with that in normal calcium containing medium (1.8 

mM).It has been shown that transfection in normal calcium containing medium is 

more efficient than in low calcium medium for both reagents (Viromer Red and X-

Fect) as shown in Figure 5.10 D, E. The use of TransIT™-LT1 and Helix-N was 

not able to transfect HaCaT with 2 µg DNA up to 48 h with or without CombiMag 
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(Figure 5.10 C). The sources of all transfection reagents are described in the 

Materials and Methods section (Chapter 2). 
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Figure 5.10. Efficiency of HaCaT transfection as measured with pLPCpuro_NAcGFP vector 
using different reagents. HaCaT keratinocytes were grown in DMEM plus 10% (v/v) FCS and 
transfected with pLPCpuro_NAcGFP at different DNA concentrations using different transfection 
reagents and conditions. (A) Viromer red is used with 1, 2, and 3 µg DNA for 24 h and 48 h. (B) 
Viromer red and Dream-Fect were used with and without Combi-Mag for 24 and 48 h (1 µg DNA). 
(C) Same as B but TransIT-LT1 and Helix-N transfection reagents were used. (D) High and low 
calcium containing media were used to grow cells and transfect them with Viromer red and X-
Fect for 24 and 48 h using 2 and 3 µg of DNA. Scale bar=100µm. 

 

 Measuring AP-1, K2 and K14 promotor activities using 

Luciferase.  

To determine whether a reporter gene activity can be successfully measured in 

cells, the activity of AP-1 reporter construct in keratinocytes was compared to that 

in HEK293 cells. 2 µg of total DNA were used transfected into HaCaT and 

HEK293 cells using Viromer red for 48 h. In these experiments renilla CMV vector 

was used as an internal control for transfection efficiency co-transfecting it with 

firefly luciferase vector containing the AP-1 responsive element. The transfected 

cells were treated with PMA (10 nM) dissolved in DMSO or with DMSO (0.01%) 

only as a vehicle control for 8 h. As shown in Figure 5.11, in HaCaT there was no 

activation of AP-1 with PMA compared with DMSO control while in HEK293 cells 

there was more than 10-fold increase in luciferase activity compared with DMSO 

(all values have been normalised to the internal control renilla vector). AP-1 is 

known to be activated by PMA in keratinocytes and induces the expression of 

differentiation specific genes such as KRT1 and KRT10 (Karlsson et al., 2010, 

Briata et al., 1993, Eckert and Welter, 1996). HEK293 cells were then grown and 

used to show PMA dependent AP-1 activation under four different culture 

conditions that has been used in previous experiments described in chapter 4 

(SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-) for 3 days, co- transfecting with 

AP-1 firefly plus renilla luciferase vectors. After 48 h post-transfection, cells were 

treated with (10 nM) PMA for 8 h and luciferase activity were measured. In Figure 
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5.12, there was no significant difference between luciferase activity along the four 

different conditions used. This may suggest that the changes in gene expression 

seen under different growth conditions in chapter 4 are unlikely to be through AP-

1 activity and other pathways may need to be explored. 

HaCaT were also transfected using Viromer red with 2 µg of K2 and K14 promotor 

sequences in firefly luciferase pGL4.14 vector. These cells were grown in the four 

different culture conditions that has been used in previous experiments 

(SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-). The promotor activity of K2 and 

K10 promoters measured by luciferase activity did not show any significant 

difference (Figure 5.13). 

 

 

Figure 5.11. Comparison of PMA inducible AP-1 activity in HaCaT and HEK293 cells.  
HaCaT and HEK293 cells were grown in DMEM plus 10% (v/v) FCS, transfected with 2 µg of 
plasmid DNA (AP-1 firefly + renilla luciferase) for 48 h using Viromer red. Cells were treated with 
10 nM PMA dissolved in DMSO for 8 h and DMSO alone treated cells were used as a vehicle 
control (0.01%). All values were normalised to the internal control, renilla luciferase, readings. 
STAT: n=3, Error bare=SEM, P-values were calculated using student t-test (ns=p>0.05 and 
****=p<0.0001). 
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Figure 5.12. Effect of serum lipids and PR on AP-1 reporter activity in HEK293 cells. 
HEK293 cells were grown in four different culture conditions that has been used in previous 
experiments (SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-) for 3 days, co- transfected with AP-1 
firefly plus renilla luciferase vector. After 48 h post-transfection, cells were treated with 10 nM 
PMA for 8 h and luciferase activity were measured. PMA dissolved in DMSO and DMSO treated 
cells were used as a vehicle control (0.01%) All values normalised to internal control renilla 
luciferase readings. STAT: n=3, Error bars=SEM, P-values were calculated using One-way Anova 
that showed ns difference between conditions (ns=p>0.05). 
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Figure 5.13. Effect of serum lipids and PR on K2 and K14 promotor in HaCaT cell line. 
HaCaT were grown in four different culture conditions that has been used in previous chapter 4 
experiments (SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-) for 3 days, transfected with 2 µg of 
plasmid DNA (K2 and K14 promotor firefly + Renilla luciferase) for 48 h using Viromer red 
transfection reagent. All values normalised to internal control, renilla luciferase, readings. STAT: 
n=3, Error bars=SEM, P-values were calculated using One-way Anova that showed ns difference 
between conditions (ns=p>0.05). 
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5.5. Discussion and conclusion. 

The stability of mRNA is considered a fundamental process that affects protein 

expression and in fact many vital processes inside the cell. The mRNA decay 

process is highly selective, it differs widely from one mRNA to another. Studies 

have shown that this selectivity depends on certain sites on the mRNA sequence 

that are targets of factors responsible of this decay and degradation. In a previous 

study Shaw and Kamen (1986) have identified a non-coding region at the 3’end 

(5’-AUUUA-3’) of a number of mRNAs that could be cleaved by a specific 

endonuclease (Shaw and Kamen, 1986). This region is called AU-rich elements 

(AREs), sequence elements rich in A and U nucleotides. Depending on the 

cellular condition and the presence of a certain stimulus, an ARE can also lead 

to the stabilisation of a mRNA and not only degradation (Barreau et al., 2005).  It 

was found that using AD to measure mRNA decay of late differentiation keratins, 

that K2 mRNA is decaying about 50% within 30 min of AD treatment compared 

to K1 and K10 which were stable for up to 4 h (Figure 5.7 A). Ensembl genome 

browse 95 was used to find (5’-AUUUA-3’) region in the mRNAs of KRT1, KRT2 

and KRT10 sequences as shown in Figure 5.14. One AU-rich elements (5’-

AUUUA-3’) was found in KRT2 but not in KRT1 which implies that some ARE-

binding proteins (ARE-BPs) could bind to K2 mRNA and activate 

endoribonuclease activity (Geissler and Grimson, 2016). This could explain the 

instability of KRT2 and stability of KRT1 mRNAs. As mentioned earlier the 

presence of AREs does not always contributes to degradation but could also lead 

to mRNA stability depending on the presence of other cellular factors, a certain 

stimulus and the cellular need. It was found that there are two (5’-AUUUA-3’) 

elements in the KRT10 sequence and it was stable enough to be translated into 

a protein that was detected using WB.  
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Figure 5.14. 3’ UTR of KRT1, KRT2 and KRT10 mRNA sequence using Ensambl genome 
browser 95 website.  mRNA sequences of KRT1, KRT2 and KRT10 showing the presence or 
absence of 3’end non-coding sequence (5’-AUUUA-3’). KRT1 has none, KRT2 has one while 
KRT10 has two elements. 

 

The steady state level of mRNA that was measured using qPCR is a balance 

between synthesis and decay. If the decay rate is high and transcription is 

blocked which means no more mRNA is synthesised and decreasing levels of K2 

was observed with time that means higher decay rate compared to KRT1 and 

KRT10. As in the case of KRT2,  it has been shown that human K19 and prolactin 

mRNAs contains ARE in the 3’end non-coding sequence (5’-AUUUA-3’) and their 

mRNA is more susceptible to degradation in the cytoplasm (Stasiak and Lane, 

1987, Crowe, 1993). 

