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Abstract 17 

The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery 18 
system for drug storage and site- and time specific drug release on demand. However, functional 19 

evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal 20 
morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based 21 

microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe 22 
loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release 23 
on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside 24 
microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the 25 
neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers 26 
(site-specific NGF release). These results suggest the PLA-microchambers can be an efficient drug 27 
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delivery system for the site- and time-specific delivery of neuropeptides, potentially suitable for 28 

guidance of human nerve cells. 29 

1 Introduction  30 

Micro- and nanostructured matrices have prompted new lines of study focusing on cell behavior 31 

(adhesion, proliferation, morphology, alignment, migration, gene expression, and even differentiation) 32 
and tissue engineering (Sousa et al., 2019). Photolithography and electroplating technique allows 33 
creation of templates with different geometries suitable for reusable synthesis of the patterned films 34 
composed of polymers, proteins and colloids with nanoscale fidelity. 35 

Among the large number of biomaterials thus obtained, patterned microchamber array (MCA) 36 

(Kiryukhin et al., 2018; Zykova et al., 2019) are of particular importance. The capability of loading 37 

biologically active substances into microchambers (microcontainers) allows modulated cell function, 38 

not only due to the periodic structure of the material (Norman and Desai, 2006; Bettinger et al., 2009; 39 
Ge et al., 2015; Sousa et al., 2019), but also due to the encapsulated cargo release (Kopach et al., 2019). 40 
A wide range of biocompatible polymers for the MCA synthesis enables control of the cargo release 41 
rate. For example, it was shown that the polylactic acid (PLA)-based microchambers reliably retain 42 

dye for several days (Gai et al., 2017). PLA-based microchambers start relatively slow spontaneous 43 
release of adrenaline hydrochloride from the first day after entering the aqueous environment (Sindeeva 44 

et al., 2018a), which has a clear advantage in many clinical applications. The release of significant 45 
quantity of cargo can be induced by ultrasound as a result of simultaneous opening of many 46 
microchambers   (Sindeeva et al., 2018a), or otherwise individual chambers can be opened by optical 47 

laser targeting (Gai et al., 2018; Kopach et al., 2019; Kurochkin et al., 2020).  48 

Notwithstanding the advantages of MCA as a system for targeted delivery of drugs and biologically 49 
active substances, its applications in human cells remain poorly understood, which precludes further 50 
clinical use of these systems. This is mainly because the methods of encapsulation, the duration of 51 

storage, the release rate of the substance depend not only on the shell material (Lee and Yeo, 2015) 52 
and container geometry (Macha et al., 2019), but also on the cargo chemical and physical properties 53 

(Albinali et al., 2019), which vary widely for each specific substance. Earlier, we demonstrated that 54 
PLA-based MCA are fully biocompatible with human cells of neuronal phenotype. In addition, we 55 

showed a site-specific cellular response to the release of a low-molecular weight neurotransmitter from 56 
individual microchambers by two-photon laser irradiation (Kopach et al., 2019). Here, we demonstrate 57 
the possibility of neuronal cell function modulation through loading and site-specific release of the 58 
nerve growth factor (NGF). 59 

2 Materials and Methods 60 

The laser-triggered drug release of encapsulated NGF from MCA to the targeted N2A cells cultivated 61 

on the MCA surface was performed using focused near-infrared (NIR) laser light with wavelength of 62 

830 nm. NGF is a neuropeptide, which makes this substance particularly sensitive to small temperature 63 

fluctuations. The use of the NIR laser is explained by minimal absorption of biological tissues in a 650 64 

- 975 nm spectral range, which will reduce the impact of laser-caused photothermal effects on NGF, 65 

N2A cells or on another potential tissue. Additionally the localisation of the laser-triggered 66 

photothermal influence on the chamber wall was ensured by the inclusion of gold nanoparticles (GNPs) 67 
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in the shells of microchambers as photoabsorbing agents (Wijaya et al., 2009; Agarwal et al., 2011). 68 

