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Abstract. We introduce a sorting scheme which is capable of efficiently
sorting encrypted data without the secret key. The technique is obtained
by focusing on the multiplicative depth of the sorting circuit alongside
the more traditional metrics such as number of comparisons and number
of iterations. The reduced depth allows much reduced noise growth and
thereby makes it possible to select smaller parameter sizes in somewhat
homomorphic encryption instantiations resulting in greater efficiency
savings. We first consider a number of well known comparison based
sorting algorithms as well as some sorting networks, and analyze their
circuit implementations with respect to multiplicative depth. In what
follows, we introduce a new ranking based sorting scheme and rigorously
analyze the multiplicative depth complexity as O(log(N)+log(`)), where
N is the size of the array to be sorted and ` is the bit size of the array el-
ements. Finally, we simulate our sorting scheme using a leveled/batched
instantiation of a SWHE library. Our sorting scheme performs favorably
over the analyzed classical sorting algorithms.

Keywords: Homomorphic sorting, circuit depth, somewhat homomorphic en-
cryption.

1 Introduction

An encryption scheme is fully homomorphic (FHE scheme) if it permits the effi-
cient evaluation of any boolean circuit or arithmetic function on ciphertexts [27].
Gentry introduced the first FHE scheme [14,15] based on lattices that supports
the efficient evaluation for arbitrary depth circuits. This was followed by a rapid
progression of new FHE schemes. van Dijk et al. proposed a FHE scheme based
on ideals defined over integers [10]. In 2011, Gentry and Halevi [16] presented
the first actual FHE implementation along with a wide array of optimizations
to tackle the infamous efficiency bottleneck of FHEs. Further optimizations for
FHE which also apply to somewhat homomorphic encryption (SWHE) schemes
followed including batching and SIMD optimizations, e.g. see [17, 18, 29]. Sev-
eral newer SWHE & FHE schemes appeared in the literature in recent years.
Brakerski, Gentry and Vaikuntanathan proposed a new FHE scheme (BGV)
based on the learning with errors (LWE) problem [5]. To cope with noise the
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authors propose efficient techniques for noise reduction. While not as effective
as Gentry’s recryption operation, these lightweight techniques limit the noise
growth enabling the evaluation of much deeper circuits using only a depth re-
stricted SWHE scheme. The costly recryption primitive is only used to evaluate
extremely complicated circuits. In [18] Gentry, Halevi and Smart introduced
a LWE-based FHE scheme customized to achieve efficient evaluation of the
AES cipher without bootstrapping. Their implementation is highly optimized
for efficient AES evaluation using key and modulus switching techniques [5],
batching and SIMD optimizations [29]. Their byte-sliced AES implementation
takes about 5 minutes to homomorphically evaluate an AES block encryption.
More recently, López-Alt, Tromer and Vaikuntanathan (LTV) proposed SWHE
and FHE schemes based on Stehlé and Steinfeld’s generalization of the NTRU
scheme [30] that supports inputs from multiple public keys [25]. Bos et al. [3]
introduced a variant of the LTV FHE scheme along with an implementation.
The authors modify the LTV scheme by adopting a tensor product technique
introduced earlier by Brakerski [4] such that the security depends only on stan-
dard lattice assumptions. The authors advocate use of the Chinese Remainder
Theorem on the message space to improve the flexibility of the scheme. Also,
modulus switching is no longer needed due to the reduced noise growth. Doröz,
Hu and Sunar propose another variant based on the LTV scheme in [11]. The im-
plementation is batched, bit-sliced and features modulus switching techniques.
The authors also specialize the modulus to reduce the key size and report an AES
implementation with one minute evaluation time per AES block [18]. More re-
cent FHE schemes displayed significant improvements over earlier constructions
in both time complexity and in ciphertext size. Nevertheless, both latency and
message expansion rates remain roughly two orders of magnitude higher than
those of traditional public-key schemes. Bootstrapping [15], relinearization [6],
and modulus reduction [5, 6] are indispensable tools for FHEs. In [6, Sec. 1.1],
the relinearization technique was proposed to re-encrypt quadratic polynomials
as linear polynomials under a new key, thereby making their security argument
independent of lattice assumptions and dependent only on a standard LWE
hardness assumption.

Homomorphic encryption schemes have been used to build a variety of higher
level security applications. Lagendijk et al. [22] give a summary of homomorphic
encryption and MPC techniques to realize key signal processing operations such
as evaluating linear operations, inner products, distance calculation, dimension
reduction, and thresholding. Using these key operations it becomes possible to
achieve more sophisticated privacy-protected heavy DSP services such as face
recognition, user clustering, and content recommendation. Cryptographic tools
permitting restricted homomorphic evaluation, e.g. Paillier’s scheme, and more
powerful techniques such as Yao’s garbled circuit [32] have been around suffi-
ciently long to be used in a diverse set of applications. Homomorphic encryption
schemes are often used in privacy-preserving data mining applications. Vaidya
and Clifton [31] propose to use Yao’s circuit evaluation [32] for the comparisons
in their privacy-preserving k-means clustering algorithm. The secure comparison



