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Kapasite Üstü Reservasyon İçeren Tek Bacakli Uçuslarda Gelir
Eniyilemeyi Amaçlayan Kontrol Politikası
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Yönetimi .

Özet

Havayolları endüstrisinde benzer koltukları farklı fiyatlar ile ücretlendirme yaygın
bir uygulamadır. Bu politika gözönüne alındıģı zaman, uçak kapasitesinin birden fa-
zla müsteri sınıfı arasında paylaştırılması, havayolu şirketlerinin en temel sorunlarından
biridir. Bu tez uçak kapasite paylaşımı problemini incelemekte ve yeni bir model önermektedir.
Reservasyon iptalleri ve uçuş anında gelmeyenlerin varlığı nedeniyle boş koltuklarlardan
kaynaklanan gelir kaybını engellemek için modelimiz kapasite üstü reservasyona izin ver-
mektedir. Bu çalışmada amacı satışlardan gelen geliri iptal ve fazla reservasyondan kay-
naklanan maliyetleri gözönüne alarak eniyilemek olan sürekli zamanlı bir model üzerinde
çalıştık. Bu modelde yolcular homojen olmayan Poisson surecine göre gelirken, bir reser-
vasyonun iptal etme süresi ise üssel dağılımını izlemektedir. En iyi politika dinamik pro-
gram yardımı ile bulunmuştur ve simulasyon yarımı ile literatürde bilinen diğer model-
lerin ortalamaları ile karşılaştır.
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Abstract

Charging identical seats with different prices is a common practice for airline com-
panies. In that regard one of the main concerns for airline managements is the optimal
allocation/partition of the plane capacity between multiple fare classes. This thesis ex-
amines the seat allocation problem of airline revenue management and proposes a new
model. Due to the occurrence of cancellations and no-shows, we also allow overbooking
in order to compensate the revenue loss of empty seats. We study a continuous time model
in which the objective is to maximize expected revenue consisting of the fares collected
minus the cancellation and overbooking costs. In our model customers arrive according
to a nonhomogeneous Poisson process while the time to cancellation of each reservation
follows an exponential distribution. An optimal policy is found using dynamic program-
ming and this policy is compared with other policies known in the literature by means of
simulation.
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Chapter 1

Introduction

Revenue management plays an important role within applications of Operation Research
techniques to real world problems. Its origin started due to airline industry practices
towards pricing and overbooking. In 1979 the Airline Deregulation Act became legisla-
tion and this resulted in competition in the airline market. Hence it became more urgent
for airline companies to reduce cost and/or increase their revenues. To increase market
shares some companies also needed to adopt more aggressive pricing strategies to attract
customers. As a result of these developments airline companies tried to seek alternative
methods of marketing. To realize increasing revenues one needed to develop more sophis-
ticated overbooking and seat allocation policies and this need created the field of Airline
Revenue Management (ARM). Nowadays revenue management techniques are not only
applied within airline companies but also within other service industries. For an overview
on the used techniques and the different fields of applications the reader is referred to
Rothstein [27], Talluri, Van Ryzin [32] and Phillips [22].

The main topic in revenue management is to develop techniques which maximize the
revenue of a finite number of commodities becoming obsolete at a given time in the future.
Due to this general description revenue management is also known as yield management
or perishable inventory control. In the airline example considered in this thesis the perish-
able goods are seats in an airplane and these seats become obsolete after the departure of
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the plane. Since in our particular example customers with a reservation might cancel their
reservation and/or do not show up at departure, customers have different demands airline
revenue management uses the combined tools of overbooking, pricing and seat allocation
(cf.[21]).

Overbooking is the policy of reserving more seats than the actual capacity of the air-
plane. Due to actual practice of reservation cancelling or not showing up at the departure
applying such a policy can be beneficial for the airline company. However applying over-
booking is also risky since more customers than the available capacity might show up at
departure. Now the airline company needs to offer alternatives to the overbooked cus-
tomers and this generates additional costs. Hence there is a tradeoff between obtaining
additional revenues due to overbooking and costs of providing alternative ways of trans-
portation.

Pricing is a tool to influence the demand of potential customers for a fixed number
of seats. By using pricing techniques one tries to attract demand from different segments
of the market. This is done by assigning different prices to more or less similar seats.
Associated with these different priced seats are different conditions on its use and these
conditions might appeal to specific customers. The most well known example of this
segmentation is the differentiation between business and economy class seats. Another
example is the possibility to reschedule the flight with or without paying a penalty. Due
to this segmentation airline management need to solve the seat allocation problem for
these so-called fare classes. This means that airline companies should decide next to the
overbooking problem how many seats one needs to reserve for each fare class. The total
number of seats reserved for each fare class are called the partitioned booking limits.

To explain this allocation problem between economy and business class seats it is
well known that leisure travelers have a tendency to book their economy class tickets at
the beginning of the booking period while business class customers prefer the opposite.
If total expected demand is estimated to be more than seat capacity, airline management
should at the beginning of the booking period decline some of the economy class requests
so that they can accept more business class requests at the end of the booking period. If
an airline company would accept requests on a first come first served basis this would
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result in an airplane occupied by economy class customers. However, by not accepting all
the early requests of economy class customers yields more revenue because of the higher
priced business class seats. At the same time, due to cancellation and no show-ups, it
might be profitable to accept more reservations than the actual seat capacity and so one
should also consider overbooking. It is clear now that determining the partitioned booking
limits for each fare class is also related to the total size of the overbooking limit and we
obtain the so-called combined overbooking and seat allocation problem. This problem is
the topic of this thesis. In the following section, we first present an overview of the main
modeling approaches and techniques available in the literature. At the same time we will
discuss in detail the difference between our new model to others available in the literature
using a simulation study. In Chapter 2, we construct this model under which we write the
net revenue of the airline an our objective function. We study the properties of the value
function and we provide an optimal policy.

1.1 Literature Review

In this subsection, we first focus on the difference between so-called static and dynamic
model description of the combined overbooking and seat allocation problem. Based on
this distinction a more detailed analysis of the different papers considered in the literature
will be given in the next subsection. The static pure overbooking problem is actually the
first problem (cf.[3]) considered in the revenue management literature. In that paper a
single leg model with only one fare class (thereby excluding the seat allocation problem)
is proposed and the objective is to reduce the expected loss due to empty seats. After
evaluating the univariate expected cost objective for a given total overbooking limit, the
optimal total overbooking limit becomes a solution of a minimization problem. In later
papers the generalization of this model to multiple fare classes is considered. In this
generalization one should now also decide how much capacity will be assigned to each
fare class and so next to the overbooking limit the partitioned booking limits are addi-
tional decision variables. In this approach one only uses the cumulative distribution of
the total demand for each fare class and completely ignores the information given by the
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evolvement over time of the dynamic arrival process of the fare class requests. Also the
dynamic cancellation process of reserved seats is ignored. As input data one also uses in
these models the (time average) show up and cancellation probabilities belonging to each
fare class. By ignoring the dynamics of the arrival and cancellation process and using
only the averaged cancellation and show up statistics and the cdf of the total demand of
each fare class one determines before the start of the booking period the expected rev-
enue of a given policy. Such an approach is called static and the determination of an
optimal allocation-overbooking policy reduces to solving a maximization problem over a
set of so-called feasible policies determined by a finite set of parameters. The objective
function in this optimization problem represents the expected revenue or loss for a given
policy. In some papers one also considers other service type related objectives. Due to
the lack of concavity-type properties for the objective function and the use of integer of
decision variables it is computationally hard to find an optimal solution of this mathe-
matical programming problem and one uses heuristics to find a (near optimal) policy. The
selected (near optimal) partitioned booking and total booking limit is then used in a nested
way (cf.[32]) within a simulation of the time dependent arrival and cancellation process
to measure its performance.

It is commonly assumed that in the real world the arrival process of requests for the dif-
ferent fare classes are given by independent (non)homogeneous Poisson processes while
the cancellation process of the reservations has a dynamic Markovian structure. Next to
the above static approach the literature also discusses an approach to the overbooking-seat
allocation problem making use of the sample path information given by the evolvement
over time of the arrival process of request and the cancellation process of reservations.
Such an approach yields a so-called dynamic model and using technique of dynamic pro-
gramming one can derive an optimal dynamic decision rule. This decision rule determines
whether one should accept or reject an arriving request by considering both the number
of reservations (state of the system) at the arrival moment of this specific request and the
future expected optimal gain to be earned until departure. As we will show in this thesis
such a dynamic policy can be properly analyzed and computed within real time under
the assumption of nonhomogeneous Poisson arrival processes of requests, a fare class

4



independent Markovian cancellation process and fare class independent show up prob-
abilities. This generalizes results for similar but less general models considered in the
literature. The relation between these models and our new model will be discussed in the
next subsection. Also, although easy to formulate as an integer nonlinear programming
problem, the static integer programming formulation of the combined overbooking and
seat allocation is difficult to solve to optimality. Hence in the literature one cannot find
fast algorithms solving this optimization problem. The difficulty in this static formulation
is not created by the static cancellation probabilities but created by the show up proba-
bilities assigned to the multiple fare classes. If we consider now only one fare class and
hence solve a pure overbooking problem, these difficulties disappear and a simple and fast
algorithm can be found for this special static formulation. By this observation it is not sur-
prise that in the literature one can only find heuristic ways to generate a feasible solution
based on the following approach. One first determines in the first stage the size of the total
booking limit by aggregating the different fare classes into one fare class and adapting in
heuristic way the demand characteristic fare classes into parameter for aggregated fare
class. Hence one solves in the first stage a static pure overbooking problem. In the second
stage the overbooking limit computed by the first aggregate model is taken as the virtual
capacity of the plane. One assumes now in the second model that every customer with a
reservation will not cancel and always show up. Hence in the second stage one solves a
static model with no overbooking. Although it is difficult to solve the nested formulation
of this optimization problem to optimality there are fortunately good (nested) heuristics
available in the literature. Combining these two stages yields a feasible solution to the
overbooking-seat allocation problem. By the above observations it is clear that static pure
overbooking models play an important role in solving static overbooking-seat allocation
problems. In the next subsection, we will start with reviewing those pure overbooking
models. After that, the so-called EMSR heuristics for static models with no overbooking
will also be considered. Up to now we only discussed the overbooking-seat allocation
problem for one airplane on a direct flight (no stops in between). This is called a single
leg problem. However, it is clear from the real world that airline companies have a fleet of
airplanes with multiple stops at each flight and therefore mostly operate on a network con-
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sisting of different flights. In the literature one also discusses network based models next
to the previous single-leg based models. As before these models can be regarded as static
or dynamic. The network based model with cancellation and uncertainty of showing up at
the departure time of the airplanes is not only difficult to model but also difficult to solve
and so only heuristic methods exists in the literature. Therefore in the next subsection
we will mainly focus on single leg dynamic and static models discussed in the literature.
Due to the importance of pure overbooking models or equivalently overbooking models
with no allocation to fare classes (one fare class assumption) we start with these models
in the next subsection. After that we consider the important class of static models with no
overbooking.

1.1.1 Static and Dynamic Models for Pure Overbooking.

As mentioned previously, the field of revenue management started with the study of pure
overbooking models. Most of the studies before Littlewood [20] focused on this problem.
Pure static overbooking problems are classified according to their objectives. Cost based
approaches emphasize on the opportunity cost of empty seats and additional expected
revenue. Service based model are more risk averse and they seek a solution for keeping
the number of denied boarding customers at some levels are stated in the work of Lan.
[16].

Beckman [3] proposes a model that yields a total booking limit which balances the loss
from departing with empty seats with the possible costs due to overbooking. Thompson
[34] ignores the probability distribution of the demand of the economy and business class
(two fare classes are considered) as well as the revenue generated by those fare classes and
focuses on computing the probability of overbooking and the number of denied boardings
for given reservations given probability information about cancellation and no shows.
Taylor [33] and Rothstein and Stone [28] generalize the Thompson’s study by proposing
additional treatments for denied boarding customers. As reported in Rothstein [27] the
extended model of Rothstein and Stone was implemented at American Airlines. For a
more detailed overview of the mostly static overbooking literature before 1985 one should
consult Rothstein [27]. After 1985 it became necessary to include different fare classes
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in the models and so one started in more detail to study the overbooking-seat allocation
problem. This will be considered in the next subsection. Finally, in case of overbooking
one needs to keep the frustrations of the denied boarding customers low and at the same
time quantify the associated additional costs. Simon [30] suggests an auction method
which addresses both of the above issues. However, despite its promise, this suggestions
seems never to have been implemented in practice [27]. All the above models determine
the overbooking limit by means of a static approach. In the paper written by Rothstein
[26] a dynamic approach is used. He formulates a dynamic version of the overbooking
problem with only only fare class. In his discrete time dynamic model the arrival process
is a nonhomogeneous discrete time Markov process and the state of the system is given by
the total number of reservations. Also the probabilities of the number of cancellations at a
given discrete time depend on the number of reservations at that time and these conditional
probabilities are independent of the state of the system before that time. Hence the model
has a Markovian structure and one can apply Markov Decision Process techniques to
derive an optimal overbooking policy.

1.1.2 Static Models for Overbooking and Seat Allocation.

Seat allocation policies for static models with no overbooking were first considered in the
literature after 1970. Littlewood [20] models in a famous paper in 1972 in a nested way
the two fare class single leg problem without overbooking. This means that that customers
do not cancel and always show up at departure. He defines the concept of marginal seat
revenue and then constructs the optimal nested booking limits. Bhatia and Parekh [6],
and Richter [23] address the same problem and generalize the results of Littlewood [20].
Brumelle et al. [9] also examine the same problem as Littlewood [20] and generalize Lit-
tlewood results to dependent random demands for two fare classes. Belobaba [4] and [5]
generalize the model of Littlewood [20] to more than two fare classes and use the exact
results of Littlewood [20] derived for two fare classes to obtain a heuristic solution for
m fare classes. This is the famous Expected Marginal Seat Revenue (EMSR) heuristic
(actually a class of different heuristics bases on similar ideas) and these heuristics select
a so-called nested partitioned booking limit for each fare class. To justify the heuristics
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results of Belobaba [4] and [5], Wollmer [35] and Brumelle and McGill [8] gave a proper
formulation of the static nested multiple fare class problem with no overbooking under
the assumption that demand is monotonic in fares; i.e., lowest fare is requested first. They
prove that under this assumption the heuristic solution proposed by Belobaba is optimal as
long as the demand distributions are identical for each fare class. Robinson [24] considers
more general demand distributions and shows that applying the EMSR type of heuristics
to some of those instances yield very poor results. This means that the EMSR methodol-
ogy is appealing to use but might give in some instances bad results. Other papers on static
models are written by Bodily and Pfeifer [7], Couglan [13] and Aydin et al. [2]. They
all use different methods of solving the static overbooking and seat allocation problem by
means of heuristics.

1.1.3 Dynamic Models for Overbooking and Seat Allocation

In static single leg formulations, most of the studies assume that, the arrival of the fare
classes are ordered due to the desired nested interpretation of the partitioned booking
limit. However in the dynamic approach to model a single leg problem, there is no need
for such an assumption. In dynamic models one needs to decide upon an arrival of an
individual request to accept this or not, and so the order of requests is not of importance.

In the literature all of the dynamic models for single leg seat allocation model with
or without overbooking uses mostly the tools of Markov Decision Processes (MDP). One
of the earliest dynamic model is given in Alstrup et al. [1] with two fare classes and
overbooking. In their model there are cancelations and no-shows. However, the solu-
tion approach grows exponentially and becomes burdensome for real-size problems. Lee
and Hersh [18] in 1993, proposes a discrete time dynamic model for no-overbooking
problem. In their model the multi-fare arrivals are modeled by discrete time independent
non-homogenous Poisson processes. Their model allows for bulk arrivals and multi reser-
vation requests. Liang [19] in 1999 formulates the same problem stated in continuous
time.

Subramanian et al. [31] extends the dynamic programming approach by also consid-
ering cancelations and no-shows. Although nothing mentioned about the arrival pattern
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in their paper, the problem is solved with Markov decision process in discrete time. They
formulate the cancelations fare class dependent, however, then they make it fare class
independent for computational reasons. In formulation, Subramanian et al [31], makes
some assumptions which do not seem realistic. They divide the booking horizon in small
periods. In each period, they formulate that only one event can be occurred: an arrival,
a cancelation and no-event. Each event depends on the number of reserved customers at
the previous period. Although this assumption seems reasonable for cancelation event,
arrival and no-event must be independent from the number of reserved seats. Also they
remove constant fare assumption and model the fares with time dependent. Aydın et al.
[2] remove the assumption of the dependence of arrivals on number of reserved seats.
Also they formulate the cancelations and arrivals are independent processes.

Chatwin [11] formulates similar single leg problem in continuous time. He models the
arrival process with (less realistic) homogenous Poisson arrival process. The model allows
that refunds and fares to be time dependent. Feng and Xiao [14] uses continuous time
approach. The work is closely related with Chatwin’s model. Feng and Xiao [14] extends
Chatwin’s work by removing fare independent no show-ups. Also they model arrival
process with time and fare dependent Poisson arrival processes. In addition, Feng and
Xiao [14] takes virtual capacity as decision variable whereas the rest of literature dynamic
models take it as a parameter. However, they disregard cancelations in the formulation.
Brumelle and Walczak [10] extends the Markov Process approach and allow to model
the arrivals with more general non-homogenous arrival processses. Although that paper
discusses the single leg seat allocation problem with very general Markovian type arrival
process, it does not reveal much information about computation of the optimal policy.

1.2 Motivation

In this thesis, we attempt to formulate the single leg airline seat allocation and overbook-
ing problems in continuous time within the Markov Decision Process framework. The
booking requests arrive at any time between beginning of the reservation period 0 and
departure time T . We do not allow bulk arrivals, therefore all booking requests come one
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by one. We assume that there are m fare classes and airline sets the constant fares before
reservation is opened. We allow that each customer may cancel his/her reservation and
cancellations are modeled according to Markovian cancelation process which is empiri-
cally showed by Rothstein [27]. If cancelation happens, customer will receive constant
refund irrespective of his/her fare classes. Although these assumptions seems not realis-
tic, they are common in the literature in order to reduce to state space and computational
burden.

We model this problem different from Subramamanian et al. [31] and Aydin et al. [2]
as our formulation is in continuous time based. Although discrete time models seem intu-
itive, they could not reflect the real world as realistic as continuous time models do. The
arrival of booking requests and realization of cancelations can occur any time before de-
parture. Therefore, continuous time models are more natural to formulate problem. In the
literature, there exist three continuous time models to deal with similar problems. Chatwin
[11] formulates the problem as Markov birth and death process and assumes that arrival
processes of booking requests for different fare classes are independent homogeneous
Poisson processes. In this thesis, we replace the time homogenous arrivals assumption
with a time dependent arrival process. Another continuous time model written by Feng
and Xiao [14], ignores the cancelations unlike our formulation. However, they consider
the show up probabilities fare class dependent. Brummelle and Wallzcak [10] study on
more general arrivals. Although they propose very general model for single leg prob-
lem which in bulk arrivals follow Semi-Markov process, their study does not contain any
computational results. The model also seems incomputable. Our model is also different
regarding setting the overbooking capacity. Most of the papers, overbooking capacity is
regarded as a parameter. One exception is study of Feng and Xiao [14]. However, this
characterization involves the value function itself and therefore it can be computationally
expensive to calculate. Another distinction of our formulation is that does not have an
actual virtual capacity.

Although our main contribution is a more natural mathematical analysis of the dy-
namic optimal policy for a single leg problem with overbooking under general conditions
on the nonhomogeneous continuous arrival and homogenous cancellation process, we also
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perform an extensive computational study comparing the behavior of our optimal policy
against the polices generated by several well known EMSR based heuristics. Simulation
results show that our proposed policy generates higher revenue comparing to the policies
generated by the EMSR based heuristic. Detailed results are presented in the computa-
tional section.

The thesis is organized as follows. In Chapter 2 we formulate and analyze by means of
the dynamic approach the single leg problem with overbooking under general assumptions
on the continuous time arrival and cancellation process. In Chapter 3 we discuss a way
of computing the value function of the problem. In Chapter 4 we present by means of
a simulation study the results generated by our optimal policy and compare these results
with results given by the policies generated by several EMSR based heuristics available
in the literature. Our concluding remarks can be found in Chapter 5.
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Chapter 2

Analysis of a Continuous Time Single Leg Over-
booking Model

In this section we present a continuous time dynamic model for the single leg seat al-
location problem with no shows and cancellations. This means that also overbooking is
allowed and the objective of our dynamic model is to select an optimal decision policy
(if it exists) which maximizes the expected net revenue. Before discussing in detail the
existence and construction of such an optimal policy we first introduce our model.

