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Abstract

In this thesis, several aspects of anti-de Sitter-like spacetimes

are treated under conformal methods. More specifically, the

analysis is based on Friedrich’s metric conformal formulation of

the Einstein field equations. First, it is proved that the con-

formal Einstein equations coupled to a tracefree matter model

imply a system of wave equations for the conformal fields. Un-

der an appropriate gauge choice, these relations are cast as a

system of quasilinear wave equations. The analysis is supple-

mented with a set of homogeneous wave equations for the sub-

sidiary variables.

The problem of the existence of continuous symmetries in vac-

uum anti-de Sitter-like spacetimes is also considered. Following

an approach based on the construction of wave equations for

the relevant fields, the problem is reduced to the existence of

a Killing vector on the conformal boundary. A necessary and

sufficient condition is found to be given by the so-called ob-

struction tensor. More specifically, the spacetime possesses a

Killing vector if and only if the conformal boundary has van-

ishing obstruction tensor.

Next, a systematic construction of vacuum anti-de Sitter-like

spacetimes is carried out by means of the quasilinear system

previously obtained. Suitable initial and boundary data for this

system are constructed via the conformal constraints. An anal-

ysis of the geometric subsidiary variables yields a local result

for the existence of this class of spacetimes.

The previous analysis serves as a prelude to the tracefree matter

case. Following an analogous construction, three explicit matter

models are considered: the conformally invariant scalar field,
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the Maxwell field and the Yang-Mills field. For each one of

these, suitable boundary data sets are constructed and their

relation to the corresponding subsidiary variables is established.

This leads to a local result for the existence of anti-de Sitter-

like spacetimes coupled to any of the aforementioned matter

models.
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Secretaŕıa de Educación Pública (2015 – 2018). Attendance

to conferences, workshops, seminars and summer schools was

possible thanks to the support from Queen Mary University of

London, Institute of Physics, University of Vienna, University
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Chapter 1

Introduction

1.1 The Einstein field equations

The best current theory to describe gravitational phenomena is Einstein’s

theory of General Relativity. It postulates the existence of a 4-dimensional

manifold M̃ endowed with a symmetric Lorentzian metric g̃. The pair

(M̃, g̃) defines a physical spacetime. From now on, objects with an upper

tilde will represent physical objects, in the sense that they are defined on

(M̃, g̃).

Throughout this work, the convention for the signature of the space-

time metric is that it possesses three positive eigenvalues and one negative;

this is represented as (−,+,+,+). Latin indices a, b, c, . . . will be used

to indicate abstract spacetime objects; i, j, k, . . . will symbolise abstract

ones on a 3-dimensional hypersurface. Greek indices α, β, γ, . . . will denote

the components in a particular coordinate system x = (xµ). Let ∇̃ be

the Levi-Civita connection on M̃ and demand that it be compatible with

g̃, that is to say, ∇̃ag̃bc = 0. Consider a tangent vector Ṽ a on M̃; then

our convention for the curvature is the following: we define the Riemann

curvature tensor R̃a
bcd as

∇̃a∇̃bṼ
c − ∇̃b∇̃aṼ

c ≡ R̃c
dabṼ

d. (1.1)

Resulting from contractions of the Riemann tensor, the Ricci tensor and

14



Ricci scalar are defined, respectively, as

R̃ab ≡ R̃c
acb, R̃ ≡ g̃abR̃ab. (1.2)

A further relevant curvature object is the Weyl tensor C̃a
bcd, defined as the

tracefree part of the Riemann tensor. Explicitly this is:

C̃abcd ≡ R̃abcd + g̃b[cR̃d]a − g̃a[cR̃d]b +
R̃

3
g̃a[cg̃d]b. (1.3)

A set of field equations for the theory can be deduced from a Lagrangian

approach via the least action principle. Under this approach we consider

the Einstein-Hilbert action for the gravitational field

S̃g =

∫
R̃
√
−g̃dV, (1.4)

where g̃ is the determinant of g̃ and dV is the volume element. In the

presence of an energy-matter field we must also take into account the cor-

responding Lagrangian density L̃m which, in turn, has an associated action

S̃m. Using units such that 8πG = c = 1, we define the energy-momentum

tensor of the matter field as

T̃ab ≡ −
1√−g̃

δS̃m
δg̃ab

. (1.5)

Remark 1. The explicit form of T̃ab will depend on the specific matter

model under consideration. In this thesis, several concrete examples of

interest will be examined in detail.

Finding the extremal of the total action S̃ = S̃g + S̃m leads to the Ein-

stein Field Equations (EFE). After introducing the cosmological constant

λ these equations take the form

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab. (1.6)

A detailed derivation can be found in [61]. As a result of the diffeomorphism-

invariance of the theory, one has that T̃ab satisfies the conservation law

∇̃bT̃ab = 0, (1.7)
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which is compatible with the second Bianchi identity. It is worth remarking

that this identity will play an important role in this work as it will impose

some restrictions on the class of matter models we study under a conformal

approach.

Remark 2. In the absence of matter, the trace of (1.6) is simply R̃ = 4λ.

This enables us to write the vacuum EFE as

R̃ab = λg̃ab. (1.8)

Manifolds for which the Ricci tensor satisfies the above condition are known

as Einstein manifolds.

1.2 The Cauchy problem

Adopting a suitable choice of coordinates, the EFE (1.6) represent a system

of coupled second order partial differential equations for the components of

the metric g̃ab, making it possible to apply the tools from the theory of Par-

tial Differential Equations (PDEs) to analyse solutions to this system. The

well-posedness of this problem requires us to provide the system with ini-

tial data. In this context, the EFE imply a set of conditions that potential

solutions must satisfy on an initial spacelike hypersurface S̃? with intrinsic

Riemannian 3-metric h̃ij and unit normal vector ña. These are represented

by the so-called constraint equations. Let D̃i and r̃ be, respectively, the

covariant derivative and the Ricci scalar of h̃ij, and K̃ij the extrinsic cur-

vature of the hypersurface. Also, let ρ̃ and j̃i denote the pull-backs of the

projections ñañbT̃ab and ñah̃b
cT̃ac, respectively, to S̃?. Then the constraint

equations take the form [5]:

r̃ − K̃ijK̃
ij + K̃2 = 16πρ̃, (1.9a)

D̃jK̃
j
i − D̃iK̃ = 8πj̃i. (1.9b)

Here, K̃ ≡ h̃ijK̃ij and the fields ρ̃ and j̃i must also satisfy the conditions

imposed by the conservation law (1.7).

Fourès-Bruhat [25] showed that under an adequate choice of coordinates

it is possible to express the EFE as a system of second order quasilinear
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wave equations for the components of the metric; in Chapter 3 this will

be further discussed and exploited. The resulting system requires the pre-

scription of a 3-dimensional manifold S̃?, a Riemannian 3-metric h̃ and

a symmetric 2-tensor K̃ satisfying the constraint equations. The triplet

(S̃?, h̃, K̃) will be called an initial data set. As it will be convenient, we

introduce the following concept:

Definition 1. A spacetime (M̃, g̃) is a development of an initial data set

(S̃?, h̃, K̃) if under an embedding ϕ : S̃? → M̃ we have that

(i) h̃ = ϕ∗(g̃),

(ii) the image of the tensor K̃ under ϕ corresponds to the extrinsic cur-

vature of S̃?.

The question of how solutions to the constraint equations relate to so-

lutions to the EFE was first addressed by Choquet-Bruhat and Geroch in

[16], whose main result can be stated as:

Theorem 1. Let (S̃?, h̃, K̃) be an initial data set satisfying the constraint

equations. Then there exists a unique maximal development which is a

solution to the EFE.

Spacetimes which can be uniquely constructed by prescribing an initial

data set are called globally hyperbolic. This notion is closely linked to

the causality requirements imposed by the theory [37]. As will be seen in

the next section, there exist spacetimes which are solutions to the EFE

but do not accept a Cauchy hypersurface, causing this formulation to be

incomplete to study their construction. For an extensive discussion of the

Cauchy problem in General Relativity see [15].

1.3 The anti-de Sitter spacetime

In this section a well-known exact solution to the EFE will be presented:

the anti-de Sitter spacetime. The discussion about the basic properties

will be based on [35, 59], while a more detailed review on its conformal

representation can be found in [60]. Consider an Einstein manifold satis-

fying (1.8) which is also maximally symmetric and, therefore, has constant
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curvature. It is easy to see that under these conditions the corresponding

metric is characterised by C̃a
bcd = 0, i.e. it is conformally flat. From now

on we will focus on the case λ < 0, the anti-de Sitter solution.

In order to give a more explicit description of this spacetime, consider

a flat 5-dimensional space R3,2 with Cartesian coordinates (U, V,X, Y, Z)

such that U and V are timelike. The corresponding line element is simply

g̃adS = −dU ⊗ dU − dV ⊗ dV + dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ.

Embedded into this space, the anti-de Sitter solution corresponds to the

4-dimensional hyperboloid defined by

− U2 − V 2 +X2 + Y 2 + Z2 = −a2, (1.10)

where a ≡
√
−3/λ is a constant. This can be re-expressed in a spheri-

cally symmetric form by introducing a set of naturally adapted coordinates

(t, r, θ, φ) which parametrise the Cartesian ones as

U = a cosh r sin(t/a), V = a cosh r cos(t/a), X = a sinh r sin θ cosφ,

Y = a sinh r sin θ sinφ, Z = a sinh r cos θ.

Here, t/a ∈ (−π, π), r ∈ [0,∞), θ ∈ [0, π] and φ ∈ [0, 2π) are spherical

coordinates. In terms of these variables, the metric of the anti-de Sitter

space takes the form

g̃adS = − cosh2 rdt⊗ dt+ a2(dr ⊗ dr + sinh2 rσ),

with σ ≡ dθ ⊗ dθ + sin2 θdφ ⊗ dφ the metric of the 2-sphere. The time

coordinate t deserves further comment: under the transformation t 7→ t +

2aπ, it can be seen that U and V remain invariant and thus correspond

to the same point. The fact that t is a periodic coordinate gives rise to

the appearance of closed timelike curves. This issue can be addressed by

unfolding the hyperboloid so t ∈ R, resulting in a representation known as

the universal covering of the anti-de Sitter space. In the following, though,

we will refer to this simply as the anti-de Sitter space.

Some key properties inherent to this spacetime can be unveiled by
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studying its conformal structure. To this aim we first introduce a new

radial coordinate R ≡ a sinh r, R ∈ [0,∞). The metric then becomes

g̃adS = −
(

1− 1

3
λR2

)
dt⊗ dt+

(
1− 1

3
λR2

)−1
dR⊗ dR +R2σ. (1.11)

Expressed in this way, it is evident that the space does not possess horizons

as λ < 0. Lastly, we perform a further change of variables given by R =

a tanχ and T = t/a. After a direct calculation the metric takes the simpler

form

g̃adS =
a2

cos2 χ

(
− dT ⊗ dT + dχ⊗ dχ+ sin2 χσ

)
≡ a2

cos2 χ

(
− dT ⊗ dT + π

)
≡ a2

cos2 χ
gE , (1.12)

where π and gE are, respectively, the metrics of the 3-sphere and the Ein-

stein cylinder. Defining the scalar function Ξ = cosχ/a, we can write

gE = Ξ2g̃adS. (1.13)

We say that g̃adS is conformal to gE . More precisely, the fact that r →∞
corresponds to χ = π

2
shows that the metric of the anti-de Sitter space is

conformal to only half of the Einstein cylinder. The hypersurface defined

by this condition is called the conformal boundary at spatial infinity —

see Figure 1.1. Subsequently, I will denote the conformal boundary of

a general spacetime. This representation then enables us to study the

properties of the space at infinity via local computations. This approach

represents the core of this work so its tools and methods will be discussed

in more detail in Chapter 2.

The anti-de Sitter spacetime has attracted a considerable amount of

interest in the last decades in view of its connections to other areas of The-

oretical Physics. In particular, Maldacena [47] showed that some conformal

field theories defined on the conformal boundary of the 5-dimensional anti-

de Sitter spacetime are equivalent to a higher-dimensional gravitational

theory on its bulk. In this sense, this proposal works as a dictionary be-

tween both theories, making the conformal boundary of great importance.
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Figure 1.1: Penrose diagram of the anti-de Sitter spacetime. The angular
coordinates are omitted by taking the quotient M/SO(3). The conformal
boundary corresponds to the line I while Γ is the centre of symmetry.

See [42] for a detailed and specialised review.

One of the most relevant facts about the global structure of the anti-de

Sitter space is the character of its conformal boundary. From its definition

it is easy to see that I is a timelike hypersurface. Considering, however,

a spacelike hypersurface Σ, it is possible to construct non-spacelike curves

such that they intersect I but not Σ. In other words, the spacetime

does not contain Cauchy hypersurfaces and consequently is not globally

hyperbolic. For this reason, suitable additional data must be provided on

the conformal boundary in order to recover the whole spacetime.

Unlike the case for globally hyperbolic spacetimes, it is not clear a pri-

ori what the basic data on the conformal boundary are. This problem

has acquired a great importance in view of its relation to its instability

under non-linear perturbations. Using reflective boundary conditions and

a massless scalar field under spherical symmetry, Bizoń and Rostworowski

[9] showed, via numerical methods, the instability of the space for arbi-

trarily small perturbations. This can be understood as a consequence of

the boundary acting like a mirror in such a way that the perturbations

become trapped, interact with each other and generate instabilities. This

has been supported by evidence in different settings such as a purely grav-

itational analysis [23] and a study in higher dimensions [8]. Remarkably,
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the conjectured instability has been proved in [49] for the Einstein-massless

Vlasov system under spherical symmetry. In view of the above, the role

the conformal boundary plays becomes evident.

The anti-de Sitter spacetime represents an exact vacuum solution to the

EFE with negative cosmological constant. Nevertheless, one can consider

a more general class of solutions to the EFE with λ < 0 which admit

a timelike conformal boundary. These solutions are the so-called anti-de

Sitter-like spacetimes (or adS-like for short) and will be the main object of

study in this thesis.

1.4 Alternative constructions

Regarding the construction of adS-like spacetimes, Friedrich [29] estab-

lished the local existence of this class of spacetimes in the absence of mat-

ter under an approach based on conformal methods — see sections 2.2

and 5.1 for a detailed discussion. In this context, it is worth mentioning

that matter models arising from a conformally invariant Lagrangian have,

in general, a tracefree energy momentum tensor [54]. This will serve as

a first motivation to put particular attention on matter models with this

property. A vacuum construction for (n + 1)-dimensional asymptotically

anti-de Sitter solutions has been obtained by Enciso and Kamran [24] via

proving the convergence of an iterative process for a quasilinear hyperbolic

system. This work contrasts with Friedrich’s one — and with the construc-

tion aimed to be developed in this thesis — as the boundary conditions for

the metric are constructed based on an existence result, impractical for a

numerical implementation. Moreover, the conformal approach enables us

to analyse the boundary by means of local computations. In the same vein

of construction of asymptotically anti-de Sitter spacetimes, in [40] the lo-

cal well-posedness of the semi-linear Einstein-Klein-Gordon system under

the assumption of spherical symmetry was proved by means of L2 energy

estimates and Dirichlet boundary conditions. This result was extended in

[41] for Neumann and Robin boundary conditions which, in turn, give rise

to non-linear terms in the system which need to be controlled.
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1.5 Main results of the thesis

Throughout this work, results about uniqueness and existence of solutions

to equations will be in the context of PDEs, that is to say, it will refer to

coordinate, but not geometric, uniqueness and existence.

Chapter 2 is devoted to reviewing the relevant concepts and tools from

conformal geometry. The notion of conformal rescaling is introduced, from

where a collection of transformation formulae for the various geometric

objects can be obtained. It will be seen that, apart from being not invari-

ant, the EFE result in a singular system of equations under these type of

transformations. A regular conformal representation of the EFE will be

discussed, the so-called metric conformal Einstein field equations; this will

be the basis of the subsequent analysis. Importantly, some key results re-

garding the relation of this system to the EFE will be stated. In addition,

the conformal version of the constraint equations is presented as it will be

extensively used in later chapters.

Chapter 3 investigates some properties of the conformal Einstein field

equations; specifically, the system of geometric wave equations for the con-

formal fields that is implied by them. The main goal is to generalise the

result obtained by Paetz in [51] to the tracefree matter case. Moreover,

exploiting the conformal and coordinate gauge freedom, this system is cast

as a quasilinear system of wave equations. In order to relate solutions

to the system of wave equations to the EFE, we carry out the so-called

propagation of the constraints for a set of zero-quantities. This is done via

obtaining a series of integrability conditions from where a further system of

wave equations naturally emerges. Three relevant tracefree matter models

are analysed in detail: the conformally invariant scalar field, the Maxwell

field, and the Yang-Mills field.

In Chapter 4, the problem of existence of continuous symmetries in

adS-like spacetimes is investigated under the light of conformal methods.

Taking as a starting point the analyses by Paetz [50, 52] carried out in the

context of null hypersurface and spacelike conformal boundaries, we study

the problem in the presence of a timelike conformal boundary. The issue

of existence is first formulated in terms of a system of wave equations for a
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set of conformal fields which, in turn, implies a similar problem on the con-

formal boundary. From analysing the relation between the intrinsic system

on I and the Killing equation, an object obstructing the existence of sym-

metries arises. It is then shown that a necessary and sufficient condition

for the existence of a Killing vector is the vanishing of such an obstruction.

Chapter 5 is centred on the problem of the construction of adS-like

spacetimes as an initial-boundary problem in the vacuum case by using the

results from Chapter 3. Then we proceed to focus on the identification

and construction of suitable initial and boundary data for the system, and

discuss the corner compatibility conditions these data must satisfy. The

adequate propagation of the constraints is proved to follow from the proper-

ties of the zero-quantities. With this we obtain a local result of uniqueness

and existence of vacuum adS-like solutions to the EFE, alternative to the

one in [29].

As a complement, in Chapter 6 the previous analysis is extended to

the tracefree matter case. Using results from Chapter 3, a suitable system

of quasilinear wave equations is obtained which then serve to prove the

local existence and uniqueness of solutions to the EFE with negative cos-

mological constant coupled to any of the three matter models considered

in Chapter 3. Specifically, a detailed analysis of the identification of the

basic boundary data for the matter fields is presented.

Finally, in Chapter 7 we briefly discuss the main results obtained as well

as possible further extensions and the new potential problems they pose.
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Chapter 2

Methods of conformal

geometry

The purpose of this section is to provide a brief overview of the methods

and tools that conformal geometry offers, especially how they can be im-

plemented into General Relativity to study global properties of the EFE.

The difficulties towards this goal will be discussed, as well as how they

motivate the construction of a suitable conformal formulation which will

serve as the basis for subsequent analyses in this thesis. The presentation

here is inspired by [60] where these methods are extensively discussed.

2.1 Conformal transformations

The study of conformal methods applied to General Relativity started with

Penrose’s seminal work [53], in which he introduced some of the techniques

to study the asymptotic properties of spacetimes by considering instead an

auxiliary unphysical metric. More specifically, the concept of a conformal

transformation is central to the discussion:

Definition 2. Let M̃ and M be two manifolds with metrics g̃ and g,

respectively. A conformal transformation consists of a diffeomorphism ϕ :

M̃ →M such that

ϕ∗(g) = Ξ2g̃, (2.1)

with Ξ a smooth scalar function defined on M̃.
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Moreover, if g̃ and g satisfy relation (2.1) they are said to be conformally

related. The scalar function Ξ denotes the so-called conformal factor.

Remark 3. Observe that a conformal transformation ϕ with Ξ > 0 induces

the existence of a conformal class of the metric [g̃], defined as the set of

metrics conformally related to g̃.

Conformal transformations (2.1) which are not surjective represent a

more specific class known as conformal extensions of M̃. The fact that only

a subset of M becomes relevant leads to the following central definition:

Definition 3. Let M̃ and M be two manifolds and let U ⊂ M be an

open, connected submanifold with compact closure. We say that a conformal

transformation ϕ : M̃ → U is a conformal compactification if

g = (ϕ∗)−1(Ξ2)g̃ (2.2)

and the following conditions hold:

(i) Ξ > 0 on U ,

(ii) Ξ = 0 and dΞ 6= 0 on ∂U .

Hereafter, the pair (M, g) will denote an unphysical spacetime and the

set of points defined by Ξ = 0 is called the conformal boundary. Further-

more, despite the physical and unphysical metrics being defined on different

manifolds, with a slight abuse of notation we will obviate the action of the

pull-back ϕ∗ and express the relation between the two metrics simply as

g = Ξ2g̃. (2.3)

Transformation (2.3) by itself is not enough to obtain the formulae

relating the different curvature objects associated to the metric. For this

we need to introduce the covariant derivative operator associated to the

unphysical metric ∇, which will be assumed to have zero-torsion and be

compatible with g. For a scalar function ∇af = ∇̃af , while for a mixed

(1, 1) tensor Aa
b, we have that

∇aAb
c − ∇̃aAb

c = −Qa
d
bAd

c +Qa
c
dAb

d, (2.4)
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with Qa
b
c = Ξ−1(∇aΞδb

c +∇bΞδa
c−∇cΞgab) the transition tensor between

∇̃ and ∇; generalisations to higher order tensors are direct. Exploiting the

last relation, a series of long calculations provide the following expressions:

Rab − R̃ab = −2Ξ−1∇a∇bΞ− gab(Ξ−1∇c∇cΞ,−3Ξ−2∇cΞ∇cΞ), (2.5a)

R− Ξ−2R̃ = −6Ξ−1∇c∇cΞ + 12Ξ−2∇cΞ∇cΞ, (2.5b)

Ca
bcd − C̃a

bcd = 0. (2.5c)

Notice, in particular, that the Weyl tensor turns out to remain invariant.

With this in hand we can now proceed to investigate how the EFE

transform under a conformal rescaling. For simplicity, consider the vacuum

EFE with vanishing cosmological constant R̃ab = 0. Transformation (2.5a)

implies that

Rab = −2Ξ−1∇a∇bΞ− gab(Ξ−1∇c∇cΞ− 3Ξ−2∇cΞ∇cΞ),

which is singular for Ξ = 0. Attempting to overcome this problem by

multiplying by Ξ2 results, however, in the vanishing of the principal part

when evaluated on I . Therefore, the last equation is not convenient if we

desire to adopt an approach based on results from the theory of PDEs.

2.2 The conformal Einstein field equations

In view of the bad conformal properties of the EFE, their study requires

the construction of an alternative and not-so-straightforward system. A

successful conformal formulation was first obtained by Friedrich [26] via the

introduction of a number of additional conformal fields. In the remainder

of this section, we will consider two conformally related spacetimes (M̃, g̃)

and (M, g) where the former satisfies the EFE with matter (1.6). In order

to deal with non-trivial matter models, we first need to define the basic

properties of their unphysical counterparts.
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2.2.1 The unphysical energy-momentum tensor

Since equation (2.3) does not determine the way the energy-momentum of

a matter field T̃ab transforms under a conformal rescaling, it will be conve-

nient to define the unphysical energy-momentum tensor via the following

homogeneous transformation rule:

Tab ≡ Ξ−2T̃ab. (2.6)

Remark 4. It is worth emphasising that the conformal rescaling (2.6) has

been chosen as it is suitable for our purposes but, in principle, different

transformation rules may be more adequate in other contexts.

