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Survival of entropy waves during their advection throughout a combustor is central to the

generation of entropic sound and the subsequent effects upon thermoacoustic stability of

the system. However, the decay and spatial non-uniformity of entropy waves are largely

ignored by the existing models used for the calculation of entropy noise generation. Recent

investigations have demonstrated the complex spatio-temporal dynamics of entropy

waves and cast doubts on the sufficiency of the one-dimensional approach, conventionally

used for the analysis of these waves. Hence, this paper proposes a novel approach to the

low-order-modelling of entropy wave evolution wherein the wave is described by the two

states of position and amplitude in the streamwise direction. A high order model is first

developed through direct numerical simulation of the advection of entropy waves in a

fully developed, heat transferring, compressible, turbulent channel flow. The data are

then utilised to build and validate a series of non-linear, low-order-models that provide

an unsteady two-dimensional representation of the decaying and partially annihilating

entropy waves. It is shown that these models need, at most, about 12.5% of the total

trace of entropy wave advection to predict the wave dynamics accurately. The results

further reveal that the existing linear low-order-models are truly predictive only for the

entropy waves with less than 2% increase in the gas temperature compared to that of the

surrounding flow. Yet, in agreement with the assumption of existing models, it is shown

that entropy waves travel with the mean flow speed.

1. Introduction

The unsteady heat release of a flame is a source of non-isentropic temperature pertur-

bations that are widely referred to as entropy waves (Dowling 1995; Dowling & Stow 2003;

Karimi et al. 2008, 2010). In continuous combustion systems, these temperature pertur-

bations incur at the flame region and subsequently advect downstream. On reaching the

downstream components with variable cross-sections, their acceleration or deceleration
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results in the generation of acoustic waves (Williams & Howe 1975; Howe 1975). Sound

generated in this way is termed entropy noise or indirect combustion noise and is far

less understood than direct combustion noise due to turbulence (Candel et al. 2009;

Morgans & Dúran 2016). Further, indirect combustion noise constitutes an important

noise source that contributes to engine core-noise and can influence thermoacoustic

instabilities (Leyko et al. 2009; Hield et al. 2009; Poinsot 2017). Yet, the degree of entropy

wave annihilation in gas turbine combustors is still unclear (Eckstein & Sattelmayer 2006;

Eckstein et al. 2006; Morgans et al. 2013), indicating the need for further research on the

evolution of advective entropy waves.

Many studies have focused on deriving transfer functions for the acoustic response of

nozzles to entropic forcing. In their seminal work, Marble & Candel (1977) developed a

one-dimensional, linear theory for a compact nozzle. Later studies extended the original

theory to less restrictive conditions that include non-compact nozzles (Stow et al. 2002;

Moase et al. 2007; Goh & Morgans 2011; Giauque et al. 2012; Dúran & Moreau 2013)

and non-linear dynamics (Moase et al. 2007; Huet & Giauque 2013). The models of

Giauque et al. (2012) and Dúran & Moreau (2013) were later rederived using section-

integral quantities, thus extending them to include the effects of the radial deformation

of entropy waves (Zheng et al. 2015; Emmanuelli et al. 2017, 2018). This formulation

requires a fluid dynamics simulation to provide the two-dimensional flow field inside

the nozzle. Recently, Fattahi et al. (2019) extended the compact analysis to include the

annihilating effects due to hydrodynamics, heat transfer, and flow stretch upon the nozzle

response. Nevertheless, since these works were primarily concerned with the conversion

of entropy waves into sound in a nozzle, the upstream evolution of entropy waves was not

investigated. Also, recently, the theory of Marble & Candel (1977) has been extended to

the case of a multi-component gas. This led to the discovery of a different component

of indirect combustion noise, termed compositional noise (Ihme 2017; Magri et al. 2016;

Magri 2017; Rolland et al. 2018).

So far, the predictions of entropy conversion models have mostly been compared with

inviscid flow simulations, which inherently neglect the decay of entropy waves (Moase

et al. 2007; Goh & Morgans 2011; Dúran et al. 2012). As an exception to this, Leyko

et al. (2011) compared the Marble & Candel (1977) model predictions with a direct

numerical simulation (DNS) of the experimental setup of Bake et al. (2008, 2009) and

reported a good agreement. This was achieved in a setup with long wavelength entropy

waves and an isothermal base flow. However, more recent numerical simulations of heat

transferring flows revealed that advective entropy waves in channels could significantly

deviate from being one-dimensional fronts (Fattahi et al. 2017). Studies on the conversion

of entropy waves to sound in turbine stages (Cumpsty & Marble 1977; Dúran et al.

2013; Livebardon et al. 2016) have supplied their models with realistic entropy waves.
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Nonetheless, this required experimental data or high-fidelity large-eddy simulations of

the entire combustor. With the exception of these high-order-models, all entropy noise

studies have assumed that the entropy wave impinging upon the nozzle inlet is spatially

uniform. However, there is now an emerging body of evidence indicating that advection

of entropy waves through a combustor flow field includes sophisticated time-dependent

patterns, which readily violate this assumption (Brear et al. 2010; Fattahi et al. 2017).

Low order modelling of such dynamics remains as an ongoing challenge.

The early dispersion model of Sattelmayer (2003) is the first to account for the

influence of combustion chamber aerodynamics on an advecting entropy perturbation.

The modelling approach treated an experimental dual-fuel burner as a single-input single-

output (SISO) dynamical system. The impulse response of the system was taken as

the probability density function (PDF) of the residence time and was modelled by a

rectangular pulse to yield an analytic expression for the system transfer function. More

recently, Goh & Morgans (2013) added a dissipation factor to the dispersion model of

Sattelmayer (2003) to account for the decay of entropy waves and incorporated it into

a thermoacoustic model. Subsequently, these authors showed that entropy noise could

act constructively or destructively on combustor stability depending on the levels of

dissipation and dispersion.

In a separate work, Morgans et al. (2013) investigated the dissipation and shear

dispersion of entropy waves. This was performed through an incompressible, direct

numerical simulation of an entropy perturbation advected by a fully-developed, turbulent

channel flow. Dissipation of the entropy wave was defined in terms of the total thermal

energy and, as would be expected for an adiabatic system, was found to be negligible.

Shear dispersion was modelled using the Sattelmayer (2003) model but in this case, it

was shown that the response is better captured by a Gaussian pulse. Finally, a simple

case study using the modified dispersion model and conditions representative of a typical

gas turbine combustor revealed that the magnitude of the transfer function is significant

up to the frequencies relevant to combustion instabilities (several hundred Hertz). This

was in keeping with the numerical and experimental evidence suggesting that entropy

noise could influence combustion stability (Hield & Brear 2008; Hield et al. 2009; Motheau

et al. 2014). Recently, Giusti et al. (2017) modelled the magnitude of the transfer function

directly (instead of the system response) with an exponential function and showed that

it scales well with a local Helmholtz number based on the entropy wavelength and

streamwise position. Although not realistic for a real combustor, the entropic forcing

used was a single frequency sinusoid, and thus, any effects due to modal coupling were

not included. Similarly, Waßmer et al. (2016) included the effect of turbulence on the

decay of entropy waves by adding an effective diffusivity, developed through the analytical

solution of an advective-diffusive equation.



4 Christodoulou, Karimi, Cammarano, Paul, and Navarro-Martinez

In keeping with the linear one-dimensional framework of nozzle response studies, the

models developed for the decay of entropy waves in combustors (Sattelmayer 2003;

Morgans et al. 2013; Giusti et al. 2017) can readily be integrated into the existing

thermoacoustic models. Importantly, the assumption of linear dynamics in models of

entropy waves is not entirely based on the physics of these perturbations but is simply

phenomenological. This is because the physical mechanisms responsible for the atten-

uation of entropy waves are still largely unexplored (Fattahi et al. 2017). Further, the

opposing findings about the influence of entropy noise on combustion stability (Eckstein

& Sattelmayer 2006; Eckstein et al. 2006; Hield et al. 2009) imply that flow processes

downstream of the flame play an important role in the wave attenuation.