Consider a flight with seat capacity P and for this flight m different fare classes can
be reserved. Let P̄ > P denote the predetermined maximum number of reservations that
the airline company will accept during the booking period. Observe P̄ can also attain the
value ∞ and this means that there is no a priory bound set on this maximum number.
The continuous arrival process of fare classes is now defined as follows. Let T be the
length of the booking period and (Ti, Li){i∈N} a marked point process with Ti denoting
the arrival time of the ith request and Li ∈ {1, 2, · · · ,m} the marker representing the type
of booking request. The random counting measure of this marked point process is given
by

η((0, t)× {j}) =
∑
i∈N

1(0,t]×{j}(Ti, Li), t ∈ [0, T ], j ∈ {1, 2, · · · ,m}. (2.1)
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It is assumed that this counting measure is a Poisson random measure with mean

ν((0, t)× {j}) = E(η((0, t), {j})

=
∫

(0,t]
λ(u)q(u, j)du

(2.2)

for t ∈ [0, T ] and j ∈ {1, 2, ...,m} and λ : [0, T ] 7→ R+ a continuous intensity function.
Also introducing the domain set 4 : [0, T ] × {1, 2, · · · , P̄} the function q(t, j) : 4 7→
[0, 1] represents the conditional probability of an arrival of a fare class j requests at time t
given that an arrival occurs at time t. By this interpretation it is obvious for each t ∈ [0, T ]

that ∑m

j=1
q(t, j) = 1. (2.3)

Hence by construction the arrival process of each fare class is a nonhomogeneous Poisson
process and these processes are independent. For a detailed overview on the theory of
Poisson random measures the reader should consult Cinlar [12]. Also let ri, i ∈ {1, ...,m}
denotes the price of fare class i. Without loss of generality we assume that

0 < r1 < r2 < ... < rm (2.4)

and so fare class 1 is the cheapest and fare class m the most expensive. This means that at
an arrival of a fare class i request the airline will receive ri if this request is accepted. This
means that total revenue received after accepting an arriving request is given by r(Li)
where

r(l) :=
∑
j≤m

rj1{l=j}. (2.5)

Airline management has the option to reject or accept a request. In the sequel, the random
vector A ≡ (Ai)i∈N, keeps track of the accept and reject decisions for each booking
request i ∈ N. The event {Ai = 1} shows that the ith booking request is accepted, while
{Ai = 0} denotes rejection. By the definition of P̄ a booking request is rejected when the
current number of reserved seats is equal to P̄ and so in this case Ai is assigned the value
zero.
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We also allow cancellations in our model. It is assumed that each customer can later
cancel his/her reservation independently of the other reservations and the random time to
cancellation of each customer has an exponential distribution with common parameter µ.
This means that all customers independent of their reserved fare class show probabilis-
tically the same cancellation behavior. When a cancelation occurs, the airline company
refunds the cancelling customer an amount κ and this amount is independent of the fare
class. Denoting by Xi the exponentially distributed random time to cancellation of the ith
arriving request and by C = {Ct : t ≤ T} the cancellation process it follows that the total
number Ct of cancellations up to time t is given by

Ct =
∑
i∈N

1{Ti+Xi≤t} · 1{Ai=1} (2.6)

As previously mentioned the random variables Xi, i ∈ N are independent.
The Accept and Reject decisions are based on the information gathered over time

by observing the arrival and cancelation process up to the arrival time of a request. Such
policies will be referred as admissible in the sequel. The collection of admissible decisions
{A1, A2, · · · } forms a non-decreasing and piece-wise constant jump process and let D =

{Dt}t∈[0,T ] note the collectin of admissible policies.

Dt =
∑
i≤Nt

Ai1{Ti≤t}, t ∈ [0, T ]. (2.7)

In terms of the cancellation process C and requests process D, the controlled seat
process S = {St}t∈[0,T ] can be written as

St = S0 +Dt − Ct (2.8)

where S0 = 0 is the initial number of seat. Clearly ST denotes the number of reserved
seats at the departure time. However, each customer with a reserved seat may not show-up
at the boarding time. To model this behavior we assume that each customer independent
of the fare class has a show up probability p. Hence, introducing the collection of indepen-
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dent Bernoulli random variables (B1, B2, · · · ) each with success probability p, the total
number of boarding request or show-ups is equal to

∑ST

i=1Bi. Since it might happen that
customers are denied boarding due to the arrival at departure of more customers than the
actual capacity of the plane, the airline pays for any denied boarding customer a penalty
γ > rm. Hence the total overbooking penalty is given by

γ

(
ST∑
i=1

Bi − P

)+

. (2.9)

Combining all revenues, refunds and penalties, the net expected revenue of a given ad-
missible policy A is given by

E

 NT∑
i=1

Air(Li)− κCT − γ

(
ST∑
i=1

Bi − P

)+
 , (2.10)

where N ≡ {Nt}t≥0 counts the cumulative reservation requests. Hence the objective of
airline management is to evaluate

sup
A∈D

E

 NT∑
i=1

Air(Li)− κCT − γ

(
ST∑
i=1

Bi − P

)+
 (2.11)

and to find an admissible policy (if it exists) attaining this value. In the next sections we
will show that such a policy indeed exists and also show how to evaluate such a policy.
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2.1 On the Dynamic Programming Operator and its Prop-
erties.

To start with our analysis introduce the set

∆ :=


[0, T ]× {0, 1, ..., P} if P <∞

[0, T ]× Z+ if P =∞
(2.12)

and introduce the optimal value function V : ∆→ R given by

V (t, s) := sup
A∈D

G(A)(t, s), for (t, s) ∈ 4 (2.13)

where

G(A)(t, s) := E(t,s)

 Nt∑
i=1

[Ai r(Li)]− κCt − γ

(
St∑
i=1

Bi − P

)+
 (2.14)

In relation (2.14), the expectation operator E(t,s) corresponds to the probability measure
P(t,s) under which

ii) the point process (Ti, Li)i∈N has the shifted compensator λ(t)(u)du × q(t)(u, j),
where λ(t)(u) = λ(T − t + u) and q(t)(u) = q(T − t + u, j), for u ≥ 0 and
1 ≤ j ≤ m.

i) S0 = s with probability one and the random variable Ct also includes the total
number of cancellations among the first s reservations.

Note by taking t = T and s = 0 in (2.13) we obtain the optimal expected revenue. Due
to the properties of a nonhomogeneous Poisson process the value G(A)(t, s) can also be
seen as the total expected net revenue generated after time T − t up to time T by the
considered policy when there are s reservations at time T − t. Hence the value V (t, s)

denotes the optimal expected revenue over all admissible policies generated after time
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T − t when at time T − t there are s reservations. Clearly this value depends on the used
upper bound P̄ but for notational convenience this dependence is not shown. At the same
time the reader should note that in the above alternative interpretation there is a slight
misuse of the original definition of Ti since now the random variable Ti represents the ith
arrival after time T − t of the original nonhomogeneous Poisson arrival process starting
at time 0. To analyze the function V and derive its properties we introduce a sequence of
functions Vn, n ∈ N. The function Vn represent a truncated version of the optimal value
function considered in (2.13). It only applies to the first n booking request the decision of
acceptance or rejection and it rejects all the remaining arrivals. By definition it is given
by

Vn(t, s) = sup
A∈Dn

G(A)(t, s), for n ∈ N and (t, s) ∈ 4, (2.15)

whereDn is the set of all admissible controls with Ai = 0 for every i > n. The next result
is obvious and requires no proof.

Corollary 1 The functions Vn : ∆→ R, n ∈ Z+ are monotone in n and satisfy

−γmax{s− P, 0} − κs ≤ V0(t, s) ≤ V1(t, s) ≤ ... ≤ V (t, s) ≤ rmΛ(T ) (2.16)

for all (t, s) ∈ 4 and Λ(T ) =
∫ T

0
λ(u)du.

For any Borel measurable function f : ∆ → R we introduce for P finite and n ∈
{0, 1, ..., P} or P =∞ and n ∈ N the so-called supnorms

‖ f ‖n:= supt∈[0,T ],s∈{0,1,...n} | f(t, s) |

Clearly
‖ f ‖∞:= supt∈[0,T ],s∈Z+

| f(t, s) |

if P̄ = ∞, a Borel measurable function f : ∆ → R is called locally bounded if ‖ f ‖n
is finite for every n. Also for P finite let S denote the linear space of Borel measurable
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bounded functions on ∆ while for P infinite it represents the linear space of Borel measur-
able locally bounded functions on ∆ satisfying limn↑∞ c

n ‖ f ‖n= 0 for every 0 < c < 1.
It is now obvious from Corollary 1 that the optimal value function Vn and V belong to S.
In the next lemma we show the intuitively clear result that the functions Vn converge in
the supnorm to V and give an upperbound on the error.

Lemma 2 The sequence of functions Vn : ∆ → R, n ∈ Z+ converges in the supnorm to
V . In particular it holds for every n ≥ 1 that

‖V − Vn‖P ≤ rm
∆(T )n+1

(n− 1)!
(2.17)

Proof. Let A ∈ D and A(n) ∈ Dn be two admissible policies such that A(n) coincides
with the A until (and including) the first n jumps. Note that

E(t,s)

[
Nt∑
i=1

Ai · r(Li)

]
= E(t,s)

[
n∧Nt∑
i=1

Ai · r(Li) +
∞∑

i=n+1

Ai · r(Li) 1{Ti≤t}

]

≤ E(t,s)

[
n∧Nt∑
i=1

Ai · r(Li)

]
+ rm E(t,s)

[
∞∑

i=n+1

1{Ti≤t}

]

≤ E(t,s)

[
n∧Nt∑
i=1

Ai · r(Li)

]
+ rm

[Λ(T )]n+1

(n− 1)!
, (2.18)

where the last inequality is due to Remark 20. Also, when we start with the same number
s of reserved seats it is easy to see using the interpretation ofA andA(n) that the expected
total cancellation fee and overbooking cost are both separately higher forA then forA(n).
This yields applying also (2.18)

G(A)(t, s) ≤ G(A(n))(t, s) + rm
[Λ(T )]n+1

(n− 1)!
≤ Vn(t, s) + rm

[Λ(T )]n+1

(n− 1)!
.

Since this is true for any A ∈ D, we have

V (t, s) ≤ Vn(t, s) + rm
[Λ(T )]n+1

(n− 1)!
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Applying now Corollary 1 we also know that

V (t, s) ≥ Vn(t, s)

for every (t, s) ∈ ∆ and this shows the desired result. �

To determine the properties of the function V we introduce the operator L : S → S
given by

L[f ](t, s) =


supA∈{0,1} LA[f ](t, s) if s ∈ {0, 1, ..., P − 1}

L0[f ](t, s) if s = P

(2.19)

with

LA[f ](t, s) := E(t,s)

{
− κCt∧T1 − 1{T1>t}γ

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t}

[
A · r(L1) + f(t− T1, ST1− + A)

]}

For notational convenience we suppress the dependence of this operator on P . This de-
pendence will always be clear from the used context. In the next remark we will give an
alternative description of the operator L.

Remark 3 It is easy to see that the supremum in (2.19) is attained if we set

A =

{
1, if T1 ≤ t and r(L1) + f(t− T1, ST1− + 1) ≥ f(t− T1, ST1−),

0, otherwise.
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Hence we obtain the equivalent representation L[f ](t, s)

= E

{
− κCt∧T1 − 1{T1>t} · γ ·

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t} · Mr(L1)[f ](t− T1, ST1−)

}
,

(2.20)

where

Mr[f ](t, s) =


max{r + f(t, s+ 1), f(t, s)} if s ∈ {0, 1, ..., P − 1},

f(t, s) if s = P

(2.21)

In the next result we will show some important properties of the dynamic operator
L. As shown by the next result this operator preserves concavity and continuity of the
function f .

Lemma 4 If the function s 7→ f(t, s) is decreasing and discrete concave in s for each

given t then the function s 7→ L[f ](t, s) also satisfies this property.

Proof. We first will analyze the terms ECt∧T1 and E1{T1>t}

(∑St

i=1Bi − P
)+

in (2.20).
It is easy to see using the assumptions of the cancellation process and conditioning on T1

that

ECt∧T1 = sE(1− e−µ(t∧T1))

= s[1− e−µt]e−Λt(t) +
∫

(0,t]
λ(t)(u)e−Λ(t)(u)(1− e−µu)du

(2.22)

where λ(t)(·) = λ(T − t+ ·) and Λ(t)(·) =
∫ ·

0
λ(t)(u)du = Λ(T − t+ ·)−Λ(T − t). Also

by the properties of independent binomial distributed random variables with the same
success probability we obtain

E1{T1>t}

(
St∑
i=1

Bi − P

)+

= e−Λ(t)(t)

s∑
i=0

(
s

i

)
(pe−µt)i(1− pe−µt)s−i(i− P )+, (2.23)
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From (2.22) and (2.23) this shows that the number of expected cancelation and denied
boarding customers are increasing functions of s for each given t. Using now that the
maximum of two decreasing functions is again decreasing and the definition of the opera-
tor L in (2.20), yields the monotonicity property in s. To prove the discrete concavity we
first note that the expression in (2.22) is linear in s. Also applying Lemma B.2 in Aydin et
al [2] we know that the expression for the expected number of denied boarding customer
in (2.23) is discrete convex in s. Hence by the negative coefficients the first two terms in
(2.20) are discrete concave in s. In addition, according to Lemma 1 of Lautenbacher and
Stidham [17] the operatorM preserves the concavity of the function f(t, s) in s and so
the function s 7→ L[f ](t, s) is discrete concave in s. Since the binomial selection scheme
preserves concavity as shown in Lemma B.3 Aydın et al. [2] this implies that the expec-
tation of 1{T1≤t}M[f ](t, s) is discrete concave in s and using the above observations we
have verified the result. �

We observe the following remarks whose proofs are given in the Appendix.

Remark 5 If the mapping t 7→ f(t, s) is continuous for each s then the mapping t 7→
L[f ](t, s) also satisfies this property.

Remark 6 If the function f : ∆→ R satisfies

κ(1− e−µt) ≤ f(t, s)− f(t, s+ 1) ≤ κ(1− e−µt) + γpe−µt (2.24)

for (t, s+1) ∈ 4, then these upper and lower bounds also hold forL[f ](t, s)−L[f ](t, s+

1) over the same domain.

In the next section we will analyze in detail the relation between the function V and the
operator L. It will be shown that V is a fixed point of this operator in the set S. There are
also other properties like continuity in t (and also see Remark 6)
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2.2 A Useful Sequence of Functions.

In the previous section we introduce the dynamic programming operator L and show that
this operator preserves concavity and monotonicity in s. Using this operator L introduce
now the function sequence (Un)n∈N given by

U0(·, ·) = V0(·, ·) and Un(·, ·) = L[Un−1](·, ·), for n ≥ 1 (2.25)

Lemma 7 The sequences in (2.15) and (2.25) coincide and we have

Un(t, s) = Vn(t, s) = G(Ã(n)(t,s))(t, s), for (t, s) ∈ 4 and n ≥ 1, (2.26)

where the dynamic control policy Ã(n)(t, s) is determined in terms of the decision vari-

ables

Ã
(n)
i (t, s) =

{
1, if Ti ≤ t and r(Li) + Un−i(t− Ti, STi− + 1) > Un−i(t− Ti, STi−),

0, otherwise,

(2.27)

for i ≤ n.

The proof of Lemma 7 is given in the appendix. Applying Lemma 2 and the previous
result one can recover the optimal value function V by applying the operator L to the
functions Un successively. Hence, using the error bound in Lemma 2 and some preset
ε ≥ 0, one can find some number n satisfying

‖V − Un‖P ≤ ε. (2.28)

This means we can approximate V up to a certain accuracy. The next lemma shows that
V is a unique fixed point of the operator L. This result yields an alternative approach for
computing V . However this approach will not be pursued in the computational section.
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Lemma 8 Within the set S the optimal value function V is a unique fixed point of the

operator L.

Proof. We already know that V belongs to S and first show that V is a fixed point of the
operator L. By Lemma 7 it follows that Vn(·, ·) = L[Vn−1](·, ·). Applying now Vn ↗ V

and the monotone convergence theorem we obtain

V (t, s) = supn∈N Vn(t, s)

= supn∈N supA LA[Vn−1](t, s)

= supA supn∈N LA[Vn](t, s)

= supA LA[V ](t, s)

= L[V ](t, s)

(2.29)

and so V is a fixed point of the operator L. To show the uniqueness of the fixed point
within the set S, let W be another function belonging to S satisfying W = L[W ]. Hence
by Remark 3 we obtain

W (t, s)− V (t, s) = L[W ](t, s)− L[V ](t, s)

= E(t,s)(1{T1≤t}{Mr(L1)[W ](t− T1, ST1−)−Mr(L1)[V ](t− T1, ST1−)}).
(2.30)

It is easy to see for P finite and (t, s) ∈ 4 that

Mr[W ](t, s)−Mr[V ](t, s) ≤ ‖W − V ‖P , (2.31)

while for P infinite we have

Mr[W ](t, s)−Mr[V ](t, s) ≤ ‖W − V ‖s+1 (2.32)
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Applying (2.31) to relation (2.30) yields for P finite

W (t, s)− V (t, s) ≤ E(t,s)(1{T1≤t}‖V −W‖P )

= (1− e−(Λ(T )−Λ(T−t))‖V −W‖P

≤ (1− e−Λ(T ))‖V −W‖P .

(2.33)

By reversing the roles of W and V we obtain

V (t, s)−W (t, s) ≤ (1− e−Λ(T ))‖V −W‖P

and hence
‖V −W‖P ≤ (1− e−Λ(T ))‖V −W‖P . (2.34)

This shows V = W and we have shown the result for P finite. For P infinite we obtain
by a similar approach using (2.32) applied to (2.30) that for every s ≤ n and 0 ≤ t ≤ T

V (t, s)−W (t, s) ≤ (1− e−Λ(T ))‖V −W‖n+1.

Again we reverse the roles of V and W in the above inequality and this yields for P
infinite that

‖V −W‖n ≤ (1− e−Λ(T ))‖V −W‖n+1.

Iterating the above inequality q times we obtain

‖V −W‖n ≤ (1− e−Λ(T ))q‖V −W‖n+q+1.

Since W and V belongs to S it follows for every fixed n that

limq↑∞(1− e−Λ(T ))q‖V −W‖n+q+1 = 0
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and so W = V on [0, T ]× {0, 1, ..., n}. Since n is arbitrary this yields W = V on ∆. �

Until this point we have introduced our objective function V and its relation to the
operator L. We have shown that V is a unique fixed point of this operator within the set
S and for P finite the operator L is a contraction mapping in the supnorm ‖ . ‖P with
contraction constant 1− e−Λ(T ). In the sequel of this section we will use the functions Vn
to derive global properties of the function V . To do so we first verify these properties for
the functions Vn.

Lemma 9 For every n ∈ N and t ∈ [0, T ] the function Vn is discrete concave and de-

creasing in s and satisfies for every (t, s+ 1) ∈ 4 and s ∈ {0, 1, ..., P − 1}

κ(1− e−µt) ≤ Vn(t, s)− Vn(t, s+ 1) ≤ κ(1− e−µt) + γpe−µt. (2.35)

Also for each s the function Vn is continuous in t.

Proof. We first show the desired result for n = 0. From (2.15) it is easy to see that

V0(t, s) = E(t,s)

[
−κCt − γ

(∑s−Ct

i=1 Bi − P
)+
]

= −sκ(1− e−µt)− γ
∑s

i=0

(
s
i

)
(pe−µt)i(1− pe−µt)s−i(i− P )+

(2.36)

Hence by the first expression in relation (2.36) it is obvious that function V0 is decreasing
in s for each fixed t, while by Lemma B.3 in Aydin et al. [2] it follows that the function
V0 is concave in s for each fixed t ≤ T . By the second expression in relation (2.36) it is
also obvious that the function V0 is continuous in t for fixed s. Applying now Remark 5
and Lemma 4 the result follows by induction for the functions Vn. To show relation (2.35)
for n = 0, it follows as in the proof of Remark 6 that the difference V0(t, s)− V0(t, s+ 1)
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can be written as

E(t,s)

[
−κCt − γ

(∑s−Ct

i=1 Bi − P
)+
]
− E(t,s)

[
−κCt − γ

(∑s+1−Ct

i=1 Bi − P
)+
]

= κ(1− e−µt) + γE(t,s)

[(∑s−Ct

i=1 Bi + Z − P
)+

−
(∑s−Ct

i=1 Bi − P
)]

for an independent Bernoulli random variable Z with success probability pe−µt. The last
expectation above is non-negative and bounded above by E(t,s)1{Z=1} = pe−µt. Therefore,
we have the bounds

κ(1− e−µt) ≤ V0(t, s)− V0(t, s+ 1) ≤ κ(1− e−µt) + γpe−µt.

