
The Road to BOFUSS: The Basic OpenFlow Userspace
Software Switch

Eder Leão Fernandes

Queen Mary University of London, UK

Elisa Rojas and Joaquin Alvarez-Horcajo

University of Alcala, Spain

Zoltàn Lajos Kis

Ericsson, Hungary

Davide Sanvito

Politecnico di Milano, Italy

Nicola Bonelli

University of Pisa, Italy

Carmelo Cascone

Open Networking Foundation, USA

Christian Esteve Rothenberg

INTRIG, University of Campinas (UNICAMP), Brazil

Abstract

Software switches are pivotal in the Software-Defined Networking (SDN) paradigm,

particularly in the early phases of development, deployment and testing. Cur-

rently, the most popular one is Open vSwitch (OVS), leveraged in many production-

based environments. However, due to its kernel-based nature, OVS is typically

complex to modify when additional features or adaptation is required. To this

regard, a simpler user-space is key to perform these modifications.

In this article, we present a rich overview of BOFUSS, the basic OpenFlow

user-space software switch. BOFUSS has been widely used in the research com-

munity for diverse reasons, but it lacked a proper reference document. For

Preprint submitted to Journal of Network and Computer Applications May 11, 2020

this purpose, we describe the switch, its history, architecture, uses cases and

evaluation, together with a survey of works that leverage this switch. The

main goal is to provide a comprehensive overview of the switch and its charac-

teristics. Although the original BOFUSS is not expected to surpass the high

performance of OVS, it is a useful complementary artifact that provides some

OpenFlow features missing in OVS and it can be easily modified for extended

functionality. Moreover, enhancements provided by the BEBA project brought

the performance from BOFUSS close to OVS. In any case, this paper sheds light

to researchers looking for the trade-offs between performance and customization

of BOFUSS.

Keywords: Software-Defined Networking, Software switches, OpenFlow, Open

source, Data plane programmability

1. Introduction

Over the last decade, Software-Defined Networking (SDN) has been en-

throned as one of the most groundbreaking paradigms in communication net-

works by introducing radical transformations on how networks are designed,

implemented, and operated [1]. At its foundations, SDN data plane devices5

(aka. switches) are featured with programmable interfaces (e.g., OpenFlow [2])

exposed to controller platforms. More specifically, open source software switches

are a pivotal piece in the initial phases of research and prototyping founded on

SDN principles.

Due to their wide use, two open source OpenFlow software switches de-10

serve special attention: Open vSwitch (OVS) [3] and Basic OpenFlow User

Space Switch (BOFUSS) [4]. Both have different characteristics that make

them the best choice for different types of scenarios, research and deployment

objectives. OVS is probably the most well-known SDN switch and used in

commercial environments, mostly in SDN-based datacenter networks based on15

micro-segmentation following an overlay model (cf. [1]). BOFUSS is commonly

seen as a secondary piece of software switch, mostly used for research purposes,

2

Proof-of-Concept (PoC) implementations, interoperability tests, among other

non-production scenarios.

In this article, we present the history of BOFUSS going through a com-20

prehensive overview of its architecture, applications, and evaluation. Let us

start the journey by clarifying that BOFUSS is the name we have chosen for

this “late baptism”, since the switch did not have consistently used official

name. Many authors denominate it as CPqD switch, being CPqD (Centro de

Pesquisa e Desenvolvimento em Telecomunicações) the research and develop-25

ment center located in Campinas, Brazil, where it was developed, funded by the

Ericsson Innovation Center in Brazil. Hence, the switch has been also referred

to as CPqD/Ericsson switch, not only for the funding but also for the origi-

nal code base from an OpenFlow 1.1 version developed by Ericsson Research

TrafficLab [5] after forking Stanford OpenFlow 1.0 reference switch/controller30

implementation [6] developed around 10 years ago. OF13SS (from OpenFlow

1.3 software switch), or simply ofsoftswitch13 (following its code name in the

GitHub repository [7]), add to the list of names the software artefact is referred

to. We believe this naming issues can be explained by the lack of an official

publication, since the only publication focused on the tool [4], written in Por-35

tuguese, did not introduce a proper name and mainly used the term OpenFlow

version 1.3 software switch.

Fixing our historical mistake of not having given a proper name (i.e. BO-

FUSS) to the widely used switch is one of the target contributions of this article.

We delve into the switch history and architecture design in Section 2. Next, Sec-40

tion 3 presents selected use cases, which are later expanded in Section 4 through

an extensive survey of the works (35+) that leverage BOFUSS in their research

production. We evaluate and benchmark BOFUSS in Section 5 and, finally, we

conclude the article in Section 6.

3

2. BOFUSS: Basic OpenFlow Userspace Software Switch45

This section first introduces the history and motivation behind the develop-

ment of BOFUSS, and then presents its design and architecture.

2.1. Brief History

Up until the release of the OpenFlow 1.0 standard, there were three Open-

Flow switch implementations that provided more or less full compliance with50

the standard: i) The Stanford Reference OpenFlow Switch [6], which was devel-

oped along with the standardization process and its purpose was to provide a

reference to OpenFlow switch behavior under various conditions; ii) The Open-

Flow Python Switch (OFPS), which was implemented as part of the OFTest

conformance testing framework [8], meant primarily as a testing framework,55

and iii) OVS [3, 9], the most popular and high performance virtual switch with

OpenFlow support.

Since the beginning, the OpenFlow standardization process requires that all

proposed features are implemented before they are accepted as part of the stan-

dard. During the OpenFlow 1.1 standardization work, most of the new feature60

prototypes were based on OVS, mostly on separate branches, independent of

each other. Unfortunately, standardization only required that each individual

new feature worked, instead of looking for a complete and unique implementa-

tion of all features, as a continuous evolution of the standard and SDN switches.

As a result, when OpenFlow 1.1 was published, no implementation was avail-65

able. While the independent features were implemented, they applied mutually

incompatible changes to the core of the OVS code, so it was nearly impossible

to converge them into a consistent codebase for OVS with complete support for

OpenFlow 1.1.

This lead to the development of BOFUSS, as already explained in the intro-70

duction, popularly known as CPqD or ofsoftswitch13 among other code names.

The core idea was the need of a simpler implementation to be used for multiple

purposes such as: i) a reference implementation to verify standard behavior,

4

ii) an implementation with enough performance for test and prototype deploy-

ments, and iii) an elementary base to implement new features with ease.75

The code of the switch was based on the framework and tools provided by

the Reference OpenFlow Switch. Nevertheless, the datapath was rewritten from

scratch to make sure it faithfully represented the concepts of the OpenFlow 1.1

standard. Additionally, the OpenFlow protocol handling was factored into a

separate library, which allowed, for example, the implementation of the Open-80

Flow 1.1 protocol for the NOX controller. The first version of this switch was

released in May 2011 [10].

Afterwards, the software became the first virtual switch to feature a complete

implementation of OpenFlow 1.2 and 1.3, showcasing IPv6 support using the

OpenFlow Extensible Match (OXM) syntax [11]. Because of the comprehensive85

support to OpenFlow features and the simple code base, the switch gradually

gained popularity both in academia and in open-source OpenFlow prototyping

at the Open Networking Foundation (ONF).

2.2. Design and Architecture

In order to understand the features of BOFUSS, the following sections de-90

scribe its design and architecture. Furthermore, an architectural comparison

with OVS (its direct competitor) is also performed to clarify the main differ-

ences.

2.2.1. Design choices and programming models

Design. The design and implementation of software for virtual switches are in-95

tricate work, requiring developers’ knowledge of low-level networking details.

Even though it is hard to escape the complex nature of software switches,

BOFUSS main design goal is simplicity. Therefore, its implementation seeks

for ease in understanding and modifying the OpenFlow switch. OpenFlow does

not specify data structures and algorithms to support the pipeline of the pro-100

tocol. It gives freedom to virtual switch designers to choose the structure of

components to realize the pipeline described by the specifications. In the design

5

of BOFUSS, whenever possible, the implementation of the OpenFlow pipeline

follows the most straightforward solutions. Frequently, the most direct approach

is not the most efficient, but exchanging performance for simplicity is a trade-105

off worth paying, especially when prioritizing fast prototyping in support of

research. We describe core design decisions that make BOFUSS an accessible

option for faster prototyping.

Event handling. BOFUSS processes packets and OpenFlow messages in a

single-threaded polling loop. First, it goes through the list of ports looking for110

received packets ready for processing. The pipeline then processes the sequence

of available packets. Next, the switch iterates through remote connections with

OpenFlow controllers to handle OpenFlow messages. Finally, when no more

tasks are available, the switch blocks until a new event is available or for a

maximum of 100ms. This pattern is typical of event-driven applications, also115

found in production-ready solutions such as Open vSwitch (OvS). However, OvS

leverages multiple threads to speed up the setup of flows, cache revalidation, and

polling statistics. While multiple threads improve performance, they also add

extra complexity to the userspace code. BOFFUS single-threaded nature reflects

the option for a more uncomplicated implementation instead of performance.120

Packet Parsing. Another choice in BOFUSS that exchanges performance for

more convenient addition of new protocols to OpenFlow is on the design of the

packet parser. Because of the increase in the number of fields from OpenFlow 1.0

(14 fields) to 1.3 (40 fields), we realized the need for a solution that allows faster

prototyping in fields. Our approach leverages NetPDL [12] to define the fields125

supported by the switch and integrates the Netbee library [13] to automate the

parsing of fields. The following code listing shows an example of the definition

of the UDP protocol in NetPDL. The children of the fields element must be

in the order of the protocol header. Furthermore, we use the longname field to

encode the values for the vendor’s class and the field number according to the130

OpenFlow specification. This addition is essential to set the packet’s matching

fields correctly.