protocol by Fischlin [13] uses the GM-homomorphic encryption scheme [19] and
the method by Sander et al. [28] to convert the XOR homomorphic encryption in
GM scheme into AND homomorphic encryption. The privacy-preserving cluster-
ing algorithm for vertically partitioned (distributed) spatio-temporal data [33]
uses the Fischlin formulation based on XOR homomorphic secret sharing prim-
itive instead of costly encryption operations. The tools for SWHE developed to
achieve FHE have only been around for a few years now and have not been
sufficiently explored for use in applications. For instance, in [23] Lauter et al.
consider the problems of evaluating averages, standard deviations, and logistical
regressions which provide basic tools for a number of real-world applications in
the medical, financial, and the advertising domains. The same work also presents
a proof-of-concept Magma implementation of a SWHE for the basic operations.
The SWHE scheme is based on the ring learning with errors (RLWE) prob-
lem proposed earlier by Brakerski and Vaikuntanathan. Later in [24], Lauter et
al. show that it is possible to implement genomic data computation algorithms
where the patients’ data are encrypted to preserve their privacy. They encrypt
all the genomic data in the database and able to implement and provide per-
formance numbers for Pearson Goodness-of-Fit test, the D′ and r2-measures of
linkage disequilibrium, the Estimation Maximization (EM) algorithm for haplo-
typing, and the Cochran-Armitage Test for Trend. The authors used a leveled
SWHE scheme which is a modified version of [26] where they get rid of the costly
relinearization operation. In [2] Bos et al. show how to privately perform predic-
tive analysis tasks on encrypted medical data. They present an implementation
of a prediction service running in the cloud. The cloud server takes private en-
crypted health data as input and returns the probability of cardiovascular disease
in encrypted form. The authors use the SWHE implementation of [3] to provide
timing results. Graepel et al. in [20] demonstrate that it is possible to execute
machine learning algorithms in a service while protecting the confidentiality of
the training and test data. The authors propose a confidential protocol for ma-
chine learning tasks and design confidential machine learning algorithms using
leveled homomorphic encryption. More specifically they implement low-degree
polynomial versions of Linear Means Classifier and Fisher’s Linear Discriminant
Classifier on the Wisconsin Breast Cancer Data set. Finally, they provide bench-
marks for small scale data set to show that their scheme is practical. Cheon et
al. [9] present a method along with implementation results to compute encrypted
dynamic programming algorithms such as Hamming distance, edit distance, and
the Smith-Waterman algorithm on genomic data encrypted using a somewhat
homomorphic encryption algorithm. The authors design circuits to compute the
distances between two genomic strings. The work designs circuits meticulously
to reduce their depths to permit efficient evaluation using BGV-type leveled
SWHE schemes. In this work, we follow a route very similar to that given in [9]
for sorting. In [12], Doröz et al. use an NTRU based SWHE scheme to construct
a bandwidth efficient private information retrieval (PIR) scheme. Due to the
multiplicative evaluation capabilities of the SWHE, the query and response sizes
are significantly reduced compared to earlier PIR constructions. The PIR con-



struction is generic and therefore any SWHE which supports a few multiplicative
levels (and many additions) could be used to implement a PIR. The authors also
give a leveled and batched reference implementation of their PIR construction
including performance figures.

The only homomorphic sorting result we are aware of was reported by Chat-
terjee et al. in [8]. In this work, for the first time, the authors considered the
problem of homomorphically sorting an array using the recently proposed hcrypt

FHE library [7]. The authors define a number of FHE functions to realize ba-
sic homomorphic comparison and swapping operations and then implement the
classical Bubble and Insertion sort algorithms using these homomorphic func-
tions. Noting the exponential rise of evaluation time with the array size, the
authors introduce a new approach dubbed Lazy Sort which removes the Re-
crypt operation after additions allowing occasional comparison errors in Bubble
Sort. While the array is not perfectly sorted the sorting time is significantly
reduced. After Bubble sort the nearly sorted array is then sorted again with
a homomorphically evaluated Insertion sort - this time with all Recrypt oper-
ations in place. The authors report implementation results with arrays of 5-40
elements (32-bits) which show significant reduction in the evaluation time over
direct fully homomorphic evaluation. In the best case, the authors report a 1,399
second evaluation time in contrast to 21,565 seconds in the fully homomorphic
case for an array of size 40. Despite the impressive speed gains, the work opts to
alleviate the efficiency bottleneck by relaxing noise management, and by com-
bining classical sorting algorithms instead of targeting the circuit depth of the
sorting algorithm. Furthermore, it suffers from the fundamental limitations of
the hcrypt library:

– Noise management is achieved by recrypting partial results after every major
operation. Recrypt is extremely costly and is considered inferior to more
modern noise management techniques such as the modulus reduction [5]
that yield exponential gains in leveled implementations.

– hcrypt does not take advantage of batching or SIMD techniques [29] which
greatly improve homomorphic evaluation performance.

Our Contribution. In this work,

– we survey a number of classical sorting algorithms, i.e. Bubble, Insertion,
Odd-Even Sort, Merge, Batcher’s Odd-even Merge Sort, Bitonic sort, and
show that some are more suitable than others for leveled SWHE evaluation,
similar to the work for distance computation presented in [9]. Specifically,
we characterize them with respect to a new metric, i.e. multiplicative circuit
depth. We show that the classical sorting algorithms require deep circuit
evaluations and therefore are not ideal for homomorphic evaluation.

– we introduce two new depth optimized sorting schemes: Greedy Sort and
Direct Sort. Both algorithms permit shallow circuit evaluation of depth only
O(log(N) + log(`)) for sorting N elements, where ` represents the size of
the array elements in bits. The Greedy algorithm has slightly lower depth



however requires more multiplications than Direct Sort. Both algorithms
improve in the circuit depth metric over classical algorithms by at least 1-3
orders of magnitude.

– we instantiate a somewhat homomorphic encryption scheme (SWHE) based
on NTRU, and present an implementation of the proposed sorting algorithm
using this SWHE scheme. Our results, confirm our theoretical analysis, i.e.
that the performance of the proposed sorting algorithm scales favorably as
N increases.

2 Background

We start by giving a brief summary of the multi-key LTV-FHE scheme and
provide a brief explanation on the primitive functions that are proposed by
López-Alt, Tromer and Vaikuntanathan. Later, we give details of the DHS FHE
library, that is used in the implementation, based on a specialized LTV-FHE
version.