Despite these, the existing low-order-models of entropy waves either totally ignore

turbulence and heat transfer or represent their complex effects by a simple dissipation

factor. Thus, a more generic approach that allows for development of non-linear models is

warranted. Further, the one-dimensional treatment of the entropy perturbation implies a

SISO (single input, single output) approach to the description of entropy waves (Lieuwen

2012; Dowling & Morgans 2005). However, an experimental (Brear et al. 2010) and a

recent numerical (Fattahi et al. 2017) study have shown that entropy perturbations could

become spatially uncorrelated. The threshold frequency at which correlation starts to

breakdown, and therefore, the amount of thermal energy that is filtered out by application

of an average depends on the thermal boundary conditions and the hydrodynamics of

the flow (Fattahi et al. 2017). Consequently, it is imperative to model entropy waves as a

multi-input-multi-output (MIMO) system. This, in turn, calls for prediction of the spatio-

temporal dynamics of these waves. Yet, currently there is no low order modelling tool for

this purpose. To address this issue, the current work uses a novel dynamical approach and

develops a low order model that can simulate the amplitude decay and spatial distortion

of a two-dimensional entropy wave. The model is capable of predicting both spatial and

temporal features of an entropy wave. This is based on reduction of the data generated

by a DNS of compressible, fully-developed, turbulent channel flow with adiabatic and

heat transferring external walls and an added Gaussian entropy perturbation.

2. Numerical simulation

Fluid flow is governed by equations 2.1a-c, where the dependent variables ρ, ui, p,

and, T are density, velocity, pressure, and temperature, respectively. Derivatives of the

dependent variables are with respect to time t and the spatial coordinates xi. The

constants cp, k, and gi are the specific heat at constant pressure, thermal conductivity,

and the gravitational acceleration vector, respectively. A repeated subscript implies
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summation over the index range i = 1, 2, 3.

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1a)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi, (2.1b)

ρcp

(
∂T

∂t
+ ui

∂T

∂xi

)
=
∂p

∂t
+ ui

∂p

∂xi
+ k

∂2T

∂xi∂xi
+ τij

∂ui
∂xj

, (2.1c)

The shear stress tensor τij for a Newtonian fluid is related to the strain rate tensor

Sij through equation 2.2a, where µ is the dynamic viscosity of the fluid. The strain rate

tensor Sij is related to the velocity gradients by equation 2.2b and equation 2.2c states

the ideal gas law, where R is the specific gas constant.

τij −
1

3
τkk = 2µ

(
Sij −

1

3
Skk

)
, (2.2a)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.2b)

p = ρRT. (2.2c)

2.1. Flow solver

The governing system of equations 2.1 and 2.2 is solved using a variant of the

Imperial College in-house direct numerical simulation (DNS) flow solver with the acronym

BOFFIN (BOundary Fitted Flow INtegrator) (Jones & Wille 1996; Mare & Jones

2003; Paul & Molla 2012; Alzwayi et al. 2014). The flow solver is a low Mach number

formulation and therefore neglects the terms ∂p/∂t + ui(∂p/∂xi) and τij(∂ui/∂xj) in

equation 2.1c. The neglected terms are namely the total derivative of pressure and

frictional heating, respectively and are negligible at low Mach number (Mare 2002).

Nonetheless, flows in gas turbine combustors are at low Mach number (the bulk flow

Mach number of 0.1-0.2 (Lefebvre & Ballal 2010)), thus justifying the use of the particular

DNS solver.

The spatial and temporal derivatives in the governing equations are discretised using

second order accurate schemes on a staggered grid arrangement with the exception of

the nonlinear term ∂ρuiuj/∂xj in equation 2.1(b) for which an energy conserving scheme

is used (Morinishi 1995). The time marching scheme is implicit. Pressure and velocity

fields are obtained using a type of Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) algorithm (Paul & Molla 2012). The Poison like pressure correction equation

is discretised using the pressure smoothing approach of Rhie & Chow (1983), which
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prevents decoupling of pressure and velocity fields at even and odd grid nodes. The BI-

CGSTAB (Vorst 1992) and ICCG (Kershaw 1978) matrix solvers are used for velocity

and pressure, respectively.

In real gas turbine combustors, cooling air flows externally around the walls. Hence,

the current study adds a convective thermal boundary condition to the external surface

of the duct according to which the temperature at the walls satisfies the heat flux equality

in equation 2.3, where (∂T/∂y)|wall is the temperature gradient at the wall, Twall is the

wall temperature and, h is the convective heat transfer coefficient between the wall and

a hypothetical external flow (not simulated) at surrounding temperature T∞ = 300K.

k
∂T

∂y

∣∣∣∣
wall

= h [Twall(x)− T∞] . (2.3)

The left-hand side of equation 2.3 is the heat flux from the stationary (no-slip) fluid

layer to the wall according to Fick’s law and the right-hand side is the heat flux from

the wall to the hypothetical external flow according to Newton’s law of cooling. The wall

is assumed infinitesimally thick and thus conduction of heat through the wall itself is

not considered. This thermal boundary condition enables specification of adiabatic walls

through setting h = 0 Wm−2K−1 and streamwise varying heat transfer through setting

a finite value. Experimental and numerical studies have shown that the heat transfer

coefficient on the liner of gas turbine combustors is in the range h = 200−800 Wm−2K−1

(Bailey et al. 2003). As part of the current study, simulations were performed for the cases

of h = 200 Wm−2K−1 and h = 800 Wm−2K−1. The results from these cases show that

the width of the wave in the wall-normal direction is smaller at the larger heat transfer

coefficient. Nonetheless, the difference is not significant and thus, only results from the

case of h = 200 Wm−2K−1 are presented in the work that follows.

2.2. DNS of turbulent channel flow

The simulated flow is a compressible, fully developed, turbulent airflow in a channel

at friction Reynolds number Reτ = uτδ/ν = 180, where uτ is the friction velocity, δ is

the channel half-height, and ν is the kinematic viscosity. This corresponds to a Mach

number Mc = 0.15 based on the mean centreline velocity. An instructive schematic

of the channel configuration is shown in figure 1. The size of the simulation domain

is 4πδ × 2δ × πδ in the streamwise (x), wall-normal (y), and spanwise (z) directions,

respectively. In each direction, the domain is discretised with 368 × 128 × 128 nodes.

Periodic boundary conditions are imposed in the streamwise and spanwise directions and

the no-slip boundary condition at the walls. In the periodic directions the grid is uniform

with ∆x+ = uτ∆x/ν = 6.1 and ∆z+ = uτ∆z/ν = 4.4. In the wall-normal direction the

grid is stretched from ∆y+w = uτ∆yw/ν = 0.15 at the wall to ∆y+c = uτ∆yc/ν = 5 at

the centreline according to ∆yj+1/∆yj = SF , where j = 1, 2, . . . , 63 is the cell number
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Figure 1. Channel configuration

Figure 2. The flow (a) mean velocity and (b) mean square of turbulent fluctuations collapse

with the canonical data of Kim et al. (1987): —— present study, � Kim et al. (1987).

(j = 1 is the cell at the wall and j = 63 is the cell at the centreline) and SF = 1.05 is

the stretch factor. The pressure of the base flow is p = 1× 105Pa and the corresponding

temperature is T = 1500K.

The cross-sectional profiles of the mean velocity and mean square of the turbulent

fluctuations are shown in figure 2. Mean and fluctuating velocity components are indi-

cated by an overbar (¯) and a prime ( ′ ), respectively. Velocity is non-dimensionalized

by the wall-shear velocity uτ =
√
τw/ρ, where τw is the flow shear stress on the wall.

The wall-normal coordinate y+ = (uτy)/ν, with ν being the kinematic viscosity, is the

distance from the wall in wall-units. The profiles collapse with the canonical data of Kim

et al. (1987), thus confirming that the grid is sufficiently fine and that the flow condition

has been reached. The spatial variability of the flow velocity is elucidated by a snapshot

of the instantaneous velocity field (velocity is non-dimensionalized by the local speed of

sound) shown in figure 3 for a streamwise cross-section at midspan.