6

<?xml version=” 1 .0 ” encoding=” utf−8”?>

<netpdl name=”nbee . org NetPDL Database” version=” 0 .9 ”135

c r e a t o r=”nbee . org ” date=”09−04−2007”>

<pro to co l name=”udp” longname=”UDP (User Datagram pro to co l) ”

showsumtemplate=”udp”>

<format>

< f i e l d s>140

< f i e l d type=” f i x e d ” name=” spor t ” longname=”{0 x8000 15}”

s i z e=”2” showtemplate=” FieldDec ”/>

< f i e l d type=” f i x e d ” name=” dport ” longname=”{0 x8000 16}”

s i z e=”2” showtemplate=” FieldDec ”/>

< f i e l d type=” f i x e d ” name=” len ” longname=”Payload length ”145

s i z e=”2” showtemplate=” FieldDec ”/>

< f i e l d type=” f i x e d ” name=” crc ” longname=”Checksum”

s i z e=”2” showtemplate=” FieldHex ”/>

</ f i e l d s>

</ format>150

</ p ro to co l>

</ netpdl>

The extensible nature of BOFUSS’s packet parser showed efficiency in han-

dling tricky fields to parse, such as the IPv6 Extension Header [14]. However,155

the addition of the Netbee module decreased the performance of the switch by

a factor of three times. Researchers looking for better performance instead of

easiness to extend the OpenFlow fields can easily replace the parser with their

implementation. The change requires only modifying a single function of the

packet handler that serves as the programming interface for the parser of the160

switch. This scenario is one example of how BOFUSS provides a useful base for

modifying or prototyping new OpenFlow functionalities.

OpenFlow version. In the design of BOFUSS, we decided to support only a

single version of the protocol. The virtual switch supports OpenFlow 1.3.5, the

last version of the long-term branch of OpenFlow specifications [?]. Supporting165

only a single version simplifies the code as there is no need to accommodate dif-

ferent structures for messages and functionalities that behave differently across

7

versions of OpenFlow. If we decide to move towards OpenFlow 1.4 and beyond,

BOFUSS will continue to support only a single version.

Connection features. BOFUSS supports connections features that allow: (i)170

use multiple controllers under different roles; (ii) filter messages per connection;

and (iii) auxiliary connections in a single controller. The OpenFlow specification

is restrictive in the implementation of the first two items, whereas it contains

only guidelines for the implementation of the third. In our implementation,

the switch supports one additional TCP channel that carries only packet-in175

messages. Packets arriving from a channel from the controller receive a tag

with the type of the channel. This identification is necessary to return a possible

reply message through the same channel. For example, the reply from a status

request arriving from the main channel returns via the same channel. This

initial implementation of auxiliary channels in BOFUSS provides a base for180

researchers to extend the switch to support extra channels and handle different

messages. Any extension would only require adding extra connection listeners,

plus defining and handling what kind of OpenFlow message the connection

accepts.

2.2.2. Architecture of BOFUSS185

We now discuss the structure and organization of BOFUSS, depicted in Fig-

ure 1, and how it implements the OpenFlow pipeline. At the same time, we

also draw a comparison with the architecture of OVS, illustrated in Figure 2.

The aim is to aid readers familiar with the most famous virtual switch to un-

derstand the differences to BOFUSS. This introduction is a starting point for190

adventuring researchers and developers interested in using BOFUSS to develop

and test new features. Appendix A points to detailed guides that demonstrate

how to add or extend switch functionalities.

Execution space. A clear distinction between the architecture of BOFUSS

and OVS is that, in OVS, cached packet processing happens in the kernel.195

When a packet arrives, OVS parses and looks for cached entries in a single flow

8

Packet
Parser

1 2 N

Flow Tables

Meter 1
Meter Bands

Meter N
Meter Bands

Meter Table

Group 1
Actions

Group N
Actions

GroupTable

NetPDL

Oflib

Secure Channel

Dpctl

Output
Packet

Receive
Packet

Pack/Unpack message

OpenFlow Protocol

Management

User Space

Figure 1: Overview of the architecture of BOFUSS

Flow Tablesclassifier

ovs-vswitchd

ovs-ofctlovs-vsctl

ovsdb

Kernel Flow TablePacket Parser

kernel datapath

Kernel Space

Management

User Space

Receive
Packet

Output
Packet

Figure 2: Overview of the architecture of OVS

9

table. If there is not a recently cached flow entry for the packet, OVS sends

the packet to the user-space daemon ovs-vswitchd, where it goes through the

traditional pipeline of OpenFlow. If a flow matches the packet in user-space,

OVS caches the flow in the kernel flow table. In BOFUSS, the whole process200

happens in user-space, and there is no caching of recently matched flows. To

process packets directly on userspace, BOFUSS leverages Linux’s packet sock-

ets interface /footnotehttp://man7.org/linux/man-pages/man7/packet.7.html.

The sockets allow the switch to receive and send entire packets from any proto-

col, without changes to its headers.205

Packet Parser. A Pipeline packet that comes from the switch ports has the

header fields extracted by the Packet Parser first. As previously mentioned, the

parsing is automated by the Netbee library [13]. Netbee uses a NetPDL [12]

database in the format of eXtensible Markup Language (XML) that contains

the definition of the packet headers supported by OpenFlow 1.3. The NetPDL210

approach has been a powerful component that eases the addition of new fields to

OpenFlow, specially in the case of variable headers such as the IPv6 Extension

headers [14].

Flow Tables. The search for matching flows in BOFUSS follows a direct

approach. The switch’s Flow Tables store flows in a linked list, sorted by the215

priority. Considering the number of flows installed in a table as N and the

discussed number to compare two flow’s hash maps, the complexity of flow

lookup in BOFUSS in O(N ∗ M). Our simple method is less efficient than

OVS’s tuple space search classifier [15]. Each Flow Table from OVS may contain

multiple hash tables, one for each combination of matching fields in a flow. On220

lookup, it goes through every hash table, checking for the existence of the hash

created from a packet’s specific header values. Calling T the number of hash

tables in a single Flow Table, the complexity of matching in OVS is O(T).

Since a packet can match different hash tables and flows might have different

priorities, the OVS’s classifier must search all tables.225

10

Group Table. The Group Table enables different ways to forward packets. It

can be used for fast-failover of ports, broadcast and multicast and even to im-

plement Link Aggregation (LAG). The software switch supports all the group

entry types defined by the OpenFlow 1.3 specification. We store Group Ta-

ble entries in a hash map for O(1) retrieval. The most substantial difference230

between BOFUSS and OVS groups is the implementation of the type Select.

Our implementation selects action buckets in a Round-Robin fashion. In this

approach, on the first execution of a group, the first bucket is selected. In the

next execution, the group chooses the second bucket. The selection moves to

the next bucket until the last when it returns to the first. In OVS, the selection235

uses a hash of the source and destination Ethernet address, VLAN ID, Ether-

net type, IPv4/v6 source and destination address, and protocol, plus source and

destination ports for TCP and SCTP.

Meter Table. Metering gives the possibility to perform Quality of Service

(QoS) on a per-flow basis. The software switch supports the two types available240

on OpenFlow 1.3, the simple Drop and the Differentiated Services Code Point

(DSCP) remark. Both BOFUSS and OVS use the Token Bucket algorithm to

measure the per-flow rate and decide if the Meter instruction should be applied

or not.

Oflib. This independent library converts OpenFlow messages in a network for-245

mat to an internal format used by BOFUSS and vice-versa. The process of

converting messages is known as pack and unpack. Packing/unpacking a mes-

sage usually means to add/remove padding bits, but it can also involve the

conversion of complex Type-Length-Value (TLV) fields into the most appropri-

ate data structure. One example is the case of the flow match fields, which are250

translated into hash maps for dynamic and fast access. The Oflib should be

the starting point to anyone willing to extend the OpenFlow protocol with new

messages.

Secure Channel. The secure channel is a standalone program to set up a con-

11

nection between the switch and a controller. The division from the datapath255

happens because OpenFlow does not define the connection method, so imple-

mentations are free to define the connection protocol; e.g: Transmission Control

Protocol (TCP) or Secure Sockets Layer (SSL); to establish connections. Al-

though having secure on its name, at the moment, the component supports only

TCP connections. Support for secure oriented protocols, such as SSL, require260

updates to the Secure Channel code.

Management. The switch includes a command-line tool to perform simple

monitoring and management tasks. With Dpctl, one can modify and check the

current state of switches. A few examples of possible tasks: add new flows,

retrieve current flow statistics, and query the state of ports. ovs-ofctl plays265

the same role as Dpctl for OVS, a tool for OpenFlow related management. OVS

also has an additional tool (ovs-vsctl) to manage the switch as a bridge. The

use of a database to maintain configuration also enables OVS to restore state if

the system goes down or after a software crash. In BOFUSS, we do not support

the same capability to restore previous configurations as the switch is only for270

experimentation purposes.

3. Selected Use Cases

This section presents a series of BOFUSS use cases in which some of the

authors have contributed. The nature of these use cases is diverse and can be

classified in four types: (1) extensions of the BOFUSS switch, (2) implemen-275

tation of research ideas, (3) deployment of proof of concepts, and (4) research

analysis or teaching SDN architectural concepts. Altogether, they showcase

BOFUSS value in supporting industry, research, and academic institutions.

3.1. BEBA

3.1.1. OpenState Extension280

BEhavioural BAsed forwarding (BEBA) [16] is a European H2020 project on

SDN data plane programmability. The BEBA software prototype has been built

12

on top of BOFUSS with two main contributions: support for stateful packet

forwarding, based on OpenState [17], and packet generation, based on InSPired

(InSP) switches [18]. The reason to choose BOFUSS, instead of OVS, was its285

ease for code modification and portability. Additionally, it was an opportunity

to showcase alternative software switches to OVS, and to demonstrate that

performance could be greatly enhanced simply by including additional designers

and developers to the team.

OpenState is an OpenFlow extension that allows implementing stateful ap-290

plications in the data plane: the controller configures the switches to autonomously

(i.e., without relying on the controller) and dynamically adapt the forwarding

behavior. The provided abstraction is based on Finite State Machines where

each state defines a forwarding policy and state transitions are triggered by

packet-level and time-based events. BOFUSS has been extended using the295

OpenFlow experimenter framework and adding to each flow table an optional

state table to keep track of flow states. Stateful forwarding is enabled thanks to

the ability to match on flow state in the flow table and the availability of a data

plane action to update the state directly in the fast path. Stateful processing is

configured by the controller via experimenter OpenFlow messages.300

InSP is an API to define in-switch packet generation operations, which in-

clude the specification of triggering conditions, packet format and related for-

warding actions. An application example shows how the implementation of an

in-switch ARP responder can be beneficial to both the switch and controller

scalability.305

The additional flexibility introduced by BEBA switches enables several use

cases which get benefits from the reduced controller-switch signaling overhead

regarding latency and processing. Cascone et. al [19] present an example ap-

plication showing how BEBA allows implementing a programmable data plane

mechanism for network resiliency which provides guaranteed failure detection310

and recovery delay regardless of controller availability. StateSec [20] is another

example of stateful application combining the efficient local monitoring capabil-

ities of BEBA switches with entropy-based algorithm running on the controller

13

for DDoS Protection.

