
Coping with Production Time Variability via Dynamic

Lead-Time Quotation
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Abstract

In this paper, we propose two dynamic lead-time quotation policies in an M/GI/1

type make-to-stock queueing system serving lead-time sensitive customers with a single

type of product. Incorporating non-exponential service times in an exact method for

make-to-stock queues is usually deemed difficult. Our analysis of the proposed policies

is exact and requires the numerical inversion of the Laplace transform of the sojourn

time of an order to be placed. The first policy assures that the long-run probability

of delivering the product within the quoted lead-time is the same for all backlogged

customers. The second policy is a refinement of the first which improves the profitability

if customers are oversensitive to even short delays in delivery. Numerical results show

that both policies perform close to the optimal policy that was characterized only for

exponential service times. The new insight gained is that the worsening impact of the

production time variability, which is felt significantly in systems accepting all customers

by quoting zero lead times, decreases when dynamic lead-time quotation policies are

employed.
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1 Introduction

To establish a lean manufacturing system, companies aim for reducing production time

variability by investing in high-technology equipment, training personnel, and conduct-

ing/improving maintenance activities to prevent unplanned production line stoppages. At-

taining a minimum level of production time variability is a strategic goal because this way

the adverse consequences such as the increase in overtime and work in progress levels, the

decrease in output rate and work center utilizations, and the deterioration in order comple-

tion times can be avoided (see Li, 2003 and the references therein). Yet, if funding cannot

be secured easily and required investment cannot be realized in the short term, can a com-

pany follow alternative policies to diminish the worsening impact of high production time

variability? In this study, while exploring dynamic lead-time quotation policies as a way to

increase profitability, we demonstrate that they can serve companies to this end as well.

We analyze a company that manufactures and stores a single type of product. Demand

follows a Poisson process with state-dependent arrival rates (see Rajagopalan, 2002, and

the references therein on the validity of using the Poisson process to model the demand

process). The demand rates change due to the decision of the customers on whether or not

to place an order depending on the delivery lead-time announced/quoted when there is no

stock on hand. As the number of pending orders increases, to ensure reliable delivery, the

company tends to quote longer lead times for newly arriving customers. Announcing longer

lead times makes it more likely that customers will not place any order and will be lost. If

shorter lead times are announced to secure customers to order and then the product cannot

be delivered until the due date (arrival time plus the quoted lead-time), the company pays

penalty costs (see Hopp and Sturgis, 2001, Slotnick and Sobel, 2005, and the references

therein for examples of late delivery penalties paid in industry). In the analyzed setting,

a sufficiently long lead-time is announced to effectively reject customers when the number

of pending orders reaches a critical level. All these considerations lead us to model the

production system as an Mn/GI/1/K make-to-stock queue in Section 2. In this framework,
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we propose practical dynamic lead-time quotation policies which take the number of pending

orders in the production line into account. The main contribution of our study is to show the

applicability of the proposed policies for general production/service time distributions. The

optimal dynamic lead-time quotation policy is not tractable in this setting unless exponential

service times are assumed. Via a numerical study, we show that for cases with exponential

service times, the proposed policies perform close to the optimal policy. We also demonstrate

that well-designed dynamic policies such as the ones developed in this study can help reduce

the worsening impact of the high service time variability that the company may be unable

to minimize by other means.

In the earlier literature on due date quotation, some of the studies assume that all cus-

tomers accept the announced lead times and some define the due dates exogenously. In

this setting, the scheduling of the orders is important. For instance, Lin (2001) considers

minimizing the number of tardy jobs or maximum tardiness in a two-machine setting; Unal,

Uzay, and Kiran (1997) construct a heuristic on how to insert newly arriving jobs in an

existing schedule. Elhafsi (2000) explores how to assign lead times for new orders within

a specified time window. Lawrence (1995) designs a method to estimate flow times to set

due dates. In a make-to-order setting with all customers accepting quoted lead times, Wein

(1991) addresses the sequencing of jobs in a multiclass M/GI/1 queue. The class with the

smallest mean service time is given non-preemptive priority. For certain due date setting

rules, he suggests using the distribution of the conditional sojourn time of orders but ob-

serves difficulties in doing this. Through a number of simulation studies, he concludes that a

lead-time quotation policy has a more pronounced impact on meeting service levels than the

priority sequencing policy. There are also studies such as the ones by Keskinocak, Ravi, and

Tayur (2001), Gallien, Tallec, and Shoenmeyr (2004), and Kapuscinski and Tayur (2007),

that assume accepted customers will be delivered the product within the quoted lead times.

If this is not possible, customers are rejected.

In the presence of competitors, customer response may change depending on the length

of the quoted lead-time. Dellaert (1991) proposes using sojourn time distribution of an order
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in the M/M/1 queue to set due dates. Duenyas and Hopp (1995) develop dynamic lead time

quotation policies in a make-to-order queue assuming both infinite and finite production

capacities. They obtain partial results for the GI/GI/1 queue and prove that the optimal

lead-time to quote in the M/M/1 setting increases with the number of production orders in

the manufacturing system. In the presence of multiple classes of customers demanding the

same type of unit, Duenyas (1995) develops a heuristic that considers the characteristics of

the customer classes while setting due dates and order sequencing. The proposed policies

in our study can also be considered in the multi-class setting. In addition to implementing

dynamic lead-time quotation policies, holding inventory can also give an edge to companies.

Via a game theoretic approach, Li (1992) shows the importance of keeping inventory in a

competitive environment while also quoting due dates. Rajagopalan (2002) approximates

the production facility by an M/GI/1 queue, and utilizes the first two moments of the

sojourn time distribution and explores when finished goods inventory should be kept instead

of serving on a make-to-order basis in order to meet the probability of delivery-on-time.

Our work stems from that of Savaşaneril, Griffin, and Keskinocak (2010) combining

the concept of dynamic due date setting with order acceptance/rejection (i.e., rejecting

customers when congestion in the production facility – the number of pending orders –

reaches a critical level) in an M/M/1 make-to-stock queue. Using a Markov-decision process

(MDP) approach, along with the maximization of profit as the objective function, they show

that orders should be satisfied from stock if there is any, and otherwise, the optimal quoted

lead-time is monotonically increasing in the number of pending orders. The profit under the

optimal lead-time policy is unimodal in the base-stock level. Since production times can be

non-exponential and high variance in service times can significantly reduce the profitability

(see, Sanajian and Balcıog̃lu, 2009), we relax their exponential service time assumption by

allowing general service time distributions. In this setting, the characterization of the optimal

due date/lead-time policy via an MDP approach is quite difficult. For instance, Çelik and

Maglaras (2008) resort to diffusion approximations since employing an MDP approach is also

intractable for the multiclass Mn/GI/1 make-to-order queue where they use dynamic pricing
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to guarantee the lead times announced. Note that due to the memoryless property of the

exponential service times, Savaşaneril, Griffin, and Keskinocak (2010) are able to write the

optimality equation (Eq. 1 in their paper) for this problem in the M/M/1 queue. In doing

this, they can focus only on the new customer arrival and service completion instants. When

service times are general, one loses the ability to write a similar optimality equation and

the analysis of the optimal policy in the M/GI/1 queue becomes quite difficult. In return,

we develop policies that are easy to implement when production times are general while

performing close to the results of the optimal policy of Savaşaneril, Griffin, and Keskinocak

(2010) in the case of exponential service times.