2.3. Entropy wave

Entropy is related to temperature and pressure through thermodynamic equation

2.4, where s is entropy. Conversion of entropy waves to acoustics is subject to mean

flow acceleration (Williams & Howe 1975), which is absent in the current configuration.

Also, the aerodynamic sources of noise are insignificant in the considered channel flow

(Crighton 1975). Hence, in keeping with the previous studies of entropy wave decay
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Figure 3. Instantaneous velocity components in the (a) streamwise, (b) wall-normal and (c)

spanwise directions non-dimensionalized by the speed of sound.

(Morgans et al. 2013; Fattahi et al. 2017; Giusti et al. 2017), the pressure term dp/p in

equation 2.4 is ignored and entropy fluctuations scale with temperature fluctuations. The

entropy wave is therefore added to the flow by perturbing the temperature of the base flow

in a cross-section immediately downstream of the channel inlet. The method resembles

that of the Entropy Wave Generator (EWG) used in experimental studies (Bake et al.

2008, 2009) of entropy noise, which adds entropy waves to an accelerating tube flow by

means of a heating module. In the current problem the temperature fluctuations induced

by turbulence are smaller than the temperature fluctuation imposed on the flow by several

orders of magnitude.

ds

cp
=
dT

T
− R

cp

dp

p
. (2.4)

The temporal profile chosen for the temperature perturbation is Gaussian as per equation

2.5, where ∆T/T = (T−T )/T is the instantaneous amplitude of the perturbation relative

to the base flow temperature T , A is the peak amplitude of the perturbation, τ is non-

dimensional time, µ is the non-dimensional time at which the perturbation reaches its

peak amplitude and σ is the standard deviation of the perturbation that controls the

duration of the temperature forcing. Here, τ = (U bulk/L)t, where, U bulk is the bulk flow

velocity, L is the channel length and therefore τ is multiples of the mean residence time.

At every time step the instantaneous amplitude of the perturbation is uniform over the

plane cross-section at which it is added. The present study uses A = 0.1, σ = 0.1, and

µ = 0.5. The process of generating the entropy wave is illustrated in figure 4. The graph

in figure 4a shows the Gaussian perturbation used in the present study to perturb the

temperature in the plane cross-section shown in figure 4b.

∆T

T
= A exp

[
− (τ − µ)2

2σ2

]
. (2.5)
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Figure 4. Entropy wave generated by perturbing the temperature in a cross-section immediately

downstream of the channel inlet. The temporal profile of the perturbation is Gaussian as per

equation 2.5 with A = 0.1, σ = 0.1, and µ = 0.5.

2.4. Entropy wave advection

Snapshots of the advecting entropy wave after it has been added to the flow are shown

in the left and right columns of figure 5 for the cases of adiabatic and convective heat

loss at the walls, respectively. In each case the snapshot in the first row shows the state

of the entropy wave as soon as it has been added to the flow i.e. when the forcing of

temperature at the insert plane has ceased (in figure 4 this corresponds to τ ≈ 0.07).

The snapshots in the second and third rows show the states of the entropy wave when it

reaches the channel half-length and outlet, respectively. The time difference between the

snapshots is the same.

The maximum amplitude shortly after the generation of the entropy wave (in the

top row in figure 5) is ∆T/T = 0.06 in both cases (left and right columns), which

is lower than the peak value A = 0.1 of the added Gaussian perturbation. The 40%

reduction in amplitude occurs in the time taken to generate the entropy wave, that is,

in a non-dimensional time interval ∆τ = 0.07 (see figure 4a). By the time the wave

reaches the channel half-length (middle row in figure 5) and outlet (bottom row in figure

5), the maximum amplitude is ∆T/T ≈ 0.025 and ∆T/T ≈ 0.015, respectively. Thus,

a 40% reduction in amplitude within ∆τ = 0.25 during the generation of the wave is

followed by further 35% and 10% reductions within the successive ∆τ = 0.5 intervals.

It is clear that a profound decay occurs while the entropy wave is being generated.

The reason for this sharp drop in wave strength at the generation stage is twofold.

First, the strong temperature gradient developed near the insert plane presents a major

driving force for heat transfer by molecular diffusion. In addition, turbulent mixing is

also more effective than that at later stages because the thermal energy of the added

entropy wave is distributed over a broadband frequency range (the width of the frequency

spectrum depends on the value used for σ in equation 2.5 — the smaller σ is the wider the

frequency spectrum). The thermal energy contained in the high frequency components of

the perturbation that have small wavelengths of order comparable or smaller than those

of the turbulence undergo strong turbulent diffusion (Fattahi et al. 2017). The extent
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Figure 5. Convection of temperature perturbation through a fully developed, turbulent, channel

flow with adiabatic walls (left column) and convective cooling at the walls (right column)

obtained by direct numerical simulation.

of amplitude decay during generation of entropy wave is dependent on the temporal

‘sharpness’ of the added perturbation, which in the case of the artificially generated

wave in the current study is controlled by the value of σ in equation 2.5.

In both cases (left and right columns in figure 5), as the entropy wave advects from

the insert plane towards the channel outlet, it undergoes changes in shape, thickness

and amplitude. The later discussion suggests that the amplitude decay is, in part, a

consequence of the shape of the wave. Heat loss at the walls causes a reduction in

amplitude directly by removing heat from the hot fluid but also indirectly through its

influence upon the shape and thickness of the wave.

The uniform shape of the wave imposed at the insert plane is lost due to the spatial non-

uniformity of the velocity field. The slower mean velocity near the walls causes spreading

of the wave in the near wall regions. Hot and cold regions of the flow inter-penetrate

each other creating temperature gradients in the wall-normal direction that enhances

the molecular diffusion of heat and thus, the amplitude decay. The destructive effect of

the non-uniform velocity field, which is particularly notable near the walls where large

velocity gradients exist, is known as the shear-dispersion mechanism (Morgans et al.

2013). Heat losses at the walls (right column of figure 5) produce steeper temperature

gradients in the wall-normal direction. Hence, amplitude decay especially in the near wall

regions is much more profound when the walls are cooled. In fact, in this scenario the

amplitude of the wave quickly drops to zero near the walls and the entropy wave vanishes

close to the walls.

The spreading or thickening of the wave as it advects downstream is due to molecular
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and turbulent diffusion of heat from the hot fluid to the surrounding base flow. As heat is

distributed over an increasingly larger volume, the amplitude of the wave decays. Further,

as the wave spreads out the spectral distribution of the entropy wave becomes limited to

the low frequency regions. It has already been shown that low frequency components of

the entropy wave can survive turbulent flow much better than those of high frequencies

(Fattahi et al. 2017). Thus, the contribution of turbulent mixing to the overall diffusion

process is progressively hindered as the wave thickens and molecular diffusion becomes

the dominant diffusion mechanism. Since molecular diffusion of heat is naturally much

slower than turbulent diffusion, the rate of decay of the wave amplitude slows down.

In the current study, similar to Fattahi et al. (2017), the term dissipation is used to

refer to the decay of the wave amplitude. It is necessary to make this clarification because

the definition of dissipation in the context of entropy wave attenuation is not consistent in

the literature. Morgans et al. (2013) defined dissipation in terms of total thermal energy,

which, in an adiabatic system, is conserved. Dissipation defined as such does not include

the decay of amplitude due to the diffusion of heat from the hot fluid to the surrounding

base flow. Thus, dissipation in terms of amplitude decay is a more generic definition as it

includes the decay by thermal energy loss due to the sinks in the flow, but also includes

the decay resulting from spreading of the wave.

3. Low order model

The results of the direct simulation show that as the entropy wave advects through

the turbulent channel flow it does not retain the initial uniform shape and amplitude.

However, the established low order modelling approach has kept with the one-dimensional

outlook of studies of acoustic waves (Sattelmayer 2003; Morgans et al. 2013; Giusti et al.