3.1.2. Performance enhancements315

The second goal for BEBA has been the performance improvement of the

data plane. To tackle such a problem, a major refactoring has been put on the

field. The set of patches applied to the code base of BOFUSS comprises a Linux

kernel bypass to improve the IO network performance, a new design for the

packet handle data–type and the full exploitation of the multi-core architectures.320

First, the native PF PACKET Linux socket originally utilized to send/re-

ceive packets has been replaced with libpcap [21]. The aim of this refactoring

is twofold: on the one hand, it makes the code more portable, on the other, it

facilitates the integration with accelerated kernel-bypass already equipped with

custom pcap libraries. In order to improve the overall performance, the polling325

loop adopted by BOFUSS has been replaced by an active polling mechanism.

Thanks to the avoidance of the user-space/kernel-space context switching due

to the system call poll(), the main advantage of this approach is a reduced

latency. The downside is a high CPU usage because the process is committed to

continuously poll the resource. In real-time system dedicated to network pro-330

cessing, since their main purpose is to maximize performance and not to reduce

unnecessary CPU consumption, the choice of an active polling system, such as

the one we implemented in the BEBA switch, was significant for obtaining the

best results.

Second, the structure of the packet-handle has been flattened into a single335

buffer to replace the multi-chunk design abused in the original code. This change

permits to save a dozen of dynamic memory allocations (and related dealloca-

tions) on a per-forwarding basis, which represents a remarkable performance

improvement per-se.

Finally, to tackle the parallelism of the multicore architecture, the PFQ [22]340

framework was adopted (though it is not active by default). The reason for

such a choice over more widely used solution like DPDK is the fine-grained

control of the packet–distribution offered by PFQ off-the-shelf. The ability

14

to dispatch packets to multiple forwarding processes, transparently and with

dynamic degrees of flow-consistency, is fundamental to a stateful system like345

BEBA, where hard consistency guarantees are required by the XFSM programs

loaded on the switch.

The remarkable acceleration obtained (nearly 100x) allows the prototype to

full switch 4/5 Mpps per–core and to forward the 10G line rate of 64 bytes-long

packets with four cores on our 3 GHz but old Xeon architecture. On the other350

hand, the flexibility of BOFUSS has been in general preserved (in terms for

example of modifications to the match-action pipeline and/or addition of new

ctrl-switch OpenFlow messages).

A comprehensive description of the various techniques utilized in the BEBA

switch, as well as the acceleration contribution of every single patch, are pre-355

sented in [23].

3.2. AOSS: OpenFlow hybrid switch

AOSS [24] emerged as a solution for the potential scalability problems of

using SDN alone to control switch behavior. Its principle is to delegate part of

the network intelligence back to the network device –or switch–, thus resulting360

in a hybrid switch. Its implementation is based on the –currently– most com-

mon Southbound Interface (SBI) protocol: OpenFlow. The reason to choose

BOFUSS was that its code was much more straightforward (and thus faster) to

modify and conceptually prove the idea of AOSS.

AOSS accepts proactive installation of OpenFlow rules in the switch and, at365

the same time, it is capable of forwarding packets through a shortest path when

no rule is installed. To create shortest paths, it follows the locking algorithm

of All-Path’s switches [25], which permits switches to create minimum latency

paths on demand, avoiding loops without changing the standard Ethernet frame.

An example of application for AOSS could be a network device that needs370

to drop some type of traffic (firewall), but forward the rest. In this case, the

firewall rules would be installed proactively by the SDN controller and new

packets arriving with no associated match would follow the minimum latency

15

path to destination. This reduces drastically the control traffic, as the SDN

controller just needs to bother about the proactive behavior and is not required375

to reply to PACKET IN messages, usually generated for any unmatched packet.

AOSS is particularly favorable for scenarios as the one described above, but

its implementation still does not support composition of applications or reactive

SDN behavior. Nevertheless, it is a good approach for hybrid environments

where the network intelligence is not strictly centralized, thus improving overall380

performance.

3.2.1. AOSS Implementation:

To create a PoC of AOSS, different open-source SDN software switches were

analyzed. Although OVS was first in the list, due to its kernel-based (and

thus higher performance) nature, leveraging its code to quickly build a PoC385

was laborious. Therefore, the code of BOFUSS was adopted instead. AOSS

needs some modifications to generate the hybrid system. The main one requires

inserting an autonomous path selection for all packets with no associated match

in the OpenFlow table. Fig. 3 reflects these functional changes.

Match in table n?

Goto Table n?

Table-miss flow

entry exists?

Update Counters

Execute instructions

EXECUTE ACTION SET

Yes Yes

No

Yes

No

NoS
w

it
ch

O
p
en

F
lo

w

DISTRIBUTED BRIDGING

ENGINE

FRAME Rx

Path Recovery?
COOPERATIVE

RECOVERY
Yes

No

Figure 3: AOSS’s Frame Processing [24]

16

Regarding AOSS implementation, two functional changes and two new func-390

tions are defined, as defined in Fig. 4. The first change is a modification in

the Pipeline Process Packet Function to guarantee compatibility with the au-

tonomous path selection protocol. The second change modifies the drop packet

function to create the minimum latency path. As for the new functions, the

first is responsible for cleaning the new forwarding tables and the second sends395

special control frames to allow path recovery after a network failure.

Run Dp

Run Port

Process Pipeline

Pipeline Process

Packet

Pipeline Process

Packet AOSS

Drop Packet
Autonomous

Path Selection

Send Packet

Clean Process

Hello Process

Found In OF

Tables?

Yes

No

Figure 4: AOSS’s Functional Flow Chart

3.3. OnLife: Deploying the CORD project in a national operator

OnLife [26] is a deployment of the CORD project [27] in Telefonica’s1 central

offices. The main purpose of OnLife is to bring services as closer to the final

user as possible, to enhance their quality, and its first principle is to create a400

1Main Spanish telecommunications provider

17

clean network deployment from scratch, with no legacy protocols (e.g. allowing

only IPv6 and avoiding IPv4).

The first step in OnLife was building a PoC, purely software-based, to prove

its foundations. In CORD, some of the applications in the SDN framework

(namely ONOS [28]) require IEEE 802.1ad QinQ tunneling [29] to classify dif-405

ferent flows of traffic inside the data center. Therefore BOFUSS was leveraged

as OVS does not support this feature.

BOFUSS allowed the initial design of the project, although some initial

incompatibilities were found in the communication between ONOS and the

switches, solved afterwards. The main conclusion is that BOFUSS became410

a crucial piece for these deployments, and specific efforts should be made to

increase its visibility and community support.

3.4. BOFUSS as a teaching resource

One of the first degrees that teaches the SDN and NFV technologies as

tools for the emerging communication networks, specifically 5G networks, is415

the Master in NFV and SDN for 5G Networks of the University Carlos III of

Madrid [30].

BOFUSS is part of the syllabus, presented together with OVS, as one of

the two main open source software SDN switches. As its main feature, its easy

customization is highlighted. BOFUSS helps explaining the concept of data420

plane programmability (as a generalization of SDN) and how this is a required

feature for future SDN/NFV deployments.

More specifically, the use of BOFUSS is very convenient for introductory

labs about networking programmability, as its code is easy to follow and to

modify, which can serve as an initial approach for students, to later work with425

OVS or directly with the P4 language [31]. In fact, it could be leveraged for

any networking scenario and not necessarily for SDN/NFV, even to implement

and test classic routing protocols such as OSPF. To the best of our knowledge,

there is no similar open-source alternative software to achieve these objectives.

18

Table 1: Classification of works that leverage BOFUSS (part 1/3)

Article

Properties
Description Type Why?

OpenState [17]
OpenFlow extension for

stateful applications
Research implementation Pipeline modification

InSP [18]
API to define in-switch

packet generation operations
Research implementation Pipeline modification

AOSS [24]
Stateful (hybrid)

SDN switch
Research implementation Pipeline modification

OPP [32]
Platform-independent stateful

in-network processing
Research implementation Pipeline modification

BPFabric [33, 34]
On-the-fly data plane packet processing pipeline

and direct manipulation of network state
Research implementation Pipeline modification

Fast switchover/failover [35]
New switchover method based on

active/active mode (select group)
Research implementation Pipeline modification

FlowConvertor [36]
Algorithm that provides

portability across switch models
Research implementation Pipeline modification

Chronus [37]
Scheduled consistent

network updates
Research implementation Pipeline modification

REV [38]
New security primitive

for SDN
Research implementation Pipeline modification

RouteFlow [39]
OpenFlow 1.x Dataplane for virtual

routing services
Research implementation

OpenFlow version interoperability

and Group Tables

TCP connection

handover [40]

New method of TCP connection

handover in SDN
Research implementation Modification of OpenFlow 1.3

N/A means not applicable.

N/D means not defined.

4. Fostering Research & Standardization430

Following the classification provided in the previous use cases, this section

is devoted to create a brief catalog of the different works found in the literature

that have leveraged BOFUSS. The categories are: research implementations or

evaluations, PoC implementations, and SDN switch comparatives, and teaching

resources. The resulting grouping is summarized in Tables 1, 2 and 3.435

4.1. Research implementations or evaluations

Three research implementations have already been introduced in the use

cases, namely OpenState [17], InSP [18] and AOSS [24]. All of them envision

alternative architectures for SDN in which network switches recover part of the

19

Table 2: Classification of works that leverage BOFUSS (part 2/3)

Article

Properties
Description Type Why?