GNPs is a safe (Sperling et al., 2008; Boisselier and Astruc, 2009), well-established, and widely used 69 

thermosensitive material for polymer carrier opening, in vitro and in vivo (Radt et al., 2004; Skirtach 70 

et al., 2005; Boisselier and Astruc, 2009; Singh, 2010; Kunzmann et al., 2011). 71 

2.1 Materials 72 

For MCA synthesis biopolymer polylactide acid (PLA, 3 mm granule, molecular weight 60,000), 73 

chloroform and Nerve Growth Factor-β (molecular weight 13,5 kDa) were purchased from Sigma-74 
Aldrich (UK). The Poly(dimethylsiloxane) (PDMS) kit (Sylgard 184) was purchased from Dow-75 
Corning (Midland, USA). 76 

For gold nanorods (GNRs) synthesis, сetyltrimethylammonium bromide (CTAB, >98.0 %), 77 
hydrochloric acid (HCl, 37 wt % in water), L-ascorbic acid (>99.9 %), and sodium borohydride 78 
(NaBH4, 99 %) were purchased from Sigma-Aldrich (UK). Hydrogen tetrachloroaurate trihydrate 79 

(HAuCl4·3H2O) and silver nitrate (AgNO3, >99 %) were purchased from Alfa Aesar.  80 

2.2 Synthesis of GNRs 81 

GNRs were fabricated by the modified seed-mediated method (Nikoobakht and El-Sayed, 2003; 82 

Khlebtsov et al., 2011) At the first step, the seed solution was obtained by mixing 250 μL of 10 mM 83 
HAuCl4 and 10 mL of 0,1 M CTAB. The ice-cold 10 mM NaBH4 was added to the mixture in the 84 

volume of 1 mL. At the second step, 10 mL of the seed solution were mixed with 900 μL of 0.1 M 85 
CTAB, 20 mL of 4 mM AgNO3, 50 mL of 10 mM HAuCl4, 10 mL of 1 M HCl, and 10 mL of 0.1 M 86 

ascorbic acid for preparing GNRs. Then nanorods were centrifuged at 12000 g for 60 min. The pellet 87 
was re-suspended in deionized water. The final solution was containing about 1012 GNRs per mL; 88 

their average width was 11 ± 3 nm and length was 40 ± 6 nm. The axial ratio was ~3.8, according the 89 
longitudinal resonance was ~790 nm. 90 

2.3 Fabrication of PLA-based MCA and NGF loading 91 

The silicon master was previously made at Shenzhen Semiconductor (Shenzhen, China) using 92 

photolithography for MCA synthesis. The pattern on silicon master was represented by plate with 93 
185000 cylinders equidistant from each other (diameter of 10 μm, height 4 μm, and distance from 94 
center to center of 20 μm). For the synthesis of patterned films the PDMS stamp was made as a reverse 95 
impression from a silicone master from a mixture of the prepolymer and curing agent (10:1 ratio). The 96 

mixture was degassed for 30 minutes in vacuum and consolidated (at 70 °C for 3 hours). After this, 97 
PDMS master was cut out and separated from the silicon master. The shell of PLA-based MCA was 98 
made by sealing (printing) of two films: the patterned and the flat ones (2 kg cm−2, 15 seconds, at 55 99 

°C). For synthesis of the patterned film, the PDMS stamp with microwells was dip-coated for 5 seconds 100 
into the 1 wt% PLA chloroform solution, for obtaining the flat PLA microfilm the same procedure was 101 
made with cover glass. After printing, the PDMS stamp was removed and MCA was located on cover 102 
glass.  103 
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The patterned film was covered with GNRs before printing, by scattering GNRs on the inner surface 104 

of the PLA film by sedimentation (Sindeeva et al., 2018b). As a result, aggregates of gold nanoparticles 105 
were visualized with an optical microscope, as well as with scanning electron microscopy (SEM) and 106 
transmission electron microscopy (TEM). 107 

NGF loading was carried out by applying 10 μl of an aqueous solution (10 µg/mL) on the inner surface 108 
of the patterned film after the deposition of GNRs. For homogeneous loading, the solution was evenly 109 
distributed over the entire film surface and allowed to completely dry. 110 