This shows the inequality for n = 0 and by Remark 6 and induction the same bounds hold
for Vn(t, s)− Vn(t, s+ 1) for all n ∈ N. �

An immediate consequence of Lemma 2 and Lemma 9 is given by the next result.

Lemma 10 The function V is discrete concave and decreasing in s and satisfies for every

(t, s+ 1) ∈ 4

κ(1− e−µt) ≤ V (t, s)− V (t, s+ 1) ≤ κ(1− e−µt) + γpe−µt. (2.37)

Also for each s the function V is continuous in t.

Proof. Since the functions Vn converge in the supnorm to V the desired result follows by
Lemma 9 and Theorem 7.12 of Rudin [29]. �

In this section we have shown that the optimal value function V can be easily com-
puted. However we did not prove that an optimal policy exists. This will be the topic of
the next section.
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2.3 On the Existence of an Optimal Policy

Introduce the policy A∗(t, s) ≡ (A∗i (t, s))i∈N as follows;

A∗i (t, s) =

{
1, if r(Li) + V (t− Ti, STi− + 1) > V (t− Ti, STi−) and Ti ≤ t,

0, otherwise,

(2.38)

for i ∈ N. At this point, we still need to show that the policy given in (2.38) is an optimal
policy. To verify this we prove the following results.

Proposition 11 For all (t, s) ∈ 4 and n ≥ 1, we have

V (t, s) = E(t,s)

[
Nt∧Tn∑
i=1

A∗i · r(Li)− κCt∧Tn + V (t− t ∧ Tn, St∧Tn)

]
. (2.39)

Proof. For n = 1, the right hand side in (2.39) can be written as

E(t,s)
[
−κCt∧T1 + 1{t<T1}V (0, St) + 1{T1≤t}

[
A∗1 · r(L1) + V (t− T1, ST1)

]]
= E(t,s)

−κCt∧T1 − 1{t<T1}γ

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t}

[
A∗1 · r(L1) + V (t− T1, ST1)

]
= L[V ](t, s) = V (t, s),

where the last equality is due to Lemma 8.
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Now suppose (2.39) holds for some n ≥ 1. Let us then decompose the right side in
(2.39) with n+ 1 as

E(t,s)

Nt∧Tn+1∑
i=1

A∗i · r(Li)− κCt∧Tn+1 + V
(
t− t ∧ Tn+1, St∧Tn+1

)
= E(t,s)

[
− κCt∧T1 + 1{t<T1}V (0, St) + 1{T1≤t}

[
− κ(Ct∧Tn+1 − CT1)

+

Nt∧Tn+1∑
i=1

A∗i r(Li) + V
(
t− t ∧ Tn+1, St∧Tn+1

) ]]
= E(t,s)

[
− κCt∧T1 + 1{t<T1}V (0, St) + 1{T1≤t}A

∗
1 · r(L1)

+ 1{T1≤t}E(t,s)

[
− κ(Ct∧Tn+1 − CT1) +

Nt∧Tn+1∑
i=2

A∗i r(Li) + V
(
t− t ∧ Tn+1, St∧Tn+1

) ∣∣∣∣∣FT1

]]
.

whereFT1 is the information generated by the arrival and cancelation processes as time T1

Note that on the event {T1 ≤ t}we have t−t∧Tn+1 = (t−T1)−(t−T1)∧(Tn◦θT1−T1).
Hence, the conditional expectation above can be replaced with V (t − T1, ST1) thanks to
the induction hypothesis and the strong Markov property. Carrying out this substitution,
we obtain

E(t,s)

Nt∧Tn+1∑
i=1

A∗i · r(Li)− κCt∧Tn+1 + V
(
t− t ∧ Tn+1, St∧Tn+1

)
= E(t,s)

[
− κCt∧T1 + 1{t<T1}V (0, St) + 1{T1≤t}[A

∗
1 · r(L1) + V (t− T1, ST1)]

]
= E(t,s)

[Nt∧T1∑
i=1

A∗i · r(Li)− κCt∧T1 + V (t− t ∧ T1, St∧T1)
]

= V (t, s)

where we used the result for n = 1 in the last equality. This proves (2.39) for n + 1 and
we have verified the result. �
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Proposition 12 The policy A∗(t, s) attains the supremum in (2.13) and we have

V (t, s) = G(A∗(t,s))(t, s) (2.40)

for all (t, s) ∈ 4.

Proof. Let us take the limsup as n→∞ of the right hand side in (2.39). This shows

V (t, s) = lim supn↑∞ E(t,s)
[∑Nt∧Tn

i=1 A∗i r(Li)− κCt∧Tn + V (t− t ∧ Tn, St∧Tn)
]

≤ lim supn↑∞ E(t,s)
[∑Nt∧Tn

i=1 A∗i r(Li)− κCt∧Tn
]

+ lim supn↑∞ E(t,s) [V (t− t ∧ Tn, St∧Tn)] .
(2.41)

Using limn Tn = ∞ it follows Nt∧Tn ↗ Nt, Ct∧Tn ↗ Ct, St∧Tn → St and V (t − t ∧
Tn, St∧Tn)→ V (0, St) with probability one. Also by Corollary 1 we obtain

V (·, ·) ≤ rmΛ(T ) (2.42)

and this implies by Fatou lemma that the second term in (2.41) satisfies

lim supn↑∞ E(t,s) [V (t− t ∧ Tn, St∧Tn)] ≤ E(t,s)(lim supn↑∞ V (t− t ∧ Tn, St∧Tn))

= E(t,s)V (0, St).
(2.43)

The first term of (2.41) consists of the difference of two increasing sequences of positive
random variables each being bounded by an integrable random variable. Hence we may
apply the monotone convergence theorem and this yields

lim supn↑∞ E(t,s)
[∑Nt∧Tn

i=1
A∗i r(Li)− κCt∧Tn

]
= E(t,s)

[∑Nt

i=1
A∗i r(Li)− κCt)

]
.

(2.44)
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Using (2.43),(2.44) and (2.41) we finally obtain

V (t, s) ≤ E(t,s)
[∑Nt

i=1A
∗
i r(Li)− κCt) + V (0, St)

]
= E(t,s)

[∑Nt

i=1 A
∗
i r(Li)− κCt)− γ

(∑St

i=1Bi − P
)+
]

= G(A∗(t,s)(t, s)

≤ V (t, s)

and the desired result is proved. �

Finally we relate the optimal value function V to the accept-reject decisions given by
the optimal policy. As already observed a policy decides whether to accept or reject a
booking request according to the arrival time of a request, its fare class and the number of
reservation at this arrival. An ith fare class booking request arriving at time T − t and s
seats are reserved at time T − t is accepted if and only if

rj + V (t, s+ 1) ≥ V (t, s).

Since the mapping s 7→ V (t, s) is concave, the difference V (t, s) − V (t, s + 1) is a
decreasing function in s for fixed t ≤ T . Hence we can introduce a booking limit of fare
class j when there is still t time units to departure as

s∗t,j := max{s ∈ {0, 1, · · · , P̄} : rj ≥ V (t, s)− V (t, s+ 1)} for j ∈ {1, · · · ,m}
(2.45)

Airline management now accept a booking request of a fare class type j arriving at time
T − t if and only if the number of reserved seat at time T − t is less than this booking
limit s∗t,j . Clearly these booking limits are monotone in j, i.e for any t ≤ T

s∗t,1 ≤ · · · ≤ s∗t,m (2.46)
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Finally we mention some possible extensions of the above analysis which can be done
by similar techniques. First of all is also possible to analyse batch arrivals of the same
fare class under the assumption that all of the requests in this batch are either rejected
or accepted. In this case we model the arrival process of requests by a nonhomogeneous
compound Poisson process. Also it is possible to consider the case that the cancellation
rate µ is a function of the current time. Finally if the cancellation rate and the show
up probability are fare class dependent one need to extend the state space to m + 1-
dimensions. In this case the i component represent the current number of reservations of
fare class i. However, computing the optimal policy is computationally very expensive.
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Chapter 3

Computation of the Optimal Policy

In this chapter, we present the solution approaches for computing value function V . First
note that the optimal net revenue that the airline can generate is a function of P̄ . Therefore
initially we demonstrate the choice of P̄ . Then numerical evaluation of function V is
revealed.

3.1 Setting the Value of P̄

Needless to say, the optimal expected net revenue that the airline can generate is a non-
decreasing function of P̄ . Earlier work on continuous and discrete time problems gener-
ally assumes that P̄ is a given parameter, for example a fixed multiple of the capacity P .
One exception is Feng (2006), which treats P̄ as a decision variable and gives a charac-
terization for the effective overbooking limit beyond which no improvement is obtained
in the optimal expected revenue; see Section 4 in Feng 2006. However, this characteriza-
tion involves the value function itself, and therefore it can be computationally expensive
to calculate. Moreover, in cases where it is optimal to accept every request, the effective
overbooking limit becomes infinity.

If the booking limit is a decision variable, it becomes important to control the loss in
the expected revenue by choosing the value of P̄ properly. Let V (P̄ )(T, 0) and V (∞)(T, 0)
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denote the optimal expected net revenue respectively with an overbooking limit P̄ and
without any limit. Lemma 13 below gives an error bound on the convergence of V (P̄ )(T, 0)

to V (∞)(T, 0), and therefore allows us to select the value of P̄ that would keep the loss in
the revenue within acceptable tolerance limits.

Lemma 13 As P̄ goes to∞, V (P̄ )(T, 0) converges to V (∞)(T, 0) and we have

0 ≤ V (∞)(T, 0)− V (P̄ )(T, 0) ≤ rm
[Λ(T )]P̄+1

(P̄ − 1)!
. (3.1)

Proof. We only need to prove the second inequality (3.1) as the first one is immediate.
Let A(∞) = (A

(∞)
i )i∈N be the optimal policy for V (∞)(T, 0). Under A(∞) that among

the first NT ∧ P̄ -many requests some of them may be rejected. Among those which are
accepted, let C P̄

T and SP̄T denote respectively the number of cancellations and number of
remaining reservations as of the departure time. Note that C P̄

T ≤ CT , SP̄T ≤ ST and
C P̄
T + SP̄T =

∑NT∧P̄
i=1 A

(∞)
i . Then using the optimality of A(∞) = (A

(∞)
i )i∈N we write

V (∞)(T, 0) = E(T,0)

 NT∑
i=1

[
A

(∞)
i r(Li)

]
− κCT − γ

(
ST∑
i=1

Bi − P

)+


≤ E(T,0)

NT∧P̄∑
i=1

[
A

(∞)
i r(Li)

]
− κC P̄

T − γ

 SP̄
T∑

i=1

Bi − P

+


+ E(T,0)

 ∞∑
i=P̄+1

1{Ti≤T}A
(∞)
i r(Li)


≤ V (P̄ )(T, 0) + rm E(T,0)

 ∞∑
i=P̄+1

1{Ti≤T}

 ≤ V (P̄ )(T, 0) + rm
[Λ(T )]P̄+1

(P̄ − 1)!

where the last inequality follows from Remark 20 in the Appendix A. �
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3.2 Numerical Computation of the Optimal Value Func-
tion V

In this section, we present two approaches for computing the optimal value function V
considered in Chapter 2. The first procedure is to apply the operator L successively and
the second is to utilize the Hamilton-Jacobi-Bellman equation. In the sequel we will
discuss both methods of which the last is implemented on a computer.

Recall our objective function

V (t, s) = sup
A∈D

G(A)(t, s), for (t, s) ∈ 4,

where

G(A)(t, s) := E(t,s)

 Nt∑
i=1

[Ai r(Li)]− κCt − γ

(
St∑
i=1

Bi − P

)+


In the first method, we follow the basic steps for computing V;

• First step is constructing the function,

V0(t, s) = −sκ(1− e−µt)− γ
s∑
i=0

(
s

i

)
(pe−µt)i(1− pe−µt)s−i(i− P )+.

• Applying dynamic operator L iteratively starting with V0(t, s), we can compute
Vn(t, s), n = 1, 2, · · · successively.

• Thanks to Lemma 7, we can terminate the iterations for given ε. We simply fix a
value of n large enough so that ‖V (t, s)−Vn(t, s)‖ ≤ ε, for some ε > 0, so that the
approximation error is at most ε

As seen in the operator L, the calculation contains many integrations. Due to these in-
tegrals, overall computational complexity for given mesh length h > 0 becomes o(mT 2P̄ 2)

where T is total booking period and P̄ is number of seats that offer for reservations.
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Alternatively, instead of computing Vn’s via the operator L, we can use the infinitesi-
mal transition probabilities of the processes C and N. We know that the optimal policyA∗

in (2.38) implies that

V (t, s) = G(A∗)(t, s) = E(t,s)

 Nt∑
i=1

A∗i r(Li)− κCt − γ

(
St∑
i=1

Bi − P

)+


= E(t,s)

 Nh∑
i=1

A∗i r(Li)− κCh + E(t,s)

 Nt∑
i=Nh+1

A∗i r(Li)− κ(Ct − Ch)− γ

(
St∑
i=1

Bi − P

)+ ∣∣∣∣∣Fh


= E(t,s)

[
Nh∑
i=1

A∗i r(Li)− κCh +G(A∗)(t− h, Sh)

]
= E(t,s)

[
Nh∑
i=1

A∗i r(Li)− κCh + V (t− h, Sh)

]

for small h ≤ t, thanks to the Markov property. Hence, this property allows us to use
the usual infinitesimal first step analysis as Chapter 4 in Karlin and Taylor [15] with the
transition probabilities

P
{
Ct+h − Ct = 1

∣∣Ft} = µSth+ o(h)

P
{
Nt+h −Nt = 1

∣∣Ft} = λ(t)h+ o(h)

P
{
Nt+h −Nt = 0

∣∣Ft} = 1− µSth− λ(t)h+ o(h).

We can then compute V (t, s) after observing that for small h > 0

V (t, s) = (−κ+ V (t− h, s− 1))P
{
Ct+h − Ct = 1

∣∣Ft}
+

[
m∑
j=1

qt(0, j)Mrj [V ](t, s)

]
P
{
Nt+h −Nt = 1

∣∣Ft}
+ V (t− h, s)P

{
Nt+h −Nt = 0

∣∣Ft}
Then by differentiating in t, we obtain
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∂V (t, s)

∂t
= µs(−κ+ V (t, s− 1))+

m∑
j=1

λ(t)(0) q(t)(0, j)Mrj [V ](t, s)−
[
µs+ λ(t)(0)

]
V (t, s),

(3.2)

which is the well known Hamilton Jacobi Bellman equation for the problem in (2.13).
Similar analysis can also repeat for sequence of functions Vn. For small h ≥ 0, we can
approximate δV (t,s)

δt
with Vn(t+h,s)−Vn(t,s)

h
and this gives

Vn(t+ h, s)− Vn(t, s)

h
≈ µs(−κ+ Vn−1(t, s− 1))− [µs+ λ(t)(0)]Vn−1(t, s)

+
m∑
j=1

λ(t)(0)q(t)(0, j) max(rj + Vn−1(t, s+ 1), Vn−1(t, s))

After arranging the terms, we get

Vn(t+ h, s) = hµs(−κ+ Vn−1(t, s− 1)) + Vn−1(t, s)(1− h[µs+ λ(t)(0)])

+h
m∑
j=1

λ(t)(0)q(t)(0, j) max(rj + Vn−1(t, s+ 1), Vn−1(t, s))

(3.3)

Main steps of the computations summarized as follow:

• For each s ≤ P̄ , V0(0, s) is boundary condition and can directly be computed as
follow;

V0(0, s) = E

(
s∑
i=1

Bi − P

)+

for s ≤ P̄ .

and due to only cancelation allowed for V0, we use following approximations;

V0(t+ h, s) = hµs(−κ+ V0(t, s− 1)) + (1− hµs)V0(t, s)

36



• Employing the equation (3.3) derived from Hamilton Jacobi Bellman equation first
on V0 and continuing iteratively, we compute Vn(t, s).

• Total iteration number is a function of predetermined error term ε > 0. According
to Lemma 7, given ε, there is a large number n such that ‖V (t, s)− Vn(t, s)‖ ≤ ε.

Overall complexity of this method for fixed mesh h is o(mTP̄ 2).
An immediate consequence of (3.2) is that V (t, s) is non-decreasing in t when s = 0,

which is intuitive; when no seat is reserved initially, the airline can perform better when
there is more time to departure.
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Chapter 4

Computational Experiments

In this section, we give a detailed analysis of the simulation setup and report the behavior
of the different policies under this simulation setup. In particular we compare the behavior
of the DP policy and three well known EMSR heuristics. Notice that these heuristics use
the computed booking limits in the same standard nested way as defined on page 28 in
Van Ryzin and Talluri [32] but may differ in their choice of the virtual capacity of the
plane .

4.1 Simulation Setup

To start explaining our computational experiments we first give a brief explanation of
our simulation setup. The arrival process of requests is given by a nonhomogeneous
Poisson process with continuous intensity function λ : R+ → R. At an arrival time t the
arrival is a type j fare class requests with probability q(t, j). The arrival processes of the
different fare classes are now given by independent nonhomogeneous Poisson processes
with arrival intensity function λi : R+ → R given by

λi(t) = q(t, j)λ(t).
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Then total arrival intensity function can also be written as

λ(t) =
∑m

j=1
λj(t), q(t, j) =

λj(t)

λ(t)
.

Also in the simulation we assume that each reserved seat can be cancelled independently
and the time to cancelation is a realization of an exponentially distributed random vari-
able. The parameter of this exponential distribution for all reservations is given by µ > 0.
To simulate the arrival and cancelation processes we use discrete event simulation. Let
tn, n ∈ N be the realized arrival time of the n’th event with t0 = 0 and the total number
of reservation at time t0 equal to zero. To generate the realization t1 of the arrival time of
the first event (necessarily a fare class request) we simulate using the thinning procedure
for a nonhomogeneous Poisson process the first arrival time of the arrival process of re-
quests. In this procedure (see page 693 of [25]) we set λ = max0≤t≤T λ(t). After having
determined the arrival time t1 of the first arrival we select its type using a multinomial
experiment. Remember this arrival is of type j with probability q(t1, j). Given now the
realized arrival tn of the n′th event being either a cancelation or a type j fare class arrival
we generate the next event at time tn+1 as follows. If at time tn there are s > 0 reserva-
tions the time until the first cancelation among the s seats is given by tn + γctn with γctn a
realization of an exponentially distributed random variable with parameter sµ. Clearly if
s = 0 no cancelations occur. Also, independently of this cancelation process, we select
the first arrival time of a fare class request after time tn given by tn + γatn . Notice the
realization tn + γatn is generated according to the already mentioned thinning procedure
and given this realization we also determine its type in a similar way as before. We now
set tn+1 = min{tn + γatn , tn + γctn} and determine whether this minimum is attained by
either a cancelation or a request arrival. If it is a cancelation we set the number of reserved
seats to s − 1 and if it is an arrival we apply to this arrival our policy given either by the
EMSR heuristic or the DP algorithm. Hence we have generated the next arrival time tn+1

and updated immediately after this time our number of reserved seats. Now continue in
the same way by selected the next arrival time of the (n + 2)′nd event until we hit the
departure time T . At time T we then consider the total number stotal of reserved sets and
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generate a realization of a binomial distributed random variable with success probability
βs and stotal trials to determine the realization of the total number of customers showing
up at the departure time. Clearly for this simulation procedure we need to know the arrival
intensity functions and this will be the topic of the next subsection.

4.1.1 Selection of the Intensity Functions

In our computational setup we have selected different arrival intensity function empha-
sizing the difference between the policies generated by the DP and the EMSR heuristics.
To evaluate the policy of the EMSR heuristic it is only important to know the expected
number of type j fare class arrivals over the whole booking period. For the evaluation of
the DP policy it is also important to know how these arrivals are spread over this booking
period. To stress this difference we try to select intensity functions which give the same
expected number of arrivals over the whole period but are differently shaped. In particular
we are interested for m = 2 in the earliest and latest possible time that given an arrival
this is more likely to be an arrival of an expensive fare class request. To construct these
intensity functions for the different fare classes let T denote the length of the booking
period and assume that the fares of the different fare classes 1, · · · ,m are given by ri.
Without loss of generality these fares satisfy r1 < r2 < · · · < rm and so fare class m is
the most expensive while fare class 1 is the cheapest one. To select the intensity functions
we first consider only two fare classes and generalize the used approach to m > 2 cases.
We start with the following normalized functions ai : R+ 7→ R.