Facilitating ICN

with SDN [41]

Leveraging SDN

for ICN scenarios
Research implementation Extension of OpenFlow

ÆtherFlow [42]
Application of SDN principles

to wireless networks
Research implementation Extension of OpenFlow

CrossFlow [43],[44]
Application of SDN principles

to wireless networks
Research implementation Extension of OpenFlow

Media Independent

Management [45]

Dynamic link information acquisition

to optimize networks
Research implementation Extension of OpenFlow

Automatic failure

recovery [46]

Proxy between SDN controller

and switches to handle failures
Research implementation Reuses oflib from ofsoftswitch13

OFSwitch13 [47]
Module to enhance the ns-3 simulator

with OpenFlow 1.3
Research implementation Reuses ofsoftswitch13

Time4 [48]
Approach for network updates

(adopted in OpenFlow 1.5)
Research implementation Bundle feature

OFLoad [49]
OF-Based Dynamic Load Balancing

for data center networks
Research implementation OpenFlow group option

Blind Packet Forwarding

in hierarchical architecture [50]

Implementation of the

extended BPF
Research implementation N/D

GPON SDN Switch [51]
GPON based OpenFlow-enabled

SDN virtual switch
Research implementation Part of the architecture

Traffic classification

with stateful SDN [52]

Traffic classification in the data plane

to offload the control plane
Research implementation

Leverages OpenState [17]

and OPP [32]

Traffic classification and control

with stateful SDN [53]

Traffic classification in the data plane

to offload the control plane
Research implementation Leverages OpenState [17]

SPIDER [19]
OpenFlow-like pipeline design for failure

detection and fast reroute of traffic flows
Research implementation Leverages OpenState [17]

StateSec [20]
In-switch processing capabilities

to detect and mitigate DDoS attacks
Research implementation Leverages OpenState [17]

Load balancers

evaluation [54]

Evaluation of different

load balancer apps
Research evaluation Leverages OpenState [17]

Recovery of multiple

failures in SDN [55]

Comparison of OpenState and OpenFlow

in multiple-failure scenarios
Research evaluation Leverages OpenState [17]

N/A means not applicable.

N/D means not defined.

20

Table 3: Classification of works that leverage BOFUSS (part 3/3)

Article

Properties
Description Type Why?

UnifyCore [56]
Mobile architecture implementation in which

ofsoftswitch13 is leveraged as a fordwarder
PoC implementation MAC tunneling

ADN [57]
Architecture that provides QoS

on an application flow basis
PoC implementation

Full support of OpenFlow 1.3

(meters and groups all/select)

TCP connection handover

for hybrid honeypot systems [58]

TCP connection handover mechanism

implemented in SDN
PoC implementation Data plane programmability

Multiple Auxiliary TCP/UDP

Connections in SDN [59]

Analysis and implementation

of multiple connections in SDN
PoC implementation Extension of OFSwitch13 [47]

State-based security protection

mechanisms in SDN [60]

Demonstration of the

SDN Configuration (CFG) protection
PoC implementation Leverages OpenState [17]

Advanced network

functions [61]
Stateful data-plane network functions PoC implementation Leverages OPP [32]

PathMon [62] Granular traffic monitoring PoC implementation N/D

QoT Estimator in SDN-Controlled

ROADM networks [63]

Implementation of a QoT estimator

in a simulated optical network
PoC implementation N/D

OPEN PON [64]
Integration of 5G core

and optical access networks

PoC implementation

(MSc Thesis)

Support of IEEE 1904.1 SIEPON,

meters and Q-in-Q

Stochastic Switching

Using OpenFlow [65]

Analysis and implementation

of stochastic routing in SDN

PoC implementation

(MSc Thesis)

Select function of

Group feature

OpenFlow forwarders [66]
Routing granularity

in OpenFlow 1.0 and 1.3
SDN switch comparative N/A

Open source SDN [67]
Performance of open source

SDN virtual switches
SDN switch comparative N/A

Visual system to learn OF [68]
A visual system to support learning

of OpenFlow-based networks
Teaching resource N/D

N/A means not applicable.

N/D means not defined.

21

intelligence of the network and, accordingly, they leverage BOFUSS thanks to440

its easily modifiable pipeline.

Also based on pipeline modifications, Open Packet Processor (OPP) [32]

enhances the approach of OpenState to support extended Finite State Machines,

which broadens the potential functionality of the data plane. BPFabric [33, 34]

defines an architecture that allows instantiating and querying, on-the-fly, the445

packet processing pipeline in the data plane.

Regarding the evolution of current SBI protocols (namely OpenFlow), an al-

ternative switchover procedure (active/active instead of active/standby) is pre-

sented in [35], which leverages the select group of BOFUSS. RouteFlow [39]

is a pioneering architectural proposal to deliver flexible (virtual) IP routing ser-450

vices over OpenFlow networks [69] (developed by the same core research group

at CPqD behind BOFUSS), which extensively used the software switch for fast

prototyping, interoperability tests with OpenFlow 1.2 and 1.3, and new features

such as group tables.

Considering the heterogeneity of switch pipeline implementations, Flow-455

Convertor [36] defines an algorithm that provides portability across different

models. To prove the idea, it applies it to a BOFUSS switch, as it demonstrates

to have a flexible and programmable pipeline. Another research topic in relation

to the SBI are transactional operations and consistent network updates (cur-

rently OpenFlow does not support these types of procedures), and Chronus [37]460

modifies BOFUSS to provide scheduled network updates, to avoid potential

problems, such as communication loops or blackholes. Finally, REV [38] de-

signs a new security primitive for SDN, specifically aimed to prevent rule mod-

ification attacks.

In the specific case of enhancements of OpenFlow, an extension of Open-465

Flow 1.3 thanks to BOFUSS is introduced in [40], which includes two new

actions (SET TCP ACK and SET TCP SEQ) to modify the ACK and SEQ values in

TCP connections. Alternatively, the matching capabilities of OpenFlow have

been extended in [41] to provide an optimal parsing of packets in the context

of Information-Centric Networking (ICN). Both ÆtherFlow [42] and Cross-470

22

Flow [43] study how to evolve OpenFlow to include the SDN principles in wire-

less networks. In this regard, BOFUSS acts as an OpenFlow agent with custom

extensions. Another extension of OpenFlow is provided in [45], were the authors

design a framework where the key is media independent management.

Different research implementations are based on BOFUSS because they sim-475

ply wanted to leverage some piece of its code. For example, the automatic failure

mechanism described in [46] reuses the oflib library. OFSwitch13 [47] reuses

the whole code of BOFUSS to incorporate the support of OpenFlow 1.3 in the

network simulator ns-3. Time4 [48] reuses the bundle feature to implement an

approach for network updates (actually adopted in OpenFlow 1.5). OFLoad480

[49] leverages the OpenFlow group option from BOFUSS to design an strategy

for dynamic load balancing in SDN. The principles of Blind Packet Forwarding

(BPF) also reuse the code of BOFUSS for the implementation. A textbfGPON

SDN Switch, where BOFUSS is part of the architecture, is also designed and

developed in [51].485

Finally, several research ideas leverage OpenState and, thus, BOFUSS. The

first two were already mentioned previously: SPIDER [19] and StateSec [20],

both examples of stateful applications aimed to provide enhanced network re-

siliency and monitoring, respectively. Also, traffic classificators based on

OpenState are also presented in [52] and [53]. Additionally, an evaluation of490

SDN load balancing implementations is performed in [54], and authors in [55]

compare recovery of SDN from multiple failures for OpenFlow vs. OpenState.

4.2. PoC implementations

BOFUSS has also been part of different PoC implementations. For example,

UnifyCore [56] is an integrated mobile network architecture, based on Open-495

Flow but leveraging legacy infrastructure. They evaluate the MAC tunneling

implemented in BOFUSS with iperf. ADN [57] describes an architecture that

provides QoS based on application flow information, and they chose BOFUSS

because it fully supports OpenFlow 1.3. Authors in [58] implemented a novel

TCP connection handover mechanism with BOFUSS, aimed to provide trans-500

23

parency to honeypots by generating the appropriate sequence and acknowledge-

ment numbers for the TCP redirection mechanism to work.

One PoC leveraged OFSwitch13 (BOFUSS in ns-3) to support multiple

transport connections in SDN simulations [59], while authors in [60] leverage

OpenState to demonstrate that stateful data-plane designs can provide addi-505

tional security for operations such as link reconfiguration or switch identifica-

tion. Advanced network functions based on OPP are implemented and tested

in [61].

Out of curiosity, there are some works that use BOFUSS just as the SDN

software switch for no particular reason (as many others use OVS by default).510

One of them is PathMon [62], which provides granular traffic monitoring. An-

other one is a QoT estimator for ROADM networks implemented and evaluated

in [63].

Finally, two MSc. Thesis have also be developed based on BOFUSS. The

first one is OPEN PON [64], which analyzes the integration between the 5G515

core and optical access networks. BOFUSS was selected because of different rea-

sons, but mainly because of its support of standards, such as Q-in-Q (required to

emulate the behaviour of the OLT modules), which is not properly implemented

in OVS. The second one describes stochastic switching using OpenFlow [65] and

BOFUSS was once again chosen due to its good support of specific features, such520

as the select function.

4.3. Comparative reports and Teaching resources

In this last category, it is worth mentioning two comparison studies: a per-

formance analysis of OpenFlow forwarders based on routing granularity [66],

and an experimental analysis of different pieces of software in an SDN open525

source environment [67]. The former compares BOFUSS with other switches,

while the latter analyzes the role of BOFUSS in a practical SDN framework.

Finally, a nice teaching resource is described in [68], where the authors present a

system they put in practice to learn the basics of OpenFlow in a visual manner.

24

5. Evaluation530

As previously stated, there are currently two main types of software switches

for SDN environments: OVS and BOFUSS. The main conclusion is that OVS

performs much better, but it is hard to modify, while BOFUSS is particularly

suitable for customizations and research work, even though its throughput lim-

itations. This is just a qualitative comparison.535

For this reason, in this section, we provide an additional quantitative eval-

uation for OVS vs. BOFUSS. More specifically, we will compare OVS with

the two main flavours of BOFUSS, namely the original BOFUSS [7] and the

enhanced version implemented by the BEBA [70] project. The comparison

will be performed via two tests:540

1. Individual benchmarking of the three switches via iPerf [71]

2. Evaluation in a data center scenario with characterized traffic and three

different networks comprised of the different types of switches

The main purpose is to provide a glance at the performance of BOFUSS, which

might be good enough for many research scenarios, even if OVS exhibits better545

results overall2.

