RIESZ BASES OF EIGENFUNCTIONS OF 1D DIRAC OPERATOR WITH STRICTLY REGULAR BOUNDARY CONDITIONS

by

HATİCE GÖZEL

Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for the degree of

Master of Science
Sabancı University
Spring 2011

RIESZ BASES OF EIGENFUNCTIONS OF 1D DIRAC OPERATOR WITH STRICTLY REGULAR BOUNDARY CONDITIONS

APPROVED BY:

© C Hatice Gözel 2011
All Rights Reserved

ABSTRACT

One dimensional Dirac operators

$$
L_{b c}(v) y=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{d y}{d x}+v(x) y, \quad y=\binom{y_{1}}{y_{2}}, \quad x \in[0, \pi]
$$

considered with L^{2}-potentials

$$
v(x)=\left(\begin{array}{cc}
0 & P(x) \\
Q(x) & 0
\end{array}\right), \quad P, Q \in L^{2}([0, \pi]),
$$

and subject to regular boundary conditions $b c$ have discrete spectrum. In this thesis, we study basic properties of Riesz bases, prove existence of Riesz bases consisting of root functions of Dirac operators $L_{b c}$ subject to strictly regular $b c$, find adjoint operator $\left(L_{b c}\right)^{*}$, find all self-adjoint $b c$, and calculate some special self-adjoint extensions.

ÖZET

$$
L_{b c}(v) y=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{d y}{d x}+v(x) y, \quad y=\binom{y_{1}}{y_{2}}, \quad x \in[0, \pi]
$$

denklemiyle verilen,

$$
\left(\begin{array}{cc}
0 & P(x) \\
Q(x) & 0
\end{array}\right), \quad P, Q \in L^{2}([0, \pi])
$$

L^{2} potansiyeli ve regüler sınır şartlarıyla düşünülen, tek boyutlu Dirac operatörünün ayrık spektrumu vardır. Bu tezde, Riesz tabanının genel özelliklerini inceliyoruz, güçlü regüler sınır şartlarıyla düşünülen Dirac operatörü $L_{b c}$ 'nin özvektörlerinden oluşan Riesz tabanının varlığını ispatlıyoruz, eşlenik operatörü $\left(L_{b c}\right)^{*} ı$ buluyoruz, özeşlenik sınır şartlarını belirliyoruz ve bazı özel özeşlenik genişlemeleri hesaplıyoruz.

TABLE OF CONTENTS

ABSTRACT iv
ÖZET v

1. INTRODUCTION 1
2. RIESZ BASIS 2
3. RIESZ BASIS OF ROOT FUNCTIONS OF DIRAC OPERATOR 11
4. ADJOINT OF THE DIRAC OPERATOR 21
5. SELF-ADJOINT DIRAC OPERATORS AND SELF-ADJOINT bc 27
6. SELF-ADJOINT EXTENSIONS 29
REFERENCES 34

1 Introduction

The differential expression

$$
L(v) y=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{d y}{d x}+v(x) y, \quad y=\binom{y_{1}}{y_{2}},
$$

is known as one dimensionsal Dirac operator. The matrix

$$
v(x)=\left(\begin{array}{cc}
0 & P(x) \\
Q(x) & 0
\end{array}\right)
$$

is called Dirac potential. In this thesis, we consider Dirac operators $L_{b c}$ on $[0, \pi]$ with L^{2} potentials, that is $P, Q \in L^{2}([0, \pi])$, and with domain

$$
\operatorname{Dom}\left(L_{b c}(v)\right)=\left\{y=\binom{y_{1}}{y_{2}}: y_{1} \text { and } y_{2} \text { are absolutely continuous, } y\right. \text { satisfies }
$$

the boundary conditions $b c$, and $\left.y_{1}^{\prime}, y_{2}^{\prime} \in L^{2}([0, \pi])\right\}$.
If $v \equiv 0$, then $L_{b c}(0)$ is denoted by $L_{b c}^{0}$ and called the free Dirac operator. A regular boundary condition $b c$ is given by the linear system of equations

$$
\begin{aligned}
& y_{1}(0)+b y_{1}(\pi)+a y_{2}(0)=0, \\
& d y_{1}(\pi)+c y_{2}(0)+y_{2}(\pi)=0,
\end{aligned}
$$

where $b c-a d \neq 0$. Moreover, $b c$ is called strictly regular if $(b-c)^{2}+4 a d \neq 0$.
In the second section, we study the basic properties of Riesz bases. If ($e_{\gamma}, \gamma \in \Gamma$) is an orthonormal basis in a Hilbert space H and $A: H \rightarrow H$ is an automorphism, then the system $\left(f_{\gamma}, \gamma \in \Gamma\right), f_{\gamma}=A e_{\gamma}$, is called a Riesz basis. Riesz bases are unconditional bases. Moreover, Bari-Markus theorem is proven which states that if ($e_{n}, n \in \mathbb{N}$) is a Riesz basis in a Hilbert space H and $\left(f_{n}, n \in \mathbb{N}\right)$ is a minimal system of vectors such that

$$
\sum_{n=1}^{\infty}\left\|f_{n}-e_{n}\right\|^{2}<\infty
$$

then $\left(f_{n}, n \in \mathbb{N}\right)$ is also a Riesz basis. Bari-Markus theorem will be used to show the existence of a Riesz basis consisting of root functions of the Dirac operator $L_{b c}$.

In the third section, we study eigenvalues and eigenfunctions of Dirac operators. Dirac operators subject to regular boundary conditions $b c$ have discrete spectrum. It is shown that for strictly regular $b c$, every eigenvalue of the free Dirac operator is simple and has the form $\lambda_{k, \alpha}^{0}=\tau_{\alpha}+k$, where $\alpha=1,2$ and $k \in 2 \mathbb{Z}$, and spectrum consists only of eigenvalues. For each strictly regular $b c$, there is an $N \in 2 \mathbb{N}$ such that

$$
S p\left(L_{b c}\right) \subset R_{N} \cup \bigcup_{|n|>N}\left(D_{n}^{1} \cup D_{n}^{2}\right)
$$

where R_{N} is a rectangle containing $2 N$ eigenvalues of $L_{b c}$ and each of the discs $D_{n}^{\alpha}=\left\{z:\left|z-\lambda_{n, \alpha}^{0}\right|<\rho=\rho(b c)\right\}, \alpha=1,2$ and $|n|>N$, contains exactly one
simple eigenvalue of $L_{b c}$. Using this spectra localization of the operators $L_{b c}$ and Bari-Markus theorem, it is shown that there is a Riesz basis which consists of eigenfunctions and (at most finitely many) associated functions.

In the fourth section, we show that the adjoint operator of Dirac operator $L_{b c}(v)$ subject to regular boundary conditions is $L_{b c^{*}}\left(v^{*}\right)$, where boundary conditions $b c^{*}$ given by the system

$$
\begin{aligned}
& \bar{b} g_{1}(0)+g_{1}(\pi)+\bar{d} g_{2}(\pi)=0 \\
& \bar{a} g_{1}(0)+g_{2}(0)+\bar{c} g_{2}(\pi)=0
\end{aligned}
$$

and

$$
v^{*}=\left(\begin{array}{cc}
0 & \bar{Q} \\
\bar{P} & 0
\end{array}\right)
$$

In the last two sections, we find the form of self-adjoint boundary conditions $b c$ and self-adjoint Dirac operators. Furthermore, we give a characterization of self-adjoint extensions of an unbounded operator and we calculate some special self-adjoint extensions.

2 Riesz bases

In this section, we give basic facts about bases. We define Riesz bases and give some basic properties of Riesz bases. We consider only separable Hilbert spaces.

Definition 1. Let H be a Hilbert space. A system $\left(e_{n}, n \in \mathbb{N}\right)$ is called a basis in H if

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} c_{n} e_{n}, \quad \forall x \in H \tag{2.1}
\end{equation*}
$$

where c_{n} 's are uniquely determined and the series converges in norm. If the series converges unconditionally, then $\left(e_{n}, n \in \mathbb{N}\right)$ is called an unconditional basis. Moreover a basis is called orthonormal if it is an orthonormal system in H which means

$$
\left\langle e_{n}, e_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m \in \mathbb{N}
$$

It is a general fact that there are orthonormal bases in every Hilbert space H.
Definition 2. Two systems $\left(e_{n}, n \in \mathbb{N}\right)$ and $\left(f_{m}, m \in \mathbb{N}\right)$ in H are called biorthogonal if

$$
\left\langle e_{n}, f_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m \in \mathbb{N}
$$

Theorem 3. Assume that $\left(f_{n}, n \in \mathbb{N}\right)$ is a basis in a Hilbert space H. Then there exists a unique family $\left(\widetilde{f}_{n}, n \in \mathbb{N}\right)$ in H such that

$$
x=\sum_{n}\left\langle x, \tilde{f}_{n}\right\rangle f_{n}, \quad \forall x \in H
$$

where $\left(f_{n}, n \in \mathbb{N}\right)$ and $\left(\tilde{f}_{n}, n \in \mathbb{N}\right)$ are biorthogonal.
Proof. Suppose $\left(f_{n}, n \in \mathbb{N}\right)$ is a basis in a Hilbert space H. Then

$$
x=\sum_{n=1}^{\infty} c_{n}(x) f_{n}
$$

where $c_{n}($.$) are linear functions due to the uniqueness of expansion (??). Let$

$$
P_{n}(x)=c_{n}(x) f_{n}
$$

and let

$$
S_{N}(x)=\sum_{k=1}^{N} c_{k}(x) f_{k}
$$

First we show that the projections $S_{N}, N=1,2, \cdots$, are uniformly bounded. Now define

$$
\|x\|_{1}:=\sup _{N}\left\|\sum_{k=1}^{N} c_{k}(x) f_{k}\right\|<\infty .
$$

This norm is well-defined since $\sum_{n} c_{n}(x) f_{n}$ converges. The fact that $\|.\|_{1}$ is indeed a norm in H easily follows from the fact that $\|$.$\| is a norm in H$. We show that $\left(H,\|\cdot\|_{1}\right)$ is a Banach space. Let $\left(x_{n}, n \in \mathbb{N}\right)$ be a Cauchy sequence in $\left(H,\|\cdot\|_{1}\right)$. Fix $\varepsilon>0$. Then there is μ such that

$$
\left\|x_{n}-x_{m}\right\|_{1}=\sup _{N}\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}\right\|<\varepsilon, \quad \text { for } n, m \geq \mu,
$$

which implies

$$
\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}\right\|<\varepsilon, \quad \forall N, \forall n, m \geq \mu
$$

Then for every $N \in \mathbb{N}$ and for every $n, m \geq \mu$

$$
\begin{gathered}
\left\|\left[c_{N}\left(x_{n}\right)-c_{N}\left(x_{m}\right)\right] f_{N}\right\|=\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}-\sum_{k=1}^{N-1}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}\right\| \\
\leq\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}\right\|+\left\|\sum_{k=1}^{N-1}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}\right\|<2 \varepsilon
\end{gathered}
$$

Therefore

$$
\left|c_{N}\left(x_{n}-x_{m}\right)\right|<2 \varepsilon /\left\|f_{N}\right\|, \quad \text { for } n, m \geq \mu
$$

So, for every $N \in \mathbb{N},\left(c_{N}\left(x_{n}\right)\right)$ is a Cauchy sequence of numbers and converges, say to c_{N}^{*}. By definition of $\|.\|_{1}$,

$$
\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-x_{m}\right\|_{1}<\varepsilon, \quad \forall n, m \geq \mu .
$$

Therefore x_{n} is a Cauchy sequence in $(H,\|\|$.$) and \left\|x_{n}-x\right\| \rightarrow 0$ for some x in H. Let $m \rightarrow \infty$. Then by the last inequality, we obtain

$$
\begin{equation*}
\left\|x_{n}-x\right\| \leq \varepsilon, \quad \forall n \geq \mu \tag{2.2}
\end{equation*}
$$

We know that

$$
\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}\left(x_{m}\right)\right] f_{k}\right\|<\varepsilon, \quad \forall N, \forall n, m \geq \mu
$$

Let $m \rightarrow \infty$. Then we obtain

$$
\begin{equation*}
\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}^{*}\right] f_{k}\right\| \leq \varepsilon, \quad \forall N, \quad \forall n \geq \mu . \tag{2.3}
\end{equation*}
$$

Fix $n>\mu$. Then we have for every $N \in \mathbb{N}$,

$$
\begin{aligned}
&\left\|\sum_{k=1}^{N} c_{k}(x) f_{k}-\sum_{k=1}^{N} c_{k}^{*} f_{k}\right\| \leq\left\|\sum_{k=1}^{N} c_{k}(x) f_{k}-x\right\|+\|-x_{n}\|+\| x_{n}-\sum_{k=1}^{N} c_{k}\left(x_{n}\right) f_{k} \| \\
&+\left\|\sum_{k=1}^{N} c_{k}\left(x_{n}\right) f_{k}-\sum_{k=1}^{N} c_{k}^{*} f_{k}\right\|
\end{aligned}
$$