Condition 14 The functions ai : R+ → R, i = 1, 2 satisfy the following conditions.

• The function a1 is a nonnegative continuously differentiable decreasing function on

[0, T ] satisfying
∫ T

0
a1(s)ds = 1.

• The function a2 is a nonnegative continuously differentiable increasing function on

[0, T ] satisfying
∫ T

0
a2(s)ds = 1.

If λi : R+ → R denote the intensities functions for type j fare class arrivals then we set

λ1(s) := σ1a1(s), λ2(s) := ασ1a2(s) (4.1)
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with σ1 > 0, α > 0. For these intensity functions it is clear that

E(number of arriving fare class 1 customers) =

∫ T

0

λ1(s)ds = σ1

and

E(number of arriving fare class 2 customers) =

∫ T

0

λ2(s)ds = ασ1.

Since on average cheaper fare class 1 requests arrive one should select 0 < α < 1.
To measure the capacity of the plane in comparison with the total number of expected
requests the load ρ of the system is by definition

ρ :=
E(expected number of arriving customers)

C
=
σ1(α + 1)

C

By Condition 14 and relation (4.1) the function λ1 is decreasing and λ2 is increasing. As
shown in the next lemma this monotonicity property represent the tendency of fare class
1 customers to arrive more frequently than fare class 2 customers during the beginning of
the booking period while the reverse is true towards at the end of the booking period. To
verify this we observe

pi(t) = P(arrival is fare class i request | arrival at time t)

= λi(t)
λ1(t)+λ2(t)

(4.2)

This shows using relation (4.1) that

p1(t) =
a1(t)

a1(t) + αa2(t)
, p2(t) =

αa2(t)

a1(t) + αa2(t)
(4.3)

The following result is easy to verify.

Lemma 15 If the arrival intensity function λi, i = 1, 2 are given by relation (4.1) and the

functions ai, i = 1, 2 satisfy condition 14, then the function t 7→ p1(t) is decreasing and

t 7→ p2(t) is increasing. Also p2(t) ≥ p1(t) if and only if αa2(t) ≥ a1(t).

41



By the above lemma the time

t∗ = min{0 ≤ t ≤ T : p2(t) ≥ p1(t)} = min{0 ≤ t ≤ T : αa2(t)− a1(t) ≥ 0} (4.4)

represents the earliest possible time that an arrival after this time is more likely to be
a class 2 type arrival. To guarantee that t∗ is well defined the selected intensity func-
tions ai must satisfy Condition 14 with the additional conditions a1(0) ≥ αa2(0) and
a1(T ) ≤ αa2(T ). Among the set of functions ai satisfying all these restrictions we now
would like to determine the extremal elements which minimize and maximize the value
t∗. Using these extremal elements we can observe that the EMSR heuristics only take in
consideration the expected number of customers whereas the policy of the DP algorithm
might change due to a changing time t∗. Note it is easy to verify for the selected intensity
functions that the feasible set of this optimization problem is described as follows

1. The function a1is a nonnegative continuously differentiable function on [0, T ] sat-
isfying ∫ T

0

a1(s)ds = 1, max0≤s≤T a
′
1(s) ≤ 0. (4.5)

2. The function a2 is a nonnegative continuously differentiable function on [0, T ] sat-
isfying ∫ T

0

a2(s)ds = 1, min0≤s≤T a
′
2(s) ≥ 0 (4.6)

3. It holds that
a1(0)− αa2(0) ≥ 0, αa2(T )− a1(T ) ≥ 0 (4.7)

In the following we solve this optimization problem for special cases where ai(t)’s are
either linear or quadratic functions. We consider linear intensity functions first.
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4.1.1.1 Linear Intensity Functions

Let the functions a1(s) and a2(s) given by

a1(s) = a11 − a12s a2(s) = a21 + a22s (4.8)

and by relation (4.1) the arrival intensities are;

λ1(s) = σ(a11 − a12s), λ2(s) = σα(a21 + a22s).

For the linear function case, optimization of t∗ can be transformed into simple fractional
programming and the solution can be found analytically. In the Appendix C.1 we provide
extensive analysis of the solution. The analytical solution reveals that the minimum t∗ =
T

1+α
can be reached by the following two linear functions

λ1(s) = σ(2T−1 − 2sT−2) and λ1(s) = 0 + σα(2sT−2).

Also the following functions intersect at the maximum point t∗ = T ;

λ1(s) = σ((2− α)T−1 − 2(1− α)T−2) and λ2(s) = σT−1

In Figure 4.1, we depict the extreme cases.

4.1.1.2 Quadratic Intensity Functions

Let the functions ai : [0, T ]→ R+, i = 1, 2 satisfy the parametric representation

ai(s) = ai1 + ai2s+ ai3s
2 (4.9)

We clarify the feasibility conditions of the functions in relations (4.5), (4.6) and (4.7). For
construction of feasible region and solution procedure we refer to Appendix C.2. Feasi-
ble region of this setting denoted by polytope Pq. Introduce for a = (a1(0), ...., a′′2(0))
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(a) minimum t∗ (b) maximum t∗

Figure 4.1: Example of fare class arrival probabilities in extreme linear cases

belonging to Pq the function h : P × R→ R given by

h(a,t) := a1(t)− αa2(t)

Observe for every t the function a 7→ h(a,t) is a linear function. Also we know by
Lemma 15 that p1(t) ≥ p2(t) if and only if h(a,t) ≥ 0. Now introduce the function
t(a) : R6 7→ R+

t(a) = h(t∗) = a11 + a12t∗ + a13t
2
∗ − α(a21 + a22t∗ + a23t

2
∗) = 0.

We can easily verify the following lemma;

Lemma 16 The function t : P → [0, T ] is continuous and quasiconcave.

The objective function is

min{t(a); a ∈ Pq} (4.10)
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Unfortunately, this problem does not have an analytical solution. However we know that
the minimum t∗ is attained at a vertex of Pq because the function in 4.10 is quasiconcave
on the polytope Pq. Hence, enumeration of all vertices will lead us to the optimum point.

4.1.1.3 Comparing Linear and Quadratic Arrival Intensity Functions

Clearly type of intensity function affects on the intersection point t∗. Also as we mention
above section, the overall booking demand has an influence on the intersection point.
Then, t∗ changes according to value of α which is the function of expected number of
customers arrivals. Figure 4.2 shows that for quadratic arrival intensities the intersection
points t∗ are lower compared to those for linear arrival intensity functions.
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Figure 4.2: Values of t∗ according to different α

4.1.1.4 Generalization to More Than 2 Fare Classes

To apply the above procedure to more than 2 fare classes let there be m fare classes and
introduce the numbers 1 := α1 > α2 > ... > αm > 0 and σ1 > 0. Also consider two
functions ai, i = 1, 2 satisfying Condition 14 and select the intensity functions λi : R+ →
R+, i = 1, ....,m satisfying

λi(t) = αiσ1a1(t) (4.11)
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for i ≤ q and
λi(t) = αiσ1a2(t) (4.12)

for i ≥ q + 1. This means that the cheaper fare classes 1, ·, q have decreasing arrival
intensity function and the more expensive fare classes p+ 1, ...,m have increasing arrival
intensity functions.

If we select the arrival intensities as in(4.11) and (4.12), both quadratic and linear cases
boil down to the two fare classes. Intersection point of p1(t) and pm(t) directly implies
that the other fare class functions have already intersected with each other. Hence, we
only pay attention to select an appropriate αi, 1 ≤ i ≤ m.

4.1.2 Simulation Parameters

In simulation study, though the quadratic arrival intensity function defined in 4.9 provides
flexibility, we use linear intensity functions for convenience. Let E refers to the earliest
intersection point and L denotes the latest. Then according to section 4.1.1, the arrival
intensities of m fare classes are given by;

λEi (t) = σ1αi(
2

T
− 2t

T 2
) i ≤ q

λEi (t) = σ1αi(
2t

T 2
) i > q + 1

λLi (t) = σ1αi(
2− αm
T

− 2(1− αm)t

T 2
) i ≤ q

λLi (t) = σ1αi(
1

T
) i > q + 1
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where σ1 is the expected demand of fare class 1. Hence total arrival intensities composi-
tion of each arrival intensity and;

λET (t) = σ1

q∑
i=1

[
2αi
T
− 2αit

T 2

]
+ σ1

m∑
q+1

[
2αit

T 2

]

λLT (t) = σ1

q∑
i=1

[
αi(2− αm)

T
− 2αi(1− αm)t

T 2

]
+ σ1

m∑
i=q+1

[αi
T

]
We assume that each class has its own fare price. If the airline accepts booking request
for fare class i among m fare class, the company earns a fix revenue ri. Without loss
of generality, fare class one has lowest fare prices and fares are ordered in the following
sequence;

r1 < r2 < · · · < rm (4.13)

Also load factor ρ is another important parameter defined as

ρ =
Λ(T )

P
=
σ1

∑m
i=1 αi
P

, (4.14)

where P is a plane capacity.
In Figure 4.3, reader can find an graphical representation of cancelation process. Ar-

rows in the horizontal axes indicate the arrival time of booking requests. Each customer
whether s/he is accepted or not, cancels his/her reservation independent and according to
exponentially distributed with common parameter µ. Stars show the time to cancelation
of the each request. Gray part represents the reservation period of the flight. For each
arriving of booking request, the gray area shows the period cancellation possibility of
customer and this region is denoted by NC . Introduce

NA : = number of points in NC

NB : = number of points outside NC
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Figure 4.3: Random Poisson Measure

Then by computing following the fraction, we can obtain the probability of cancelling

δ = E
(

NA

NB + NA

| NA + NB ≥ 1

)
=

E
(

NA

NB+NA
1{NB+NA≥1}

)
P(NA + NB ≥ 1)

It follows that NB + NA has the same distribution as the total arrival process NΛ(T )

and by the theory of Poisson random measures (cf.[12]) the random variables NA and NB

are independent and Poisson distributed. Also the probability p that a point in A ∪B will
is in A can be computed, i.e,

p =

∫ T
0

1− exp(−µ(T − s))dΛ(s)

Λ(T )
.

Hence conditioned on NB + NA ≥ 1 we obtain

NA
d
= B(p,NB + NA).
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This shows by conditioning on NB + NA that

E
(

NA

NB+NA
1{NB+NA≥1}

)
=

∑∞
k=1

1
k
E(B(p, k))P(NB + NA = k)

= pP(NA + NB ≥ 1)

and so we obtain

E
(

NA

NB + NA

| NA + NB ≥ 1

)
= p =

∫ T
0

1− exp(−µ(T − s))dΛ(s)

Λ(T )

Also it is possible that a customer who keeps his/her reservation until departure time
may not show-up the plane with probability 1−βs. Conditional probability of show up is
given by

βs := P (reserved customers show-up | reserved customer does not cancel). (4.15)

As mentioned in the problem formulation, P̄ denotes the total number seats that airline
offer for reservations. In static EMSR policies, the model fixes the overbooking level at
the beginning of the period.

• EMSR NO policy does not allow any overbooking so P̄ directly is set to P.

• EMSR MP sets the virtual capacity according to basic rule as described in Belobaba[4].
P̄ is assigned by the value P

βs .

• EMSR Risk policy is a revenue based approach. We refer to Aydin et al. [2] for
computation of virtual capacity.

Although DP does not have an actual virtual capacity, a finite value of a P̄ must be
for computational purpose. Let V (P̄ )(T, 0) and V (∞)(T, 0) denote the optimal expected
net revenue respectively with an overbooking limit P̄ and without any limit. Then by
following formula which already stated in Chapter 3 we can set the P̄ for given an error
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term ε > 0. That is,

0 ≤ V (∞)(T, 0)− V (P̄ )(T, 0) ≤ rm
[Λ(T )]P̄+1

(P̄ − 1)!
≤ ε. (4.16)

In our setup, the following parameters are exogenous: refund amount κ, show-up
probability βs and overbooking penalty γ. We select the refund amount κ half amount of
fare class 1 given in 4.13. The overbooking penalty is three times higher than the expected
fare price. That is

γ = 3
m∑
i=1

ripi (4.17)

where Di is the aggregate demand of fare class i, and pi = E(Di)
E(D)

i ∈ {1, ...,m}
For static models the booking limit type also affects the simulation results. In the

literature, there have been two main types of booking limit: nested and non-nested. Non-
nested booking limit approach divides the seats into partitions. Each partition serves only
for one fare class. Nested booking limits are loosened the in favor of expensive classes.
We refer to Talluri and Van Ryzin [32], Lee and Hersh [18] for more information about
the booking limits. In our simulation, we use standard nested booking limits. In Figure
4.4, the graphical representation of booking limits can be found.

4.2 Numerical Results

This part is dedicated to testing of the performance of the proposed algorithm. The most
widely used heuristic EMSR is also used in the benchmark study.

In numerical experiments, we create varying scenarios to measure the reaction of our
dynamic model against the static EMSR models. Table 4.1 presents the parameters used
in the setup, with 144 scenarios. In the table, λ(t) refers to intensity function. Selec-
tion of the arrival intensity functions according to Early and Late intersection cases is
already mentioned in Section 4.1.1. E refers that the earlier intersection point and L
means late. We assume that fare class 1 is economy class. We fixed the economy fare
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Figure 4.4: Booking Limits

Low Medium High
βs 0.75 0.85 0.95
µ 0.0005 0.0015 0.0035
m 2 - 4
ρ 1.4 - 1.8
P 150 - 300
λ(t) E - L

Table 4.1: Simulation Paramaters

class fee as 50 the expensive fare rm is 200. The fare vectors for m = 2, 4, respectively
r = [50, 200] and r = [50, 100, 150, 200]. In Table 4.1, ρ refers to load factor given in
4.14. We take κ = 25 and γ = 300 for all scenarios.

To determine P̄ , we use the formula given in 4.16 with ε = 0.1. The reservation
period T = 200 is an analogy of 6 months, which is realistic booking periods. Also we
take h = 0.01. According to given instances in Table 4.1, we perform the simulation.
Each simulation runs with same seeds. Sample means and sample deviations are obtained
from 1000 replications . In the following, the experiment results are presented for two
different plane capacities.
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4.2.1 Experiment Results-Small Sized Plane

In this section, the results of the simulation runs for a plane which capacity P = 150

are given. Table 4.2 demonstrates the sample means of net revenues. In all scenarios
our model results in better revenues compared to EMSR based heuristics. Also, average
net revenues grow when load factor ρ increases. This behavior is a result of the select
on procedure in our model that is based on more information than static models. Hence
DP accepts the reservation requests better when more requests arriving. The table also
indicates that, average net revenue tends to increase when cancellation rate increases. Ac-
cording to values given in Table 4.2, number of fare class seems to have slight impact on
the average revenues. However, because changing number of fare class alters the aver-
age fare price, looking relative difference table 4.3 would be better to interpret the real
influence of number of fare class. The table also indicates that show-up probabilities has
negative impact on the average net revenue. With low show-up probability more requests
are accepted in all policies hence these scenarios concludes with higher average revenues.
The effect of different intensity functions seems to be insignificant. We can state that
the static EMSR models almost stay same for each case whereas DP seeks best response.
Although we could not show it rigourously, for late intersection case our model response
better, there is a tendency that the model reacts more than others in late intersection case.
Table 4.2 also reveals that the sample deviations of the scenarios. Sample deviations mea-
sures about the stability of revenues. In most cases, our model has low sample deviation
which reflects that the revenue generated isless than others.Figure 4.5 and 4.6 illustrate
the distributions of revenues.

The relative difference revenue gap between EMSRs and our model given in Table
4.3. We define the relative difference4R as follows

4R =
Sample Mean of Net RevenueDM − Sample Mean of Net RevenueEMSR

Sample Mean of Net RevenueDM
(4.18)

This table highlights the differences between the DM and EMSR based heuristics. The
proposed DM policy performs better for all scenarios. The revenue gap between DM
and other policies gets large when load factor and cancellation rate are high. Show-up
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probability has also effect on relative differences; however, this impact is not monotone.
When number of fare classes two, increasing the show up probability has positive impact
on the relative difference in favor of dynamic model. This behavior also holds when
number of fare class is four when the load factor is low. However, when load factor is
high, decreasing the show-up probability increases the gap defined in 4.18. The effect of
different arrival intensities similarly given in Table 4.2 on relative difference table. The
late intersection scenarios (L) have tend to increase the gap in favor of DP.

Also Table 4.3 benchmarks the performances of EMSR heuristics. We observe that
EMSR Risk is better static policy according to average net revenue. The difference be-
tween EMSR Risk, EMSR MP and EMSR NO comes from the permission of overbook-
ing. EMSR Risk performs slightly better than MP because EMSR MP is a conservative
policy in allowing overbooking.

Figures 4.5 and 4.6 present the sample distributions of net revenues in 1000 replica-
tions. Observe that DM generate more revenue compared to the static models. It can also
be seen that histogram of DM is relatively symmetric compared to others.

Figures 4.7 to 4.12 exhibit sample mean of revenues in varying settings. The figures
focus on the differences of the 4 policies with low ρL = 1.4, high ρH = 1.8 load factors
and high, medium, low cancelation rates respectively µL = 0.0005, µM = 0.0015 and
µH = 0.0035. These figures support that the seat allocation with DP policy yields better
revenues.

Tables 4.4 and 4.5 present the sample mean of accepted and rejected customers for
each fare classes eitherm = 2 or 4. Indeed, these two table reflect that the why DP policy
produce more expected revenue than others. Nearly for all scenarios, the sample mean of
accepted number of the expensive fare classes are almost same. The main difference is in
the number of economy fare class customers accepted. It can also be seen that DM reacts
better when cancelation rate increases. Since economy fare class customers arrive more
frequently in the beginning of the period [0,T], DM accepts more considering likelihoods
of cancellations whereas static models apply same booking limits irrespective of this the
arrival pattern. Tables 4.4 and 4.5 also reveal that, EMSR NO policy is independent from
cancellation rate. Also from average accepted booking request information, we can derive
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Instances Sample Means of Revenues Sample Deviation
P ρ m µ βs t∗ δ EMSR NO EMSR Risk EMSR MP DP EMSR NO EMSR Risk EMSR MP DP

150

1.4

2

0.0005

0.95
E 5.32% 17671.67 18045.1 17998.8 18251.52 1468.33 1332.34 1424.1 1264.33
L 5.32% 17732.67 18104.35 18052.5 18466.02 1490.92 1374.12 1457.17 1261.26

0.85
E 5.32% 17671.67 18914.15 18885.97 19096.67 1468.33 1334.16 1409.16 1293.17
L 5.32% 17732.67 18959.85 18944.7 19250.72 1490.92 1364.8 1437.82 1311.65

0.75
E 5.32% 17671.67 19982.8 19981 20086.47 1468.33 1436.56 1450.52 1407.277
L 5.32% 17732.67 20020.65 20023.22 20181.12 1490.92 1437.08 1450.72 1482.83

0.0015

0.95
E 15.04% 17819.85 18272.8 18190.95 18692 1607.15 1575.25 1596.26 1273.81
L 15.04% 17859.35 18306.95 18222.67 18920.92 1624.39 1606.03 1629.07 1270.19

0.85
E 15.04% 17819.85 19252.17 19136.55 19536.32 1607.15 1547.88 1585.28 1390.8
L 15.04% 17859.35 19316.42 19205.52 19664.9 1624.39 1576.18 1612.64 1399.17

0.75
E 15.04% 17819.85 20074.72 20039.32 20128.47 1607.15 1621.03 1629.69 1616.27
L 15.04% 17859.35 20104.17 20069.75 20175.47 1624.39 1642.28 1646.94 1629.77

0.0035

0.95
E 30.86% 18002.52 18481.65 18377.37 19208.8 1645.16 1647.99 1652.57 1565.89
L 30.86% 18074.82 18538.17 18437.67 19277.45 1609.42 1602 1601.68 1588.67

0.85
E 30.86% 18002.52 19211.4 19157.72 19342.17 1645.16 1714.7 1724.99 1700.25
L 30.86% 18074.82 19252.1 19214.1 19362.52 1609.42 1644.87 1640.2 1679.56

0.75
E 30.86% 18002.52 19372.1 19371.45 19382.4 1645.16 1763.33 1762.867 1715.62
L 30.86% 18074.82 19377.3 19375.97 19379.55 1609.42 1696.97 1695.78 1693.04

4

0.0005

0.95
E 5.32% 18498.6 18835.5 18797.5 19139.92 1405.97 1247.92 1309.75 1095.24
L 5.52% 18461.1 18799.65 18762.4 19259.25 1448.31 1292.04 1349.94 1117.1