5.1. Individual benchmarking

For this first test, we directly benchmarked each of the three switches (OVS

and the two flavours of BOFUSS) with iPerf [71]. Our hardware infrastructure

consisted of 1 computer powered by Intel(R) Core(TM) i7 processors (3,4 GHz),550

8 CPU cores, with 24 GB of RAM and Ubuntu 14.04 as Operating System.

We deployed one single switch of each type and run iPerf 10 times for each

scenario, obtaining two parameters: throughput and packet processing delay,

both represented with their average value and standard deviation. Additionally,

we measured the CPU usage of each switch with flows of different throughput555

2A comparison of OVS with other software switches, but without including BOFUSS, is

provided in [72].

25

Table 4: Throughput and packet processing delay of the three individual types of software

switches, measured with iPerf

Switch Throughput Packet Processing Delay

OVS 51.413 Gbps ±2.6784 724.16 ns ±32.23

Enhanced BOFUSS 1.184 Gbps ±3.945*10−3 2354.48 ns ±1.4599

Original BOFUSS 0.186 Gbps ±6.86*10−5 59115.75 ns ±130.88

(1, 10 , 50, 100, 500, 1000 Mbps, and no restriction (MAX)). The value of CPU

usage has been obtained with the top Linux command.

1 10 50 100 500 1000 MAX

Bw (Mbps)

0

5

10

15

20

C
P

U
 (

%
)

% CPU

OvS
Enhanced BOFUSS
Original BOFUSS

Figure 5: Percentage of CPU usage for each switch type

The results for the throughput and packet processing delay are shown in

Table 4. Although OVS outperforms BOFUSS, it is important to notice how

the enhanced switch has a tolerable packet processing delay and it surpasses 1560

Gbps, a result considered a reasonable throughput for most common networking

scenarios.

As for the CPU usage, it is represented by Fig. 5. Both BOFUSS and its

enhanced version are, by default, monolithic (they just leverage one core) and

consume up to a 12.5% of CPU, which is exactly an eighth of the total available565

CPU, while OVS uses more than one core and, hence, its consumption might be

higher. Finally, we would like to highlight two aspects: (1) enhanced BOFUSS

26

always consumes the maximum CPU, which is stated and explained in Section

3.1.2, and (2) the MAX value for every switch differs and it is directly related

with the values from Table 4.570

5.2. Evaluation in a data center scenario

For this second test, we focused on realistic scenarios data center deploy-

ments, where software switches could an essential part of the network infras-

tructure. We built a Spine-Leaf topology [73, 74, 75], typically deployed for

data center networks. More specifically, a 4-4-20 Spine-Leaf with 2 rows of 4575

switches (4 of type spine and 4 of type leaf) and 20 servers per leaf switch for

a total of 80 servers, as illustrated in Fig. 6.

Figure 6: Spine-Leaf 4-4-20 evaluation topology [76]

Figure 7: Flow size distributions [76]

To emulate data center-like traffic, we developed a customized traffic genera-

tor [76]. This generator implements two different flow size distributions, namely

27

Table 5: Experimental setup of the data center scenarios

Parameter Value

Network topology Spine-Leaf (4 - 4)[73]

Servers per leaf switch 20

Flow distribution Random inter-leaf

Flow size distributions Web search[77] & Data mining [78]

Network offered load (%) 10, 20 & 40%

Link speed (Mpbs) 100Mbps

Run length (s) 1800 s

Warm up time (s) 800 s

Number of runs 10

Data Mining and Web Search, derived from experimental traces taken from ac-580

tual data center networks [77, 78]. Figure 7 shows the cumulative distribution

function (CDF) of both distributions and also illustrates how flows are classified

according to their size. Flows with less than 10 KB and more than 10 MB of

data are considered mouse and elephant flows, respectively, as explained in [78].

The remaining flows are identified as rabbit flows. Traffic flows are randomly585

distributed between any pair of servers attached to two different leaf switches

with no further restrictions.

Our hardware infrastructure consisted of a cluster of 5 computers powered

by Intel(R) Core(TM) i7 processors (4,0 GHz) with 24 GB of RAM and Ubuntu

14.04 as Operating System, all of which are interconnected via a GbE Netgear590

GS116 switch. Each experiment was executed for 1800 seconds and repeated

10 times to compute 95% confidence intervals. Additionally, we considered a

warm-up time of 800 seconds to mitigate any transitory effect on the results.

Table 5 summarizes the full setup of the conducted experiments.

To evaluate the performance of OVS and the two flavours of BOFUSS, we595

measured throughput and flow completion time, which are depicted in Fig. 8

28

Figure 8: Throughput in the Spine-Leaf topology for each switch type

and Fig. 9, respectively3. The graphs are divided into the three types of flows,

and we evaluated an increasing network offered load of 10%, 20% and 40%. The

results show that OVS and the enhanced BOFUSS perform quite similarly. In

fact, they provide almost the same results for the elephants and rabbit flows600

(even more favorable for the enhanced BOFUSS in some cases), and better

for OVS in the case of the mouse flows. In all cases, the original BOFUSS is

outperformed by OVS and the enhanced BOFUSS. In fact, when the offered

3Raw evaluation data can be found at [79].

29

Figure 9: Flow Completion Time in the Spine-Leaf topology for each switch type

load reaches the 40%, the results are particularly bad for original BOFUSS,

which is mainly overload by the biggest flows (elephant and rabbit), obtaining605

almost a null throughput. Finally, it is important to highlight that the enhanced

BOFUSS shows smaller standard deviations than OVS, although the values of

OVS are not bad either.

The main conclusion of this second test is the enhancements provided by

BEBA make BOFUSS a feasible option for experiments dependent on higher610

performance. Indeed, the results of the BOFUSS switch are comparable to

OVS, reinforcing it as a reasonable option when modifications in the switch are

30

required, or even when some features of OpenFlow are needed and not available

in OVS.

6. Conclusions and Future Work615

During the article, we have provided a guided overview of BOFUSS, trying to

portray the importance of this software switch in SDN environments, which are

pivotal towards next-generation communication networks. We first introduced

the history of the switch and presented its architectural design. Secondly, we

described a set of selected use cases that leverage BOFUSS for diverse rea-620

sons: from easy customization to features missing in OVS. The purpose was to

highlight that, although OVS may be thought as the king of software switches,

BOFUSS can also be a good candidate for specific scenarios where OVS is too

complex (or almost impossible) to play with. Afterwards, we complemented the

selected use cases with a comprehensive survey of works that also use BOFUSS,625

remarkable when the switch did not even had an official name and publication.

Finally, we carried out an evaluation of BOFUSS vs. OVS to prove that our

switch has also a reasonable performance, greatly improved since the release of

the original project. Researchers looking for a customized switch should care-

fully analyze the tradeoff between complexity and performance in OVS and630

BOFUSS.

As future lines of work, we envision the growth of the community around

BOFUSS and newer contributions for the switch. For this purpose, we have

created a set of comprehensive guides, listed in Appendix Appendix A, to solve

and help the work for researchers interested in the switch. Regarding the evo-635

lution of SBI protocols, the specifications of OpenFlow is currently stuck and

the ONF is focusing now on the advanced programmability provided by the P4

language [31] and P4 Runtime. Therefore, BOFUSS could join its efforts to-

wards the adoption of this new protocol. In any case, we welcome any questions,

suggestions or ideas to keep the BOFUSS community alive, and to do so, you640

can directly contact the team at the GitHub repository stated in [7].

31

Acknowledgment

This work was partially supported by Ericsson Innovation Center in Brazil.

Additional support is provided by CNPq (Conselho Nacional de Desenvolvi-

mento Cient́ıfico e Tecnológico) grant numbers 310317/2013-4 and 310930/2016-645

2, by grants from Comunidad de Madrid through project TAPIR-CM (S2018/TCS-

4496), and by the University of Alcala through project CCGP2017-EXP/001

and the “Formación del Profesorado Universitario (FPU)” program.

[1] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg, S. Azodol-

molky, S. Uhlig, Software-Defined Networking: A Comprehensive Survey,650

Proceedings of the IEEE 103 (1) (2015) 14–76. doi:10.1109/JPROC.2014.

2371999.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in Cam-

pus Networks, SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74.655

doi:10.1145/1355734.1355746.

URL http://doi.acm.org/10.1145/1355734.1355746

[3] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, M. Casado, The

Design and Implementation of Open vSwitch, in: Proceedings of the 12th660

USENIX Conference on Networked Systems Design and Implementation,

NSDI’15, USENIX Association, Berkeley,CA,USA, 2015, pp. 117–130.

URL http://dl.acm.org/citation.cfm?id=2789770.2789779

[4] E. L. Fernandes, C. E. Rothenberg, OpenFlow 1.3 software switch, Salao

de Ferramentas do XXXII Simpósio Brasileiro de Redes de Computadores665

e Sistemas Distribuıdos SBRC (2014) 1021–1028.

[5] OpenFlow 1.1 Software Switch.

URL https://github.com/TrafficLab/of11softswitch

32

http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://dl.acm.org/citation.cfm?id=2789770.2789779
http://dl.acm.org/citation.cfm?id=2789770.2789779
http://dl.acm.org/citation.cfm?id=2789770.2789779
http://dl.acm.org/citation.cfm?id=2789770.2789779
https://github.com/TrafficLab/of11softswitch
https://github.com/TrafficLab/of11softswitch

[6] Stanford OpenFlow Reference Switch repository.

URL http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=670

summary

[7] OpenFlow 1.3 switch - CPqD/ofsoftswitch13.

URL https://github.com/CPqD/ofsoftswitch13

[8] OpenFlow Python Switch repositorrty.

URL https://github.com/floodlight/oftest675

[9] Open vSwitch.

URL http://openvswitch.org/

[10] OpenFlow Software Switch 1.1 announcement.

URL https://mailman.stanford.edu/pipermail/openflow-discuss/

2011-May/002183.html680

[11] OpenFlow 1.2 Toolkit announcement.