Previous studies have shown that RA can suppress terminal differentiation in 

cultured keratinocytes as well in human skin (Fuchs and Green, 1981, Eichner et 
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al., 1992). This suppression of mRNA expression is not only due to transcriptional 

inhibition but could also involves mRNA stability. Other studies have shown 

mRNA stability of certain genes after RA treatment. It has been shown that there 

is a RA-dependant K19 mRNA stabilisation in the cytoplasm after AD treatment 

and this has been explained by the possibility of RA binding to some RA-binding 

proteins and these complexes perhaps directly or indirectly affects the 

endonuclease activity making the mRNA less vulnerable to degradation (Crowe, 

1993). RA-dependant stabilisation of K2 mRNA was also shown in Figure 5.8.C 

and a thought that K2 could share the same control mechanism that explained 

the K19 mRNA stability was considered. It has been shown that after 4 h of AD 

treatment, K2 mRNA had decayed even in the presence of ATRA, this could be 

due to some other mRNA decay pathways that were taking over the RA stability 

effect or due to loss of ATRA effect that was added 24 h before the AD treatment 

(total of 28 h). It has been shown in a different study that ATRA stability is reduced 

in serum free medium after 24 h of treatment despite accurate handling during 

experimental procedures and that the stability of ATRA had been recovered when 

FCS was added back to the medium. As serum free medium and our charcoal 

stripped serum medium have no or extremely low quantities of lipids, this could 

explain the loss of RA-dependant mRNA stability of K2 shown in Figure 5.8 C in 

which ATRA stability could be lost after 24h. (Sharow et al., 2012, Kitano, 1985). 

Figure 4.9 C showed that ATRA increases the expression of K2 mRNA when 

added to charcoal stripped serum (SLP-/PR-). As there is no RA responsive 

element known in the K2 promoter, the role of ATRA could be either a post-

transcriptional RA-dependant stabilisation or an indirect effect of RA on its 

promotor activity (Torma, 2011). Keratins K1 and K10 mRNAs are more stable 

and as the transcription is blocked and the decay is measured, it seems that the 
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mRNA that is in the cytoplasm is more compared to K2. This is understandable 

as K1 and K10 are expressed at far higher levels than K2. After up to 4 h of AD 

treatment, K1 and K10 mRNAs were stable which means very little or no 

degradation was taking place. This could be because K1 and K10 are expressed 

in differentiating keratinocytes all the time whereas K2 expression increases in 

response to certain normal or pathological triggers (Bloor et al., 2003). This could 

be further explained by the ARE region in KRT2 that allows ARE-BPs to bind and 

degrade mRNA using endoribonuclease enzyme. The RA-dependent 

downregulation of K1 and K10 genes has been shown before to be due to binding 

of RA to RA-responsive elements that inhibits the expression of these genes 

either directly or indirectly through AP1 activity (Lefebvre et al., 2005, Briata et 

al., 1993).  

In chapter 4 it has been shown that changing the growth conditions of NHEK did 

affect the expression of K1, K2 and K10 mRNA and protein. In order to investigate 

if this change in expression is regulated by transcription or by stability of mRNAs 

of these genes, NHEK cells were grown in the same four different conditions used 

in chapter 4 (SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-). Adding 2 µg/ml AD to 

study mRNA decay showed that K1 and K10 mRNAs have the same decay rate 

in all the conditions in which the stripped serum condition showed higher 

expression than other conditions and its more significant when PR is removed 

(Figure 5.9 A, B). These data suggest more synthesis of K1 and K10, is taking 

place under certain growth conditions before AD blocked the transcription (0 

time). mRNA is stable in all conditions overtime when using AD except lipid free 

serum condition at 4 h, so changing the growth conditions did affect transcription 

levels of K1 and K10. As these conditions differ from each other’s in the presence 

or absence of lipids mainly RA, the different levels of gene transcription per 
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condition could be explained by both genes having retinoic acid responsive 

elements through which their transcription is regulated (Torma, 2011). In K2 the 

regulatory control is different, the decay rate is much higher in stripped serum 

and the presence of lipids in PR free medium did slow the decay on in other words 

stabilised the mRNA compared to other conditions. Again, this could be due to 

the presence of lipids (mainly RA) in this condition plus being PR free. 

To be able to study the promotor activity of K10 and K2 different segments of the 

promotor sequence were cloned into a pGL.4.14 vector with luciferase reporter 

activity to be able to measure the promotor activity through the luciferase 

enzymatic reaction. Although different transfection reagent were used on HaCaT 

keratinocyte using an AcGFP in pLPCpuro_NAcGFP vector that has a CMV 

promotor and did show high transfection efficiency, transfection with our 

Luciferase vector didn’t work. It was showing no difference in luciferase activity 

between AP-1 readings with and without PMA (Figure 5.11). To be able to 

measure the AP-1 construct activity another cell line HEK293 was tested, and it 

was showing more than 10-fold increase with PMA treatment compared with 

control (Figure 5.11). It is possible that our vector is not able to transfect 

keratinocytes so cloning AP-1 into another vector could allow better transfection 

and allow us to measure the AP-1 activity in HaCaT. As a transfection efficiency 

control, renilla internal control was used with CMV promotor and it was showing 

high readings each time. Full sequence promotors of K2 and K14 were also used 

to measure their activities under different growth conditions of HaCaT and 

showed no statistical difference in their luciferase readings (Figure 5.13). HEK293 

cell line was transfected with AP-1 promotor vector and measured the activity 

under different growth conditions (same as used in K2 and K14 promotor 

experiments) and it did show no significant difference of luciferase activity 
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between the conditions indicating that the role of lipids on gene expression is a 

direct one and not through AP-1 transcription factor.  

Activation protein-1 (AP-1) transcription factor is a family of JUN and FOS 

proteins that form dimers and bind to AP-1 binding site on genomic DNA. This 

binding affects many cellular processes such as proliferation, differentiation and 

apoptosis. Their role in skin is complicated due to being situation specific as well 

as having multiple family members that can make different combinations of 

protein complexes (Han et al., 2012). It is well known that binding of AP-1 to its 

DNA binding site, induces differentiation and gene expression of terminal 

differentiation markers. PMA treatment induces differentiation through activating 

AP-1 binding (Eckert and Welter, 1996, Briata et al., 1993, Karlsson et al., 2010). 

It was shown in chapter 4 that K1 and K10 mRNA and protein expression has 

been upregulated when serum lipid was removed from the growth medium. To 

be able to investigate the role of AP-1 in triggering this gene expression, it has 

been shown that using PMA did not activate AP-1 in our experimental growth 

conditions (Figure 5.12). The high level of gene expression that was observed 

before in certain growth conditions in chapter 4 could be through a direct role of 

SLPs on transcription and not through AP-1 activation. It could be that the non-

significant difference in AP-1 activity shown in Figure 5.13 is due to low K2 and 

K14 promotor activity or a transfection efficiency issue. 

In conclusion, the mRNA stability of late differentiation keratins was studied with 

main interest in K2 which was reacting differently in all our previous experiments. 

Since our interest was primarily K2, AD concentration was used that allow us to 

monitor the K2 decay until it reached full degradation after 4 h. It could be that 

this concentration or time points chosen was not enough to allow decay of K1 an 

K10 mRNAs, but these keratins were used as a control to K2 and to show that 
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they were much stable than K2 throughout this chapter. YAP-1 and POL2A, the 

two house-keeping genes used in this study, were stable under these conditions 

(section 5.2.3). In section 5.2.2, the Cp values of YAP-1 and POL2A were 

showing decay overtime but Cp values of keratins not normalised to YAP-1 and 

POL2A still showed the same stability pattern indicating that the normalisation to 

YAP-1 and POL2A did not affect their decay rate shown in Figure 5.7 A. Changing 

the growth conditions did affect YAP-1 and POL2A Cp values significantly that 

could give faulty reading of our genes relative to YAP-1 and POL2A so in this 

experiment YAP-1 and POL2A were not the correct reference genes to be used 

and absolute quantification would be a better way to measure the expression of 

these genes under these specific conditions. 
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6. General discussion, clinical significance and future 

directions. 

6.1. General discussion. 

 Keratin dynamics and phosphorylation. 