0.85
E 5.32% 18498.6 19738.77 19726.37 19992.75 1405.97 1274.86 1291.33 1137.97
L 5.52% 18461.1 19693.42 19671.95 20080.97 1448.31 1331.99 1347.9 1182.25

0.75
E 5.32% 18498.6 20835.1 20825.42 21014.82 1405.97 1347.73 1355.84 1301.39
L 5.52% 18461.1 20868.7 20851.67 21060.8 1448.31 1365.05 1368.31 1353.482

0.0015

0.95
E 15.04% 18321.72 18806.67 18696.82 19605.4 1580.833 1550.595 1564.82 1120.66
L 15.48% 18292.15 18759.72 18649.27 19745.82 1603.26 1558.43 1576.11 1152.82

0.85
E 15.04% 18321.72 19783.15 19733.17 20484.6 1580.833 1517.69 1516.51 1249.21
L 15.48% 18292.15 19733.17 19684.07 20549.75 1603.26 1583.48 1588.47 1293.88

0.75
E 15.04% 18321.72 20896.9 20866.45 21104.5 1580.833 1515.46 1518.03 1520.91
L 15.48% 18292.15 20845.47 20821.87 21081.47 1603.26 1564.73 1567.83 1566.81

0.0035

0.95
E 30.86% 18009.12 18556.9 18415.23 20177.42 1623.608 1585.13 1585.387 1445.95
L 31.69% 17937.25 18459.37 18358.2 20182.55 1584.14 1542.4 1549.18 1489.093

0.85
E 30.86% 18009.12 19541.35 19489.93 20311.05 1623.608 1554.76 1545.48 1589.63
L 31.69% 17937.25 19524.62 19461.72 20273.62 1584.14 1511.7 1513.99 1609.23

0.75
E 30.86% 18009.12 20320.32 20313.2 20322.25 1623.608 1644.283 1645 1609.37
L 31.69% 17937.25 20274.75 20268.07 20278.82 1584.14 1606.71 1604.16 1620.6

1.8

2

0.0005

0.95
E 5.32% 20477.28 20861.78 20824.8 21159.25 1661.377 1533.887 1606.203 1425.74
L 5.32% 20516.35 20873.6 20819.72 21390.72 1699.92 1581.4 1678.94 1462.51

0.85
E 5.32% 20477.28 21709.73 21688.53 22001.77 1661.377 1492.021 1570.825 1460.74
L 5.32% 20516.35 21770.95 21716.12 22201.57 1699.92 1555.45 1622 1500.43

0.75
E 5.32% 20477.28 22898.13 22862.33 23105.27 1661.377 1552.466 1593.074 1537.5
L 5.32% 20516.35 22953.05 22931.07 23273.97 1699.92 1536.52 1604.67 1560.88

0.0015

0.95
E 15.04% 20721.6 21195.48 21091.1 21615.3 1835.801 1785.326 1821.837 1457.32
L 15.04% 20728.42 21193.6 21117.32 21917.6 1841.3 1822.24 1836.01 1439.73

0.85
E 15.04% 20721.6 22169.75 22077.43 22522.12 1835.801 1771.868 1848.836 1501.03
L 15.04% 20728.42 22264.05 22149.95 22792.72 1841.3 1757.89 1811.4 1492.18

0.75
E 15.04% 20721.6 23433.95 23311.1 23711.65 1835.801 1750.994 1809.312 1571.6
L 15.04% 20728.42 23527.2 23406.92 23916.15 1841.3 1733.92 1805.52 1566.54

0.0035

0.95
E 30.86% 20842.43 21381.8 21262.83 22715.9 1842.392 1847.745 1858.343 1469.56
L 30.86% 20857.22 21381.77 21259.6 23078.3 1864.81 1865.73 1856.73 1459.313

0.85
E 30.86% 20842.43 22450.7 22339.18 23658.65 1842.392 1873.024 1880.52 1535.76
L 30.86% 20857.22 22550.92 22450.05 23918.75 1864.81 1829.74 1836.37 1535.27

0.75
E 30.86% 20842.43 23838.48 23664.9 24609.77 1842.392 1877.74 1884.601 1722.06
L 30.86% 20857.22 23989.07 23770.27 24719.2 1864.81 1822.76 1837.57 1740.58

4

0.0005

0.95
E 5.32% 21107.55 21636.85 21604.47 21938.07 1232.39 1083.26 1139.34 984.71
L 5.52% 21235.87 21779.2 21735.72 22176.47 1245.06 1107.8 1154.45 965.42

0.85
E 5.32% 21107.55 22747.8 22724.2 23125.42 1232.39 1482.29 1505.59 1250.21
L 5.52% 21235.87 22827.47 22802.2 23316.2 1245.06 1500.88 1516.96 1235.37

0.75
E 5.32% 21107.55 23936.15 23915.12 24273 1232.39 1494.7 1500.15 1377.56
L 5.52% 21235.87 23983.75 23965.65 24423.65 1245.06 1495.61 1506.95 1340.83

0.0015

0.95
E 15.04% 21752.37 22271.85 22204.32 22681.25 1469.11 1488.85 1494.09 1206.77
L 15.48% 21759.87 22290.17 22214.95 22919.7 1503.34 1559.1 1553.08 1203.571

0.85
E 15.04% 21752.37 22784.53 22728.65 23663.4 1469.11 1782.52 1767.72 1295.71
L 15.48% 21759.87 22681.47 22642.6 23857.27 1503.34 1789.88 1790.97 1279.23

0.75
E 15.04% 21752.37 24070.25 24032.17 24864.77 1469.11 1780.17 1791.48 1396.14
L 15.48% 21759.87 24042.72 23992.77 25043.92 1503.34 1748.81 1766.25 1355.84

0.0035

0.95
E 30.86% 21875.95 22032.15 22018.2 23850.27 1689.9 1747.37 1737.04 1290.95
L 31.69% 21767.75 21874.07 21866.02 24161.62 1656.51 1705.77 1699.46 1243.81

0.85
E 30.86% 21875.95 22180.95 22106.52 24858.57 1689.9 1747.7 1751.21 1368.28
L 31.69% 21767.75 22025.82 21963.97 25134.57 1656.51 1724.59 1717.84 1380.43

0.75
E 30.86% 21875.95 23691.35 23641.17 25102.47 1689.9 1837.26 1849.46 1401.55
L 31.69% 21767.75 23590.15 23535.62 25898.87 1656.51 1743.15 1749.64 1608.47

Table 4.2: Sample Means of Net Revenues and Sample Deviations (P = 150)
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Figure 4.5: Histogram of Revenues.
(P = 150, m = 2, βsH = 0.95, µH = 0.0035, ρL = 1.4)
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Figure 4.6: Histogram of Revenues
(P = 150, m = 4, βsH = 0.95, µH = 0.0035, ρH = 1.8).
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Figure 4.7: Sample Mean of Revenues (P = 150, m = 2, βsH = 0.95).
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Figure 4.8: Sample Mean of Revenues (P = 150, m = 2, βsM = 0.85).
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Figure 4.9: Sample Mean of Revenues (P = 150, m = 2, βsL = 0.75).
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Figure 4.10: Sample Mean of Revenues (P = 150, m = 4, βsH = 0.95).
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Figure 4.11: Sample Mean of Revenues (P = 150, m = 4, βsM = 0.85).
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Figure 4.12: Sample Mean of Revenues (P = 150, m = 4, βsL = 0.75).
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Instances 4revenue See relation 4.18 Instances 4revenue See relation 4.18
P ρ m µ βs t∗ δ EMSR NO EMSR Risk EMSR MP ρ m µ βs t∗ δ EMSR NO EMSR Risk EMSR MP

150 1.4

2

0.0005

0.95
E 0.0532 3.18% 1.13% 1.38%

1.8

2

0.0005

0.95
E 0.0532 3.22% 1.41% 1.58%

L 0.0532 3.97% 1.96% 2.24% L 0.0532 4.09% 2.42% 2.67%

0.85
E 0.0532 7.46% 0.96% 1.10%

0.85
E 0.0532 6.93% 1.33% 1.42%

L 0.0532 7.89% 1.51% 1.59% L 0.0532 7.59% 1.94% 2.19%

0.75
E 0.0532 12.02% 0.52% 0.53%

0.75
E 0.0532 11.37% 0.90% 1.05%

L 0.0532 12.13% 0.80% 0.78% L 0.0532 11.85% 1.38% 1.47%

0.0015

0.95
E 0.1504 4.67% 2.24% 2.68%

0.0015

0.95
E 0.1504 4.13% 1.94% 2.43%

L 0.1504 5.61% 3.24% 3.69% L 0.1504 5.43% 3.30% 3.65%

0.85
E 0.1504 8.79% 1.45% 2.05%

0.85
E 0.1504 7.99% 1.56% 1.97%

L 0.1504 9.18% 1.77% 2.34% L 0.1504 9.06% 2.32% 2.82%

0.75
E 0.1504 11.47% 0.27% 0.44%

0.75
E 0.1504 12.61% 1.17% 1.69%

L 0.1504 11.48% 0.35% 0.52% L 0.1504 13.33% 1.63% 2.13%

0.0035

0.95
E 0.3086 6.28% 3.79% 4.33%

0.0035

0.95
E 0.3086 8.25% 5.87% 6.40%

L 0.3086 6.24% 3.83% 4.36% L 0.3086 9.62% 7.35% 7.88%

0.85
E 0.3086 6.93% 0.68% 0.95%

0.85
E 0.3086 11.90% 5.11% 5.58%

L 0.3086 6.65% 0.57% 0.77% L 0.3086 12.80% 5.72% 6.14%

0.75
E 0.3086 7.12% 0.05% 0.06%

0.75
E 0.3086 15.31% 3.13% 3.84%

L 0.3086 6.73% 0.01% 0.02% L 0.3086 15.62% 2.95% 3.84%

4

0.0005

0.95
E 0.0532 3.35% 1.59% 1.79%

4

0.0005

0.95
E 0.0532 3.79% 1.37% 1.52%

L 0.0552 4.14% 2.39% 2.58% L 0.0552 4.24% 1.79% 1.99%

0.85
E 0.0532 7.47% 1.27% 1.33%

0.85
E 0.0532 8.73% 1.63% 1.73%

L 0.0552 8.07% 1.93% 2.04% L 0.0552 8.92% 2.10% 2.20%

0.75
E 0.0532 11.97% 0.86% 0.90%

0.75
E 0.0532 13.04% 1.39% 1.47%

L 0.0552 12.34% 0.91% 0.99% L 0.0552 13.05% 1.80% 1.88%

0.0015

0.95
E 0.1504 6.55% 4.07% 4.63%

0.0015

0.95
E 0.1504 4.10% 1.81% 2.10%

L 0.1548 7.36% 4.99% 5.55% L 0.1548 5.06% 2.75% 3.07%

0.85
E 0.1504 10.56% 3.42% 3.67%

0.85
E 0.1504 8.08% 3.71% 3.95%

L 0.1548 10.99% 3.97% 4.21% L 0.1548 8.79% 4.93% 5.09%

0.75
E 0.1504 13.19% 0.98% 1.13%

0.75
E 0.1504 12.52% 3.20% 3.35%

L 0.1548 13.23% 1.12% 1.23% L 0.1548 13.11% 4.00% 4.20%

0.0035

0.95
E 0.3086 10.75% 8.03% 8.73%

0.0035

0.95
E 0.3086 8.28% 7.62% 7.68%

L 0.3169 11.12% 8.54% 9.04% L 0.3169 9.91% 9.47% 9.50%

0.85
E 0.3086 11.33% 3.79% 4.04%

0.85
E 0.3086 12.00% 10.77% 11.07%

L 0.3169 11.52% 3.69% 4.00% L 0.3169 13.40% 12.37% 12.61%

0.75
E 0.3086 11.38% 0.01% 0.04%

0.75
E 0.3086 12.85% 5.62% 5.82%

L 0.3169 11.55% 0.02% 0.05% L 0.3169 15.95% 8.91% 9.12%

Table 4.3: Relative Difference of EMSR with DP (P = 150)

the total revenues without any refund and penalties.
Number of rejected customers given in Table 4.4 and 4.5 are also important for airline

service quality. Rejecting more customer reduces the airline reliability and the image on
the market. Also, offering more promotion ticket increases the airline marketing strategy.
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Table 4.6 demonstrates the sample averages, sample standard deviation of denied
boarding customers, number of show-up customers at the departure time and under that
four policies. The show-up numbers are other results that support why the DM produces
more revenue than others. DM fills the plane at the departure time and therefore this re-
duces the opportunity cost coming from empty seats. Denied boarding numbers also im-
portant for airline managements. It can be seen from the table applying DM and EMSR
Risk policies results in denied boarding than other policies. However the difference be-
tween DP and EMSR Risk policies are significantly insignificant. Tables 4.7 and 4.8 give
the empirical distribution of denied boarding customers.
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Figure 4.13: Sample Mean of Denied Customers (P = 150, m = 2, βsH = 0.95).
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Figure 4.14: Sample Mean of Denied Customers (P = 150, m = 2, βsM = 0.85).

62



Instances Sample Mean of Denied Denied Sample Deviation Sample Mean of Show-up
P ρ m µ βs t∗ δ NO Risk MP DP NO Risk MP DP NO Risk MP DP

150

1.4

2

0.0005

0.95
E 0.0532 0 0.42 0.08 0.23 0 1.18 0.45 0.761 132.9 142.31 139.47 144.83
L 0.0532 0 0.43 0.1 0.26 0 1.21 0.535 0.753 132.6 142.04 139.21 147.12

0.85
E 0.0532 0 0.75 0.34 0.47 0 1.95 1.3 1.475 118.92 143.25 140.71 144
L 0.0532 0 0.8 0.36 0.49 0 2.07 1.46 1.35 118.64 143.26 140.72 145.71

0.75
E 0.0532 0 1.1 0.57 0.54 0 2.67 1.85 1.789 105.03 143.28 141.06 141.91
L 0.0532 0 1.17 0.64 0.57 0 2.77 1.92 1.69 104.77 143.36 141.17 142.72

0.0015

0.95
E 0.1504 0 0.06 0.02 0.3 0 0.48 0.25 0.952 127.56 135.78 134.01 144.73
L 0.1504 0 0.05 0.009 0.28 0 0.378 0.12 0.837 126.61 135.03 133.16 146.68

0.85
E 0.1504 0 0.145 0.05 0.41 0 0.77 0.409 1.325 114.11 137.37 135.05 142.63
L 0.1504 0 0.16 0.05 0.37 0 0.819 0.41 1.19 113.27 137.38 134.98 143.6

0.75
E 0.1504 0 0.17 0.1 0.17 0 1.05 0.778 1.105 100.57 132.48 131.7 133.068
L 0.1504 0 0.15 0.096 0.144 0 0.966 0.69 0.967 99.85 132.52 131.74 133.1

0.00035

0.95
E 0.3086 0 0.002 0 0.14 0 0.063 0 0.69 116.2 123.42 121.87 136.31
L 0.3086 0 0 0 0.07 0 0 0 0.42 110.64 123.41 121.68 136.43

0.85
E 0.3086 0 0.002 0 0.02 0 0.06 0 0.399 103.94 120.867 120.09 123.28
L 0.3086 0 0 0 0.017 0 0 0 0.347 103.41 121.33 120.65 123.26

0.75
E 0.3086 0 0 0 0 0 0 0 0 91.58 108.66 108.65 108.69
L 0.3086 0 0 0 0 0 0 0 0 91.15 108.68 108.66 108.69

4

0.0005

0.95
E 0.0532 0 0.44 0.21 0.36 0 1.37 0.89 1.01 131.05 139.54 137.67 145.12
L 0.0552 0 0.46 0.24 0.33 0 1.48 1.001 0.982 130.3 138.85 137 146.34

0.85
E 0.0532 0 0.54 0.42 0.6 0 1.77 1.527 1.649 117.26 140.09 139.23 144.36
L 0.0552 0 0.58 0.46 0.58 0 1.92 1.71 1.55 116.65 139.39 138.56 145.2

0.75
E 0.0532 0 0.84 0.733 0.72 0 2.4 2.19 2.12 103.56 141.02 140.39 142.46
L 0.0552 0 0.72 0.623 0.65 0 2.338 2.15 1.94 102.95 140.35 139.69 142.3

0.0015

0.95
E 0.1504 0 0.06 0.02 0.38 0 0.56 0.324 1.06 120.44 128.83 126.99 145.11
L 0.1548 0 0.04 0.028 0.34 0 0.49 0.339 0.989 118.91 127.33 125.38 146.06

0.85
E 0.1504 0 0.06 0.04 0.53 0 0.463 0.371 1.569 107.73 129.965 129.167 143.11
L 0.1548 0 0.035 0.03 0.46 0 0.419 0.404 1.43 106.26 128.85 128.01 143.22

0.75
E 0.1504 0 0.11 0.1 0.203 0 0.88 0.81 1.21 94.97 130.24 129.81 133.19
L 0.1548 0 0.09 0.08 0.17 0 0.82 0.74 0.976 93.75 129.53 129.12 132.32

0.00035

0.95
E 0.3086 0 0 0 0.13 0 0 0 0.6 102.36 110.11 108.26 136.38
L 0.3169 0 0 0 0.101 0 0 0 0.52 98.99 107.16 105.34 134.96

0.85
E 0.3086 0 0.001 0.001 0.03 0 0.031 0.032 0.41 91.73 111.62 110.88 123.27
L 0.3169 0 0.001 0 0.01 0 0.031 0 0.14 88.49 110.41 109.58 121.47

0.75
E 0.3086 0 0 0 0 0 0 0 0 80.89 108.28 108.17 108.21
L 0.3169 0 0 0 0 0 0 0 0 77.95 107.02 106.95 106.99

1.8

2

0.0005

0.95
E 0.0532 0 0.46 0.12 0.38 0 1.3 0.559 1.055 131.81 141.33 138.54 145.05
L 0.0532 0 0.4 0.1 0.29 0 1.23 0.53 0.832 131.03 140.39 137.5 146.98

0.85
E 0.0532 0 0.855 0.44 0.66 0 2.15 1.395 1.8 117.83 142.36 139.91 144.51
L 0.0532 0 0.735 0.34 0.532 0 2 1.251 1.431 117.18 141.65 139.1 145.73

0.75
E 0.0532 0 1.25 0.636 0.87 0 2.936 1.97 2.31 103.77 144.22 141.16 144.27
L 0.0532 0 1.18 0.6 0.75 0 2.7 1.89 1.93 103.16 143.78 140.81 145.04

0.0015

0.95
E 0.1504 0 0.095 0.031 0.4 0 0.55 0.272 1.1 126.55 134.97 133.01 145.06
L 0.1504 0 0.05 0.02 0.32 0 0.464 0.24 0.889 124.21 132.73 130.92 146.91

0.85
E 0.1504 0 0.28 0.12 0.76 0 1.27 0.76 1.9 113.28 137.2 134.74 144.72
L 0.1504 0 0.18 0.05 0.6 0 0.89 0.43 1.481 111.17 135.89 133.29 145.91

0.75
E 0.1504 0 0.51 0.21 1.01 0 1.81 1.092 2.53 99.89 139.33 136.43 144.69
L 0.1504 0 0.37 0.16 0.86 0 1.43 0.806 2.1 98.08 138.51 135.7 145.435

0.00035

0.95
E 0.3086 0 0.002 0 0.484 0 0.06 0 0.484 115.35 123.06 121.33 144.68
L 0.3086 0 0 0 0.38 0 0 0 1.09 111.48 119.65 117.87 146.69

0.85
E 0.3086 0 0.008 0.004 0.81 0 0.14 0.077 2.14 103.291 124.37 122.97 143.76
L 0.3086 0 0 0 0.616 0 0 0 1.7 99.76 122.92 121.33 145.09

0.75
E 0.3086 0 0.01 0.009 0.42 0 0.41 0.202 1.664 91.26 126.71 124.15 138.14
L 0.3086 0 0 0 0.31 0 0 0 1.341 88.08 127.29 124.43 138.08

4

0.0005

0.95
E 0.0532 0 1.038 0.56 0.66 0 2.09 1.48 1.33 137.62 145.26 143.69 147.24
L 0.0552 0 0.97 0.55 0.59 0 2.088 1.53 1.22 137.43 145.02 143.49 147.95

0.85
E 0.0532 0 0.6 0.48 0.73 0 1.934 1.67 1.86 123.07 138.09 137.23 144.69
L 0.0552 0 0.57 0.46 0.67 0 1.94 1.71 1.66 123 137.79 136.94 145.82

0.75
E 0.0532 0 0.77 0.66 0.93 0 2.33 2.14 2.36 108.35 139.5 138.79 144
L 0.0552 0 0.8 0.695 0.911 0 2.43 2.25 2.17 108.55 139.66 138.91 145.09