URL https://mailman.stanford.edu/pipermail/openflow-discuss/

2012-July/003479.html

[12] F. Risso, M. Baldi, NetPDL: an extensible XML-based language for packet

header description, Computer Networks 50 (5) (2006) 688–706.685

[13] NetBee.

URL https://github.com/netgroup-polito/netbee

[14] R. R. Denicol, E. L. Fernandes, C. E. Rothenberg, Z. L. Kis, On IPv6

support in OpenFlow via flexible match structures, OFELIA/CHANGE

Summer School.690

[15] V. Srinivasan, S. Suri, G. Varghese, Packet Classification Using Tuple Space

Search, in: L. Chapin, J. P. G. Sterbenz, G. M. Parulkar, J. S. Turner

(Eds.), Proceedings of the ACM SIGCOMM 1999 Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Communi-

cation, August 30 - September 3, 1999, Cambridge, Massachusetts, USA,695

33

http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=summary
http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=summary
http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=summary
http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git;a=summary
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13
https://github.com/floodlight/oftest
https://github.com/floodlight/oftest
http://openvswitch.org/
http://openvswitch.org/
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-May/002183.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-May/002183.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-May/002183.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2011-May/002183.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2012-July/003479.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2012-July/003479.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2012-July/003479.html
https://mailman.stanford.edu/pipermail/openflow-discuss/2012-July/003479.html
https://github.com/netgroup-polito/netbee
https://github.com/netgroup-polito/netbee
https://doi.org/10.1145/316188.316216
https://doi.org/10.1145/316188.316216
https://doi.org/10.1145/316188.316216

ACM, 1999, pp. 135–146. doi:10.1145/316188.316216.

URL https://doi.org/10.1145/316188.316216

[16] BEBA Behavioral Based Forwarding.

URL http://http://www.beba-project.eu/

[17] G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpenState: Programming700

Platform-independent Stateful Openflow Applications Inside the Switch,

SIGCOMM Comput. Commun. Rev. 44 (2) (2014) 44–51. doi:10.1145/

2602204.2602211.

URL http://doi.acm.org/10.1145/2602204.2602211

[18] R. Bifulco, J. Boite, M. Bouet, F. Schneider, Improving SDN with InSPired705

Switches, in: Proceedings of the Symposium on SDN Research, SOSR ’16,

ACM, New York,NY,USA, 2016, pp. 11:1–11:12. doi:10.1145/2890955.

2890962.

URL http://doi.acm.org/10.1145/2890955.2890962

[19] C. Cascone, D. Sanvito, L. Pollini, A. Capone, B. Sans, Fast failure de-710

tection and recovery in SDN with stateful data plane, International Jour-

nal of Network Management 27 (2) (2017) e1957–n/a, e1957 nem.1957.

doi:10.1002/nem.1957.

URL http://dx.doi.org/10.1002/nem.1957

[20] J. Boite, P. A. Nardin, F. Rebecchi, M. Bouet, V. Conan, Statesec: Stateful715

monitoring for DDoS protection in software defined networks, in: 2017

IEEE Conference on Network Softwarization (NetSoft), 2017, pp. 1–9. doi:

10.1109/NETSOFT.2017.8004113.

[21] TCPDUMP/LIBPCAP public repository.

URL https://www.tcpdump.org/720

[22] N. Bonelli, S. Giordano, G. Procissi, Network Traffic Processing With PFQ,

IEEE Journal on Selected Areas in Communications 34 (6) (2016) 1819–

1833.

34

http://dx.doi.org/10.1145/316188.316216
https://doi.org/10.1145/316188.316216
http://http://www.beba-project.eu/
http://http://www.beba-project.eu/
http://doi.acm.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2602204.2602211
http://dx.doi.org/10.1145/2602204.2602211
http://dx.doi.org/10.1145/2602204.2602211
http://dx.doi.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2890955.2890962
http://doi.acm.org/10.1145/2890955.2890962
http://doi.acm.org/10.1145/2890955.2890962
http://dx.doi.org/10.1145/2890955.2890962
http://dx.doi.org/10.1145/2890955.2890962
http://dx.doi.org/10.1145/2890955.2890962
http://doi.acm.org/10.1145/2890955.2890962
http://dx.doi.org/10.1002/nem.1957
http://dx.doi.org/10.1002/nem.1957
http://dx.doi.org/10.1002/nem.1957
http://dx.doi.org/10.1002/nem.1957
http://dx.doi.org/10.1002/nem.1957
http://dx.doi.org/10.1109/NETSOFT.2017.8004113
http://dx.doi.org/10.1109/NETSOFT.2017.8004113
http://dx.doi.org/10.1109/NETSOFT.2017.8004113
https://www.tcpdump.org/
https://www.tcpdump.org/

[23] N. Bonelli, G. Procissi, D. Sanvito, R. Bifulco, The acceleration of Of-

SoftSwitch, in: 2017 IEEE Conference on Network Function Virtualiza-725

tion and Software Defined Networks (NFV-SDN), 2017, pp. 1–6. doi:

10.1109/NFV-SDN.2017.8169842.

[24] J. Alvarez-Horcajo, I. Martinez-Yelmo, E. Rojas, J. A. Carral, D. Lopez-

Pajares, New cooperative mechanisms for software defined networks based

on hybrid switches, Transactions on Emerging Telecommunications Tech-730

nologies (2017) e3150–n/aE3150 ett.3150. doi:10.1002/ett.3150.

URL http://dx.doi.org/10.1002/ett.3150

[25] E. Rojas, G. Ibanez, J. M. Gimenez-Guzman, J. A. Carral, A. Garcia-

Martinez, I. Martinez-Yelmo, J. M. Arco, All-Path bridging: Path explo-

ration protocols for data center and campus networks, Computer Networks735

79 (Supplement C) (2015) 120 – 132. doi:https://doi.org/10.1016/j.

comnet.2015.01.002.

[26] R. S. Montero, E. Rojas, A. A. Carrillo, I. M. Llorente, Extending the

Cloud to the Network Edge, Computer 50 (4) (2017) 91–95. doi:doi.

ieeecomputersociety.org/10.1109/MC.2017.118.740

[27] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das,

J. Hart, G. Palukar, W. Snow, Central office re-architected as a data

center, IEEE Communications Magazine 54 (10) (2016) 96–101. doi:

10.1109/MCOM.2016.7588276.

[28] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,745

B. O’Connor, P. Radoslavov, W. Snow, G. Parulkar, ONOS: Towards

an Open,Distributed SDN OS, in: Proceedings of the Third Workshop

on Hot Topics in Software Defined Networking, HotSDN ’14, ACM, New

York,NY,USA, 2014, pp. 1–6. doi:10.1145/2620728.2620744.

URL http://doi.acm.org/10.1145/2620728.2620744750

[29] 802.1ad - Provider Bridges.

URL http://www.ieee802.org/1/pages/802.1ad.html

35

http://dx.doi.org/10.1109/NFV-SDN.2017.8169842
http://dx.doi.org/10.1109/NFV-SDN.2017.8169842
http://dx.doi.org/10.1109/NFV-SDN.2017.8169842
http://dx.doi.org/10.1002/ett.3150
http://dx.doi.org/10.1002/ett.3150
http://dx.doi.org/10.1002/ett.3150
http://dx.doi.org/10.1002/ett.3150
http://dx.doi.org/10.1002/ett.3150
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2015.01.002
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2015.01.002
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2015.01.002
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2017.118
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2017.118
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/MC.2017.118
http://dx.doi.org/10.1109/MCOM.2016.7588276
http://dx.doi.org/10.1109/MCOM.2016.7588276
http://dx.doi.org/10.1109/MCOM.2016.7588276
http://doi.acm.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2620728.2620744
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ad.html

[30] Master in NFV and SDN for 5G Networks. UC3M.

URL https://www.uc3m.es/master/NFV-SDN-5g-networks

[31] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,755

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: Pro-

gramming Protocol-independent Packet Processors, SIGCOMM Comput.

Commun. Rev. 44 (3) (2014) 87–95. doi:10.1145/2656877.2656890.

[32] G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone, C. Cas-

cone, Open Packet Processor: a programmable architecture for wire speed760

platform-independent stateful in-network processing, ArXiv e-printsarXiv:

1605.01977.

URL http://adsabs.harvard.edu/abs/2016arXiv160501977B

[33] S. Jouet, R. Cziva, D. P. Pezaros, Arbitrary packet matching in Open-

Flow, in: 2015 IEEE 16th International Conference on High Performance765

Switching and Routing (HPSR), 2015, pp. 1–6. doi:10.1109/HPSR.2015.

7483106.

[34] S. Jouet, D. P. Pezaros, BPFabric: Data Plane Programmability for Soft-

ware Defined Networks, in: Proceedings of the Symposium on Architectures

for Networking and Communications Systems, ANCS ’17, IEEE Press, Pis-770

cataway,NJ,USA, 2017, pp. 38–48. doi:10.1109/ANCS.2017.14.

URL https://doi.org/10.1109/ANCS.2017.14

[35] K. Nguyen, Q. T. Minh, S. Yamada, Novel fast switchover on OpenFlow

switch, in: 2014 IEEE 11th Consumer Communications and Network-

ing Conference (CCNC), 2014, pp. 543–544. doi:10.1109/CCNC.2014.775

6940510.

[36] H. Pan, G. Xie, Z. Li, P. He, L. Mathy, FlowConvertor: Enabling portabil-

ity of SDN applications, in: IEEE INFOCOM 2017 - IEEE Conference on

Computer Communications, 2017, pp. 1–9. doi:10.1109/INFOCOM.2017.