Keratins continuously undergo cycles of assembly and disassembly, being 

dynamic gives them the ability to perform a wide range of intra and intercellular 

functions. Keratins are the major stabilising protein of the cytoskeleton and they 

play a role in different cellular processes such as cell division, apoptosis, 

membrane trafficking, migration and wound healing (Strnad et al., 2001). As 

keratins are dynamic, the ability to allow new keratins to be introduced and 

integrate into the pre-existing network will be possible without affecting cellular 

functions and network stability (Windoffer et al., 2011). This is the case during 

epithelial differentiation in normal epidermis in which keratins K5/K14 in the basal 

proliferating layer are downregulated and they are replaced by a new set of 

keratins K1/K10 and K2 that integrate into the pre-existing network as cells move 

upward during stratification (Waseem et al., 1999). Studies have shown that 

microinjecting biotinylated type I keratins can be observed under confocal 

microscopy as spots containing both type I and type II keratins. This indicates 

that the endogenous type II keratins are dynamic and are able to change their 

endogenous structure to form complexes seen as spots with the injected type I 

keratins (Miller et al., 1993a). Once the keratins are integrated into the peripheral 

filaments network, they elongate and starts to bundle as they move toward the 

nucleus as a result of lateral compaction. This has been observed in a 

hepatocellular carcinoma cell line (PLC) containing K8/K18 after being stably 

expressing K18-YFP (K18 attached to a fluorescent tag) (Kolsch et al., 2010). 
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Keratin K2 (a late differentiation keratin marker) was used to be introduced into 

K8/K18/K19 filament network in MCF-7 (a breast carcinoma cell line) to study the 

dynamics of these keratins in a simple epithelial cell line model that is easy to 

visualise under a light microscope. Tow tags differing in size (AcGFP 26 kDa vs 

3x FLAG 3 kDa) were used attached to K2 and introduced them into MCF-7 cells 

using retroviral transduction to study its behaviour inside the cells. K2 is 

integrated into the pre-existing keratin network without affecting normal cell 

division or the known directionality of filaments equilibrium towards the nucleus 

as shown in (Figure 3.3, 3.4). This directionality of keratin integration has been 

shown when introducing K18-YFP into a hepatocellular carcinoma cell line as well 

as in primary human keratinocytes transduced with K14-YFP chimeras. These 

keratins were shown using live cell imaging where they start to join the existing 

network close to the cell membrane and later move toward the nucleus for 

bundling (Windoffer et al., 2004). On the other hand, filament stability was 

affected by introducing a new keratin into an existing network, but this was shown 

only when using AcGFP but not 3x FLAG as a tag on the head domain (N-

terminus) of K2. This could indicate the role of the head domain in filament 

stability and not integration. Previous studies have shown that adding a big tag 

as EGFP on the tail-domain (C-terminus) did not interfere with K13 integration 

into the existing filament network in A-431 (vulvar carcinoma cell line), so blocking 

either domains (head or tail) with a large-sized tag does not appear to influence 

keratin protein integration (Windoffer and Leube, 1999). As keratin filaments 

stability observation was only seen when using AcGFP tag, but not FLAG, the 

conclusion was that using large-sized protein tag on the head domain could 

interfere with head domains folding back and their interaction with the rod 

domains, thus interfering with the tight packing of tetramers. Small tags such as 
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3x FLAG will be tolerated whereas large tags such as AcGFP will still be allowed 

to integrate into filaments, but they are likely to affect inter-rod domain 

interactions causing the filaments to destabilise which will be more obvious when 

filaments are hyperphosphorylated using OA or CL-A as shown in Figure 3.8-3.11 

(Bray et al., 2015, Aziz et al., 2010). Other studies have shown that, when A-431 

cells stably expressing K13 were treated with OA phosphatase inhibitor, filaments 

started to breakdown starting at the cell periphery with total filaments collapse 

after few hours of treatment without affecting the organisation of other 

cytofilaments (Strnad et al., 2001, Bray et al., 2015, Aziz et al., 2010). The 

process of assembly and disassembly of keratins has been known to be 

controlled primarily by phosphorylation, the key post-translational modification 

(Kim et al., 2015a). Phosphorylation could be induced as part of a normal cellular 

process such as during mitosis or by using phosphatase inhibitors. Phosphatase 

inhibitors such as OA and CL-A have been used to induce and study 

phosphorylation of different proteins (Paramio, 1999, Toivola et al., 1997). It has 

been shown that phosphorylation of keratins mainly Serine residue has been 

induced in mouse a keratinocyte cell line (BALB/MK-2) when treated with OA. 

This was identified using immunoblotting and immunoprecipitation with keratin 

specific antibodies and phosphorylation was located by autoradiography. The 

effect of hyperphosphorylation was shown as reorganisation of the filaments 

network that turn into perinuclear aggregates overtime with some rounding of the 

cell morphology (Kasahara et al., 1993).  

It was shown using AcGFP-K2 in MCF-7 that during mitosis (physiologic 

phosphorylation inducer), filaments start to dis-assemble into small globules that 

allows the cell to be more flexible during division. After the cell divided, the 

globules start to join at the periphery of the cell forming short filaments that later 
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elongate while moving toward the nucleus forming a cage like structure (Figure 

3.3 and 3.4) (Windoffer and Leube, 2004). K8 is well known to be phosphorylated 

on S73 during mitosis and K13 has been shown to form an elevated soluble pool 

during mitosis that was correlated to higher keratin phosphorylation levels (Liao 

et al., 1997, Windoffer and Leube, 2001). 

Regulation of a protein activity requires a balance of kinases and phosphatases 

activities. Losing the balance between kinases and phosphatases activities could 

lead to different diseases such as cancer for example, in which cell migration, 

proliferation and differentiation are affected (Bononi et al., 2011). In toxic liver 

disease, Mallory bodies are seen due to hyperphosphorylation and this has been 

shown primarily due to p38 kinase (a class of MAPKs) pathway activation which 

also plays a role in other intermediate filaments aggregations that are seen in 

various diseases, including cardiac myopathy and numerous neurodegenerative 

disorders (Schutte et al., 2004, Woll et al., 2007). S73 in the head domain of K8 

is a known major phosphorylation target for p38 kinase, and it could also be 

phosphorylated through JNKs. In K8, S23 and S431 are also well known 

phosphorylation sites that are activated under basal conditions or by SAPKs 

(JNKs and MAPK) respectively, while p38 phosphorylates only S73 (Woll et al., 

2007). Phosphorylation of K8/S73 (on head domain) which is highly conserved 

among type II keratins and K8/S431 (on tail domain) as being well-known 

phosphorylation sites on K8 were investigated. The MCF-7 cell line (expresses 

K8 normally) was used, so antibodies against these well-known phospho-serine 

sites were used to study phosphorylation in our cell culture model (Toivola et al., 

2002). To further investigate if the breakdown that was observed in AcGFP-K2 

and not in FLAG-K2 was due to more phosphorylation being induced on S73 or 

S431 of K8, WB protein quantification was used. After inducing phosphorylation 
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with CL-A in MCF-7, the level of pK8/S73 or pK8/S431 were increasing with time, 

but there was no significant difference in the level of phosphorylation of S73 and 

S431 in K8 of AcGFP-K2 and FLAG-K2 as shown in Figure 3.9 and 3.10. This 

could rule out any role of phosphorylation in breaking down keratin filaments seen 

in our AcGFP-K2 expressing MCF-7 (see Figure 3.8). More likely this breakdown 

could be explained as mentioned earlier by the deleterious effect of the tag at the 

N-terminus of K2 on filament stability. In the filament assembly model, the rod 

domains of heterotypic keratins first associate as heterodimers followed by anti-

parallel association into tetramers. In this model it has been shown that the head 

domains fold back and interact with the rod domains (Bray et al., 2015, Aziz et 

al., 2010).  