2.1 The LTV-SWHE Scheme

In 2012 López-Alt, Tromer and Vaikuntanathan proposed a leveled multi-key
FHE scheme (LTV) [25]. The scheme based on a variant of NTRU encryption
scheme proposed by Stehlé and Steinfeld [30]. The introduced scheme uses a
new operation called relinearization and existing techniques such as modulus
switching for noise control. We use the same construction as in [11] which is a
single key version of LTV with reduced key size technique. The operations are
performed in Rq = Zq[x]/〈xn + 1〉 where n is the polynomial degree and q is the
prime modulus. The scheme also defines an error distribution χ, which is a trun-
cated discrete Gaussian distribution, for sampling random polynomials that are
B-bounded. The term B-bounded means that the coefficients of the polynomial
are selected in range [−B,B] with χ distribution. The scheme consists of four
primitive functions, namely KeyGen, Encrypt, Decrypt and Eval. A brief
detail of the primitives is as follows:

KeyGen. We choose sequence of primes q0 > q1 > · · · > qd to use a differ-
ent qi in each level. A public and secret key pair is computed for each level:
h(i) = 2g(i)(f (i))−1 and f (i) = 2u(i) + 1, where {g(i), u(i)} ∈ χ. Later we cre-

ate evaluation keys for each level: ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ (f (i−1))2, where

{s(i)τ , e
(i)
τ } ∈ χ and τ = [0, blog qic].

Encrypt. To encrypt a bit b for the ith level we compute: c(i) = h(i)s+ 2e+ b,
where {s, e} ∈ χ.

Decrypt. In order to compute the decryption of a value for specific level i we
compute: m = c(i)f (i) (mod 2).

Eval. The gate level logic operations XOR and AND are done by computing the

addition and multiplication of the ciphertexts. In case of c
(i)
1 = Encrypt(b1) and



c
(i)
2 = Encrypt(b2); XOR is equal to Decrypt(c

(i)
1 + c

(i)
2 ) = b1 + b2 and, AND is

equal to Decrypt(c
(i)
1 · c

(i)
2 ) = b1 · b2. The multiplication creates a significant noise

in the ciphertext and to cope with that we apply Relinearization and modulus
switch. The Relinearization computes c̃(i)(x) from c̃(i−1)(x) extending c̃(i−1)(x)

as a linear combination of 1-bounded polynomials c̃(i−1)(x) =
∑
τ 2τ c̃

(i−1)
τ (x).

Then, using the evaluation keys it computes c̃(i)(x) =
∑
τ ζ

(i)
τ (x)c̃

(i−1)
τ (x) as the

new ciphertext. The formula is actually the evaluation of homomorphic product
of c(i)(x) and (f (i))2. Later, the modulus switch c̃(i)(x) = b qi

qi−1
c̃(i)(x)e2 decreases

the noise by log (qi/qi−1) bits by dividing and multiplying the new ciphertext
with the previous and current moduli, respectively. The operation b·e2 refers to
rounding and matching the parity bits.

2.2 The DHS SWHE Library

We use a customized version of the LTV-SWHE scheme that is previously pro-
posed in [11] by Doröz, Hu and Sunar (DHS). The code is written in C++ using
NTL package that is compiled with GMP library. The library contains some
special customizations that improve the efficiency in running time and memory
requirements. The customizations of the DHS implementation are as follows:

– We select a special mth cyclotomic polynomial Ψm(x) as our polynomial
modulus. The degree of the polynomial n is equal to the euler totient func-
tion of m, i.e. ϕ(m). In each level the arithmetic is performed over Rqi =
Zqi [x]/〈Ψm(x)〉, where modulus qi is equal to pk−i. The value p is a prime
number that cuts (logp)-bits of noise and the value k is equal to the depth
plus 1.

– Due to the special structure of the moduli pk−i, the evaluation keys in one
level can also be promoted to the next level via modular reduction. For

any level we can evaluate the evaluation key as ζ
(i)
τ (x) = ζ

(0)
τ (x) (mod qi).

This technique reduces the memory requirement significantly and makes it
possible to evaluate higher depth circuits.

– The specially selected cyclotomic polynomial Ψm(x) is used to batch multiple
message bits into the same polynomial for parallel evaluations as proposed
by Smart and Vercauteren [17, 29] (see also [18]). The polynomial Ψm(x) is
factorized over F2 into equal degree polynomials Fi(x) which define the mes-
sage slots in which message bits are embedded using the Chinese Remainder
Theorem. We can batch ` = n/t number of messages, where t is the smallest
integer that satisfies m|(2t − 1).

– The DHS library can perform 5 main operations; KeyGen, Encryption,
Decryption, Modulus Switch and Relinearization. The most time
consuming operation is Relinearization, which is generally the bottleneck.

Therefore, the most critical operation for circuit evaluation is Relineariza-
tion. The other operations have negligible effect on the run time.



Modified Relinearization We modify previously implemented method of re-
linearization where it uses linear combination of 1-bounded polynomials of the

ciphertext c̃(i−1)(x) =
∑
τ 2τ c̃

(i−1)
τ (x) . Previously, the number of evaluation key

polynomials and the number of multiplications in relinearization is dlog(q)e. For
deep circuits with many levels the bitsize dlog(q)e is two/three orders of mag-
nitude which increase the memory requirements and number of multiplications
significantly. In order to achieve a speedup, we group the bits of the ciphertext
and use the linear combination of word (r-bits) sized polynomials rather than
binary polynomials. Setting the word size as w = 2r, we implement the following
changes:

– Compute the evaluation keys as: ζ
(i)
τ (x) = h(i)s

(i)
τ +2e

(i)
τ +wτ (f (i−1))2, where

{s(i)τ , e
(i)
τ } ∈ χ and τ = [0, blog qi/rc].

– Divide the ciphertext into linear combinations of word sized polynomials:

c̃(i−1)(x) =
∑
τ w

τ c̃
(i−1)
τ (x).

– Compute the relinearization as: c̃(i)(x) =
∑
τ ζ

(i)
τ (x)c̃

(i−1)
τ (x)

The changes above decreases the memory requirement by r times. With this
change relinearization requires r times fewer multiplications. However this does
not yield r times speedup. This is due to the increase of the coefficient size of the
linear combination polynomials from 1 to r bits. Thus the cost of a multiplication
increases.