8057135.780

36

https://www.uc3m.es/master/NFV-SDN-5g-networks
https://www.uc3m.es/master/NFV-SDN-5g-networks
http://dx.doi.org/10.1145/2656877.2656890
http://adsabs.harvard.edu/abs/2016arXiv160501977B
http://adsabs.harvard.edu/abs/2016arXiv160501977B
http://adsabs.harvard.edu/abs/2016arXiv160501977B
http://arxiv.org/abs/1605.01977
http://arxiv.org/abs/1605.01977
http://arxiv.org/abs/1605.01977
http://adsabs.harvard.edu/abs/2016arXiv160501977B
http://dx.doi.org/10.1109/HPSR.2015.7483106
http://dx.doi.org/10.1109/HPSR.2015.7483106
http://dx.doi.org/10.1109/HPSR.2015.7483106
https://doi.org/10.1109/ANCS.2017.14
https://doi.org/10.1109/ANCS.2017.14
https://doi.org/10.1109/ANCS.2017.14
http://dx.doi.org/10.1109/ANCS.2017.14
https://doi.org/10.1109/ANCS.2017.14
http://dx.doi.org/10.1109/CCNC.2014.6940510
http://dx.doi.org/10.1109/CCNC.2014.6940510
http://dx.doi.org/10.1109/CCNC.2014.6940510
http://dx.doi.org/10.1109/INFOCOM.2017.8057135
http://dx.doi.org/10.1109/INFOCOM.2017.8057135
http://dx.doi.org/10.1109/INFOCOM.2017.8057135

[37] J. Zheng, G. Chen, S. Schmid, H. Dai, J. Wu, Q. Ni, Scheduling Congestion-

and Loop-Free Network Update in Timed SDNs, IEEE Journal on Selected

Areas in Communications 35 (11) (2017) 2542–2552. doi:10.1109/JSAC.

2017.2760146.

[38] P. Zhang, Towards rule enforcement verification for software defined net-785

works, in: IEEE INFOCOM 2017 - IEEE Conference on Computer Com-

munications, 2017, pp. 1–9. doi:10.1109/INFOCOM.2017.8056994.

[39] A. Vidal12, F. Verdi, E. L. Fernandes, C. E. Rothenberg, M. R. Salvador,

Building upon RouteFlow: a SDN development experience.

[40] A. Binder, T. Boros, I. Kotuliak, A SDN Based Method of TCP Connection790

Handover, Springer International Publishing, Cham, 2015, pp. 13–19. doi:

10.1007/978-3-319-24315-3_2.

[41] P. Zuraniewski, N. van Adrichem, D. Ravesteijn, W. IJntema, C. Pa-

padopoulos, C. Fan, Facilitating ICN Deployment with an Extended Open-

flow Protocol, in: Proceedings of the 4th ACM Conference on Information-795

Centric Networking, ICN ’17, ACM, New York,NY,USA, 2017, pp. 123–133.

doi:10.1145/3125719.3125729.

URL http://doi.acm.org/10.1145/3125719.3125729

[42] M. Yan, J. Casey, P. Shome, A. Sprintson, A. Sutton, ÆtherFlow: Prin-

cipled Wireless Support in SDN, in: 2015 IEEE 23rd International Con-800

ference on Network Protocols (ICNP), 2015, pp. 432–437. doi:10.1109/

ICNP.2015.9.

[43] P. Shome, M. Yan, S. M. Najafabad, N. Mastronarde, A. Sprintson, Cross-

Flow: A cross-layer architecture for SDR using SDN principles, in: 2015

IEEE Conference on Network Function Virtualization and Software De-805

fined Network (NFV-SDN), 2015, pp. 37–39. doi:10.1109/NFV-SDN.2015.

7387403.

37

http://dx.doi.org/10.1109/JSAC.2017.2760146
http://dx.doi.org/10.1109/JSAC.2017.2760146
http://dx.doi.org/10.1109/JSAC.2017.2760146
http://dx.doi.org/10.1109/INFOCOM.2017.8056994
http://dx.doi.org/10.1007/978-3-319-24315-3_2
http://dx.doi.org/10.1007/978-3-319-24315-3_2
http://dx.doi.org/10.1007/978-3-319-24315-3_2
http://doi.acm.org/10.1145/3125719.3125729
http://doi.acm.org/10.1145/3125719.3125729
http://doi.acm.org/10.1145/3125719.3125729
http://dx.doi.org/10.1145/3125719.3125729
http://doi.acm.org/10.1145/3125719.3125729
http://dx.doi.org/10.1109/ICNP.2015.9
http://dx.doi.org/10.1109/ICNP.2015.9
http://dx.doi.org/10.1109/ICNP.2015.9
http://dx.doi.org/10.1109/NFV-SDN.2015.7387403
http://dx.doi.org/10.1109/NFV-SDN.2015.7387403
http://dx.doi.org/10.1109/NFV-SDN.2015.7387403

[44] P. Shome, J. Modares, N. Mastronarde, A. Sprintson, Enabling Dynamic

Reconfigurability of SDRs Using SDN Principles, in: Ad Hoc Networks,

Springer, 2017, pp. 369–381.810

[45] C. Guimares, D. Corujo, R. L. Aguiar, Enhancing openflow with Media

Independent Management capabilities, in: 2014 IEEE International Con-

ference on Communications (ICC), 2014, pp. 2995–3000. doi:10.1109/

ICC.2014.6883780.

[46] M. Kuźniar, P. Pereš́ıni, N. Vasić, M. Canini, D. Kostić, Automatic failure815

recovery for software-defined networks, in: Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking, ACM,

2013, pp. 159–160.

[47] L. J. Chaves, I. C. Garcia, E. R. M. Madeira, OFSwitch13: Enhancing

Ns-3 with OpenFlow 1.3 Support, in: Proceedings of the Workshop on Ns-820

3, WNS3 ’16, ACM, New York,NY,USA, 2016, pp. 33–40. doi:10.1145/

2915371.2915381.

URL http://doi.acm.org/10.1145/2915371.2915381

[48] T. Mizrahi, Y. Moses, Time4: Time for SDN, IEEE Transactions on Net-

work and Service Management 13 (3) (2016) 433–446. doi:10.1109/TNSM.825

2016.2599640.

[49] R. Trestian, K. Katrinis, G. M. Muntean, OFLoad: An OpenFlow-Based

Dynamic Load Balancing Strategy for Datacenter Networks, IEEE Trans-

actions on Network and Service Management 14 (4) (2017) 792–803. doi:

10.1109/TNSM.2017.2758402.830

[50] I. Simsek, Y. I. Jerschow, M. Becke, E. P. Rathgeb, Blind Packet Forward-

ing in a hierarchical architecture with Locator/Identifier Split, in: 2014 In-

ternational Conference and Workshop on the Network of the Future (NOF),

2014, pp. 1–5. doi:10.1109/NOF.2014.7119775.

38

http://dx.doi.org/10.1109/ICC.2014.6883780
http://dx.doi.org/10.1109/ICC.2014.6883780
http://dx.doi.org/10.1109/ICC.2014.6883780
http://doi.acm.org/10.1145/2915371.2915381
http://doi.acm.org/10.1145/2915371.2915381
http://doi.acm.org/10.1145/2915371.2915381
http://dx.doi.org/10.1145/2915371.2915381
http://dx.doi.org/10.1145/2915371.2915381
http://dx.doi.org/10.1145/2915371.2915381
http://doi.acm.org/10.1145/2915371.2915381
http://dx.doi.org/10.1109/TNSM.2016.2599640
http://dx.doi.org/10.1109/TNSM.2016.2599640
http://dx.doi.org/10.1109/TNSM.2016.2599640
http://dx.doi.org/10.1109/TNSM.2017.2758402
http://dx.doi.org/10.1109/TNSM.2017.2758402
http://dx.doi.org/10.1109/TNSM.2017.2758402
http://dx.doi.org/10.1109/NOF.2014.7119775

[51] S. S. W. Lee, K. Y. Li, M. S. Wu, Design and Implementation of a GPON-835

Based Virtual OpenFlow-Enabled SDN Switch, Journal of Lightwave Tech-

nology 34 (10) (2016) 2552–2561. doi:10.1109/JLT.2016.2540244.

[52] D. Sanvito, D. Moro, A. Capone, Towards traffic classification offload-

ing to stateful SDN data planes, in: 2017 IEEE Conference on Network

Softwarization (NetSoft), 2017, pp. 1–4. doi:10.1109/NETSOFT.2017.840

8004227.

[53] A. Bianco, P. Giaccone, S. Kelki, N. M. Campos, S. Traverso, T. Zhang,

On-the-fly traffic classification and control with a stateful SDN approach,

in: 2017 IEEE International Conference on Communications (ICC), 2017,

pp. 1–6. doi:10.1109/ICC.2017.7997297.845

[54] W. J. A. Silva, K. L. Dias, D. F. H. Sadok, A performance evaluation

of Software Defined Networking load balancers implementations, in: 2017

International Conference on Information Networking (ICOIN), 2017, pp.

132–137. doi:10.1109/ICOIN.2017.7899491.

[55] M. S. M. Zahid, B. Isyaku, F. A. Fadzil, Recovery of Software Defined Net-850

work from Multiple Failures: Openstate Vs Openflow, in: 2017 IEEE/ACS

14th International Conference on Computer Systems and Applications

(AICCSA), 2017, pp. 1178–1183. doi:10.1109/AICCSA.2017.32.

[56] M. Nagy, I. Kotuliak, J. Skalny, M. Kalcok, T. Hirjak, Integrating Mo-

bile OpenFlow Based Network Architecture with Legacy Infrastructure,855

Springer International Publishing, Cham, 2015, pp. 40–49. doi:10.1007/

978-3-319-24315-3_5.

[57] F. S. Tegueu, S. Abdellatif, T. Villemur, P. Berthou, T. Plesse, Towards

application driven networking, in: 2016 IEEE International Symposium

on Local and Metropolitan Area Networks (LANMAN), 2016, pp. 1–6.860

doi:10.1109/LANMAN.2016.7548865.

39

http://dx.doi.org/10.1109/JLT.2016.2540244
http://dx.doi.org/10.1109/NETSOFT.2017.8004227
http://dx.doi.org/10.1109/NETSOFT.2017.8004227
http://dx.doi.org/10.1109/NETSOFT.2017.8004227
http://dx.doi.org/10.1109/ICC.2017.7997297
http://dx.doi.org/10.1109/ICOIN.2017.7899491
http://dx.doi.org/10.1109/AICCSA.2017.32
http://dx.doi.org/10.1007/978-3-319-24315-3_5
http://dx.doi.org/10.1007/978-3-319-24315-3_5
http://dx.doi.org/10.1007/978-3-319-24315-3_5
http://dx.doi.org/10.1109/LANMAN.2016.7548865

[58] W. Fan, D. Fernandez, A novel SDN based stealthy TCP connection han-

dover mechanism for hybrid honeypot systems, in: 2017 IEEE Confer-

ence on Network Softwarization (NetSoft), 2017, pp. 1–9. doi:10.1109/

NETSOFT.2017.8004194.865

[59] H. Yang, C. Zhang, G. Riley, Support Multiple Auxiliary TCP/UDP Con-

nections in SDN Simulations Based on Ns-3, in: Proceedings of the Work-

shop on Ns-3, WNS3 ’17, ACM, New York,NY,USA, 2017, pp. 24–30.

doi:10.1145/3067665.3067670.