A probable policy is simply quoting zero lead times to all customers and losing none

of them at the expense of starting right away to accrue a penalty cost proportional to the

length of late delivery. This reduces the problem to the setting of Sanajian and Balcıog̃lu

(2009) (see the references therein as well for studies with constant demand rates and constant

revenues where system cost, comprising of stock holding and backlogging costs, is minimized).

The only decision to make under this policy would be to determine the optimum control

parameters for the finished goods inventory. In Section 4, we consider this policy as a

reference point to assess the performances of the policies proposed in this study.

We design two dynamic policies as alternatives to quote lead times to newly arriving

customers. Both policies consider the number of pending orders present at customer arrival

instants. The first policy presented in Section 3.1 is the Fair Quotation Policy (FQP) under

which the probability of meeting the delivery within the announced lead-time is the same

for any backlogged customer. The company optimizes this probability together with the

inventory control parameter. Additional service level constraints in the form of keeping the

probability of delivery until the due date above a threshold can be easily included in the

model. We refer the reader to Hopp and Sturgis (2001), Spearman and Zhang (1999), So

and Song (1998), for designing due date quotation policies under various service levels, such

as the fill rate, the fraction of tardy jobs, and the probability of meeting demand on time.

While the FQP is “fair” since it assures the same long-run probability of meeting the
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demand of any awaiting customer during the quoted lead-time, an alternative policy, namely

the Preferential Quotation Policy (PQP), designed in Section 3.2, can further increase prof-

its when customers are oversensitive to announced lead times. Under the PQP, possible

customer losses are prevented by quoting zero lead-time when the number of backlogged

customers is low. In return, the PQP rejects customers sooner than the FQP by keeping

a lower limit on the maximum number of customers awaiting their orders. In other words,

the PQP prefers securing more customers when the number of awaiting orders is small and

rejects more customers in return. Both policies require having the Laplace transform of the

sojourn time distribution in the Mn/GI/1/K queue (see Kerner, 2008). We employ numer-

ical inversion techniques on the LT of the sojourn time distribution (e.g., Jagerman, 1982,

Abate and Whitt, 1995) to obtain the lead times satisfying the probability of delivery until

the quoted due date. Thus, the idea of using sojourn time distributions as presented here

can have broader application areas for other queueing disciplines or multi-class systems as

long as the sojourn time Laplace transforms are available.

While designing these policies, two important questions arose. The first one was whether

they would yield profits close to the optimal results found by Savaşaneril, Griffin, and Ke-

skinocak (2010), which turned out to be the case as demonstrated via the numerical study

discussed in Section 4.1. The second question was to see the impact of the service time

variability on profit when these policies were implemented. As suspected, quoting lead times

dynamically can improve profitability across all service time distributions. In most of the

numerical examples, the proposed FQP and PQP turn out to be more profitable than quoting

zero lead times. Additional observations are also made via the numerical study in Section

4.2. The degrading impact of higher service time variability is well-known and quantified

in the make-to-stock setting with constant demand rate by Sanajian and Balcıog̃lu (2009).

Under any policy, having deterministic service times maximizes the profits. The new find-

ing is that the profit loss due to higher service time variance decreases significantly when

a dynamic lead-time quotation policy is implemented instead of accepting all customers.

Moreover, a dynamic policy better suited for the customer profile diminishes the profit loss
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more. This is an important managerial insight for companies that may be unable to lower

the production time variation for reasons such as not being able to invest in infrastructure.

For such companies, designing the right dynamic lead-time quotation policy would provide

the remedy.

The rest of the paper is organized as follows. In Section 2, we present the problem

analyzed, followed by the proposed policies in Section 3. We present our numerical study in

Section 4. Finally, in Section 5, we make concluding remarks and discuss how the research

can be extended.

2 The M/GI/1 Queue with Lead-Time Quotations

In this section, we model a single item production system with a continuously reviewed

inventory as a make-to-stock queue. We use a production control according to a base-stock

level S. Thus, production stops when the inventory level reaches S and starts as soon as

the inventory level decreases to S − 1 (see, e.g., Savaşaneril, Griffin, and Keskinocak, 2010,

who suggest that base-stock policies are applicable in repair shops or for dealers providing

after-sales service). We assume that customers arrive one at a time according to a Poisson

process with rate λ. Whenever there is available stock in the inventory, demand requests

are satisfied right away. The system incurs a holding cost of h per unit inventory per unit

time. If there is no stock, a lead-time d is announced to the arriving customer. With

probability f(d), the customer accepts the quoted lead-time, places an order, and waits until

an item is produced and delivered. If the customer finds the quoted lead-time too long,

she leaves the system immediately without placing an order (thus, there are no pending

quotations). We assume that f(d) is a decreasing function of d, f(0) = 1, and there exists

a maximum lead-time dmax such that f(dmax) = 0. If the item cannot be produced and

delivered during the announced lead-time, a tardiness cost l is incurred per unit time during

the customer’s waiting time in excess of d. Each item sold from the inventory or each

order placed by a customer that accepts the quoted lead-time generates a revenue of R and
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results in a production order mapped as an arrival at a single server queue which models the

production stage. In the rest of the paper, we refer to customers placing orders or whose

requests are directly satisfied from stock as “customers” and production orders present in the

queueing system as “orders”. The production/service times are assumed to be independent

and identically distributed (i.i.d) random variables (r.v.s) with a Laplace transform denoted

by b̃(θ) and a mean of 1/µ. Furthermore, we assume that there is no further information

about the production times available until the production has been completed. However, the

policies developed in Section 3 make use of the sojourn time distribution of an order which

depends on the distributions of the production time and the residual production time of the

order in progress when the lead-time is quoted.