Using the transformation rule between the Levi-Civita covariant deriva-

tives of conformally related metrics (2.4), it readily follows that equation

(1.7) takes the form

∇bTab = Ξ−1T∇aΞ,

where T ≡ gcdTcd. This relation represents a challenge as, for a general

matter field, becomes singular at Ξ = 0. Nevertheless, transformation (2.6)

implies that T = Ξ−4T̃ . Based on this observation we make the following

assumption:

Assumption 1. From here onwards we restrict our attention to matter

models for which T̃ = 0, so that the corresponding unphysical energy-

momentum tensor Tab satisfies

∇bTab = 0. (2.7)

2.2.2 Basic relations

Having defined the class of matter models we will deal with, our attention

will now be focused on the introduction of a number of conformal fields

defined onM that will become central to the analysis of the EFE. Let the

Friedrich scalar, the Schouten Tensor, the rescaled Weyl tensor and the
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rescaled Cotton tensor be defined, respectively, as

s ≡ 1
4
∇c∇cΞ + 1

24
RΞ, (2.8a)

Lab ≡ 1
2
Rab − 1

12
Rgab, (2.8b)

dabcd ≡ Ξ−1Ca
bcd, (2.8c)

Tabc ≡ Ξ∇[aTb]c + 3∇[aΞTb]c − gc[aTb]e∇eΞ. (2.8d)

Observe that Lab = Lba, d
a
bcd inherits the symmetries of the Weyl tensor

and Tabc possesses the following ones:

Tabc = T[ab]c, T[abc] = 0. (2.9)

Relevant for the subsequent discussion is the well-known fact that the

rescaled Weyl tensor accepts two associated Hodge dual tensors, namely

∗dabcd ≡ 1
2
εab

efdefcd, d∗abcd ≡ 1
2
εcd

efdabef ,

where εabcd is the 4-volume form of the metric gab. Furthermore, one can

check the following auxiliary properties:

∗dabcd = d∗abcd,
∗∗dabcd = d∗∗abcd =∗d∗abcd = −dabcd.

Likewise, we define the Hodge dual of Tabc as

∗Tabc ≡ 1
2
εab

deTdec. (2.10)

In terms of the notation and conventions used in this work, the metric

tracefree conformal Einstein field equations (MTCEFE) are given by

∇a∇bΞ = −ΞLab + sgab + 1
2
Ξ3Tab, (2.11a)

∇as = −Lab∇bΞ + 1
2
Ξ2∇bΞTab, (2.11b)

∇aLbc −∇bLac = ∇eΞd
e
cab + ΞTabc, (2.11c)

∇ed
e
abc = Tbca, (2.11d)

6Ξs− 3∇cΞ∇cΞ = λ, (2.11e)

Ra
bcd = Ξdabcd + 2δ[c

aLd]b + 2L[c
agd]b. (2.11f)
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This system was first obtained and applied to study the initial value prob-

lem by Friedrich [26, 27] — see [60] for a detailed derivation. It is worth

mentioning that as this system represents the foundation of the upcom-

ing analyses in this thesis, some of their properties and consequences are

further explored in the next chapter.

Remark 5. Equations (2.11a)-(2.11d) will be regarded as a set of differ-

ential conditions for the fields Ξ, s, Lab and dabcd. Equation (2.11e) can be

shown to play the role of a constraint which only needs to be verified at

a single point — see e.g. [60], Lemma 8.1. A differential equation for the

unphysical metric gab results from taking the trace of (2.11f), where Lab

and Rab are treated as independent fields; this will be further discussed in

Chapter 3.

Remark 6. A solution to the conformal EFE with tracefree matter will

be understood to be a collection of fields (gab,Ξ, s, Lab, d
a
bcd, Tab) satisfying

equations (2.11a)-(2.11f) and the conservation law (2.7).

Remark 7. If Assumption 1 and equation (2.11a) are taken into account,

one obtains two additional identities for the rescaled Cotton tensor, namely

∇cTab
c = 0, (2.12a)

∇c
∗Tab

c = 0, (2.12b)

∇c
∗Ta

c
b = ∇c

∗T(a
c
b). (2.12c)

The relation between the conformal Einstein field equations (2.11a)-

(2.11e) and the EFE is given in the following statement — see [60], Propo-

sition 8.1, for a proof:

Proposition 1. Let (gab,Ξ, s, Lab, d
a
bcd, Tab) denote a solution to the con-

formal Einstein field equations with matter such that Ξ 6= 0 on an open set

U ⊂ M. Then the metric g̃ab = Ξ−2gab is a solution to the Einstein field

equations (1.6) with energy momentum tensor given by T̃ab = Ξ2Tab on U .

Recalling that ∇aΞ is normal to I , the next result follows immediately

from equation (2.11e):
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Corollary 1. Suppose that the Friedrich scalar is regular on I . Then I

is a null, spacelike or timelike hypersurface of M, respectively, depending

on whether λ = 0, λ > 0 or λ < 0.

2.2.2.1 An alternative equation for dabcd

For our purposes, it will be convenient to consider an alternative version of

the conformal field equation for the rescaled Weyl tensor — see [51] for the

calculation in the vacuum case. Multiplying (2.11d) by εabfg and exploiting

the identity ∗dabcd = d∗abcd results in

2∇a
∗dfgc

a = 2∇ad
∗
fgc

a = −2∗Tfgc.

From here it follows that

3∇[edab]cd + εeabf
∗Tcd

f = 0. (2.13)

Remark 8. Equation (2.13) is equivalent to (2.11d) and will be essential

in Chapter 3 where a system of wave equations for the geometric fields and

the zero-quantities associated to the equations (2.11a)-(2.11e) is obtained.

2.2.2.2 An equation for the components of the metric gab

Taking the natural trace of equation (2.11f) leads to the relation

Rab = 2Lab + 1
6
Rgab. (2.14)

Here, the Ricci tensor Rab is assumed to be expressed in terms of first

and second derivatives of the components of the metric, whilst Lab is a

field satisfying equations (2.11a)-(2.11e). This will be further discussed

in Section 3.5 where a suitable wave equation for the components of the

metric is constructed.

Remark 9. As pointed out in [30], equation (2.14) can be regarded as

an Einstein field equation for the unphysical metric gab. In this sense, the

geometric fields Ξ, s, Lab and dabcd can be regarded as unphysical matter

fields. Accordingly, in the following we refer to equation (2.14) as the

unphysical Einstein equation. This point of view should allow us to adapt
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well-tested numerical methods for the Einstein field equations in the case

of the conformal field equations.

2.3 The conformal constraint equations

In the same spirit as in Section 1.2, the MTCEFE impose a number of re-

strictions that their solutions must satisfy on 3-dimensional hypersurfaces.

In the following, let H ⊂M denote a (spacelike or timelike) hypersurface

with unit normal vector na. We define the norm of na as

ε ≡ nan
a,

so that ε takes the values 1 or -1 for timelike or spacelike hypersurfaces,

respectively. The normal vector induces a decomposition via the projector

to H:

ha
b ≡ δa

b − εnanb.

Similarly, this defines the intrinsic derivative Da on H in the following way.

Let f be a scalar function and Aa
b be a tensor field on M. Then

Daf ≡ ha
b∇bf,

DeAa
b ≡ he

fha
chd

b∇fAc
d.

Expressions involving higher order tensors follow an analogous rule. On the

other hand, the derivative in the direction of na (simply called the normal

derivative) is given by

D ≡ na∇a.

Clearly, these differential operators inherit the properties of ∇a. Moreover,

the extrinsic curvature of H is defined as the symmetric tensor

Kab ≡ ha
chb

d∇cnd.

In the following, let

Σ, s, hij, Kij, Li, Lij, dij, dijk, dijkl
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denote, respectively, the pull-backs of the following geometric objects

na∇aΞ, s, gab, Kab, ncha
dLcd, ha

chb
dLcd,

nbndhe
ahf

cdabcd, nbhe
ahf

chg
ddabcd, he

ahf
bhg

chh
ddabcd

to H. In order to take into account the contributions from the matter field,

let ρ, ji, Tij, Ji, Jij and Tijk stand, respectively, for the pull-backs of the

projections

nanbTab, nbhc
aTab, hc

ahd
bTab,

nbnchd
aTabc, nchd

ahe
bTabc, hd

ahe
bhf

cTabc.

Remark 10. The tensor hij corresponds to the 3-metric induced by gab

on H and will be either Lorentzian if H is timelike or Riemannian if H is

spacelike.

Remark 11. The fields dij and dijk encode, respectively, the electric and

magnetic parts of the rescaled Weyl tensor dabcd with respect to the normal

na. It can be verified that

dij = dji, di
i = 0, dijk = −dikj, d[ijk] = 0,

dijkl = 2ε(hi[ldk]j + hj[kdl]i).

From this point onwards, the restriction of the conformal factor Ξ to H
will be denoted by Ω. That is,

Ω ≡ Ξ|H.

Next, we define the Schouten tensor of the intrinsic 3-metric hij:

lij ≡ rij −
1

4
rhij,

where rij and r are the corresponding intrinsic Ricci tensor and scalar.

In terms of the fields defined above, a set of constraints can be obtained

from the different projections of the MTCEFE involving derivatives that
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are intrinsic to H. This results in the following:

DiDjΩ = −εΣKij − ΩLij + shij +
1

2
Ω3Tij, (2.15a)

DiΣ = Ki
kDkΩ− ΩLi +

1

2
Ω3ji, (2.15b)

Dis = −εLiΣ− LikDkΩ +
1

2
Ω2(εΣji + TijD

jΩ), (2.15c)

DiLjk −DjLik = −εΣdkij +DlΩdlkij − ε(KikLj −KjkLi) + ΩTijk, (2.15d)

DiLj −DjLi = DlΩdlij +Ki
kLjk −Kj

kLik + ΩJij, (2.15e)

Dkdkij = ε
(
Kk

idjk −Kk
jdik
)

+ Jij, (2.15f)

Didij = Kikdijk + Ji, (2.15g)

λ = 6Ωs− 3εΣ2 − 3DkΩD
kΩ. (2.15h)

This system is supplemented by two further purely geometric constraints

arising from equation (2.11f), namely the conformal Codazzi-Mainardi and

Gauss-Codazzi equations:

DjKki −DkKji = Ωdijk + hijLk − hikLj, (2.16a)

lij = −εΩdij + Lij + ε

(
K
(
Kij −

1

4
Khij

)
−KkiKj

k +
1

4
KklK

klhij

)
,(2.16b)

with K ≡ hijKij. Expressions (2.15a)-(2.15h), (2.16a) and (2.16b) are

called the tracefree conformal constraint equations. A derivation of this

system can be found in [60] along with an extensive discussion about its

properties.

2.3.1 The conformal constraints on I

Assume that the hypersurface H is a timelike conformal boundary with

Lorentzian 3-metric `ab and normal vector 6na. Hereinafter, objects and

operators crossed by a line / will represent projections obtained via `a
b

and 6na. Also, ' will denote an equality valid on the conformal boundary.

Evaluating the conformal constraints on this hypersurface (Ω = 0, ε = 1),
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we obtain the following simplified system:

6Σ 6Kij ' s`ij, (2.17a)

6Di 6Σ ' 0, (2.17b)

6Dis ' −6Li 6Σ, (2.17c)

6Di 6Ljk − 6Dj 6Lik ' −6Σ 6dkij − ( 6Kik 6Lj − 6Kjk 6Li), (2.17d)

6Di 6Lj − 6Dj 6Li ' 6Ki
k 6Ljk − 6Kj

k 6Lik, (2.17e)

6Dk 6dkij ' 6Kk
i 6djk − 6Kk

j 6dik + 6J ij, (2.17f)

6Dj 6dij ' 6Kjk 6djik + 6J i, (2.17g)

λ ' −36Σ2, (2.17h)

6Dj 6Kki − 6Dk 6Kji ' `ij 6Lk − `ik 6Lj, (2.17i)

6 lij ' 6Lij + 6K
(
6Kij −

1

4
6K`ij

)
− 6Kki 6Kj

k +
1

4
6Kkl 6Kkl`ij. (2.17j)

A procedure to solve these equations in the vacuum case has been discussed

in [29], where the solution is given in terms of a gauge quantity related to

the Friedrich scalar and the rescaled Cotton tensor associated to `ij, the

latter defined as

yijk ≡ 6Di/l jk − 6Dj/l ik.

Using this to deal with the tracefree matter case, the following result can

be stated:

Proposition 2. Let (M, g) be a 4-dimensional manifold and I ⊂ M a

timelike conformal boundary with intrinsic 3-dimensional Lorentzian met-

ric `ij and normal 6na. Consider a tracefree energy-momentum tensor Tab

with 6ji its orthogonal-normal projection with respect to 6na. Let κ(x) be a

smooth scalar gauge function defined on I . Then a solution to the tracefree
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conformal constraint equations (2.17a)-(2.17j) on I is given by the fields

6Σ '
√
|λ|
3
, (2.18a)

s ' 6Σκ, (2.18b)

6Kij ' κ`ij, (2.18c)

6Li ' −6Diκ, (2.18d)

6Lij ' /l ij −
1

2
κ2`ij, (2.18e)

6dkij ' −6Σ−1yijk, (2.18f)

along with a tracefree symmetric tensor field 6dij satisfying

6Dj 6dij ' −6Σ6ji. (2.19)

Proof. Firstly, 6Σ is given by (2.17h). As mentioned above, s is a gauge

quantity on I and expressed by equation (2.18b). Direct substitution

into constraints (2.17a), (2.17c), (2.17j) and (2.17d) readily leads to the

solutions for 6Kij, 6Li, 6Lij and 6dijk, respectively. Using these, equations

(2.17b), (2.17e) and (2.17i) are trivially satisfied. Regarding the equations

with matter terms, when the fields 6J ij and 6J i are written explicitly in

terms of the energy-momentum tensor via equation (2.8d), a straightfor-

ward calculation yields

6J ij ' 0, 6J i ' −6Σ6ji.

On the other hand, by virtue of the definition of yijk, it follows that

6Dkyijk ' 0. Using this and the expressions for 6J i and 6J ij stated above, it is

found that (2.17f) is trivially satisfied and (2.17g) corresponds to equation

(2.19).

Having obtained the solutions for the constraint equations on the con-

formal boundary, a converse-like result can be formulated with the addition

of an auxiliary assumption:

Proposition 3. Let T ⊂M be a timelike hypersurface such that conditions

(2.18a)-(2.18e) hold. If Ω = 0 on some fiduciary spacelike hypersurface C?
of T , then one has that Ω = 0 on T .
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Proof. Consider first the case when κ 6= 0 on C?. Using equations (2.18b),

(2.18c) and (2.18e), the trace of the conformal constraint (2.15a) provides

us with the following wave equation for Ω to be satisfied on T :

6Di 6DiΩ ≡ �`Ω = −Ω

(
r

4
− 3

2
κ2

)
− 1

2
Ω3ρ, (2.20)

where it has been used that for a tracefree unphysical energy-momentum

tensor Ti
i = −ερ. On the other hand, when (2.18a), (2.18c) and (2.18d)

are substituted into constraint (2.15b) we have

κ 6DiΩ = −Ω6Diκ −
1

2
Ω3ji. (2.21)

As κ 6= 0 and Ω = 0 on C?, it follows from the last equation that 6DiΩ =

0 on C?, which represents a first order initial condition for Ω. Due to

the homogeneity of (2.20) along with the uniqueness of its solutions, we

conclude that Ω = 0 on T ; that is to say, it corresponds to the conformal

boundary.

To deal with the case κ = 0 we observe that it is always possible to

carry out a rescaling Ξ 7→ Ξ′ ≡ ϑΞ of the spacetime conformal factor Ξ

with ϑ ' 1 and dϑ 6= 0, such that if s 6' 0 on I then s′ ' 0 — see

[60] Section 11.4.4, page 268. Thus, if κ 6' 0 initially, the above rescaling

and relation (2.18b) for s′ imply that κ′ ' 0. Furthermore, the rescaling

Ξ 7→ Ξ′ ≡ ϑΞ does not change the value of Ξ on T . Accordingly, one also

has that Ω = 0 on T if κ = 0.

2.4 Conformal properties of some tracefree

matter models

At the end of this chapter, three tracefree matter models are introduced

along with their relevant conformal properties. These models are the con-

formally invariant scalar field, the Maxwell field and the Yang-Mills field.

In Chapters 3 and 6 the problem of their coupling to the MTCEFE will be

further explored.
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2.4.1 The conformally invariant scalar field

The conformally invariant scalar field constitutes a first example of an

explicit tracefree matter model of interest. Let φ̃ be a scalar field on (M̃, g̃)

governed by the equation

∇̃a∇̃aφ̃− 1

6
R̃φ̃ = 0.

Defining the unphysical scalar field φ ≡ Ξ−1φ̃, it is well-known that this

equation remains invariant under a conformal transformation. This means

that φ satisfies

∇a∇aφ− 1

6
Rφ = 0. (2.22)

Furthermore, the energy-momentum tensor associated to this field takes

the form

Tab = ∇aφ∇bφ− 1
2
φ∇a∇bφ− 1

4
gab∇cφ∇cφ+ 1

2
φ2Lab. (2.23)

Remark 12. The scalar field in (2.22) is related to the standard scalar

field satisfying the wave equation through a transformation originally due

to Bekenstein [7]. Explicitly, in the absence of electromagnetic fields, they

are related as φ = ζ−1 coth ζφ̃, where Ω−1 = sinh ζφ̃. Thus, in principle, the

theory for the conformally coupled scalar field can be rephrased in terms

of its standard counterpart.

2.4.2 The Maxwell field

The next example under consideration is the electromagnetic field. In the

physical spacetime the information is encoded in the antisymmetric Fara-

day tensor F̃ab which satisfies Maxwell equations

∇̃aF̃ab = 0,

∇̃[aF̃bc] = 0.
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Defining the unphysical counterpart of the Faraday tensor as Fab ≡ F̃ab the

Maxwell equations remain invariant:

∇aFab = 0, (2.24a)

∇[cFab] = 0. (2.24b)

Alternatively, the second equation can be written in terms of the dual

Faraday tensor F ∗ab ≡ −1
2
εab

cdFcd as

∇aF ∗ab = 0. (2.25)

In addition, the corresponding energy-momentum tensor is given by

Tab = FacFb
c − 1

4
gabFcdF

cd. (2.26)

A simple calculation shows that equations (2.24a)-(2.24b) imply the con-

servation of Tab; nevertheless, as they contain more information about the

field, they will be employed instead in the following.

2.4.3 The Yang-Mills field

As a third and last example of a tracefree matter field we consider the

Yang-Mills field. This consists of a set of physical fields F̃ a
ab and gauge

potentials Ãa
a, where the indices a, b, . . . take values in the Lie algebra g

of a group G. The physical Yang-Mills equations are

∇̃aÃ
a
b − ∇̃bÃ

a
a + Ca

bcÃ
b
aÃ

c
b − F̃ a

ab = 0,

∇̃aF̃ a
ab + Ca

bcÃ
baF̃ c

ab = 0,

∇̃[aF̃
a
bc] + Ca

bcÃ
b
[aF̃

c
bc] = 0.

Here Ca
bc = Ca

[bc] denote the structure constants of the Lie algebra g which

satisfy the Jacobi identity

Ca
deC

b
ac + Ca

ecC
b
ad + Ca

cdC
b
ae = 0. (2.27)
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Under the rescalings F a
ab ≡ F̃ a

ab and Aa
a ≡ Ãa

a the unphysical Yang-Mills

equations take the form:

∇aA
a
b −∇bA

a
a + Ca

bcA
b
aA

c
b − F a

ab = 0, (2.28a)

∇aF a
ab + Ca

bcA
baF c

ab = 0, (2.28b)

∇[aF
a
bc] + Ca

bcA
b
[aF

c
bc] = 0. (2.28c)

Motivated by relation (2.25), equation (2.28c) can be written in terms of

the dual tensor F ∗aab ≡ −1
2
εab

cdFcd as

∇bF ∗aba + Ca
bcA

baF ∗cab = 0. (2.29)

Lastly, the associated energy-momentum tensor is:

Tab = δabF
a
acF

b
b
c − 1

4
δabF

a
cdF

bcdgab. (2.30)
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Chapter 3

Conformal wave equations for

the Einstein-tracefree matter

system

The material of this chapter is based on [10] and [12].

3.1 Introduction

A key step in the analysis involving a conformal formulation of the EFE

is the so-called procedure of hyperbolic reduction, in which a subset of the

field equations is cast in the form of a hyperbolic evolution system for which

known techniques of the theory of PDEs allow to establish well-posedness.

An important ingredient in the hyperbolic reduction is the choice of a gauge,

which in the case of the conformal Einstein field equations involves not only

fixing coordinates (the coordinate gauge) but also the representative of the

conformal class of the spacetime metric to be considered (the conformal

gauge). Naturally, gauge choices should bring to the fore the physical and

geometric features of the setting under consideration. In order to make

contact with the Einstein field equations, the procedure of hyperbolic re-

duction has to be supplemented by an argument concerning the propagation

of the constraints, by means of which one identifies the conditions ensuring

that a solution to the evolution system implies a solution to the full system

of conformal equations, independently of the gauge choice. The propaga-
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tion of the constraints involves the construction of a subsidiary evolution

system describing the evolution of the conformal field equations and of the

conditions representing the gauge. The construction of the subsidiary sys-

tem requires lengthy manipulations of the equations which are underpinned

by integrability conditions inherent to the field equations.

The MTCEFE constitute a simpler version of a more general confor-

mal formulation of the EFE called the extended conformal Einstein field

equations. Remarkably, until recently, there was no suitable hyperbolic re-

duction procedure available for the metric version of the conformal field

equations. In [51], Paetz has obtained a satisfactory hyperbolic procedure

for the metric vacuum conformal Einstein field equations which is based on

the construction of second order wave equations. To round up his analysis,

Paetz then proceeds to construct a system of subsidiary wave equations

for tensorial fields encoding the conformal Einstein field equations (the

so-called geometric zero-quantities) showing in this way the propagation

of the constraints. The motivation behind Paetz’s approach is that the

use of second order hyperbolic equations gives access to a different part of

the theory of PDEs which complements the results available for first order

symmetric hyperbolic systems — see e.g. [20]. Paetz’s construction of an

evolution system consisting of wave equations has been adapted to the case

of the spinorial conformal Einstein field equations in [34]. In addition to

its interest in analytic considerations, the construction of wave equations

for the metric conformal Einstein field equations is also of relevance in nu-

merical studies, as the gauge fixing procedure and the particular form of

the equations is more amenable to implementation in current mainstream

numerical codes than other conformal formulations.

The purpose of this chapter is twofold: first, it generalises Paetz’s con-

struction of a system of wave equations for the conformal Einstein field

equations to the case of tracefree matter models. As discussed in Sec-

tion 2.2.1, this case is of particular interest since the equation of conser-

vation satisfied by the energy-momentum tensor is conformally invariant.

Moreover, the associated equations of motion for the matter fields can, usu-

ally, be shown to possess good conformal properties — see [60], Chapter

9. This is achieved by means of a set of integrability conditions for the
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subsidiary fields which sheds some light on the inner structure of Paetz’s

original construction. Second, the coupling of the three tracefree matter

models introduced in Section 2.4 is analysed in detail following the same

strategy as with the geometric fields.