2017). That is, the entropy wave has been integrated over the cross-section at every

time step to produce a one-dimensional entropy wave with a single position and a single

amplitude that are time dependent. In their approach, it is assumed that position of the

entropy wave changes at a rate equal to the bulk velocity of the isothermal flow and

the modelling process concentrates exclusively on the temporal decay of the volumetric

amplitude.

The current work aims to improve the aforementioned modelling approach in two

respects. Firstly, it avoids making any assumption regarding the wave speed and includes

the wave position as an output of the modelling process. Secondly, the entropy wave is

not reduced to a one-dimensional wave through integration but instead is sectioned into

streamwise cross-sections to allow the position and amplitude in each cross-section to

be modelled. Hence, in the present study the terms position and amplitude refer to the

positions and amplitudes from all the streamwise cross-sections, collectively.

The thermal energy at any moment in time is mainly concentrated around the position
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Figure 6. The snapshot of the entropy wave when it is at the channel half-length and the curve

Cmax connecting the positions of the maximum amplitudes in the streamwise cross-sections.

The amplitude is integrated along the curve as it is shifted upstream and downstream from its

original position. The graph shows the integrated amplitude with respect to the displacement.

A large proportion of the total thermal energy is concentrated around the positions of the

maximum amplitudes.

of the maximum amplitudes as shown in figure 6. The snapshot in figure 6a from the

direct numerical simulation of the adiabatic walls case shows the state of the entropy wave

once it has reached the channel half-length. The curve Cmax that is seen in the snapshot

traces the positions of the maximum amplitudes in the streamwise cross-sections. The

integrated amplitude along the curve Cmax is plotted as a point on the graph in figure

6b. Shifting the curve Cmax upstream and downstream from its original position (where

it coincides with the positions of maximum amplitudes) and plotting the integral of

the amplitudes along the curve at the new positions gives the bell-like curve shown in

figure 6b. The horizontal axis of the graph in figure 6b is the displacement of the curve

relative to its original position. The bell-like distribution shows how the thermal energy

is distributed around the positions of the maximum amplitudes (i.e. around the original

position of Cmax). Approximately 70% of the thermal energy is concentrated around

the positions of the maximum amplitude over a distance that is only 20% of the wave

thickness (the thickness of the wave being defined in this case as the distance between the

curves that have an integrated amplitude that is 10% of the peak amplitude A = 0.1).

Hence, without much loss of generality the entropy wave can be represented by the curve

connecting the positions of the maximum amplitudes in the streamwise cross-sections.

Time series of the position and magnitude of the maximum amplitude in each stream-

wise cross-section of the flow are generated from the direct simulation. At every time

step of the DNS, the amplitudes at all nodes in the streamwise direction with the same

wall-normal coordinate y are compared and the maximum amplitude in the streamwise

section is found. The position at which the maximum temperature occurs is xmax and

its magnitude is (∆T/T )max. Both these quantities are a function of the wall-normal
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coordinate y and the instance of time at which they are evaluated. The present study

used 128 nodes in the y- or wall-normal direction and, therefore, generated 128 time

series of xmax and 128 time series of (∆T/T )max.

In the methodology that follows, the subscript { }max is dropped from xmax and

(∆T/T )max = T̂max, where the caret { ˆ } is used to indicate a non-dimensional quantity.

Results are presented using the non-dimensional quantities in equation 3.1, where τ is

non-dimensional time (see equation 2.5) and δ is the channel half-height.

t̂ = τ, x̂ =
xmax
δ

, ŷ =
y

δ
. (3.1)

3.1. Formulation using DNS data from the case of adiabatic walls

The model is based on the assumption that the spatio-temporal evolution of the

position and amplitude of the wave in a streamwise cross-section can be described by the

generic non-linear system in equation 3.2, where the dot { ˙ } indicates the derivative

with respect to time and T is the amplitude at streamwise position x.

ẋ = g(T, x). (3.2a)

Ṫ = f(T, x), (3.2b)

Using the multivariate Taylor series expansion equation 3.2 is expressed as the infinite

summation in equation 3.3, where Φj is the state vector and Jij is the Jacobian matrix.

A repeated subscript implies summation over the range i, j = 1, 2.

Φ̇j = Jij · Φj + high order terms, (3.3a)

Φj =

[
T

x

]
, (3.3b)

Jij =

[
∂Ṫ
∂T

∂Ṫ
∂x

∂ẋ
∂T

∂ẋ
∂x

]
. (3.3c)

The high order terms in equation 3.3 are neglected and the Jacobian derivatives Jij

are estimated from the discrete DNS data using the forward differencing scheme, as

per equations 3.4a-c. Here, ∆t is the simulation time step, Φti are the states at time t,

and, T t and xt are the amplitude and position of the wave respectively in a streamwise

cross-section at time t.

∂Φj
∂t
≈ ∆Φj

∆t
=
Φt+∆tj − Φtj

∆t
, (3.4a)

∂Φ̇j
∂T
≈ ∆Φ̇j

∆T
=
Φ̇t+∆tj − Φ̇tj
T t+∆t − T t

, (3.4b)
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ij corr{Jij , T} corr{Jij , x}

11 -0.1 0.12

12 0.62 -0.47

21 -0.13 0.12

22 -0.08 0.03

Table 1. Pearson correlation coefficient of Jacobian derivatives (Jij) and states (x, T ).

∂Φ̇j
∂x
≈ ∆Φ̇j

∆x
=
Φ̇t+∆tj − Φ̇tj
xt+∆t − xt

. (3.4c)

The Pearson correlation corr(Jij , Φi) between the estimated Jacobian derivatives Jij

and the states Φj is tabulated in table 1 (LeBlanc 2004). It is noted that the Jacobian

derivative J12 (gradient of the decay rate) is strongly correlated with both amplitude

and position. Correlation with both states opposed to correlation with a single state is

expected because amplitude and position are not independent. That is, in the absence of

heat sources the amplitude decays as the wave advects downstream and the two states

must be inversely proportional. Hence, J12 correlates positively with T but negatively

with x. The fact that the Jacobian derivative J12 is not constant is an indication that

the the dynamics of amplitude decay are non-linear. The Jacobian derivatives J11, J21

and J22 are poorly correlated with the states. This suggests that they can be assumed

constant, which includes the possibility of them being zero. It is important to highlight

that if J21 and J22 are non-zero, then the wave speed is a function of amplitude T and

position x, as these terms couple the wave speed ẋ to the states. If J21 and J22 are zero

the wave speed is constant.

The position and amplitude in the streamwise cross-section at ŷ = 0.17 are shown

with respect to time in figures 7a and 7b. The trends of position and amplitude in the

streamwise cross-sections at other wall-normal positions are the same and the discussion

that follows about the trends at ŷ = 0.17 applies for any wall-normal position. The

linear relation between position and time in figure 7a confirms that the wave speed is

constant. The non-zero position at t̂ = 0 is the streamwise location of the insert plane

at which the entropy wave is added to the flow. The slope of the line in figure 7a is the

non-dimensional wave speed in the streamwise cross-section at ŷ = 0.17 with the value of

˙̂x ≈ 15.5. This corresponds to a velocity non-dimensionalized with respect to the friction

velocity ẋ+ ≈ 19.5. From the mean velocity profile of the isothermal flow shown in figure

2, the mean velocity at the streamwise cross-section ŷ = 0.17 (y+ ≈ 150 in wall units)

is u+1 = 18.3. Hence, the wave speed ˙̂x in the streamwise cross-section at ŷ = 0.17 is

within 7% of the mean velocity of the isothermal flow. This confirms the validity of the

assumption made in the previous studies (Sattelmayer 2003; Morgans et al. 2013) that
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Figure 7. Plots of (a) the position of the maximum temperature perturbation with respect to

time and (b) the decay rate with respect to the amplitude in a streamwise cross-section near

the centreline for the case of adiabatic walls: � DNS, -·- linear fit, — quadratic fit.

the entropy wave advects at the same velocity as the isothermal flow and thus, may be

treated as a passive scalar. The data points in figure 7a show a linear trend. However, for

perturbations with peak amplitudes much larger than A = 0.1, the validity of the passive

scalar assumption is dubious as evidence exists that the entropy wave does influence the

flow hydrodynamics (Hosseinalipour et al. 2017). The function obtained by fitting the

data with a least mean squares approach is given by equation 3.5, where θ1 is the fitting

function to be determined. Equation 3.5 provides the form of the general equation 3.2a.