In this framework, N(t), the number of (production) orders present in the queueing

system at time t, gives the shortfall from the base-stock level S. This implies that when

N(t) ≤ S, the inventory carries S − N(t) units and when N(t) > S, the system has

N(t)− S backlogged customers. Assuming that the system is stable, the steady-state prob-

ability of having n orders in the queueing system, namely p(n|S,d) = P (N = n|S,d),

depends on S (unless the system quotes zero lead-time to any customer) and the vector

d = [d0, d1, . . . , dS, dS+1, . . .] where dn is the announced lead-time to a customer that sees n

orders in the system. Since all customers are identical in terms of revenues and tardiness

costs, a higher profit cannot be generated by reserving an item for a future customer instead

of satisfying the demand of a customer that arrives when there is stock. Thus, requests

arising when there is stock are immediately satisfied from the inventory. That is, dn = 0 for

n = 0, . . . , S − 1, and for a given S and d, the expected profit per unit time is

P (S,d) = λR
∞∑
n=0

p(n|S,d)f(dn)−h
S−1∑
n=0

(S−n)p(n|S,d)−λl
∞∑

n=S

p(n|S,d)f(dn)Ln(dn), (1)

where Ln(dn) is the expected waiting time in excess of dn of a customer that accepts the

quoted lead-time dn. Observe that the first term on the RHS of Eq. (1) is the expected

revenue per unit time whereas the second and third terms are the expected inventory holding

and delay penalty cost rates, respectively. Denoting the sojourn time r.v. of such a customer,
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i.e., the elapsed time from the moment she places an order – when there is no stock – until

she receives the finished item by Tn+1 (the subscript referring to the (n+1)st order that will

be sent to the make-to-stock queue due to this customer) and its probability density function

(PDF) by gn+1(·), we have

Ln(dn) =

ˆ ∞

dn

(x− dn)gn+1(x)dx. (2)

Various lead-time quotation policies can be considered. A possible policy is announcing

zero lead-time for (and accepting) all customers. In this case, depending on the parameters

such as the revenue R, the customer arrival rate λ, and costs, the system may incur loss

instead of making profit. In case all customers are accepted, the only decision to make is

finding the optimal S∗
0 (the subscript 0 referring to announcing zero lead-time to everyone)

that minimizes the holding and backlogging costs, as done in the study of Sanajian and

Balcıog̃lu (2009). The optimal S∗
0 is also an upper bound for the optimal base-stock level

if nonzero lead times are quoted in the same system which is analyzed in this study. This

follows from Observation 1 by Savaşaneril, Griffin, and Keskinocak (2010).

If we have a lead-time vector d obtained from a policy (such as the ones proposed in

Section 3) for a given base-stock level S, we compute P (S,d) given in Eq. (1) as follows.

If d contains nonzero lead times and dmax at its Kth entry (which happened to be the case

whenever our proposed policies gave nonzero lead times in numerical experiments in Section

4), the underlying system is an Mn/GI/1/K queue with λn = λf(dn) and p(n|S,d) in this

queue can be obtained following Kerner (2008) and Abouee-Mehrizi and Baron (2015). In

Section 2.1, we summarize how to obtain the required probabilities and also extend existing

results when arrival rates are the same for a finitely many neighboring states where the state

refers to the number of orders in the system. One can employ the analysis of the Mn/GI/1

queue (see, Kerner, 2008, Abouee-Mehrizi and Baron, 2015, Economou and Manou, 2015) if

dmax is never announced while nonzero lead times for all n ≥ S make the customer arrival

rates state-dependent (however, we have not come across such a case in our numerical exper-

iments in Section 4). Finally, if the proposed policy yields zero lead times to be announced
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for any customer (which happened to be the case for some numerical examples), with the

analysis of the M/GI/1 queue of Sanajian and Balcıog̃lu (2009) the optimal S∗
0 , the optimal

system (holding and backlogging) cost rate C(S∗
0) can be determined and the optimal profit

per unit time, λR − C(S∗
0), can be computed. As a special case, when service times are ex-

ponentially distributed with rate µ, the system can be modeled as a birth-and-death process

from which one can derive p(n|S,d).

2.1 The Steady-State System Size Distribution in the Mn/GI/1/K

Queue

In this section, we first introduce a crucial r.v. Hn for the ensuing derivations, which is the

residual service time r.v. given that there are n orders in the system. Denoting its Laplace

transform by h̃n(θ) and introducing

c̃n(θ) = b̃(λn)(1− h̃n−1(θ)) + b̃(θ)(h̃n−1(λn)− 1), n = 1, 2, . . . , (3)

Kerner’s (2008) recursive formula can be written as

h̃n(θ) =
λn

1− h̃n−1(λn)

c̃n(θ)

θ − λn

, n = 1, 2, . . . , (4)

with h̃0(θ) = b̃(θ). The mean of Hn can be recursively computed from Eq. (4) as follows:

E[H1] =
1

µ(1− b̃(λ1))
− 1

λ1

,

E[Hn] =
b̃(λn)

1− h̃n−1(λn)
E[Hn−1]−

1

λn

+
1

µ
, n ≥ 2. (5)

After defining the state of the Mn/GI/1/ queue as the number of customers in the system

(n) and the remaining service time, Kerner (2008) obtains the flow equations relating states

n−1, n+1 to state n in his Eq. (8). From here, he obtains the following recursive formulae:

p(n|S,d) =
λ0p(0|S,d)

λn

n−1∏
j=0

1− h̃j(λj+1)

b̃(λj+1)
, n = 1, . . . , K − 1,

p(K|S,d) = 1−
K−1∑
n=0

p(n|S,d),
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for which Abouee-Mehrizi and Baron (2015) provide

p(0|S,d) =
1

1+λK−1E[HK−1]

λ0

λK−1

∏K−2
j=0

1−h̃j(λj+1)

b̃(λj+1)
+ 1

1+λK−1E[HK−1]

(
1 +

∑K−2
i=1

λ0

λi

∏i−1
j=0

1−h̃j(λj+1)

b̃(λj+1)

) .
However, these formulae, requiring h̃j(λj+1), do not explicitly show what happens when

λj+1 = λj because with c̃j(λj) = 0 we see that h̃j(λj) results in a division of 0 by 0 in Eq.

(4). However, in a system with S ≥ 2, since zero lead times are announced to customers

seeing 0 to S − 1 orders in the system, we would have λ1 = . . . = λS−1 = λ0. In the PQP

studied in Section 3.2, zero lead times may be announced to customers seeing more than S

orders in the system leading to λj+1 = λj = λ0 for j ≥ S. Therefore, letting k̃(m)(θ) denote

the mth derivative of a Laplace transform k̃(θ), when we apply the L’Hôpital’s rule in Eq.

(4), we have the following Corollary (proof is omitted since it is straightforward):

Corollary 1 The Laplace transform of the residual service time r.v. Hj given that there are

j orders in the system evaluated at λj+1 = λj is given by

h̃j(λj) =
λj

1− h̃j−1(λj)
c̃
(1)
j (λj). (6)

There is a recursive relationship between c̃
(m)
j (θ) and h̃

(m)
j−1(θ) which is given in the fol-

lowing Proposition.