As OA treatment and mitosis do induce phosphorylation of keratin filaments 

through MAPKs pathway (Liao et al., 1997), a different type of stress that is known 

to activate the same p38 kinase pathway (Rouse et al., 1994) was studied. A 

physical type of stress (heat shock) was used on our MCF-7 cell model. MCF-7 

cells were subjected to a sub-lethal heat shock of 43˚C for 30 min. This 

temperature was chosen based on previous studies that have shown the 

induction of MCF-7  apoptosis at 45°C for 45 min, HSPs are activated when 

temperature is above 42°C for 45 min and raising temperature 3-5°C is 

considered a mild heat shock (Fulda et al., 2010, Lee et al., 2019). It was shown 

using immunostaining and time-lapse confocal microscopy that keratin filaments 

start to reorganise and move toward the nucleus and condense around it in 

response to heat shock. This reorganisation requires phosphorylation of keratin 

filaments that is later balanced during recovery by phosphatases and the 

filaments started to spread back toward the cell periphery as shown in Figures 

3.12, 3.14 and 3.15 (Shyy et al., 1989). In EBS, an inherited keratin mutation 
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disorder, keratins form aggregates when subjected to heat stress and it takes 

longer time to re-spread after removing the insult compared with normal 

keratinocytes. This delay in keratin remodelling gives enough time for cytolysis to 

take place if subjected to any other type of stress  as rubbing or scratching during 

this time allowing the skin to become fragile and blisters easily  (Morley et al., 

1995). If MCF-7 cells were exposed to heat shock before inducing 

phosphorylation by phosphatase inhibitors (that induces p38 kinase pathway), 

breakdown of filaments is delayed or inhibited as shown in (Figures 3.13 and 

3.17). This could be due to the effect of heat shock proteins (HSPs) that are 

activated after heat shock and act as inhibitors of the pro-apoptotic pathway 

regulated by MAPKs (Gabai et al., 1997). Leube and co-workers have shown that 

exposing A431 cells to light for (1-10 min) causes the keratin cytoskeleton to 

become resistant to the disruption caused by tyrosine phosphatase inhibitor OV 

that takes only few minutes to completely breakdown the filament network (Strnad 

et al., 2003). They have also shown that the pathway involved in this stability was 

p38 pathway as they have used the p38 kinase inhibitor SB203580 on these cells 

and showed the same result. The filaments were not stable when MAPK inhibitor 

PD98059 was used instead of p38 kinase inhibitor SB203580. These findings 

indicate a role of light in cytokeratin stability which is similar to our data using heat 

shock on MCF-7 cells, this finding might be helpful in treating some keratin 

disorders (Strnad et al., 2003). Using WB, the protein expression of HSP70 in 

transduced MCF-7 cells subjected to heat shock and recovery for different time 

intervals was measured. At the same time the level of pK8/S73 and pK8/S431 

which are the main phosphorylation sites affected by p38 stress activated MAPK 

were also measured (Toivola et al., 2002). Phosphorylation levels were either 

stabilised or reduced after 2 h of recovery from heat shock while the level of 
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HSP70 was stabilised or increased overtime. This supports the hypothesis that 

HSP70 could be blocking or inhibiting the action of MAPK phosphorylating S73 

and S431 on K8 (Gabai et al., 1997). This phenomenon is most likely explained 

by thermotolerance, in which the first heat shock given to the cells produces a 

cascades of events with the aim of protecting the cell from a second stress (which 

is the phosphatase inhibitor treatment in our case) that lasts for few days only 

(Landry et al., 1982, Dorion and Landry, 2002). 

 Keratinocyte differentiation and serum lipids. 

Keratin K2 (≈70 kDa) is a known late differentiation marker in stratified epithelium. 

The significance of the epidermal K2 has been frequently questioned in the 

literature. K2 is found regularly in different body parts but at very low levels in 

foreskin and epithelial cancers as well as cultured cell lines derived from these 

cells (Collin et al., 1992). In cutaneous basal and squamous cell carcinomas, K2 

was showing strong expression in the epidermis but was absent in tumour tissue 

islands. In oral epithelium there is no significant expression of K2 in both 

keratinised and non-keratinised epithelium. Interestingly, K2 is highly expressed 

in mild to moderate oral dysplasia with orthokeratinisation while in oral squamous 

cell carcinoma the expression is undetectable (Bloor et al., 2003). As K2 is 

undetectable after few passages of growing keratinocytes in culture, it will be 

almost impossible to study its role and importance in both skin and oral cavity. 

The influence of several factors in tissue culture that could affect the gene 

expression were studied, as well as trying to link these factors to the 

downregulation of K2. FCS is the main component of tissue culture medium that 

is commonly used, and it contains a wide range of vitamins, minerals, lipids, 

proteins and both free as well as bound carbohydrates that are needed by the 

cells to survive and grow. These components include cytokines, hormones and 
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growth factors (Gstraunthaler, 2003, Zheng et al., 2006). The role of SLPs on the 

expression of differentiation-specific keratin genes was studied using charcoal 

treated serum instead of using serum free medium as studies have shown that 

NHEK grown in serum free medium are unable to differentiate despite high levels 

of calcium in culture medium (Lamb and Ambler, 2013). As the presence of serum 

in culture medium is required for keratinocyte differentiation, the serum was kept 

and the role of lipids in this serum was studied. It has been shown that FCS used 

in cell culture medium contains enough vitamins that are able to affect cultured 

keratinocyte differentiation. Cellular properties have shown to be altered when 

vitamin A was removed from serum using de-lipidised serum. This removal 

allowed the expression of terminal differentiation keratins which was reversed by 

adding RA back into culture medium containing de-lipidised serum. The effect of 

vitamin A on keratin expression is cell type specific as well as concentration 

dependant (Fuchs and Green, 1981). Both systemic and topical vitamin A is 

widely used in dermato-pharmacology. There is a wide variety of vitamin A 

derivatives used for different skin conditions such as 13-cis retinoic acid, 9-cis 

retinoic acid and all-trans retinoic acid that is used topically to treat skin 

photoaging, post-inflammatory hyperpigmentation and acne. Retinoids are 

known to inhibit growth stimulating signals and induce apoptosis, growth arrest 

and cell differentiation. Due to their anti-cancer properties, they are used in 

dermato-oncology as a chemo-preventive agent through inducing differentiation 

and inhibiting proliferation. Retinoids are widely used as an anti-inflammatory 

agent that can accelerate healing and prevents aging (Beckenbach et al., 2015, 

Khalil et al., 2017). Weather RA induces or suppresses differentiation is still 

indeterminate.  Many studies, as mentioned earlier, have been highlighting the 

anti-cancer property of RA as when used topically on skin or taken systemically 



 

233 
CHAPTER 6 

as an anti-cancer agent has been reducing the tumour size or spread therefore 

inducing differentiation. On the other hand, other studies have shown that RA 

supresses epidermal differentiation and this has been measured by showing 

downregulation of differentiation markers as K1, K10 and loricrin (Rosenthal et 

al., 1992). Studies that have used RA as a cancer preventive agent relied on the 

fact that it reduces the size of the tumour (supresses proliferation) so it should 

induce differentiation, but no study has measured the expression of differentiation 

markers after using RA for this purpose. This led to a big controversy on the effect 

of RA on keratinocyte differentiation, this could be explained by one or more of 

the following:  

• Clinical studies using RA as a chemo preventive agent lack molecular level 

evidence of differentiation induction markers, this lack of evidence require 

more studies and further investigation to be done on cellular and 

subcellular levels. 

• It is known that keratinocytes are RA sensitive and tiny variations in the 

drug concentration could bring some genes transcription levels up or 

down. 

• It is possible that RA inhibit transcription of some differentiation-specific 

genes through receptor binding, so act as differentiation inhibitor while it 

does play a role in stabilising some other late differentiation mRNA  as K2 

or K19, inducing these genes could allow keratinocyte differentiation 

pathways to be activated in which could be inhibiting proliferation when 

used in a chemo-preventive dose.  

• Previous data have shown using gel super-shift assays that the levels of 

endogenous RARγ/RXRα receptors are much lower in cultured 
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keratinocytes compared to their levels in skin in vivo. Using  Ligand-

binding assays, the levels of these receptors has been measured in which 

cultured keratinocytes showed only one-third of the level of (RAR) and 

one-eighth of the level of RXR found in skin. This could explain why 

different doses are needed to activate the same pathway and how the 

same dose could give different outcomes  (Di et al., 1998). 