0.0015

0.95
E 0.1504 0 0.27 0.13 0.44 0 1.083 0.7 1.099 132.01 137.22 136.32 145.37
L 0.1548 0 0.15 0.09 0.38 0 0.84 0.58 0.984 129.78 134.88 134.07 146.57

0.85
E 0.1504 0 0.05 0.04 0.76 0 0.462 0.432 1.876 118.16 126.96 126.17 144.66
L 0.1548 0 0.04 0.04 0.654 0 0.61 0.581 1.6 116.29 124.47 123.69 145.61

0.75
E 0.1504 0 0.108 0.08 1.062 0 0.81 0.756 2.522 104.22 129.32 128.68 144.61
L 0.1548 0 0.097 0.086 1.01 0 0.96 0.872 2.35 102.77 127.99 127.21 145.34

0.00035

0.95
E 0.3086 0 0.005 0.003 0.45 0 0.15 0.094 1.15 115.29 116.53 116.41 145.07
L 0.3169 0 0 0 0.38 0 0 0 1.06 110.76 111.63 111.56 146.13

0.85
E 0.3086 0 0 0 0.81 0 0 0 2.04 103.19 105.99 105.18 144.12
L 0.3169 0 0 0 0.61 0 0 0 1.68 99.13 101.64 100.88 144.65

0.75
E 0.3086 0 0 0 0 0 0 0 0 91.18 110.4 109.76 127.37
L 0.3169 0 0 0 0.39 0 0 0 1.63 87.51 107.69 106.89 136.88

Table 4.6: Sample Mean of Denied Boarding and Show Up Customers (P = 150)
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Number of Replications
Number of Denied Boarding 0 1 2 3 4 5 6 7 8

Policies
EMSR Risk 842 45 38 34 16 14 6 4 1
EMSR MP 953 24 13 4 5 1 0 0 0

DP 887 45 33 21 9 5 0 0 0

Table 4.7: Histogram of Denied Boarding
(P = 150, m = 4, βsH = 0.95, µL = 0.0005, ρH = 1.4, t∗ = E)

Number of Replications
Number of Denied Boarding 0 1 2 3 4 5 6 7 8

Policy
EMSR Risk 999 0 0 0 0 1 0 0 0
EMSR MP 999 0 0 1 0 0 0 0 0

DP 813 66 41 45 19 9 5 1 1

Table 4.8: Histogram of Denied Boarding
(P = 150, m = 4, βsH = 0.95, µH = 0.0035, ρH = 1.8, t∗ = E).
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Figure 4.15: Sample Mean of Denied Customers (P = 150, m = 2, βsL = 0.75).
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Figure 4.16: Sample Mean of Denied Customers (P = 150, m = 4, βsH = 0.95).
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Figure 4.17: Sample Mean of Denied Customers (P = 150, m = 4, βsM = 0.85).
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Figure 4.18: Sample Mean of Denied Customers (P = 150, m = 4, βsL = 0.75).
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4.2.2 Experiment Results-Medium-Sized Plane

Here, we provide the results for a plane with capacity P = 300. Table 4.9 presents
sample mean of their net revenues and sample deviations. Table 4.10 similarly shows the
relative differences as defined in 4.18. Changing plane capacity does not seem to alter the
difference between DM and EMSR based heuristics, there is only a slight positive effect
in favor of DP.

Histograms given in Figures 4.19 and 4.20 and charts given in Figure 4.21 to 4.26
demonstrate the revenue results for medium size plane (P = 300). In Tables 4.11 and
4.12, the average number of accepted and rejected booking requests are presented. Sample
mean of denied boarding and show-up customers are given in Table 4.13. Also denied
boarding numbers are shown in histograms in Table 4.14 and 4.15 and charts in Figure
4.27 to 4.29.
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Instances Sample Mean of Revenue Sample Deviation
P ρ m µ βs t∗ δ EMSR NO EMSR Risk EMSR MP DP EMSR NO EMSR Risk EMSR MP DP

150

1.4

2

0.0005

0.95
E 5.32% 35586.9 36302.75 36270.92 36734.92 2145.48 2007.86 2073.591 1809.14
L 5.32% 35627.02 36396.85 36347.85 37029.25 2226.43 2118.64 2171.7 1830.62

0.85
E 5.32% 35586.9 38141.77 38100 38454 2145.48 1970.8 2032.53 1916.6
L 5.32% 35627.02 38175.92 38130.27 38639.97 2226.43 2067.88 2125.627 1906.2

0.75
E 5.32% 35586.9 40402.72 40382.05 40591.8 2145.48 2116.15 2139.46 2127.69
L 5.32% 35627.02 40437.15 40399.25 40704.02 2226.43 2165.6 2193.32 2115.98

0.0015

0.95
E 15.04% 36048.57 36899.1 36802.5 37731.6 2362.79 2322.39 2340.49 1853.33
L 15.04% 36092.22 36964.7 36871.32 38051.75 2385.39 2345.89 2352.543 1856.78

0.85
E 15.04% 36048.57 38842.1 38701.75 39415.92 2362.79 2277.26 2316.13 2015.27
L 15.04% 36092.22 38979.35 38850.1 39591.92 2385.39 2331.39 2360.32 2049.868

0.75
E 15.04% 36048.57 40379.82 40360.25 40387.47 2362.79 2440.36 2440.02 2430.78
L 15.04% 36092.22 40488.02 40464.8 40499.2 2385.39 2497.54 2495.62 2444.692

0.00035

0.95
E 30.86% 36363.05 37286.3 37156.75 38639.17 2346.78 2332.93 2339.32 2331.1
L 30.86% 36567.25 37469.95 37377.85 38786.65 2241.67 2291.69 2291.03 2319.65

0.85
E 30.86% 36363.05 38615.87 38567 38718.77 2346.78 2412.127 2405.39 2430.96
L 30.86% 36567.25 38702.77 38670 38837.13 2241.67 2393.86 2382.266 2384.22

0.75
E 30.86% 36363.05 38719.12 38719.12 38720.92 2346.78 2440.58 2440.58 2431.33
L 30.86% 36567.25 38752.57 38752.57 38837.42 2241.67 2413.02 2413.02 2384.8

4

0.0005

0.95
E 5.32% 37292.37 38017.2 37981.4 38405.8 2122.63 2021.65 2050.287 1772.26
L 5.52% 37272.75 37992.75 37966.17 38808.87 2218.78 2071.03 2102.01 1606.86

0.85
E 5.32% 37292.37 39833.87 39809.92 40169.4 2122.63 2016.82 2034.16 1776.98
L 5.52% 37272.75 39862.82 39837.57 40489.87 2218.78 2044.77 2067.19 1735.15

0.75
E 5.32% 37292.37 42201.22 42183.75 42406.8 2122.63 2058.38 2065.49 1863.895
L 5.52% 37272.75 42196.1 42180.12 42576.95 2218.78 2085.45 2098.96 1997.25

0.0015

0.95
E 15.04% 37033.5 37905.32 37839.17 39365.85 2323.18 2319.81 2316.15 1755.68
L 15.48% 36931.35 37820.02 37763.55 39795.32 2241.72 2256.2 2260.96 1613.35

0.85
E 15.04% 37033.5 39864 39817.75 41175.3 2323.18 2306.485 2324.2 1839.18
L 15.48% 36931.35 39813.95 39766.02 41431.87 2241.72 2242.28 2253.47 1852.99

0.75
E 15.04% 37033.5 42153.15 42123.52 42252.82 2323.18 2343.53 2342.72 2295.75
L 15.48% 36931.35 42096.72 42068.92 42270.07 2241.72 2307.31 2303.96 2280.31

0.00035

0.95
E 30.86% 36168.57 37134.67 37093.45 40542.25 2221.87 2195.28 2208.98 2175.07
L 31.69% 36024.22 37034.32 36973.65 40577.4 2260.181 2202.13 2212.08 2166.6

0.85
E 30.86% 36168.57 39188.7 39137.6 40604.62 2221.87 2216.61 2226.57 2263.87
L 31.69% 36024.22 39218.02 39169 40618.93 2260.181 2230.68 2240.82 2236.04

0.75
E 30.86% 36168.57 40636.7 40636.7 40674.85 2221.87 2313.23 2313.23 2264.51
L 31.69% 36024.22 40596.35 40596.35 40619.02 2260.181 2288.59 2288.59 2236.313

1.8

2

0.0005

0.95
E 5.32% 41563.35 42334.37 42287.95 42788.2 2377.52 2270.75 2323.59 2084.54
L 5.32% 41576.72 42375.05 42314.4 43099.85 2500.71 2372.13 2413.57 2040.99

0.85
E 5.32% 41563.35 44137.67 44088.82 44523.82 2377.52 2235.55 2305.59 2174.34
L 5.32% 41576.72 44244.02 44183.1 44777.85 2500.71 2315.19 2383.84 2113.3

0.75
E 5.32% 41563.35 46485.15 46442.62 46759.4 2377.52 2210.79 2266.68 2234.78
L 5.32% 41576.72 46569.92 46510.17 46981.97 2500.71 2264 2333.7 2159.86

0.0015

0.95
E 15.04% 41709.8 42637.97 42542.32 43598.3 2624.31 2585.05 2604.14 2072.18
L 15.04% 41686.7 42638.8 42523.02 44077.92 2602.61 2653.3 2648.5 2054.32

0.85
E 15.04% 41709.8 44662.35 44517.35 45471.82 2624.31 2614.03 2635.189 2152.27
L 15.04% 41686.7 44725.55 44561.4 45871.1 2602.61 2648.5 2685.08 2097.347

0.75
E 15.04% 41709.8 47249.53 47065.12 47882.52 2624.31 2578.13 2597.11 2217.86
L 15.04% 41686.7 47319.07 47115.5 48177.22 2602.61 2633.46 2660.33 2190

0.00035

0.95
E 30.86% 41972.82 42986.92 42828.77 45762.95 2692.9 2656.9 2663.27 2102.8
L 30.86% 41841.65 42891.97 42765.62 46308.17 2654.67 2646.08 2656.39 2119.5

0.85
E 30.86% 41972.82 45219.27 45016.9 47777.6 2692.9 2663.6 2640.97 2202.9
L 30.86% 41841.65 45183.55 45007.95 48131.45 2654.67 2622.35 2614.25 2238

0.75
E 30.86% 41972.82 47838.05 47622.77 49567.07 2692.9 2606.78 2610.69 2566.84
L 30.86% 41841.65 47994.4 47776.62 49665.22 2654.67 2618.33 2619.13 2592.24

4

0.0005

0.95
E 5.32% 42788.4 43970.55 43951.32 44459.32 1769.5 1547.9 1576.58 1318.96
L 5.52% 42774.2 44010.37 43981.15 44706.42 1883.19 1660.5 1688.8 1359.26

0.85
E 5.32% 42788.4 46285.67 46245.1 46892.12 1769.5 2204.66 2234.3 1857.9
L 5.52% 42774.2 46153.95 46132.82 46973.2 1883.19 2334.8 2356.31 1847.38

0.75
E 5.32% 42788.4 48648 48629.47 49195.05 1769.5 2193.93 2199.6 1953.46
L 5.52% 42774.2 48611.52 48588.15 49285.55 1883.19 2322.76 2340.18 1939.22

0.0015

0.95
E 15.04% 43822.42 44956.42 44916.92 45835.35 2192.4 2249.14 2252.38 1765.65
L 15.48% 43877.37 44979.02 44936.97 46144.75 2291.24 2398.1 2392.89 1767.68

0.85
E 15.04% 43822.42 45778.85 45735.87 47809.27 2192.4 2539.66 2536.24 1885.68
L 15.48% 43877.37 45622.85 45567.57 48073.85 2291.24 2567.29 2578.64 1870.05

0.75
E 15.04% 43822.42 48447.52 48394.77 50281.65 2192.4 2561.67 2560.13 1964.35
L 15.48% 43877.37 48355.77 48303.15 50516.12 2291.24 2617.85 2627.55 2002.86

0.00035

0.95
E 30.86% 44079.8 44211.32 44210.52 48013.93 2402.59 2472 2470.83 1837.51
L 31.69% 43817.85 43886.95 43886.65 48626.52 2482.22 2543.69 2543.25 1869.6

0.85
E 30.86% 44079.8 44566.97 44528.15 50207.08 2402.59 2526.35 2517.291 2007.66
L 31.69% 43817.85 44311.65 44266.05 50570.2 2482.22 2562.55 2584.01 2040.99

0.75
E 30.86% 44079.8 47494.8 47494.8 52084.7 2402.59 2542.2 2542.208 2391.7
L 31.69% 43817.85 47370.55 47370.55 52054.67 2482.22 2532.14 2532.14 2454.75

Table 4.9: Sample Mean of Revenue and Sample Deviations (P = 300)
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Figure 4.19: Histogram Of Revenues
(P = 300, m = 2, βsH = 0.95, µM = 0.015, ρL = 1.4, t∗ = E).
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Figure 4.20: Histogram Of Revenues
(P = 300, m = 2, βsM = 0.85, µH = 0.035, ρH = 1.8, t∗ = E).
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Figure 4.21: Sample Mean of Revenues (P = 300, m = 2, βsH = 0.95).
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Figure 4.22: Sample Mean of Revenues (P = 300, m = 2, βsM = 0.85).
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(a) t∗ = E
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Figure 4.23: Sample Mean of Revenues (P = 300, m = 2, βsL = 0.75).
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(b) t∗ = L

Figure 4.24: Sample Mean of Revenues (P = 300, m = 4, βsH = 0.95).
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Figure 4.25: Sample Mean of Revenues (P = 300, m = 4, βsM = 0.85).
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Figure 4.26: Sample Mean of Revenues (P = 300, m = 4, βsL = 0.75).
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Instances 4R See relation 4.18 Instances 4R See relation 4.18
ρ m µ βs t∗ δ EMSR NO EMSR Risk EMSR MP ρ m µ βs t∗ δ EMSR NO EMSR Risk EMSR MP

1.4

2

0.0005

0.95
E 5.32% 3.13% 1.18% 1.26%

1.8

2

0.0005

0.95
E 5.32% 2.86% 1.06% 1.17%

L 5.32% 3.79% 1.71% 1.84% L 5.32% 3.53% 1.68% 1.82%

0.85
E 5.32% 7.46% 0.81% 0.92%

0.85
E 5.32% 6.65% 0.87% 0.98%

L 5.32% 7.80% 1.20% 1.32% L 5.32% 7.15% 1.19% 1.33%

0.75
E 5.32% 12.33% 0.47% 0.52%

0.75
E 5.32% 11.11% 0.59% 0.68%

L 5.32% 12.47% 0.66% 0.75% L 5.32% 11.50% 0.88% 1.00%

0.0015

0.95
E 15.04% 4.46% 2.21% 2.46%

0.0015

0.95
E 15.04% 4.33% 2.20% 2.42%

L 15.04% 5.15% 2.86% 3.10% L 15.04% 5.42% 3.26% 3.53%

0.85
E 15.04% 8.54% 1.46% 1.81%

0.85
E 15.04% 8.27% 1.78% 2.10%

L 15.04% 8.84% 1.55% 1.87% L 15.04% 9.12% 2.50% 2.86%

0.75
E 15.04% 10.74% 0.02% 0.07%

0.75
E 15.04% 12.89% 1.32% 1.71%

L 15.04% 10.88% 0.03% 0.08% L 15.04% 13.47% 1.78% 2.20%

0.0035

0.95
E 30.86% 5.89% 3.50% 3.84%

0.0035

0.95
E 30.86% 8.28% 6.07% 6.41%

L 30.86% 5.72% 3.39% 3.63% L 30.86% 9.65% 7.38% 7.65%

0.85
E 30.86% 6.08% 0.27% 0.39%

0.85
E 30.86% 12.15% 5.35% 5.78%

L 30.86% 5.84% 0.35% 0.43% L 30.86% 13.07% 6.12% 6.49%

0.75
E 30.86% 6.09% 0.00% 0.00%

0.75
E 30.86% 15.32% 3.49% 3.92%

L 30.86% 5.85% 0.22% 0.22% L 30.86% 15.75% 3.36% 3.80%

4

0.0005

0.95
E 5.32% 2.90% 1.01% 1.11%

4

0.0005

0.95
E 5.32% 3.76% 1.10% 1.14%

L 5.52% 3.96% 2.10% 2.17% L 5.52% 4.32% 1.56% 1.62%

0.85
E 5.32% 7.16% 0.84% 0.89%

0.85
E 5.32% 8.75% 1.29% 1.38%

L 5.52% 7.95% 1.55% 1.61% L 5.52% 8.94% 1.74% 1.79%

0.75
E 5.32% 12.06% 0.48% 0.53%

0.75
E 5.32% 13.02% 1.11% 1.15%

L 5.52% 12.46% 0.89% 0.93% L 5.52% 13.21% 1.37% 1.42%

0.0015

0.95
E 15.04% 5.92% 3.71% 3.88%

0.0015

0.95
E 15.04% 4.39% 1.92% 2.00%

L 15.48% 7.20% 4.96% 5.11% L 15.48% 4.91% 2.53% 2.62%

0.85
E 15.04% 10.06% 3.18% 3.30%

0.85
E 15.04% 8.34% 4.25% 4.34%

L 15.48% 10.86% 3.91% 4.02% L 15.48% 8.73% 5.10% 5.21%

0.75
E 15.04% 12.35% 0.24% 0.31%

0.75
E 15.04% 12.85% 3.65% 3.75%

L 15.48% 12.63% 0.41% 0.48% L 15.48% 13.14% 4.28% 4.38%

0.0035

0.95
E 30.86% 10.79% 8.41% 8.51%

0.00035

0.95
E 30.86% 8.19% 7.92% 7.92%

L 31.69% 11.22% 8.73% 8.88% L 31.69% 9.89% 9.75% 9.75%

0.85
E 30.86% 10.92% 3.49% 3.61%

0.85
E 30.86% 12.20% 11.23% 11.31%

L 31.69% 11.31% 3.45% 3.57% L 31.69% 13.35% 12.38% 12.47%

0.75
E 30.86% 11.08% 0.09% 0.09%

0.75
E 30.86% 15.37% 8.81% 8.81%

L 31.69% 11.31% 0.06% 0.06% L 31.69% 15.82% 9.00% 9.00%

Table 4.10: Relative Differences of EMSRs with DP (P = 300)
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Figure 4.27: Sample Mean of Denied Customers (P = 30, m = 2, βsH = 0.95).
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Figure 4.28: Expected Denied Customers (P = 300, m = 2, βsM = 0.85, t∗ = E).

4.2.3 Results Summary

The simulation results are classified into two main groups: small-sized and medium-size
plane see section 4.2.1 and 4.2.2. According to 72 different scenarios are presented in
table 4.1, the experiments conduct for two varying plane capacity. As seen from results,
generally behaviors of four policies almost stay same considering plane capacities.