Proposition 1 With h̃
(m)
0 (θ) = b̃(m)(θ), there exists the following recursive relationship be-

tween c̃
(m)
j (θ) and h̃

(m)
j−1(θ):

c̃
(m)
j (θ) = −b̃(λj)h̃

(m)
j−1(θ) + b̃(m)(θ)(h̃j−1(λj)− 1), (7)

h̃
(m)
j (θ) =


λj

1−h̃j−1(λj)

(θ−λj)
mc̃

(m)
j (θ)−

m(θ−λj)
mh̃

(m−1)
j

(θ)

λj

1−h̃j−1(λj)

(θ−λj)m+1 , for θ ̸= λj,

λj

1−h̃j−1(λj)

c̃
(m+1)
j (θ)

m+1
, for θ = λj.

(8)

Proof. Eq. (7) is obtained by successively taking the derivative of Eq. (3). Starting from

Eq. (4), taking successive derivatives gives the result for the case of θ ̸= λj in Eq. (8). This
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yields a division of 0 by 0 when θ = λj. Thus, applying the L’Hôpital’s rule on it yields the

second line of Eq. (8).

Therefore, with the help of Proposition 1, Eq. (6) of Corollary 1 can be used in computing

h̃j(λj+1) for the required probabilities when λj+1 = λj. Otherwise, Eq. (4) can be employed.

2.2 Computation of the Expected Profit Rate

Now we are ready to proceed with computing the profit rate function P (S,d) in Eq. (1).

Before evaluating Ln(dn) in Eq. (2) that is required, we first note that if a customer is seeing

n ≥ S orders in the system upon arrival accepts dn, triggering the (n+1)st order to be sent

to the make-to-stock queue, she will need to wait for the remaining service time of the item

under production, plus, n − S service completions. In the Mn/M/1/K setting, Tn+1 (the

sojourn time r.v. for this customer) follows an (n − S + 1)-stage Erlang distribution with

each exponential stage having a rate of µ, i.e., Erlang(µ, n − S + 1). Starting from Eq. (2)

and using the following identity (e.g., Gross and Harris, 1998, p. 20)

ˆ ∞

dn

µ(µx)(n−S)

(n− S)!
dx =

n−S∑
i=0

(µdn)
ie−µdn

i!
,

we get

Ln(dn) =

ˆ ∞

dn

(x− dn)
µ(µx)(n−S)

(n− S)!
dx,

= e−µdn

(
n− S + 1

µ

n−S+1∑
i=0

(µdn)
i

i!
− dn

n−S∑
i=0

(µdn)
i

i!

)
.

In the Mn/GI/1/K queue with non-exponential service times, on the other hand, we

have the Laplace transform of Tn+1 as

g̃n+1(θ) = h̃n(θ)̃b(θ)
n−S, (9)

where h̃n(θ) is given in Eq. (4).

In the remainder of the paper, for various computations, we need to numerically invert

a given Laplace transform k̃(θ) and evaluate at d which will be denoted by L−1{k̃(θ)}(d).
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Now we rewrite Eq. (2) as

Ln(dn) =

ˆ ∞

dn

xgn+1(x)dx− dnGn+1(dn), (10)

where Gn+1(·) is the complementary distribution function of Tn+1. Both terms on the RHS of

Eq. (10) may not be available in closed-form for direct computation, however, their Laplace

transforms are available and they can be numerically inverted (see, e.g., Jagerman, 1982)

and evaluated at dn. Then,

Gn+1(dn) = L−1{1− g̃n+1(θ)

θ
}(dn),

ˆ ∞

dn

xgn+1(x)dx = L−1{
E[Tn+1] + g̃

(1)
n+1(θ)

θ
}(dn),

= E[Tn+1] + L−1{
g̃
(1)
n+1(θ)

θ
}(dn)

where E[Tn+1] = E[Hn]+(n−S)/µ (with E[Hn] given in Eq. 5) and g̃
(1)
n+1(θ) is the derivative

of g̃n+1(θ).

In summary, given a d vector generated via a policy and S, we are able to compute the

profit. Note that in the Mn/M/1 queue, for a given S, the optimal lead times to announce

d∗ = [0, 0, . . . , 0, d∗S, d
∗
S+1, . . .] can be found by formulating the problem as an MDP as done

by Savaşaneril, Griffin, and Keskinocak (2010). Eventually, conducting a line search from 0

to S∗
0 of the M/M/1 queue, the optimal base-stock level S∗ and the corresponding optimal d∗

can be found and the optimal profit P ∗
E (where the subscript E refers to exponential service

times) can be computed. However, the MDP approach is not practical when service times

are generally distributed. Therefore, in Section 3, we design two policies that are applicable

in the M/GI/1 system which, as demonstrated via the numerical examples in Section 4.1,

also turn out to perform very close to the optimal policy in the M/M/1 system.

3 Lead-Time Quotation Policies

In this section, we propose two dynamic lead-time quotation policies: a) the Fair Quotation

Policy (FQP) in Section 3.1, and b) the Preferential Quotation Policy (PQP) in Section 3.2.
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While determining dn, both policies consider the number of orders present in the system (n)

as the only state information. That is, additional information, such as the length of time

since the start of production of the current item is ignored, although this might be both

available and valuable in M/GI/1 systems. Under the FQP, the long-run probability of

producing the item within the quoted lead-time is the same for each backlogged customer.

The PQP is a refinement over the FQP and when compared to the latter, it attempts to

“allure” (“deter”) more customers when the number of backlogged customers is small (large).

3.1 The Fair Quotation Policy

The FQP identifies lead times which assure that the long-run probability of meeting the

demand within the announced lead-time is the same for any backlogged customer. We

simply denote this probability by α. Eventually, the FQP finds the optimal base-stock level

with the corresponding optimal α∗.

Recalling that gn+1(·) is the PDF of the sojourn time Tn+1 for a customer seeing n orders

upon arrival,

αn =

ˆ dn

0

gn+1(x)dx = Gn+1(dn),

is the probability that such a customer receives the finished item within dn. If Gn+1(·),

the cumulative distribution function (CDF) of Tn+1, is available in closed-form and easy to

invert, we can first decide on αn for a customer seeing n orders for each n = S, . . ., and then

solve for

dn = G−1
n+1(αn),

to determine what should be announced as the lead-time. A policy giving optimal α∗
n (pos-

sibly different for different n) for all n is the optimal policy in the M/M/1 setting. However,

identifying the optimal lead-time for each n by using G−1
n+1(·) (assuming that it is available)

would be difficult since this would require an ambitious search considering all possible vectors

of αn. Additionally, determining whether a finite K value (such that λK = 0) exists would

cause additional difficulty.
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In contrast, under the FQP we propose setting αn = α for all n ≥ S and then, obtain

the optimal α∗ for a given S. Determining this optimal α∗ for all customers is not easy,

either, because a closed-form Gn+1(·) usually does not exist and a direct computation of

G−1
n+1(α) is not possible. Yet, we can numerically invert its Laplace transform, which is

g̃n+1(s)/s. Then, by conducting a binary search over the interval for possible d values we

arrive at L−1{g̃n+1(s)/s}(dn) = Gn+1(dn) = α. Note that other search methods, such as the

interpolation search, can be considered as well, especially when such policies are applied in

more complex systems (e.g., multi-class systems) but we leave this investigation for future

research. Using this idea in the following FQP algorithm, the optimal FQP parameters can

be found.