 

To clarify the role of lipids and specifically ATRA’s on keratinocyte differentiation 

different cell lines as well as NHEK were studied. The experiment started with 4 

keratinocyte cell lines available in the lab and were grown in charcoal-treated 

serum (de-lipidised) containing RM+ medium and were compared to cells grown 

in RM+ medium with lipid containing serum. In NEB-1 (HPV16 immortalised skin 

keratinocytes) and T103C (HPV16 immortalised oral keratinocytes) cell lines, 

there was either a downregulation or no significant difference in the expression 

of K1, K2 and K10 (Figure 4.3) and this could be due to the way these cells were 

immortalised. These cell lines are immortalised by HPV16, which is known to alter 

RA (one of the main lipids in serum) response to terminal differentiation (Agarwal 

et al., 1991, Merrick et al., 1993). Two more cell lines were used HaCaT, a 

spontaneously immortalised cell line (Boukamp et al., 1988) and N/TERT, 

immortalised by overexpression of h-Tert and downregulation of p16 (Dickson et 

al., 2000), to study the role of SLPs and PR on keratinocyte differentiation (PR 

has an estrogenic-like effect that could affect cellular differentiation) (Berthois et 

al., 1986). Estrogen has been shown to affect some keratin gene expression as 

upregulation of KRT2, KRT14 and KRT19 genes and this has been shown in 

human scalp skin after β-Estradiol treatment (Ramot et al., 2009). AS shown in 

Figure 4.4 that removal of serum lipid by charcoal treatment did induce K1 and 

https://www.sciencedirect.com/topics/medicine-and-dentistry/receptor-binding-assay
https://www.sciencedirect.com/topics/medicine-and-dentistry/receptor-binding-assay
https://www.sciencedirect.com/topics/medicine-and-dentistry/retinoid-x-receptor
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K10 genes and proteins expression that became more significant in PR free 

medium in HaCaT. In N/TERT cells higher expression of K1 and K10 genes and 

proteins was only shown in PR free lipid containing serum condition (SLP+/PR-) 

in Figure 4.5 and this could be due to the method used to immortalise this cell 

line. The K2 gene on the other hand showed similar expression in both HaCaT 

and N/TERT cells in which the highest expression was seen in the presence of 

serum lipid but without PR (SLP+/PR-) with no protein detected in both cell lines. 

To rule out any effect of immortalisation techniques on keratin genes and protein 

expression, these experiments were repeated on NHEK. NHEK cells were 

cultured in different culture media conditions that was used for cell lines 

(SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-). The data in Figure 4.6 showed 

that NHEK were mimicking HaCaT in which K1 and K10 were showing higher 

expression of mRNAs and proteins when lipids were removed from the serum 

with more significant increases when PR was removed indicating a synergistic 

effect of removing both PR and lipids. Other studies in the literature have also 

shown that adding RA on normal skin of volunteered patients or cultured 

keratinocytes did downregulate K1 and K10 genes expression. The effect of RA 

on terminal differentiation markers was shown in some studies to be not only on 

keratins but also on other late differentiation markers such as cornifin, filaggrin 

and loricrin, these studies were done in vitro on NHEK (Marvin et al., 1992, Hohl 

et al., 1991), and these findings strongly suggest that the effect seen in our 

experemints was primarily due to the presence of RA in serum. Some reports 

have also shown that K2 mRNA levels were drastically reduced, and the K2 

protein either unchanged or became undetectable when topical RA was applied 

on volunteers’ skin  (Torma, 2011, Rosenthal et al., 1990, Rosenthal et al., 1992, 

Virtanen et al., 2000). Keratinocyte differentiation is retinoid sensitive, with Nano-
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molar concentration required to keep the normal level of differentiation, excess 

or reduced RA concentrations could, respectively, reduce or amplify the terminal 

differentiation process (Randolph and Simon 1997). To show that the effect of 

SLPs was primarily due to the RA present in the serum ATRA was added to 

charcoal stripped serum medium with or without PR, and interestingly the effect 

shown in other in vivo studies was reproduced where RA was directly applied on 

the skin. Keratins K1 and K10 were downregulated at both mRNA and protein 

levels, which was more pronounced in PR free medium (Figure 4.9 A, B and 

4.10). ATRA increases the expression of K2 mRNA when added to charcoal 

stripped serum (SLP-/PR-) as shown in Figure 4.9 C. Studies have shown that 

KRT2 is reduced in an in vivo human skin or in vitro organotypic skin models 

treated with RA, while cultured keratinocytes could show upregulation of KRT2 

when treated with RA. The fact that KRT2 has no RA responsive elements known 

in the K2 promoter renders the role of ATRA to be either post-transcriptional RA-

dependant stabilisation or an indirect effect of RA on its promotor activity. KRT1 

and KRT10 are known to have RA responsive elements in which RAR/RXR 

receptors complexed with RA bind and inhibit the expression of these genes 

(Torma, 2011).Studies have shown that KRT19 is upregulated by RA and this 

was explained not as being a result of transcription activation but is primarily due 

to enhanced mRNA stability (Crowe, 1993). 

To study the influence of PR and its estrogenic-like effect on keratin gene 

expression, PR was added back to PR-free charcoal stripped serum containing 

RM+ medium. This addition did reduce the expression of KRT1 and KRT10 but 

not of KRT2 in NHEK (Figure 4.11). The estrogenic-like effect of PR using β-

estradiol addition to the culture medium (SLP-/PR-) was also investigated. 

Although some studies have shown lower expression of differentiation-specific 
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keratins when keratinocytes were treated with estrogen receptor ER-β agonist, 

genes that are not involved in the terminal differentiation such as KRT19 are 

induced by estrogen treatment (Choi et al. 2000). No effect was observed on 

differentiation-specific keratin gene expression in NHEK by β-estradiol treatment 

(Figure 4.11). This indicates that the effect of PR that is shown in our experiments 

could be due to impurities and not due to its structural similarity with β-estradiol. 

 mRNA stability. 

The role of ATRA and SLPs on differentiation-specific keratins could involve 

mRNA stability or promotor activity of these genes. As the abundance of mRNA 

in the cytoplasm is not only a result of its synthesis and rate of nuclear export but 

it is highly controlled by its decay rate. The stability of mRNAs is a vital process 

that affects protein expression and in fact many cellular processes (Wu and 

Brewer, 2012). The mRNA decay process is highly selective, as it differs widely 

from one mRNA to another. Studies have shown that some mRNA sequences 

contain a specific region on their 3’ UTR named AREs (AU-rich elements). This 

region (5’-AUUUA-3’) is known to be a binding site for some AREs binding 

proteins (AREs-BP) that can attract endonuclease enzyme and results in mRNA 

de-capping (Poly-A tail removal) (Shaw and Kamen, 1986). Depending on the 

cellular conditions and the presence of a certain trigger, AREs can either stabilise 

or degrade specific mRNAs (Barreau et al., 2005). The decay rate of K2 mRNA 

is around 50% within 30 min after AD treatment compared to K1 and K10 mRNAs 

which were stable up to 4 h (Figure 5.7 A). Ensambl Genome Browser 95 

database was used to look for 5’-AUUUA-3’ at the 3’ UTR regions of KRT1, KRT2 

and KRT10 genes as shown in (Figure 5.14). AU-rich elements (5’-AUUUA-3’) 

were found in KRT2 but not in KRT1 allowing some proteins to bind (ARE-BPs) 

and activate endo-ribonuclease activity (Geissler and Grimson, 2016). This could 
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explain the instability of KRT2 and stability of KRT1 under certain growth 

conditions but as mentioned before the presence of AREs not always contributes 

to decay and could also lead to mRNA stability in some genes depending on the 

physiological stimulus and the cellular need. Two (5’-AUUUA-3’) elements have 

been found in KRT10 3’ UTR but the mRNA was stable enough to be translated 

into a protein as shown using WB. This perhaps suggests that the presence of 

AREs in a mRNA is not the only factor determining their stability. Other factors 

could be involved as well such as the cellular microenvironment and physiological 

conditions.  

To study the role of ATRA on keratin mRNA stability, the rate of mRNA decay 

was measured using AD induced transcription blockage after ATRA treatment. 