3.2 The evolution system for the geometric

fields

In this section we show how to construct an evolution system for the ge-

ometric fields appearing in the MTCEFE. These evolution equations take

the form of geometric wave equations — that is, their principal part in-

volves the D’Alambertian � ≡ ∇a∇a associated to the conformal metric

gab. In [51], Paetz has obtained a system of geometric wave equations for

the set of conformal fields (Ξ, s, Lab, d
a
bcd) in the vacuum case. The next

statement generalises this result to tracefree matter:

Lemma 1. The MTCEFE (2.11a)-(2.11f) imply the following system of

geometric wave equations for the conformal fields:

�Ξ = 4s− 1
6
ΞR, (3.1a)

�s = −1
6
sR + ΞLabL

ab − 1
6
∇aR∇aΞ + 1

4
Ξ5TabT

ab − Ξ3LabT
ab

+Ξ∇aΞ∇bΞTab, (3.1b)

�Lab = −2ΞdacbdL
cd + 4La

cLbc − LcdLcdgab + 1
6
∇a∇bR + 1

2
Ξ3dacbdT

cd

−Ξ∇cTa
c
b − 2T(a|c|b)∇cΞ, (3.1c)

�dabcd = −4Ξda
f
[c
edd]ebf − 2Ξda

f
b
edcdfe + 1

2
dabcdR− T[afΞ2db]fcd

−Ξ2T[c
fdd]fab − Ξ2ga[cdd]gbfT

fg + Ξ2gb[cdd]gafT
fg + 2∇[aT|cd|b]

+εabef∇f ∗Tcd
e. (3.1d)

Proof. Equation (3.1a) is a direct consequence of (2.11a). Equations (3.1b)

and (3.1c) result, respectively, from applying a covariant derivative to

(2.11b) and (2.11c), and using the second Bianchi identity. The wave equa-

tion for dabcd, on the other hand, requires to consider the alternative con-

formal field equation (2.13). Applying ∇e to the latter and using equation

(2.11d), together with the first Bianchi identity, a long but straightforward
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calculation yields the wave equation

�dabcd = −4Ξda
f
[c
edd]ebf − 2Ξda

f
b
edcdfe

1
3
dabcdR− 2dcdf [aLb]

f

− 2dabf [cLd]
f − 2ga[cdd]ebfL

fe + 2gb[cdd]faeL
ef + 2∇[aT|cd|b]

+ εabef∇f ∗Tcd
e. (3.2)

It is possible to eliminate terms containing Lab from the wave equation

(3.2) through the generalisation of an identity obtained in [51] to the case

of tracefree matter. Multiplying equation (2.13) by Ξ, using the definitions

of dabcd and ∗Tabc, equation (2.11c) and the second Bianchi identity to

simplify it, one finds that

dcd[ag∇b]Ξ + dde[aggb]c∇eΞ− dce[aggb]d∇eΞ = 0. (3.3)

Applying a further covariant derivative ∇g to the last expression and mak-

ing use of equations (2.11a), (2.11d) and (2.13) as well as the properties of

the rescaled Cotton tensor, the following identity is obtained:

2Ξdcdf [aLb]
f + 2Ξdabf [cLd]

f + 2ga[cΞdd]gbfL
fg − 2Ξgb[cdd]gafL

fg + 1
6
ΞdabcdR

−Ξ3dcdf [aTb]
f − Ξ3dabf [cTd]

f − Ξ3ga[cdd]gbfT
fg + Ξ3gb[cdd]gafT

fg = 0. (3.4)

By substituting this into expression (3.2) we readily get expression (3.1d).

Remark 13. In concrete applications it may prove useful to express the

Schouten tensor in terms of the tracefree Ricci tensor and the Ricci scalar

through the formula

Lab = Φab + 1
24
Rgab. (3.5)

As will be discussed in Section 3.5.1, the Ricci scalar R is associated to the

particular choice of conformal gauge. Thus, the decomposition (3.5) allows

us to split the field Lab into a gauge part and a part which is determined

through the field equations. Keeping the simplicity of presentation in mind,

we do not pursue this approach further as it leads to lengthier expressions.
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3.3 Zero-quantities and integrability condi-

tions

In this section we consider a convenient setting for the discussion and book-

keeping of the evolution equations implied by the conformal Einstein field

equations with matter. Our approach is based on the observation that the

MTCEFE constitute an overdetermined system of differential conditions for

the various conformal fields. Thus, the equations are related to each other

through integrability conditions, i.e. necessary conditions for the existence

of solutions to the equations.

3.3.1 Definitions and basic properties

First, we proceed to introduce the set of geometric zero-quantities (also

called subsidiary variables) associated to the MTCEFE. These fields are

defined as:

Υab ≡ ∇a∇bΞ + ΞLab + sgab − 1
2
Ξ3Tab, (3.6a)

Θa ≡ ∇as+ Lac∇cΞ− 1
2
Ξ2∇cΞTac, (3.6b)

∆abc ≡ ∇aLbc −∇bLac −∇aΞd
a
cab − ΞTabc, (3.6c)

Λabc ≡ Tbca −∇ed
e
abc, (3.6d)

Z ≡ λ− 6Ξs+ 3∇cΞ∇cΞ, (3.6e)

P c
dab ≡ Rc

dab − Ξdcdab − 2(δc[aLb]d − gd[aLb]c). (3.6f)

In terms of the above, the system (2.11a)-(2.11f) can be expressed as the

conditions

Υab = 0, Θa = 0, ∆abc = 0, Λabc = 0, Z = 0, P c
dab = 0,

from where these fields take their name.
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3.3.1.1 Properties of the zero-quantities

By definition, the zero-quantities possess the following symmetries:

Υab = Υ(ab), ∆abc = ∆[ab]c, ∆[abc] = 0, Λabc = Λa[bc], Λ[abc] = 0,

∆a
b
b = 0, Λb

ab = 0.

(3.7)

Moreover, one can check that ∆abc and Λabc satisfy the identities

∆abc = 2
3
∆abc + 1

3
∆acb − 1

3
∆bca, Λabc = 2

3
Λabc + 1

3
Λbac − 1

3
Λcab, (3.8)

which are useful for simplifying certain combinations of zero-quantities.

Regarding P a
bcd, it inherits the symmetries of the Riemann tensor; in par-

ticular, we can define its Hodge dual tensors

∗Pabcd ≡ 1
2
εab

efPefcd, P ∗abcd ≡ 1
2
εcd

efPabef , (3.9)

satisfying ∗Pabcd = P ∗abcd.

In addition, it will result useful to introduce a further auxiliary zero-

quantity associated to equation (2.13) — see Remark 8:

Λabcde ≡ 3∇[adbc]de + εabcf
∗Tde

f = 3Λd[abgc]e − 3Λe[abgc]d. (3.10)

Here the second equality has been obtained through a calculation similar to

the one yielding (2.13). From the above definition it follows that Λab
d
cd =

Λabc, as well as

Λabcde = Λ[abc]de, Λabcde = Λabc[de]. (3.11)

3.3.1.2 Some consequences of the wave equations

Key for our subsequent analysis is the observation that assuming the valid-

ity of the geometric wave equations for the conformal fields implies a further

set of relations satisfied by the zero-quantities. These are summarised in

the following lemma:

Lemma 2. Assume that the wave equations (2.14), (3.1a)-(3.1d), and As-

sumption 1 hold. Then the geometric zero-quantities satisfy the identities
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Υa
a = 0, (3.12a)

P a
bac = 0, (3.12b)

∇bΥa
b = 3Θa, (3.12c)

∇aΘ
a = ΥabLab − 1

2
Ξ2ΥabTab, (3.12d)

∇c∆a
c
b = Υcddacbd + Λabc∇cΞ− LcdPacbd, (3.12e)

∇c∆ab
c = 2ΞTc[aΥb]

c − Λcab∇cΞ, (3.12f)

∇cΛ
c
ab = d[a

cdePb]cde − 2Tc[aΥb]
c, (3.12g)

∇cΛ[ab]
c = 2d[a

cdePb]dec, (3.12h)

∇dPabc
d = −∆abc − ΞΛcab, (3.12i)

∇cΛeg
c
mn = 2∇[eΛg]mn + 2d[e

c
|m|

hPg]cnh − 2d[e
c
|n|
hPg]cmh

+2dmn
chPecgh. (3.12j)

Proof. The result follows directly from the definitions of the zero-quantities

with the aid of the wave equations for the conformal fields (2.14) and (3.1a)-

(3.1d), the second Bianchi identity and the properties of the rescaled Cotton

tensor. It is worth mentioning that (3.12j) is obtained by using (3.2) instead

of (3.1d) as it greatly simplifies the calculation.

3.3.2 Integrability conditions

The zero-quantities are not independent of each other but they are related

via a set of identities, the so-called integrability conditions. These rela-

tions are key for the computation of a suitable (subsidiary) system of wave

equations for the zero-quantities. The procedure to obtain these relations

is to compute suitable antisymmetrised covariant derivatives of the zero-

quantities which, in turn, are expressed in terms of lower order objects.

Following this general strategy we obtain the following:
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Proposition 4. The zero-quantities, (3.6a)-(3.6f), satisfy the identities

2∇[aΥc]b = 2gb[aΘc] + Ξ∆acb + Pacbd∇dΞ, (3.13a)

2∇[aΘb] = −2L[a
cΥb]c + ∆abc∇cΞ + Ξ2Tc[aΥb]

c, (3.13b)

3∇[d∆ab]c = Λabdce∇eΞ + 3Υ[a
edbd]ce + 3L[a

ePbd]ce − 3
2
Ξ2P[ab|c|

eTd]e

+2ΞΥ[a
egb|c|Td]e + ΞΥ[a

eg|c|bTd]e, (3.13c)

∇aZ = −6ΞΘa + 6Υab∇bΞ, (3.13d)

3∇[ePgh]mn = ΞΛeghnm − 3∆[eg|m|gh]n + 3∆[eg|n|gh]m. (3.13e)

Proof. Equations (3.13a)-(3.13d) follow from direct calculations employing

the definitions of the zero-quantities, the rescaled Cotton tensor and the

first Bianchi identity. Equation (3.13e), on the other hand, can be obtained

in a similar manner as (2.13): multiplying (3.12i) by εmn
cd and exploiting

the properties of its Hodge dual tensors — see expressions in (3.9) — yields

2∇∗aPmnba = 2∇aP
∗
mnab = −Ξεmnac(Λb

ac + ∆b
ac). (3.14)

By substituting back the definition of P ∗mnab, equation (3.13e) is found after

some simplifications.

Remark 14. Observe that the above relations have right-hand sides con-

sisting of lower order expressions in which one or more positive powers

of the zero-quantities appear on each term. In the remainder of the the-

sis, equations having this property will be said to be homogeneous in the

zero-quantities. This fact will be key when suitable wave equations for

these fields are derived in the next section. Equations (3.13a)-(3.13e) to-

gether with (3.12j) constitute the set of integrability conditions for the

zero-quantities associated to the MTCEFE.

3.4 The subsidiary evolution system for the

zero-quantities

An important aspect of any hyperbolic reduction procedure for a conformal

formulation of the EFE is the identification of the conditions upon which

a solution to the (reduced) evolution equations implies a solution to the
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full set of field equations — this type of analysis is generically known as

the propagation of the constraints. In practice, the propagation of the con-

straints requires the construction of a suitable system of evolution equations

for the zero-quantities associated to the field equations.

3.4.1 Construction of the subsidiary system

In this section it is shown how the set of integrability conditions provides a

systematic and direct way to obtain wave equations for the zero-quantities

— a so-called subsidiary evolution system. The propagation of the con-

straints then follows from the structural properties of the subsidiary sys-

tem as a consequence of the uniqueness of solutions to systems of wave

equations.

3.4.1.1 Equations for Υab, Θa, ∆abc, Z and Pabcd

Equation (3.13a) serves as the starting point to obtain a wave equation

for Υab. After applying ∇c and commuting derivatives, equation (3.12c)

renders it as a suitable wave equation. Remaining first order derivatives

can be rewritten and simplified via equations (3.8), (3.12i), (3.12a), (3.12d)

and (3.12e), resulting in:

�Υab =1
6
ΥabR− 2ΥcdLcdgab + 1

2
Ξ2ΥcdgabTcd + 4∇(aΥb) − 2ΞΥcdd(a|c|b)d

+ 4Υ(a
cLb)c − 2ΥcdP(a|c|b)d + 2ΞLcdP(a|c|b)d − 1

2
Ξ3P(a

c
b)
dTcd.

(3.15)

Regarding Θa, an analogous calculation using expression (3.13b) in con-

junction with the same equations as in the previous case leads directly to

a wave equation for this field. Exploiting (2.11c), (2.8d) and (3.13a) to

simplify it, one obtains

�Θc = 6LcaΘ
a − 2Υab∆cab + 2ΞLab∆cab − Ξ3∆c

abTab − 2Ξ2ΘaTca

− 2Υbddcbad∇aΞ + 3
2
ΞΥc

bTab∇aΞ + 1
2
Ξ2PcbadT

bd∇aΞ− 1
6
Υca∇aR

+ 1
2
ΞΥa

bTcb∇aΞ− 5
2
ΞΥabTab∇cΞ + 2Υab∇cLab − Ξ2Υab∇cTab.

(3.16)
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A wave equation for ∆abc can be obtained by applying∇d to the integra-

bility condition (3.13c), commuting derivatives and using (3.12e) to elimi-

nate the second order derivatives. A direct but long calculation exploiting

the same relations used in the previous two cases, along with (2.11d) and

(3.10), yields

�∆abc = 2Λcabs−Υc
dTabd − ΞΛabdceL

de + 3dabcdΘ
d + 1

3
R∆abc + Lc

d∆abd

+ 1
2
Ξ3ΛabdceT

de − ΞPabceTd
e∇dΞ + 1

6
Pabcd∇dR +∇dΞ∇eΛab

e
cd

+ 2Υde∇edabcd + Lde∇ePabcd − 1
2
Ξ2T de∇ePabcd + 2Υ[a

dTb]cd

− ΞΥ[a
d∇|c|Tb]d − 2Ξd[a

d
b]
e∆dec + 2Ξd[a

d
|c|
e∆b]de + 2d[a

d
|c|
e∇b]Υde

− 2d[a
d
|c
e∇d|Υb]e − 2L[a

d∆b]dc + 2Lde∇[aPb]dce − 2P[a
d
b]
e∆dec

+ 2P[a
d
|c|
e∆b]de − 2P[a

d
|c|
e∇b]Lde − 2P[a

d
|c
e∇d|Lb]e + Ξ2P[a

d
|c
e∇d|Tb]e

− Ξ2∆c
d
[aTb]d + ΞT[a

d∇|c|Υb]d − 2∇dΞ∇[aΛb]cd + 2ΥdeT[a|de|gb]c

ΞΥdeg[a|c∇d|Tb]e −Υ[a
dTb]d∇cΞ− 2Lde∆[a|de|gb]c + 3ΞΥdg[a|c|Tb]d

+ 2ΞP[a
d
|c|
eTb]e∇dΞ− Ξg[a|cT

de∇d|Υb]e + Υ[a
dgb]cTd

e∇eΞ

+ Υdeg[a|c|Tb]d∇eΞ. (3.17)

A wave equation for Z is readily found by simply applying ∇a to equa-

tion (3.13d):

�Z = 6ΥabΥ
ab − 12ΞΥabLab + 6Ξ3ΥabTab + 12Θa∇aΞ. (3.18)

In the case of Pabcd, application of ∇h together with equations (3.12b),

(3.12e), (3.12i), as well as the various symmetries of Λabc and P a
bcd results,

after a rather direct calculation, in:

�Pegmn = 1
3
RPegmn − 2L[m

hPn]heg + 2Λ[n|eg|∇m]Ξ + 2Ξ∇[mΛn]eg + 2∇[m∆|eg|n]

+ 2Ξ∇[eΛg]mn + 2∇[e∆|mn|g] − 2Λ[e|mn|∇g]Ξ− 2Ξd[e
h
g]
aPmnha

− 2Ξd[e
h
|m|

aPg]hna + 2Ξd[e
h
|n|
aPg]hma − 2L[e

hPg]hmn − 2P[e
h
g]
aPmnha

− 4P[e
h
|m|

aPg]hna + 2Ξg[e|m∇hΛn|g]h − 2Ξg[e|n∇hΛm|g]h

+ 2Υhad[e|hma|gg]n − 2Υhad[e|hna|gg]m + 2Λ[g|nh|ge]m + 2Λn[g|h|ge]m

+ 2Λm[e|h|gg]n + 2Λ[e|mh|gg]n − 4LhaP[e|hma|gg]n + 4LhaP[e|hna|gg]m.

(3.19)
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3.4.1.2 Equation for Λabc

Notice that the integrability condition for Λabc, equation (3.12j), contains

derivatives of the zero-quantities on both sides of the equation. This feature

seems to hinder our standard approach for the construction of a subsidiary

equation. In order to construct a suitable wave equation it will be necessary

to use the symmetries of Λabcde. Applying ∇e to the integrability condition

(3.12j) and commuting derivatives leads to

�Λgmn = Λc
mnRgc +∇g∇cΛ

c
mn − 2Pg

ceh∇hdmnce − 2dmn
ce∇hPgce

h

−∇c∇eΛgce[mn] − 2Λc
[m
eR|gc|n]e − 2d[m

ceh∇|ePgh|n]c
− 2dg

c
[m
e∇hPn]ech − 2P[m

ceh∇|edgh|n]c − 2Pg
c
[m
e∇hdn]ech.

Here, the double-derivative terms put at risk the hyperbolicity of the sys-

tem. For the second derivative of Λabc one can use (3.12g), while the one

involving Λabcde can be eliminated by recalling that this field is antisymmet-

ric under any interchange of the first three indices — see (3.11). Exploiting

this property and commuting derivatives one obtains

�Λgmn = −ΞΛc
g
edmnce + 4Λc

mnLgc + 2dmnce∆g
ce − 2Pg

ceh∇hdmnce

+ 2Υ[m
c∇|g|Tn]c − 2ΞΛc

[m
ed|g|n]ce − 4ΞΛc

[m
ed|ge|n]c − 4Λc

g[mLn]c

+ 2Λ[m
ceP|gc|n]e + 2Λc

g
eP[m|c|n]e − 2T[m

ceP|ge|n]c + 2dg
c
[m
e∆n]ec

− 2d[m
ceh∇|ePgh|n]c − 2P[m

ceh∇|edgh|n]c − 2T[m
c∇|g|Υn]c

− ΞΛcehd[m|cehgg|n] − 4Λc
[m
eL|cegg|n] − ΛcehP[m|cehgg|n]. (3.20)

Remark 15. The expressions in Lemma 2 and Proposition 4 allow us to

show, in particular, that the wave equations (3.1d) and (3.2) differ from

each other by a homogeneous combination of zero-quantities. Thus, in

arguments involving the propagation of the constraints, both forms of the

evolution equation can be used interchangeably.

The results of this section can be summarised in the following lemma:

Lemma 3. Assume that the conformal fields satisfy equations (2.14) and

(3.1a)-(3.1d). Then, the zero-quantities (3.6a)-(3.6f) satisfy the homoge-

neous system of geometric wave equations (3.15)-(3.20).
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3.4.2 Propagation of the constraints

As it will be discussed in detail in Section 3.5, the system of geometric

wave equations (3.15)-(3.20) implies, in turn, a system of proper (hyper-

bolic) wave equations for which a theory of the existence and uniqueness of

solutions is readily available — see e.g. [43]. From the latter, one directly

obtains the following result:

Proposition 5. Assume that the zero-quantities Υab, Θa, Λabc, ∆abc, Z,

P a
bcd and their first derivatives vanish on a fiduciary spacelike hypersurface

S? of an unphysical spacetime (M, g). Then, the zero-quantities vanish on

the domain of dependence D(S?) of S?.

Remark 16. Working, for example, with coordinates adapted to the hy-

persurface S?, it can be readily checked that the completely spatial parts

of the zero-quantities Υab, Θa, Λabc, ∆abc, Z and P a
bcd encode the same

information as the conformal Einstein constraint equations — see e.g. [60],

Chapter 11. Similarly, projections with a transversal (i.e. timelike) com-

ponent can be read as a first order evolution system for the geometric

conformal fields — we ignore null components as these can be obtained as

linear combinations of transversal and intrinsic components. Thus, in order

to ensure the vanishing of the zero-quantities on the initial hypersurface S?,
one needs, firstly, to produce a solution to the conformal constraint equa-

tions; this ensures the vanishing of the spatial part of the zero-quantities.

Secondly, one reads the transversal components of the zero-quantities as

definitions for the normal derivatives of the conformal fields which can be

readily computed from the solution to the conformal constraints. In this

way, the transversal components of the zero-quantities vanish a fortiori.

3.5 Gauge considerations

The MTCEFE possess both a coordinate and a conformal freedom which

can be exploited to cast the geometric wave equations (2.14) and (3.1a)-

(3.1d) as satisfactory hyperbolic evolution equations.
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3.5.1 Conformal gauge source functions

In the following, the Ricci scalar R of the metric gab will be regarded as a

conformal gauge source specifying the representative in the conformal class

[g̃] one is working with. Recall that given two conformally related metrics

gab and g′ab such that g′ab = ϑ2gab, their respective Ricci scalars are related

to each other via

Rϑ−R′ϑ3 = 6∇c∇cϑ.

If the values of R and R′ are prescribed, the above transformation law

can be recast as a wave equation for the conformal factor relating the two

metrics. Namely, one has that

�ϑ =
1

6
ϑ(R−R′ϑ2).

Given suitable initial data for this wave equation, it can always be locally

solved. Accordingly, it is always possible to find (locally) a conformal

rescaling such that the metric g′ab has a prescribed Ricci scalar R′.

Remark 17. Based on the previous discussion, in what follows the Ricci

scalar of the metric gab is regarded as a prescribed function R(x) of the

coordinates, so one writes

R = R(x).

3.5.2 Generalised harmonic coordinates and the re-

duced Ricci operator

The components of the Ricci tensor Rab can be explicitly written in terms

of the components of the metric tensor gab in general coordinates x = (xµ)

as

Rµν = −1

2
gλρ∂λ∂ρgµν + gσ(µ∇ν)Γ

σ + gλρg
στΓλσµΓρτν + 2Γσλρg

λτgσ(µΓρν)τ ,

with

Γνµλ ≡
1

2
gνρ(∂µgρλ + ∂λgµρ − ∂ρgµλ),

where we have defined the contracted Christoffel symbols as Γν ≡ gµλΓνµλ.

A direct computation then gives �xµ = −Γµ. Following the well-known
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procedure for the hyperbolic reduction of the EFE, we introduce coordi-

nate gauge source functions Fµ(x) to prescribe the value of the contracted

Christoffel symbols via the condition Γµ = Fµ(x), This means that the

coordinates x = (xµ) satisfy the generalised wave coordinate condition

�xµ = −Fµ(x); (3.21)

see e.g. [15, 56, 60].

Associated to the latter, it is convenient to define the reduced Ricci

operator Rµν [g] as

Rµν [g] ≡ Rµν − gσ(µ∇ν)Γ
σ + gσ(µ∇ν)Fσ(x). (3.22)

More explicitly, one has that

Rµν [g] = −1

2
gλρ∂λ∂ρgµν−gσ(µ∇ν)Fσ(x)+gλρg

στΓλσµΓρτν+2Γσλρg
λτgσ(µΓρν)τ .

Thus, by choosing coordinates satisfying the generalised wave coordinate

condition (3.21), the unphysical Einstein equation (2.14) takes the form

Rµν [g] = 2Lµν +
1

6
R(x)gµν . (3.23)

Assuming that the components Lµν are known, the latter is a quasilinear

wave equation for the components of the metric tensor.

3.5.2.1 The reduced wave operator

The geometric wave operator � acting on tensorial fields contains deriva-

tives of the Christoffel symbols which, in turn, contain second order deriva-

tives of the components of the metric tensor. The presence of these second

order derivative terms is problematic as the metric is an unknown in the

problem, destroying, in principle, the hyperbolicity of the evolution equa-

tions (3.1c) and (3.1d). In what follows, it will be shown how the generalised

wave coordinate condition (3.21) can be used to reduce the geometric wave

operator � to a second order hyperbolic operator.

To motivate the procedure, consider a covector ωa with components ωµ

with respect to a coordinate system x = (xµ) satisfying condition (3.21) for
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some choice of coordinate gauge source functions Fµ(x). A direct computa-

tion using the expression of the covariant derivative in terms of Christoffel

symbols yields

�ωλ ≡ gµν∇µ∇νωλ = gµν∂µ∂νωλ − gµν∂µΓσνλωσ + fλ(g, ∂g,ω, ∂ω),

where fλ(g, ∂g, ω, ∂ω) denotes an expression depending on the components

gµν , ωµ and their first order partial derivatives. Now, recall the classi-

cal expression for the components of the Riemann tensor in terms of the

Christoffel symbols and their derivatives,

Rσ
µλν = ∂λΓ

σ
νµ − ∂νΓσλµ + ΓσλτΓ

τ
νµ − ΓσντΓ

τ
λµ,

so that

Rσ
λ = gµνRσ

µλν = gµν∂λΓ
σ
νµ − gµν∂νΓσλµ + gµνΓσλτΓ

τ
νµ − gµνΓσντΓτ λµ.