By (??) and (??), the second and the fourth term on the right hand side are less then ε. Since $\left(f_{k}\right)$ is a basis, for large enough N, the first and the third terms are also less than ε. Thus it follows that for large enough N

$$
\left\|\sum_{k=1}^{N} c_{k}(x) f_{k}-\sum_{k=1}^{N} c_{k}^{*} f_{k}\right\|<4 \varepsilon .
$$

Since $\sum_{k=1}^{N} c_{k}(x) f_{k} \rightarrow x$, it follows that $\sum_{k=1}^{N} c_{k}^{*} f_{k} \rightarrow x$, that is $x=\sum_{k=1}^{N} c_{k}^{*} f_{k}$. Hence $c_{k}^{*}=c_{k}(x)$ by uniqueness of c_{k}. Since

$$
\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}^{*}\right] f_{k}\right\| \leq \varepsilon, \quad \forall N, \quad \forall n \geq \mu,
$$

we obtain that for every $n \geq \mu$,

$$
\left\|x_{n}-x\right\|_{1}=\sup _{N}\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}(x)\right] f_{k}\right\|=\sup _{N}\left\|\sum_{k=1}^{N}\left[c_{k}\left(x_{n}\right)-c_{k}^{*}\right] f_{k}\right\| \leq \varepsilon
$$

So $\left\|x_{n}-x\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$. Thus $\left(H,\|\cdot\|_{1}\right)$ is a Banach space.
By definition of $\|\cdot\|_{1}$, we have

$$
\|x\| \leq\|x\|_{1}, \quad \forall x \in H
$$

and this means that the identity operator

$$
I:\left(H,\|\cdot\|_{1}\right) \rightarrow(H,\|\cdot\|)
$$

is a continuous one to one mapping. So by Open Mapping Theorem, it has a continuous inverse. So there is a constant $c>0$ such that

$$
\|x\|_{1} \leq c\|x\|, \quad \forall x \in H
$$

Therefore

$$
S_{N}(x)=\left\|\sum_{k=1}^{N} c_{k}(x) f_{k}\right\| \leq c\|x\|, \quad \forall N
$$

By this way, we have shown that S_{N} 's are uniformly bounded. Then

$$
\left\|P_{n}(x)\right\|=\left\|S_{n}(x)-S_{n-1}(x)\right\| \leq\left\|S_{n}(x)\right\|+\left\|S_{n-1}(x)\right\| \leq 2 c\|x\|
$$

So

$$
\left\|P_{n}(x)\right\|=\left|c_{n}(x)\right|\left\|f_{n}\right\| \leq 2 c\|x\|
$$

which implies

$$
\left|c_{n}(x)\right| \leq \frac{2 c}{\left\|f_{n}\right\|}\|x\|
$$

Hence $c_{n}(x)$ is continuous for $n=1,2, \cdots$. By Riesz Representation Theorem, each $c_{n}(x)$ can be written in the form

$$
c_{n}(x)=\left\langle x, \tilde{f}_{n}\right\rangle,
$$

where \widetilde{f}_{n} is a uniquely determined element in H. So every $x \in H$ can be written as

$$
x=\sum_{n=1}^{\infty}\left\langle x, \widetilde{f}_{n}\right\rangle f_{n} .
$$

Since $c_{n}\left(f_{m}\right)=\delta_{n, m}$ for $n, m=1,2, \cdots, c_{n}$'s and f_{n} 's are biorthogonal systems. And $c_{n}\left(f_{m}\right)=\delta_{n, m}$ means that

$$
c_{n}\left(f_{m}\right)=\left\langle f_{m}, \widetilde{f}_{n}\right\rangle=\delta_{n, m} .
$$

Thus f_{n} 's and \tilde{f}_{n} 's are biorthogonal. Hence we have shown that for any basis $\left(f_{n}, n \in \mathbb{N}\right)$ in H, there is a unique biorthogonal system $\left(\widetilde{f}_{n}, n \in \mathbb{N}\right)$ in H such that

$$
x=\sum_{n=1}^{\infty}\left\langle x, \widetilde{f}_{n}\right\rangle f_{n}, \quad \forall x \in H
$$

The bases that we consider are unconditional bases, so we don't have convergence problems related to order of the elements. Thus for practical uses we use countable bases of the form $\left(e_{\gamma}, \gamma \in \Gamma\right)$ where Γ is a countable set of indices, instead of bases of the form $\left(e_{n}, n \in \mathbb{N}\right)$.

Let H be a Hilbert space and let $\left(e_{\gamma}, \gamma \in \Gamma\right)$ be an orthonormal basis in H. If $A: H \rightarrow H$ is an automorphism, then the system $\left(f_{\gamma}, \gamma \in \Gamma\right)$ given by

$$
\begin{equation*}
f_{\gamma}=A e_{\gamma}, \quad \gamma \in \Gamma \tag{2.4}
\end{equation*}
$$

is also a basis in H. For every $x \in H$, we have

$$
x=A\left(A^{-1} x\right)=A\left(\sum_{\gamma}\left\langle A^{-1} x, e_{\gamma}\right\rangle e_{\gamma}\right)=\sum_{\gamma}\left\langle x,\left(A^{-1}\right)^{*} e_{\gamma}\right\rangle f_{\gamma}=\sum_{\gamma}\left\langle x, \tilde{f}_{\gamma}\right\rangle f_{\gamma} .
$$

Definition 4. A basis of the form (??) is called a Riesz basis.
So we have also showed that $\left(f_{\gamma}\right)$ is a basis with its biorthogonal system

$$
\begin{equation*}
\tilde{f}_{\gamma}=\left(A^{-1}\right)^{*} e_{\gamma}, \quad \gamma \in \Gamma . \tag{2.5}
\end{equation*}
$$

Riesz bases are unconditional bases since orthonormal bases are unconditional bases.
Lemma 5. Let H_{1} and H_{2} be two Hilbert spaces and let $A: H_{1} \rightarrow H_{2}$ be an isomorphism. If $\left(e_{\gamma}, \gamma \in \Gamma\right)$ is an orthonormal basis in H_{1}, then the system

$$
f_{\gamma}=A e_{\gamma}, \quad \gamma \in \Gamma
$$

is a Riesz basis in H_{2}.
Proof. Assume H_{1} and H_{2} are two Hilbert spaces and $A: H_{1} \rightarrow H_{2}$ is an isomorphism. Let $\left(e_{\gamma}, \gamma \in \Gamma\right)$ be an orthonormal basis in H_{1}. Take any orthonormal basis in H_{2}, say $\left(\phi_{\gamma}, \gamma \in \Gamma\right)$. Then the operator $B: H_{2} \rightarrow H_{1}$ defined by

$$
B \phi_{\gamma}=e_{\gamma}, \quad \forall \gamma \in \Gamma
$$

Then B is clearly an isomorphism. Now take $C: H_{2} \rightarrow H_{2}$ given by $C=A \circ B$. Then C is an isomorphism and

$$
C \phi_{\gamma}=f_{\gamma}, \quad \forall \gamma \in \Gamma
$$

Thus $\left(f_{\gamma}, \gamma \in \Gamma\right)$ is a Riesz basis in H_{2}.

Recall that $\ell^{2}(\Gamma)$ is the space consisting of the generalized sequences ($x_{\gamma}, \gamma \in \Gamma$) such that

$$
\sum_{\gamma}\left|x_{\gamma}\right|^{2}<\infty
$$

We consider $\ell^{2}(\Gamma)$ equipped with the inner product

$$
\langle x, y\rangle=\sum_{\gamma} x_{\gamma} \overline{y_{\gamma}},
$$

where $x=\left(x_{\gamma}, \gamma \in \Gamma\right)$ and $y=\left(y_{\gamma}, \gamma \in \Gamma\right)$.
Now we give a characterization of Riesz bases by the following theorem.
Theorem 6. Suppose that $\left(f_{\gamma}, \gamma \in \Gamma\right)$ is a basis in H and $\left(\tilde{f}_{\gamma}, \gamma \in \Gamma\right)$ is its biorthogonal system. Then $\left(f_{\gamma}, \gamma \in \Gamma\right)$ is a Riesz basis if and only if

$$
\begin{equation*}
c \leq\left\|f_{\gamma}\right\| \leq C, \quad \forall \gamma \in \Gamma \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m\|x\|^{2} \leq \sum_{\gamma}\left|\left\langle x, \tilde{f}_{\gamma}\right\rangle\right|^{2}\left\|f_{\gamma}\right\|^{2} \leq M\|x\|^{2} \tag{2.7}
\end{equation*}
$$

for some positive constants c, C, m and M.
Proof. First let $\left(f_{\gamma}, \gamma \in \Gamma\right)$ be a Riesz basis in H with its biorthogonal system $\left(\widetilde{f}_{\gamma}, \gamma \in \Gamma\right)$. Then there is an orthonormal basis $\left(e_{\gamma}, \gamma \in \Gamma\right)$ in H and an automorphism A such that

$$
A\left(e_{\gamma}\right)=f_{\gamma} .
$$

Then we have

$$
\left\|f_{\gamma}\right\|=\left\|A e_{\gamma}\right\| \leq\|A\| \quad \text { and } \quad 1=\left\|e_{\gamma}\right\|=\left\|A^{-1} f_{\gamma}\right\| \leq\left\|A^{-1}\right\|\left\|f_{\gamma}\right\|,
$$

which gives us

$$
\begin{equation*}
\frac{1}{\left\|A^{-1}\right\|} \leq\left\|f_{\gamma}\right\| \leq\|A\| \tag{2.8}
\end{equation*}
$$

So we get (??) with $c=\frac{1}{\left\|A^{-1}\right\|}$ and $C=\|A\|$. Also we have that

$$
\begin{aligned}
\sum_{\gamma}\left|\left\langle x,\left(A^{-1}\right)^{*} e_{\gamma}\right\rangle\right|^{2}\left\|f_{\gamma}\right\|^{2} & =\sum_{\gamma}\left|\left\langle A^{-1} x, e_{\gamma}\right\rangle\right|^{2}\left\|f_{\gamma}\right\|^{2} \\
& \leq\|A\|^{2} \sum_{\gamma}\left|\left\langle A^{-1} x, e_{\gamma}\right\rangle\right|^{2} \quad \text { by }(? ?) \\
& =\|A\|^{2}\left\|A^{-1} x\right\|^{2} \\
& \leq\|A\|^{2}\left\|A^{-1}\right\|^{2}\|x\|^{2} .
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\gamma}\left|\left\langle x,\left(A^{-1}\right)^{*} e_{\gamma}\right\rangle\right|^{2}\left\|f_{\gamma}\right\|^{2} & =\sum_{\gamma}\left|\left\langle A^{-1} x, e_{\gamma}\right\rangle\right|^{2}\left\|f_{\gamma}\right\|^{2} \\
& \geq \frac{1}{\left\|A^{-1}\right\|^{2}} \sum_{\gamma}\left|\left\langle A^{-1} x, e_{\gamma}\right\rangle\right|^{2} \quad \text { by }(? ?) \\
& =\frac{1}{\left\|A^{-1}\right\|^{2}}\left\|A^{-1} x\right\|^{2} \\
& \geq \frac{1}{\left\|A^{-1}\right\|^{2}} \frac{1}{\|A\|^{2}}\|x\|^{2} .
\end{aligned}
$$

since

$$
\|x\|=\left\|A^{-1} A x\right\| \leq\|A\|\left\|A^{-1} x\right\|
$$

which means

$$
\left\|A^{-1} x\right\| \geq \frac{\|x\|}{\|A\|}
$$

Combining these results, we get

$$
\begin{equation*}
\frac{1}{\left\|A^{-1}\right\|^{2}} \frac{1}{\|A\|^{2}}\|x\|^{2} \leq \sum_{\gamma}\left|\left\langle x, \tilde{f}_{\gamma}\right\rangle\right|^{2}\left\|f_{\gamma}\right\|^{2} \leq\|A\|^{2}\left\|A^{-1}\right\|^{2}\|x\|^{2}, \tag{2.9}
\end{equation*}
$$

which proves (??) with $m=\frac{1}{\left\|A^{-1}\right\|^{2}\|A\|^{2}}$ and $M=\|A\|^{2}\left\|A^{-1}\right\|^{2}$.
Now let $\left(f_{\gamma}, \gamma \in \Gamma\right)$ be a basis in H and $\left(\tilde{f}_{\gamma}, \gamma \in \Gamma\right)$ be its biorthogonal system such that (??) and (??) holds. Since Γ is a countable set, we may think that $\Gamma=\left\{\gamma_{i}, i=1,2, \cdots\right\}$. With this enumaration, consider the operator $B: \ell^{2}(\Gamma) \rightarrow H$ given by

$$
B\left(\left(x_{\gamma}\right)\right)=\sum_{i=1}^{\infty} x_{\gamma_{i}} f_{\gamma_{i}} .
$$

Let

$$
S_{N}=\sum_{i=1}^{N} x_{\gamma_{i}} f_{\gamma_{i}} .
$$

Then

$$
\left\langle S_{N}, \widetilde{f_{\gamma_{i}}}\right\rangle=x_{\gamma_{i}}, \quad i=1,2, \cdots, N .
$$

So by using (??) and (??), we get that

$$
k\left\|S_{N}\right\|^{2} \leq \sum_{\gamma}\left|x_{\gamma_{i}}\right|^{2} \leq K\left\|S_{N}\right\|^{2}
$$

where $k=m / C^{2}$ and $K=M / c^{2}$. By the same argument, we get that

$$
k\left\|S_{N+M}-S_{N}\right\|^{2} \leq \sum_{i=N}^{N+M}\left|x_{\gamma_{i}}\right|^{2} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

since $\left(x_{\gamma}\right) \in \ell^{2}$. So $\left(S_{N}\right)$ is a Cauchy sequence in H. Since H is complete, $\left(S_{N}\right)$ is convergent to some s in H. Thus the series $\sum_{i=1}^{\infty} x_{\gamma_{i}} f_{\gamma_{i}}$ converges which shows that B is well-defined.