In summary, the FQP performs the following: Given S and α, for a customer that sees n

orders in the system, it generates a candidate lead-time d as the midpoint of a search interval

whose lower and upper bounds/limits can be updated if it is necessary (initially, the search

starts with the [0,dmax] interval). If L
−1{g̃n+1(s)/s}(d) = α is achieved, this is the lead-time

dn to announce and the search continues with the customer seeing n+ 1 orders. Otherwise,

if L−1{g̃n+1(s)/s}(d) > α (L−1{g̃n+1(s)/s}(d) < α) , this indicates that the next candidate

lead-time should be smaller (larger) than d, so the upper (lower) limit of the search interval

is updated and set to d. The midpoint of the updated interval gives the next candidate lead-

time. In this process, eventually the candidate lead-time hits dmax, which gives the K value

for which λK = 0. Then, the algorithm, having all the lead times and the state-dependent

arrival rates, computes the profit. The algorithm is run for all S ≤ S∗
0 and α values to

identify the optimal policy parameters.

The Fair Quotation Policy Algorithm: This algorithm explains how the optimal FQP

parameters, S∗
FQ, α

∗
FQ, and d∗FQ,n for n ≥ S∗

FQ, are found.

Initialization Step. Using λ, b̃(θ), h, and l (as the backlogging cost) in the model of

Sanajian and Balcıog̃lu (2009), obtain S∗
0 . λR− C(S∗

0) is the optimal profit for α = 0

and can be the optimal solution if cases with nonzero lead times, generated in the Main
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Step, do not yield a higher profit.

Choose ϵα as the acceptable error margin around α and ϵ as a measure showing that

the lead-time needed exceeds dmax which stops the search and gives the value for K.

Main Step. This step is executed for all S(= 0, . . . , S∗
0) and α values to consider. Given

S and α, set d0 = d1 = . . . = dS−1 = 0, (if S = 0, d0 need not be 0) and LB=0 and

UB=dmax, respectively, as the lower and upper limits for the interval for possible d

values over which the binary search is conducted in Step 1. With n = S, go to Step 1.

Step 1 Set dn =(LB+UB)/2.

Step 1.a If |dn−dmax| < ϵ (implying that dn sought exceeds dmax, hence n = K)

then go to Step 2. Else go to Step 1.b.

Step 1.b If L−1{g̃n+1(s)/s}(dn) = Gn+1(dn) = α± ϵα, then store dn as the lead-

time to announce to the customer seeing n orders upon arrival. Increment n

by 1, reset LB=0 and UB=dmax, and go to Step 1. Else go to Step 1.c.

Step 1.c If L−1{g̃n+1(s)/s}(dn) = Gn+1(dn) < α (implying that a longer lead-

time is needed), then set LB=dn and go to Step 1. If L−1{g̃n+1(s)/s}(dn) =

Gn+1(dn) > α (implying that a shorter lead-time is needed), set UB=dn and

go to Step 1.

Step 2 Since dK = dmax is achieved, the vector d is constructed. Compute and store

the profit for the current S and α values.

Final Step After the Main Step is executed for all S and α values, the case yielding the

highest profit (which could be the one found in the Initialization Step for α = 0) gives

the optimal FQP profit PFQ(S
∗
FQ,d

∗
FQ) along with its parameters.

Note that increasing n leads to the announcement of dmax eventually at Step 1 which

also yields K, the maximum number of orders permitted in the system. The FQP algorithm

does not assume that the optimal profit is unimodal in S or in α (for a given S).
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Since g̃n+1(s) in Eq. (9) via h̃n(s) in Eq. (4) depends on S, the FQP algorithm may give

different d vectors for different S when service times are non-exponential. In the M/M/1

setting, for any S value, the distribution of Tn+1, which is Erlang(µ, n−S+1), is independent

of S for n ≥ S. Thus, for all S values the FQP announces the same K − S nonzero lead

times for dS, . . . , dK−1, dK = dmax for a given α value. This implies that the Main Step, with

Steps 1 and 2 in the algorithm, is run only once, let us say for S = 0, for all α values. In

the Final Step, for each S > 0, the profit is computed after constructing the corresponding

vector d with 0’s in the first S − 1 entries and the last K − S + 1 entries coming from the

Main Step for the α considered. The optimal FQP parameters are consequently determined.

3.2 The Preferential Quotation Policy

The short lead times quoted under the FQP when the number of backlogged customers is

small can discourage most of the customers if they are oversensitive. This prevents the system

from generating more revenues which, at the expense of slight penalty cost increases, may

imply higher profitability. To circumvent this problem, we propose modifying the lead-time

vector of the FQP by announcing zero lead times instead of the short nonzero lead times in

d∗
FQ. Consequently, revenues may increase with more customers placing orders, and when

dn is replaced with 0 in Eq. (2) the penalty cost incurred may not increase significantly.

With this approach, higher profit can be reaped. This revision can be supplemented by

admitting fewer customers, i.e., by announcing dmax sooner than the FQP. This would lower

the maximum number of backlogged customers permitted by the PQP below K − S (K of

the FQP) for a given S. In other words, the PQP tolerates a slight penalty cost increase

for those customers the FQP quotes short nonzero lead times but in return declines serving

customers for whom the FQP quotes lead times close to dmax. In short, when compared to

the FQP, the PQP we propose in this section “prefers” early backlogged customers over later

arrivals.

The PQP determines the maximum number of customers to backlog K
′ − S and how
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many of them will be quoted zero lead times. The difference of these two numbers gives

how many customers are announced nonzero lead times. For such customers, to be lined at

the end of the backlog queue, – similar to the FQP – the PQP finds the optimal α∗
PQ, i.e.,

the probability of producing and delivering the item within the quoted lead-time. Since the

PQP makes use of the vector dFQ constructed by the FQP, it may only increase the profit as

explained in the following PQP algorithm. Observe that if the PQP leads to a profit increase

when compared to the FQP, the probability of satisfying the demand within the quoted lead

times for backlogged customers to whom zero lead times are quoted is 0 and does not equal

α∗
PQ > 0.