3 Basic Circuits

As stated earlier, given level i in a homomorphic circuit, we will have c
(i)
1 =

Encrypt(b1) and c
(i)
2 = Encrypt(b2) where b1 and b2 are encrypted by the owner

of data. We are allowed to use two fundamental operations on encrypted inputs;
bit multiplication (AND, ” · ”) and bit addition (XOR, ” ⊕ ”). Hence, we can

evaluate c(i) = c
(i)
1 ⊕ c

(i)
2 and c̃(i) = c

(i)
1 · c

(i)
2 . Finally, the holder of the secret key

can compute and retrieve Decrypt(c(i)) = b1 ⊕ b2. Decrypt(c̃(i)) = b1 · b2. Using
these two, we can define the following circuits. From this point on, we will use
c = E(b) instead of c = Encrypt(b) for an arbitrary encryption and c(i) represents
the ciphertext of the ith level.

Equality Circuit CEQ: It compares two encrypted `-bit integers E(X) = X(i) =
(x`−1)(i) . . . (x1)(i)(x0)(i) and E(Y ) = Y (i) = (y`−1)(i), . . . , (y1)(i), (y0)(i), and
outputs z̃(j). Here (xk)(i) and (yk)(i) represent the k-th bits of X(i) and Y (i),
respectively. AlsoD(z̃(j)) returns 1 ifX equals Y and 0 otherwise. We can formal-
ize the comparison circuit as follows; z̃(j) = (E(X) = E(Y )) =

∏
k∈[`](E(xk) =

E(yk)) =
∏
k∈[`]((xk)(i) ⊕ (yk)(i) ⊕ 1). The product chain of ` bits may be eval-

uated using a binary tree of AND gates which creates a circuit with dlog(`)e
multiplicative depth. Therefore, d(CEQ) ≈ O(log(`)).

Less Than Circuit CLT: In a similar manner, this circuit compares two `-bit
integers E(X) and E(Y ), and outputs z̃(j) where D(z̃(j)) = 1 if X is smaller than



Y and D(z̃(j)) = 0 otherwise. We can formalize the comparison circuit as follows;
z̃(j) = (E(X) < E(Y )) =

∑
k∈[`]

[
(E(xk) < E(yk))

∏
k<t<`(E(xt) = E(yt))

]
where (E(xk) < E(yk)) = (yk)(i) · ((xk)(i) ⊕ 1) and (E(xt) = E(yt)) = (yt)

(i) ⊕
(xt)

(i) ⊕ 1. The expansion of the formula gives a sum of products expression
where the product with the maximum number of bits occurs when i = 0, in
which case the product chain contains `+1 bits, where 2 bits are contributed by
the (E(x0) < E(y0)) term and the rest are from the (E(xt) = E(yt)) terms. For
the product of `+ 1 elements, we may use again a binary tree in which case we
achieve the minimum depth of dlog (`+ 1)e. Therefore d(CLT) ≈ O(log(`+ 1)).

Compare and Swap Block CCS: Since our main goal is the construction of
a sorting circuit, we will extensively use the comparators followed by a swap
operation. The CCS block basically compares two `-bit integers X and Y using
previously defined CLT circuit and swaps them if X ≮ Y . Overall circuit can
be defined as; X̃(j+1) = [z̃(j) · E(X)] ⊕ [(z̃(j) ⊕ 1) · E(Y )] and Ỹ (j+1) = [z̃(j) ⊕
1) · E(X)] ⊕ [z̃(j) · E(Y )], where z̃(j) = (E(X) < E(Y )). Therefore, d(CCS) =
d(CLT) + 1.

4 Sorting Algorithms

Sorting is one of the most natural and crucial tasks in computing. Numerous sort-
ing algorithms have been proposed in the literature [21]. These algorithms have
been heavily investigated and characterized according to their time and space
requirements, as well as to the degree of their suitability for parallelization. As
far as homomorphic evaluation is concerned we have another requirement. Since
most of the FHE and SWHE schemes are designed to evaluate circuits, and do
not scale well when the multiplicative depth of the circuit is high, we need to
add another metric; namely multiplicative circuit depth, before we can build a
homomorphic sorting scheme. For this we need to first convert the serial sorting
algorithm, into a circuit by unrolling loops and eliminating conditional assign-
ments by arithmetization. In this paper, the term “circuit depth” is used in lieu
of multiplicative depth of the circuit and it should not be confused with “com-
parison depth”, i.e. depth of the circuit measured in terms of comparative levels,
which is used in the analysis of classical sorting algorithms in the literature.

A sorting network is a circuit which consists of comparators and swapping
operations. The difference between classical comparison-based sorting algorithms
and sorting networks is that all operations are set in advance, which means
that there is no data dependency in the flow of the algorithm steps in sorting
networks. Since we are trying to sort encrypted inputs, we are, in a way, blind in
each step of the algorithm. As a result, even though data dependent algorithms
may be faster and more efficient over raw data, being independent from the
input makes sorting networks the only candidates for FHE sorting. While there
are some algorithms specifically designed as a sorting network, some classical
sorting algorithms can also be represented as a network, as FHE properties
require. Hence we will go over some well known algorithms and give the depth
complexity of the corresponding sorting networks.



4.1 Bubble Sort

Bubble Sort is one of the simplest sorting techniques that permits a rather
straightforward implementation using only primitive comparison and swap op-
erations. Chatterjee et al. [8] design homomorphic conditional swap circuits to
facilitate homomorphic evaluation of the Bubble Sort algorithm. Very briefly
the sorting algorithm works by making passes over the array. In each pass the
elements are pairwise compared and swapped to move the smaller element to the
left (in case of a horizontal array). The average and worst case performance for
an array of N elements are the same: O(N2). During homomorphic evaluation
since we have no way of knowing when the array is sorted for a possible early
termination, we need to make N − 1 passes over the array always achieving the
worst case complexity. Since another element in the rightmost portion is sorted
the passes decrease by one in number of elements compared and swapped after
each pass. Thus, overall we will have [(N − 1) + (N − 2) + . . .+ 1] = (N2−N)/2
CCS blocks and the depth of the Bubble Sort circuit will be [(N2−N)/2]d(CCS).
Considering `-bit wide array elements, we have d(CBUBS) = O(N2 log(`)). We
can gain some economy by not waiting to start the next pass until a pass is
finished. We can overlap the passes which creates a network version of Bubble
Sort, known as Odd Even Sort, detailed in the next section. 3

4.2 Odd-Even Sort

A trellis shaped circuit arrangement of Bubble sort is known as Odd-Even Sort.
The circuit admits N inputs and computes the N sorted output values after N
passes. In the first pass, considering a zero-indexed array, every even indexed
element is compared and swapped with its right neighbor. In the second pass,
every odd indexed element is compared and swapped with its right neighbor.
Considering these two steps as a round, the identical operations are applied in
each round. The total number of comparisons is N − 1 in each round, there
are N passes which means N/2 rounds and so overall, there are N(N − 1)/2
comparators. And the depth of the circuit is Nd(CCS). Therefore d(COES) =
O(N log(`)).