Using this coordinate expression one obtains

�ωλ = gµν∂µ∂νωλ +
(
Rσ

λ − gµν∂λΓσνµ
)
ωσ + fλ(g, ∂g,ω, ∂ω)

= gµν∂µ∂νωλ +
(
Rσ

λ − ∂λΓσ
)
ωσ + fλ(g, ∂g,ω, ∂ω)

= gµν∂µ∂νωλ +
(
Rτλ − gστ∂λΓσ

)
ωτ + fλ(g, ∂g,ω, ∂ω),

and finally

�ωλ = gµν∂µ∂νωλ +
(
Rτλ − gστ∇λΓ

σ
)
ωτ + fλ(g, ∂g,ω, ∂ω). (3.24)

Making the formal replacements

Rµν 7→ 2Lµν +
1

6
R(x)gµν , Γµ 7→ Fµ(x)

in equation (3.24), one defines the reduced wave operator � acting on the

components ωµ as

�ωλ ≡ gµν∂µ∂νωλ +

(
2Lτλ +

1

6
R(x)gτλ − gστ∇λFσ(x)

)
ωτ

+ fλ(g, ∂g,ω, ∂ω),
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where fλ(g, ∂g,ω, ∂ω) denotes lower order terms whose explicit form will

not be required. In fact, from the previous discussion it follows that one

can write

�ωλ = �ωλ +

(
(2Lτλ +

1

6
R(x)gτλ −Rτλ)− gστ∇λ(Fσ(x)− Γσ)

)
ωτ .

A similar construction for covariant tensors of arbitrary rank results in the

following:

Definition 4. The reduced wave operator � acting on a covariant tensor

field Tλ···ρ is defined as

�Tλ···ρ ≡ �Tλ···ρ +

(
(2Lτλ +

1

6
R(x)gτλ −Rτλ)− gστ∇λ(Fσ(x)− Γσ)

)
T τ ···ρ + · · ·

· · ·+
(

(2Lτρ +
1

6
R(x)gτρ −Rτρ)− gστ∇ρ(Fσ(x)− Γσ)

)
Tλ···

τ ,

where � ≡ gµν∇µ∇ν. The action of � on a scalar f is simply given by

�f ≡ gµν∇µ∇νf.

Remark 18. The operator � provides a proper second order hyperbolic

operator for systems which involve the metric as an unknown, in contrast

to �. Accordingly, when working in generalised harmonic coordinates, all

the second order derivatives of the metric tensor can be removed from the

principal part of geometric wave equations. A system of evolution equations

expressed in terms of the reduced wave operator � (rather than in terms

of the geometric wave operator �) will be said to be proper.

3.5.3 Summary: gauge reduced evolution equations

The previous discussion leads us to consider the following gauge reduced

system of evolution equations for the components of the conformal fields

Ξ, s, Lab, dabcd and gab with respect to coordinates x = (xµ) satisfying the
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generalised wave coordinate condition (3.21):

�Ξ = 4s− 1

6
ΞR(x), (3.25a)

�s = −1
6
sR(x) + ΞLµνL

µν − 1
6
∇µR(x)∇µΞ + 1

4
Ξ5TµνT

µν − Ξ3LµνT
µν

+Ξ∇µΞ∇νΞTµν , (3.25b)

�Lµν = −2ΞdµρνλL
ρλ + 4Lµ

λLνλ − LλρLλρgµν + 1
6
∇µ∇νR(x)

+1
2
Ξ3dµλνρT

λρ − Ξ∇λTµ
λ
ν − 2T(µ|λ|ν)∇λΞ, (3.25c)

�dµνλρ = −4Ξdµ
τ
[λ
σdρ]σντ − 2Ξdµ

τ
ν
σdλρτσ + 1

2
dµνλρR− T[µσΞ2dν]σλρ

−Ξ2T[λ
σdρ]σµν − Ξ2gµ[λdρ]σντT

τσ + Ξ2gν[λdρ]σµτT
τσ + 2∇[µT|λρ|ν]

+εµνστ∇τ ∗Tλρ
σ, (3.25d)

Rµν [g] = 2Lµν + 1
6
R(x)gµν . (3.25e)

Remark 19. The reduced system of evolution equations (3.25a)-(3.25e) is

a system of quasilinear wave equations for the fields Ξ, s, Lµν , dµνλρ and

gµν . Schematically, one has that

gστ∂σ∂τΞ = X
(
g, ∂g,Ξ, s,R(x)

)
,

gστ∂σ∂τs = S
(
g, ∂g,Ξ, ∂Ξ, s,L,R(x), ∂R(x),T

)
,

gστ∂σ∂τLµν = Fµν
(
g, ∂g,Ξ,L,d,R(x), ∂2R(x),T , ∂T

)
,

gστ∂σ∂τdµνλρ = Dµνλρ

(
g, ∂g,Ξ,d,R(x), ∂T

)
,

gστ∂σ∂τgµν = Gµν

(
g, ∂g,L,R(x)

)
,

where X, S, Fµν , Dµνλρ and Gµν are polynomial expressions of their argu-

ments. Strictly speaking, the system is a system of wave equations only if

gµν is known to be Lorentzian. The basic existence, uniqueness and sta-

bility results of systems of the above type have been given in [43] — these

results are the second order analogues of the theory developed in [45] for

symmetric hyperbolic systems. The basic theory for initial-boundary value

problems can be found in [14, 21].

56



3.6 Propagation of the gauge

This section is devoted to studying the consistency of the conformal and

coordinate gauge introduced in Section 3.5 by constructing a system of

homogeneous wave equations for the corresponding subsidiary fields.

3.6.1 Basic relations

Consider a set of coordinates x = (xµ). Let gµν denote the components

of a metric gab in these coordinates. Similarly, Rµν denotes the compo-

nents of the associated Ricci tensor Rab, while R is the corresponding Ricci

scalar. We now investigate the requirements for Rµν and R to coincide, re-

spectively, with Rµν and R(x). In addition, we also need to investigate the

conditions under which Lµν corresponds to the components of the Schouten

tensor. This can be expressed as the vanishing of the following fields:

Q ≡ R−R(x), (3.26a)

Qµ ≡ Γµ −Fµ(x), (3.26b)

Qµν ≡ Rµν −Rµν . (3.26c)

Below we make the following assumption:

Assumption 2. Let Tµν and Tµνλ be, respectively, the components of a

tracefree energy momentum tensor with vanishing divergence and its asso-

ciated rescaled Cotton tensor. Let gµν and Lµν be solutions to the equations:

Rµν = 2Lµν + 1
6
R(x)gµν , (3.27a)

�Lµν = −2ΞdµρνλL
ρλ + 4Lµ

λLνλ − LλρLλρgµν + 1
6
∇µ∇νR(x)

+1
2
Ξ3dµλνρT

λρ − Ξ∇λTµ
λ
ν − 2T(µ|λ|ν)∇λΞ. (3.27b)

As a direct consequence of equation (3.27a), one can find that the gauge

zero-quantities (3.26a)-(3.26c) are not independent of each other. Simple
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calculations yield

Qµν = ∇(µQν), (3.28a)

Q = Qµ
µ = ∇µQ

µ. (3.28b)

Furthermore, equation (3.22) and Definition 4 lead to

Rµν [g] = Rµν −∇(µQν), (3.29a)

�Lµν = �Lµν − (Qµσ −∇µQσ)Lσν − (Qνσ −∇νQσ)Lσµ. (3.29b)

Remark 20. Equations (3.28a)-(3.28b) show that if Qµ = 0 then Q and

Qµν automatically vanish. In this sense, we will consider Qµ as the basic

gauge zero-quantity of the system.

3.6.2 The gauge subsidiary evolution system

In this subsection we obtain a system of homogeneous wave equations for

the gauge subsidiary variables. This will be achieved via exploiting the

properties of the so-called Bach tensor which will play the role of an inte-

grability condition for the system.

3.6.2.1 The Bach tensor

Let gab be a 4-dimensional metric. The Bach tensor is defined as:

Bab ≡ ∇c∇aLbc −∇c∇cLab − CacdbLcd. (3.30)

From this definition it is easy to verify that Bab is symmetric and tracefree.

Additionally, it satisfies the following identity, independently of the validity

of the Einstein field equations:

∇aBab = 0. (3.31)

Remark 21. A straightforward calculation shows that the Bach tensor

can be expressed in terms of the geometric zero-quantities as

Bab = −LcdPacbd − 1
2
Ξ3dacbdT

cd + Ξ∇cTa
c
b + 2T(a|c|b)∇cΞ.
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Consequently, if gab is a solution to the MTCEFE then the Bach tensor

vanishes if Tab = 0.

Remark 22. In view of the fact that trivial initial conditions for the zero-

quantities imply the vanishing of P a
bcd — see Proposition 5 — throughout

the remainder of this chapter, and for the sake of simplicity, our calculations

will assume that P a
bcd = 0.

3.6.2.2 Wave equations for the gauge subsidiary variables

The Bach tensor can be conveniently expressed in terms of the gauge sub-

sidiary quantities. Terms containing Rµν and R can be rewritten according

to definitions (3.26a) and (3.26c) along with (3.28a) and (3.29a). This

results in:

Bµν =− ΞdµλνρL
λρ − 1

12
∇µ∇νQ+∇λ∇µLν

λ + 1
2
∇λ∇µ∇(νQλ) −�Lµν

− 1
2
∇λ∇λ∇(µQν) + 1

12
gµν∇λ∇λQ− 1

4
Ξdµλνρ∇ρQλ − 1

4
Ξdµρνλ∇λQρ.

An expression for �Lµν can be obtained combining (3.27b) and (3.29b).

Notice also that this term is the only one containing contributions from the

matter field. Direct substitution yields

Bµν =LλρL
λρgµν − 4Lµ

νLνλ + 1
12
gµν∇λ∇λQ− 1

12
∇µ∇νQ− 1

6
∇µ∇νR

+∇λ∇µLν
λ + 1

2
∇λ∇µ∇(νQλ) − 1

2
∇λ∇λ∇(µQν) − 2Lλ(µQν)

λ

+ 2Lλ(µ∇ν)Q
λ + ΞdµλνρL

λρ − 1
4
Ξdµλνρ∇ρQλ − 1

4
dµρνλ∇ρQλ +Nµν ,

where

Nµν ≡ −1
2
Ξ3dµλνρT

λρ + 2T(µ|λ|ν)∇λΞ + Ξ∇λTµ
λ
ν
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encodes the matter contributions. Commuting covariant derivatives and

making further suitable substitutions, a lengthy calculation gives

Bµν =− 5

12
QLµν − 1

288
QR(x)gµν −−2L(µ

λQν)λ +
1

24
Q2gµν −

5

48
Q∇µQν

+
1

48
R(x)∇µQν + 2Φνλ∇µQ

λ − 1

4
∇µ∇λ∇λQν −

1

16
Q∇νQµ

+
1

16
R(x)∇νQµ +

3

16
∇µQ

λ∇νQλ +
7

4
Φµλ∇νQ

λ +
1

6
∇ν∇µQ

+
1

4
∇λ∇µ∇λQν +

1

12
gµν∇λ∇λQ− 1

2
∇λ∇λ∇(µQν) +

3

4
Φνλ∇λQµ

+
1

4
∇(µQ|λ|∇λQν) +

1

16
∇λQν∇λQµ +

1

2
Φµλ∇λQν −

1

2
Ξdµλνρ∇ρQλ

− 1

4
Ξdµρνλ∇ρQλ − 3

4
Φλρgµν∇ρQλ − 1

16
gµν∇λQρ∇ρQλ

− 1

16
gµν∇ρQλ∇ρQλ +Nµν . (3.32)

Next, we introduce the auxiliary field

Mµ ≡ �Qµ. (3.33)

Taking the divergence of equation (3.32), and after some direct manipula-

tions, equations (3.28a)-(3.28b) and (3.31) imply that

�Mν = Hν(∇M ,∇Q,∇Q,Q, Q) + 4∇µNµν ,

where Q stands for Qµ and, for simplicity, Hν represents a homogeneous

function of its arguments. On the other hand, we can rewrite the term

∇µNµν in a suitable way by using the symmetries of Tabc along with the

help of equations (3.26c), (3.29a) and the geometric zero-quantities. A

direct calculation shows that

∇νNνµ = −TµνλΥνλ − 1
2
Ξ3TνλΛ

ν
µ
λ,

so the wave equation for Mµ takes the schematic form

�Mν = Hν(∇M ,∇Q,∇Q,Q, Q,Υ,Λ). (3.34)

Lastly, a wave equation for Q is required to close the system. This can
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be obtained by direct application of the � operator on the definition of Q

along with the aid of equations (3.26a), (3.28b) and (3.29a), resulting in

�Q = −2Lµν∇µQν −∇µQν∇(µQν) − 1
2
Qµ∇µQ− 1

2
Qµ∇µR(x)

− 1
6
R(x)Q+∇µMµ. (3.35)

Remark 23. The gauge subsidiary evolution system, equations (3.33)-

(3.35), is homogeneous in Mµ, Qµ, Q, Υµν , Λµνλ and their first derivatives.

The previous discussion leads to the following result:

Lemma 4. Assume that the hypotheses of Lemma 3 hold. Moreover, let

the quantities Mµ, Qµ, Q, Υµν and Λµνλ along with their first covariant

derivatives vanish on a fiduciary hypersurface S?. Then the unique solution

to the system (3.33)-(3.35) on a small enough slab of S? corresponds to

Q = 0, Qµ = 0 and Mµ = 0, which in turn implies that Qµν = 0.

Remark 24. It must be pointed out that these initial gauge conditions are

not equivalent, in the vacuum case, to those considered in [51] which only

require the vanishing of the gauge zero-quantities and their first derivatives

on the initial hypersurface. In the present case, the conditions require the

vanishing of third order derivatives via the definition of Mµ.

3.7 Evolution equations for the matter fields

Having settled the analysis of the geometric part of the MTCEFE, we now

proceed to investigate the evolution of the subsidiary equations associated

to the matter models introduced in Section 2.4, namely the conformally

coupled scalar field, the Maxwell field and the Yang-Mills field.

3.7.1 The conformally coupled scalar field

First, we consider the conformally invariant scalar field defined in Sec-

tion 2.4.1. Notice that the second derivatives of φ in equation (2.23) will

lead to the appearance of second and third order derivatives of the matter

field in the expression of the rescaled Cotton tensor — see equation (2.8d)
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— which may affect the hyperbolicity of the system (3.25a)-(3.25e). More-

over, Tab is also coupled to the geometric sector via the Schouten tensor.

These difficulties will be addressed in the sequel.

3.7.1.1 Auxiliary fields and the evolution equations

We start the analysis by observing that the third order derivative terms in

the expression of the rescaled Cotton tensor for the conformally invariant

scalar field are of the form ∇[a∇b]∇cφ. Using the commutator of covariant

derivatives, these terms can be transformed into first order derivative terms

according to the formula

∇[a∇b]∇cφ = −1
2
Rabc

d∇dφ.

Thus, one is left with an expression for the Cotton tensor containing, at

most, second order derivatives. In order to eliminate second order deriva-

tive terms in the rescaled Cotton tensor which, potentially, could destroy

the hyperbolic nature of the wave equations, one needs to promote the first

and second derivatives of φ as further (independent) unknowns. Accord-

ingly, we define

φa ≡ ∇aφ, φab ≡ ∇a∇bφ. (3.36)

Following the previous discussion, and exploiting equation (2.11c), one can

write the rescaled Cotton tensor for the conformally coupled scalar field as

Tabc =

(
1− 1

4
Ξ2φ2

)−1(
3
2
ΞφLc[bφa] + 3

2
Ξφ[bφa]c − 1

4
Ξφ2dabcd∇dΞ− 1

4
Ξ2φdabcdφ

d

+ 1
2
Ξφgc[bLa]d + 1

2
Ξgc[aφb]dφ

d + gc[bTa]d∇dΞ + 3Tc[b∇a]Ξ

)
. (3.37)

We now proceed to construct suitable evolution equations for φa and

φab by means of a set of integrability conditions for these fields. Firstly, the

identity ∇aφb = ∇bφa represents an integrability condition for φa. A wave

equation then readily follows after applying ∇b and using equation (2.22):

�φa = 2φbLab +
1

3
Rφa +

1

6
φ∇aR. (3.38)
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On the other hand, an integrability condition for φab can be obtained di-

rectly from its definition:

2∇[cφa]b = φdRcab
d = −Ξφddacbd − 2φ[cLa]b + 2φdgb[cLa]d.

Applying ∇c to this expression and using equations (2.11c), (2.11d), (2.22)

and (3.38), a straightforward calculation leads to:

�φab =1
2
φabR− 1

3
RφLab − 2φcdLcdgab − 1

6
φcgab∇cR + 1

6
φ∇(a∇b)R

− 2Ξφcdd(a|c|b)d + 8φ(a
cLb)c + 2ΞφcT(a|c|b) + 2

3
φ(a∇b)R + 2φc∇(aLb)c

− 2φcdacb
d∇dΞ. (3.39)

Remark 25. In equation (3.39) it is understood that the rescaled Cotton

tensor Tabc is expressed in terms of the auxiliary fields φa and φab according

to (3.37), so does not contain second or higher derivatives of the fields.

Remark 26. When coupling the wave equations (2.22), (3.38) and (3.39)

to the system (3.25a)-(3.25e) satisfied by the geometric conformal fields, it

is understood that the geometric wave operator � is replaced by its reduced

counterpart � as discussed in Section 3.5.2.1.

3.7.1.2 Subsidiary equations

To verify the consistency of our approach in dealing with the higher order

derivative terms in the rescaled Cotton tensor for the conformally invariant

scalar field we introduce the following subsidiary fields:

Qa ≡ φa −∇aφ, (3.40a)

Qab ≡ φab −∇a∇bφ. (3.40b)

A wave equation for Qa can be obtained in a straightforward way: ap-

plying � to definition (3.40a) and with the help of relations (2.22) and

(3.38), a short calculation yields

�Qa = �φa −∇a�φ−Rab∇bφ = 1
3
RQa + 2La

bQb. (3.41)

Similarly, by applying � to equation (3.40b), commuting covariant deriva-
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tives and using the definitions of the geometric zero-quantities, one obtains

�Qab =1
2
QabR− 2QcdLcdgab − 1

6
Qcgab∇cR + 2Qc∇cLab − 2ΞQcddacbd

+ 8Q(a
cLb)c − 2φc∆(a|c|b) + 4ΞQcT(a|c|b) + 4Qc∆(a|c|b) + 2

3
Q(a∇b)R

− 4Qcd(a|c|b)
d∇dΞ. (3.42)

Remark 27. The system of wave equations (3.41) and (3.42) is homoge-

neous in Qa, Qab and ∆abc. Thus, it follows from general uniqueness results

for solutions to wave equations that if these quantities and their derivatives

vanish on an initial hypersurface S?, then necessarily Qa = 0 and Qab = 0

at least on a small enough slab around S?.

3.7.1.3 Summary

The analysis of the conformally coupled scalar field can be summarised in

the following manner:

Proposition 6. The system of equations (3.25a)-(3.25e) with rescaled Cot-

ton tensor given by (3.37), together with the conformally coupled wave equa-

tion (2.22) and the auxiliary system (3.38)-(3.39) written in terms of the

reduced wave operator �, constitute a proper system of quasilinear wave

equations — see Remark 18.

3.7.2 The Maxwell field

Continuing with the study of tracefree matter models, consider the Maxwell

field governed by equations (2.24a)-(2.24b). The strategy is similar to the

one in the previous section: first, a set of suitable wave equations for the

matter field will be constructed and then the propagation of the corre-

sponding subsidiary variables needs to be proved.

3.7.2.1 Auxiliary field and the evolution equations

Equation (2.24b) represents a direct integrability condition for Fab. Ap-

plying ∇c, commuting covariant derivatives and using equation (2.24a), a

calculation yields

�Fab = 1
3
FabR− 2ΞF cddacbd. (3.43)
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From equation (2.8d) it follows that the rescaled Cotton tensor con-

tains first derivatives of Fab, which puts at risk the hyperbolicity of the

system (3.25a)-(3.25d). In order to deal with this problem we introduce

the auxiliary variable

Fabc ≡ ∇aFbc, (3.44)

satisfying Fabc = Fa[bc]. By virtue of equation (2.24b) it also follows that

F[abc] = 0. In terms of this quantity, it can be readily checked that the

rescaled Cotton tensor for the Maxwell field takes the form

Tabc = ΞF[b
dFa]cd − 1

2
ΞFc

dFdab + 1
2
Ξgc[aF

deFb]de − 3FcdF[a
d∇b]Ξ

+FdeF
degc[a∇b]Ξ− gc[aFb]eFde∇dΞ. (3.45)

From definition (3.44) it follows that Fabc possesses two independent diver-

gences: ∇aFabc is simply the right-hand side of wave equation (3.43) whilst

the other is given by

∇cFab
c = ΞF cddacbd −

1

6
RFab + 2F[a

cLb]c, (3.46)

as a direct calculation confirms. In order to obtain an integrability con-

dition for Fabc, consider the expression 3∇[dF|a|bc]. Commuting covari-

ant derivatives and using the first Bianchi identity for the Weyl tensor,

a straightforward calculation results in:

3∇[dF|a|bc] = −3ΞF[d
ed|ae|bc] + 6F[dbLc]a + 6ga[dFb

eLc]e. (3.47)

A geometric wave equation can be obtained by applying ∇d to the last

expression and commuting derivatives. Using equations (2.11c), (2.11d),

(2.10), (2.13), (3.46) as well as the symmetries of dabcd and Tabc to simplify

it, a long but direct calculation yields

�Fabc = −2ΞFa
dTbcd + 4ΞF[b

dT|ad|c] − 2ΞFa
dedbdce − 4ΞF d

[b
edc]ead + 1

2
FabcR

+ 4F d
bcLad − 4F d

a[bLc]d − 4F d
[b
egc]aLde + 1

3
Fbc∇aR− 2F dedade[b∇c]Ξ

− 4ΞF de∇[bdc]ead − 1
3
Fa[b∇c]R− 2F[b

edc]ead∇dΞ− Fdedaebc∇dΞ

− 4F[b
edc]dae∇dΞ− Faedbcde∇dΞ + 2F efga[bdc]edf∇dΞ + 1

3
ga[bFc]d∇dR.

(3.48)
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This equation can be further simplified via a pair of observations. First, by

multiplying equation (3.3) by F dg the following auxiliary identity is found:

2F[a
edb]ecd∇dΞ− 2F[c

edd]eab∇dΞ + 2F dedced[a∇b]Ξ− 2F eggc[adb]edg∇dΞ = 0.

(3.49)

Secondly, from equation (2.13) we have the following relations:

4ΞF de∇[bdc]ead = −2ΞεbcefF
de ∗Tad

f + 2ΞF de∇edadbc,

ΞF de∇edadbc = −1
2
ΞεadefF

de ∗Tbc
f − 1

2
ΞF de∇adbcde.

Combining them we readily obtain the identity

4ΞF de∇[bdc]ead = 4ΞF[b
dT|a|c]d − 2ΞFa

dTbcd + ΞF de∇adbcde. (3.50)

Making use of (3.49) and (3.50), the wave equation for Fabc takes a simpler

form:

�Fabc = 4ΞF[b
dTc]da − 2ΞFa

dedbdce − 4F d
[b
edc]ead + 1

2
FabcR + 4F d

bcLad

− 4F d
a[bLc]d − 4F d

[b
egc]aLde + 1

3
Fbc∇aR− 1

3
Fa[b∇c]R + 1

3
ga[bFc]d∇dR

− 4F dedade[b∇c]Ξ− 4F[b
edc]dae∇dΞ− 2Fa

edbcde∇dΞ− ΞF de∇adbcde.