2.4 Laser-induced opening of individual PLA-based microchambers 111 

Laser-induced opening of individual PLA microchambers with N2A cells growing on the top of the 112 

MCA surface was performed using a home-made system. A detailed description of the system and the 113 

procedure are presented below in the Results section (3.3). 114 

2.5 SEM and TEM techniques 115 

To visualize MCA morphology at different steps through the fabrication procedure (payload, sealing) 116 
and after opening microchamber(s), SEM was used to ensure appropriate samples (FEI Quanta ESEM, 117 
electron microscope, FEI, Hillsboro, USA). SEM was carried out using an accelerating voltage of 10 118 

kV, a spot size of 3.5, and a working distance of approximately 10 mm. 119 

TEM images of the MCA with GNRs were obtained using a Jeol 2100 microscope (Tokyo, Japan). 120 

GNRs diameters and lengths were evaluated from digitized TEM images (Grapher 8, Golden Software, 121 
Inc.) of about 500 GNRs. 122 

2.6 Human N2A cell culture 123 

For testing functional effects of the laser-triggered release of NGF from PLA-microchambers, we used 124 

human N2A cells. The cell line was maintained as we have recently described in detail (Kopach et al., 125 
2019). Briefly, N2A cells were cultured in Dulbecco's modified Eagle medium (DMEM, Invitrogen, 126 

Carlsbad, CA, USA), supplemented with 2 mM L-glutamine and 10% fetal bovine serum, 2% 127 
penicillin-streptomycin, and 1% non-essential amino acids at 37 °C (5% CO2). After harvesting, cells 128 
were washed out and plated on a surface of PLA-based MCA, pre-treated with UV light for at least 2 129 
h in advance. For cell differentiation to neuronal phenotype the culturing medium was low serum (2%) 130 
DMEM. Microscopic images of differentiating N2A cells on the fabricated MCA were collected before 131 

microchamber opening and then afterwards at various time-points. For the time-lapse imaging, a MCA 132 

with differentiating N2A cells on its surface was placed in a microscope cage incubator (5 cm2 Petri 133 

dish) to maintain experimental conditions favorable for live cell imaging (37 °C, 5% CO2). Images 134 
were acquired every 10 min for up to 60 hours total. 135 

In separate experiments, N2A cells were plated on glass coverslips placed into a 8 x 8 wells-plate. 136 
Experimental groups consisted of the cells of the same passage grown on glass in culture medium 137 
without NGF or NGF supplemented at the concentration of 10 ng/ml or 100 ng/ml. There were typically 138 
four independent samples tested for each experimental group. 139 
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2.7 Assessment of neurite length; cell density analysis 140 

Neurite outgrowth by N2A cells was assessed by measuring the neurite length in different experimental 141 
conditions, using a NeuronJ, a plugin of ImageJ software (NIH, Bethesda, USA). Neurites were traced 142 
in individual cells manually, using variable digital zooming. Analyses were performed in the cell 143 

culture field of view, across multiple areas selected in a pseudo-random manner.  144 

The N2A cell density was analyzed by counting cell bodies on the surface of the fabricated array, 145 
within the area of interest (close to the opened microchambers). Cell density was estimated as the 146 
number of viable cells per mm2 over the selected period of time-lapse recording, as indicated.  147 

2.8 Statistical analysis  148 

Data are presented as mean ± standard error of the mean, with n referring to the number of neurites 149 
measured for their length, for each experimental group. To determine statistical difference between 150 

experimental groups, two-tailed unpaired Student’s t-test was used. A p value of less than 0.05 was 151 

considered as an indicator of the statistically significant difference. 152 

3 Results and discussion  153 

3.1 PLA-based MCA with gold nanoparticles: fabrication and characterization 154 

MCA was created by printing the flat and patterned films (Figure 1A). The thickness of the finished 155 