4.3 Insertion Sort

Insertion sort is a simple sorting algorithm that iteratively builds a sorted array
from an unsorted one. The sorted array initially holds only the first element.
Then each element is one by one added to the sorted list by comparing it from
right to left with the elements in the sorted list until an element smaller is
encountered. The new element is then inserted into the sorted array next to the

3 Note that in their implementation Chatterjee et al. [8] perform the comparison
using a carry propagate adder based subtraction circuit result in a circuit depth
(N2 − N)(` + 1)/2. While the computational complexity of the scheme is low, the
O(N2) circuit depth is prohibitive.



first smaller element when scanning right to left. The average case and the worst
case complexity of the algorithm is O(N2) while the best case is only O(N).
When considered as a circuit for homomorphic evaluation we need to run the
algorithm with the worst case complexity, without making early decisions as in
Bubble Sort. We build up the sorted array one by one making increasing number
of comparison and conditional swaps. We obtain a circuit depth of [1 + 2 + . . .+
N − 1]d(CCS) = (N2 − N)/(2)d(CCS). Therefore d(CINS) = O(N2 log(`)). This
circuit can be used in a more efficient way by overlapping some comparisons,
similar to CBUBS. Consequently we can see that, Insertion Sort and Bubble Sort
reveal the same construction, when they are considered as sorting networks.

In [8] Chatterjee et al. rely on the fact that after the imperfect application of
Bubble Sort the array is nearly sorted. Thus Insertion Sort performs nearly in
linear time. But even if the array is nearly sorted, the algorithm should run as in
the worst case, since we do not have any knowledge of the misplaced elements.

4.4 Merge Sort

Merge Sort is an asymptotically faster algorithm and allows early termination in
normal execution, which reduces its complexity. The algorithm is recursively ap-
plied by splitting arrays into smaller ones. In the innermost recursion, arrays of
two elements are sorted, where only one comparison is needed in one sub-array.
In the merging step, which combines two individually sorted arrays into a single
sorted array, at most three comparisons are applied in each partition. This even-
tually requires O(N log(N)) comparisons in the worst case. But in our case, the
merging step requires many more comparisons, due to algorithm’s input depen-
dent nature and our lack of input knowledge. For instance, in the classic Merge
Sort, to merge two sub-arrays each of size two, as in Figure 1, we follow one of
the paths until all the elements are placed in the sorted sub-array of size four.
Let our output array be Z in a merge step. Then, if CLT(E(X0), E(Y0)) output is
1; we can conclude that Z0 = X0, otherwise Z0 = Y0. But in homomorphic sort-
ing, we cannot follow any specific path as the output of each CLT(E(Xi), E(Yj))
block is also encrypted. Hence, we need to consider every single possible outcome
of all comparison operations, i.e. every single path, which eventually necessitates
comparing every possible pair.

In summary, we need to perform (N2 − N)/2 comparisons to sort an array
of N elements. On the other hand, since there is no swapping, i.e. no data
dependency, during the execution of a single merge step, we can compute all of
the comparisons in parallel at the beginning of each merge step. Consequently,
applying all comparison operations before every merge step simply alters the
algorithm and we end up with a totally different scheme from the classical Merge
Sort algorithm. Inspired from the analysis of CMS, we introduce two new sorting
circuits, with the same number of comparators O(N2) and the total comparison
depth of O(1), in Section 5.1.

Indeed, we can reduce the number of comparisons in CMS using CCS blocks.

In the first step, the run of CCS(X
(i)
0 , Y

(i)
0 ) will yield X

(j)
0 and Y

(j)
0 as the smaller
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Fig. 1: Merging two individually sorted arrays: 〈E(X0), E(X1)〉 and
〈E(Y0), E(Y1)〉

and larger elements, respectively. Then, we can safely use Y
(j)
0 in the following

step as one of the inputs to CCS blocks while the second input can be either
X1 or Y1. But, it is impossible to know which one of them should be used since
we do not know the previous comparison result. Therefore, we should apply an

additional CCS(X
(i)
1 , Y

(i)
1 ). This yields X

(j)
1 as the smaller element. So, as a final

step, evaluating CCS(X
(j)
1 , Y

(j)
0 ) will be sufficient to complete the merging of the

two arrays. This algorithm yields to Odd-Even Merge Sort whose details are
given in the next section.

4.5 Odd-Even Merge Sort

Odd-Even Merge Sort is a sorting network devised by Batcher [1]. It has a
recursive structure similar to Merge Sort. The algorithm considers two already
sorted half-lists at each merge step. In a merge step, the merging process is
recursively applied to even and odd indexed elements separately while arranging
them into two halves. This process continues until there is only one element in
each half list in which case a CCS is applied in order to merge them into an
array. Once the even indexed half and the odd indexed half are both internally
merged, CCS are applied to inner adjacent elements only. The merging process
is illustrated in Figure 2.