Next we prove that B is continuous. Set

$$
x=B\left(\left(x_{\gamma}\right)\right)=\sum_{i=1}^{\infty} x_{\gamma_{i}} f_{\gamma_{i}} .
$$

Then by (??) and (??)

$$
k\|x\|^{2}=k\left\|B\left(\left(x_{\gamma}\right)\right)\right\|^{2} \leq \sum_{i=1}^{\infty}\left|x_{\gamma_{i}}\right|^{2}=\left\|\left(x_{\gamma}\right)\right\|_{\ell^{2}}^{2} \leq K\left\|B\left(\left(x_{\gamma}\right)\right)\right\|^{2} .
$$

So B is continuous since

$$
\left\|B\left(\left(x_{\gamma}\right)\right)\right\| \leq \frac{1}{\sqrt{k}}\left\|\left(x_{\gamma}\right)\right\|_{\ell^{2}},
$$

and B^{-1} is continuous since

$$
\left\|B\left(\left(x_{\gamma}\right)\right)\right\| \geq \frac{1}{\sqrt{K}}\left\|\left(x_{\gamma}\right)\right\|_{\ell^{2}} .
$$

Thus B is an isomorphism.
Let $\left(e_{\gamma}, \gamma \in \Gamma\right)$ be the orthonormal basis in ℓ^{2} given by

$$
e_{\gamma}(\alpha)=\delta_{\gamma, \alpha} .
$$

Then by definition of B,

$$
B e_{\gamma}=f_{\gamma}, \quad \forall \gamma \in \Gamma
$$

Thus $\left(f_{\gamma}\right)$ is a Riesz basis by the previous lemma.
Definition 7. A system $\left(f_{n}, n \in \mathbb{N}\right)$ is called minimal if

$$
f_{j} \notin \overline{\operatorname{span}}\left\{f_{k}\right\}_{k \neq j}, \quad \forall j \in \mathbb{N} .
$$

Theorem 8. (Bari-Markus Theorem) Let $\left(e_{n}, n \in \mathbb{N}\right)$ be a Riesz basis in a Hilbert space H and let $\left(f_{n}, n \in \mathbb{N}\right)$ be a minimal system of vectors such that

$$
\sum_{n=1}^{\infty}\left\|f_{n}-e_{n}\right\|^{2}<\infty
$$

Then $\left(f_{n}, n \in \mathbb{N}\right)$ is also a Riesz basis.
Proof. It sufficies to show that there is an isomorphism A such that $A\left(e_{n}\right)=f_{n}$. Since ($e_{n}, n \in \mathbb{N}$) is a Riesz basis, there is an isomorphism B and orthonormal basis ($\phi_{n}, n \in \mathbb{N}$) such that $B\left(\phi_{n}\right)=e_{n}$. So $A \circ B$ will be an isomorphism such that $B \circ A\left(\phi_{n}\right)=f_{n}$.

For $x=\sum_{n=1}^{\infty} x_{n} e_{n}$, set

$$
T x:=\sum_{n=1}^{\infty} x_{n}\left(e_{n}-f_{n}\right) .
$$

The operator T is bounded since

$$
\begin{aligned}
\|T x\| & =\left\|\sum_{n=1}^{\infty} x_{n}\left(e_{n}-f_{n}\right)\right\| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|\left\|e_{n}-f_{n}\right\| \\
& \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}\left\|e_{n}-f_{n}\right\|^{2}\right)^{1 / 2} \leq \frac{\sqrt{M}}{c^{2}} s\|x\|,
\end{aligned}
$$

where c and M are coming from the inequalities (??),(??) and $s^{2}=\sum_{n=1}^{\infty}\left\|f_{n}-e_{n}\right\|^{2}$. Let $\left(T_{k}, k \in \mathbb{N}\right)$ be the sequence of finite rank operators given by

$$
T_{k} x=\sum_{n=1}^{k} x_{n}\left(e_{n}-f_{n}\right), \quad \text { for } x=\sum_{n=1}^{\infty} x_{n} e_{n} .
$$

We have $\left\|T_{k}-T\right\| \rightarrow 0$ as $k \rightarrow \infty$, since

$$
\begin{aligned}
\left\|T_{k} x-T x\right\| & =\left\|\sum_{n=k+1}^{\infty} x_{n}\left(e_{n}-f_{n}\right)\right\| \leq \sum_{n=k+1}^{\infty}\left|x_{n}\right|\left\|e_{n}-f_{n}\right\| \\
& \leq\left(\sum_{n=k+1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=k+1}^{\infty}\left\|e_{n}-f_{n}\right\|^{2}\right)^{1 / 2} \\
& \leq\|x\|\left(\sum_{n=k+1}^{\infty}\left\|e_{n}-f_{n}\right\|^{2}\right)^{1 / 2},
\end{aligned}
$$

and $\sum_{n=1}^{\infty}\left\|e_{n}-f_{n}\right\|^{2}$ is a convergent series. Since T_{k} are finite-dimensional operators, it follows that T is a compact operator.
Now consider the operator $A=1-T$. A is invertible if 1 is not in the spectrum of T. Let $x \in \operatorname{ker} A$, that is

$$
(1-T) x=0, \quad \text { for } x=\sum_{n=1}^{\infty} x_{n} e_{n} .
$$

Then it follows

$$
\sum_{n=1}^{\infty} x_{n} f_{n}=0
$$

which implies (since $\left(f_{n}, n \in \mathbb{N}\right)$ is a minimal system) that $x_{n}=0$ for every n, hence $x=0$. So 1 is not an eigenvalue of the operator T. Recall that spectrum of a compact operator contains only eigenvalues. Since T is a compact operator and 1 is not an eigenvalue of $T, 1$ is not in the spectrum of T. Then A is invertible, so it is an isomorphism. Hence $\left(f_{n}, n \in \mathbb{N}\right)$ is also a Riesz basis.

3 Riesz Basis of Root Functions of
 Dirac Operator

In this section, we study the spectrum of free Dirac operator $L_{b c}^{0}$ subject to strictly regular boundary conditions $b c$. We show that the eigenfunctions of $L_{b c}^{0}$ form a Riesz basis in $L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$. Moreover, we show the existence of Riesz basis of root functions of Dirac operator $L_{b c}$ subject to strictly regular boundary conditions $b c$.

The differential expression

$$
L(v) y=i\left(\begin{array}{cc}
1 & 0 \tag{3.1}\\
0 & -1
\end{array}\right) \frac{d y}{d x}+\left(\begin{array}{cc}
0 & P(x) \\
Q(x) & 0
\end{array}\right) y .
$$

is known as the one dimensional Dirac operator. The matrix $v=\left(\begin{array}{cc}0 & P(x) \\ Q(x) & 0\end{array}\right)$ is called the Dirac potential. In case $v \equiv 0$, we write $L^{0}=L(0)$ and call L^{0} free Dirac operator. A general boundary condition for the Dirac operator is given by a system of two linear equations

$$
\begin{array}{r}
a_{1} y_{1}(0)+b_{1} y_{1}(\pi)+a_{2} y_{2}(0)+b_{2} y_{2}(\pi)=0 \\
c_{1} y_{1}(0)+d_{1} y_{1}(\pi)+c_{2} y_{2}(0)+d_{2} y_{2}(\pi)=0 . \tag{3.2}
\end{array}
$$

Of course, equivalent systems of the form (??) define one and the same bc. Each boundary condition is determined by the matrix of the coefficients of (??)

$$
\left(\begin{array}{cccc}
a_{1} & b_{1} & a_{2} & b_{2} \tag{3.3}\\
c_{1} & d_{1} & c_{2} & d_{2}
\end{array}\right) .
$$

But if we multiply this matrix from the left by a 2 x 2 invertible matrix, we get another matrix that determines the same $b c$.

We may assign to every boundary condition $b c$ of the form (??) a corresponding operator $L_{b c}^{0}$ as follows. Let
$\operatorname{Dom}\left(L_{b c}^{0}\right)=\left\{y=\binom{y_{1}}{y_{2}}: y_{1}\right.$ and y_{2} are absolutely continuous, y satisfies the boundary conditions $b c$, and $\left.y_{1}^{\prime}, y_{2}^{\prime} \in L^{2}([0, \pi])\right\}$, and let

$$
L_{b c}^{0}(y)=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{y_{1}^{\prime}}{y_{2}^{\prime}} .
$$

Theorem 9. $L_{b c}^{0}$ is a closed densely defined operator.
Proof. Let

$$
\left(\binom{f_{n}}{g_{n}}, L^{0}\binom{f_{n}}{g_{n}}\right) \longrightarrow\left(\binom{f}{g},\binom{h_{1}}{h_{2}}\right) \quad \text { in } L^{2}\left([0, \pi], \mathbb{C}^{2}\right) .
$$

This means that

$$
\left(\binom{f_{n}}{g_{n}},\binom{i f_{n}^{\prime}}{-i g_{n}^{\prime}}\right) \longrightarrow\left(\binom{f}{g},\binom{h_{1}}{h_{2}}\right) \quad \text { in } L^{2}\left([0, \pi], \mathbb{C}^{2}\right) .
$$

$$
\left(f_{n}, i f_{n}^{\prime}\right) \xrightarrow{\|\cdot\|}\left(f, h_{1}\right) \text { and }\left(g_{n},-i g_{n}^{\prime}\right) \xrightarrow{\|\cdot\|}\left(g, h_{2}\right) .
$$

Since f_{n} 's are measurable functions and $f_{n} \xrightarrow{\|\cdot\|} f, f_{n}$ converges to f in measure. Then there is a subsequence $f_{n k}$ such that $f_{n k}(x) \xrightarrow{\text { a.e. }} f(x)$. Thus there exists $c \in$ $[0, \pi]$ such that $f_{n}(c) \rightarrow f(c)$. Now define

$$
H_{1}(x):=\frac{1}{i} \int_{c}^{x} h_{1}(t) d t .
$$

Then

$$
\begin{aligned}
\left|f_{n}(x)-f_{n}(c)-H_{1}(x)\right|^{2} & =\left|\int_{c}^{x}\left(f_{n}^{\prime}(t)-\frac{1}{i} h_{1}(t)\right) d t\right|^{2} \\
& \leq\left(\int_{0}^{\pi}\left|f_{n}^{\prime}(t)-\frac{1}{i} h_{1}(t)\right| d t\right)^{2} \\
& \leq\left(\int_{0}^{\pi}\left|f_{n}^{\prime}(t)-\frac{1}{i} h_{1}(t)\right|^{2} d t\right)\left(\int_{0}^{\pi} 1^{2} d t\right) \\
& =\left\|f_{n}^{\prime}-\frac{1}{i} h_{1}\right\|^{2} \pi .
\end{aligned}
$$

By this inequality, we get that

$$
f_{n}(x)-f_{n}(c) \xrightarrow{\text { unif }} H_{1}(x),
$$

since $f_{n}^{\prime} \xrightarrow{\|.\|} \frac{h_{1}}{i}$. And also $f_{n}(x)-f_{n}(c) \xrightarrow{\text { a.e. }} f(x)-f(c)$, so

$$
H_{1}(x)=f(x)-f(c) \text { a.e. }
$$

Since we identify functions that are equal almost everywhere, we may think that the previous equality holds for every $x \in[0, \pi]$. So

$$
\begin{equation*}
h_{1}(x)=i H_{1}^{\prime}(x)=i f^{\prime}(x) \text { a.e. } \tag{3.4}
\end{equation*}
$$

We can similarly define $H_{2}(x):=-\frac{1}{i} \int_{c}^{x} h_{2}(t) d t$ and get that

$$
\begin{equation*}
h_{2}(x)=-i g^{\prime}(x) . \tag{3.5}
\end{equation*}
$$

Since we identify functions that are equal almost everywhere and f_{n} 's are absolutely continuous functions, we may think that $f_{n}(x) \rightarrow f(x), \forall x \in[0, \pi]$. So f satisfies $b c$. Similarly g also satisfies $b c$. So by (??) and (??)

$$
\binom{f}{g} \in \operatorname{dom}\left(L_{b c}^{0}\right) \quad \text { and } \quad L^{0}\binom{f}{g}=\binom{h_{1}}{h_{2}} .
$$

Thus we have shown that the graph of $L_{b c}^{0}$ is closed, which means that $L_{b c}^{0}$ is a closed operator.