film was 0.8−1.0 μm. GNPs (as a classical method) were included in the MCA composition before 156 
printing, to enable controlled opening of microchambers with laser light (Singh, 2010; Kunzmann et 157 

al., 2011) 158 

[Figure 1 about here. Double column fitting image] 159 

For surface modification, a priori concentrated water solution with GNRs was prepared (200 mg/mL). 160 
200 μL of this solution was placed on the inner surface of the patterned microfilm with microwells, for 161 
3 h. During this time, the patterned film was horizontally oriented, after which the drop was removed 162 

using a micropipette. The entire surface of the patterned film was covered with GNR aggregates, which 163 
were clearly visible under an optical microscope. Figure 1 shows an SEM image (D) and TEM image 164 
(E) of the GNR aggregates location. For precipitation and sedimentation of GNRs, 200 μL of 0.5 M 165 
NaCl solution was added to 200 μL of the nanoparticles solution to enhance aggregation (Madzharova 166 
et al., 2018). The resulting solution was centrifuged at 10,000 rpm, and supernatant was removed.  167 

Next, GNRs were resuspended in 200 μL of deionized water. After that procedure, aggregates of GNRs 168 
started to adsorb on a hydrophobic PLA surface. Aggregates in comparison with non-aggregated 169 
particles have a larger size and mass which leads to amplification of sedimentation rate (Midelet et al., 170 
2017). GNRs content in the patterned film was 0.47 pg/μm2, as estimated from the absorption spectrum 171 

change in the solution, before and after deposition of aggregates. 172 

3.2 NGF loading  173 
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Microchambers were filled by applying 10 µL of the NGF solution (concentration 10 µg/mL) on the 174 

patterned PLA film surface (8.5х8.5 mm, 185000 microwells), before printing it on a flat film. 175 
Although the PLA film has hydrophobic properties (Alakrach et al., 2018), the NGF solution uniformly 176 
wetted the patterned surface due to the low surface tension. The drying of the NGF solution occurred 177 

evenly over the entire film surface, with a gradual decrease of the solution drop thickness (Figure 2A). 178 
When the water layer thickness reached a critical point, the rapid formation of crystals in the wells 179 
began over the entire surface (Figures 2A and C). The crystallization process could be clearly observed 180 
in a light microscope in real time (Video in Supplemental Information).  181 

[Figure 2 about here. Double column fitting image] 182 

The images obtained using SEM confirmed the uniformity of filling the microwells with crystals, and 183 
the absence of NGF between them (Figure 3). 184 

[Figure 3 about here. Double column fitting image] 185 

In general, the amount of NGF was 100 ng per sample (8.5x8.5 mm) and 0.54 pg per microchamber. 186 
This amount was calculated theoretically, by taking into account the total amount of substance depleted 187 
on the patterned film surface, and the number of microwells. 188 

3.3 Individual microchamber opening using 830 nm laser 189 

We developed a new optical system to enable individual microchambers opening and cells 190 

visualization.  The in-house-made system was based on an inverted microscope (Olympus ix71, Japan), 191 
into the optical path of which we integrated a continuous-wave (CW) near-infrared (NIR) laser module 192 

(LD830-MA1W, 830 nm, maximum optical power 1W, Thorlabs Inc. USA) with adjustable output 193 
power, to enable selected chambers photo-thermal activation (Figure 4A). First, NIR laser light was 194 

collimated by an aspheric lens, and was 3x expanded by an anamorphic prism pair. Next, laser light 195 
was directed into the microscope infinity port by the two-mirror periscope. Then, the laser light was 196 
directed by an infrared short-pass dichroic mirror (DMSP805, 805 nm cutoff wavelength, Thorlabs 197 

Inc., USA) into an exit pupil of an infinity-corrected objective lens LCAch 20x/0.4 PhC (Olympus, 198 
Japan), and focused by the objective into a 1 µm spot on the surface of a selected microchamber, at a 199 

power of 15 mW over 0.5 s. The laser light irradiation exposure time was controlled by a mechanical 200 
shutter. The N2A cells reaction to a local NGF release was registered using monochrome CMOS sensor 201 