Assume we have two lists with k elements as input to the merge step. In case
k = 1, we only need one level of CCS, thus the depth of the circuit t1 = 1. In
case k = 2, the first step recursively applies the merge step with k = 1 twice
in parallel. Then, the second step applies inner adjacent comparisons which
increment the depth by one, i.e., t2 = t1 + 1 = 2. For any k, we can conclude
that tk = tk/2 + 1 = log(k) + 1. Hence, when we sort N elements, the overall

depth can be computed as
∑log(N)−1
i=0 tk =

∑log(N)−1
i=0 (log(k) + 1) where k = 2i

which yields
∑log(N)−1
i=0 (i − 1) = [log2(N) + log(N)]/2. Therefore, d(CMS) =

O(log2(N))d(CCS). Similarly, let total number of comparison and swaps in a
merge step in a single block be ck. Then c1 = 1 and c2 = 2 · c1 + 1, since in a
single merge block with k = 2, there are two merge blocks with k = 1 and only
one inner adjacent element pair. In the general case, we have ck = 2 · ck/2 +k−1



for arbitrary k. Consequently, for k = 2i, we have ci = 2 · ci−1 + log(i) −
1, which is equal to ci = (i + 1)2i −

∑i−1
j=0 2j = i · 2i + 1. Since there are

[N/(2k)] = N/2i+1 parallel blocks in each merge step, the total number of CCS

will be
∑log(N)−1
i=0 [N2−(i+1)ci] = N

∑log(N)−1
i=0 [2−(i+1) + i/2], which results in an

asymptotic complexity of O(N log2(N)).

CCS(X
(i)
0 , Y

(i)
0 )

@@

CCS(X
(i)
1 , Y

(i)
1 )

��
CCS(X

(j)
1 , Y

(j)
0 )

Fig. 2: Odd-Even Merging two individually sorted encrypted arrays: 〈X(i)
0 , X

(i)
1 〉

and 〈Y (i)
0 , Y

(i)
1 〉

4.6 Bitonic Sort

Bitonic Sorter is another sorting network created by Batcher [1]. It has similar
complexity to Odd-Even Merge Sort, but with slightly different number of com-
parisons. The algorithm again consists of recursive sort and merge operations.
The base case occurs when there are only two elements in the input array in which
case only one CCS is applied. In order to merge two sorted arrays, first of all their
elements are compared and swapped so that all elements of the first subsequence
are smaller than the second one. Then the subsequences are individually sorted.
The depth is computed as d(COEM−SORT ) = (log2(N) + log(N))/2d(CCS). The
depth is O(log2(N) log(`)) and a total of O(N log2(N)) comparison complexity.

5 Proposed Sorting Algorithms

Given the inadequacies of existing sorting algorithms in permitting shallow cir-
cuit evaluation, we develop two new sorting algorithms, Direct Sort and Greedy
Sort, optimized for this purpose. Both algorithms take an input vector and com-
pute the sorted vector by evaluating the sorting circuits CDS and CGS. The circuit
evaluation makes it easy to apply the SWHE algorithm for homomorphic evalu-
ation. The first circuit CDS makes use of the equality check CEQ and comparison
circuits CLT defined in Section 3 as building blocks whereas the second CGS uses
only the comparison circuit CLT.

Sorting Circuits CDS, CGS

Encrypted Input vector: E(X) = 〈X(α)
0 , X

(α)
1 , . . . , X

(α)
N−1〉

Encrypted Output vector: Y (β) = 〈Y (β)
0 , Y

(β)
1 , . . . , Y

(β)
N−1〉

The first step, which is mutually used by both of the circuits, constructs a



comparison matrix M :

M (γ) =


m

(γ)
0,0 m

(γ)
0,1 · · · m

(γ)
0,N−1

m
(γ)
1,0 m

(γ)
1,1 · · · m

(γ)
1,N−1

...
...

. . .
...

m
(γ)
N−1,0 m

(γ)
N−1,1 · · · m

(γ)
N−1,N−1

 .

Each m
(γ)
i,j is computed as follows4:

m
(γ)
ij = CLT(X

(α)
i , X

(α)
j ) =

{
mij = 1 if Xi < Xj

mij = 0 else
(1)

where i, j < N and i < j. The diagonal elements are self comparisons, i.e.
Xi < Xi, therefore mi,i = 0, ∀i ∈ [0, N − 1]. The remaining entries in the lower

triangular part of M , whose indices satisfy i > j, are computed as m
(γ)
ji = m

(γ)
ij ⊕

1. Note that the lower triangular part holds the comparison m
(γ)
ji = (Xi ≥ Xj).

The adopted approach is straightforward as we simply compare every element
with every other element in the input vector. But in terms of depth, it has a
significant advantage, as performing all comparisons in the beginning reduces the
depth by d(CLT) in each comparison level. In the construction of M we perform
N(N − 1)/2 parallel CLT operations. This means the depth of this initial step
will be 1 in terms of comparison and log(` + 1) in terms of multiplication as
stated earlier. By constructing M at the outset we simply avoid further CLT
computations during the execution of the later steps and the multiplicative depth
will thus be minimized.

5.1 Direct Sort

The next step for CDS is computing the index vector, σ, which indicates the
positions of the vector elements in the sorted output vector, and is computed
using the transpose of comparison matrix MT as

σ(δ) =
(
HW

(
M (γ)T [0]

)
HW

(
M (γ)T [1]

)
· · · HW

(
M (γ)T [N − 1]

) )
(2)

where MT [i] represents the ith row of the transpose matrix and HW computes
the Hamming Weight of the given input array. Note that in M , the sum of all
elements in a column gives the number of elements, which the element with the
index of the column number is greater than. For instance, the sum of all elements
in column j is the number of elements, which the element Xj is larger than, as
we add 1 to the sum for each such element. Therefore, the sum is also the index
of Xj in the sorted output vector. In other words, if an element is larger than

4 Note that when there is no ambiguity we will drop the comma, i.e. write m
(γ)
i,j as

m
(γ)
ij in the indices for brevity.



k other elements, then this implies that it is the k + 1st largest element and its
index is k in a zero-based output vector. Now, since all data is in an encrypted
form, we have no knowledge about the elements of the σ; therefore we cannot
use it directly for homomorphic sorting. Here, we simply compare each element

of the index vector σ(γ) (i.e., σ
(γ)
i ) with each possible index value (which is in

the interval [0, N − 1]); the equality places the corresponding input element in
the current position of the output vector. For this, we make use of CEQ circuit
as follows