˙̂x = θ1(ŷ) (3.5)

Table 1 suggests that the dynamics of amplitude decay are non-linear due to ob-

servation of a non-zero correlation between the Jacobian derivative J12 and the states

(the Jacobian of a linear system is invariant). This is confirmed by plotting the time

derivative of amplitude (decay rate) with respect to the amplitude, which is shown in

figure 7b for the streamwise cross-section at ŷ = 0.17. Further, since the decay rate is

the time derivative of amplitude, it is convenient to plot it with respect to amplitude.

At zero amplitude the wave has completely dissipated and, consequently, the decay

rate is set to zero. The data point at the origin is added manually to the time series

taken from the DNS because the simulation is terminated once the amplitude becomes

of the same order as the turbulent fluctuations, at which point the wave practically

has vanished. The phenomenological modelling approach taken by the previous studies

effectively assumes that the relation between the decay rate and amplitude in figure 7b is

linear. The linear fit is a particular form of equation 3.2b, which, when integrated gives an

exponentially decaying amplitude precisely as it is being viewed by the previous studies

(Giusti et al. 2017). However, the plot in figure 7b shows that for amplitudes T̂ > 0.02

the linear approximation underestimates the decay rate during the initial stages of the

wave advection and overestimates it during the final stages. The linear approximation is
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Figure 8. The decay rate and amplitude relation in the (a) near wall, (b) in between near wall

and core flow and (c) core flow regions in the case of convective heat loss at the walls: � DNS,

—— fit.

only capable of capturing the dynamics of the decay for amplitudes less than 2% of the

base flow temperature. In contrast to previous studies, the current study captures the

trend of the data points in figure 7b by a least squares quadratic fit as per equation 3.6

– instead of a linear one. The slope of the quadratic fit in figure 7b, which is the rate of

amplitude decay, decreases with the amplitude. This is in keeping with the discussion of

the DNS results in section 2. That is turbulent and molecular transport are strong during

the initial stages of the wave advection thus causing a fast decay at these stages. Later,

the slower molecular diffusion mechanism is dominant and results in a slower decay.

˙̂
T = θ2(ŷ)T̂ 2. (3.6)

The above methodology produces a particular version of the general system of equa-

tions 3.2a-b given by equations 3.5 and 3.6. Nonetheless, the time series were obtained

from the DNS of the channel with adiabatic walls. Applying the same methodology to

the time series obtained from the DNS of the channel with convective heat loss at the

walls reveals that equations 3.5 and 3.6 can also be used in the non-adiabatic case but

minor adjustments are necessary.

3.2. Adjustment for the case of heat loss at the walls

The position of the wave in the case of heat loss at the walls is well described by

equation 3.5 in every streamwise cross-section. However, unlike the case of adiabatic

walls, the amplitude decay cannot be approximated properly by equation 3.6 in every

streamwise cross-section. When convective heat loss is taking place at the channel walls,

the exponent of the term on the right hand side of equation 3.6 depends on the distance of

the streamwise cross-section from the wall. The value of the exponent, which is hereafter

designated as β(ŷ), comes from the fit type that is used to approximate the relation

between the (T̂ ,
˙̂
T ) data points in a streamwise cross-section at wall-normal coordinate
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ŷ. It transitions from β = 2 in the core flow to β = 1 and then to β = 0.5 in the near wall

regions, as shown in figure 8 for three randomly chosen streamwise cross-sections between

the wall and the centreline. The current work considers a piecewise and a continuous

variation of the β(ŷ) between the channel walls.

The piecewise β(ŷ) is obtained through the use of the Akaike information criterion or

AIC (Akaike 2011). The fit types shown in figure 8 are all made to the data points in the

streamwise cross-sections. According to the AIC, the fit type with the largest relative

likelihood of being the best fit is the appropriate choice for any particular streamwise

cross-section. The Akaike weight criterion is further discussed in the context of the current

work in appendix A.

The continuous β(ŷ) that is used in the current work is given by equation 3.7, which

gives β = 2 at the channel centreline (ŷ = 0) and β = 0.5 at the channel walls (ŷ = ±1)

in keeping with the observations made in figure 8. Higher powers were tested and resulted

in poor performance of the low order model away from the channel centreline, where the

values of β were too high.

β(ŷ) = 2− 1.5ŷ2 (3.7)

3.3. Generic low order model

The low order model formulated for the case of the channel with adiabatic walls

(equations 3.5 and 3.6) can be generalised to equation 3.8, where β(ŷ) depends on the

thermal boundary condition at the walls.

˙̂x = θ1(ŷ), (3.8a)

˙̂
T + θ2(ŷ)T̂ β(ŷ) = 0. (3.8b)

For adiabatic walls, it is β(ŷ) = 2 for −1 6 ŷ 6 1. In the case of convective heat loss

at the walls, β(ŷ) varies from β(0) = 2 at the centreline to β(±1) = 0.5 at the channel

walls. The current work considers a piecewise and a continuous variation of β(ŷ) over

the channel cross-section in the case of convective heat loss at the walls. In the case

of piecewise β(ŷ), the β(ŷ) ∈ {0.5, 1, 2} depending on the distance of the streamwise

cross-section from the wall. The best suited value of β(ŷ) for each streamwise cross-

section is determined using the Akaike information criterion (Akaike 2011). In the case

of continuous β(ŷ), the variation is given by equation 3.7. The analytical solutions of

equation 3.8 for different values of β(ŷ) are tabulated in table 2.

The model parameters θ1(ŷ) and θ2(ŷ) are not the same in all streamwise cross-sections

and are therefore functions of the wall-normal coordinate ŷ. Due to the way they appear in

equation 3.8, they are nominally the non-dimensional wave speed and dissipation factor,



18 Christodoulou, Karimi, Cammarano, Paul, and Navarro-Martinez

β solution of equation 3.8a solution of equation 3.8b

6= 1 x̂(t̂) = x̂(0) + θ1(ŷ)t̂ T̂ (t̂) = T̂ (0) +
{

[β(ŷ)− 1] θ2(ŷ)t̂
}1/[1−β(ŷ)]

= 1 x̂(t̂) = x̂(0) + θ1(ŷ)t̂ T̂ (t̂) = T̂ (0)exp
[
−θ2(ŷ)t̂

]
Table 2. Analytical solutions of the low order model given by equation 3.8.

respectively. By consideration of equation 3.1 and dimensional homogeneity, the scaling

factors of θ1(ŷ) and θ2(ŷ) in equation 3.8 are 1/U bulk and L/U bulk, respectively. Further,

since θ1(ŷ) and θ2(ŷ) are calculated through regression (of DNS data in this case), they

are empirical and therefore case specific. Unlike previous models, the parameters of the

current model are a function of the wall-normal coordinate and thus, the solution of

the model provides a position and an amplitude that are functions of the wall-normal

coordinate. That is the position and amplitude of the wave at any time are a function

of the wall-normal coordinate. Hence, the model describes a two-dimensional wave. The

profiles of θ1(ŷ) and θ2(ŷ) over the cross-section of the channel with adiabatic walls are

shown in figure 9 for the turbulent Reynolds number Rebulk = 5600 that is used in the

current work and also for the laminar Reynolds numbers Rebulk = 500 and Rebulk = 1000.

The wave speed in a streamwise section has been found to be approximately the same

(within 7%) as the mean velocity of the isothermal flow. Hence, it is expected that the

cross-sectional profile of θ1(ŷ) will be identical to the velocity profile of the isothermal

flow. This is confirmed by the plot in figure 9a that shows the profile of θ1(ŷ) over

the cross-section for the turbulent flow considered in the current work and also for two

laminar flows to further support the argument. For the turbulent Reynolds number, it

is θ1(ŷ) ≈ 1 over most of the cross-section except near the walls and for the laminar

Reynolds numbers, the maximum is θ1(0) = 1.5 at the centreline and the profiles are

parabolic. The aforementioned are indicators of the typical mean velocity profiles in

turbulent and laminar channel flows.