(3.51)

As remarked in the case of the conformally invariant scalar field, the geo-

metric operator � is to be replaced by � when equations (3.43) and (3.51)

are coupled to the system (3.25a)-(3.25e).

3.7.2.2 Subsidiary equations

In order to complete the discussion of the Maxwell field it is necessary to

construct suitable evolution equations for the zero-quantities

Mb ≡ ∇aFab, (3.52a)

Mabc ≡ ∇[aFbc], (3.52b)

Qabc ≡ Fabc −∇aFbc. (3.52c)
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Here, Mabc possesses the symmetries

Mabc = Ma[bc] = M[ab]c = M[abc]. (3.53a)

Also, one can verify the following identities:

∇aMa = 0, (3.54a)

∇cMabc = −2
3
∇[aMb]. (3.54b)

Remark 28. Following the spirit in the discussion of the previous section,

the zero-quantities Ma and Mabc encode Maxwell equations (2.24a) and

(2.24b), respectively, while Qabc does so for the auxiliary field Fabc.

Equation for Ma. Observe that equation (3.54b) works as an integrability

condition for Ma. Applying ∇b, using (3.54a) and exploiting the various

symmetries of Mabc, one obtains

�Ma = 1
6
MaR + 2M bLab. (3.55)

Equation for Mabc. In order to avoid lengthy expressions it is simpler to

consider the Hodge dual of Mabc defined as

M∗
a ≡ ∇bF ∗ba =

1

2
εa
bcdMbcd. (3.56)

Here, the second equality is a consequence of equations (3.44) and (3.52b).

From this definition it can be easily checked that M∗
a is divergencefree

which, in turn, implies an integrability condition. More explicitly:

∇aM∗
a = 0 ⇐⇒ ∇[dMabc] = 0. (3.57)

Applying ∇d to (3.57) and commuting derivatives, a straightforward cal-

culation leads to

�Mabc = 1
2
RMabc − 6Ξd[a

d
b
eMc]de − 6L[a

dMbc]d, (3.58)

where it has been used that ∇[a∇|d|Mbc]
d vanishes by virtue of equation

(3.54b).
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Equation for Qabc. A wave equation for the field Qabc can be obtained

by direct application of the � operator. Employing definitions (3.52a),

(3.52c), along with equations (3.6c), (3.6d), (3.43) and (3.51), one obtains

the expression

�Qabc = 4ΞF[b
dΛ|a|c]d − 2ΞQa

dedbdce − 2ΞQd
[b
edc]ead + 1

2
QabcR− 4M[bLc]a

+ 4Qd
bcLad − 4Qd

a[bLc]d + 6La
dMbcd − 4Qd

[b
egc]aLde + 2F dedbdce∇aΞ

− 4F dedade[b∇c]Ξ− 6F[a
edbc]de∇dΞ. (3.59)

In order to show that the terms not containing zero-quantities vanish, ob-

serve that the first Bianchi identity implies that

2F dedbdce∇aΞ− 4F dedade[b∇c]Ξ = 3F dedde[ab∇c]Ξ.

On the other hand, multiplying definition (3.10) by F de, a short calculation

yields the auxiliary identity

3F dedde[ab∇c]Ξ− 6F[a
edbc]de∇dΞ = 0.

From the last two expressions it follows then that

�Qabc = 4ΞF[b
dΛ|a|c]d − 2ΞQa

dedbdce − 2ΞQd
[b
edc]ead + 1

2
QabcR− 4M[bLc]a

+ 4Qd
bcLad − 4Qd

a[bLc]d + 6La
dMbcd − 4Qd

[b
egc]aLde. (3.60)

Remark 29. Geometric wave equations (3.55), (3.58) and (3.60) are cru-

cially homogeneous in Ma, Mabc, Qabc and Λabc. Thus, if these quantities

and their first covariant derivatives vanish on an initial hypersurface S?, it

can be guaranteed that there exists a unique solution on a small enough

slab of S?, and it corresponds to Ma = 0, Mabc = 0 and Qabc = 0.

3.7.2.3 Summary

The previous discussion about the coupling of the Maxwell field to the

MTCEFE can be summarised as follows:

Proposition 7. The system of wave equations (3.25a)-(3.25e) with rescaled

Cotton tensor given by (3.45), together with the wave equations (3.43) and
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(3.51) written in terms of the wave operator �, is a proper quasilinear

system of wave equations for the Einstein-Maxwell system.

3.7.3 The Yang-Mills field

The Yang-Mills field is the last example of an explicit tracefree matter

model we consider. Due to its similarities with the Faraday field, some of

the calculations will result analogous to the ones performed in the previous

subsection. However, one of the distinctive features of the Yang-Mills field

is the fact that, in order to obtain a hyperbolic reduction of the equations,

one needs to introduce a set of gauge source functions fixing the divergence

of the gauge potential. The consistency of this gauge choice will be analysed

towards the end of the section.

Remark 30. Due to the form of the energy-momentum tensor given in

(2.30), first derivatives of F a
ab will appear in the rescaled Cotton tensor,

putting at risk the hyperbolicity of the system (3.25a)-(3.25e). As in the

case of the Maxwell field, this will make necessary the introduction of an

auxiliary quantity.

3.7.3.1 Evolution equations for the Yang-Mills fields

Suitable wave equations for the Yang-Mills fields can be obtained by a

procedure analogous to the one used for the Maxwell field. Accordingly,

we introduce the auxiliary field

F a
abc ≡ ∇aF

a
bc + Ca

bcA
b
aF

c
bc. (3.61)

Moreover, the construction of a geometric wave equation for the Yang-Mills

gauge potentials requires the introduction of gauge source functions f a(x)

depending in a smooth way on the coordinates and fixing the value of the

divergence of the potential. More precisely, in the following we set

∇aAa
a ≡ f a(x). (3.62)

Equation for the field strength. The Yang-Mills Bianchi identity, equa-

tion (2.28c), represents an integrability condition for the field strength F a
ab.
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Differentiating it and making use of equations (2.27) and (2.28a)-(2.28c),

a straightforward calculation results in

�F a
ab = − 2ΞF acddacbd + 1

3
F a

abR + 2Ca
bcF

b
a
cF c

bc − 2Ca
bcF

c
cabA

bc

− Ca
beC

e
cdF

d
abA

bcAc
c + Ca

bcf
b(x)F c

ab. (3.63)

Equation for the gauge potential. Equation (2.28a) provides a natural

integrability condition for the gauge potential field. After applying ∇b,

commuting derivatives and using equation (2.28b), one arrives to:

�Aa
a = 1

6
Aa

aR + 2AabLab + Ca
bcF

c
abA

bb + Ca
bcf

c(x)Ab
a − Ca

bcA
bb∇bA

c
a

+∇af
a(x). (3.64)

Equation for the auxiliary field. A suitable integrability condition for

the field F a
abc can be obtained from its definition. Using this and equation

(2.28c), some manipulations yield

3∇[dF
a
|a|bc] = − 3ΞF a

[b
ed|ae|cd] + 6F a

[bcL|a|d] + 3F b
a[bcA

c
d]C

a
bc

− 3F b
a[bF

c
cd]C

a
bc + 6F a

[b
eLc|ega|d].

Proceeding as in the case of the wave equation for F a
abc, as well as using the

Jacobi identity and definitions (3.61)-(3.62), a lengthy calculation results

in

�F a
abc = 1

2
F a

abcR + 4F ad
bcLad + 2F bd

bcF
c
adC

a
bc − F c

abcf
b(x)Ca

bc

− F d
abcA

bdAc
dC

a
beC

e
cd + 1

3
F a

bc∇aR− 2AbdCa
bc∇dF

c
abc

− F a
d
edaebc∇dΞ− F a

a
edbcde∇dΞ + 2ΞF ade∇edadbc

− 4ΞF ad
[b
ed|ad|c]e − 2ΞF a

a
ded[b|d|c]e − 4F ad

a[bLc]d + 4ΞF a
[b
dTc]da

+ 4ΞF a
[b
dT|ad|c] − 1

3
F a

a[b∇c]R + 4F b
a[b
dF c

c]dC
a
bc − 4F ad

[b
eL|dega|c]

− 2ΞF adeT[b|dega|c] − 4F a
[b
dd|ad|c]

e∇eΞ− 2F a
[b
dd|a|

e
c]d∇eΞ

+ 2F adedad[b|e|∇c]Ξ− 1
3
F a

[b
dg|a|c]∇dR− 2F adega[b∇|d|Lc]e.

(3.65)

In a similar manner to the two previous matter models, when equations
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(3.63), (3.64) and (3.65) are coupled to the system of wave equations for

the geometric conformal fields, the � operator is to be replaced by its

counterpart �.

3.7.3.2 Subsidiary equations

The next step in the analysis of the Yang-Mills field is the introduction of

the corresponding subsidiary quantities and the consequent construction of

suitable geometric wave equations for them. For this purpose define the

following set of zero-quantities:

M a
a ≡ ∇bF a

ba + Ca
bcA

bbF c
ba, (3.66a)

M a
ab ≡ ∇aA

a
b −∇bA

a
a + Ca

bcA
b
aA

c
b − F a

ab, (3.66b)

M a
abc ≡ ∇[aF

a
bc] + Ca

bcA
b
[aF

c
bc], (3.66c)

Qa
abc ≡ F a

abc −∇aF
a
bc − Ca

bcA
b
aF

c
bc. (3.66d)

Notice that, unlike the analysis for the Maxwell field, an additional field

M a
ab must be considered due to the introduction of the gauge potentials.

From the above definitions, it follows that M a
abc and M a

ab possess the

symmetries

M a
abc = M a

a[bc] = M a
[ab]c = M a

[abc], M a
ab = −M a

ba. (3.67)

Also, by combining (3.66c) and (3.66d), an auxiliary relation is directly

obtained, namely

3M a
abc + 3Qa

[abc] − 3F a
[abc] = 0. (3.68)

Furthermore, direct calculations show that the Yang-Mills zero-quantities

satisfy the relations

∇aM
aa = −Ca

bcA
baM c

a + 1
2
Ca

bcF
babM c

ab, (3.69a)

∇bM a
ab = M a

a, (3.69b)

∇aM
a
bc
a = −2

3
∇[bM

a
c] − 2

3
Ca

bcA
b
[bM

c
c] − Ca

bcA
baM c

abc − 2
3
Ca

bcA
baQc

abc

−2
3
Ca

bcF
b
[b
aM c

c]a. (3.69c)

71



Equation for M a
ab. Consider the expression 3∇[cM

a
ab]. Commuting co-

variant derivatives, substituting expressions (3.66c), (3.66d) and exploiting

the Jacobi identity for the structure constants, the following integrability

condition is obtained:

3∇[cM
a
ab] = −M a

abc − 3Ca
bcA

b
[aM

c
bc]. (3.70)

Applying ∇c to the last equation, a short calculation using equations

(3.69a) and (3.69c) yields

�M a
ab = 3AbcCa

bcM
c
abc + 2AbcCa

bcQ
c
cab + 1

3
RM a

ab − f b(x)Ca
bcM

c
ab

− AbcCa
bc∇cM

c
ab − 2Ξd[a

c
b]
dM a

cd + 2F b
[a
cCa

|bc|M
c
b]c

− 2Ca
bcM

b
[a
c∇|c|Ac

b]. (3.71)

Equation for M a
a. Equation (3.69c) constitutes an integrability con-

dition for the field M a
a. A suitable wave equation can be obtained by

first applying ∇c, commuting derivatives and observing that ∇c∇aM
a
b
ac =

∇[c∇a]M
a
b
ac. Then, using definitions (3.66a)-(3.66d) along with (3.69a),

(3.69b), (3.70), the Jacobi identity, and an appropriate substitution of

(3.68), a long but straightforward computation results in

�M a
b = 2LbaM

aa + 1
6
RM a

b + 2F c
baC

a
bcM

ba − f b(x)Ca
bcM

c
b

− AbaAc
aC

a
beC

e
cdM

d
b − 3

2
F bacCa

bcM
c
bac + 3AbaAccCa

bdC
d
ceM

e
bac

+ 2AbaAccCa
bdC

d
ceQ

e
cba − 3

2
Ca

bcM
c
bacM

bac + 2F ba
b
cCa

bcM
c
ac

− 2Ca
bcQ

ba
b
cM c

ac + F c
b
cAbaCa

cdC
d
beM

e
ac − 2AbaCa

bc∇aM
c
b

+ 2AbaCa
bc∇cQ

c
ab
c − 3Ca

bcM
c
bac∇cAba + 2Ca

bcQ
c
abc∇cAba.

(3.72)

Equation for M a
abc. In a similar fashion to the approach adopted for the

electromagnetic zero-quantity Mabc, and in order to simplify the calcula-

tions, we introduce the Hodge dual of M a
abc:

M∗a
a ≡ Ca

bcF
∗c
baA

bb +∇bF ∗aba = 1
2
εa
bcdM a

bcd. (3.73)

Here, the second equality has been obtained with help of the definition of
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F ∗aab and equation (3.66c). With this expression we compute the diver-

gence of M∗a
a. Making use of (3.66b) and the Jacobi identity, a calculation

yields

∇aM
∗aa = −Ca

beC
e
cdF
∗d
abA

baAcb − Ca
beA

baM∗c
a + Ca

beF
∗c
ab∇bAba

= −Ca
beA

baM∗c
a − 1

4
Ca

beεab
cdF ∗babM c

cd.

In terms of non-dual objects this takes the form of an integrability condi-

tion:

εabcd∇dM
a
abc = Ca

bcε
abcdAb

aM
c
bcd + 1

2
Ca

bcε
abcdF b

abM
c
cd

⇐⇒ 4∇[aM
a
bcd] = 4Ca

bcA[aM
a
bcd] + 2Ca

bcF
b
[abM

c
cd]. (3.74)

From here, a suitable wave equation can be obtained by applying ∇d

and commuting derivatives. After a long calculation in which definitions

(3.66a)-(3.66d), equations (3.68)-(3.70) and the Jacobi identity are em-

ployed, one finds that

�M a
abc = 1

2
RM a

abc − AbdAc
dC

a
bdC

d
ceM

e
abc − Ca

bcf
b(x)M c

abc

− 2AbdCa
bc∇dM

c
abc − 6Ξd[a

d
b
eM a

c]de − 6L[a
dM a

bc]d

+ 2F bd
[abC

a
|bc|M

c
c]d − 6F b

[a
dCa

|bc|M
c
bc]d − 2AbdCa

bc∇[aQ
c
|d|bc]

+ 2Ca
bcQ

bd
[ab∇c]A

c
d − 2Ca

bcQ
bd

[abM
c
c]d + F b

[abA
cdCa

|bdC
d
ce|M

e
c]d

− 2Ab
[aA

cdCa
|bdC

d
ceQ

e
d|bc]. (3.75)

Equation for Qa
abc. Similar to the case for the Maxwell field, a wave

equation for Qa
abc can be obtained by directly applying the � operator to

its definition. Since the identity used in the deduction of equation (3.60)

has the same form for the Yang-Mills strength field, an analogous procedure
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can be followed. A long computation gives:

�Qa
abc = 6La

dM a
bcd + 1

2
RQa

abc + 4La
dQa

dbc − f b(x)Ca
bcQ

c
abc

− 2F b
a
dCa

bcQ
c
dbc − AbdAc

dC
a
bdC

d
ceQ

e
abc + 2Ab

aA
cdCa

bdC
d
ceQ

e
dbc

+ F c
bcA

bdCa
cdC

d
beM

e
ad − 2F c

bcA
bdCa

bdC
d
ceM

e
ad + 2Ca

bcQ
c
dbc∇aA

bd

+ 4AbdCa
bc∇[aQ

c
d]bc + 2Ca

bcM
b
a
d∇dF

c
bc + 4ΞF a

[b
dΛc]ad

+ 4ΞF a
[b
dΛ|a|c]d − 2Ξd[b

d
c]
eQa

ade + 4Ξda
d
[b
eQa

|d|c]e + 4La[bM
a
c]

+ 4L[b
dQa

|da|c] + ΞF adeΛ[b|dega|c] + 4F b
[b
dCa

|bcQ
c
a|c]d + 4Ldega[bQ

a
|d|c]e.

(3.76)

3.7.3.3 Propagation of the gauge

In this subsection we show the consistency of the introduction of the gauge

source functions f a(x) into the analysis of the propagation of the con-

straints for the Yang-Mills potential. For this purpose we introduce the

zero-quantity P a defined as:

P a ≡ ∇aAa
a − f a(x). (3.77)

The computation of a wave equation for this field is straightforward: first,

a short calculation employing equations (3.64), (3.66a), (3.66b) and (3.69b)

gives

∇aP
a = −Ab

bC
a
bcP

c −M a
b +∇aM

a
b
a.

From here, application of a further covariant derivative directly results in

�P a = −f bCa
bcP

c +AbaCa
bcM

c
a− 1

2
F babCa

bcM
c
ab−AbbCa

bc∇bP
c. (3.78)

Remark 31. Geometric wave equations (3.71), (3.72), (3.75), (3.76) and

(3.78) are homogeneous in M a
a, M

a
ab, M

a
abc, Q

a
abc, P

a, Λabc and their first

covariant derivatives. Thus, if these fields vanish on an initial hypersurface

S?, it can be guaranteed that there exists a unique solution on a small

enough slab of S?, and it corresponds to the trivial one.
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3.7.3.4 Summary

The previous discussion about the Yang-Mills field coupled to the conformal

Einstein field equations leads to the following statement:

Proposition 8. The system of wave equations (3.25a)-(3.25e) with energy-

momentum tensor given by (2.30) coupled to wave equations (3.63), (3.64)

and (3.65) written in terms of the operator �, is a proper quasilinear system

of wave equations for the Einstein-Yang-Mills system.
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Chapter 4

Killing boundary data for

anti-de Sitter-like spacetimes

The material of this chapter is based on [13].

The problem of encoding (continuous) symmetries of a spacetime at

the level of initial data is an important classical problem in Relativity —

see e.g. [48]. A modern presentation of this issue and the related theory

can be found in [6, 17]. The key outcome of this theory is the so-called

set of Killing initial data equations, a system of overdetermined equations

for a scalar field and a spatial vector on a spacelike hypersurface — cor-

responding, respectively, to the lapse and shift with respect to the normal

of the hypersurface of a hypothetical Killing vector of the spacetime. If

these Killing equations admit a solution, a so-called Killing initial data set

(KID), then the development of the initial data will have a Killing vector.

The theory of KID for the Cauchy problem for the Einstein field equa-

tions can be also adapted to other settings like the (finite and asymptotic)

characteristic initial value problem [19, 50] and, more relevant for the pur-

poses of the present article, to the asymptotic initial value problem for the

de Sitter-like spacetimes [52], i.e. solutions to the vacuum Einstein field

equations with positive cosmological constant.

The purpose of this chapter is to present a theory of Killing initial and

boundary data in the setting of anti-de Sitter-like spacetimes. As Corol-

lary 1 states, this class of solutions have a timelike conformal boundary

so, in addition to satisfying the KID equations on some initial hypersur-
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face, one also needs a suitable Killing boundary data set (KBD) to ensure

the existence of a Killing vector in the spacetime. Additionally, these sets

have to satisfy some compatibility conditions at the corner where the initial

hypersurface and the conformal boundary meet. The use of a conformal

setting allows us to perform the analysis of the boundary conditions for the

Killing equations by means of local computations.

An alternative approach to the analysis of continuous symmetries in

anti-de Sitter-like spacetimes has been started in [38, 39]. In this work,

the objective is to encode the existence of a Killing vector solely through

conditions on the conformal boundary — in the spirit of the principle of

holography. The required analysis, thus, leads to the study of ill-posed

initial value problems for wave equations which require the use of methods

of the theory of unique continuation. Their analysis requires imposing both

Dirichlet and Neumann boundary conditions on the conformal boundary

while the discussion in the present work requires, as already mentioned,

only Dirichlet conditions. The trade-off is that our analysis also requires a

solution to the KID equation on a spacelike hypersurface and compatibility

conditions between the Killing initial and boundary data.

4.1 Conformal properties of the Killing vec-

tor equation

In this section we briefly review the theory of Killing vectors from a confor-

mal point of view, following the presentation in [52]. We begin by recalling

the relation between Killing vectors in the physical spacetime (M̃, g̃ab) and

conformal Killing vectors in the unphysical spacetime (M, gab):

Lemma 5. A vector field ξ̃a is a Killing vector field of (M̃, g̃ab), that is

∇̃aξ̃b + ∇̃bξ̃a = 0,

if and only if its push-forward ξa ≡ ϕ∗ξ̃
a is a conformal Killing vector field

in (M, gab), i.e.

∇aξb +∇bξa =
1

2
∇cξ

cgab (4.1)

77



and, moreover, one has that

ξa∇aΞ =
1

4
Ξ∇aξ

a. (4.2)

The proof of this result can be found in [52].

Remark 32. In the following we will call equations (4.1) and (4.2) the

unphysical Killing equations. Observe that if gab extends smoothly across

I , then the unphysical Killing equations are well defined on the conformal

boundary.

The above result naturally poses the question about the conditions for

the existence of unphysical Killing vectors. This will be addressed in the

remainder of this section.

4.1.1 Necessary conditions

For convenience set

η ≡ 1

4
∇aξ

a.

Then one has the following result:

Lemma 6. Any solution to the unphysical Killing equations satisfies the

system

�ξa +Ra
bξb + 2∇aη = 0, (4.3a)

�η +
1

6
ξa∇aR +

1

3
Rη = 0. (4.3b)

The proof of the above result follows by direct computation from (4.1) and

(4.2).

Remark 33. The wave equations (4.3a) and (4.3b) are necessary condi-

tions for a vector ξa to be an unphysical Killing vector. However, not every

solution to these equations is an unphysical Killing vector. In this sense,

a vector field satisfying (4.3a)-(4.3b) will be called an unphysical Killing

vector candidate.
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4.1.2 The unphysical Killing equation propagation sys-

tem

The sufficient conditions are now discussed. It will be convenient to define

the following zero-quantities :

Sab ≡ ∇aξb +∇bξa − 2ηgab,

Sabc ≡ ∇aSbc,

φ ≡ ξa∇aΞ− Ξη,

ψ ≡ ηs+ ξa∇as−∇aη∇aΞ,

Bab ≡ LξLab +∇a∇bη,

with Lξ denoting the Lie derivative along the direction of ξa, that is

LξLab = ξc∇cLab + Lcb∇aξ
c + Lac∇bξ

c.

In terms of these quantities, a lengthy computation leads to the following

result proved in [52]:

Lemma 7. Let ξa and η be a pair of fields satisfying equations (4.3a)-

(4.3b). Then the tensor fields

Sab, Sabc, φ, ψ, Bab,

satisfy a closed system of homogeneous wave equations. Schematically, one

has that

�Sab = Hab(S,B), (4.4a)

�Sabc = Habc(S,B,∇S,∇B), (4.4b)

�φ = H(φ, ψ, S), (4.4c)

�ψ = K(φ, S,B, ψ,∇φ), (4.4d)

�Bab = Kab(S,B,∇S,∇B,∇2S), (4.4e)

where ∇S and ∇2S represent ∇aSbc and ∇aSbcd, respectively.

Remark 34. In what follows, the system consisting of equations (4.3a)-

(4.3b) together with (4.4a)-(4.4e) will be called the unphysical Killing equa-
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tion propagation system.