Y
(β)
j =

∑
i∈[N ]

(σ
(δ)
i = j)X

(α)
i for j ∈ [N ] . (3)

The overall method for open version CDS is described in Algorithm 1. From

Algorithm 1 Direct Sorting Algorithm

1: function SORT(X,Y,N)
2: for i← 0 to N − 1 do . Construct M table
3: M [i][i]← 0
4: for j ← i+ 1 to N − 1 do
5: M [i][j]← LessThan (X[i], X[j])
6: M [j][i]←M [j][i] + 1
7: end for
8: end for
9: M ← Transpose (M)

10: for i← i+ 1 to N − 1 do . Construct σ vector
11: S[i]← HammingWeight (M [i], N)
12: end for
13: for i← 0 to N − 1 do . Construct Y , output vector
14: Y [i]← 0
15: for j ← 0 to N − 1 do
16: z ← IsEqual (i, S[j])
17: Y [i]← Y [i] + AND (z,X[j])
18: end for
19: end for
20: end function

the discussions in Section 1, we already know that d(CLT) = log(` + 1) and
d(CEQ) = log(`). In the computations of the entries of σ we add N bits to
form a log(N)-bit sum. In this step full and half adders are used in a Wallace
Tree structure, hence the depth of the circuit for the N -bit summation can be
given approximately as d(σ) = O(log3/2(N)). Taking into account the parallel
CLT and CEQ comparisons and single multiplication in the final summation the
total depth becomes d(CLT) + d(σ) + d(CEQ) + 1. Therefore, we can obtain the
following expression for the overall depth of the circuit that implements the
proposed algorithm: d(CDS) = O(log(N) + log(`)).



5.2 Greedy Sort

In this scheme, we compute every possible permutation of indices for the sorted
array. For instance, to determine the smallest element Y0 in the sorted array we
need to check if a candidate element Xi is smaller than all the other elements in
X, to be set as the smallest element of the sorted array. We can express the con-
ditions yielding the Y0 assignment explicitly as in Algorithm 2. Similarly, for Y1

Algorithm 2 Finding the minimum element

1: if (X0 < X1) ∧ (X0 < X2) ∧ . . . ∧ (X0 < XN−1) then
2: Y0 = X0

3: else if ¬(X0 < X1) ∧ (X1 < X2) ∧ . . . ∧ (X1 < XN−1) then
4: Y0 = X1

5: else if . . . then

6:
...

7: end if

if an element is smaller than all others except one, then we can conclude that it is
the second smallest element. In this case, we compute more possibilities, namely(
N−1
1

)
, in each if-else statement since we have the possibility of an element Xi

being larger than any of the other elements. The expression for Y1, which deter-
mines the second smallest element is given in Algorithm 3. Using the comparison

Algorithm 3 Finding the second minimum element

1: if [(X0 < X1) ∧ . . . ∧ ¬(X0 < XN−1)] ∨ . . . ∨ [¬(X0 < X1) ∧ . . . ∧ (X0 < XN−1)]
then

2: Y1 = X0

3: else if [(X1 < X0) ∧ . . . ∧ ¬(X1 < XN−1)] ∨ . . . ∨ [¬(X1 < X0) ∧ . . . ∧ (X1 <
XN−1)] then

4: Y1 = X1

5: else if . . . then

6:
...

7: end if

matrix M (γ), defined in Section 5.1, we can convert the if-else statements into
logic circuits and compute the sorted elements. The if-else statements give us an
exact mutually exclusive partitioning in the output assignments. Therefore, we
can use XOR (logical exclusive disjunction ⊕) gates to combine each statement.
For instance, Y0 evaluated by the following circuit

Y
(β)
0 =

(
m

(γ)
0,1 . . .m

(γ)
0,N−1

)
X

(α)
0 ⊕

(
m

(γ)
1,0 . . .m

(γ)
1,N−1

)
X

(α)
1 ⊕ . . .

⊕
(
m

(γ)
N−1,0 . . .m

(γ)
N−1,N−2

)
X

(α)
N−1. (4)



We can write this equation in a more compact form, if we use a coefficient for each
Xi, such as θt,i, where t stands for the index of Yt. Using t = 0, θ0,i =

∏N−1
j=0
j 6=i

mij

and the overall equation simply becomes Y0 = θ0,0X0 ⊕ . . .⊕ θ0,N−1XN−1 .
In condition evaluations we can also convert the OR gates (i.e., logical disjunction
∨ in Algorithm 3) to XOR gates. To see why this works, first note that a ∨ b =
a ⊕ b ⊕ (a · b) where a and b are bits. If a · b = 0 then a ∨ b = a ⊕ b. We can
make the following proposition for the conjunction cases of Xi to show that it
can either have only one conjunction that outputs 1 or none:

Proposition 1 In the expression of θt,i of the element Xi, for any two distinct
conjunctions ρ and ρ′ it holds that ρρ′ = 0.

Proof. In order to evaluate all the combinations we always find mk,l ∈ ρ and
ml,k ∈ ρ′ for some k, l ∈ N − 1. Otherwise ρ = ρ′, a contradiction. Since ρρ′ will
contain the conjunction mk,lml,k we always have ρρ′ = 0 by mk,l = ml,k ⊕ 1.

Now we can freely convert all occurrences of OR’s to ⊕ and the circuit for Y1 be-

comes Y
(β)
1 = θ

(γ)
1,0X

(α)
0 ⊕. . .⊕θ

(γ)
1,N−1X

(α)
N−1 where θ

(γ)
1,i =

∑N−1
k1=0
k1 6=i

m
(γ)
k1i

∏N−1
j=0
j 6=i,k1

m
(γ)
ij .