The non-dimensional dissipation factor θ2(ŷ) in figure 9b takes its minimum at the

channel centreline and increases on approach to the walls for all Reynolds numbers. This

is consistent with the DNS results shown in the left column (adiabatic walls case) of

figure 5, where the wave clearly dissipates faster in the near wall regions relative to near

the centreline as shear dispersion is stronger near the walls. Similarly, away from the

walls the overall dissipation is stronger at the laminar Reynolds numbers relative to that

at the turbulent Reynolds number. This is because in these regions the shear dispersion

is stronger in laminar flows due to the less uniform velocity profile.
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Figure 9. The cross-sectional profiles of the model parameters (a) θ1 and (b) θ2 for laminar

and turbulent Reynolds numbers: ◦ Rebulk = 500, 4 Rebulk = 1000, � Rebulk = 5600.

4. Comparison of model and simulation results

The accuracy of the formulated low order model in equation 3.8 is evaluated by

comparison of the solution with the DNS results. The DNS results are the time series

x̂DNS and T̂DNS used to formulate the low order model. Because the DNS results are

discrete in time, the time-continuous solution from the low order model (LOM), which

is tabulated in table 2 for the values of β, is discretised to facilitate comparison of the

solutions.

First, the model parameters θ1(ŷ) and θ2(ŷ) are calculated using the entire length

of the x̂DNS and T̂DNS time series from the DNS. That is, in every streamwise cross-

section, all the DNS data points are used to make the least squares fittings that give

the LOM parameters θ1(ŷ) and θ2(ŷ) (as done, for example, in figure 7 for a streamwise

cross-section near the centreline). Using shorter DNS time series to determine θ1(ŷ) and

θ2(ŷ) will diminish the accuracy of the LOM because the fittings will, in such a case, be

made to DNS data that do not cover the complete dynamical behaviour of the system.

Thus, for the purpose of LOM validation the entire length of the DNS time series has to

be used. The minimum length of the DNS time series needed for a reasonably accurate

LOM will be determined in section 5. Once θ1(ŷ) and θ2(ŷ) are determined they are

substituted together with the initial condition x̂DNS(t̂ = 0) and T̂DNS(t̂ = 0) into the

analytical solution of equation 3.8 (see table 2) to give the time-continuous solution. The

continuous solution is then sampled using a sampling period equal to the DNS time step

to give time series x̂LOM and T̂LOM from the low order model that have a one-to-one

correspondence with the time series x̂DNS and T̂DNS from the DNS. It should be clarified

that time series x̂LOM and T̂LOM are obtained for each streamwise cross-section because

θ1(ŷ) and θ2(ŷ) are different in each streamwise cross-section. This is emphasized by

consistently denoting their dependence on the wall-normal coordinate ŷ.

A comparison of the LOM and DNS solutions for the case of adiabatic walls is shown in

figure 10. The state of the entropy wave at t̂0 is the initial condition (x̂DNS , T̂DNS)t̂=0 and
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Figure 10. Accuracy of the low order model solution in the case of adiabatic walls: • DNS, —

linear low order model, — non-linear low order model.

is the state immediately after the entropy wave has been added to the flow. The position

of the wave in the right column of figure 10 is clearly in good agreement with the DNS

results over the entire cross-section. In the left column of figure 10, the amplitude decay

from the linear (β = 1) and non-linear (β = 2) LOMs has been shown. The result from the

linear LOM is shown due to its relevance to the previous studies (see Sattelmayer (2003);

Morgans et al. (2013); Giusti et al. (2017)) that assume the dynamics of amplitude

decay to be linear. It is clear that the proposed non-linear LOM (β = 2) is in better

agreement with the DNS results. The linear model overestimates the amplitude during

the early stages of the wave advection and underestimates it during the final stages.

This is in keeping with the discussion of figure 7 in which the linear approximation

underestimates the decay rate when the wave amplitude is large (at the early stages of

the wave advection) and overestimates it when the wave amplitude is low (at the late

stages of the wave advection).

A visual comparison of the LOM and DNS solutions for the case of heat loss at the

walls is shown in figure 11. Similar to the case of adiabatic walls, the position of the wave

from the LOM is in good agreement with the position from the DNS in the right column

of figure 11. The solution shown in figure 11 has a one-to-one time correspondence with

the solution shown in figure 10 for the case of adiabatic walls. The position of the wave

from the two cases is the same, indicating that the wave fronts are advecting at the same

speed. Thus, the wave speed has not been affected by the heat loss to the walls. The heat

loss to the walls has, relative to the adiabatic wall case, simply accelerated the dissipation

of the wave near the walls causing the amplitude to quickly fall to zero and the edges

of the wave to vanish. In the left column of figure 11, the solution of the LOM equation
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Figure 11. Accuracy of the low order model solution in the case of convective heat loss at the

walls: • DNS, — non-linear low order model using a piecewise β(ŷ), — non-linear low order

model using a continuous β(ŷ) given by equation 3.7.

Figure 12. Amplitude decay from the LOM when the same β is used for all the streamwise

cross-sections: • DNS, — LOM with β = 0.5, — LOM with β = 1, — LOM with β = 2.

3.8b with piecewise and continuous β gives a good approximation of the amplitude decay

from the DNS.

The need for a variable β in equation 3.8b in the case of heat loss at the walls is

depicted in figure 12, which shows the amplitude decay from the LOM when the same

β is used in equation 3.8b for all the streamwise cross-sections. The amplitude from the

equation with β = 0.5 shows better agreement with the amplitude from the DNS over

the equations with β = 1 and β = 2 at the edges of the wave. On the other hand, the
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nonlinear equation with β = 2 shows the best agreement with the amplitude from the

DNS near the centreline. Between the near-centreline and near-edge parts of the wave,

the amplitude from the equation with β = 1 makes for a gentle transition. Hence, unlike

the adiabatic walls, the case for which β = 2 could be used everywhere. In the case of heat

loss at the walls it is clearly needed to use a piece-wise β over the channel cross-section.

In order to carry out a more detailed comparison of the LOM and DNS solutions there

is a need to define quantitative measures or metrics of accuracy. Such metrics are also

needed in section 5 to consistently evaluate the accuracy of the LOM in relation to the

length of the DNS time series. There are two criteria that have to be met for the LOM

and DNS solutions to be considered in good agreement. First, the residual between the

states has to be small and secondly the way in which the states vary over the cross-

section has to be similar. Thus, two metrics are needed, one to measure the residual and

another to evaluate the correlation between the corresponding states from the LOM and

the DNS.

The residual between the states Φ̂LOMj from the LOM and the states Φ̂DNSj from the

DNS is averaged over the cross-section to give an overall residual. The average residual

of the states is equivalent to the residual of the average states as per equation 4.1, where

ε〈Φ̂j〉
A

is the residual of the average state
〈
Φ̂j

〉
A

over the channel cross-section as per

equation 4.2, and NY is the number of grid nodes used in the wall-normal direction for

the DNS. The residual given by equation 4.1 is normalized with respect to the average

state from the DNS. Due to the equivalence of the average residual with the residual

of the average states, henceforth, the average residual over the channel cross-section is

referred to simply as the residual meaning the residual of the average states. The sign of

the residual indicates if the average state from the LOM is larger (positive) or smaller

(negative) than the corresponding average state from the DNS.

The correlation between the states Φ̂LOMj from the LOM and the states Φ̂DNSj from the

DNS over the channel cross-section is measured with the Pearson correlation coefficient

rΦ̂j
as per equation 4.3. The correlation coefficient rΦ̂j

= +1 indicates that the state from

the LOM and the corresponding state from the DNS are perfectly correlated and, thus,

their respective profiles over the cross-section have the same trend. However, a Pearson

correlation coefficient rΦ̂j
= 0 indicates that the states are uncorrelated over the channel

cross-section and thus, that their respective profiles over the channel cross-section have

radically different trends.