Now we find the eigenvalues of the operator L^{0} given by

$$
L^{0}(y)=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{d y}{d x}
$$

subject to a general boundary condition $b c$ of the form (??) with associated matrix (??). Let $A_{i j}$ denote the matrix given by i-th and j-th columns of the matrix (??). If

$$
L^{0} y=\lambda y, \quad y=\binom{y_{1}}{y_{2}}
$$

then

$$
i y_{1}^{\prime}=\lambda y_{1} \quad \text { and } \quad-i y_{2}^{\prime}=\lambda y_{2} .
$$

So each solution of the equation has the form

$$
\begin{equation*}
y=\binom{y_{1}}{y_{2}}=\binom{k_{1} e^{-i \lambda x}}{k_{2} e^{i \lambda x}} \tag{3.6}
\end{equation*}
$$

for some constants k_{1} and k_{2}. Now if we let $z=e^{i \lambda \pi}$, we get

$$
y_{1}(0)=k_{1}, \quad y_{2}(0)=k_{2}, \quad y_{1}(\pi)=k_{1} z^{-1} \quad \text { and } \quad y_{2}(\pi)=k_{2} z .
$$

So if we use these initial conditions of y, we can see that y satisfies the boundary conditions (??) iff (k_{1}, k_{2}) is a solution of the system of equations

$$
\begin{aligned}
& a_{1} k_{1}+b_{1} k_{1} z^{-1}+a_{2} k_{2}+b_{2} k_{2} z=0 \\
& c_{1} k_{1}+d_{1} k_{1} z^{-1}+c_{2} k_{2}+d_{2} k_{2} z=0
\end{aligned}
$$

or equivalently

$$
\begin{align*}
& k_{1}\left(a_{1}+b_{1} z^{-1}\right)+k_{2}\left(a_{2}+b_{2} z\right)=0 \\
& \quad k_{2}\left(c_{1}+d_{1} z^{-1}\right)+k_{2}\left(c_{2}+d_{2} z\right) . \tag{3.7}
\end{align*}
$$

So we have a non-zero solution y iff

$$
\begin{gathered}
\left|\begin{array}{ll}
a_{1}+b_{1} z^{-1} & a_{2}+b_{2} z \\
c_{1}+d_{1} z^{-1} & c_{2}+d_{2} z
\end{array}\right|=0, \\
\Leftrightarrow a_{1} c_{2}+a_{1} d_{2} z+b_{1} z^{-1} c_{2}+b_{1} z^{-1} d_{2} z-c_{1} a_{2}-c_{1} b_{2} z-d_{1} z^{-1} a_{2}-d_{1} z^{-1} b_{2} z=0, \\
\Leftrightarrow\left(a_{1} d_{2}-b_{2} c_{1}\right) z+\left(b_{1} d_{2}-d_{1} b_{2}+a_{1} c_{2}-a_{2} c_{1}\right)+\left(b_{1} c_{2}-d_{1} a_{2}\right) z^{-1}=0 .
\end{gathered}
$$

If we multiply both sides by z, it is equivalent to the quadratic equation

$$
\begin{equation*}
\left|A_{14}\right| z^{2}+\left(\left|A_{13}\right|+\left|A_{24}\right|\right) z+\left|A_{23}\right|=0 . \tag{3.8}
\end{equation*}
$$

The boundary condition (??) is called strictly regular if

$$
\begin{equation*}
\left|A_{14}\right| \neq 0, \quad\left|A_{23}\right| \neq 0, \quad\left(\left|A_{13}\right|+\left|A_{24}\right|\right)^{2} \neq 4\left|A_{14}\right|\left|A_{23}\right| \tag{3.9}
\end{equation*}
$$

hold. So if we have strictly regular boundary conditions, then the quadratic equation (??) has two distinct roots, call z_{1} and z_{2}.

In the following, we consider only strictly regular boundary conditions. Now if we multiply A_{14}^{-1} with (??), we get that
$A_{14}^{-1}\left(\begin{array}{llll}a_{1} & b_{1} & a_{2} & b_{2} \\ c_{1} & d_{1} & c_{2} & d_{2}\end{array}\right)=\frac{1}{a_{1} d_{2}-b_{2} c_{1}}\left(\begin{array}{cc}b_{2} & -b_{2} \\ -c_{1} & a_{1}\end{array}\right)\left(\begin{array}{llll}a_{1} & b_{1} & a_{2} & b_{2} \\ c_{1} & d_{1} & c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{cccc}1 & b & a & 0 \\ 0 & d & c & 1\end{array}\right)$
where $\left(\begin{array}{ll}b & a \\ d & c\end{array}\right)=A_{14}^{-1} A_{23}$.
So we found an equivalent system to the boundary condition (??) given by

$$
\begin{array}{r}
y_{1}(0)+b y_{1}(\pi)+a y_{2}(0)=0 \\
d y_{1}(\pi)+c y_{2}(0)+y_{2}(\pi)=0 . \tag{3.11}
\end{array}
$$

This system is associated with the matrix (??). From now on we consider the boundary conditions in the form (??) with matrices (??). So the conditions (??) adjusted to this new form of the boundary conditions means that

$$
\begin{equation*}
\left|A_{23}\right|=b c-a d \neq 0 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\left|A_{13}+A_{24}\right|\right)^{2}-4\left|A_{14}\right|\left|A_{23}\right| & =(c+b)^{2}-4(b c-a d) \\
& =c^{2}+2 b c+b^{2}-4 b c+4 a d \\
& =(b-c)^{2}+4 a d \neq 0 . \tag{3.13}
\end{align*}
$$

Now the system (??) becomes

$$
\begin{align*}
k_{1}\left(1+b z^{-1}\right)+k_{2} a & =0 \\
k_{1} d z^{-1}+k_{2}(c+z) & =0 \tag{3.14}
\end{align*}
$$

which means

$$
\left(\begin{array}{cc}
1+b / z & a \tag{3.15}\\
d / z & c+z
\end{array}\right)\binom{k_{1}}{k_{2}}=\left(\begin{array}{cc}
z+b & a \\
d & c+z
\end{array}\right)\binom{k_{1} / z}{k_{2}}=0 .
$$

And the quadratic equation (??) becomes

$$
\begin{equation*}
z^{2}+(b+c) z+b c-a d=0 . \tag{3.16}
\end{equation*}
$$

So from these equations, we get the following lemma.
Lemma 10. The complex number $-z$ is an eigenvalue of the matrix $A_{23}=\left(\begin{array}{ll}b & a \\ d & c\end{array}\right)$ if and only if z is a root of the quadratic equation (??). And also, $\binom{k_{1}}{k_{2}}$ is a nonzero solution of (??) if and only if $\binom{k_{1} / z}{k_{2}}$ is an eigenvector of A_{23} corresponding to the eigenvalue $-z$.

The quadratic equation (??) has two distinct nonzero roots z_{1} and z_{2} corresponding to the given strictly regular boundary condition. So the matrix A_{23} has two distinct nonzero eigenvalues $-z_{1}$ and $-z_{2}$ by the previous lemma. Let τ_{1} and τ_{2} be chosen such that

$$
z_{1}=e^{i \pi \tau_{1}}, \quad z_{2}=e^{i \pi \tau_{2}}
$$

and

$$
\left|\operatorname{Re} \tau_{1}-\operatorname{Re} \tau_{2}\right| \leq 1, \quad\left|\operatorname{Re} \tau_{1}\right| \leq 1
$$

Then

$$
z_{1}=e^{i \pi \lambda} \quad \Leftrightarrow \quad \lambda=\tau_{1}+k, k \in 2 \mathbb{Z}
$$

and

$$
z_{2}=e^{i \pi \lambda} \quad \Leftrightarrow \quad \lambda=\tau_{2}+k, k \in 2 \mathbb{Z} .
$$

So the set

$$
\begin{equation*}
E=\left\{\tau_{1}+k, \tau_{2}+k ; k \in 2 \mathbb{Z}\right\} \tag{3.17}
\end{equation*}
$$

gives us all eigenvalues of L^{0}.
Now let us fix eigenvectors $\binom{\alpha_{1}}{\alpha_{2}}$ and $\binom{\beta_{1}}{\beta_{2}}$ corresponding to eigenvalues $-z_{1}$ and $-z_{2}$. Then these eigenvectors are linearly independent. Let us define

$$
\left(\begin{array}{ll}
\alpha_{1} & \beta_{1} \tag{3.18}\\
\alpha_{2} & \beta_{2}
\end{array}\right)^{-1}:=\left(\begin{array}{ll}
\alpha_{1}^{\prime} & \alpha_{2}^{\prime} \\
\beta_{1}^{\prime} & \beta_{2}^{\prime}
\end{array}\right) .
$$

By the previous lemma, for each eigenvalue there is an eigenvector of L^{0} of the form (??) with

$$
\binom{k_{1}}{k_{2}}=\binom{\alpha_{1} z_{1}}{\alpha_{2}} \quad \text { if } \lambda=\tau_{1}+k, \quad\binom{k_{1}}{k_{2}}=\binom{\beta_{1} z_{1}}{\beta_{2}} \quad \text { if } \lambda=\tau_{2}+k
$$

So all eigenfunctions of $L_{b c}^{0}$ with boundary conditions (??) are

$$
\begin{equation*}
\Phi^{1}=\left\{\varphi_{k}^{1}, k \in 2 \mathbb{Z}\right\}, \quad \varphi_{k}^{1}:=\binom{z_{1} \alpha_{1} e^{-i\left(\tau_{1}+k\right) x}}{\alpha_{2} e^{i\left(\tau_{1}+k\right) x}}=\binom{\alpha_{1} e^{i \tau_{1}(\pi-x)} e^{-i k x}}{\alpha_{2} e^{i \tau_{1} x} e^{i k x}} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2}=\left\{\varphi_{k}^{2}, k \in 2 \mathbb{Z}\right\}, \quad \varphi_{k}^{2}:=\binom{z_{2} \beta_{1} e^{-i\left(\tau_{2}+k\right) x}}{\beta_{2} e^{i\left(\tau_{2}+k\right) x}}=\binom{\beta_{1} e^{i \tau_{2}(\pi-x)} e^{-i k x}}{\beta_{2} e^{i \tau_{2} x} e^{i k x}} . \tag{3.20}
\end{equation*}
$$

Theorem 11. The set $\Phi=\Phi^{1} \cup \Phi^{2}$ is a Riesz basis in the space $L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$ with its biorthogonal system $\tilde{\Phi}=\tilde{\varphi}^{1} \cup \tilde{\varphi}^{2}$, where

$$
\tilde{\Phi}^{1}=\left\{\tilde{\varphi}_{k}^{1}, k \in 2 \mathbb{Z}\right\}, \quad \tilde{\varphi}_{k}^{1}:=\left(\begin{array}{c}
\overline{\alpha_{1}^{\prime}} e^{i \bar{\tau}_{1}}(\pi-x) \tag{3.21}\\
\overline{\alpha_{2}^{\prime}} e^{-i k x} \\
e^{i \overline{1} x} x
\end{array} e^{i k x} .\right.
$$

and

$$
\begin{equation*}
\tilde{\Phi}^{2}=\left\{\tilde{\varphi}_{k}^{2}, k \in 2 \mathbb{Z}\right\}, \quad \tilde{\varphi}_{k}^{2}:=\binom{\overline{\beta_{1}^{\prime}} e^{i \overline{\tau_{2}}(\pi-x)} e^{-i k x}}{\overline{\beta_{2}^{\prime}} e^{i \overline{\tau_{2} x}} e^{i k x}} \tag{3.22}
\end{equation*}
$$

$\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \beta_{1}^{\prime}, \beta_{2}^{\prime}$ are coming from (??).

Proof. The system consisting of

$$
\begin{equation*}
e_{k}^{1}:=\binom{e^{i k x}}{0}, \quad e_{k}^{2}:=\binom{0}{e^{i k x}}, \quad k \in 2 \mathbb{Z} \tag{3.23}
\end{equation*}
$$

forms an orthonormal basis in $L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$. Now we construct an automorphism on $L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$ which maps this system to Φ. Consider the operator given by

$$
\begin{gather*}
A: L^{2}\left([0, \pi], \mathbb{C}^{2}\right) \rightarrow L^{2}\left([0, \pi], \mathbb{C}^{2}\right) \tag{3.24}\\
A\binom{f}{g}:=\binom{\alpha_{1} e^{i \tau_{1}(\pi-x)} f(\pi-x)}{\alpha_{2} e^{i \tau_{1} x} f(x)}+\binom{\beta_{1} e^{i \tau_{2}(\pi-x)} g(\pi-x)}{\beta_{2} e^{i \tau_{2} x} g(x)} .
\end{gather*}
$$

It is obvious that A maps the system in (??) to Φ. Now we show that A is bounded, A^{-1} exists and is also bounded.