More generally, for other t values, following a similar logical expression, we will

have
(
N−1
t

)
possibilities, and θ

(γ)
t,i will be computed as

θ
(γ)
t,i =

N−t∑
k1=0
k1 6=i

m
(γ)
k1i

N−t+1∑
k2=k1+1
k2 6=i

m
(γ)
k2i

. . .

N−1∑
kt=kt−1+1

kt 6=i

m
(γ)
kti

N−1∏
j=0
j 6=i

j 6=k1,...,kt

m
(γ)
ij (5)

and the output values of CGS, Yt for t ∈ [N ] as Y
(β)
t =

∑N−1
i=0 X

(α)
i θ

(γ)
t,i . Each out-

put of the circuit CGS computes a summation of the input values X0, . . . , XN−1
where values are weighted with θt,i. Note that θt,i evaluates a logic expression
that determines whether Xi ends up in position t, i.e. Yt = Xi, after sorting. The
overall depth is d(CGS) = d(CLT)+d(θt,iXi)., where d(CLT) = log(`+1) as given in
Section 3. During the θt,i computations we employ a circuit arranged in a binary
tree of depth d(θt,i) = dlog(N − 1)e and d(θt,iXi) = d(θt,i) + 1. Consequently,
the overall circuit depth is found as d(CGS) = dlog(`+ 1)e+ dlog(N − 1)e+ 1 =
O(log(N) + log(`)).

6 Implementation Results

We implemented the proposed depth optimized sorting method described in
Algorithm 1 using the SWHE scheme of [11] and evaluated CDS for a number of
array lengths. Here, we briefly summarize the parameter selection process and
present the simulation results.

Parameter Selection. According to [11] the NTRU based SWHE Scheme re-
quires Hermite factor δ < 1.0066 to achieve a security level of 80-bit. We set



Table 1: The multiplicative depth of different sorting circuits given size N and
bit size `

` 8 32
N 4 8 16 32 64 4 8 16 32 64

CINS\CBUBS 30 140 600 2480 10080 42 196 840 3472 14112
COES 20 40 80 160 320 28 56 112 224 448
COEMS\CBITS 15 30 50 75 105 21 42 70 105 147
CDS 9 10 11 12 13 11 12 13 14 15
CGS 7 8 9 10 11 9 10 11 12 13

the per level cutting rate log p depending both on the circuit itself and its total
depth, similarly we choose a polynomial degree n according to security threshold
and maximum coefficient modulus size. We implemented COES, COEMS, CDS and
CGS circuits, simulated them for both ` = 8-bit and ` = 32-bit integer inputs
and selected array size N . 5 In Table 2, we enumerate the parameters which we
used in our experiments for various circuit depths. The largest Hermite factor
among our parameter choices is δ = 1.0063, ensuring a security level of 99-bits,
which is the lowest security level for all cases.

Table 2: Cutting size log p, maximum coefficient size log q0, Polynomial degree
n, message batching slot size S and Hermite Factor δ for different depths d

Depth d 9 12 15 21 28 42 56

log p 20 20 22 25 25 25 30
log q0 200 260 352 550 725 1075 1710
n 8190 8190 16384 16384 27000 32768 46656
S 630 630 1024 1024 1800 2048 2592
δ 1.0041 1.0054 1.0037 1.0057 1.0046 1.0056 1.0063

Performance Results. We implemented homomorphic Odd Even Sort, Batcher’s

Odd Even Merge Sort and both of the proposed algorithms in C++ using DHS-
SWHE Library [11]. All simulations were performed on an Intel Xeon @ 2.9 GHz
server running Ubuntu Linux 13.10. We compiled our code using Shoup’s NTL
library version 6.0 and with GMP version 5.1.3. The sorting times for 8 and 32
bit integers are given in Table 3. For instance N = 64 elements with ` = 32
bit size, our algorithm Direct Sort, CDS, runs in about 14.15 hours whereas the
amortized running time, where we use batching with slot size 1024, is about 49.7
seconds per sort. When the input bit size is ` = 8, the run time is 10.6 hours,

5 Note that N is not restricted to a power of two.



and with batching slot size of 630, it takes 1 minute. For N = 4 the sorting
takes as low as 0.20 seconds per sort. In comparison, the homomorphic Lazy
Sort implementation of [8] takes about 976 and 1400 seconds for array sizes of
10 and 40, respectively. For array sizes N = 16 and N = 64 our implementation
takes 4.28 and 50 seconds, respectively.

Table 3: Amortized execution time of circuits for different array sizes N and
input bit sizes `

` 8 32
N 4 8 16 32 64 4 8 16 32 64

COES 400ms 3.45s n/a n/a n/a 2.4s n/a n/a n/a n/a
COEMS 270ms 3.30s n/a n/a n/a 530ms 5.8s 31s n/a n/a
CDS 140ms 690ms 3.14s 13.9s 1m 200ms 944ms 4.28s 18.6s 49.7s
CGS 90ms 470ms 2.8s 13.10s 52.2s 500ms 2.4s 10.8s 49.2s 2.2m

7 Conclusion

We proposed two depth optimized sorting algorithms for efficient homomorphic
evaluation. Circuit depth is intimately related to the parameter sizes in lev-
eled homomorphic encryption implementations and therefore directly affect the
overall performance of the homomorphic circuit evaluation. Existing sorting al-
gorithms are not optimized for homomorphic evaluation. To close this gap we
presented the depth analysis for several classical sorting algorithms: Bubble sort,
Insertion Sort, Odd Even Sort, Odd Even Merge Sort, Merge Sort, and Bitonic
Sort. Inspired by the performance of Merge Sort we introduced two new depth-
optimized sorting algorithms which achieve a circuit depth of O(log(N)+log(`)).

To study the real-life performance of our sorting algorithms, we instanti-
ated an NTRU based SWHE scheme in the DHS SWHE library and presented
simulation results for selected array lengths. For this we determined the ideal
parameter choices, e.g. modulus cutting levels to cope with noise growth and
Hermite work factor estimates to ensure reasonable security margins. The im-
plementation performs favorably achieving significant speedup over the proposal
in [8] for similar array lengths.
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