URL http://doi.acm.org/10.1145/3067665.3067670870

[60] T. Arumugam, S. Scott-Hayward, Demonstrating state-based security pro-

tection mechanisms in software defined networks, in: 2017 8th Interna-

tional Conference on the Network of the Future (NOF), 2017, pp. 123–125.

doi:10.1109/NOF.2017.8251231.

[61] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tulumello, G. Bianchi,875

Demo: Implementing advanced network functions with stateful pro-

grammable data planes, in: 2017 IEEE International Symposium on Lo-

cal and Metropolitan Area Networks (LANMAN), 2017, pp. 1–2. doi:

10.1109/LANMAN.2017.7972183.

[62] M.-H. Wang, S.-Y. Wu, L.-H. Yen, C.-C. Tseng, PathMon: Path-specific880

traffic monitoring in OpenFlow-enabled networks, in: 2016 Eighth Interna-

tional Conference on Ubiquitous and Future Networks (ICUFN), 2016, pp.

775–780. doi:10.1109/ICUFN.2016.7537143.

[63] A. A. Dı́az-Montiel, J. Yu, W. Mo, Y. Li, D. C. Kilper, M. Ruffini, Perfor-

mance analysis of QoT estimator in SDN-controlled ROADM networks, in:885

2018 International Conference on Optical Network Design and Modeling

(ONDM), 2018, pp. 142–147. doi:10.23919/ONDM.2018.8396121.

[64] M. D. M. Silva, N. Filipe, OPEN PON: Seamless integration between 5G

core and optical access networks, Master’s thesis, Universitat Politècnica

de Catalunya (2016).890

40

http://dx.doi.org/10.1109/NETSOFT.2017.8004194
http://dx.doi.org/10.1109/NETSOFT.2017.8004194
http://dx.doi.org/10.1109/NETSOFT.2017.8004194
http://doi.acm.org/10.1145/3067665.3067670
http://doi.acm.org/10.1145/3067665.3067670
http://doi.acm.org/10.1145/3067665.3067670
http://dx.doi.org/10.1145/3067665.3067670
http://doi.acm.org/10.1145/3067665.3067670
http://dx.doi.org/10.1109/NOF.2017.8251231
http://dx.doi.org/10.1109/LANMAN.2017.7972183
http://dx.doi.org/10.1109/LANMAN.2017.7972183
http://dx.doi.org/10.1109/LANMAN.2017.7972183
http://dx.doi.org/10.1109/ICUFN.2016.7537143
http://dx.doi.org/10.23919/ONDM.2018.8396121

[65] K. Shahmir Shourmasti, Stochastic Switching Using OpenFlow, Master’s

thesis, Institutt for telematikk (2013).

[66] V. Šulák, P. Helebrandt, I. Kotuliak, Performance analysis of OpenFlow

forwarders based on routing granularity in OpenFlow 1.0 and 1.3, in: 2016

19th Conference of Open Innovations Association (FRUCT), 2016, pp. 236–895

241. doi:10.23919/FRUCT.2016.7892206.

[67] K. Tantayakul, R. Dhaou, B. Paillassa, W. Panichpattanakul, Ex-

perimental analysis in SDN open source environment, in: 2017

14th International Conference on Electrical Engineering/Electron-

ics,Computer,Telecommunications and Information Technology (ECTI-900

CON), 2017, pp. 334–337. doi:10.1109/ECTICon.2017.8096241.

[68] H. Fujita, Y. Taniguchi, N. Iguchi, A system to support learning of Open-

Flow network by visually associating controller configuration information

and logical topology, in: 2017 IEEE 6th Global Conference on Consumer

Electronics (GCCE), 2017, pp. 1–3. doi:10.1109/GCCE.2017.8229319.905

[69] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa,

S. Cunha de Lucena, R. Raszuk, Revisiting Routing Control Platforms with

the Eyes and Muscles of Software-defined Networking, in: Proceedings of

the First Workshop on Hot Topics in Software Defined Networks, HotSDN

’12, ACM, New York, NY, USA, 2012, pp. 13–18. doi:10.1145/2342441.910

2342445.

URL http://doi.acm.org/10.1145/2342441.2342445

[70] BEBA Software Switch.

URL https://github.com/ccascone/beba-switch

[71] iPerf - The TCP, UDP and SCTP network bandwidth measurement tool.915

URL https://iperf.fr/

[72] V. Fang, T. Lvai, S. Han, S. Ratnasamy, B. Raghavan, J. Sherry, Evaluating

Software Switches: Hard or Hopeless?, Tech. Rep. UCB/EECS-2018-136,

41

http://dx.doi.org/10.23919/FRUCT.2016.7892206
http://dx.doi.org/10.1109/ECTICon.2017.8096241
http://dx.doi.org/10.1109/GCCE.2017.8229319
http://doi.acm.org/10.1145/2342441.2342445
http://doi.acm.org/10.1145/2342441.2342445
http://doi.acm.org/10.1145/2342441.2342445
http://dx.doi.org/10.1145/2342441.2342445
http://dx.doi.org/10.1145/2342441.2342445
http://dx.doi.org/10.1145/2342441.2342445
http://doi.acm.org/10.1145/2342441.2342445
https://github.com/ccascone/beba-switch
https://github.com/ccascone/beba-switch
https://iperf.fr/
https://iperf.fr/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html

EECS Department, University of California, Berkeley (Oct 2018).

URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/920

EECS-2018-136.html

[73] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,

A. Fingerhut, V. T. Lam, F. Matus, R. Pan, e. a. Yadav,

CONGA:Distributed Congestion-aware Load Balancing for Datacenters,

SIGCOMM Comput. Commun. Rev. 44 (4) (2014) 503–514.925

[74] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, A. Akella, Presto:Edge-

based Load Balancing for Fast Datacenter Networks, SIGCOMM Comput.

Commun. Rev. 45 (4) (2015) 465–478. doi:10.1145/2829988.2787507.

[75] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

S. Shenker, pFabric:Minimal Near-optimal Datacenter Transport, SIG-930

COMM Comput. Commun. Rev. 43 (4) (2013) 435–446. doi:10.1145/

2534169.2486031.

[76] J. Alvarez-Horcajo, D. Lopez-Pajares, J. M. Arco, J. A. Carral, I. Martinez-

Yelmo, TCP-path: Improving load balance by network exploration, in:

2017 IEEE 6th International Conference on Cloud Networking (CloudNet),935

2017, pp. 1–6. doi:10.1109/CloudNet.2017.8071533.

[77] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, M. Sridharan, Data center TCP (DCTCP), SIGCOMM Com-

put. Commun. Rev. 41 (4) (2010) 63–74.

[78] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,940

D. A. Maltz, P. Patel, S. Sengupta, VL2:a scalable and flexible data center

network, SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 51–62.

[79] J. Alvarez-Horcajo, BOFUSS raw evaluation data.

URL https://github.com/gistnetserv-uah/GIST-DataRepo/tree/

master/BOFUSS-spine_leaf-190120945

42

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html
http://dx.doi.org/10.1145/2829988.2787507
http://dx.doi.org/10.1145/2534169.2486031
http://dx.doi.org/10.1145/2534169.2486031
http://dx.doi.org/10.1145/2534169.2486031
http://dx.doi.org/10.1109/CloudNet.2017.8071533
https://github.com/gistnetserv-uah/GIST-DataRepo/tree/master/BOFUSS-spine_leaf-190120
https://github.com/gistnetserv-uah/GIST-DataRepo/tree/master/BOFUSS-spine_leaf-190120
https://github.com/gistnetserv-uah/GIST-DataRepo/tree/master/BOFUSS-spine_leaf-190120
https://github.com/gistnetserv-uah/GIST-DataRepo/tree/master/BOFUSS-spine_leaf-190120

Appendix A. Resources for Researchers and Developers

• Overview of the Switch’s Architecture.

https://github.com/CPqD/ofsoftswitch13/wiki/Overview-of-the-Switch’

s-Architecture

• Implementation Details.950

https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-Implementation-Details

• How to Add a New OpenFlow Message.

https://github.com/CPqD/ofsoftswitch13/wiki/Adding-New-OpenFlow-Messages

• How to Add a New Matching Field

https://github.com/CPqD/ofsoftswitch13/wiki/Adding-a-New-Match-Field955

• Frequently Asked Questions

https://github.com/CPqD/ofsoftswitch13/wiki/Frequently-Asked-Questions

43

https://github.com/CPqD/ofsoftswitch13/wiki/Overview-of-the-Switch's-Architecture
https://github.com/CPqD/ofsoftswitch13/wiki/Overview-of-the-Switch's-Architecture
https://github.com/CPqD/ofsoftswitch13/wiki/Overview-of-the-Switch's-Architecture
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-Implementation-Details
https://github.com/CPqD/ofsoftswitch13/wiki/Adding-New-OpenFlow-Messages
https://github.com/CPqD/ofsoftswitch13/wiki/Adding-a-New-Match-Field
https://github.com/CPqD/ofsoftswitch13/wiki/Frequently-Asked-Questions

	Introduction
	BOFUSS: Basic OpenFlow Userspace Software Switch
	Brief History
	Design and Architecture
	Design choices and programming models
	Architecture of BOFUSS

	Selected Use Cases
	BEBA
	OpenState Extension
	Performance enhancements

	AOSS: OpenFlow hybrid switch
	AOSS Implementation:

	OnLife: Deploying the CORD project in a national operator
	BOFUSS as a teaching resource

	Fostering Research & Standardization
	Research implementations or evaluations
	PoC implementations
	Comparative reports and Teaching resources

	Evaluation
	Individual benchmarking
	Evaluation in a data center scenario

	Conclusions and Future Work
	Resources for Researchers and Developers