(DCC3260M, Thorlabs Inc., USA) with infrared filter. The NIR lasers are widely used for the opening 202 
of targeted drug delivery systems which is associated with precise beam focusing and good penetration 203 
ability in tissue without damages of living cells. 204 

The exposure to laser light (Figure 4B) was accompanied by the appearance of a small gas bubble 205 
(Figure 4C) and by structural changes of the microchamber surface (Figure 4D). Тhe bubble formation 206 
is associated with the liquid boiling on GNRs surface as a result of energy absorption and fast plasma 207 
formation occurring after liquid evaporation and subsequent vapor expansion, which are  accompanied 208 

by a shock wave  (Lauterborn and Ebeling, 1977; Baghdassarian et al., 1999; Link et al., 2000; Link 209 
and El-Sayed, 2001). NIR lasers are used for heating up GNRs in the polymer shell because GNRs 210 
efficiently absorb laser energy (Gordel et al., 2014). The heating of light absorber agents such as GNRs 211 
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by laser irradiation leads also to the rapid melting of the carrier walls, and subsequent cargo release 212 

(Radt et al., 2004; Skirtach et al., 2005, 2007; Singh, 2010).  213 

[Figure 4 about here. Double column fitting image] 214 

3.4   Directed neurite outgrowth by local N2A cells towards the opened microchambers with NGF 215 
payload inside  216 

Here, we sought to test functional effects of NGF following the laser-triggered opening of 217 
microchambers. We utilized the  human N2A cell line, a cell type providing a fast cell growth and 218 
differentiation to neuronal phenotype of human origin, as shown previously (Kopach et al., 2019). As 219 
expected, differentiating N2A cells developed typical axon-like processes and numerous neurites 1 d 220 

post-plating (Figure 5A), which could extend up to 50 µm in length, with morphogenesis progressing 221 

during cell growth. 222 

First, we evaluated the NGF-induced effects on differentiating N2A cells grown on glass (control 223 

group). Since NGF displaysactivity in the ng/mlconcentration range , we supplemented NGF to culture 224 
medium at the concentration of 10 ng/ml and 100 ng/ml. There was a clear, dose-dependent effect of 225 
NGF on the neurite outgrowth by N2A cells observed after 1 day of cell differentiation with NGF 226 

(Figure 5C-D). The neurite length was on average ~31.1 µm in control (0 NGF, n = 666 neurites), but 227 
~40.3 µm in the presence of 10 ng/ml NGF (n = 541 neurites; p < 0.0001) and ~46.8 µm with 100 228 

ng/ml NGF (n = 544 neurites, p < 0.0001; Figure 5B) for N2A cells of the same passage. 229 

[Figure 5 about here. Double column fitting image] 230 

Next, we placed N2A cells on the surface of the fabricated MCA with NGF payload inside 231 
microchambers, and grew the cells on MCA (Figure 6A). The cells showed no signs of toxicity of the 232 

fabricated MCA, consistent with the previously reported biocompatibility of PLA as the constituent 233 
material (Kopach et al., 2019). We monitored N2A cells before and after laser-triggered opening of 234 
microchambers, throughout the area of interest for a few days. We could observe that after 235 

microchamber opening, the cell density increased within the targeted area (Figure 6B), and local cells 236 
extended their neurites towards the opened microchambers (Figure 6A). These effects were observed 237 

across 6 independent experiments (fabricated MCA / cell preparations), at the day 1 or 2 after opening. 238 
The effect was observed regardless of trajectory applied for microchamber opening: a line segment 239 

(Figure 6A), or sequence of line followed by rectangular or square shape (Figure 7A). Apparently the 240 
heat required to open MCA did not destroy NGF since the heat is generated locally. 241 