Observe that for any a and b, we have

$$
(a-b)^{2}=a^{2}-2 a b+b^{2} \geq 0 \quad \text { equivalently } \quad a^{2}+b^{2} \geq 2 a b
$$

which gives

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} \leq 2 a^{2}+2 b^{2} .
$$

So if we use this inequality, we get

$$
\begin{aligned}
\left\|A\binom{f}{g}\right\|^{2}= & \left\|\binom{\alpha_{1} e^{i \tau_{1}(\pi-x)} f(\pi-x)}{\alpha_{2} e^{i \tau_{1} x} f(x)}+\binom{\beta_{1} e^{i \tau_{2}(\pi-x)} g(\pi-x)}{\beta_{2} e^{i \tau_{2} x} g(x)}\right\|^{2} \\
\leq & 2\left(\left\|\binom{\alpha_{1} e^{i \tau_{1}(\pi-x)} f(\pi-x)}{\alpha_{2} e^{i \tau_{1} x} f(x)}\right\|^{2}+\left\|\binom{\beta_{1} e^{i \tau_{2}(\pi-x)} g(\pi-x)}{\beta_{2} e^{i \tau_{2} x} g(x)}\right\|^{2}\right) \\
\leq & \frac{2}{\pi}\left(\int_{0}^{\pi}\left[\left|\alpha_{1}\right|^{2}\left|e^{i \tau_{1}(\pi-x)}\right|^{2}|f(\pi-x)|^{2}+\left|\alpha_{2}\right|^{2}\left|e^{i \tau_{1} x}\right|^{2}|f(x)|^{2}\right] d x\right) \\
& +\frac{2}{\pi}\left(\int_{0}^{\pi}\left[\left|\beta_{1}\right|^{2}\left|e^{i \tau_{2}(\pi-x)}\right|^{2}|g(\pi-x)|^{2}+\left|\beta_{2}\right|^{2}\left|e^{i \tau_{2} x}\right|^{2}|g(x)|^{2}\right] d x\right) .
\end{aligned}
$$

Now let

$$
c_{1}:=\max _{x \in[0, \pi]}\left\{\left|e^{i \tau_{1} x}\right|,\left|e^{i \tau_{2} x}\right|\right\}, c_{2}:=\max \left\{\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\left|\beta_{1}\right|,\left|\beta_{2}\right|\right\} \quad \text { and } \quad \tilde{c}=2 c_{1} c_{2} .
$$

Then we have

$$
\begin{aligned}
\left\|A\binom{f}{g}\right\| & \leq 2 c_{1} c_{2}\left(\frac{1}{\pi} \int_{0}^{\pi}|f(\pi-x)|^{2} d x+\int_{0}^{\pi}|g(x)|^{2} d x\right)^{1 / 2} \\
& =\tilde{c}\left(\frac{1}{\pi} \int_{0}^{\pi}\left(|f(x)|^{2}+|g(x)|^{2}\right) d x\right)^{1 / 2} \\
& =\tilde{c}\left\|\binom{f}{g}\right\|
\end{aligned}
$$

Thus we have shown that A is bounded. Let us find its inverse. Let

$$
A\binom{f}{g}=\binom{F}{G} .
$$

Then by definition of A, solving this equation is equivalent to solve the system

$$
\begin{array}{r}
\alpha_{1} e^{i \tau_{1} x} f(x)+\beta_{1} e^{i \tau_{2} x} g(x)=F(\pi-x) \\
\alpha_{2} e^{i \tau_{1} x} f(x)+\beta_{2} e^{i \tau_{2} x} g(x)=G(x),
\end{array}
$$

which can be written in the form

$$
\left(\begin{array}{ll}
\alpha_{1} & \beta_{1} \\
\alpha_{2} & \beta_{2}
\end{array}\right)\binom{e^{i \tau_{1} x} f(x)}{e^{i \tau_{2} x} g(x)}=\binom{F(\pi-x)}{G(x)}
$$

So by (??) we get that

$$
\binom{e^{i \tau_{1} x} f(x)}{e^{i \tau_{2} x} g(x)}=\left(\begin{array}{ll}
\alpha_{1} & \beta_{1} \\
\alpha_{2} & \beta_{2}
\end{array}\right)^{-1}\binom{F(\pi-x)}{G(x)}=\binom{\alpha_{1}^{\prime} F(\pi-x)+\alpha_{2}^{\prime} G(x)}{\beta_{1}^{\prime} F(\pi-x)+\beta_{2}^{\prime} G(x)}
$$

which gives us

$$
A^{-1}\binom{F}{G}=\binom{e^{-i \tau_{1} x}\left[\alpha_{1}^{\prime} F(\pi-x)+\alpha_{2}^{\prime} G(x)\right]}{e^{-i \tau_{2} x}\left[\beta_{1}^{\prime} F(\pi-x)+\beta_{2}^{\prime} G(x)\right]}
$$

So we found A^{-1} and similar with the operator A, the inverse of A is also bounded.
Now only thing left is to calculate the biorthogonal system of Φ. First we calculate the adjoint operator of A^{-1}. Only by using definitions, we get

$$
\begin{aligned}
\left\langle A^{-1}\binom{F}{G},\binom{f}{0}\right\rangle & =\frac{1}{\pi} \int_{0}^{\pi} e^{-i \tau_{1} x}\left[\alpha_{1}^{\prime} F(\pi-x)+\alpha_{2}^{\prime} G(x)\right] \overline{f(x)} d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left(F(x) \overline{\overline{\alpha_{1}^{\prime}} f(\pi-x) e^{i \overline{\tau_{1}}(\pi-x)}}+G(x) \overline{\overline{\alpha_{2}^{\prime}} f(x) e^{i \bar{\tau}_{1} x}}\right) d x \\
& =\left\langle\binom{ F}{G},\binom{\overline{\alpha_{1}^{\prime}} f(\pi-x) e^{i \overline{\tau_{1}}(\pi-x)}}{\overline{\alpha_{2}^{\prime}} f(x) e^{i \overline{\tau_{1}} x}}\right\rangle
\end{aligned}
$$

which means

$$
\left(A^{-1}\right)^{*}\binom{f}{0}=\binom{\overline{\alpha_{1}^{\prime}} f(\pi-x) e^{i \bar{\tau}_{1}(\pi-x)}}{\overline{\alpha_{2}^{\prime}} f(x) e^{i \bar{\tau}_{1} x}} .
$$

Similarly the following equation holds

$$
\left(A^{-1}\right)^{*}\binom{0}{g}=\binom{\overline{\beta_{1}^{\prime}} g(\pi-x) e^{i \bar{\tau}_{2}(\pi-x)}}{\overline{\beta_{2}^{\prime}} f(x) e^{i \overline{\bar{\tau}_{2}} x}}
$$

Since $\left(A^{-1}\right)^{*}$ is linear

$$
\left(A^{-1}\right)^{*}\binom{f}{g}=\binom{\overline{\alpha_{1}^{\prime}} f(\pi-x) e^{i \bar{\tau}_{1}(\pi-x)}}{\overline{\alpha_{2}^{\prime}} f(x) e^{i \bar{\tau}_{1} x}}+\binom{\overline{\beta_{1}^{\prime}} g(\pi-x) e^{i \bar{\tau}_{2}(\pi-x)}}{\overline{\beta_{2}^{\prime}} f(x) e^{i \bar{\tau}_{2} x}} .
$$

In view of (??), (??) and (??) really gives the biorthogonal system of Φ and Φ is a Riesz basis for $L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$. We are done.

Theorem 12. The spectrum of $L_{b c}^{0}$, considered with strictly regular boundary conditions bc of the form (??), consists only of its eigenvalues.

Proof. Assume λ is not an eigenvalue of $L_{b c}^{0}$. Since

$$
\left(\lambda-L_{b c}^{0}\right) \varphi_{k}^{1}=\left[\lambda-\left(\tau_{1}+k\right)\right] \varphi_{k}^{1},
$$

we have

$$
\left(\lambda-L_{b c}^{0}\right)^{-1} \varphi_{k}^{1}:=\frac{1}{\lambda-\left(\tau_{1}+k\right)} \varphi_{k}^{1},
$$

where φ_{k}^{1} is an eigenvector of the form (??) and $\left(\tau_{1}+k\right)$ is the corresponding eigenvalue. Similarly

$$
\left(\lambda-L_{b c}^{0}\right)^{-1} \varphi_{k}^{2}:=\frac{1}{\lambda-\left(\tau_{2}+k\right)} \varphi_{k}^{2},
$$

for an eigenvector φ_{k}^{2} of the form (??) with corresponding eigenvalue $\left(\tau_{2}+k\right)$.
Let $f \in L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$. By using the previous theorem, we can write f as

$$
f=\sum_{k \in 2 \mathbb{Z}}\left(f^{k, 1} \varphi_{k}^{1}+f^{k, 2} \varphi_{k}^{2}\right),
$$

where $f^{k, i}=\left\langle f, \tilde{\varphi}_{k}^{i}\right\rangle$ for $i=1,2$.
Now we can define the inverse by

$$
\begin{aligned}
\left(\lambda-L_{b c}^{0}\right)^{-1}(f) & =\left(\lambda-L_{b c}^{0}\right)^{-1}\left(\sum_{k \in 2 \mathbb{Z}}\left(f^{k, 1} \varphi_{k}^{1}+f^{k, 2} \varphi_{k}^{2}\right)\right) \\
& :=\sum_{k \in 2 \mathbb{Z}}\left(f^{k, 1} \frac{1}{\lambda-\left(\tau_{1}+k\right)} \varphi_{k}^{1}+f^{k, 2} \frac{1}{\lambda-\left(\tau_{2}+k\right)} \varphi_{k}^{2}\right) .
\end{aligned}
$$

Since this formula gives the algebraic inverse, it remains to show that this inverse operator is bounded. But we have

$$
\begin{aligned}
\left\|\left(\lambda-L_{b c}^{0}\right)^{-1} f\right\|= & \left\|\sum_{k \in 2 \mathbb{Z}}\left(f^{k, 1} \frac{1}{\lambda-\left(\tau_{1}+k\right)} \varphi_{k}^{1}+f^{k, 2} \frac{1}{\lambda-\left(\tau_{2}+k\right)} \varphi_{k}^{2}\right)\right\| \\
\leq & \sum_{k \in 2 \mathbb{Z}}\left\|f^{k, 1} \frac{1}{\lambda-\left(\tau_{1}+k\right)} \varphi_{k}^{1}\right\|+\sum_{k \in 2 \mathbb{Z}}\left\|f^{k, 2} \frac{1}{\lambda-\left(\tau_{2}+k\right)} \varphi_{k}^{2}\right\| \\
\leq & \left(\sum_{k \in 2 \mathbb{Z}}\left\|f^{k, 1}\right\|^{2}\left\|\varphi_{k}^{1}\right\|^{2}\right)^{1 / 2}\left(\sum_{k \in 2 \mathbb{Z}} \frac{1}{\left|\lambda-\left(\tau_{1}+k\right)\right|^{2}}\right)^{1 / 2} \\
& +\left(\sum_{k \in 2 \mathbb{Z}}\left\|f^{k, 2}\right\|^{2}\left\|\varphi_{k}^{2}\right\|^{2}\right)^{1 / 2}\left(\sum_{k \in 2 \mathbb{Z}} \frac{1}{\left|\lambda-\left(\tau_{2}+k\right)\right|^{2}}\right)^{1 / 2} \\
\leq & {\left[\left(\sum_{k \in 2 \mathbb{Z}} \frac{1}{\left|\lambda-\left(\tau_{1}+k\right)\right|^{2}}\right)^{1 / 2}+\left(\sum_{k \in 2 \mathbb{Z}} \frac{1}{\left|\lambda-\left(\tau_{2}+k\right)\right|^{2}}\right)^{1 / 2}\right]\|A\|\left\|A^{-1}\right\|\|f\| }
\end{aligned}
$$

where A is the operator defined in (??), and we get the last inequality by using (??). So it is only left to show the convergence of the series in the last part of the equality.