The homogeneity of the evolution system (4.4a)-(4.4e) together with

the theory of initial-boundary value problems for systems of wave equations

(see e.g. [14, 21]) suggests to consider a Dirichlet problem to ensure the

existence of a solution to the unphysical Killing vector equations. Let S?
be an initial spacelike hypersurface. The conditions for the problem are:

(i) Initial data

Sab = 0, Sabc = 0, φ = 0, ψ = 0, Bab = 0, (4.5a)

∇eSab = 0, ∇eSabc = 0, ∇eφ = 0, ∇eψ = 0, ∇eBab = 0, (4.5b)

(ii) (Dirichlet) boundary data

Sab = 0, Sabc = 0, φ = 0, ψ = 0, Bab = 0. (4.6)

If the above conditions are satisfied, the homogeneity of the wave equations

(4.4a)-(4.4e) guarantees that the only solution of the system is the trivial

one. This means, therefore, that the solution to equations (4.3a)-(4.3b)

will actually be an unphysical Killing vector. Motivated by this, we will

refer to the fields Sab, Sabc, φ, ψ, Bab as the Killing vector zero-quantities.

Remark 35. Strictly speaking, the initial conditions require only the van-

ishing of the zero-quantities and of their normal derivatives to the initial

hypersurface. If these conditions hold then the full covariant derivative of

the zero-quantities vanish on S?.

4.2 The Killing vector zero-quantities

In order to study the Dirichlet problem, we first investigate the Killing

vector zero-quantities and the relations between them. This analysis can

be supplemented by the conformal constraint equations (2.15a)-(2.15h),

(2.16a) and (2.16b). More specifically, the constraints on the conformal

boundary (2.17a)-(2.17j) will become relevant for the subsequent analysis,

along with their solution in the particular case of vacuum — see Proposi-

tion 2.
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Let H ⊂ M be an either spacelike or timelike hypersurface with 3-

metric denoted by hab, normal vector na. In this respect, let us define the

following relevant quantities:

ζi, ζ, Sij, Si, S, Sijk, Bij Bi, B

as the respective pull-backs of the following projections of the Killing vector

candidate ξa and the zero-quantities to H:

ha
bξb, naξa, ha

chb
dScd, ncha

bSbc, nanbSab, ha
dhb

ehc
fSdef ,

ha
chb

dBcd, ncha
bBbc, nanbBab.

In the next subsection, the vanishing of the zero-quantities on S? and I

will be analysed using these objects.

4.2.1 Decomposition of φ and ψ

From their definitions, a straightforward decomposition of the zero-quantities

φ, ψ, and their normal derivatives, leads to the following expressions:

φ = ζ iDiΞ + εζΣ− ηΞ, (4.7a)

na∇aφ = −ηΣ− ΞDη +Dζ iDiΞ + ζ i(DiΣ−Ki
jDjΞ)

+ε(ζDΣ + ΣDζ), (4.7b)

and

ψ = ηs+ ζ iDis+ εζDs−DiηD
iΞ− εΣDη, (4.8a)

na∇aψ = ηDs+ sDη +Dζ iDis+ ζ i(DiDs−Ki
jDjs)−Diη(DiΣ

−Ki
jDjΞ)−DiΞ(DiDη −Ki

jD
jη) + ε(ζD2s+DζDs

−DΣDη − ΣD2η). (4.8b)

4.2.2 Decomposition of Sab, Bab and their derivatives

Before performing a decomposition of the remaining zero-quantities, a few

observations can be made about the redundancy of some of their compo-

nents. For this task their explicit decompositions will not be required but
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expressions will be given in terms of functions which are homogeneous in

the zero-quantities and their derivatives; this will prove to be useful when

imposing the vanishing initial-boundary data.

Lemma 8. Let H ⊂ M be either a timelike or spacelike hypersurface.

Assume that Sij, DSij, Bij and DBij are known onH. Then, the remaining

components of the zero-quantities and their first-order derivatives can be

computed on H.

Proof. In the following, for ease of presentation, let f denote a generic

homogeneous function of its arguments which may change from line to

line. As pointed out in [52], equation (4.3a) implies the identity

∇aSb
a − 1

2
∇bSa

a = 0. (4.9)

Expressing Sab in terms of its components, a short calculation yields

εDSb +
1

2
nbDS = f(Sij, DiSjk, DSij). (4.10)

Multiplying this equation by ha
b, an equation for DSi is obtained. Simi-

larly, multiplying equation (4.10) by nb we obtain an analogous expression

for DS. Then, all the components of DSab can be computed on H and, in

consequence, Sabc is known.

In order to analyse the fields derived from Bab, consider equation (4.4a)

which can be written in a more explicit way as:

D2Sab = −4εBab + f(Sab, ∇cSab, DcDdSab). (4.11)

As it is assumed that Bij is known on H, one can solve for D2Sij from this

last equation; in particular, D2Sii can be computed. On the other hand,

by applying ∇c to (4.9), a lengthy but direct decomposition leads to the

following two relations:

D2Si = f(Sab, ∇cSab), (4.12a)

εD2S = D2Sii + f(Sab, ∇cSab). (4.12b)

From here we observe that their right-hand sides are either known or com-
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putable on H so the components D2Si and D2S are determined. Thus,

(4.11) implies that the components Bi and B can be computed.

Regarding the normal derivatives of Bab, we make use of the identity

∇aBb
a − 1

2
∇bBa

a = Scd(∇cLb
d − 1

2
∇bL

cd),

whose validity is guaranteed by equations (4.3a) and (4.3b) — see [52].

Observe that its left hand side has the same form as equation (4.9), while

its right hand side is homogeneous on Sab. Then we conclude that DBi and

DB are computable.

Finally, the normal derivative of Sabc can be analysed from its definition.

Commuting derivatives, a short calculation yields:

DSabc = Da(DSbc) + εnaD
2Sbc + f(Sab, ∇cSab).

Since it has been proved that all the terms on the right-hand side are either

computable or part of the given data on H, the proof is complete.

Remark 36. Lemma 8 is valid either for a spacelike or timelike hypersur-

face, but given that it assumes certain normal derivatives, it is naturally

adapted to a spacelike hypersurface where first-order derivatives are as-

sumed as part of the initial data. If, on the other hand, H is timelike

and Dirichlet conditions are assumed, then DSij plays the role of the only

necessary component of Sabc, while DBij is not required.

In view of the previous result, the explicit form of the remaining inde-
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pendent data under a decomposition on H is given by:

Sij = Diζj +Djζi + 2εζKij − 2ηhij, (4.13a)

Si = Dζi +Diζ − ζjKij, (4.13b)

S = 2Dζ − 2εη, (4.13c)

DSij = 2D(iDζj) − 2K(i
kD|k|ζj) + 2ζkDkKij − 2ζkD(iKj)k + 2εζDKij

+2εKijDζ − 2hijDη, (4.13d)

Bij = ζkDkθij + 2θk(iDj)ζ
k + 2εζK(i

kθj)k + 2εθ(iDj)ζ + εζDθij

+DiDjη, (4.13e)

DBij = DkθijDζ
k +Kj

mDmLij +DkDθij + 2neL(i
mRj)mek + 2K(i

kθj)mDζ

+2ζK(i
kDθj)k + ζθk(iDKj)

k + 2D(jζ
kDθi)k + 2θk(i(DjDζ

k −Kb)
eDeζ

c

+neRb)ed
cζd) + 2Dθ(iDj)ζ + 2θ(iDj)Dζ − 2θ(iKj)

kDkζ + 2ζD2θij

+2DζDθij +DiDjDη − 2K(i
kDj)Dkη −DkηDiKj

k

−neRjiek
kDkη. (4.13f)

4.3 Boundary analysis

We now proceed to discuss the explicit requirements a well-posed initial-

boundary problem with vanishing Dirichlet data imposes on the conformal

Killing vector candidate and the related quantities. In this subsection,

whenever the symbol ' appears — see Section 2.3.1 — the quantities in-

volved will be assumed to be intrinsic to I despite not being necessarily

crossed by a line.

4.3.1 Zero-quantities on I

Having obtained the decomposition of the zero-quantities, one can then

study them on the conformal boundary and, in particular, analyse the

consequences the vanishing Dirichlet conditions impose. As mentioned in

Remark 36, the independent data on I are given by φ, ψ, Sab, 6DSab and

Bab. Evaluating equations (4.7a), (4.8a) and (4.13a)-(4.13e) on I , one
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obtains

φ ' 6Σζ, (4.14a)

ψ ' ηs+ ζ i 6Dis+ ζ 6Ds− Σ6Dη, (4.14b)

Sij ' 6Diζj + 6Djζi + 2κζ`ij − 2η`ij, (4.14c)

Sa ' 6Diζ + 6Dζi − κζi, (4.14d)

S ' 26Dζ − 2η, (4.14e)

6DSij ' 26D(i 6Dζj) − 2κ 6D(iζj) + 2`ijζ
k 6Dkκ − 2ζ(i 6Dj)κ + 2ζ 6DKij

+2κ`ij 6Dζ − 2`ij 6Dη, (4.14f)

Bij ' ζk 6Dklij + 2lk(i 6Dj)ζ
k + 2κζlij − 26D(iκ 6Dj)ζ + ζ 6DLij

+6Di 6Djη. (4.14g)

Imposing Dirichlet vanishing data on I , equations (4.14a)-(4.14g) pro-

vide a number of conditions for the fields and their derivatives on the

conformal boundary. Using the definition of η and the solution in Propo-

sition 2, it follows that the set of independent conditions is given by:

ζ ' 0, (4.15a)

6Dζi ' κζi, (4.15b)

6Diζj + 6Djζi ' 2η`ij, (4.15c)

6Dη ' ηκ + ζ i 6Diκ, (4.15d)

Lζ 6 lij + 6Di 6Djη ' 0. (4.15e)

Conversely, it is straightforward to check that equations (4.15a)-(4.15e) are

sufficient to guarantee the vanishing of the equations (4.14a)-(4.14g). The

above discussion leads to the following:

Lemma 9. Let (M, gab) be a conformal extension of an anti-de Sitter

spacetime (M̃, g̃ab) with timelike conformal boundary I . Let ξa be a con-

formal Killing vector field candidate and φ, ψ, Sab, Bab and Sabc be the

corresponding zero-quantities. Then, the zero-quantities appearing in equa-

tions (4.14a)-(4.14g) vanish on I if and only if the components ζi, ζ and

η satisfy the conditions (4.15a)-(4.15e).

Remark 37. Equations (4.15a)-(4.15e) will be called the Killing boundary
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data equations. In particular, they acquire a simpler form if one makes use

of a gauge for which κ = 0.

4.3.2 Existence of the intrinsic conformal Killing vec-

tor

As stated in Lemma 9, one of the necessary conditions under which the set

of zero-quantities vanish on I is given by (4.15c), i.e. the transversal com-

ponent ζi of the conformal Killing vector candidate has to be a conformal

Killing vector with respect to the connection 6Da. In order to guarantee the

existence of a solution to this equation we consider an initial value prob-

lem on I . Following the model of the spacetime problem, we construct a

suitable wave equation for ζi. More precisely, one has the following:

Lemma 10. Let ζi and η be a pair of fields satisfying equations (4.15c)

and (4.15e) on I . Then, it follows that

�`ζi ' −6rijζj − 6Diη, (4.16a)

�`η ' −1
2
η 6r − 1

4
ζ i 6Di 6r. (4.16b)

Proof. The result is readily obtained by applying 6Da to (4.15c) and taking

the trace of (4.15e).

Remark 38. Given that this system of wave equations propagates η and

ζi along the conformal boundary, it must be provided with initial data at

the corner ∂S?.

To prove that a solution to these wave equations also solves the confor-

mal Killing equation on the boundary, a suitable system of wave equations

for the corresponding 3-dimensional zero-quantities has to be constructed.

The desired relations are contained in the following lemma:

Lemma 11. Let Sij, Sijk and Bij be the projections of the zero-quantities

Sab, Sabc and Bab into I , respectively. Assume that there exist fields ζi

and η on I satisfying the wave equations (4.16a) and (4.16b). Then, one
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has that

�`Sij ' 2 6 l(ikSj)k − 26rikjmSkm − 2Bij, (4.17a)

�`Smij ' 6rmkSkij − 46r(i|nmk|Skj)n − 1
2
6rSmij + 2 6r(ikS|m|j)k − 26rikjnSmkn

+2S(ik 6Dj) 6rmk − 2S(ik 6D|k| 6rj)m + 2S(ik 6D|m| 6rj)k − 1
2
Sij 6Dm 6r

−2Skn 6Dm 6rikjn − 26DeBij, (4.17b)

�`Bij ' Oij + f(Bij, Sij, Sijk, 6DcSij, 6DmSijk), (4.17c)

where

Oij ≡ 6DkLζyikj + 2 6Dk(ηyi
k
j) (4.18)

and f is a homogeneous function of its arguments.

Proof. Relations (4.17a) and (4.17b) are obtained by direct application of

the �` operator on the definitions of Sij and Sijk, respectively. Regarding

the wave equation (4.17c), an analogous approach yields

6∆Bij ' Lζ 6Dkyi
k
j+2η 6Dkyi

k
j+26Dkηy(i

k
j)+f(Bij, Sij, Sijk, 6DcSij, 6DmSijk).

Now, the definition of Sij implies that the vector field ζ i satisfies the fol-

lowing identity:

6Dj 6Dkζi = −rljkiζl + 2`i(j 6Dk)η + `jk 6Diη + f(6DiSjk).

This relation allows us to write

Lζ 6Dkyi
k
j − 6DkLζyikj = 6Σdkij 6Dkη,

from where, the stated result follows.

Remark 39. The system of wave equations in the previous lemma is ho-

mogeneous in the zero-quantities Sij, Sijk and Bij provided that the ob-

struction tensor Oij vanishes on I .

Remark 40. If I is conformally flat, then the obstruction tensor identi-

cally vanishes as yijk = 0.

Lemmas 10 and 11 lead to the following proposition:

87



Proposition 9. Let (M, gab) be a conformal extension of an anti-de Sitter-

like spacetime. Let ζa and η be fields satisfying (4.15c) and (4.15e), and

yijk a tensor with the symmetries of the magnetic part of the Weyl tensor.

Assume that Sij, Bij and Sijk vanish identically at ∂S?. Then ζi satisfies

the unphysical conformal Killing equation on I if and only if Oab ' 0.

Remark 41. We stress that the vanishing of the obstruction tensor Oij
is a necessary and sufficient condition for the existence of a Killing vector

on the spacetime. The necessity follows from the fact that if a Killing

vector is present in the spacetime then all the zero-quantities associated to

the conformal Killing vector evolution system will vanish. This, in turn,

implies that the zero-quantities intrinsic to the conformal boundary have

to vanish. Equation (4.17c) implies then that Oij ' 0.

Remark 42. It should be stressed that the analysis carried out in the pre-

vious sections is conformally invariant. More precisely, if the unphysical

Killing vector candidate is such that the zero-quantities associated to the

Killing equation conformal evolution system vanish for a particular con-

formal representation, then they will also vanish for any other conformal

representation. This follows from the conformal transformation properties

for the zero-quantities implied by the change of connection transformation

formulae. In particular, the reduced Killing boundary conditions (4.15a)-

(4.15e) have similar conformal invariance properties.

4.4 Initial data at ∂S?
As mentioned in Remark 38, the system (4.16a)-(4.16b) must be comple-

mented with data at ∂S?, that is to say, we have to bring into consideration

the conditions implied by the Killing vector zero-quantities on S? and make

them consistent with the ones obtained from the boundary analysis in the

previous section. The main difference between this section and the preced-

ing ones is the introduction of an adapted system of coordinates suited for

studying the corner conditions.
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4.4.1 Set up

For simplicity, let us introduce a system of coordinates (xµ) = (x0, x1, xA)

where x0 and x1 correspond to the time and radial coordinates, respectively,

while the calligraphic indices will represent the angular ones. This system

of coordinates is adapted to our problem in the sense that S? and I are

orthogonal and given by

S? = {p ∈M | x0 = 0} and I = {p ∈M | x1 = 0}.

The corner is determined then by the condition x0 = x1 = 0.

Once coordinates have been introduced, the metric can be written ex-

plicitly in terms of the lapse and shift functions. Adopting a Gaussian

gauge we can write

g = −dx0 ⊗ dx0 + hαβdx
α ⊗ dxβ (α, β = 1, 2, 3), (4.19a)

g = dx1 ⊗ dx1 + `γδdx
γ ⊗ dxδ (γ, δ = 0, 2, 3). (4.19b)

where h is the metric of S?. From here, we find that the non-zero compo-

nents of the metric at the corner are:

g00 = `00 = −1, g11 = h11 = 1, gAB = hAB = `AB.

4.4.2 Corner conditions

Finally, we describe how corner conditions can be obtained from the initial

data imposed on η, ζa and their first derivatives on the conformal boundary.

For convenience, let the symbol ˆ denote quantities defined on S?. Let ζ̂a

and ζ̂ be, respectively, the pull-backs of ha
bξb and taξa to S?. Although

this decomposition with respect to hab is clearly different from the one

performed on the conformal boundary we can observe that, when expressed

in the adapted coordinates, the following relations hold at the corner:

ζ̂1 = ζ = 0, ζ̂ = ζ0, ζ̂A = ζA.

In this way, the angular components ζA on I are fixed by the initial data.

Similarly, if one requires the conformal factor Ξ to have continuous first
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derivatives, it follows then that the conditions

∂̂0Ξ = ∂0Ξ = 0, ∂̂1Ξ = ∂1Ξ = Σ, ∂̂AΞ = ∂AΞ = 0,

must be satisfied at ∂S?.

Regarding the remaining fields, values for η and the components of ξa

on S? can be found by solving equations (4.7a)-(4.8b) and (4.13a)-(4.13f)

— the KID equations set — with ε = −1. Moreover, this system also

provides with all their derivatives. In particular, when the limit Ξ → 0 is

taken, the corresponding solutions for η, ζ̂0 and ζ̂A, along with their time

and angular derivatives, serve as initial data at ∂S? for the wave equations

(4.3a) and (4.3b).

4.5 Summary

Once the conditions for the existence of a conformal Killing vector on I

have been established, we can link Proposition 9 to the initial-boundary

problem in the spacetime via Lemmas 6 and 7. The main result of this

work can be formulated as follows:

Theorem 2. Let (M, g) be a conformal extension of an anti de Sitter-like

spacetime with conformal boundary I . Consider an spacelike hypersurface

S? ⊂ M which intersects I at ∂S?. Suppose that ξa? and η? satisfy the

conformal KID equations (4.5a) and (4.5b) on S?. Let ζi and η be the

fields obtained from solving the wave equations (4.16a) and (4.16b) with

initial data given by the restriction of ξa? and η? to ∂S?. Assume that the

obstruction tensor Oab defined in equation (4.18) vanishes. Then the Killing

vector candidate ξa obtained from solving equations (4.3a) and (4.3b) with

initial data ξa?, η? and boundary data ζi, η pull-backs to a Killing vector

ξ̃a on M̃.
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Chapter 5

Construction of anti-de

Sitter-like spacetimes using the

metric conformal Einstein field

equations: the vacuum case

The material of this section is based on [12].

5.1 Introduction

A first analysis of the initial-boundary value problem for 4-dimensional

vacuum anti-de Sitter-like spacetimes by means of conformal methods has

been carried out by Friedrich in [29] — see also [31] for further discussion of

the admissible adS-like boundary conditions. This seminal work makes use

of the extended conformal Einstein field equations and a gauge based on the

properties of curves with good conformal properties (conformal geodesics)

to set up an initial-boundary value problem for a first order symmetric

hyperbolic system of evolution equations. For this type of evolution equa-

tions, one can use the theory of maximally dissipative boundary conditions

— see e.g. [36, 55] — to assert the well-posedness of the problem and to

ensure the local existence of solutions in a neighbourhood of the corner.

The solutions to these evolution equations can be shown, via a further ar-

gument, to constitute a solution to the vacuum Einstein field equations
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with negative cosmological constant.

Friedrich’s analysis identifies a large class of maximally dissipative bound-

ary conditions involving the outgoing and incoming components of the Weyl

tensor; as such, they can be thought of as prescribing the relation between

these components. These conditions are given in a very specific gauge and

thus it is difficult to assert their physical/geometric meaning. However, it

is possible to identify a subclass of boundary conditions which can be recast

in a covariant form. More precisely, they can be shown to be equivalent to

prescribing the conformal class of the metric on the conformal boundary

— see [29] and also [60]. The question of recasting the whole class of maxi-

mally dissipative boundary conditions obtained by Friedrich in a geometric

(i.e. covariant) form remains an interesting open problem. An alterna-

tive construction of anti-de Sitter-like spacetimes, which does not use the

conformal Einstein field equations and holds for spacetimes of dimension

greater than four, can be found in [24]. A discussion of global properties

of adS-like spacetimes and the issue of their stability can be found in [2].

Numerical simulations involving anti-de Sitter-like spacetimes is an ac-

tive area of current research — see e.g. [8, 9, 22, 23] which kick-started

some of the current flurry of interest. In particular, in [9] the evolution

of the spherically symmetric Einstein-scalar field with reflective boundary

conditions was considered; different boundary conditions for this system

have been considered in [1]. Alternative Cauchy-hyperbolic and character-

istic formulations of the spherically symmetric Einstein-scalar field system

have been discussed in [57, 58].

Friedrich’s results offer a natural and systematic approach to the numer-

ical construction of 4-dimensional vacuum anti-de Sitter-like spacetimes.

However, the numerical implementation of this result is not straightfor-

ward, among other things, because the equations involved are cast in a

form which is not standard for the available numerical codes and, more-

over, there is very little intuition about the behaviour of the gauges used

to formulate the equations. A further difficulty of Friedrich’s approach is

that it cannot readily be extended to include matter fields — see [46] for

an accomplishment in this direction.

In view of the issues raised in the previous paragraph, this chapter is
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dedicated to a conformal formulation of the initial-boundary value problem

for vacuum anti-de Sitter-like spacetimes, which is closer to the language

used in numerical simulations and exploits familiar gauge conditions. This

is achieved by means of the system of quasilinear wave equations derived

in Section 3.5. The PDEs theory for this type of systems is available in

the literature [14, 21]. The conformal constraint equations discussed in

Section 2.3 will permit us to construct suitable Dirichlet boundary data

for this system. We believe this scheme should be easier for its numerical

implementation — see Remark 9. In addition, we analyse the initial and

boundary data required for the system of wave equations for the zero-

quantities — see Section 3.4.

5.2 General set-up

In Chapter 2 a metric conformal formulation for the Einstein equations

coupled to a tracefree matter model was introduced. In particular, in the

absence of a matter component we end up with the simplified system

∇a∇bΞ = −ΞLab + sgab, (5.1a)

∇as = −Lab∇bΞ, (5.1b)

∇aLbc −∇bLac = ∇eΞd
e
cab, (5.1c)

∇ed
e
abc = 0, (5.1d)

6Ξs− 3∇cΞ∇cΞ = λ, (5.1e)

Ra
bcd = Ξdabcd + 2δ[c

aLd]b + 2L[c
agd]b. (5.1f)

As discussed in Section 3.2, the above system enables us to construct

a system of quasilinear wave equations for the conformal fields. In view of

the condition Tab = 0, we have the following relations:

�Ξ = 4s− 1
6
ΞR(x), (5.2a)

�s = −1
6
sR(x) + ΞLµνL

µν − 1
6
∇µR(x)∇µΞ, (5.2b)

�Lµν = −2ΞdµρνλL
ρλ + 4Lµ

λLνλ − LρλLρλgµν + 1
6
∇µ∇νR(x), (5.2c)

�dµνλρ = −4Ξdµ
τ
[λ
σdρ]σντ − 2Ξdµ

τ
ν
σdλρτσ + 1

2
dµνλρR(x), (5.2d)

Rµν = 2Lµν + 1
6
R(x)gµν . (5.2e)
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462 Anti-de Sitter-like spacetimes

I +

S? @S?