KRT1 and KRT10 expression is shown to be downregulated by ATRA with 

increasing reduction over time due to transcription block with AD giving very low 

mRNA expression while K2 showed ATRA mediated stabilisation in cells treated 

with ATRA prior to AD-induced transcription inhibition. ATRA affects mRNA 

stability by delaying the breakdown in the cytoplasm through its role in mRNA 

degradations pathways. As seen in KRT2, it has been shown that human K19 

and prolactin mRNAs contain the 3’end non-coding sequence (5’-AUUUA-3’) and 

their mRNA is more susceptible to degradation in the cytoplasm (Stasiak and 

Lane, 1987, Crowe, 1993). But they become more stable when the cells are 

treated with RA indicating K19 mRNA stabilisation in the cytoplasm. RA binds to 

RA-binding proteins and these complexes perhaps directly or indirectly affect the 

endonuclease activity making the mRNA less vulnerable to degradation (Crowe, 

1993). RA-dependant stabilisation of K2 mRNA is also shown in Figure 5.8.C 

after treating the cells with ATRA and AD,  proposing that K2 could share the 

same control mechanism that has been used to explain K19 mRNA stability. The 
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K2 mRNA was stable for up to 3 h and became unstable after that despite the 

prior treatment with ATRA. This could be explained by the loss of ATRA activity, 

as some studies have shown that ATRA stability is reduced in serum free 

chemically defined medium (in which all of the chemical components are known) 

after 24 h of treatment despite accurate handling during experimental 

procedures. This medium lacks lipids and any undefined animal-derived products 

(Sharow et al., 2012, Kitano, 1985, Jayme and Smith, 2000). As this chemically 

defined serum free medium and our medium containing charcoal stripped serum 

contains no lipid, this could explain the loss of RA-dependant mRNA stability of 

K2 shown in Figure 5.8 C in which ATRA stability could be lost after 24 h. As 

discussed earlier changing the growth conditions of NHEK did affect the 

expression of K1, K2 and K10 mRNA and protein. In order to investigate if this 

change in expression has any transcription (synthesis) or post-transcription 

(stability) involvement, NHEK cells were grown in the same four different 

conditions used in chapter 4 (SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-). The 

decay rate of K1, K2 and K10 mRNA were then measured by blocking the 

transcription with AD. K1 and K10 mRNA were stable in all conditions, so 

changing the growth conditions (presence of SLPs and PR) did not affect the 

stability over time, but did affect transcription levels of KRT1 and KRT10 as 

shown in the mRNA level at 0 time point of AD treatment. K2 mRNA did not show 

any significant difference in expression when culture conditions were changed 

(comparing different conditions at 0 time). The decay rate of KRT2 was highly 

significant over time of AD treatment for all conditions with more stability shown 

when using lipid containing PR free condition (SLP+/PR-), see Figure 5.9 C. This 

could be referred to the presence of lipid mainly RA that was shown previously to 

stabilise KRT2 in the absence of PR (Figure 4.9 C).  
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As mentioned earlier, the differential regulation of late differentiation keratins 

observed in our experiments could also involves the promotor activity. The genes 

under study are involved in keratinocyte differentiation, these genes are known 

to be regulated through the activation of AP-1 (activation protein-1) transcription 

factor (Briata et al., 1993). AP-1 transcription factor is a family of JUN and FOS 

proteins that form dimers and bind to AP-1 responsive elements on the DNA. This 

binding induces expression of differentiation markers in keratinocytes. PMA 

treatment induces differentiation primarily through activating AP-1 binding (Eckert 

and Welter, 1996, Briata et al., 1993, Karlsson et al., 2010). To study the promotor 

activity of K10 and K2 using luciferase reporter assay, different fragments of the 

promotor sequence were cloned into a pGL4.14 vector. HaCaT and HEK293 

(Human embryonic kidney epithelial) cells were transfected with pGL4.26_AP-1, 

in which six copies of AP-1 responsive elements were cloned in pGL4.26 (Brown 

et al 2013), to measure AP-1 activity induced by PMA treatment of these cells. In 

HaCaT there is no difference in luciferase activity between the PMA treatment 

and control while in HEK293 cells there was more than 10-fold increase with PMA 

treatment compared with the control (Figure 5.11). The difference between the 

HEK293 and HaCaT could be due to our pGL4 construct is not able to transfect 

keratinocytes since Renilla vector that have been used for transfection efficiency 

internal control was giving consistently high readings which excludes a 

transfection problem. K2 and K14 promotors cloned in pGL4.14 vector were also 

used to measure their activity under different growth conditions in HaCaT cells. 

Data showed no statistical difference in their promotor activities using luciferase 

assay when cells were grown in different culture conditions (Figure 5.13). This 

could be due to low K2 and K14 promotor activity or low transfection efficiency of 

the constructs in HaCaT. Another experiment was done to investigate whether a 
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correlation existed between growing cells under different growth conditions 

(SLP+/PR+, SLP-/PR+, SLP+/PR-, SLP-/PR-) and the AP-1 activity measured. 

For this HEK293 cells were transfected with pGL4.26-AP-1 construct and the 

activity was measured under different growth conditions (same as used for K2 

and K14 promotor experiment) and it did not show any significant difference of 

luciferase activity between the conditions indicating that the role of lipids on gene 

expression is a direct effect and not through AP-1 activity.  

As housekeeping genes are also affected under growth conditions, the Cp values 

of YAP-1 and POL2A (housekeeping genes) were measured in this study. They 

were stable after ATRA, PR and β-estradiol treatments (Figure A.4). On the other 

hand, changing the growth conditions did affect YAP-1 and POL2A Cp values 

significantly when treated with AD and this could give faulty readings of our genes 

relative to YAP-1 and POL2A. This indicates that YAP-1 and POL2A were not the 

correct reference genes to be used in this set of experiments (effect of different 

serum conditions on stability of differentiation specific keratins using AD), and 

absolute quantification would be a more accurate measure of gene expression 

under specific growth conditions. 

 

6.2. Clinical significance of this study. 

 Keratin phosphorylation. 

Keratins are structural proteins that provide strength and integrity for epithelial 

cells and perform a wide variety of functions intra and extracellularly. Keratins 

undergo PTMs allowing them to reorganise inside the cell. The most common 

and well-studied PTM in keratins is phosphorylation. The majority of PTMs occur 

at the N or C-terminals of the keratin polypeptides suggesting the importance of 
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the head and tail domains in filaments stabilisation. All kind of stresses, apoptosis 

and mitosis are the main inducers of phosphorylation and they also cause keratin 

re-organisation (Hyder et al., 2008). Several studies have linked pathologies to 

the impairment in keratin phosphorylation. For example, in liver disease the 

presence of Serine 73 (S73) on the head domain of K8 acts as phosphate sponge 

(a cytoprotective buffer that absorbs phosphate) allowing phosphorylation to take 

place. Any impairment in this phosphorylation site causes liver injury in which the 

epithelial cells are not able to withstand different stresses (Ku and Omary, 2006). 

Furthermore, other studies have also proposed a role for keratins as a regulator 

of carcinogenesis (Karantza, 2011b). It has been shown that keratin 

phosphorylation is responsible for the viscoelasticity of the pancreatic cancer 

cells as some endogenous toxic compounds can induce phosphorylation and 

reorganisation of keratin network in cancer cells. Another example is that of 

human oral squamous cell carcinoma (OSCC) where loss of K8 S73 and S431 

phosphorylation has been observed and dephosphorylation greatly associated 

with size, and progression of the tumour (Kim et al., 2015a) . The same players 

that allow phosphorylation and reorganisation of keratins are also responsible for 

EMT allowing cancer metastasis to take place, EGF,  Interleukin-6 (IL-6) and 

PMA are few examples that could induces phosphorylation of keratins and 

enhances EMT (Kim et al., 2015a) . 

In conclusion, keratin phosphorylation and its subsequent reorganisation is an 

emerging new method for controlling EMT and cancer metastasis. Kinase 

inhibitors could be used to reduce phosphorylation, keratin re-organisation and 

consequently supress metastasis. The use of phosphatase inducers could also 

be another promising alternative for controlling keratin re-organisation by 

dephosphorylating either serine residue of keratins or through dephosphorylating 
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phosphorylated kinases (active kinases) that are involved in phosphorylation of 

keratins (Kim et al., 2015a, Beil et al., 2003).  