In summary, the PQP performs the following: Given S and the corresponding lead-

time vector d∗
FQ from the FQP, it announces zero lead times to the first, second, and so

forth backlogged customers as long as the profit increases. Then, it starts rejecting the last

backlogged customer, the second last backlogged customer and so forth as long as the profit

increases. These two steps are iteratively repeated until no more profit increase is observed.

In the lead-time vector updated this way, nonzero lead times may remain from the d∗
FQ

vector to announce the last customers the PQP is to backlog. For them, similar to the FQP

in Section 3.1, new lead times giving possibly a different optimal α∗
PQ are searched.

To demonstrate how the PQP algorithm works, consider the following example given in

Table 1. In Row 0, we have the entries in d∗
FQ from 0.02 to 3.51 which are, respectively, the

quoted lead times to customers seeing S to S + 8 orders in the system (the customer seeing

S+9 is rejected by announcing her dmax = 4 as the lead-time). In Row 1, Step 1 of the PQP

algorithm is executed which indicates that quoting 0 instead of 0.02 to the customer seeing

S orders upon arrival increases the profit. In Row 2, Step 2 is executed twice which indicates

that quoting dmax to the S + 8th customer and then to the S + 7th customer increases the

profit. Thus, the maximum number of backlogged customers decreases by 2 (from S + 8 to

S + 6). After Steps 1 and 2 are run again, as illustrated in Rows 3 and 4, respectively, in

Row 5, we arrive at the final d∗
PQ after Step 3 is executed.

The Preferential Quotation Policy Algorithm: This algorithm explains how the opti-
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Table 1: Application of the PQP algorithm

No. Orders S S + 1 S + 2 S + 3 S + 4 S + 5 S + 6 S + 7 S + 8

Row 0 d∗
FQ: 0.02 0.15 0.44 0.83 1.28 1.79 2.34 2.91 3.51

Row 1 Step 1 0 0.15 0.44 0.83 1.28 1.79 2.34 2.91 3.51

Row 2 Step 2 0 0.15 0.44 0.83 1.28 1.79 2.34 4 4

Row 3 Step 1 0 0 0.44 0.83 1.28 1.79 2.34 4 4

Row 4 Step 2 0 0 0.44 0.83 1.28 4 4 4 4

Row 5 Step 3/d∗
PQ: 0 0 0.6 1.15 2.30 4 4 4 4

mal PQP parameters, S∗
PQ, and d∗PQ,n for n ≥ S∗

PQ, are found.

Main Step. This step is executed for all S(= 0, . . . , S∗
0) and corresponding d∗

FQ vectors

from the FQP. Use C as a counter which is incremented by 1 when profit does not

increase. Set C = 0. With n = S and K
′
= K, go to Step 1.

Step 1 Set dn = 0. If the profit increases, increase n by 1, set C = 0 and visit Step 1

again. Otherwise, retain the nonzero dn from d∗
FQ, increment C by 1. If C = 1,

go to Step 2, otherwise go to Step 3.

Step 2 Set dK′ = dmax. If the profit increases, decrease K
′
by 1, set C = 0 and visit

Step 2 again. Otherwise, retain the nonzero dK′ from d∗
FQ, increment C by 1. If

C = 1, go to Step 1, otherwise go to Step 3.

Step 3 Now we have a lead-time vector of size K
′
with the first n entries, K

′
> n ≥ S,

being zero. Implement the Main Step of the FQP algorithm to obtain the α∗
PQ

and the corresponding nonzero lead times for the last K
′ − n entries to finalize

d∗
PQ. Compute and store the profit for the current S and d∗

PQ.

Final Step Find the case that yields the highest profit among those stored in Step 3 which

gives the optimal PQP profit PPQ(S
∗
PQ,d

∗
PQ) along with its parameters.
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4 Numerical Experiment

In this section, we address two questions: (i) How does the FQP proposed in Section 3.1

perform with respect to the optimal policy in the M/M/1 setting? Can the PQP presented

in Section 3.2 bring additional improvements when compared to the FQP? (ii) How does the

variability in service times affect the profitability in the M/GI/1 setting when these dynamic

lead-time quotation policies are employed instead of accepting all customers by announcing

zero lead times?

For the proposed policies, whenever a Laplace transform is required to be inverted, we use

the Euler technique due to Abate and Whitt (1995). The numerical inversion technique by

Jagerman (1982) can be equivalently employed (see Appendix A of Jagerman and Melamed,

2003, for the algorithm of this technique). We set ϵα = 0.001 (the acceptable error margin

around α in Step 1.b of the FQP algorithm), ϵ = 0.00001 (as the measure showing that

dmax has been reached in Step 1.a of the FQP algorithm). We have considered α = 0.01k,

k = 1, . . . , 99.

4.1 Numerical Experiments in the M/M/1 Setting

In this section, we repeat the numerical study conducted by Savaşaneril, Griffin, and Ke-

skinocak (2010) who provide us with the optimal profit P ∗
E as reference values. Five values of

R, R ∈ {5, 7.5, 10, 15, 25}, seven values of h, h ∈ {0.15, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8}, and seven

values of λ, λ ∈ {0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 0.99}, are considered. The mean service time is

1. In all examples, the penalty cost rate is constant as l = 1.5. The six lead-time acceptance

probability functions considered are presented in Table 2 and Figure 1. When compared,

these six functions, in two groups with respect to dmax, can be ordered as Convex1, Linear1,

Concave1, (Convex2, Linear2, Concave2) in capturing the behaviors of customers from the

most sensitive to the least to the quoted nonzero lead times.

For each f(d) function, a total of 5 × 7 × 7 = 245 (due to five R, seven h, and seven λ

values considered) examples were used to test the performance of the FQP when compared
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Table 2: The lead-time acceptance probability functions

Name dmax Function

Convex1 4 f(d) = 1−
(
d
4

)1/4
Convex2 8 f(d) =


1− 5

8
d for 0 ≤ d ≤ 1

3
8
− 3

8
1
7
(d− 1) for 1 ≤ d ≤ 8

Concave1 4 f(d) = 1−
(
d
4

)4
Concave2 8 f(d) = 1−

(
d
8

)4
Linear1 4 f(d) = 1− d

4

Linear2 8 f(d) = 1− d
8
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Figure 1: The lead-time acceptance probability functions

to the optimal policy. To do this, we compute

∆∗
FQ ≡

P (S∗
FQ,d

∗
FQ)− P ∗

E

P ∗
E

,

where P (S∗
FQ,d

∗
FQ) is the optimal profit under the FQP and P ∗

E the profit of the optimal

policy. The ratio ∆∗
FQ measures the profit decrease when the FQP is used instead of the

optimal policy. The summary of ∆∗
FQ of 245 experiments for each acceptance function is

presented in Table 3.