D+(S? \ @S?)

D+(S? [I +)

Figure 17.1 Penrose diagram of the set-up for the construction of anti-de Sitter-like space-
times as described in the main text. Initial data prescribed on S? \ @S? allows to recover
the dark shaded region D+(S? \ @S?). In order to recover D+(S? [I +) it is necessary to
prescribe boundary data on I +. Notice that D+(S? [I +) = J+(S?).

the question: what data on S? [ I + is needed to reconstruct the anti-de Sitter-like

spacetime (M̃, g̃) in a neighbourhood U ⇢ J+(S?) of S??

As a consequence of the properties of the standard Cauchy problem and the

localisation property of hyperbolic equations, the solutions to the conformal Einstein

field equations on D+(S̃?) are determined, up to di↵eomorphisms, in a unique

manner by solutions to the constraint equations on S?. To recover J+(S?)\D+(S̃?)

one needs to prescribe suitable data on the conformal boundary I . The analysis

of the suitable boundary data requires the prescription of some appropriate gauge

near I . As it will be seen, conformal geodesics are ideally suited to provide such a

gauge.

The conformal constraints at the conformal boundary

As for anti-de Sitter-like spacetimes the conformal boundary is a g-timelike hy-

persurface, it follows that the metric g induces on I a 3-dimensional Lorentzian

metric `. As discussed in Section 11.4.4, the conformal Einstein field equations sat-

isfied by the (unphysical) spacetime (M, g) imply on I a simplified set of interior

(constraint) equations. It is recalled that a solution to these conformal constraints

at the conformal boundary can be computed from the metric `, a smooth scalar

function { and a symmetric `-tracefree 3-dimensional tensor on I —see Propo-

sition 12 in Chapter 11. The scalar function is, in particular, a conformal gauge

dependent quantity which can be set to zero by considering a di↵erent metric in

[`].

Figure 5.1: Penrose diagram of the set-up for the construction of the anti-
de Sitter spacetime as described in the main text. Initial data prescribed
on S? \ ∂S? allows us to recover the dark shaded region D+(S? \ ∂S?). In
order to recover D+(S? ∪ I +) it is necessary to prescribe boundary data
on I +. Notice that D+(S? ∪I +) = J+(S?).

Since we aim to study these equations in the case λ < 0, they must be

supplemented by a set of suitable initial and boundary data in order to be

able to make a statement about the existence and uniqueness of a solution

to the above equations — see Corollary 1. This problem will be addressed

in the sequel.

5.2.1 Coordinates

Let (M, gab,Ξ) be a conformal extension of an anti-de Sitter-like spacetime

(M̃, g̃ab) where gab and g̃ab are conformally related metrics. Let S? ⊂ M
be a smooth, compact and oriented spacelike hypersurface with boundary

∂S?. Furthermore, S? ∩ I = ∂S? is the so-called corner. The portion

of I in the future of S? will be denoted by I +. In addition, it will be

assumed that the causal future J+(S?) coincides with the future domain

of dependence D+(S? ∪ I +) and that S? ∪ I + ≈ S? × [0, 1) so that, in

particular, I + ≈ ∂S? × [0, 1) — see Figure 5.1.
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Using a set of coordinates adapted to S? and I , we have that

S? = {x ∈ R3 | x0 = 0}, I = {x ∈ R3 | x1 = 0}.

Coordinates are propagated off S? via imposing the generalised wave coor-

dinate condition (3.21). Observe that this can always be locally solved: the

expression above provides the value of the coordinates on S? while their

normal derivatives are obtained from the requirement that (xµ) are inde-

pendent, that is to say, the coordinate differentials dxµ must be linearly

independent.

5.3 Initial and boundary data

5.3.1 Solutions to the conformal constraints on a space-

like hypersurface

The conformal constraint equations (2.15a)-(2.16b) enable us to obtain the

conformal version of the so-called Hamiltonian and Momentum constraints

on a spacelike hypersurface (ε = −1). Ignoring the contributions from the

matter fields, a straightforward calculation shows that these take the form:

Ω

2

2

(r +K2 −KijK
ij) = 2KΩΣ− 2ΩDiD

iΩ− 3Σ2 + 3DiΩD
iΩ + λ,(5.3a)

Ω(DjKi
j −DiK) = 2(KijD

jΩ−DiΣ). (5.3b)

It follows that under a conformal approach, the collection of fields (h,K, Ω,

Σ) satisfying the previous equations must be prescribed on S?. This set of

functions will in turn constitute the basic initial data that will completely

determine the remaining fields on a spacelike hypersurface. Along with

the boundary data, this set will serve to evolve the wave equations for the

conformal fields. From the conformal constraints one obtains the following
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expressions for the initial data:

s =
1

3

(
∆Ω +

1

4
Ω
(
r +K2 −KijK

ij
)
− ΣK

)
, (5.4a)

Lij =
1

Ω

(
shij + ΣKij −DiDjΩ

)
, (5.4b)

Li =
1

Ω

(
Ki

kDkΩ−DiΣ
)
, (5.4c)

dij =
1

Ω

(
− Lij + lij +

(
K
(
Kij −

1

4
Khij

)
−KkiKj

k

+
1

4
KklK

klhij
))
, (5.4d)

dijk =
1

Ω

(
DjKki −DkKji + hikLj − hijLk

)
. (5.4e)

The fact that these expressions are singular at Ω = 0 leads to the following:

Definition 5 (vacuum anti-de Sitter-like initial data). An anti-de

Sitter-like initial data set is understood to be a 3-manifold S? with boundary

∂S? ≈ S2 together with a collection of smooth fields (Ω, hij, Kij,Σ) such

that:

(i) Ω > 0 on intS?;

(ii) Ω = 0 and |dΩ|2 = Σ2 − 1
3
λ > 0 on ∂S?;

(iii) the fields s, Lij, Li, dij and dijk computed from relations (6.2a)-(6.2e)

extend smoothly to ∂S?.

Remark 43. Anti-de Sitter-like initial data sets are closely related to so-

called hyperboloidal data sets for Minkowski-like spacetimes — see [44]. By

means of this correspondence it is possible to adapt the existence results

for hyperboloidal initial data sets in [3, 4] to the anti-de Sitter-like setting.

In particular, this shows the existence of a large class of time symmetric

data, i.e. data for which Kij = 0.

5.3.2 Boundary conditions for the conformal evolu-

tion equations

In this subsection we discuss the boundary conditions to be imposed on the

various conformal fields. In [29] it has been shown that it is possible to for-
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mulate an initial-boundary value problem for anti-de Sitter-like spacetimes

in which the conformal class of the metric on the conformal boundary is

specified freely. In the following, we investigate whether it is possible to

make a similar prescription in our scheme. More precisely, we would like

to prescribe Dirichlet boundary data on I for the wave equations (3.25a)-

(3.25e) from the conformal constraint equations.

5.3.2.1 Boundary data for the conformal factor

The evolution of the conformal factor Ξ is described by the wave equa-

tion (3.25a). For this equation one naturally prescribes Dirichlet boundary

conditions such that

Ξ ' 0.

In other words, one has that Ξ = O(x1) close to I . On S? one wants to

identify Ξ with some 3-dimensional conformal factor Ω such that Ω = 0

and dΩ 6= 0 at ∂S?, consistent with Definition 5.

5.3.2.2 Boundary data for the Friedrich scalar

The evolution of the Friedrich scalar s is governed by the wave equation

(3.25b). As mentioned in Section 2.3.1, the boundary data for s are de-

termined once the scalar function κ(x) has been prescribed according to

relations (2.18a)-(2.18b). Notice that the specification of s is independent

of the choice of the gauge source function R(x) associated to the Ricci

scalar — see the discussion in Remark 17; furthermore, s contains informa-

tion about the manner the conformal boundary embeds in the spacetime.

In particular, it is possible, say, to have two conformally related represen-

tations of the same physical solution with the same spacetime Ricci scalar,

one with a conformal boundary which is extrinsically curved and the other

is extrinsically flat.

Remark 44. Observe that equation (2.18c) implies that the particular

choice κ(x) = 0 renders a conformal boundary which is extrinsically flat

with respect to the ambient spacetime.
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5.3.2.3 Boundary data for the components of the conformal met-

ric

In the following it is convenient to make use of the 3 + 1 decomposition of

the metric gab with respect to the unit normal to the conformal boundary,

namely

g = 6α2dx1 ⊗ dx1 + `γδ
(
6βγdx1 + dxγ

)
⊗
(
6βδdx1 + dxδ

)
(γ, δ = 0, 2, 3).

Here, (`γδ) denote the components of the intrinsic metric `ij of the confor-

mal boundary and 6α and 6βγ are, respectively, the lapse and shift. As I is

timelike, `ij is a 3-dimensional Lorentzian metric with signature (−,+,+).

Accordingly, the components (gµν) are given by

(gµν) =

(
6α2 + 6βγ 6βγ 6βγ
6βδ `γδ

)
, (5.5)

so that the ones of the contravariant metric are

(gµν) =

(
6α−2 −6α−2 6βγ
−6α−2 6βδ `γδ + 6α−2 6βγ 6βδ

)
.

Remark 45. In the sequel we regard the components (`αβ) as our basic

boundary data.

Without loss of generality, we adopt a Gaussian gauge at the conformal

boundary so that

6α ' 1, 6βγ ' 0, (5.6)

and the metric gab takes the form

g ' dx1 ⊗ dx1 + `αβdx
α ⊗ dxβ.

Remark 46. The prescription of the gauge conditions on the conformal

boundary is independent of the generalised harmonic condition (3.21) and,

thus, consistent with each other. Indeed, a calculation shows that for a
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metric of the form given by (5.5) one has that

Γ1 =
1

6α3

(
∂1 6α− 6βγ∂γ 6α + 6α2 6K

)
, (5.7a)

Γδ = γδ − 6β
δ

6α3

(
∂1 6α− 6βγ∂γ 6α + 6α2 6K

)
+

1

6α2

(
∂1 6βδ − 6βγ∂γ 6βδ + 6α∂δ 6α

)
,(5.7b)

where γδ ≡ `ηθγδηθ denote the 3-dimensional contracted Christoffel sym-

bols. Therefore, the generalised harmonic condition (3.21) only prescribes

the propagation of the gauge fields 6α and 6βγ off the conformal boundary

and does not constrain the components of the 3-metric `ij. Notice that in

the above expressions 6K ' 3κ(x) — see (2.18c).

5.3.2.4 Boundary data for the components of the Schouten ten-

sor

Given the 3-metric `ij of the conformal boundary, one can compute the

tangential components ( 6Lαβ) and tangential-normal components (6Lα) of

the spacetime Schouten tensor on the conformal boundary using formulae

(2.18d) and (2.18e). To compute the normal-normal component 6L11, we

notice that

gµν 6Lµν =
1

6
R.

Thus, one has that

6L11 ' 1
6
R(x)− `αβ 6 lαβ + 1

2
κ2(x)`αβ`

αβ

' 1
6
R(x)− 1

4
r + 3

2
κ2(x). (5.8)

5.3.2.5 Boundary data for the rescaled Weyl tensor

The boundary data for the magnetic part of the rescaled Weyl tensor is

directly related to the Cotton tensor yijk of the prescribed metric `ij via

formula (2.18f). Regarding its electric part, some information can be ex-

tracted by projecting equation (2.11d) with na`b
d`c

e for Tab = 0. A calcu-

lation shows that one can write

6D 6dij ' 6Dk 6djik. (5.9)
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In consequence, Neumann data for dij on the conformal boundary can be

obtained from the prescription of the 3-metric `ij.

5.3.2.6 Summary

The analysis of this section can be summarised as follows:

Proposition 10. Let I be equipped with a smooth Lorentzian metric `ij

Moreover, let the fields

6Σ, s, 6Kij, 6Li, 6Lij, 6dijk, 6D 6dij,

be constructed according to formulae (2.18a)-(2.18f) and (5.9). Finally, let

Υab, Θa, ∆abc, Λabc, Λ and P a
bcd be the zero-quantities defined by relations

(3.6a)-(3.6d). Then one has that

`b
aΘa ' 0, Z ' 0,

`c
a`d

bΥab ' 0, 6na`cbΥab ' 0,

`e
c`f

d`g
b∆cdb ' 0, 6nb`ec`f d∆cdb ' 0,

6nb`ec`f dΛbcd ' 0, 6nc`ab`edΛbcd ' 0,

`a
e`b

f`c
g`d

hPefgh ' 0, 6nd`ae`bf`cgPedfg ' 0,

where 6na and `a
b denote, respectively, the normal and projector of the con-

formal boundary.

5.3.3 Corner conditions

In the previous sections we have discussed the problem of the determination

of initial and boundary data. In particular, it is clear that once boundary

data have been provided on I , time derivatives of the various conformal

fields can be directly calculated. However, these data do not necessarily

match smoothly with the ones corresponding to S? at the corner. The pur-

pose of this section is to analyse the compatibility conditions, at different

orders, arising from the conformal Einstein field equations and the wave

equations — these conditions are commonly known as corner conditions.

In the following, the subscript � will stand for a quantity evaluated at ∂S?.
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5.3.3.1 Conditions for the metric

In terms of the adapted coordinates previously introduced, the corner ∂S?
is defined by the conditions x0 = 0 and x1 = 0. Exploiting the gauge

freedom, we adopt local Gaussian coordinates both on S? and I . Denoting

as hγδ and `AB the intrinsic 3-metrics corresponding to these hypersurfaces,

respectively, this condition implies that the spacetime metric at ∂S? can

be written in the two following ways:

g = −dx0 ⊗ dx0 + hγδdx
γ ⊗ dxδ (γ, δ = 1, 2, 3),

g = dx1 ⊗ dx1 + `ABdx
A ⊗ dxB (A,B = 0, 2, 3).

Zero order conditions. Comparing the two last expressions for the met-

ric, one readily finds that

(`00)� = −1, (h11)� = 1, (`AB)� = (hAB)�, (5.10)

while the remaining components vanish at ∂S?.

First order conditions. In Gaussian coordinates, we can express the

normal derivatives of the metric in terms of the corresponding extrinsic

curvature. Explicitly, one has:

Kγδ|S?
= 1

2
∂0hγδ|S?

= Γ0
γδ|S?

, (5.11a)

6KAB ' 1
2
∂1`AB ' −Γ1

AB. (5.11b)

As Kγδ is part of the initial data, this establishes a corner condition for

∂0hγδ; in particular, the angular components must satisfy the condition

(∂0hAB)� = (∂0`AB)�.

Recall that in Gaussian coordinates the propagation of the timelike

vector (∂0)
a along itself implies that Γµ00|S?

= 0; similarly, for the normal

to I one has that Γµ11 ' 0. The previous conditions on the Christoffel

symbols, along with equations (5.11a) and (5.11b), imply that K11 and 6K00

vanish at the corner. Furthermore, the traces of the extrinsic curvature can

be related to the gauge functions Fµ(x) as follows:

K� = (hABKAB)� = F0(x)�, 6K� = (`AB 6KAB)� = −F1(x)�.
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Finally, given that ∇ is a Levi-Civita connection and the acceleration is

zero, our coordinate choice determines the remaining partial derivatives:

(∂0g0µ)� = −(Γ0
0µ)� = 0.

Second order conditions. Second order conditions can be extracted

in a straightforward way from the wave equation for the metric, equation

(3.25e), namely

gλρ∂λ∂ρgµν =2

(
gλρg

στΓλσµΓρτν + 2Γσλρg
λτgσ(µΓρν)τ − gσ(µ∇ν)Fσ(x)

− 2Lµν − 1
6
gµνR(x)

)
.

Using the conditions discussed above for the first order derivatives, the

wave equation for the components gµν can be written schematically as:

(∂20`AB)� = (∂21hAB)� + (hCD∂C∂DhAB)� + fAB(g,K, 6K,F(x),L,R(x))�.

Apart from the components of the Schouten tensor (to be discussed below),

the second order condition can be expressed in terms of the initial data,

lower order corner conditions and gauge functions at the corner. Further

application of ∂0 enables us to obtain higher order conditions.

5.3.3.2 Conditions for the conformal factor

As, by definition, Ξ = 0 on the conformal boundary, all its intrinsic deriva-

tives of any order will vanish. In particular, ∂S? automatically inherits

these conditions. Its normal derivative, on the other hand, is given by

(2.18a). When smoothness is imposed, higher order partial derivatives

both on S? as well as on I are forced to coincide at ∂S?.

5.3.3.3 Conditions for the Friedrich scalar

Zero order condition. The Friedrich scalar s is determined on the con-

formal boundary by the gauge function κ(x). Nevertheless, when the 00

component of equation (2.11a) is evaluated at the corner, our choice of

Gaussian coordinates implies that

s� = 0.
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First order conditions. Equation (2.15c) determines the intrinsic deriva-

tives of s on the boundary. In particular, one has that

(∂0s)� = −6Σ(L01)�,

which is simply solution (2.18d).

Second order conditions. The second order condition for s can be ex-

tracted from the wave equation (3.25b) expressed in Gaussian coordinates.

The evaluation of this equation at the corner yields

(∂20s)� = (∂21s)� + (hAB∂A∂Bs)� − (Fµ(x)∂µs+ 1
6
(sR(x) + 6Σ∂1R(x))�.

Here, the spatial derivatives of s can be computed from the restriction of

the initial data to ∂S? while ∂0s corresponds to the first order condition.

The functions Fµ(x) and R(x) are gauge-dependent prescribed quantities.

Furthermore, notice that ∂20s is written in terms of the first order deriva-

tives, indicating then a recursive procedure. Higher order conditions can

be found by further application of ∂0 to (3.25b).

5.3.3.4 Conditions for the Schouten tensor

Zero order corner conditions. The value of the components LAB and

L0A at the corner can be obtained from the initial data (6.2b) and (6.2c)

by taking the limit Ω → 0. Imposing smoothness, they must match the

boundary data given by equations (2.18d) and (5.8) at ∂S?. An analogous

condition is imposed for L00.

First order corner conditions. First time derivatives of the components

LAB and L0A can be read from equation (2.11c). More explicitly one has:

(∂0LAB)� = 6Σ(d1B0A)� + fAB(L,h,K, 6K)�,

(∂0LA0)� = 6Σ(d100A)� + fA(L,h,K, 6K)�.

As will be seen below, the components of the Weyl tensor appearing here are

part of the data satisfying zero-order conditions, so they must be consistent

with the last equations. On the other hand, a condition for (∂0L00)� can

be obtained via the contracted Bianchi identity.
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Second order corner conditions. Second order time derivatives of Lab

are to be obtained by evaluating the wave equation (3.25c) at ∂S?. For

LAB one has

(∂20LAB)� = (∂21LAB)�+(hCD∂C∂DLAB)�+fAB(h,L,K, 6K, ∂F(x),R(x))�.

Similar expressions can be obtained for the rest of the components.

5.3.3.5 Conditions for the Weyl tensor

Information about the Weyl tensor is encoded in the electric and magnetic

parts, which are given on S? by equations (6.2d) and (6.2e). Since these

data have been obtained using different projections, their components must

be carefully made compatible. One can check that they share the compo-

nents d0101, d010A, d01A1, d01AB and d0A1B which, when matched, represent

the zero-order conditions.

First order corner conditions. Given the structure of equation (2.11d),

only certain conditions can be extracted from it. Ultimately, when it is

evaluated at the corner it takes the form:

(∂0d
0
λµν)� = fλµν(K, 6K,d)�.

Second order corner conditions. Second order time derivatives of the

rescaled Weyl tensor are given by the wave equation (3.25d). As Ξ van-

ishes at the corner, the equation is significantly simplified. Expanding the

reduced wave operator � it takes the schematic form

(∂20dλµνσ)� = (∂21dλµνσ)� + (∂A∂Bdµνλσ)� + fλµνσ(g,K, 6K,d)�.

5.3.3.6 Concluding remarks regarding the corner conditions

The discussion in the previous paragraphs provides a recursive procedure

to compute the corner conditions to any required order. Given this pro-

cedure, it is natural to ask whether there exist any examples of pairs of

initial data and boundary conditions which satisfy the corner conditions

to any arbitrary order ; the inherent difficulties in this task have been dis-

cussed in [31]. A way of satisfying corner conditions to an arbitrary order
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is to make use of the gluing constructions for asymptotically hyperbolic

initial data sets in [18]. Given an asymptotically hyperbolic initial data

set satisfying certain smallness conditions, these constructions allow to de-

form the data by a deformation which is supported arbitrarily far in the

asymptotic region, to ones which are exactly Schwarzschild-anti de Sitter

in the asymptotic region. This class of data is naturally supplemented

by Schwarzschild-anti de Sitter boundary initial data, and thus trivially

satisfies the corner conditions to any order. The resulting spacetime has,

accordingly, a very special behaviour near the corner. In particular, the

metric `ij must be conformally flat near the corner. It is of interest to

analyse whether it is possible to construct a more general class of initial-

boundary data for adS-like spacetimes satisfying the corner conditions at

any order.

5.4 Propagation of the constraints

Proposition 10 establishes a link between the boundary data for the con-

formal fields and a number of components of the geometric zero-quantities.

In this sense, the purpose of this section is to analyse the boundary data

for the system of wave equations (3.15)-(3.20) in order to establish the

uniqueness and existence of its trivial solution.

5.4.1 Boundary data for the subsidiary equations

Boundary data for P a
bcd. By construction, the field P a

bcd inherits the

symmetries of the Riemann tensor. This makes it possible to decompose it

into three main components:

P̂abcd ≡ `a
e`b

f`c
g`d

hPefgh, P̂abc ≡ 6nd`ae`bf`cgPedfg, P̂ab ≡ 6nc 6nd`ae`bfPecfd.

The first two vanish by virtue of the constraints (2.17i) and (2.17j), while

a calculation shows that P̂ab ' P c
acb − 6na 6nb 6nc 6ndP e

ced. From equation

(3.12b) it follows that P̂ab ' 0.

Boundary data for Υab. The zero-quantity Υab can be decomposed with

respect to 6na by defining the projections γab ≡ `a
c`b

dΥcd, γa ≡ 6nb`acΥbc
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and γ ≡ 6na 6nbΥab. Accordingly, we can write

Υab = γab + γa 6nb + γb 6na + γ 6na 6nb.

The prescription of the boundary data discussed in the previous section

implies that γab ' 0 and γa ' 0. Then, equation (3.12a) implies that

γ ' γa
a ' 0.

Boundary data for Θa. Consider the projections θa ≡ `a
bΘb and θ ≡

6naΘa. Then we have that

Θa = θa + 6naθ.

The boundary data for 6Li are equivalent to θa ' 0. In order to prove the

vanishing of θ we use the identity (3.12c). Using that γa ' 0, a short

calculation yields

θ ' 1
3
6Dγ ' −1

3
6Dγaa,

where the second equality is readily obtained from taking the normal deriva-

tive of equation (3.12a). On the other side, from the definition of γab, one

can write

6Dγaa ' (1
4
6r − 3

2
κ2(x))6Σ.

Without loss of generality, it is always possible to, under a further conformal

rescaling of the form g′ab = ω2gab, choose a conformal representation for

which κ ' 0 — see Proposition 3. Similarly, the Ricci scalar associated to

a 3-dimensional hypersurface satisfies the following transformation rule:

DiD
iω = 1

8
rω − 1

8
r′ω5.

Providing suitable initial data at ∂S? for this wave equation, it is seen

that one can freely prescribe the value of r. In particular, considering the

conformal boundary, one can choose a representation for which r ' 0. This

means that 6Dγaa ' 0 and, in turn, implies that θ ' 0.

Boundary data for ∆abc. Consider the system of wave equations for

the geometric fields (3.25a)-(3.25e). As initial and boundary data sets for

the system have already been established, a solution can then be locally
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obtained in a neighbourhood of ∂S?. In particular, dabcd and its derivatives

are well-defined, meaning that all the components of Λabc are regular. On

the other hand, it can be checked that the trivial data for P a
bcd imply that

∇dPabc
d ' 0. Thus, from equation (3.12i) we conclude that ∆abc ' 0.