The dynamics of keratins in a simple epithelial breast cancer cell line (MCF-7) 

was studied and showed that inducing phosphorylation using phosphatase 

inhibitors does allow re-organisation and breakdown of the filaments. AcGFP-tag 

on the head domain of K2 allowed more breakdown of filaments compared to a 

smaller tag indicating the role of head domain folding in filaments stabilisation. 

These data could lead to developing a novel strategy for studying cancer 

metastasis in which controlling keratin phosphorylation could be a promising 

target for controlling EMT.  

 Differentiation Therapy. 

The focus of this study was mainly on late differentiation keratins such as K1, K2 

and K10, so the factors that could affect the process of keratinocyte differentiation 

could be of great importance in this case. Keratinocyte differentiation and 

proliferation has been widely studied in respect to SCC. Genetic alterations result 

in the loss of proliferative control of cells which is one of the hallmarks of cancer. 

Retinoids have been used in therapeutic doses in some types of SCCs to induce 

differentiation (Cheung et al., 2012). As cellular proliferation and differentiation 

have an inverse relationship (Suzan and Sander, 2016) and the level of 

differentiation is used in SCC staging, the ability to study the process of 

differentiation and factors affecting this process is of key importance. Using this 

phenomenon to force cancer cells to exit the cell cycle and stop proliferation to 

reduce tumor size and perhaps decrease the risk of cancer metastasis will be a 

promising approach in cancer therapy. Cancer remains a major medical problem 

as the most widely used therapeutic approaches are surgery, radiotherapy and 

chemotherapy. These treatment modalities are non-specific, highly toxic and can 
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lead to severe disfigurement. In order to reduce therapeutic complications, new 

treatment modalities have been introduced as adjuncts to conventional 

chemotherapy or radiotherapy such as differentiation therapy and angiogenesis 

inhibition as well as immunotherapy (Leszczyniecka et al., 2001). Studies have 

shown that cells with poorer differentiation ability are able to stimulate tissue 

renewal by cellular proliferation, which is of huge importance in increasing the 

rate of tumour growth and expansion. p53 is a gene that codes for the 53 kDa 

protein which regulates the cell cycle and therefore functions as a tumour 

suppressor, it also induces apoptosis and cell cycle arrest. It has been shown 

that p53 has the ability to induce terminal differentiation in keratinocytes with no 

effect on apoptosis (Guinea-Viniegra et al., 2012). It could be promising to use 

FOS/AP-1 inhibition, and p53 activation with TACE/NOTCH1-activating therapies 

in differentiation of skin SCCs. Similar approaches have been used in studies to 

modulate differentiation in breast cancer stem cells, so this strategy may hold 

great potential for future cancer treatment modalities (Guinea-Viniegra et al., 

2012). ATRA did reduces the expression of KRT1 and KRT10 but not KRT2 in 

vitro under certain growth conditions and drug concentrations. Other studies have 

shown that RA was used to treat SCC and induce differentiations as mentioned 

earlier (Beckenbach et al., 2015, Khalil et al., 2017). This indicates that cells are 

sensitive to RA concentrations and growth conditions and this play a very 

important role on keratinocyte differentiation. 

 mRNA stability. 

The regulation of mRNA stability and translation into protein are two essential 

processes that allow the cell to respond to changes in microenvironment as fast 

as possible. A stimulus or a trigger could either stabilise or de-stabilise the mRNA 

by either inhibiting or stimulating its degradation. The presence of AREs (AU-rich 



 

245 
CHAPTER 6 

elements) has been known to be the targets for different proteins that affects 

mRNA stability and they are named AREs-binding proteins. Under certain 

pathological conditions such as cancer or wound healing, deregulation of the 

mRNA stability takes place depending on the presence of these binding proteins 

(Barreau et al., 2005). For example, HuR (Human antigen R), also known as 

ELAV-like protein 1, in humans is encoded by the ELAVL1, contains 3 RNA-

binding domains which bind cis-acting AU-rich elements to regulate mRNA 

stability. It is a member of the embryonic lethal abnormal vision family which has 

been involved in many biological events such as cell proliferation, differentiation, 

and carcinogenesis. When HuR was knocked down in oral cancer cells, ARE-

mRNA stabilisations was inhibited. These cancer cells lost their ability to 

proliferate and invade indicating a potential ability of HuR to change the 

characteristics of oral cancer cells (Kakuguchi et al., 2010). Such a strategy can 

be employed to suppress not only oncogenesis but also metastasis. Another 

example emphasising the importance of mRNA stability and AREs-BP is their role 

in apoptosis. RNA binding protein, CELF1, can bind to mRNAs in pro-apoptotic 

oral cancer cells, de-stabilise them and prevent apoptosis. This indicates its role 

as a cancer maker and a future therapeutic target for oral cancer (Talwar et al., 

2013). 

The mRNA stability of three differentiation-specific keratins was studied showing 

that K2 was stabilised by ATRA treatment when K1 and K10 mRNAs were not. 

This was very interesting since the decay rate of K2 mRNA in the absence of 

ATRA was far higher compared with K1 and K10. This was explained by the 

presence of AREs in KRT2 mRNA in which certain AREs-binding proteins can 

bind and destabilises the mRNA. The lower stability of K2 mRNA in the absence 

of ATRA could explain the undetectable K2 protein expression in cultured 

https://en.wikipedia.org/wiki/AU-rich_element


 

246 
CHAPTER 6 

keratinocytes. The importance of studying the mRNA stability of these keratins 

lies in the fact that they are differentiation markers and could play a significant 

role in the pathogenesis of SCCs. Targeting ARE-binding proteins to regulate 

mRNA stability and translation of oncogenic proteins is a potential therapeutic 

genetic approach in SCC treatment and management.  

 

6.3. Future directions of this study. 

To broaden our findings, the following aspects could be investigated in future 

experiments: 

1. Determining the role of head, tail and rod domains of the keratin 

polypeptide tagged and un-tagged in filament stability in phosphorylated 

and unphosphorylated states.  

2. Further investigations of the role of heat shock proteins in keratin filament 

stability, which could be explored by using a p38 MAPK inhibitor such as 

SB203580 or/and using dominant negative or constitutively active p38 

kinase. 

3. Use FRET assay to measure the strength of binding of different pairs of 

keratins using SW13 (adrenal gland/cortex epithelial cell line which do not 

express any keratin). These data will determine in vivo binding 

characteristics and the role of head and tail in affecting the strength of 

binding of these keratins which has never been studied. 

4. Role of RA on the expression of late differentiation keratins in an 

organotypic culture using skin and oral keratinocytes. 
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5. To further investigate the role of SLPs on keratin expression, absolute 

quantification of mRNA will give a better understating as the reference 

genes YAP1 and POL were affected by these conditions. 

6. Further studies on mRNA stability of late differentiation keratins in NHEK 

using nuclear and cytoplasmic fractions of the RNA. 

7. Characterisation of epigenetic regulation of K2 by studying promotor 

activity and DNA methylation.  
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Appendix 

A.1. Supplementary results.  