We see that the FQP performs remarkably well in most of the cases. The highest de-

viations from the optimal policy are observed for Convex1 acceptance probability function,
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Table 3: The minimum, mean, median and maximum values of profit loss (∆∗
FQ) when the

FQP is used instead of the optimal policy.

Min (%) Mean(%) Median(%) Max (%)

Convex1 0 -2.67 -1.29 -19.05

Convex2 0 -0.49 -0.29 -4.32

Concave1 -0.27 -1.78 -1.66 -3.75

Concave2 -0.21 -1.04 -1.03 -1.99

Linear1 0 -0.12 -0.03 -3.87

Linear2 0 -0.07 -0.01 -3.29

but even for that group of experiments the mean profit loss due to using the FQP is 2.67%.

From the detailed analysis of the numerical results, we make the following observations for

the FQP:

• With higher R or λ, and lower h values, the system tends to carry more inventory.

• The system holds higher levels of stock when customers are more sensitive (declining

from higher stock levels held for Convex1/2 to lower levels for Concave1/2).

• We also note the following:

– When λ and h are fixed, increase in R decreases α.

– When λ and R are fixed, increase in h decreases α.

– When h and R are fixed, increase in λ increases α. However, this is not the case

for Concave1 and Concave2 functions for which with increasing λ, we see that

α tends to decrease, sometimes leveling off at the lowest value and sometimes

increasing again from this lowest value.

Higher/smaller α values imply longer/shorter lead times which are quoted by the sup-

plier. Thus, via shorter lead times announced (smaller α), the supplier tries to sell
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more when the revenue gets higher and holding inventory becomes costlier. Except

for cases with Concave1 and Concave2 functions, higher arrival rates are reduced by

announcing longer lead times.

The FQ performance deteriorates significantly if S is set to 0 when Convex1 acceptance

probability function is considered. We generated 49 make-to-order examples with seven R

and seven λ values, and for all cases we computed ∆∗
FQ, the summary of which is presented

in Table 4. In 17 out of these 49 examples, ∆∗
FQ was below -8%. When we implemented

the PQP, it turned out to give the optimal profit in 15 out of these 17 cases, and for the

remaining two cases, the PPQ(S
∗
PQ,d

∗
PQ) was only -0.32% less than the profit of the optimal

policy. The PQP appears to bring significant improvements over the FQP for Convex1

acceptance probability function.

For other acceptance probability functions, we observe that the PQP usually does not

yield any improvements over the FQP in instances with the lowest ∆∗
FQ. This is because of

higher α∗ values quoted by the FQP especially for Concave acceptance probability functions.

In such cases, the FQP quotes large nonzero lead times without losing many customers.

Thus, replacing smallest nonzero lead times by 0 does not increase the rate of customers

placing orders. Moreover, smaller penalty costs incurred under the FQP increase when 0

is substituted for a large nonzero dn in Eq. (2). It follows that the PQP seems to provide

improvement only for oversensitive customers whose behavior is best captured by Convex

(and sometimes Linear) acceptance probability functions in this study.

Table 4: The minimum, mean, median and maximum values of profit loss (∆∗
FQ) when the

FQP is used instead of the optimal policy in make-to-order queue with Convex1 acceptance

function.

Min(%) Mean(%) Median(%) Max(%)

0 -10.2 -10 -25
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4.2 Numerical Experiments in the M/GI/1 Setting

In this section, we revisit some numerical examples generated by Sanajian and Balcıog̃lu

(2009) who provide us with the optimal profit P ∗
0 = λR − C(S∗

0) if zero lead times are

announced to all customers. In order to observe the impact of service time variability on the

system profit, we consider different service time distributions with unit mean (µ = 1), but

different variances. In other words, the measure of variability in service time distribution is

its squared-coefficient of variation (variance-to-mean ratio, which coincides with the variance

in these examples) which is denoted by c2S. If c2S is higher, the service time is deemed

more variable. For our numerical examples, we consider the following three service time

distributions, each presented with its density function Laplace transform:

1. The deterministic service time with the density function Laplace transform b̃(θ) = e−θ.

2. The exponential distribution with µ = 1 and the density function Laplace transform

b̃(θ) =
µ

µ+ θ
.

3. The 2-stage mixed generalized Erlang (MGE2) distribution with µ1 = 1.218, µ2 =

0.082, a1 = 0.015 and the density function Laplace transform

b̃(θ) =
µ1µ2 + µ1(1− a)θ

θ2 + (µ1 + µ2)θ + µ1µ2

.

Note that with probability 1 − a1 (a1), an MGE2 r.v. is a an exponential r.v. with rate µ1

(sum of two exponential r.v.s with rates µ1 and µ2).

In all examples, the holding cost, penalty cost rates and R are constants as h = 1, l = 1

and R = 15, respectively. Two values of λ, λ ∈ {0.7, 0.8}, are considered for all acceptance

probability functions.

In Table 5 the first column displays the different service time distributions that are

considered with their squared-coefficient of variation listed in the second column. The third

column gives the Poisson arrival rate λ. The fourth column for P ∗
0 exhibits the profit when all
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Table 5: Performance of the FQP in the M/GI/1 queue with Convex1, Linear1, and Con-

cave1 lead-time acceptance probability functions

Service Time Convex1 Linear1 Concave1

Distribution c2S λ P ∗
0 PFQ(S

∗
FQ,d

∗
FQ) PFQ(S

∗
FQ,d

∗
FQ) PFQ(S

∗
FQ,d

∗
FQ)

Deterministic 0 9.38 9.38 9.38 9.73

Exponential 1 8.57 8.57 8.73 9.11

0.7 (-8.64%) (-8.64%) (-6.93%) (-6.39%)

MGE2 5 5.34 7.34 7.94 8.24

(-43.07%) (-21.77%) (-15.40%) (-15.29%)

Deterministic 0 10.31 10.31 10.31 10.95

Exponential 1 8.9 8.96 9.71 10.09

0.8 (-13.68%) (-13.09%) (-5.81%) (-7.78%)

MGE2 5 2.67 8.21 8.75 9.14

(-74.10%) (-20.39%) (-15.11%) (-16.49%)

customers are quoted zero lead times. The terms in parenthesis capture the relative decrease

in profit with respect to the system profit with deterministic production times. For instance,

in the case of MGE2 service times, when λ = 0.8, the relative profit loss is 74.10% if zero

lead times are quoted to all arrivals. For all policies, higher service time variability increases

the profit loss compared to the base case with deterministic service times.

When the dynamic FQP is used to quote lead times, the profits tend to increase for all

service time distributions. Yet, the increase in profit is more significant for the MGE2 service

times. For instance, when the FQP is employed, the profits displayed in the fifth (Convex1)

column show that the relative profit loss is only 21.77% and 20.39% when compared to

the base case with deterministic service times when λ = 0.7 and 0.8, respectively. The

last two columns list the generated profits when the FQP is employed for customers having

Linear1 and Concave1 lead-time acceptance probability functions. As customers become less
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sensitive to nonzero lead times from Convex1 to Linear1 and then to Concave1, and more

customers tend to place orders, in each row, we see that the profits also tend to increase.