For this fixed λ, there is $n \in 2 \mathbb{Z}$ such that

$$
\left|\operatorname{Re}\left(\lambda-\left(\tau_{1}+n\right)\right)\right| \leq 1
$$

since $\left|R e \tau_{1}\right| \leq 1$. This implies, for $k \neq n$

$$
\begin{aligned}
\left|\lambda-\left(\tau_{1}+k\right)\right| \geq \mid \operatorname{Re}(\lambda & \left.-\left(\tau_{1}+n\right)+n-k\right)\left|\geq|n-k|-\left|\operatorname{Re}\left(\lambda-\left(\tau_{1}+n\right)\right)\right|\right. \\
& \geq|n-k|-1 \geq \frac{1}{2}|n-k|
\end{aligned}
$$

since n, k are even numbers. Now for the first series, we get

$$
\begin{aligned}
\sum_{k \in 2 \mathbb{Z}} \frac{1}{\left|\lambda-\left(\tau_{1}+k\right)\right|^{2}} & =\frac{1}{\left|\lambda-\tau_{1}-n\right|^{2}}+\sum_{k \neq n} \frac{1}{\left|\lambda-\tau_{1}-k\right|^{2}} \\
& \leq \frac{1}{\left|\lambda-\tau_{1}-n\right|^{2}}+\sum_{k \neq n} \frac{1}{(|n-k|-1)^{2}} \\
& \leq \frac{1}{\left|\lambda-\tau_{1}-n\right|^{2}}+\sum_{k \neq n} \frac{2^{2}}{|n-k|^{2}} .
\end{aligned}
$$

So we have shown that the first series is convergent. Similar argument proves that the second series converges.

This proves the operator $\left(\lambda-L_{b c}^{0}\right)^{-1}$ is bounded if λ is not an eigenvalue of $L_{b c}^{0}$. This means that spectrum of $L_{b c}^{0}$ only contains its eigenvalues. So the proof is completed.

Now we consider the spectra localization of the operators $L_{b c}=L_{b c}^{0}+V$, where V denotes the operator of multiplication by the matrix $v(x)=\left(\begin{array}{cc}0 & P(x) \\ Q(x) & 0\end{array}\right)$. We subdivide the complex plane \mathbb{C} into the strips

$$
H_{m}=\left\{z \in \mathbb{C}:-1 \leq \operatorname{Re}\left(z-m-\frac{\tau_{1}+\tau_{2}}{2}\right) \leq 1\right\}, \quad m \in 2 \mathbb{Z}
$$

and set

$$
\begin{gathered}
H^{N}=\bigcup_{|m| \leq N} H_{m} \\
R_{N}=\left\{z=x+i t:\left|x-\operatorname{Re} \frac{\tau_{1}+\tau_{2}}{2}\right|<N+1,|t|<N\right\},
\end{gathered}
$$

where $N \in 2 \mathbb{N}$. Let

$$
\rho:=\min \left(1-\left|\operatorname{Re}\left(\tau_{1}-\tau_{2}\right)\right| / 2,\left|\tau_{1}-\tau_{2}\right| / 2\right),
$$

and

$$
D_{m}^{\mu}=\left\{z \in \mathbb{C}:\left|z-\tau_{m}-m\right|<\rho\right\}, \quad m \in 2 \mathbb{Z}
$$

It is known that (see [?], Theorem 12.) for each strictly regular $b c$, there is an $N \in 2 \mathbb{N}$ such that

$$
S p\left(L_{b c}\right) \subset R_{N} \cup \bigcup_{|n|>N}\left(D_{n}^{1} \cup D_{n}^{2}\right)
$$

Moreover, each disc $D_{n}^{\alpha}, \alpha=1,2,|n|>N$ contains exactly one simple eigenvalue of $L_{b c}$, while R_{N} contains $2 N$ eigenvalues of $L_{b c}$. Let us consider the Riesz projections associated with $L_{b c}$

$$
\begin{equation*}
S_{N}=\frac{1}{2 \pi i} \int_{\partial R_{N}}(\lambda-L)^{-1} d \lambda, \quad P_{n, \alpha}=\frac{1}{2 \pi i} \int_{\partial D_{n}^{\alpha}}(\lambda-L)^{-1} d \lambda, \quad \alpha=1,2 \tag{3.25}
\end{equation*}
$$

and let S_{N}^{0} and $P_{n, \alpha}^{0}$ be the Riesz projections associated with the free operator $L_{b c}^{0}$. Next we use the following theorem (see [?], Theorem 15).

Theorem 13. Suppose $L_{b c}$ and $L_{b c}^{0}$ are, respectively, the Dirac operator with an L^{2} potential and the corresponding free Dirac operator, subject to the same strictly regular boundary conditions bc. Then, there is an $N \in 2 \mathbb{N}$ such that the Riesz projections $S_{N}, P_{n, \alpha}$ and $S_{N}^{0}, P_{n, \alpha}^{0}, n \in 2 \mathbb{Z},|n|>N, \alpha=1,2$, associated with L and L^{0} are well defined by (??), and we have

$$
\begin{gather*}
\operatorname{dim} P_{n, \alpha}=\operatorname{dim} P_{n, \alpha}^{0}=1, \quad \operatorname{dim} S_{N}=\operatorname{dim} S_{N}^{0}=2 N ; \tag{3.26}\\
\sum_{|n|>N}\left\|P_{n, \alpha}-P_{n, \alpha}^{0}\right\|^{2}<\infty, \quad \alpha=1,2 \tag{3.27}\\
\text { If } S_{N}(x)=0, P_{n, \alpha}=0 \quad \forall n, \alpha \Rightarrow x=0 \tag{3.28}
\end{gather*}
$$

Let $\varphi_{n}^{\alpha}, \alpha=1,2$ are unit eigenfunctions of the free Dirac operator $L_{b c}^{0}$ such that

$$
L_{b c}^{0} \varphi_{n}^{\alpha}=\lambda_{n, 0}^{\alpha} \varphi_{n}^{\alpha},
$$

where $\lambda_{n, 0}^{\alpha}=\tau_{\alpha}+n$. For $|n|>N$, set

$$
\Psi_{n}^{\alpha}=P_{n, \alpha}\left(\varphi_{n}^{\alpha}\right)
$$

Then Ψ_{n}^{α} are eigenvectors of the $L_{b c}$ such that

$$
L_{b c} \Psi_{n}^{\alpha}=\lambda_{n}^{\alpha} \Psi_{n}^{\alpha},
$$

where $\lambda_{n}^{\alpha} \in D_{n}^{\alpha}$. By using the previous theorem, we obtain that

$$
\sum_{|n|>N}\left\|\Psi_{n}^{\alpha}-\varphi_{n}^{\alpha}\right\|^{2}=\sum_{|n|>N}\left\|P_{n, \alpha}\left(\varphi_{n}^{\alpha}\right)-P_{n, \alpha}^{0}\left(\varphi_{n}^{\alpha}\right)\right\|^{2} \leq \sum_{|n|>N}\left\|P_{n, \alpha}-P_{n, \alpha}^{0}\right\|^{2}<\infty
$$

since $\left\|\varphi_{n}^{\alpha}\right\|=1$. Thus $\left(\Psi_{n}^{\alpha},|n|>N, \alpha=1,2\right)$ forms a Riesz bases in its closed linear span.

We can write $H=L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$ as direct sum of the spaces (not orthogonal) H_{1} and H_{0}

$$
H=H_{0} \oplus H_{1}
$$

where

$$
H_{0}=\operatorname{Ran}\left(S_{N}\right), \quad H_{1}=\operatorname{Ran}\left(1-S_{N}\right)
$$

By (??), H_{1} is the closed linear span of ($\Psi_{n}^{\alpha},|n|>N, \alpha=1,2$), so $\left(\Psi_{n}^{\alpha},|n|>N, \alpha=1,2\right)$ forms a Riesz basis in $H_{1} . H_{0}$ is a finite dimensional invariant subspace. So we can choose a basis for H_{0} consisting of root functions of $L_{b c}$ corresponding to eigenvalues in R_{N}. Then the union of this chosen basis and $\left(\Psi_{n}^{\alpha},|n|>N, \alpha=1,2\right)$ forms a Riesz basis in $L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$. Hence we have shown the existence of Riesz basis consisting of root functions of $L_{b c}$.

4 Adjoint of the Dirac operator

In this section, we find the adjoint operator of $L_{b c}(v)$ subject to regular boundary conditions.

We may assign to every boundary condition $b c$ of the form (??) a corresponding operator $L_{b c}(v)$ as follows. Let
$\operatorname{Dom}\left(L_{b c}(v)\right)=\left\{y=\binom{y_{1}}{y_{2}}: y_{1}\right.$ and y_{2} are absolutely continuous, y satisfies the boundary conditions $b c$ and $\left.y_{1}^{\prime}, y_{2}^{\prime} \in L^{2}([0, \pi])\right\}$.
and let

$$
L_{b c}(v) y=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{y_{1}^{\prime}}{y_{2}^{\prime}}+\left(\begin{array}{cc}
0 & P(x) \\
Q(x) & 0
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

In the following we assume that $P, Q \in L^{2}([0, \pi])$. By C_{0}^{∞}, we denote the set of all infinitely differentiable functions φ such that $\operatorname{supp}(\varphi) \subset(0, \pi)$.

Lemma 14. If $f \in L^{2}([a, b])$ and $\int_{a}^{b} \phi^{\prime} \overline{f(x)} d x=0$, for every $\phi \in C_{0}^{\infty}([a, b])$, then f is constant.
Proof. Fix $\phi_{0} \in C_{0}^{\infty}$ such that $\int_{a}^{b} \phi_{0}(t) d t=1$. Let $\psi \in C_{0}^{\infty}$ and let

$$
c=\int_{a}^{b} \psi(t) d t .
$$

Then

$$
\psi(x)-c \phi_{0}(x)=\phi^{\prime}(x)
$$

where

$$
\phi(x)=\int_{a}^{x}\left(\psi(t)-c \phi_{0}(t)\right) d t
$$

Observe that $\phi \in C_{0}^{\infty}$, so

$$
\int_{a}^{b} \phi^{\prime}(t) \overline{f(t)} d t=0
$$

Since $\psi(x)-c \phi_{0}(x)=\phi^{\prime}(x)$, we get

$$
\int_{a}^{b}\left[\psi(t)-c \phi_{0}(t)\right] \overline{f(t)} d t=0
$$

which gives

$$
\int_{a}^{b} \psi(t) \overline{f(t)} d t=c \int_{a}^{b} \phi_{0}(t) \overline{f(t)} d t
$$

Now let

$$
d=\int_{a}^{b} \phi_{0}(t) \overline{f(t)} d t .
$$

So last equation means that

$$
\int_{a}^{b} \psi(t) \overline{f(t)} d t=d \int_{a}^{b} \psi(t) d t
$$

which also means

$$
\int_{a}^{b} \psi(t)[\overline{f(t)}-d] d t=0, \quad \forall \psi \in C_{0}^{\infty}
$$

Since C_{0}^{∞} is dense in $L^{2}([0, \pi])$, we have

$$
\overline{f(t)}-d=0
$$

Thus f is constant.
Theorem 15. Let $L_{b c}(v)$ be the Dirac operator with boundary conditions bc given by (??). Then its adjoint operator $\left(L_{b c}(v)\right)^{*}$ is $L_{b c^{*}}\left(v^{*}\right)$ where boundary conditions bc* given by the system

$$
\begin{gathered}
\bar{b} g_{1}(0)+g_{1}(\pi)+\bar{d} g_{2}(\pi)=0 \\
\bar{a} g_{1}(0)+g_{2}(0)+\bar{c} g_{2}(\pi)=0
\end{gathered}
$$

and

$$
v^{*}=\left(\begin{array}{cc}
0 & \bar{Q} \\
\bar{P} & 0
\end{array}\right) .
$$

Proof. Let $g=\binom{g_{1}}{g_{2}} \in \operatorname{Dom}\left(\left(L_{b c}(v)\right)^{*}\right)$. Then there exists $h=\binom{h_{1}}{h_{2}} \in L^{2}\left([0, \pi], \mathbb{C}^{2}\right)$ such that

$$
\left\langle L\binom{f_{1}}{f_{2}},\binom{g_{1}}{g_{2}}\right\rangle=\left\langle\binom{ f_{1}}{f_{2}},\binom{h_{1}}{h_{2}}\right\rangle, \quad \forall f=\binom{f_{1}}{f_{2}} \in \operatorname{Dom}\left(L_{b c}(v)\right) .
$$

Since

$$
L\binom{f_{1}}{f_{2}}=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{f_{1}^{\prime}}{f_{2}^{\prime}}+\left(\begin{array}{cc}
0 & P \\
Q & 0
\end{array}\right)\binom{f_{1}}{f_{2}}=\binom{i f_{1}^{\prime}+P f_{2}}{-i f_{2}^{\prime}+Q f_{1}},
$$

we have

$$
\begin{equation*}
\left\langle\binom{ i f_{1}^{\prime}+P f_{2}}{-i f_{2}^{\prime}+Q f_{1}},\binom{g_{1}}{g_{2}}\right\rangle=\left\langle\binom{ f_{1}}{f_{2}},\binom{h_{1}}{h_{2}}\right\rangle . \tag{4.1}
\end{equation*}
$$

Therefore

$$
\begin{gathered}
\frac{1}{\pi} \int_{0}^{\pi}\left(\left[i f_{1}^{\prime}(x)+\right.\right. \\
\left.\left.P(x) f_{2}(x)\right] \overline{g_{1}(x)}+\left[-i f_{2}^{\prime}(x)+Q(x) f_{1}(x)\right] \overline{g_{2}(x)}\right) d x \\
=\frac{1}{\pi} \int_{0}^{\pi}\left(f_{1}(x) \overline{h_{1}(x)}+f_{2}(x) \overline{h_{2}(x)}\right) d x
\end{gathered}
$$