We can report some common patterns after given all results. For all policies, load
factor has positive impact on average net revenue. However, other parameters such that
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Instances Expected Denied Denied Standard Deviation Expected Show-up
P ρ m µ βs t∗ δ NO Risk MP DP NO Risk MP DP NO Risk MP DP

150

1.4

2

0.0005

0.95
E 0.0532 0 0.4 0.2 0.63 0 1.33 0.86 1.62 270.76 286.67 284.84 293.93
L 0.0532 0 0.35 0.18 0.425 0 1.27 0.82 1.19 269.82 285.96 284.07 296.13

0.85
E 0.0532 0 0.91 0.51 1.08 0 2.54 1.79 2.714 242.21 288.84 286.3 293.1
L 0.0532 0 0.86 0.53 0.91 0 2.55 1.91 2.27 241.4 288.23 285.7 294.44

0.75
E 0.0532 0 1.32 0.73 0.903 0 3.44 2.47 2.78 213.67 289.66 286.96 289.34
L 0.0532 0 1.32 0.78 0.77 0 3.6 2.66 2.38 212.92 289.36 286.59 289.56

0.0015

0.95
E 0.1504 0 0.06 0.03 0.525 0 0.49 0.29 1.43 261.05 276.6 274.71 293.67
L 0.1504 0 0.04 0.02 0.37 0 0.411 0.289 1.11 258.73 274.7 272.86 295.95

0.85
E 0.1504 0 0.18 0.09 0.88 0 1.04 0.719 2.55 233.79 278.88 276.41 291.01
L 0.1504 0 0.149 0.08 0.644 0 1.05 0.74 1.98 231.85 278.46 275.95 291.53

0.75
E 0.1504 0 0.05 0.039 0.084 0 0.71 0.586 0.89 206.2 267.14 266.72 267.34
L 0.1504 0 0.05 0.03 0.073 0 0.56 0.37 0.806 204.51 267.23 266.82 267.33

0.00035

0.95
E 0.3086 0 0 0 0.1 0 0 0 0.74 237.98 252.01 250.36 275
L 0.3086 0 0 0 0.046 0 0 0 0.409 237.64 252.88 251.21 275.033

0.85
E 0.3086 0 0 0 0 0 0 0 0 213.19 245.06 244.38 246.96
L 0.3086 0 0 0 0 0 0 0 0 212.84 245.72 245.23 246.96

0.75
E 0.3086 0 0 0 0 0 0 0 0 188.12 217.65 217.65 217.87
L 0.3086 0 0 0 0 0 0 0 0 187.87 217.65 217.65 217.87

4

0.0005

0.95
E 0.0532 0 0.4 0.32 0.03 0 1.64 1.45 0.33 266.47 281.52 280.52 285.78
L 0.0552 0 0.37 0.28 0.404 0 1.48 1.25 1.18 264.82 280.06 279.11 295.29

0.85
E 0.0532 0 0.68 0.59 0.198 0 2.41 2.2 1.12 238.47 283.15 282.31 285.3
L 0.0552 0 0.54 0.46 0.88 0 2.12 1.95 2.31 237.06 282.15 281.28 293.88

0.75
E 0.0532 0 0.853 0.75 0.29 0 2.94 2.74 1.56 210.3 285.28 284.59 284.33
L 0.0552 0 0.81 0.71 0.81 0 2.71 2.52 2.71 209.05 284.46 283.79 289.35

0.0015

0.95
E 0.1504 0 0.003 0.002 0.06 0 0.094 0.06 0.5 245.6 260.23 259.25 285.82
L 0.1548 0 0.005 0.002 0.42 0 0.158 0.063 1.2 241.82 256.85 255.9 295.04

0.85
E 0.1504 0 0.026 0.02 0.195 0 0.36 0.3 1.11 219.85 263.42 262.64 284.42
L 0.1548 0 0.014 0.01 0.671 0 0.32 0.282 2.05 216.64 261.21 260.41 290.81

0.75
E 0.1504 0 0.01 0.01 0.016 0 0.3 0.25 0.189 193.86 264.04 263.622 265.23
L 0.1548 0 0.02 0.02 0.04 0 0.379 0.37 0.42 191.03 262.57 262.23 265.85

0.00035

0.95
E 0.3086 0 0 0 0.01 0 0 0 0.22 207.86 221.62 220.9 270.2
L 0.3169 0 0 0 0.04 0 0 0 0.414 201.19 215.88 214.99 271.76

0.85
E 0.3086 0 0 0 0 0 0 0 0 186.38 226.1 225.4 242.58
L 0.3169 0 0 0 0 0 0 0 0 180.22 222.93 222.067 243.64

0.75
E 0.3086 0 0 0 0 0 0 0 0 164.35 217.56 217.56 217.82
L 0.3169 0 0 0 0 0 0 0 0 159.1 214.74 214.74 215.09

1.8

2

0.0005

0.95
E 0.0532 0 0.4 0.2 0.5 0 1.39 0.92 1.479 269.33 285.38 283.48 293.63
L 0.0532 0 0.32 0.17 0.414 0 1.27 0.872 1.14 267.4 283.53 281.61 296.05

0.85
E 0.0532 0 0.832 0.466 0.88 0 2.45 1.73 2.54 240.79 287.28 284.71 292.71
L 0.0532 0 0.67 0.36 0.72 0 2.16 1.5 2.02 239.14 285.96 283.35 294.01

0.75
E 0.0532 0 1.58 0.87 1.26 0 3.93 2.88 3.41 212.52 291 287.23 292.58
L 0.0532 0 1.49 0.8 1.082 0 3.76 2.66 2.788 211.1 290.02 286.26 293.36

0.0015

0.95
E 0.1504 0 0.05 0.02 0.57 0 0.44 0.22 1.59 257.84 273.63 271.81 293.53
L 0.1504 0 0.01 0.009 0.41 0 0.26 0.17 1.24 252.72 268.93 267 296.02

0.85
E 0.1504 0 0.09 0.05 0.981 0 0.803 0.545 2.576 230.4 275.98 273.59 292.52
L 0.1504 0 0.04 0.017 0.801 0 0.48 0.294 2.0478 225.82 272.64 270.03 294.18

0.75
E 0.1504 0 0.28 0.16 1.417 0 1.81 1.28 3.584 203.53 279.41 276.58 292.9
L 0.1504 0 0.18 0.097 1.165 0 1.18 0.86 2.835 199.43 277.2 274.15 293.72

0.00035

0.95
E 0.3086 0 0.007 0.004 0.75 0 0.17 0.12 1.947 235.63 250.37 248.53 293.44
L 0.3086 0 0 0 0.55 0 0 0 1.469 226.73 242.82 240.891 296

0.85
E 0.3086 0 0 0 1.14 0 0 0 3.03 210.85 253.16 250.75 292.46
L 0.3086 0 0 0 0.819 0 0 0 2.209 202.9 248.93 246.48 293.78

0.75 E 0.3086 0 0 0 0.38 0 0 0 1.9071 186 255.14 252.53 278.69
L 0.3086 0 0 0 0.3 0 0 0 1.654 179 255.66 252.83 278.59

4

0.0005

0.95
E 0.0532 0 1.36 1.12 0.933 0 3.01 2.72 1.866 278.34 292.88 292.04 296.72
L 0.0552 0 1.21 0.991 0.91 0 2.79 2.47 1.831 276.73 291.37 290.52 297.39

0.85
E 0.0532 0 0.52 0.44 0.96 0 1.99 1.78 2.53 248.89 280.49 279.56 292.57
L 0.0552 0 0.5 0.436 0.87 0 2.22 2.03 2.32 247.42 278.35 277.56 293.74

0.75
E 0.0532 0 0.84 0.74 1.3 0 2.95 2.73 3.34 219.81 283.2 282.46 292.39
L 0.0552 0 0.68 0.61 1.085 0 2.68 2.52 2.905 218.5 281.85 281.1 293.13

0.0015

0.95
E 0.1504 0 0.19 0.15 0.66 0 1.07 0.95 1.63 266.67 277.05 276.61 293.83
L 0.1548 0 0.035 0.02 0.601 0 0.34 0.26 1.56 262.42 272.42 272.01 295.63

0.85
E 0.1504 0 0.014 0.007 1.02 0 0.28 0.13 2.55 238.38 255.91 255.19 292.58
L 0.1548 0 0 0 0.97 0 0 0 2.5 234.73 251.17 250.37 294.05

0.75
E 0.1504 0 0.018 0.01 1.48 0 0.018 0.189 3.59 210.5 261.31 260.59 292.76
L 0.1548 0 0.003 0.004 1.28 0 0.09 0.126 3.26 207.21 257.64 256.85 293.42

0.00035 0.95
E 0.3086 0 0 0 0.75 0 0 0 1.825 233.38 234.44 234.43 293.84
L 0.3169 0 0 0 0.6 0 0 0 1.51 223.74 224.34 224.34 295.46

0.85
E 0.3086 0 0 0 1.11 0 0 0 2.81 208.69 214.42 213.73 292.54
L 0.3169 0 0 0 0.98 0 0 0 2.568 200.22 205.86 205.13 293.16

0.75
E 0.3086 0 0 0 0.41 0 0 0 2.04 184.09 222.16 222.16 278.74
L 0.3169 0 0 0 0.26 0 0 0 1.5 176.63 216.53 216.53 275.59

Table 4.13: Sample Mean of Denied and Show-Up Customers (P = 150)
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Number of Replications
Number of Denied Boarding 0 1 2 3 4 5 6 7 8

Policy
EMSR Risk 974 8 6 5 2 4 1 0 0
EMSR MP 987 4 4 3 1 1 0 0 0

DP 835 40 33 36 20 16 7 6 7

Table 4.14: Histogram of Denied Customers
(P = 300, m = 2, βsH = 0.95, µM = 0.0015, ρL = 1.4, t∗ = E).

Number of Replications
Number of Denied Boarding 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Policy EMSR Risk 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EMSR MP 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DP 809 19 26 19 23 22 16 13 9 4 8 9 7 2 2 3 3 2

Table 4.15: Histogram of Denied Customers
(P = 300, m = 2, βsM = 0.85, µH = 0.0035, ρH = 1.8, t∗ = E).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(ρL,µL) (ρL,µM) (ρL,µH) (ρH,µL) (ρH,µM) (ρH,µH)

D
e

n
ie

d
 C

u
st

o
m

e
rs

DP

MP

Risk

NO

(a) t∗ = E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(ρL,µL) (ρL,µM) (ρL,µH) (ρH,µL) (ρH,µM) (ρH,µH)

D
e

n
ie

d
 C

u
st

o
m

e
rs

DP

MP

Risk

NO

(b) t∗ = L

Figure 4.29: Sample Mean of Denied Customers (P = 300, m = 2, βsL = 0.75).
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Figure 4.30: Sample Mean of Denied Customers (P = 300, m = 4, βsH = 0.95).
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Figure 4.31: Sample Mean of Denied Customers (P = 300, m = 4, βsM=0.85).
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Figure 4.32: Sample Mean of Denied Customers (P = 300, m = 4, βsL = 0.75).
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cancelation rate and show-up probability implicitly have an effect on load factor. When
cancelation rate is relatively high and show-up probability is low, load factor implicitly
diminishes dramatically. Both for small and medium sized plane capacities, scenarios
with small load factor and show-up probability and high cancelation, average net revenues
come from EMSR MP, EMSR Risk and DP policies are approximately same. The reason
behind this consequences is all polices just fill the planes without rejecting anyone. For
such scenarios, as we expect, seat allocation policies lose their power for generating extra
revenues.

We conduct the computations experiments on computer with 2.3 GHz Pentium Dual
Core and 2 GB of RAM. The visual studio 2010 C++ is used for coding under Windows 7
operating system. Computing EMSR policies take less than 0.1 second. The computations
V function for DP policy takes on average 80 and 300 seconds respectively P = 150 and
P = 300. Due to our formulation basing on successive iterations, we can also report aver-
age iteration numbers. For small-sized planes which capacities are 150, average iteration
number 200 and for medium-sized planes, iterations number increases until 500. Consid-
ering the expected net revenue gain from the DP policy, few minutes can be ignored in
long term and total gain.

4.3 Counterintuitive Examples

In Chapter 2, we show some properties about the V function. According to Lemma 10,
s 7→ V (t, s) is concave and non-increasing function for each t ≤ T . However, there is
not any clue that, these properties also hold for the mapping t 7→ V (t, s) for each s ≤ P̄ .
Intuitively, expecting a V (t, s) monotone increasing in t seems reasonable, due to more
time to departure has more possibility that generating more revenue comparing to less
time. However, the intuition is valid for only some scenarios. Example 17 presents one
feasible case which the function V (t, s) is not increasing monotone in t.

We have also defined the booking limit in relation 2.45 in Chapter 2. In example 18,
reader find the another counterintuitive result for booking limits.
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Example 17 In this example, we show that a counterintuitive example for monotonicity

of mapping t 7→ V (t, s). We consider two fare classes. The fare of economic class is 50

and business class fare is 200. If anybody cancel his/her reservation during the booking

period with rate µ = 0.019, he/she is refunded by 25 independently from the fare class.

The airline company pays 300 for each denied boarding customer. At departure time,

each reservation may not show-up with probability βs = 0.95. For plane capacity 150

and total demand equals to 90, the behavior of value function V (t, s) in t depicts in the

Figure for two different value of s.
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Figure 4.33: V (t, s) versus t for different values of s given in Example 17

Note that the function V (t, s) is not monotonically increasing in t. The similar result

has been also shown in the study of Subramanian et al. [31] in discrete in discrete time

model. They put the example to show counterexample for the study of Lee and Hersh

[18]. The main reason of this counterintuitive behavior comes from the high probability of

cancelation. It can see from the Figure 4.33, when reserved seat is more, the cancelation

affect the total net revenue.
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Example 18 This example aims to show non-monotone behavior of booking class in t.

We consider plane capacity is again 150 but in this example four fare classes request a

seat. The fares are given respectively: r1 = 50, r2 = 100, r3 = 150, r4 = 200.

Booking period equals 200, show-up probability βs = 0.95 and cancelation rate µ is

0.015. Figure 4.34 plots the booking limits of four fare class. As seen, booking limits of

fare class non-monotone in t.
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Figure 4.34: Booking Limits versus t given in Example 18
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Chapter 5

Concluding Remarks

In this study, we have modeled a singe-leg airline revenue management problem with
time-dependent multiple fare class arrivals. Each reserved seat can be canceled and also
a reserved customer may not show-up at the departure time. Moreover, the model allows
the overbooking in order to decrease the number of empty seats at boarding. We assume
that booking requests of each fare class follow an independent non-homogenous Poisson
process. We also assume that arrivals are independent from current reserved seats whereas
cancelation process is dependent.

We formulate the problem as continuous time which is intuitive. We clearly construct
value(objective) function V . In order to compute the value function, we define a sequence
of functions. The elements of this sequence are successively computed via the dynamic
programming operator L. Thanks to the operator and dynamic programming principles,
we can approximate the value function after a finite number of iterations for a given error
ε > 0. Markovian structure of optimal policy allow us to derive Hamilton Jacobi Bellman
equation which is later used in numerical implementation in Chapter 4.

In our computational section, we report detailed simulation setup. Numerical results
indicate that our continuous time dynamic model performs better than well-known EMSR
based heuristics. The relative improvement, in the mean net revenue is observed to be in
the range %1-%12 depending on the problem parameters. Moreover, we have presented
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two counterintuitive examples in which optimal booking policy and value functions are
not monotone in t.
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Appendices

A Auxiliary results

Remark 19 Let Λ(t) =
∫ t

0
λ(s)ds. Then we have

gj(t) :=
∞∑
`=j

[Λ(t)]`

`!
= eΛ(t)

∫ t

0

λ(u)
[Λ(u)]j−1

(j − 1)!
e−Λ(u)du, for t ≥ 0 and j ≥ 1.

Proof. The proof follows after noting that

dgj(t)

dt
= λ(t)

[Λ(t)]j−1

(j − 1)!
+ λ(t)gj(t)

with the boundary condition gj(0) = 0. �

Remark 20 We have

E
∞∑

j=n+1

1{Tj≤t} ≤
[Λ(T )]n+1

(n− 1)!
, for all t ≤ T and n ≥ 1.

Proof. Note that E
∑∞

j=n+1 1{Tj≤t} =

∞∑
j=n+1

P{Nt ≥ j} ≤
∞∑

j=n+1

P{NT ≥ j}

=
∞∑

j=n+1

∞∑
`=j

P{NT = `} =
∞∑

j=n+1

∞∑
`=j

e−Λ(T ) [Λ(T )]`

`!
.
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Using Remark 19 above, we get the following steps

E
∞∑

j=n+1

1{Tj≤t} ≤
∞∑

j=n+1

e−Λ(T )gj(T ) =
∞∑

j=n+1

e−Λ(T )eΛ(T )

∫ T

0

λ(u)
[Λ(u)]j−1

(j − 1)!
e−Λ(u)du

=

∫ T

0

λ(u)

[
∞∑
j=n

[Λ(u)]j

(j)!

]
e−Λ(u)du ≡

∫ T

0

λ(u) [gn(u)] e−Λ(u)du

=

∫ T

0

λ(u)

[∫ u

0

λ(w)
[Λ(w)]n−1

(n− 1)!
e−Λ(w)dw

]
du.

Since Λ(·) is increasing and e−Λ(w) ≤ 1, we have∫ T

0

λ(u)

[∫ u

0

λ(w)
[Λ(w)]n−1

(n− 1)!
e−Λ(w)dw

]
du

≤ [Λ(T )]n−1

(n− 1)!

∫ T

0

λ(u)

∫ u

0

λ(w) dw du ≤ [Λ(T )]n+1

(n− 1)!
,

and this concludes the proof. �
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B Other proofs

Proof of Remark 5. Note that the expressions in (2.22) and (2.23) are continuous in t for
fixed s. To show the continuity of the last term in (2.20) we note that

E
[
1{T1≤t} · Mr(L1)[f ](t− T1, ST1−)

]
= E

[
1{T1≤t}

s∑
i=0

m∑
j=1

(
s

i

)
(e−µT1)i(1− e−µT1)s−iq(T − t+ T1, j)

max
{
r(j) + f(t− T1, i+ 1), f(t− T1, i)

}]

=
s∑
i=0

m∑
j=1

(
s

i

)∫ t

0

λ(t)(u) e−Λ(t)(u) (e−µu)i(1− e−µu)s−iq(T − t+ u, j)

max{r(j) + f(t− u, i+ 1), f(t− u, i)}du.

After a change of variable, the expression becomes

=
s∑
i=0

m∑
j=1

(
s

i

)
e−Λ(T−t)e−µti

∫ t

0

λ(T − w) eΛ(T−w) (eµw)i(1− e−µte−µw)s−iq(T − w, j)

max{r(j) + f(w, i+ 1), f(w, i)}dw.

For fixed i ≤ s and j ≤ m, the integral has the form
∫ t

0
g1(t, w)g2(w)dw where g1(·, ·) is

a bounded where g1(t, w) = λ(T − w) eΛ(T−w) (eµw)i(1− e−µte−µw)s−iq(T − w, j) and
g2(w) = max{r(j)+f(w, i+1), f(w, i)} both being bounded functions on [0, T ]× [0, T ]

and [0, T ] respectively. As a result, each integral and therefore the double sum above is
continuous in t, for fixed s. �

Proof of Remark 6. For fixed (t, s) ∈ 4, we can decompose the difference as

L[f ](t, s)− L[f ](t, s+ 1) = I1(t, s) + I2(t, s) + I3(t, s),
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where

I1(t, s) = −κ E(t,s) [Ct∧T1 ] + κ E(t,s+1) [Ct∧T1 ]

I2(t, s) = −γE(t,s)

1{T1>t}

(
St∑
i=1

Bi − P

)+
+ γE(t,s+1)

1{T1>t}

(
St∑
i=1

Bi − P

)+


I3(t, s) = E(t,s)
[
1{T1≤t} · Mr(L1)[f ](t− T1, ST1−)

]
− E(t,s+1)

[
1{T1≤t} · Mr(L1)[f ](t− T1, ST1−)

]
.

It is easy to see that

I1(t, s) = −κsE(t,·) [1− eµ(t∧T1)
]

+ κ(s+ 1)E(t,·) [1− eµ(t∧T1)
]

= κE(t,·) [1− eµ(t∧T1)
]
.

(B.1)

Also note that I2(t, s) is non-negative and can be rewritten as

I2(t, s) = −γE(t,s)

1{T1>t}

(
St∑
i=1

Bi − P

)+
+ γE(t,s)

1{T1>t}

(
St∑
i=1

Bi + Z − P

)+


in terms of an independent Bernoulli random variable Z with success probability pe−µt.
Then we have

0 ≤ I2(t, s) = γ E(t,s)1{T1>t}1{Z=1}

( St∑
i=1

Bi + 1− P

)+

−

(
St∑
i=1

Bi − P

)+


≤ γ E(t,s)1{T1>t}1{Z=1}1 = γpe−µt E(t,s)1{T1>t}.

(B.2)

As for the last term we observe that

I3(t, s) = E(t,s)1{T1≤t} ·
[
Mr(L1)[f ](t− T1, ST1−)−Mr(L1)[f ](t− T1, ST1− +W )

]
for a conditionally (conditioned on T1) Bernoulli random variable W with success proba-
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bility e−µT1 . This observation further gives

I3(t, s) = E(t,s)1{T1≤t}1{W=1} ·
[
Mr(L1)[f ](t− T1, ST1−)−Mr(L1)[f ](t− T1, ST1− + 1)

]
= E(t,s)1{T1≤t}e

−µT1 ·
[
Mr(L1)[f ](t− T1, ST1−)−Mr(L1)[f ](t− T1, ST1− + 1)

]
.

Note that the operatorM preserves the upper and lower bounds given in Remark 6. There-
fore, we have

E(t,s)1{T1≤t}e
−µT1κ(1− e−µ(t−T1)) ≤ I3(t, s) ≤

E(t,s)1{T1≤t}e
−µT1

[
κ(1− e−µ(t−T1)) + γpe−µ(t−T1)

]
.

(B.3)

Finally, when we combine the identity in (B.1) with the upper and lower bounds in (B.2)
and (B.3), straightforward algebra yields

κ(1− e−µt) ≤ I1(t, s) + I2(t, s) + I3(t, s) ≤ κ(1− e−µt) + γpe−µt.