[Figure 6 about here. Double column fitting image] 242 

Finally, we carried out time-lapse recording of differentiating N2A cells before and after opening 243 
microchambers with NGF payload by collecting images from the area of interest every 10 min, for up 244 
to 3 days in total (Figure 7). We traced the increased cell density within the targeted area, with a sharp 245 
rise in the cell density in response to each sequence of microchamber opening (3 times, ~20 hours 246 
apart) (Figure 7B). On a finer scale, cells growing in close proximity to the opened microchambers 247 
directed their neurites towards the sites of  NGF release from opened microchambers (Figure 7, images 248 
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on an expanded scale). These results demonstrate a directed neurite outgrowth by the on demand site-249 

targeted cargo release from PLA-microchambers. 250 

[Figure 7 about here. Double column fitting image] 251 

Conclusion 252 

The patterned PLA-based MCA are a versatile drug delivery system for site-specific, geometrically 253 
constrained cargo release on demand. We confirm that the PLA-based matrix is fully biocompatible 254 
with human-derived cells, which is particularly important for highly sensitive cells of neuronal 255 
phenotype. Microchambers provide safe loading for hydrophilic peptidesand, because of the presence 256 
of gold nanoparticles in the container shell, provide site-specific cargo release on demand. Optical 257 

targeting of microchambers for drug release has triggered functional cell responses locally. 258 

Importantly, N2A cells demonstrate enhanced neurite outgrowth towards individual microchambers 259 

releasing NGF. The PLA-based MCA are therefore a potentially suitable platform for site-specific 260 
targeting of neuronal cells of human origin.  261 
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Figure legends 381 

Figure 1. A diagram of the MCA, with a drug cargo and GNRs (A). Typical SEM image of PLA-based 382 
MCA with GNRs (B). SEM images of PLA patterned film, without (C) and with GNR aggregates (D). 383 

The arrangement of GNR aggregates (E, TEM image). 384 
 385 
Figure 2. Optical images of the patterned PLA film (A), showing the NGF crystallization process, and 386 
an empty patterned film (B), bright-field microscopy in phase contrast mode. The border of NGF 387 
solution drop is marked with a blue line. Schematic illustration of the NGF crystallization process on 388 

the patterned PLA film (C). 389 

 390 

Figure 3. SEM images of NGF crystals inside the microwells on patterned PLA film. 391 
 392 
Figure 4. A diagram illustrating the experimental design and the laser-induced opening of MCA with 393 
NGF loaded inside (A). Typical images of microchambers before (B) and after (C) laser exposure 394 

(bright-field microscopy). SEM image of an opened microchamber (D).  395 
 396 

Figure 5. Dose-dependent effect of NGF on the neurite outgrowth in N2A cells on glass coverslips. A 397 
snapshot of differentiating N2A cells after 1 day of cell growth on glass (A). Statistical summary of 398 
the neurite length in N2A cells grown without or with NGF supplemented to culture medium at the 399 

concentration of 10 ng/ml or 100 ng/ml. Numbers of neurites measured for their length are indicated; 400 
at least four independent samples (coverslips) were tested for each group. ***P < 0.001 (two-tailed, 401 

unpaired t-test). (B) Representative images of differentiating N2A cells after 1 day of cell growth with 402 

NGF at different concentrations: 10 ng/ml (C) or 100 ng/ml (D).  403 

 404 
Figure 6. Directed neurite outgrowth by local N2A cells and cell migration towards the laser-opened 405 
microchambers with NGF payload inside. (A) Representative snapshots of differentiating N2A cells 406 

growing on the surface of PLA-based MCA with NGF payload inside microchambers before 407 
microchamber opening (upper row) and 1 day after (lower row). Red dotted line, a line segment 408 

trajectory for optical targeting microchambers (7 microchambers opened). Red arrows, directed 409 
migration of individual cells from their original positions; green arrows, cell neurites directed toward 410 
the opened microchambers (NGF release). (B) Cell tracking diagrams depicting individual N2A cell 411 

positions before laser-triggered microchamber opening (top) and 1 day after (bottom). Note directed 412 
migration of local cells (red arrows) from their original positions toward the opened microchambers. 413 
Data are representative of images on (A). 414 