This observation highlights the fact that a company should seek ways to gain confidence

of its customers (such as producing a high quality product) to make them less sensitive to

quoted lead times. This can help the company raise its profitability.

Table 6: Performance of the FQP in the M/GI/1 queue with Convex2, Linear2, and Con-

cave2 lead-time acceptance probability functions

Service Time Convex2 Linear2 Concave2

Distribution c2S λ P ∗
0 PFQ(S

∗
FQ,d

∗
FQ) PFQ(S

∗
FQ,d

∗
FQ) PFQ(S

∗
FQ,d

∗
FQ)

Deterministic 0 9.38 9.38 9.38 10.27

Exponential 1 8.57 8.57 8.85 9.52

0.7 (-8.64%) (-8.64%) (-5.66%) (-7.33%)

MGE2 5 5.34 7.77 8.03 8.43

(-43.07%) (-17.14%) (-14.38%) (-17.9%)

Deterministic 0 10.31 10.31 10.49 11.49

Exponential 1 8.9 9.54 9.84 10.65

0.8 (-13.68%) (-7.49%) (-6.2%) (-7.3%)

MGE2 5 2.67 8.55 8.84 9.25

(-74.10%) (-17.08%) (-15.67%) (-19.16%)

Table 6 is structurally the same as Table 5 except that in the last three columns, we list

the generated profits when the FQP is employed for customers having Convex2, Linear2, and

Concave2 lead-time acceptance probability functions. From Figure 1, we see that customers

with Convex2, Linear2, and Concave2 lead-time acceptance functions are more likely to place

orders compared to customers with Convex1, Linear1, and Concave1 functions, respectively.

Thus, in Table 6, profits tend to be higher than those in Table 5. Otherwise, we see the same

impact of the dynamic FQP in reducing the worsening impact of production time variability.

25



Table 7: Performance of the PQP in the M/GI/1 queue

Service Time Convex1 Linear1 Convex2 Linear2

Distribution c2S λ PPQ(S
∗
PQ,d

∗
PQ) PPQ(S

∗
PQ,d

∗
PQ) PPQ(S

∗
PQ,d

∗
PQ) PPQ(S

∗
PQ,d

∗
PQ)

Deterministic 0 9.40 9.40 9.41 9.42

Exponential 1 8.75 8.78 8.76 8.86

0.7 (-6.95%) (-6.60%) (-6.82%) (-5.98%)

MGE2 5 8 8.01 8.01 8.06

(-14.89%) (-14.84%) (-14.82%) (-14.46%)

Deterministic 0 10.46 10.46 10.47 10.52

Exponential 1 9.67 9.72 9.69 9.85

0.8 (-7.5%) (-6.99%) (-7.38%) (-6.41%)

MGE2 5 8.81 8.82 8.81 8.84

(-15.77%) (-15.66%) (-15.90%) (-15.98%)

When the PQP is used for the cases presented in Tables 5 and 6, profits increased for

Convex1, Convex2, Linear1, and Linear2 acceptance probability functions. These results are

presented in Table 7. Again profit loss with respect to the cases with deterministic service

times are presented in parentheses. When we compare the Convex1 and Convex2 columns

in Table 7 with Convex1 column in Table 5 and Convex2 column in Table 6, respectively, we

see that under the PQP profits increase more for both exponential and MGE2 distributions.

This indicates that choosing a dynamic lead-time quotation policy more suitable for the

customer profile can further decrease the worsening impact of service time variability.

We close this section by commenting on the computation times of running the proposed

algorithms. Both algorithms have been implemented in Matlab and run on a Windows-

based computer with Intel i5 CPU and 4.0 GB RAM. The computation times highly vary

depending on the complexity of the service time Laplace transform and the maximum number
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of orders allowed in the system. Higher S, higher arrival rates (a function of higher λ0

and the lead-time acceptance probability function), smaller α, higher dmax tend to increase

the maximum number of orders allowed in the system. Deterministic service times have a

simpler Laplace transform when compared to that of the MGE2 distribution. For instance,

for deterministic service time, when S = 0, λ0 = 0.7, α = 0.99, dmax = 4 with Concave1

lead-time acceptance probability function, the FQ algorithm determines the lead times to

announce to three backlogged customers and computes the profit in 0.75 seconds. On the

other hand, for the MGE2 service time, when S = 3, λ0 = 0.7, α = 0.01, dmax = 8 with

Linear2 lead-time acceptance probability function, the FQ algorithm determines the lead

times to announce to 15 backlogged customers and computes the profit in 4.41 hours. While

it takes 1.3 seconds to find the lead-time for the first backlogged customer, it goes up to 46.61

minutes for the 15th backlogged customer. We can see that g̃17(θ) in Eq. (9) for this customer

is quite complex and its numerical inversions needed to be done for the binary search increase

the time to identify the lead-time. In this 4.41 hours, determining the entire lead-time vector

d∗
FQ takes 1.67 hours. The difference of 2.73 hours is spent for computing the steady-state

probabilities and the profit which involves again the Laplace transform inversions of g̃
(1)
n+1(θ)

n = 3, . . . , 17 (see Eq. 10 and the ensuing discussion).

5 Conclusion and Future Work

In this paper, we propose two practical dynamic lead-time quotation policies for a company

producing a single type of product. The production facility is modeled as an Mn/GI/1/K

queue. Both policies employ numerically inverting the Laplace transform of the sojourn

time r.v. of an order to be placed. Therefore, the idea has the potential extension in

other make-to-stock queues where the sojourn time Laplace transforms are available. An

immediate extension we plan to pursue is the multiclass Mn/GI/1 queue in which different

priority classes can demand the same type of product. Such an extension would incorporate

multilevel rationing policy as the inventory control. A serendipitious result of this study is
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that the proposed dynamic lead-time quotation policies help reduce the worsening impact

of the production time variability. In the future, new dynamic lead-time quotation policies

can be designed and for them and the proposed policies in this study as well, especially

when they are implemented in multi-class settings, the computational performance may

need be improved. To do this, other search techniques than the binary search method

employed here can be considered while identifying the lead-time guaranteeing the probability

of service considered. A faster search algorithm can determine the lead times whereas the

profit computations can be obtained from a discrete-event simulation model using these

lead times and base-stock level as input to help reduce the computation times. Another

important future research effort would be the exploration of the optimal policy for systems

with non-exponential service times, even if via numerical methods, which would provide

reference optimal profit values against which researchers would compare the performance of

the dynamic policies they would design.
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