ε〈Φ̂j〉
A

=

〈
Φ̂LOMj

〉
A
−
〈
Φ̂DNSj

〉
A〈

Φ̂DNSj

〉
A

, (4.1)

〈
Φ̂j

〉
A

=
1

NY − 1

NY−1∑
n=1

(
Φ̂j ŷ

)
n
. (4.2)
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Figure 13. Time series plots of the residual (a, b) and correlation (c, d) of corresponding states

from the LOM and DNS with respect to time for the case of adiabatic walls (a, c) and heat loss

at the walls (b, d): � x̂, � T̂ when LOM uses piecewise β(ŷ), J T̂ when LOM uses continuous

β(ŷ).

rΦ̂j
=

NY∑
n=1

(
Φ̂DNSj −

〈
Φ̂DNSj

〉
A

)
n

(
Φ̂LOMj −

〈
Φ̂LOMj

〉
A

)
n√

NY∑
n=1

(
Φ̂DNSj −

〈
Φ̂DNSj

〉
A

)2
n

NY∑
j=1

(
Φ̂LOMj −

〈
Φ̂LOMj

〉
A

)2
n

(4.3)

Time series plots of the metrics ε〈Φ̂j〉
A

and rΦ̂j
defined above are shown in figure 13a, c

for the case of adiabatic walls and in figure 13b, d for the case of convective heat loss

at the walls. The metrics for amplitude in the case of convective heat loss at the walls,

in figure 13b, d, are shown for the cases of the LOM using a piecewise and a continuous

β(ŷ). The metrics for the different cases of the β(ŷ) are nearly identical. In figure 13a and

13b, the residual is less than ±10% and ±1% at all times for the amplitude and position

respectively in both cases of the thermal boundary condition. The small residuals for

both amplitude and position keeps with the visual comparison in figures 10 and 11. The

reason for the larger amplitude residual is explained by referring to figure 7 in section

3, which shows the fittings made to the DNS data in a streamwise cross-section near

the channel centreline. In figure 7, the amplitude data from the DNS is more spread-out

than the position data and this is why in figure 13a,b the residual of amplitude is larger

than that of position. In figures 13c and 13d, the correlation is near unity at all times for
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amplitude and position in the case of adiabatic walls. In the case of convective heat loss

at the walls, the correlation of amplitude is near unity at all times and the correlation of

position, although not near unity at all times, never falls below 0.8.

5. Prediction

The comparison of the model and simulation results in section 4 is made using the

entire length of the DNS time series to determine the model parameters. The good

agreement observed between the states from the LOM and the DNS confirms that the

LOM has been formulated correctly. Using shorter DNS time series to estimate the model

parameters will diminish the accuracy of the LOM because the fittings that are made to

the DNS data will, in such a case, be made to DNS data that does not cover the complete

dynamical behaviour of the system. A minimum length of the DNS time series must exist

below which the LOM does not predict, with an acceptable accuracy, the position and

amplitude of the entropy wave beyond the range covered by the DNS time series used

to estimate its parameters. In order to determine the minimum length of the DNS time

series, the LOM parameters are estimated using progressively longer DNS time series

and the accuracy of the LOM is evaluated relative to the length of the time series. The

expectation is that the accuracy should approach an asymptotic limit as the length of the

time series is increased from the minimum length needed for a first estimate of the model

parameters to the full length of the DNS time series, which covers the entire dynamical

behaviour.

For each length of the DNS time series the accuracy of the LOM is evaluated with

use of the metrics defined in section 4. However, for DNS time series of any length the

metrics are time-dependent because at every new time step the states from the LOM

and DNS change and so does the accuracy of the LOM (see figure 13). Hence, the time-

average of the absolute metrics (〈|ε〈Φ̂j〉
A

|〉t, 〈|rΦ̂j
|〉t) is taken as a measure of the overall

accuracy of the LOM for a given length of the DNS time series. The absolute value of

the metrics is taken because a positive and negative residual or correlation coefficient

would cancel out when averaged and thus, the average of non-absolute metrics would

give wrong indications about the LOM accuracy.

Plots of the time-averaged metrics with respect to the length of the DNS time series

used to estimate the parameters of the LOM are shown in figure 14a, c for the case of

adiabatic walls and in figure 14b, d for the case of convective heat loss at the walls. The

metrics for amplitude in the case of convective heat loss at the walls, in figure 14b, d, are

shown for the cases of the LOM using a piecewise and a continuous β(ŷ). In figure 14a−d,

the 0% DNS data corresponds to fully developed turbulent flow before the addition of

the entropy wave to the flow. Further, the initial 12.5% of the DNS data (shaded region

in the plots of figure 14) is the data obtained during the time taken to add the entropy
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Figure 14. Plots of the time-averaged residual (a, b) and time-averaged correlation (c, d) of

corresponding states from the LOM and DNS with respect to the length of the DNS time series

used to formulate the LOM for the case of adiabatic walls (a, c) and heat loss at the walls (b,

d): � x̂, � T̂ when LOM uses piecewise β(ŷ), J T̂ when LOM uses continuous β(ŷ).

wave. This initial DNS data is not used when formulating the LOM for two reasons.

First, the current study is concerned with the advection of an entropy wave and not with

its generation. Secondly, the existence of sharp temperature gradients in the flow during

the addition of the entropy wave, require higher order terms to be included in the LOM

equations. Nevertheless, the initial 12.5% of the DNS time series is shown in the plots of

figure 14 for completeness.

In the case of adiabatic walls, in figure 14a, the residual in amplitude is large for short

DNS time series because there is insufficient DNS data for a good estimate of the LOM

parameters and it reaches the asymptotic limit of ≈ 2% at ≈ 25% of the DNS data. As

explained above, the first 12.5% of the DNS data (shaded region in the plots of figure 14)

is not used for the estimation of the LOM parameters and thus, the effective length of the

DNS time series at 25% is 12.5% of the trace. The residual in position never exceeds 2%

because the wave speed is nearly equal to the flow speed (see section 3). The correlation

in amplitude and position is very close to unity even for short DNS time series. The
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correlation of position is expected to be close to unity even for short DNS time series for

the same reason as the residual is expected to be small. On the other hand, the close to

unity correlation of amplitude for short DNS time series is not anticipated. This is an

indication that the large residual in amplitude for short DNS time series is uniform over

the channel cross-section at all times and hence, the amplitude remains correlated.

In the case of convective heat loss at the walls, in figure 14b, the residual in amplitude

for both cases of β(ŷ) and the residual in position are similar to the case of adiabatic

walls. That is, the residual in amplitude is large for short DNS time series and reaches the

asymptotic limit of ≈ 2% for the model parameters estimated using only ≈ 12.5% of the

full length of the DNS time series. Further, the residual in position is approximately

steady below 2%. The correlation in amplitude and position is very close to unity

irrespective of the length of the DNS time series just as in the case of adiabatic walls. The

correlation of the amplitude from the LOM with a continuous β(ŷ) is only marginally

larger than that of the amplitude from the LOM with a piecewise β(ŷ).

The accuracy of the formulated LOM is acceptable only when the residual of the states

is low and correlation of the states over the channel cross-section is close to unity. The

error in the prediction of the LOM is minimum when at least 12.5% of the full length of

the DNS time series is used; for the adiabatic and heat transferring cases. This is visually

confirmed in figures 15 and 16, which show a comparison of the LOM and DNS solutions

when the model parameters are determined using only one-eighth of the full length of

the DNS time series. Figures 15 and 16 show the comparison for the cases of adiabatic

walls and convective heat loss at the walls, respectively. For the case of convective heat

loss at the walls in figure 16, the solution of the LOM is shown for both the piecewise

and continuous β(ŷ) cases. The amplitude distribution from the LOM in the case of

continuous β(ŷ) is more wrinkled than in the case of piecewise β(ŷ). This is because

β(ŷ) is the order of the fit being made to the (T̂ ,
˙̂
T ) data points in each streamwise

cross-section. The fitting error depends on the order of the fit that varies continuously

over the channel cross-section, therefore the fitting error introduces a variability that

manifests in the model solution. The wrinkling is not so apparent in figure 11, where the

entire DNS dataset is used to make the fittings, because the fitting error is minimised

by the large dataset. Nonetheless, the wrinkling of the amplitude distribution is due to

very small variations over the channel cross-section. Similarly to the comparisons shown

in figures 10 and 11, when the full length of the DNS time series is used to determine the

model parameters, the LOM and DNS solutions are in good agreement even when only

one-eighth of the DNS time series is used. Therefore, an LOM of acceptable accuracy

can be estimated by knowing in advance only one-eighth of the complete evolution of the

entropy wave.