 415 

Figure 7. Monitoring morphogenesis of differentiating N2A cells upon triggered, site-specific NGF 416 
release from PLA-microchambers. (A) Representative snapshots of differentiating N2A cells on the 417 
surface of MCA with NGF-loaded microchambers before and following laser-triggered microchamber 418 
opening at various time-points. Images taken from the same area of interest; red dotted lines and blue 419 
marks, trajectories for optical targeting (the sequence consists of varied trajectory for opening 3 times, 420 

~20 hours apart). Scale bars, 40 µm. (B) Time-course of cell density changes within the targeted area 421 
during the time-lapse imaging (~60 hours total) before and following triggered NGF release from PLA-422 

microchambers, shown on A. Red arrows, time of laser-triggered opening. 423 
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Figure 1. A diagram of the MCA, with a drug cargo and GNRs (A). Typical SEM image of PLA-based 427 

MCA with GNRs (B). SEM images of PLA patterned film, without (C) and with GNR aggregates (D). 428 
The arrangement of GNR aggregates (E, TEM image). 429 
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 430 

Figure 2. Optical images of the patterned PLA film (A), showing the NGF crystallization process, and 431 
an empty patterned film (B), bright-field microscopy in phase contrast mode. The border of NGF 432 

solution drop is marked with a blue line. Schematic illustration of the NGF crystallization process on 433 
the patterned PLA film (C). 434 

  435 

Figure 3. SEM images of NGF crystals inside the microwells on patterned PLA film. 436 
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 437 

Figure 4. A diagram illustrating the experimental design and the laser-induced opening of MCA with 438 
NGF loaded inside (A). Typical images of microchambers before (B) and after (C) laser exposure 439 

(bright-field microscopy). SEM image of an opened microchamber (D).  440 
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 441 

Figure 5. Dose-dependent effect of NGF on the neurite outgrowth in N2A cells on glass coverslips. A 442 
snapshot of differentiating N2A cells after 1 day of cell growth on glass (A). Statistical summary of 443 

the neurite length in N2A cells growing without or with NGF supplemented to culture medium at the 444 
concentration of 10 ng/ml or 100 ng/ml. Numbers of neurites measured for their length are indicated; 445 
at least four independent samples (coverslips) were tested for each group. ***P < 0.001 (two-tailed, 446 
unpaired t-test). (B) Representative images of differentiating N2A cells after 1 day of cell growth with 447 
NGF at different concentrations: 10 ng/ml (C) or 100 ng/ml (D).  448 
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 449 

 450 

Figure 6. Directed neurite outgrowth by local N2A cells and cells migration towards the laser-opened 451 
microchambers with NGF payload inside. (A) Representative snapshots of differentiating N2A cells 452 

growing on the surface of PLA-based MCA with NGF payload inside microchambers before 453 
microchamber opening (upper row) and 1 day after (lower row). Red dotted line, a line segment 454 
trajectory for optical targeting microchambers (7 microchambers opened). Red arrows, directed 455 
migration of individual cells from their original positions; green arrows, cell neurites directed toward 456 

the opened microchambers (NGF release). (B) Cell tracking diagrams depicting individual N2A cell 457 
positions before laser-triggered microchamber opening (top) and 1 d after (bottom). Note directed 458 

migration of local cells (red arrows) from their original positions toward the opened microchambers. 459 
Data are representative of images on (A). 460 

 461 
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 462 

Figure 7. Monitoring morphogenesis of differentiating N2A cells upon triggered, site-specific NGF 463 
release from PLA-microchambers. (A) Representative snapshots of differentiating N2A cells on the 464 
surface of MCA with NGF-loaded microchambers before and following laser-triggered microchamber 465 
opening at various time-points. Images taken from the same area of interest; red dotted lines and blue 466 
marks, trajectories for optical targeting (the sequence consists of varied trajectory for opening 3 times, 467 
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~20 hours apart). Scale bars, 40 µm. (B) Time-course of cell density changes within the targeted area 468 

during the time-lapse imaging (~60 hours total) before and following triggered NGF release from PLA-469 
microchambers, shown on A. Red arrows, time of laser-triggered opening. 470 

 471 