Supplementary Figures for results in chapter 3 and chapter 4 are shown in section 

A.1 supplementary results. 
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Figure A. 1. Optimisations of CL-A treatment concentrations in MCF-7 cells.  Cells were 
grown in full DMEM (10% FCS and 1% PS), next day treated with different concentrations of CL-
A for different time points to optimise the concertation and time point at which filaments 
breakdown into globules while cells are still intact. 2nM for 1 hour was the optimum concentration 
that was used in later experiments. DMF treated cells for up to 1 hour are shown as a vehicle 
control. All cells were immunostained with LE65 and Alexa Flour® 488-labelled anti-mouse 
secondary antibody. Cells counter stained with DAPI in blue and overlapping of immunostaining 
with DAPI is shown as Merge. Leica Epi-fluorescence microscope model DM5000 and DFC350 
camera were used for recording pictures. (Scale bar=20 µm) 
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Figure A. 2. Optimisations of CL-A treatment time points in AcGFP-K2/MCF-7 cells. Cells 
were grown in full DMEM (10% FCS and 1% PS), next day treated with 2nM CL-A for different 
time points to optimise the time point based on data from untransduced MCF-7. 2nM for 30 min 
was the optimum concentration that was used in later experiments while 2nM for 1h was showing 
cells rounding up and lysed. DMF treated cells for up to 1 hour are shown as a vehicle control. 
Cells counter stained with DAPI in blue and overlapping of immunostaining with DAPI is shown 
as Merge. Leica Epi-fluorescence microscope model DM5000 and DFC350 camera were used 
for recording pictures. (Scale bar=20 µm) 
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Figure A. 3. Optimisation of organotypic growth conditions.  Haematoxylin and Eosin staining 
shown in (A), scale bar =100 μm). In (B) HaCaT and N/TERT (C) keratinocytes cell lines were 
grown in OTCs in an insert (pore size 0.4 µm) based method. Primary dermal fibroblasts were 
used in collagen matrix to support the growth of keratinocytes. The cells were grown at air-liquid 
interface for 10 days in RM+ medium, fixed in 4% (w/v) paraformaldehyde/PBS and paraffin 
embedded. Sections of 5µm thickness were cut, antigen retrieved, followed by immunostaining 
with antibodies against K1, K2, K10 and K14, the nuclei were counterstained with DAPI, overlap 
of green fluorescence with DAPI (Blue) is shown as merge image. The Leica DM4000B Epi-
fluorescence microscope was used to record Images (scale bar = 40 μm). 
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Figure A. 4. Cp values of YAP and POL.  NHEK cells mixed with irradiated 3T3 feeder cells 
were grown in charcoal stripped FCS containing RM+ with or without PR. In (A), for ATRA cells 
were grown in 1 µM ATRA concentrations for 24 h, for PR 0.01 mg/ml was used in PR free culture 
medium and control cells treated with DMSO/EtOH (0.001%/0.01%) for 24h. In (B), β-Estradiol 
was dissolved in DMSO (0.001%). Concentrations of β-Estradiol in the range of 10nM- 1µM were 
added in the culture medium and cells were treated for 24 h. Later lysates were collected for 
qPCR mRNA expression analysis for KRT1, KRT10 and KRT2. Data shown in this figure 
represent fold expression of Cp values of two housekeeping genes, POL2A and YAP1. For 
statistical analysis we have used One-way ANOVA to measure the p values. mean ± SEM, n=3, 
ns=p>0.05, *=p<0.05, **=p<0.01 and ***=p<0.001 calculated using ANOVA test. One-way 
ANOVA showed no significant difference in both A and B. 
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A.2. Maps and vectors used in this study. 

 

 

Figure A. 5. Map of pLPC-N-AcGFP-GS20 vector. This vector was used for K2 genome cloning. 
Amp – ampicillin resistance gene; 5’/3’ LTR – 5’/3’ long terminal repeat; Puro – puromycin 
resistance gene; CMV - human cytomegalovirus promoter; AcGFP – Aequorea coerulescens 
GFP; GS20 – 20 amino acid insert; MCS – multiple cloning site. The vector as well as the vector 
map was kindly provided by my supervisor, Prof. Ahmad Waseem. 
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Figure A. 6. Map of pLPC-3xFLAG-GS20 vector.  This vector was used for K2 cloning. Amp – 
ampicillin resistance gene; 5’/3’ LTR – 5’/3’ long terminal repeat; Puro – puromycin resistance 
gene, CMV – human cytomegalovirus promoter; AcGFP – Aequorea coerulescens GFP; MCS – 
multiple cloning site; GS20 – 20 amino acid insert. The vector as well as the vector map was 
kindly provided by my supervisor, Prof. Ahmad Waseem 
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Figure A. 7. Map of pGL4.26 vector. pGL4.26 vector was used in luciferase assays for 
examination of AP-1 activity. Six copies of AP-1 responsive elements were previously cloned into 
this vector by Prof. A. Waseem. Hygr – hygromycin resistance gene; ori – ColE1-derived plasmid 
replication origin; Ampr – ampicillin resistance gene; MCS – multiple cloning site; luc2 – luciferase 
reporter gene (Photinus pyralis). This figure was adapted from Promega, literature file # 9PIE844. 

 

 

Figure A. 8. Map of pGL4.14 vector.  pGL4.14 vector was used in luciferase assays for 
examination of K2, K14 promoter activity. K15 promoter (and its fragments F1 – F7) was 
previously cloned into this vector by Prof. A. Waseem. Hygr – hygromycin resistance gene; ori – 
ColE1-derived plasmid replication origin; Ampr – ampicillin resitance gene; MCS – multiple cloning 
site; luc2 – luciferase reporter gene (Photinus pyralis). The figure was adapted from Promega, 
literature file # 9PIE669. 
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A.3. Additional work. 

A.3.1. Vimentin co-localisation with other cell adhesion proteins 

(as part of my supervisor’s ongoing research). 
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Figure A. 9. Colocalisation of Vimentin with other proteins.  MCF-7 cells transduced with 
AcGFP-Vimentin were grown in full DMEM (10% FCS,1% PS), fixed using acetone/methanol 
(1:1). Cells were stained using primary antibodies for (Actin, A), (E-Cadherin, B), (β-Catenin, C), 
(Integrin alpha-6, D). Secondary antibodies were used (AF-594) for co-localisation proteins only. 
Vimentin was tagged to AcGFP.  Cells were visualised using Leica DM4000 Epi-fluorescence 
microscope model and DFC350 camera. (Scale bar=20 µm). 
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A.3.2. Publication. 
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A.4. Research Presentation of this thesis. 

• Institute of Dentistry PhD Day 2016 (QMUL, London, UK; April 26th).  

Keratin filament dynamics in live cells 

(poster presentation). 

• Institute of Dentistry PhD Day 2017 (QMUL, London, UK; April 26th).  

Keratin filaments dynamics in live cells: Role of N-terminus in 
filaments stabilisation 

(PowerPoint presentation). 

• Institute of Dentistry PhD Day 2018 (QMUL, London, UK; May 11th). 

In vitro analysis of Keratin K2 function in protecting against 
carcinogenesis.   

 (poster presentation). 

• Institute of Dentistry PhD Day 2019 (QMUL, London, UK; June 11th).  

Effect of lipids on keratinocyte differentiation 

(PowerPoint presentation). 

• BSODR conference (2017 Plymouth, UK). 

In vitro analysis of Keratin K2 function in protecting against 
carcinogenesis.   

(poster presentation). 

Award winning: Oral Medicine and Pathology Group Prize 
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A.5. Manuscripts communicated. 

1. Communicated to BMC Cancer 

Title: Clinical correlation of opposing molecular signatures in head and    

neck squamous cell carcinoma. 

     
Authors: Fatima Qadir; Anand Lalli; Huma Habib Dar; Sungjae Hwang; 
Hebah Aldehlawi; Hong Ma; Haiyan Dai; Ahmad Waseem; Muy-Teck 
The. 

 
 

2. To be communicated to PLoS Genetics 

Title: Mutations in SPATA13/ASEF2 cause primary angle closure 

glaucoma. 

 
Authors: Naushin H Waseem, Sancy Low, Amna Z Shah, Deepa Avisetti, 
Pia Ostergaard, Michael Simpson, Katarzyna A Niemiec, Belen Martin-
Martin, Hebah Aldehlawi, Saima Usman, Pak Sang Lee, Anthony P 
Khawaja, Jonathan B Ruddle, Ameet Shah, Ege Sackey, Alexander Day, 
Sanny Jiang, Geoff Swinfield, Ananth Viswanathan, Giovanna Alfano, 
Christina Chakarova, Heather J Cordell, David F Garway-Heath, Peng T 
Khaw, Shomi S Bhattacharya, Ahmad Waseem, Paul J Foster. 

 
3. Communicated to BJOMP 

Title: Screening for oral cancer utilising risk-factor analysis is ineffective in 

high-risk populations. 

 

Authors: Anand Lalli; Hebah Aldehlawi; John Buchanan; Noha Seoudi; 
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