Boundary data for Λabc. In the case of Λabc we introduce its relevant

components: λabc ≡ `a
d`b

e`c
fΛdef , λab ≡ 6nc`ad`beΛcde, Λab ≡ 6nc`ad`beΛdce

and Λa ≡ 6nb 6nc`adΛbcd. In terms of these we have:

Λabc = λabc + λbc 6na + 2Λa[c 6nb] + 2Λ[c 6nb] 6na. (5.12)

The boundary data for the electric and magnetic parts of dabcd are equiv-

alent to λab ' 0 and Λab ' 0. Next, we proceed to prove that the two

remaining components vanish as well. First, consider the normal deriva-

tive of the identity (3.12i) and project all its free indices onto I . This

results in

6Σλabc ' −6Dδabc,

where δabc ≡ `a
d`b

e`c
f∆def . Furthermore, projecting the integrability con-

dition (3.13c) with 6na`da`eb`f c and using the vanishing of Υab and ∆abc on

I , a calculation yields

6Dδabc ' 0,

which then implies that λabc ' 0.

To complete the proof, define a further component of ∆abc: ∆a ≡
6nb 6nc`ad∆bdc. Observe that multiplying (3.12e) by 6nc one readily finds

that 6D∆a ' 0. On the other hand, taking the normal derivative of (3.12i)

and then multiplying it by 6na 6nc`bg we obtain

6D∆g ' −6ΣΛg,

from where we conclude that Λa ' 0.

The above results can be summarised as:

Lemma 12. Assume that the wave equations (3.1a)-(3.1d) and (2.14) are

valid. If the boundary data for the geometric fields are given as in Propo-

sition 10, then the zero-quantities vanish on I .
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Remark 47. Regarding the zero-quantities on S?, the components corre-

sponding to projections on this hypersurface vanish by the way the anti-de

Sitter-like initial data has been constructed. Components with a transver-

sal (i.e., timelike) projection can be read as a first order evolution system

for the geometric conformal fields. Thus, in order to ensure the vanishing

of the zero-quantities on S?, one needs, firstly, to produce a solution to

the conformal constraint equations. Secondly, one reads the transversal

components of the zero-quantities as definitions for the normal derivatives

of the conformal fields which can be readily computed from the solution

to the conformal constraints. In this sense, the transversal components of

the zero-quantities vanish a fortiori. Furthermore, as a consequence of this

procedure, the normal derivatives of the zero-quantities trivially vanish on

S?.

5.4.2 Boundary conditions for the subsidiary gauge

evolution system

The final piece in the construction is the analysis of the propagation of

the gauge. In Section 3.6, it was shown that the fields Q, Qµ and Mµ

satisfy the system of homogeneous geometric wave equations (3.33)-(3.35).

Lemma 4 establishes the vanishing of the gauge fields on the spacetime

provided that trivial initial and boundary conditions are imposed. In this

regard, this subsection analyses the data

Mµ = 0, Qµ = 0, Q = 0, ∇µMν = 0,

∇µQν = 0, ∇µQ = 0 on S?,

along with

Mµ = 0, Qµ = 0, Q = 0 on I .

First, the fundamental subsidiary field Qµ can be decomposed with

respect to 6na in terms of the projections q̂µ ≡ `µ
νQν and q̂ ≡ 6nνQν .

Accordingly,

Qµ ' q̂µ + q̂ 6nµ.
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From here we notice that the system (5.7a)-(5.7b) is equivalent to q̂µ ' 0

and q̂ ' 0. Conditions Q ' 0 and Mµ ' 0, on the other hand, involve a

number of additional higher order normal derivatives of q̂, namely

6D(n)q̂ ' 0, 6D(n)q̂µ ' 0, n = 1, 2. (5.13)

Following the same approach to study the data on S?, one finds that

adopting a Gaussian system to the initial hypersurface as in Section 5.2, it

follows that Qµ = 0. As vanishing first order derivatives of the subsidiary

fields need to be prescribed, a series of straightforward calculations shows

that the projections q ≡ naQa and qµ ≡ hµ
νQν must satisfy

q = 0, qµ = 0, D(n)q = 0, D(n)qµ = 0, n = 1, 2, 3. (5.14)

Invoking Lemma 4 with Tab = 0, we have the following result:

Lemma 13. If conditions (5.13) and (5.14) are satisfied on I and S?,
respectively, then Q, Qµ and Qµν vanish identically in a neighbourhood of

∂S?.

5.5 The local existence result

We are now in the position of formulating the main result of this chapter: a

local in-time existence result for anti-de Sitter-like spacetimes. This result

can, in turn, be patched together with the domain of dependence of open

subsets of S? away from ∂S? to obtain a solution on a slab around S? —

see e.g. [60], Section 12.3.

One has the following:

Theorem 3. Let S? be a 3-dimensional spacelike hypersurface with bound-

ary ∂S? and smooth anti-de Sitter-like initial data defined on it. Let `ij be

a smooth 3-dimensional Lorentzian metric defined on I . Assume that the

data on S? and I satisfy, up to some order, the corner conditions at ∂S?.
Then, there exists a smooth solution to the vacuum Einstein field equations

with λ < 0 in a neighbourhood of ∂S?.
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Proof. Consider initial data on S? given as in Definition 5. Given a 3-

dimensional Lorentzian metric `ij on the boundary, the data given by

(2.18a)-(2.18f) along with (5.8)-(5.9) can be directly computed. If these

two sets of data satisfy the corner conditions at ∂S?, then the theory of

initial-boundary value problems, as given in e.g. [14, 21], guarantees the ex-

istence of a unique solution to the system of wave equations (3.25a)-(3.25e)

in a neighbourhood of ∂S?.

Given the boundary data described above, Lemma 12 implies that the

geometric zero-quantities vanish on I . In addition, we also have vanishing

initial data on S? — see Remark 47. Thus, by virtue of Lemma 3, we can

guarantee the existence and uniqueness of the trivial solution to the system

(3.15)-(3.20). In consequence, any solution to the system of wave equations

(5.2a)-(5.2e) is also a solution to the conformal field equations (5.1a)-(5.1f).

Therefore, Proposition 1 implies that the metric g̃ab = Ξ−2gab is a solution

to the vacuum EFE (1.8) with λ < 0 for Ξ 6= 0.
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Chapter 6

Construction of anti-de

Sitter-like spacetimes using

the metric conformal Einstein

field equations: the tracefree

matter case

The material of this section is based on [11]

6.1 Introduction

Having dealt with the problem of the construction of vacuum anti-de Sitter-

like spacetimes, we now proceed to generalise the result to the case of trace-

free matter. As a preamble, models with a tracefree energy-momentum

tensor are preferred given that their conformal properties are more suit-

able for study in a systematic way. In [46], for example, a result of local

existence for the Einstein-Yang-Mills system has been obtained under the

assumption of spherical symmetry. Despite the complications from consid-

ering non-trivial matter fields, advances have been made under a conformal

scheme in a variety of scenarios — see, for example, [28, 32, 33]. Never-

theless, an approach allowing us to encompass more general matter models

and whose equations have better structural properties for its numerical
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analysis is ideal.

The strategy to be pursued is an extension to the one in Chapter 5,

with particular emphasis on the three models introduced in Section 2.4.

This means that the material and results from chapters 2, 3 and 5 will be

intensively exploited. Moreover, given the complications that the coupling

of a matter sector brings, some pieces of the construction will need further

work. Most significantly, the problem of prescribing boundary data for the

matter fields under consideration does not have a straightforward solution.

In the following we will consider the system of quasilinear wave equa-

tions for the conformal fields given by (3.25a)-(3.25e). In order to give

initial and boundary data, we will use a system of coordinates adapted to

S? and I which satisfies the generalised wave coordinate condition.

6.2 Initial and boundary data

6.2.0.1 Solutions to the conformal constraints on a spacelike hy-

persurface

In the presence of a tracefree matter component, the Hamiltonian and Mo-

mentum constraints need to be generalised to include the relevant matter

fields which, in turn, also become part of the basic initial data. Proceeding

in the same way as in Section 5.3, it can be shown that the Hamiltonian

and Momentum constraints on a spacelike hypersurface take the form

Ω

2

2

(r +K2 −KijK
ij) = 2KΩΣ− 2ΩDiD

iΩ− 3Σ2 + 3DiΩD
iΩ

+λ+ Ω4ρ, (6.1a)

Ω(DjKi
j −DiK) = 2(KijD

jΩ−DiΣ) + Ω3ji. (6.1b)

Accordingly, the fields h, K, Ω, Σ, ρ and j satisfying the previous

equations represents the initial data. Using the conformal constraints we
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obtain expressions for them, namely

s =
1

3

(
∆Ω +

1

4
Ω
(
r +K2 −KijK

ij
)
− ΣK +

1

2
Ω3ρ

)
, (6.2a)

Lij =
1

Ω

(
shij + ΣKij −DiDjΩ

)
+

1

2
Ω2Tij, (6.2b)

Li =
1

Ω

(
Ki

kDkΩ−DiΣ
)

+
1

2
Ω2ji, (6.2c)

dij =
1

Ω

(
− Lij + lij +

(
K
(
Kij −

1

4
Khij

)
−KkiKj

k

+
1

4
KklK

klhij
))
, (6.2d)

dijk =
1

Ω

(
DjKki −DkKji + hikLj − hijLk

)
. (6.2e)

Analogous to the vacuum case, the collection of fields for which the above

expressions are regular on S? will be called a tracefree anti-de Sitter-like

initial data set.

6.2.1 Boundary conditions for the conformal evolu-

tion equations

Regarding the boundary data, it is not difficult to notice that, with the

exception of the data for the electric part of the rescaled Weyl tensor, the

conformal constraints prescribe identical data for the remaining fields on

I . Regarding 6dij, the inclusion of matter terms in equation (2.11d) yields

the corresponding Neumann data, provided the matter model has been

specified:

6D 6dij ' 6Dk 6djik − Tij. (6.3)

Remark 48. Adding the field Tij to the hypotheses of Proposition 10, the

same conclusion about the geometric zero-quantities follows immediately

in the tracefree matter case. Also notice that the analysis of the bound-

ary data for these fields — see Section 5.4.1 — remains unchanged in the

tracefree case.
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6.3 Data for the matter fields

Prescription of boundary data for the conformal fields does not result suffi-

cient for the system (3.25a)-(3.25e) due to the appearance of terms depend-

ing on Tab and its derivatives. This section will be devoted to analysing the

way boundary data for the matter fields can be given on I .

6.3.1 Data for the conformally invariant scalar field

The fields φ, φa and φab satisfy the system of wave equations (2.22), (3.38),

(3.39), for which we prescribe suitable Dirichlet boundary data. Notice that

φ can be freely prescribed as its value is not constrained by any equation

intrinsic to I , which in turn determines its derivatives on the boundary.

Moreover, the normal derivative is not independent since (2.22) can be

written as an equation constraining 6Dφ. Alternatively, observe that the

prescription of Neumann boundary conditions, instead of Dirichlet ones,

also yields a well-posed problem.

6.3.1.1 Boundary data for the evolution systems

In order to analyse the Dirichlet boundary data for the auxiliary fields it

is convenient to introduce the following projections

ϕa ≡ `a
bφb, ϕ ≡6naφa, φ̄ab ≡ `a

c`b
dφcd, φ̄a ≡6nc`abφbc.

From the discussion above, ϕa and ϕ can be obtained directly once the

basic data have been imposed. These represent the boundary data for φa.

On the other hand, observing that φab satisfies φa
a = 1

6
Rφ, we can write

φab = φ̄ab+ 6naφ̄b+ 6nbφ̄a + (1
6
Rφ− φ̄aa) 6na 6nb.

Since φ̄ab and φ̄a can, via commutation of covariant derivatives, be deter-

mined from φ on the conformal boundary it follows that the boundary data

for φab is completely determined from the basic data.
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6.3.1.2 Data for the subsidiary fields

In the same spirit as in Section 5.4, we now investigate the relation between

the boundary data for the conformally invariant field and their associated

subsidiary variables (3.40a) and (3.40b). It can be easily seen that the

prescription of boundary data for φ is equivalent to

`a
bQb ' 0, 6naQa ' 0, `a

c`b
dQcd ' 0, 6nb`acQbc ' 0.

Exploiting the fact that Qa
a = 0, it readily follows that 6na 6nbQab '

−`abQab ' 0, implying the vanishing of Qa and Qab on I .

Remark 49. Similarly, we prescribe initial data consisting of φ and Dφ

on S? in an analogous manner as on I . Accordingly, vanishing initial data

for Qa and Qab are obtained, which in turn implies that their intrinsic first

derivatives vanish. Additionally, from definitions (3.40a) and (3.40b) it can

be checked that their normal derivatives vanish too. Hence, ∇aQb = 0 and

∇aQbc = 0 on S?.

6.3.1.3 Summary

The material of this subsection can be summed up as:

Lemma 14. Let φ be the conformally invariant scalar field satisfying equa-

tion (2.22) with energy-momentum tensor given by (2.23). Then, φ repre-

sents the supplementary basic boundary data required by the system (3.25a)-

(3.25e) coupled to the wave equations for the fields φ, φa and φab.

6.3.2 Data for the Maxwell field

The Faraday tensor accepts a simple decomposition with respect to a vector

νa normal to S?. Defining the electric and magnetic parts, respectively, as

Fa ≡ νcha
bFbc and F ∗a ≡ νcha

bF ∗bc we have

Fab = 2F[bνa] + εab
cF ∗c , F ∗ab = 2F ∗[bνa] − εabcFc, (6.4)

where εabc ≡ νdεdabc is the 3-volume form induced by νa. It follows that the

Faraday tensor and its dual are completely determined by Fa and F ∗a .
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Unlike the conformally invariant scalar field, these components cannot

be freely prescribed, but a number of constraints are imposed by Maxwell

equations:

DiFi = 0, (6.5a)

DiF ∗i = 0, (6.5b)

DFi = εijkD
jF ∗k, (6.5c)

DF ∗i = −εijkDjF k. (6.5d)

The initial data set for this field consists of fields fi and f ∗i which are solu-

tions to (6.5a)-(6.5b). These, in turn, imply data for the normal derivatives

of the electric and magnetic fields via equations (6.5c)-(6.5d). Regarding

the boundary data, by performing a further decomposition with respect to

the normal 6na we can identify that the basic boundary data correspond

to fi ≡ si
jFj. The remaining data can be obtained as follows. Equa-

tion (6.5a) provides Neumann data for the component f ≡ 6niFi. Relation

(6.5d) allows us to compute, along with the corresponding initial data, the

field f ∗ ≡ 6niF ∗i . Finally, using this information and (6.5c) one directly

obtains Neumann data for f ∗i ≡ si
jF ∗j . Following an analogous procedure,

using (6.5b) instead of (6.5a), shows that one can alternatively prescribe

f ∗i instead of fi.

6.3.2.1 Data for the subsidiary fields

As done with the conformally invariant scalar field, we are now required to

prove that the boundary data for the electric and magnetic fields implies

trivial data for the subsidiary variables (3.52a)-(3.52c). First, boundary

data for the fields obtained from the constraints (6.5a)-(6.5b) is equivalent

to

6naMa ' 0, `a
d`b

e`c
fMdef ' 0.

Additionally, we also have that Qabc ' 0, which is a direct consequence

from the way the data for Fabc were constructed. The vanishing of the
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remaining boundary data for the subsidiary fields is proved as follows:

`a
bMb = `a

b(F c
cb −Qc

cb) ' f cca + Fa ' 0, (6.6a)

6nc`ad`beMcde = 6nc`ad`be(F[cde] −Q[cde]) ' 1
3
(fab + 2f̂[ba]) ' 0. (6.6b)

Remark 50. A direct calculation shows that the vanishing of the sub-

sidiary variables on S? follows directly from the prescription of the initial

data. Moreover, their normal derivatives vanish as a consequence of the

wave equations (3.43) and (3.51).

6.3.2.2 Summary

Now we sum up the main results from this subsection:

Lemma 15. Let Fab be the Faraday tensor satisfying the Maxwell equa-

tions (2.24a)-(2.24b) with energy-momentum tensor given by (2.26). Then,

the components of the field fi represent the basic boundary data required

for the systems (3.25a)-(3.25e) coupled to Fab.

6.3.3 Data for the Yang-Mills field

We end this section by working out a similar analysis for the Yang-Mills

field. The identification of the corresponding boundary data will result

similar to the one for the Maxwell field.

First, by introducing the projections F a
a ≡ νcha

bF a
bc and F a

a ≡
νcha

bF ∗abc, the fields F a
ab and F ∗aab accept decompositions that are anal-

ogous to the ones in (6.4). On the other hand, for the gauge potential we

define Aa
a ≡ ha

bAa
b and Aa ≡ νaAa

a. Accordingly, we have

Aa
a = Aa

a − 6naAa. (6.7)

Equations (2.28a)-(2.28c) provide a set of relations from which the basic

data can be extracted. The projections defined above enable us to write
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them as follows:

DiF a
i = Ca

bcAc
iF

bi, (6.8a)

DiF ∗ai = Ca
bcAc

iF
∗bi, (6.8b)

DF a
i = εijkD

iF ∗ak − Ca
bcεijkAbjF ∗ck + Ca

bcAbF c
i, (6.8c)

DF ∗ai = −εijkDjF ak + 2Ca
bcAbF ∗ci + 2Ca

bcεijkAbjF ck, (6.8d)

DiAa
j − 6DjAa

i = εmkl`i
k`j

lF ∗am − Ca
bcAb

iAc
j, (6.8e)

DAa
i −DiAa = F a

i − Ca
bcAbAb

i. (6.8f)

This system is supplemented with the corresponding decomposition of

equation (3.62), namely

6DiAa
i + 6DAa = f a(x). (6.9)

A set of fields F a
i, F

∗a
i, Aa

i and Aa which are solution to equations

(6.8a)-(6.8b) and (6.8e) constitute the initial data set for a given set of

gauge source functions f a(x); the corresponding time derivatives can be

obtained from the remaining expressions. Next, we discuss the boundary

data by following a similar approach to the one in the Maxwell case. Ad-

ditional to the components f a
i ≡ sijF

a
j, we also prescribe the components

A and νiAa
i of the gauge potential. Using this information, and the initial

data set, equation (6.8f) allows us to compute the components si
jAa

j . On

the other hand, data for the component f ≡ 6niF ∗ai can be extracted from

(6.8a). Relation (6.8d) yields an evolution equation from where the compo-

nent f a ≡ 6niF a
i can be obtained. Finally, a direct calculation shows that

expression (6.8c) establishes boundary data for f ∗ai ≡ si
jF ∗a. In similarity

to the Maxwell field, one can also prescribe the field f ∗ai instead of f a
i.

6.3.3.1 Data for the subsidiary fields

The final piece in the analysis of this matter field corresponds to proving

that the basic data on I implies vanishing data for the relevant subsidiary

fields. The system (6.8a)-(6.8b) and (6.8e) represents the relations

6naM a
a ' 0, `a

d`b
e`c

fM a
def ' 0, `a

c`b
dM a

cd ' 0.
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Analogous to the Maxwell field, the construction of the data for F a
abc im-

plies that Qa
abc ' 0. The parallelism between the Yang-Mills and Maxwell

fields makes clear that the components `a
bM a

b and 6nc`ad`beM a
cde vanish

on the conformal boundary. Concerning M a
ab, combining equations (3.69a)

and (3.69b), we obtain the identity

1
2
Ca

bcF
babM c

ab − Ca
bcA

baM c
a = 0.

As it has been shown that M a
a ' 0, it then follows that for an arbitrary

field F a
ab the condition M a

ab ' 0 must be satisfied. To conclude, recall

that the Yang-Mills coupling has required the introduction of the field P a

— see (3.77). Trivially, equation (6.9) implies that P a ' 0.

Remark 51. Vanishing data for the subsidiary variables on S? follows from

an argument similar to the one in Remark 50.

6.3.3.2 Summary

Next, we summarise the above discussion:

Lemma 16. Let F a
ab and Aa

a be the fields satisfying the Yang-Mills equa-

tions (2.28a)-(2.28c) with energy-momentum tensor given by (2.30), and

a set of gauge source functions given by (3.62). Then, the fields f a
i, Aa

and νiAa
i defined on I represent the basic boundary data required for the

system (3.25a)-(3.25e).

6.4 The local existence result

After having analysed each matter field, we can now state the main result

regarding the construction of anti-de Sitter-like spacetimes coupled to one

of the tracefree matter models introduced in Section 2.4.

Theorem 4. Let S? be a 3-dimensional spacelike hypersurface with bound-

ary ∂S? and smooth tracefree anti-de Sitter-like initial data defined on it.

Let `ij be a smooth Lorentzian 3-metric defined on I . Assume that the

data on S? and on I satisfy, up to some order, compatibility conditions at

∂S?. Consider suitable initial and boundary data for either the conformally
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invariant scalar field, the Maxwell field or the Yang-Mills field. Then, there

exists a smooth solution to the Einstein field equations with λ < 0 coupled

to one of the aforementioned matter models in a neighbourhood of ∂S?.

Proof. The result is obtained following a reasoning similar to the one in

Theorem 3, so here we just emphasise the differences. The determination of

6D 6dij in the tracefree matter case needs, additional to `ij, the prescription

of the field Tij on I . These basic data allow us to establish a well-posed

problem for the system (3.25a)-(3.25e) coupled to the corresponding wave

equations for each matter model. While the vanishing of the geometric

zero-quantities has been established in Section 5.4.1, it has also been proven

that the basic data for the matter fields imply trivial data for subsidiary

variables associated to them on I . Thus, this permits us to link solutions

to the system of wave equations for the conformal fields to solutions to

the MTCEFE which, in turn, provide a solution to the EFE with tracefree

matter.
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Chapter 7

Final remarks

In this work, the tools from conformal geometry have been exploited to

analyse several properties of the EFE and, in particular, of anti-de Sitter-

like spacetimes. The relation between the MTCEFE and the system of wave

equations they imply has been established via a system of homogeneous

wave equations for the corresponding zero-quantities; these, remarkably,

arise from a set of integrability conditions along with a number of relations

showing the manner these fields are intertwined. As the existence of these

relations is non-trivial, nor the homogeneous character of the resulting

evolution system is, this seems to point towards some more fundamental

properties of the EFE related to their symmetry group. Ideally, a further

analysis might provide a practical criterion for the existence of integrability

conditions based on the structure of the equations.

Regarding the Killing boundary data problem in anti-de Sitter-like

spacetimes, the analysis has shown how the problem on the “bulk” can

be reduced to a simplified version contained on the conformal boundary.

Furthermore, the obstruction tensor emerges as the main object determin-

ing the existence of a continuous symmetry on this type of spacetimes,

as its vanishing enables the obtention of a homogeneous system for the

corresponding zero-quantities. It was pointed out that a conformally flat

hypersurface trivially yields a vanishing obstruction tensor; in this sense,

the next natural step is to find larger families of 3-dimensional timelike

hypersurfaces with this property.

The construction of vacuum and tracefree matter anti-de Sitter-like

spacetimes heavily relied on the second order evolution system implied by
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the MTCEFE, along with the number of formulae relating the subsidiary

variables to each other. The other main ingredient allowing us to establish

a well-posed problem has been the systematic construction of initial and

boundary data. In particular, it has been found that the boundary data

set can be fully determined by prescribing the metric on the conformal

boundary. However, a complete characterisation of suitable boundary data

for this class of spacetimes is still an open question. A successful solution

to this problem might, potentially, shed some light on the issue of the con-

jectured instability of the anti-de Sitter spacetime, as previous studies only

assume a restricted class of boundary conditions.
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