The low order model has also been applied to data from a Reynolds-Averaged Navier-
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Figure 15. Accuracy of the low order model solution in the case of adiabatic walls, where the

model parameters are determined using 12.5% of the full length of the DNS time series: • DNS,

— non-linear low order model.

Figure 16. Accuracy of the low order model solution in the case of convective heat loss at the

walls, where the model parameters are determined using 12.5% of the full length of the DNS

time series: • DNS, — non-linear low order model using a discontinuous β, — non-linear low

order model using a continuous β given by equation 3.7.

Stokes (RANS) calculation, resulting in a performance consistent with that shown for

the DNS data. These results are shown in appendix B. It is observed that the model

calibrated with RANS data, can accurately predict the shape and maximum amplitude

of entropy waves simulated by DNS. However, accurate prediction of the wave amplitude

across the entire channel cross-section, requires calibration with highly precise data. It is

important to note that the methodology, although currently applied to simulation data,
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it could equally be applied to experimental data. In those cases where additional flow

features related to combustor flows are present, such as swirl and chemical reactions, it is

expected that the formulated system of equations could have a different form than that

found in the current work.

6. Conclusions

Unlike modelling approaches in the literature on advecting entropy perturbations, in

the present study the perturbations have been given a more realistic representation

whereby the entropy wave has a variable shape and amplitude. Doing so has enabled

the low order modelling of the advecting entropy wave by considering it as a stand-alone

dynamical system that has two states, namely position and amplitude. Time series of

the position and amplitude of an advecting entropy wave in a fully developed turbulent

channel flow were first generated by conducting DNS. These time series were then used

to formulate and subsequently validate the proposed low-order-model through a rigorous

and novel methodology. In the process, findings emerged in support of and in opposition

to the main assumptions made by the conventional models of advecting entropy waves.

These include advection of the wave at the isothermal flow velocity and linearity of

the dynamics governing the decay of the wave amplitude. Both assumptions are made

routinely and are based on the case of a wave of small amplitude without any prior proof

of what constitutes a small amplitude.

In support of the first assumption, it was quantitatively confirmed, from the DNS data,

that an entropy wave with an initial amplitude of 10% of the base flow temperature

advects at the local flow velocity. Regarding the second assumption, the present study

has found opposing evidence. The differential equation formulated for amplitude in the

proposed low-order-model is non-linear. Further, the present study showed that the linear

approximation is only strictly reliable for the waves with amplitude smaller than 2% of

the base flow temperature. The linear differential equation underestimates the amplitude

of the wave during the final stages of the advection when the wave is near the combustor

exit nozzle. However, the proposed low-order-model shows that a non-linear differential

equation predicts the amplitude of the wave with much higher accuracy.

The developed model, similar to the existing low-order-models of advecting entropy

waves, gives a wave that advects at the flow velocity. Yet, it significantly improves on the

morphology of the evolving wave, which is non-uniform in both position and amplitude.

Further, it improves on the characterisation of the amplitude decay by using a non-linear

differential equation, which allows for the wave annihilation to be predicted. Importantly,

the case specific parameters of the proposed model can be estimated from limited

numerical or experimental data that cover, at most, only 12.5% of the complete trace of

wave advection. This together with the fact that the model equations are amenable to
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analytical solution, makes the developed model suitable for integration into active control

systems as a constituent part of thermoacoustic network models. The approach is also

consistent with the current simulation trends in which high fidelity modelling of the

reactive region is combined with a simplified aero-acoustic model, applied to the rest of

the combustor. This is because the high order modelling of the near-flame region, wherein

entropy waves are generated and start advecting, is sufficient for the development of an

LOM that can accurately predict the wave evolution. Finally, the model is also compatible

with MIMO model architectures as the logical next step towards the development of

better thermoacoustic models.
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Appendix A. Akaike information criterion

The likelihood or AICi value that fit-type i is the best approximation is given by

equation A 1, in which N is the number of data points, RSS is the residual sum of

squares and K = 1 in all three cases is the number of parameters in the fit-type. The

relative likelihood is the likelihood with respect to the minimum as per equation A 2,

where ∆i is the relative likelihood of fit type i. It is customary to normalize the relative

likelihood as per equation A 3, where wi is the normalized relative likelihood of fit type

i also known as the Akaike weight. The Akaike weight of each of the fits shown in figure

8 is shown in figure 17 for all the streamwise cross-sections. For example, very close to

the walls (ŷ ≈ ±1) the (T̂ ,
˙̂
T ) data points are best approximated by the fit

˙̂
T = θ2T

0.5

because the Akaike weight of this fit type shown in figure 17a is very near to unity close

to the walls and zero in all other streamwise cross-sections.

AICi = N ln(RSS/N) + 2K +
2K(K + 1)

N − (K + 1)
, (A 1)

∆i = AICi −min(AICi), (A 2)

wi =
exp

(
− 1

2∆i

)
Nfits∑
i=1

exp
(
− 1

2∆i

) . (A 3)
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Figure 17. The regions of the flow in which the amplitude decays according to (a)
˙̂
T = θ2T

0.5, (b)
˙̂
T = θ2T , and, (c)

˙̂
T = θ2T

2.

Appendix B. Calibration of low order model with RANS data

The low order model has also been calibrated with data from Reynolds-Averaged

Navier-Stokes (RANS) calculations. The RANS calculations were performed with the

ANSYS Fluent solver using a grid of 76× 69× 19 nodes in the streamwise, wall-normal,

and spanwise directions, respectively. The mean velocity profile was in close agreement

with that obtained from the DNS.

The model parameters obtained from the RANS calculation are compared in figure

18 to those obtained from the DNS. There is a good agreement between RANS and

DNS for the wave speed θ1 in figure 18a. This is confirmed in figure 19 that compares

the DNS result with that of the LOM that has been calibrated with the RANS data.

Regardless of the dataset used for calibration, the wave shape is always predicted well.

For the dissipation factor θ2 in figure 18b the agreement between RANS and DNS is

good around the channel centreline. However, moving away from the channel centreline,

the value of the dissipation factor from the RANS dataset is smaller than the value

from the DNS. Therefore, while the amplitude of the wave in the core flow can still be

predicted accurately as confirmed in figure 19, realistic amplitude predictions in the near

wall regions requires calibration with highly precise DNS data. It follows that, regardless

of the dataset used for model calibration, the low order model can predict the maximum

amplitude of the wave across the channel.

Figure 20 demonstrates that by calibrating the model with partial RANS data, the

LOM is able to predict the full RANS results with very good accuracy. Hence, as already

shown for the case of data from DNS, the model can predict the full evolution of entropy

wave from partial data, thus eliminating the need for a high-fidelity computation of the

entire domain.
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ŷ

θ2

Figure 18. The model parameters (a) θ1 and (b) θ2, determined using data from simulations

with different turbulence treatment: � DNS and � RANS.

Figure 19. Accuracy of the low order model calibrated with RANS data and compared with

DNS data for the case of adiabatic walls: • DNS, — low order model calibrated with RANS

data.
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Figure 20. Accuracy of the low order model calibrated and compared with RANS data for the

case of adiabatic walls: • RANS, — low order model calibrated with partial RANS data, and

— low order model calibrated with full RANS data.
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