�

Proof of Lemma 7. By construction, control processes Ã(n)’s and associated random
variables Ã(n)

i ’s all depend on (t, s). Here, we suppress this dependence for notational
convenience only.

The lemma clearly holds for n = 0 (with D̃(0)
u = 0). For n ≥ 1, we will prove (2.26)

in two steps: 1) first, we show Un(·, ·) ≥ Vn(·, ·) for each n ≥ 1, and then 2) we establish
Un(·, ·) = G(Ã(n))(t, s), for each n ≥ 1 again. Since Ã(n) ∈ Dn, the inequalities yield
Vn(·, ·) ≤ Un(·, ·) = G(Ã(n))(t, s) ≤ Vn(·, ·).

Step 1: To prove the inequality Un(t, s) ≥ Vn(t, s), we fix an arbitrary D ∈ Dn with the
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decisions A1, A2, . . . An and we show

G(A)(t, s) ≤ E(t,s)

[Nt∧Tn−k+1∑
i=1

Ai r(Li)− κCt∧Tn−k+1
− 1{t<Tn−k+1}γ

(
St∑
i=1

Bi − P

)+

+ 1{Tn−k+1≤t}Uk−1(t− Tn−k+1, STn−k+1
)

]
(B.4)

inductively for k = 1, . . . , n + 1. When take k = n + 1 in (B.4), we get G(A)(t, s) ≤
Un(t, s), which further implies that Vn(t, s) ≤ Un(t, s) since D above was an arbitrary
policy in Dn.

For k = 1, the inequality in (B.4) is immediate as it becomes an equality thanks to the
strong Markov property. Assume now that the inequality holds for some 1 ≤ k < n + 1,
and prove it for k + 1. Note that we can write the right hand side in (B.4), call Rk, as
Rk−1 = R

(1)
k−1 +R

(2)
k−1, where

R
(1)
k−1 := E(t,s)

Nt∧Tn−k∑
i=1

Ai r(Li)− κCt∧Tn−k
− 1{t<Tn−k}γ

(
St∑
i=1

Bi − P

)+
 (B.5)

and

R
(2)
k−1 := E(t,s)1{t≥Tn−k}

[
− κ(Ct∧Tn−k+1

− CTn−k
)− 1{t<Tn−k+1}γ

(
St∑
i=1

Bi − P

)+

+ 1{t≥Tn−k+1}
(
An−k+1 · r(Ln−k+1) + Uk−1(t− Tn−k+1, STn−k+1

)
) ]
. (B.6)

Note that we have

An−k+1 · r(Ln−k+1) + Uk−1(t− Tn−k+1, STn−k+1
)

≤Mr(Ln−k+1)[Uk−1]
(
t− Tn−k+1, STn−k+1−

)
.
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This yields

R
(2)
k−1 ≤ E(t,s)1{t≥Tn−k}

[
− κ(Ct∧Tn−k+1

− CTn−k
)− 1{t<Tn−k+1}γ

(
St∑
i=1

Bi − P

)+

+ 1{t≥Tn−k+1}Mr(Ln−k+1)[Uk−1]
(
t− Tn−k+1, STn−k+1−

)]

= E(t,s)1{t≥Tn−k}E
(t,s)

[
− κ(Ct∧Tn−k+1

− CTn−k
)− 1{t<Tn−k+1}γ

(
St∑
i=1

Bi − P

)+

+ 1{t≥Tn−k+1}Mr(Ln−k+1)[Uk−1]
(
t− Tn−k+1, STn−k+1−

)]∣∣∣∣∣FTn−k

]
= E(t,s)1{t≥Tn−k}L[Uk−1](t− Tn−k, STn−k

) = E(t,s)1{t≥Tn−k}Uk(t− Tn−k, STn−k
)

where FTn−k
denotes the information generated by arrivals and cancellations by time

Tn−k. Using this upper bound on R(2)
k−1, we get

Rk−1 ≤ E(t,s)
[Nt∧Tn−k∑

i=1

Ai r(Li)− κCt∧Tn−k
− 1{t<Tn−k}γ

(
St∑
i=1

Bi − P

)+

+ 1{t≥Tn−k}Uk(t− Tn−k, STn−k
)
]
≡ Rk.

Hence, the inequality also holds for k+1. Then, by induction it holds for all 1 ≤ k ≤ n+1,
and we have Vn(t, s) ≤ Un(t, s).
Step 2: Let us now show Un(t, s) = G(Ã(n))(t, s), for each n ≥ 1. For n = 1, we first
recall that

G(D̃(0))(t, s) = U0(t, s) = V0(t, s) = E(t,s)

−κCt − γ(s−Ct∑
i=1

Bi − P

)+
 ,

where D̃(0) is the ’null’ policy where all Ai’s are zero. Next, by Remark 3 we have
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U1(t, s) =

E(t,s)

{
− κCt∧T1 − 1{T1>t}γ

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t}

[
Ã

(1)
1 · r(L1) + U0(t− T1, ST1− + Ã

(1)
1 )
]}

E(t,s)

{
− κCt∧T1 − 1{T1>t}γ

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t}

[
Ã

(1)
1 · r(L1) +GD̃(0)

(t− T1, ST1− + Ã
(1)
1 )
]}

= GD̃(1)

(t, s),

thanks to strong Markov property. Next, let us assume by induction that Un(t, s) =

GÃ
(n)

(t, s) for some n ≥ 1. Note that GD̃(n+1)
(·, ·) satisfies

GD̃(n+1)

(t, s) = E(t,s)

{
− κCt∧T1 − 1{T1>t}γ

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t}

[
Ã

(n+1)
1 · r(L1) +GÃ

(n)
(
t− T1, ST1− + Ã

(n+1)
1

) ]}

again due to strong Markov property. Then by induction hypothesis we have GÃ(n)
(·, ·) =

Un(·, ·), and this yields

GD̃(n+1)

(t, s) = E(t,s)

{
− κCt∧T1 − 1{T1>t}γ

(
St∑
i=1

Bi − P

)+

+ 1{T1≤t}

[
Ã

(n+1)
1 · r(L1) + Un

(
t− T1, ST1− + Ã

(n+1)
1

) ]}
= Un+1(t, s),

thanks to Remark 3. Hence, the identity GÃ(n)
(·, ·) = Un(·, ·) holds for all n ≥ 1, and this
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completes the proof. �

C Arrival Intensity Functions

In this appendix, the selection procedure of arrival intensity functions is described in
detail.

C.1 Linear Case

Assume that the arrival intensity functions λ1 and λ2 are given by

λ1(t) = σ1a1(t), λ2(t) = ασ1a2(t) (C.7)

In this subsection the functions ai : [0, T ]→ R, i = 1, 2 have the parametric form

a1(s) = a11 − a12s, a2(s) = a21 + a22s.

Since these parametric functions satisfy relations (4.5), (4.6) and (4.7), the feasible region
of parameters a = (a11,a12, a21, a22) is given by the set of linear (in)equalities.

a11 −a12T ≥ 0

a11T −1
2
a12T

2 = 1

a21 +a22T ≥ 0

a21T +1
2
a22T

2 = 1

a11 −αa21 ≥ 0

−a11 +a12T +αa21 +αa22T ≥ 0

a11 a12 a21 a22 ≥ 0

(C.8)
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If we would like the overall arrival intensity λ(t) = λ1(t) + λ2(t) to be non-increasing,
we need to add the linear restriction

−a12 + αa22 ≤ 0.

If the set of linear inequalities in (C.8) is denoted by the polytope P then one can show
the following result.

Lemma 21 If a belongs to P and α < 1 then it follows that a12 + αa22 > 0.

Proof. Since a belongs to P we know by the nonnegativity restrictions that a12+αa22 ≥ 0.

Suppose now by contradiction that a12 + αa22 = 0. By the nonnegativity of the decision
variables this yields a12 = a22 = 0. Since a1(0) ≥ αa2(0) and a1(T ) ≤ αa2(T ) we
therefore obtain a11 ≥ αa21 and a11 ≤ αa21 and so a11 = αa21. This shows a1(s) =

a11 = αa21 = αa2(s) and so by the normalization restrictions

1 =

∫ T

0

a1(s)ds = α

∫ T

0

a2(s)ds = α.

Since α < 1 this yields a contradiction and so a12 + αa22 > 0 for every a ∈ P. �

Moreover it follows by Lemma 15 for αa22 + a12 > 0 that

p1(t∗) = p2(t∗)⇐⇒ t∗ =
a11 − αa21

αa22 + a12

.

Therefore by Lemma 21 we need to solve the optimization problems

min

{
a11 − αa21

αa22 + a12

: a ∈ P
}

(P)

and
max

{
a11 − αa21

αa22 + a12

: a ∈ P
}
. (Q)

It is now possible to show the following result.
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Lemma 22 If follows for any 0 < α < 1 that the minimum values of the intersection

point t∗ in optimization problem P is given by (α+ 1)T and this minimum is achieved by

the linear functions

a1(s) = 2T−1 − 2T−2s, a2(s) = 2T−2s.

Also the maximum value of the intersection point t∗ in optimization problem Q is given by

T and this is achieved by the functions

a2(s) = T−1, a1(s) = (2− α)T−1 − 2(1− α)T−2s

or

a2(s) = 2T−2s, a1(s) = (2− 2α)T−1 − (2− 4α)T−2s.

To reduce the number of decision variables in the polytope P we replace the set of
equations

a21T +
1

2
a22T

2 = 1, a21 ≥ 0, a22 ≥ 0

with the equivalent set of equations

a21 = T−1 − 1

2
a22T, a22T

2 ≤ 2, a22 ≥ 0. (C.9)

Similar by we replace the set of equations

a11T −
1

2
a12T

2 = 1, a11 ≥ 0, a12 ≥ 0

with the equivalent set

a11 = T−1 +
1

2
a12T, a12 ≥ 0, a12T

2 ≥ −2. (C.10)
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Substituting this we obtain a linear fractional programming problem in the nonnegative
decision variables a12, a22. In this case the reduced feasible region is replaced by

a12T
2 ≤ 2

a12T
2 ≥ −2

a22T
2 ≤ 2

a12T
2 +αa22T

2 ≥ 2(1− α)

a12 a22 ≥ 0.

Clearly this is the same feasible region as the polytope Pr given by

a12T
2 ≤ 2

a22T
2 ≤ 2

a12T
2 +αa22T

2 ≥ 2(1− α)

a12 a22 ≥ 0.

Also by relation (C.9) and (C.10) the objective function

(a11, a12, a21, a22) 7→ a11 − αa21

αa22 + a12

is replaced by the linear fractional function

(a12, a22) 7→
(1− α)T−1 + T

2
a12 + αT

2
a22

αa22 + a12

.
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Hence we are dealing with a reduced 2-dimensional linear fractional programming prob-
lem and this is given by

min

{
(1− α)T−1 + 1

2
a12T + 1

2
αa22T

αa22 + a12

: (a12,a22) ∈ Pr
}

and

max

{
(1− α)T−1 + T

2
a12 + αT

2
a22

αa22 + a12

: (a12,a22) ∈ Pr

}
.

Since a fractional linear function is both quasiconcave and quasiconvex it follows that for
both problems the optimal solution is obtained at a vertex of the polytope Pr. Since the
polytope is a subset of R2

+ we can analytically compute the vertices and so we can easily
evaluate the optimal values of the two optimization problems.

C.2 Quadratic Case

Let the functions ai : [0, T ]→ R+, i = 1, 2 satisfy the parametric representation

ai(s) = ai1 + ai2s+ ai3s
2 = ai(0) + a′i(0)s+ a′′i (0)s2.

Clearly, a1 satisfies (4.5) if and only if

a1(0) +a′1(0)T +a′′1(0)T 2 ≥ 0

a1(0) ≥ 0

a′1(0) ≤ 0

a′1(0) +2a′′1(0)T ≤ 0

a1(0)T +1
2
a′1(0)T 2 +1

3
a
′′
2(0)T 3 = 1.

(C.11)

100



Also, a2 satisfies relation (4.6) if and only if

a2(0) +a′2(0)T +a′′2(0)T 2 ≥ 0

a2(0) ≥ 0

a′2(0) ≥ 0

a′2(0) +2a′′2(0)T ≥ 0

a2(0)T +1
2
a′2(0)T 2 +1

3
a
′′
2(0)T 3 = 1.

(C.12)

Also if the functions a1 and a2 satisfy condition (4.7) this is the same as

a1(0) −αa2(0) ≥ 0

αa2(0) +αa′2(0)T +αa′′2(0)T 2 −a1(0) −a′1(0)T −a′′2(0)T 2 ≥ 0.

(C.13)
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Hence by relations (C.11), (C.12) and (C.13) the feasible polytope P is given by

a1(0) +a′1(0)T +a′′1(0)T 2 ≥ 0

a′1(0) +2a′′1(0)T ≤ 0

a1(0)T +1
2
a′1(0)T 2 +1

3
a′′1(0)T 3 = 1

a2(0) +a′2(0)T +a′′2(0)T 2 ≥ 0

a′2(0) +2a′′2(0)T 2 ≥ 0

a2(0)T +1
2
a′2(0)T 2 +1

3
a′′2(0)T 3 = 1

a1(0) −αa2(0) ≥ 0

−a1(0) −a′1(0)T −a′′1(0)T 2 +αa2(0) +αa′2(0)T +αa′′2(0)T 2 ≥ 0

a1(0) ≥ 0

a′1(0) ≤ 0

a2(0) ≥ 0

a′2(0) ≥ 0.

Introduce now for a = (a1(0), ...., a′′2(0)) belonging to P the function h : P × R→ R
given by

h(a,t) := a1(t)− αa2(t)

Observe for every t the function a 7→ h(a,t) is a linear function. Also we know by Lemma
15 that p1(t) ≥ p2(t) if and only if h(a,t) ≥ 0. The following result is easy to verify

Lemma 23 For α < 1 and the vector a = (a1(0), ...., a′′2(0)) belonging to P it follows

that the function t 7→ h(a,t) is quadratic and strictly decreasing and the system of equa-

tions h(a, t) = 0, 0 ≤ t ≤ T has exactly one positive solution t(a).
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Proof. Since the vector a = (a1(0), ....a′′2(0)) belongs to P we know that the continuous
quadratic function t 7→ h(a, t) satisfies h(a, 0) ≥ 0 and h(a, T ) ≤ 0. Hence there
exists some 0 ≤ t∗ ≤ T satisfying h(a, t∗) = 0. Also since a ∈ P the function a1

is decreasing and a2 is increasing implying t 7→ h(a, t) is decreasing Moreover. If
h(a, t1) = h(a, t2) for some 0 ≤ t1 < t2 ≤ T then by the monotonicity of h we obtain
for every 0 < t1 ≤ t < t2 that h(a, t) = h(a, t1). This shows h′a(t) = h′′a(t) = 0 for every
t1 < t < t2 and since h is quadratic we obtain a1(s) = αa2(s) for every 0 ≤ s ≤ T. This
implies

1 =

∫ T

0

a1(s)ds = α

∫ T

0

a2(s)ds = α

and we obtain a contradiction with α < 1. Hence ha is strictly decreasing. This immedi-
ately implies that the system of equations h(a, t) = 0, 0 ≤ t ≤ T has exactly one solution
t(a). If t(a) = 0 it follows that a1(t) < αa2(t) for every 0 < t ≤ T and this shows

1 =

∫ T

0

a1(s)ds < α

∫ T

0

a2(s)ds = α

yielding a contradiction and so t(a) is positive. �

The next lemma is also easy to verify.

Lemma 24 The function t : P → [0, T ] is continuous and quasiconcave.

Proof. We first show that the function a→ t(a) is continuous. Let (an)n∈N be a converg-
ing sequence in P with limit a∞. If the sequence t(an) does not convergence to t(a) then
there exists some subsequence (nk)k∈N and m ∈ N satisfying

| t(ank
)− t(a∞) |> m−1 (C.14)

for every k. Since t(ank
) belongs to the compact set [0, T ] there exists by the Heine-Borel

Theorem some converging subsequence I ⊆ {nk}k∈N satisfying limi∈I t(ai) = c and by
the continuıty of the function h : P × R→ R this shows

0 = limi∈I↑∞ h(ai, t(ai)) = h(a∞, c).
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By Lemma 23 it must follow that c = t(a∞) and this yields a contradiction with relation
(C.14). To show the quasi-concavity assume by contradiction that there exist some 0 <

λ < 1 and a1.a2 ∈ P satisfying

t(λa1 + (1− λ)a2) < min(t(a1).t(a2)). (C.15)

First observe

0 = h(λa1 + (1− λ)a2, t(λa1 + (1− λ)a2)

= λh(a1, t(λa1 + (1− λ)a2) + (1− λ)h(a2, t(λa1 + (1− λ)a2).

(C.16)

Since by Lemma 23 the function t 7→ h(a, t) is strictly decreasing for each a ∈ P we
obtain by relation (C.15) that

h(a1, t(λa1 + (1− λ)a2) > h(a1, t(a1)) = 0

and
h(a2, t(λa1 + (1− λ)a2) > h(a2, t(a2)) = 0.

Applying now relation (C.16) we obtain a contradiction and this yields the desired result.
�

Hence we now have to solve the optimization problem

min{t(a) : a ∈ P}.

By Lemma 24 we know that an optimal solution is obtained at a vertex. Before deriving
an explicit formula for t(a) we introduce for a ∈ P satisfying a′′1(0) − αa′′2(0) 6= 0 the
functions

b(a) =
a′1(0)− αa′2(0)

a′′1(0)− αa′′2(0)
. (C.17)
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and
c(a) =

a1(0)− αa2(0)

a′′1(0)− αa′′2(0)
(C.18)

Looking at the system h(a, t) = 0, 0 ≤ t ≤ T with

h(a, t) = a1(0)− αa2(0) + (a′1(0)− αa′2(0))t+ (a′′1(0)− αa′′2(0))t2

it follows for a′′1(0)− αa′′2(0) 6= 0 that h(a, t) = 0, 0 ≤ t ≤ T is the same system as

c(a) + b(a)t+ t2 = 0, 0 ≤ t ≤ T. (C.19)

The two only candidates which might solve this system are given by

t+(a) : = −1

2
b(a) +

1

2
2
√
b(a)2 − 4c(a) (C.20)

and
t (a) = −1

2
b(a)− 1

2
2
√
b(a)2 − 4c(a). (C.21)

Since by Lemma 23 the system h(a, t) = 0, 0 ≤ t ≤ T has a solution it must follow

b(a)2 − 4c(a) ≥ 0. (C.22)

Also both roots t+(a) and t−(a) are real valued and satisfy

t (a) ≤ t+(a). (C.23)

Onr can now show the following result.
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Lemma 25 It follows for every a ∈ P that

t(a) =


t+(a) if a′′1(0)− αa′′2(0) < 0

αa2(0)−a1(0)
a′1(0)−αa′2(0)

if a′′1(0)− αa′′2(0) = 0

t−(a) if a′′1(0)− αa′′2(0) > 0.

Proof. Clearly for every a ∈ P satisfying a′′1(0) − αa′′2(0) < 0 it follows using a′1(0) −
αa′2(0) ≤ 0 and a1(0)− αa2(0) ≥ 0 that

c(a) ≤ 0, b(a) ≥ 0. (C.24)

Also the condition a′′1(0)− αa′′2(0) < 0 implies the restriction

b(a)2 − 4c(a) > 0.

To show this we assume by contradiction that this inequality does not hold. Hence by
relation (C.22) we obtain

b(a)2 − 4c(a) = 0.

By relation (C.24) this yields

0 ≤ b(a)2 = 4c(a) ≤ 0

and so b(a) = c(a) = 0. Now the only solution of the system h(a, t) = 0, 0 ≤ t ≤ T is
given by t = 0 and we obtain a contradiction with Lemma 23. Therefore it must hold for
a′′1(0)−αa′′2(0) < 0 that b(a)2−4c(a) > 0 and applying relation (C.21) and (C.24) yields
t (a) < 0. Since the only possible solutions of h(a, t) = 0, 0 ≤ t ≤ T are either t+(a) or
t (a) this implies t(a) = t+(a). If a′′1(0)−αa′′2(0) > 0 we know using a1(0)−αa2(0) ≥ 0

and a′1(0)− αa′2(0) ≤ 0 that
c(a) ≥ 0, b(a) ≤ 0. (C.25)
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This shows
0 ≤ 2

√
b(a)2 − 4c(a) ≤| b(a) | .

and hence using also relation (C.25) we obtain

t−(a) ≥− 1

2
b(a)− 1

2
| b(a) |= 0.

Applying now relation (C.23) and Lemma 23 yields t(a) = t−(a). The case a′′1(0) −
αa′′2(0) = 0 is obvious, so its proof is omitted. �
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