Let us define

$$
\begin{gathered}
H_{1}(x)=\int_{0}^{x} h_{1}(t) d t \quad \text { and } \quad H_{2}(x)=\int_{0}^{x} h_{2}(t) d t \\
I_{1}(x)=\int_{0}^{x} \overline{P(t)} g_{1}(t) d t \quad \text { and } \quad I_{2}(x)=\int_{0}^{x} \overline{Q(t)} g_{2}(t) d t .
\end{gathered}
$$

So if we plug in these functions in the last equation and do integration by parts, we get that

$$
\begin{gathered}
\int_{0}^{\pi}\left(i f_{1}^{\prime}(x) \overline{g_{1}(x)}\right) d x-\int_{0}^{\pi}\left(i f_{2}^{\prime}(x) \overline{g_{2}(x)}\right) d x+f_{2}(\pi) \overline{I_{1}(\pi)}-f_{2}(0) \overline{I_{1}(0)}-\int_{0}^{\pi} f_{2}^{\prime}(x) \overline{I_{1}(x)} d x \\
+f_{1}(\pi) \overline{I_{2}(\pi)}-f_{1}(0) \overline{I_{2}(0)}-\int_{0}^{\pi} f_{1}^{\prime}(x) \overline{I_{2}(x)} d x
\end{gathered}
$$

$=f_{1}(\pi) \overline{H_{1}(\pi)}-f_{1}(0) \overline{H_{1}(0)}-\int_{0}^{\pi} f_{1}^{\prime}(x) \overline{H_{1}(x)} d x+f_{2}(\pi) \overline{H_{2}(\pi)}-f_{2}(0) \overline{H_{2}(0)}-\int_{0}^{\pi} f_{2}^{\prime}(x) \overline{H_{2}(x)} d x$.
This equality holds for every $f \in \operatorname{Dom}\left(L_{b c}(v)\right)$. Since $C_{0}^{\infty} \subset \operatorname{Dom}\left(L_{b c}(v)\right)$, we can take $f \in C_{0}^{\infty}$. Then $f_{1}(\pi)=f_{2}(\pi)=f_{1}(0)=f_{2}(0)=0$. So we have

$$
\int_{0}^{\pi}\left[f_{1}^{\prime}(x)\left(i \overline{g_{1}(x)}-\overline{I_{2}(x)}+\overline{H_{1}(x)}\right)+f_{2}^{\prime}(x)\left(-i \overline{g_{2}(x)}-\overline{I_{1}(x)}+\overline{H_{2}(x)}\right)\right] d x=0
$$

If we take $f_{2}(x)=0$ and use the previous lemma, we get

$$
-i g_{1}-I_{2}+H_{1}=\text { constant. }
$$

And similarly if we take $f_{1}(x)=0$, we get

$$
i g_{2}-I_{1}+H_{2}=\text { constant. }
$$

By taking derivatives of the last two equations, it follows that

$$
h_{1}=i g_{1}^{\prime}+\bar{Q} g_{2} \quad \text { and } \quad h_{2}=-i g_{2}^{\prime}+\bar{P} g_{1} .
$$

Thus we have found that

$$
\left(L_{b c}(v)\right)^{*}\binom{g_{1}}{g_{2}}=\binom{h_{1}}{h_{2}}=\binom{i g_{1}^{\prime}+\bar{Q} g_{2}}{-i g_{2}^{\prime}+\bar{P} g_{1}}=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{g_{1}^{\prime}}{g_{2}^{\prime}}+\left(\begin{array}{cc}
0 & \bar{Q} \\
\bar{P} & 0
\end{array}\right)\binom{g_{1}}{g_{2}} .
$$

And also g_{1} and g_{2} are absolutely continuous functions, since H_{1} and H_{2} are absolutely continuous functions by their construction. Now, (??) becomes

$$
\left\langle\binom{ i f_{1}^{\prime}+P f_{2}}{-i f_{2}^{\prime}+Q f_{1}},\binom{g_{1}}{g_{2}}\right\rangle=\left\langle\binom{ f_{1}}{f_{2}},\binom{i g_{1}^{\prime}+\bar{Q} g_{2}}{-i g_{2}^{\prime}+\bar{P} g_{1}}\right\rangle, \quad \forall f \in \operatorname{Dom}\left(L_{b c}(v)\right) .
$$

Therefore

$$
\begin{aligned}
& \int_{0}^{\pi}\left(\left[i f_{1}^{\prime}(x)+P(x) f_{2}(x)\right] \overline{g_{1}(x)}+\left[-i f_{2}^{\prime}(x)+Q(x) f_{1}(x)\right] \overline{g_{2}(x)}\right) d x \\
= & \int_{0}^{\pi}\left(f_{1}(x) \overline{\left[i g_{1}^{\prime}(x)+\overline{Q(x)} g_{2}(x)\right]}+f_{2}(x) \overline{\left[-i g_{2}^{\prime}(x)+\overline{P(x)} g_{1}(x)\right]}\right) d x
\end{aligned}
$$

which gives us

$$
\begin{aligned}
& \int_{0}^{\pi}\left[i f_{1}^{\prime}(x) \overline{g_{1}(x)}+P(x) f_{2}(x) \overline{g_{1}(x)}-i f_{2}^{\prime}(x) \overline{g_{2}(x)}+Q(x) f_{1}(x) \overline{g_{2}(x)}\right] d x \\
= & \int_{0}^{\pi}\left[-i f_{1}(x) g_{1}^{\prime}(x)+f_{1}(x) Q(x) \overline{g_{2}(x)}+i f_{2}(x) \overline{g_{2}^{\prime}(x)}+f_{2}(x) P(x) \overline{g_{1}(x)}\right] d x .
\end{aligned}
$$

By canceling the terms which appear on both sides, we get

$$
\int_{0}^{\pi}\left[\left(f_{1}^{\prime}(x) \overline{g_{1}(x)}+f_{1}(x) \overline{g_{1}^{\prime}(x)}\right)-\left(f_{2}^{\prime}(x) \overline{g_{2}(x)}+f_{2}(x) \overline{g_{2}^{\prime}(x)}\right)\right] d x=0
$$

which also can be written as

$$
\int_{0}^{\pi}\left[\frac{d}{d x}\left(f_{1}(x) \overline{g_{1}(x)}\right)-\frac{d}{d x}\left(f_{2}(x) \overline{g_{2}(x)}\right)\right] d x=0
$$

Finally by evaluating the integral, we get the equation

$$
\begin{equation*}
f_{1}(\pi) \overline{g_{1}(\pi)}-f_{1}(0) \overline{g_{1}(0)}-f_{2}(\pi) \overline{g_{2}(\pi)}+f_{2}(0) \overline{g_{2}(0)}=0 . \tag{4.2}
\end{equation*}
$$

We use boundary conditions $b c$ of the form (??). First we write $f_{1}(0)$ and $f_{2}(\pi)$ in terms of $f_{1}(\pi)$ and $f_{2}(0)$, that is

$$
\begin{aligned}
& f_{1}(0)=-b f_{1}(\pi)-a f_{2}(0) \\
& f_{2}(\pi)=-d f_{1}(\pi)-c f_{2}(0)
\end{aligned}
$$

If we plug in these two equations in (??), we get that

$$
f_{1}(\pi) \overline{g_{1}(\pi)}-\left(-b f_{1}(\pi)-a f_{2}(0)\right) \overline{g_{1}(0)}-\left(-d f_{1}(\pi)-c f_{2}(0)\right) \overline{g_{2}(\pi)}+f_{2}(0) \overline{g_{2}(0)}=0
$$

Therefore

$$
f_{1}(\pi)\left[\overline{g_{1}(\pi)}+b \overline{g_{1}(0)}+d \overline{\left.g_{2} \pi\right)}\right]+f_{2}(0)\left[a \overline{g_{1}(0)}+c \overline{g_{2}(\pi)}+\overline{g_{2}(0)}\right]=0
$$

And this identity holds for every $f \in \operatorname{Dom}\left(L_{b c}^{0}(v)\right)$. We can find an f such that $f_{1}(\pi)=1$ and $f_{2}(0)=0$. Similarly we can find an f such that $f_{1}(\pi)=0$ and $f_{2}(0)=1$. So boundary conditions of the adjoint operator $\left(L_{b c}(v)\right)^{*}$ are given by the equations

$$
\begin{gather*}
\bar{b} g_{1}(0)+g_{1}(\pi)+\bar{d} g_{2}(\pi)=0 \\
\bar{a} g_{1}(0)+g_{2}(0)+\bar{c} g_{2}(\pi)=0 . \tag{4.3}
\end{gather*}
$$

Let $b c^{*}$ be the boundary conditions defined by (??). It is associated with the matrix

$$
\left(\begin{array}{cccc}
\bar{b} & 1 & 0 & \bar{d} \\
\bar{a} & 0 & 1 & \bar{c}
\end{array}\right),
$$

so $b c^{*}$ is not in the canonical form (??). In order to get that form, we multiply this matrix from the left by

$$
\left(\begin{array}{ll}
\bar{b} & \bar{d} \\
\bar{a} & \bar{c}
\end{array}\right)^{-1}=\frac{1}{\overline{b c}-\overline{d a}}\left(\begin{array}{cc}
\bar{c} & -\bar{d} \\
-\bar{a} & \bar{b}
\end{array}\right)
$$

and we get

$$
\left(\begin{array}{cccc}
1 & \frac{\bar{c}}{\overline{b c} \overline{d a}} & -\frac{\bar{c}}{\overline{b c}-\overline{d a}} & 0 \tag{4.4}\\
0 & -\frac{\bar{a}}{\overline{b c}-\overline{d a}} & \frac{\bar{b}}{\overline{b c}-\overline{d a}} & 1
\end{array}\right) .
$$

The system associated with this matrix gives us an equivalent system to (??).
So throughout this proof, we have also shown that
$\operatorname{Dom}\left(\left(L_{b c}(v)\right)^{*}\right)=\left\{y=\binom{y_{1}}{y_{2}}: y_{1}\right.$ and y_{2} are absolutely continuous, y satisfies the boundary conditions $b c^{*}$ and $\left.y_{1}^{\prime}, y_{2}^{\prime} \in L^{2}([0, \pi])\right\}$.
where $b c^{*}$ is given by (??) when $b c$ is of the form (??). And also $b c^{*}$ is equivalent to the boundary condition associated with the matrix (??).

Corollary 16. The operator $L_{b c}$ is closed.
Proof. By the previous theorem, we have that

$$
\left(L_{b c}(v)\right)^{*}=L_{b c^{*}}\left(v^{*}\right),
$$

and

$$
\left(L_{b c^{*}}\left(v^{*}\right)\right)^{*}=L_{b c^{* *}}(v) .
$$

But we also have

$$
\left(\left(L_{b c}(v)\right)^{*}\right)^{*}=\overline{L_{b c}(v)} .
$$

Recall that we consider $b c$ given by the matrix (??) and corresponding $b c^{*}$ is given by the matrix (??). We have

$$
\operatorname{det}\left(\begin{array}{cc}
\frac{\bar{c}}{\overline{b c}-\overline{d a}} & -\frac{\bar{c}}{\overline{b c}-\overline{d a}} \\
-\frac{\bar{a}}{\overline{b c}-\overline{d a}} & \overline{\overline{b c}-\overline{d a}}
\end{array}\right)=\frac{\overline{c b}-\overline{d a}}{(\overline{b c}-\overline{d a})^{2}}=\frac{1}{\overline{b c}-\overline{d a}} .
$$

So $b c^{* *}$ is given by the matrix

$$
\left(\begin{array}{llll}
1 & b & a & 0 \\
0 & d & c & 1
\end{array}\right)
$$

Then $b c^{* *}$ and $b c$ are given by the same matrix. Thus

$$
\overline{L_{b c}(v)}=\left(\left(L_{b c}(v)\right)^{*}\right)^{*}=L_{b c^{* *}}(v)=L_{b c}(v) .
$$

Hence $L_{b c}(v)$ is a closed operator.
Let L_{00}^{0} be the free Dirac operator with domain

$$
\begin{aligned}
\operatorname{Dom}\left(L_{00}^{0}\right)= & \left\{f=\binom{f_{1}}{f_{2}}: f_{1}, f_{2}\right. \text { are absolutely continuous functions, } \\
& \left.f_{1}^{\prime}, f_{2}^{\prime} \in L^{2}([0, \pi]), f_{1}(0)=f_{1}(\pi)=0, f_{2}(0)=f_{2}(\pi)=0\right\}
\end{aligned}
$$

The same argument that we use in the proof of Theorem 9 shows that L_{00}^{0} is closed. L_{00}^{0} is obviously a densely defined operator with this domain.

Now we find the adjoint of L_{00}^{0}. Exactly with the same calculations done for finding adjoint of $L_{b c}$, we can show that L_{00}^{0} is a symmetric operator.

Let $g=\binom{g_{1}}{g_{2}} \in \operatorname{Dom}\left(\left(L_{00}^{0}\right)^{*}\right)$. Then for all $f=\binom{f_{1}}{f_{2}} \in \operatorname{Dom}\left(L_{00}^{0}\right)$, again by he calculations done before, we obtain

$$
f_{1}(\pi) \overline{g_{1}(\pi)}-f_{1}(0) \overline{g_{1}(0)}-f_{2}(\pi) \overline{g_{2}(\pi)}+f_{2}(0) \overline{g_{2}(0)}=0 .
$$

Since $f \in \operatorname{Dom}\left(L_{00}^{0}\right)$, we have $f_{1}(0), f_{1}(\pi), f_{2}(0), f_{2}(\pi)=0$. So the last equality holds for any $g \in \operatorname{Dom}\left(\left(L_{00}^{0}\right)^{*}\right)$. Thus adjoint of L_{00}^{0} is the free Dirac operator with domain
$\operatorname{Dom}\left(\left(L_{00}^{0}\right)^{*}\right)=\left\{y=\binom{y_{1}}{y_{2}}: y_{1}\right.$ and y_{2} are absolutely continuous, $\left.y_{1}^{\prime}, y_{2}^{\prime} \in L^{2}([0, \pi])\right\}$.

5 Self-adjoint Dirac Operators and Self-adjoint bc

In this section, we study self-adjoint boundary conditions and self-adjoint Dirac operators.

Recall that a densely defined unbounded operator A is called self-adjoint if $A=$ A^{*}, that is $\operatorname{dom} A=\operatorname{dom} A^{*}$ and $A^{*} f=A f$ for every $f \in \operatorname{Dom} A$. So if A satisfies some boundary conditions $b c$, then A^{*} must also satisfy the same $b c$.

We have seen that if the boundary conditions of $L_{b c}(v)$ is given by the matrix

$$
\left(\begin{array}{llll}
1 & b & a & 0 \\
0 & d & c & 1
\end{array}\right),
$$

then the boundary conditions $b c^{*}$ of $\left(L_{b c}(v)\right)^{*}$ is given by the matrix

$$
\left(\begin{array}{cccc}
1 & \frac{\bar{c}}{\overline{b c} \overline{-\bar{a}}} & -\frac{\bar{d}}{\overline{b c}-\overline{d a}} & 0 \\
0 & -\frac{\bar{b}}{\overline{b c}-\overline{d a}} & \frac{\bar{b}}{\overline{b c}-\overline{d a}} & 1
\end{array}\right) .
$$

So if the operator $L_{b c}(v)$ is self-adjoint, then

$$
\left(\begin{array}{ll}
b & a \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
\frac{\bar{c}}{\overline{b c}-\bar{d} a} & -\frac{\bar{d}}{\bar{b}-\overline{\bar{d} a}} \\
-\overline{\bar{c}} \overline{b c-\overline{d a}} & \overline{\bar{b} c-\overline{d a}}
\end{array}\right) .
$$

The determinants of these two matrices must be equal, that is

$$
\Delta=b c-a d=\frac{\overline{c b-d a}}{(\overline{b c-d a})^{2}},
$$

which gives us

$$
|\Delta|=|b c-a d|=1 .
$$

Therefore

$$
|b|=\left|\frac{\bar{c}}{\overline{b c}-\overline{d a}}\right|=|c| \quad \text { and } \quad|a|=\left|-\frac{\bar{d}}{\overline{b c}-\overline{d a}}\right|=|d| \text {. }
$$

Since $|\Delta|=1$, let

$$
\Delta=e^{i \theta}, \quad a=\rho e^{i \alpha} \quad \text { and } \quad b=|b| e^{i \beta}
$$

for some $\alpha, \beta, \theta \in[0,2 \pi)$ and $\rho \in \mathbb{R}^{+}$. Then

$$
|\Delta|=|b c-a d|=\left|\frac{b \bar{b}+a \bar{a}}{\bar{\Delta}}\right|=\left||b|^{2}+|\rho|^{2}\right|=1
$$

so

$$
|b|=\sqrt{1-\rho^{2}} .
$$

Then

$$
\begin{equation*}
\Delta=e^{i \theta}, \quad a=\rho e^{i \alpha} \quad \text { and } \quad b=\sqrt{1-\rho^{2}} e^{i \beta}, \tag{5.1}
\end{equation*}
$$

for some $\alpha, \beta, \theta \in[0,2 \pi)$ and $\rho \in(0,1)$. Therefore

$$
\begin{gather*}
c=\frac{\bar{b}}{\bar{\Delta}}=\bar{b} \Delta=\sqrt{1-\rho^{2}} e^{i(\theta-\beta)} \tag{5.2}\\
d=-\frac{\bar{a}}{\bar{\Delta}}=-\bar{a} \Delta=-\rho e^{i(\theta-\alpha)} . \tag{5.3}
\end{gather*}
$$

Now assume that $b c$ is given by the matrix (??) and a, b, c and d satisfies (??), (??) and (??). Then the terms of the matrix (??) becomes

$$
\begin{gathered}
\frac{\bar{c}}{\bar{\Delta}}=\bar{c} \Delta=\sqrt{1-\rho^{2}} e^{i(\beta-\theta)} e^{i \theta}=\sqrt{1-\rho^{2}} e^{i \beta}=b, \\
-\frac{\bar{d}}{\bar{\Delta}}=-\bar{d} \Delta=\rho e^{i(\alpha-\theta)} e^{i \theta}=\rho e^{i \alpha}=a \\
-\frac{\bar{a}}{\bar{\Delta}}=-\bar{a} \Delta=-\frac{(-d \bar{\Delta})}{\bar{\Delta}}=d, \quad \text { since } a=-\bar{d} \Delta \\
\frac{\bar{b}}{\bar{\Delta}}=\bar{b} \Delta=\frac{(c \bar{\Delta})}{\bar{\Delta}}=c, \quad \text { since } b=\bar{c} \Delta .
\end{gathered}
$$

Thus $b c$ and $b c^{*}$ are equal which means $b c$ is self-adjoint. By this argument the following proposition holds.

Proposition 17. If bc is a self-adjoint boundary condition given by the matrix (??), then there are uniquely determined numbers $\alpha, \beta, \theta \in[0,2 \pi]$ and $\rho \in(0,1)$ such that (??), (??) and (??) hold. And conversely, if a,b, c, d are given by (??), (??) and (??), then the matrix (??) determines self-adjoint boundary condition.

Thus if $L_{b c}(v)$ subject to boundary conditions $b c$ given by the matrix (??) is selfadjoint, then $\bar{Q}=P$ and there are uniquely determined numbers $\alpha, \beta, \theta \in[0,2 \pi]$ and $\rho \in(0,1)$ such that (??),(??) and (??) hold. And conversely, if $L_{b c}(v)$ is subject to boundary conditions $b c$ given by the matrix (??) such that a, b, c, d are given by $(? ?),(? ?),(? ?)$ and $\bar{Q}=P$, then $L_{b c}(v)$ is self-adjoint.

6 Self-adjoint Extensions

In this section, we give a characterization of self-adjoint extensions of an unbounded operator. Then we find all self-adjoint extensions of L_{00}^{0}, corresponding to partial isometries which can be represented by real-valued matrices.

Definition 18. Let A be a closed symmetric operator. The deficiency subspaces of A are the spaces

$$
\begin{aligned}
& L_{+}=\operatorname{ker}\left(A^{*}-i\right)=[\operatorname{ran}(A+i)]^{\perp} \\
& L_{-}=\operatorname{ker}\left(A^{*}+i\right)=[\operatorname{ran}(A-i)]^{\perp}
\end{aligned}
$$

The deficiency indices of A are the numbers $n_{+}=\operatorname{dim} L_{+}$and $n_{-}=\operatorname{dim} L_{-}$.
Definition 19. A partial isometry is an operator W such that for h in $(\operatorname{ker} W)^{\perp}$, $\|W h\|=\|h\|$. The space $(\operatorname{ker} W)^{\perp}$ is called the initial space of W and the space ran W is called the final space of W.

The following theorem is well-known(see [?], Theorem 2.17 or [?], Theorem X.2).
Theorem 20. Let A be a closed symmetric operator. If W is a partial isometry with initial space in L_{+}and final subspace in L_{-}, let

$$
\begin{equation*}
D_{W}=\{f+g+W g: f \in \operatorname{dom}(A), g \in \text { initial } W\} \tag{6.1}
\end{equation*}
$$

and define A_{W} on D_{W} by

$$
\begin{equation*}
A_{W}(f+g+W g)=A f+i g-i W g \tag{6.2}
\end{equation*}
$$

Then A_{W} is a closed symmetric extension of A. Conversely, if B is any closed symmetric extension of A, then there is a unique partial isometry W such that $B=A_{W}$ as in (??).

So this theorem gives one to one correspondence between closed symmetric extensions of a closed symmetric operator A and partial isometries with initial space in L_{+}and final space in L_{-}. Moreover, it is known that if $n_{+}=n_{-}$, then the set of self-adjoint extensions is in natural correspondence with the set of isomorphisms of L_{+}and L_{-}, respectively(see [?], Theorem 2.20).

Now we find self-adjoint extensions of L_{00}^{0}. First we find the deficiency subspaces of L_{00}^{0}. Let $f=\binom{f_{1}}{f_{2}} \in \operatorname{ker}\left(\left(L_{00}^{0}\right)^{*}+i\right)$. Then

$$
\left(\left(L_{00}^{0}\right)^{*}+i\right) f=\binom{i f_{1}^{\prime}+i f_{1}}{-i f_{2}^{\prime}+i f_{2}}=\binom{0}{0} .
$$

Solving these two differential equations, we get that for some constants c_{1} and c_{2}

$$
f_{1}(x)=c_{1} e^{\pi-x} \quad \text { and } \quad f_{2}(x)=c_{2} e^{x}
$$

We choose $f_{1}(x)=c_{1} e^{\pi-x}$ instead of $f_{1}(x)=c_{1} e^{-x}$, since

$$
\left\|e^{\pi-x}\right\|=\frac{1}{\pi} \int_{0}^{\pi} e^{2(\pi-x)} d x=\frac{1}{\pi} \int_{0}^{\pi} e^{2 x} d x=\left\|e^{x}\right\|
$$

So $n_{-}=2$ since

$$
\begin{aligned}
& L_{-}=\operatorname{ker}\left(\left(L_{00}^{0}\right)^{*}+i\right)=\left\{\binom{c_{1} e^{\pi-x}}{c_{2} e^{x}}, c_{1} \text { and } c_{2} \text { are constants }\right\} \\
& =\left\{c_{1}\binom{e^{\pi-x}}{0}+c_{2}\binom{0}{e^{x}}, c_{1} \text { and } c_{2} \text { are constants }\right\} .
\end{aligned}
$$

Now let $f=\binom{f_{1}}{f_{2}} \in \operatorname{ker}\left(\left(L_{00}^{0}\right)^{*}-i\right)$. Then

$$
\left(\left(L_{00}^{0}\right)^{*}-i\right) f=\binom{i f_{1}^{\prime}-i f_{1}}{-i f_{2}^{\prime}-i f_{2}}=\binom{0}{0} .
$$

Similarly solving these two differential equations, we get that for some constants c_{1} and c_{2}

$$
f_{1}(x)=c_{1} e^{x} \quad \text { and } \quad f_{2}(x)=c_{2} e^{\pi-x}
$$

So $n_{+}=2$ since

$$
\begin{aligned}
& L_{+}=\operatorname{ker}\left(\left(L_{00}^{0}\right)^{*}-i\right)=\left\{\binom{c_{1} e^{x}}{c_{2} e^{\pi-x}}, c_{1} \text { and } c_{2} \text { are constants }\right\} \\
& =\left\{c_{1}\binom{e^{x}}{0}+c_{2}\binom{0}{e^{\pi-x}}, c_{1} \text { and } c_{2} \text { are constants }\right\} .
\end{aligned}
$$

Consider the isometries between L_{+}and L_{-}. Since $n_{-}=n_{+}=2$, they can be represented by 2×2 matrices. Let

$$
e^{1}=\binom{e^{x}}{0}, e^{2}=\binom{0}{e^{\pi-x}}, \phi^{1}=\binom{e^{\pi-x}}{0} \text { and } \phi^{2}=\binom{0}{e^{x}} .
$$

Then $\left\|e^{1}\right\|=\left\|e^{2}\right\|=\left\|\phi^{1}\right\|=\left\|\phi^{2}\right\|$. Let $W: L_{+} \rightarrow L_{-}$be an isometry such that

$$
\begin{aligned}
& W e^{1}=w_{11} \phi^{1}+w_{21} \phi^{2}, \\
& W e^{2}=w_{12} \phi^{1}+w_{22} \phi^{2} .
\end{aligned}
$$

Further we identify W by its matrix representation

$$
W=\left(\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right) .
$$

Since $W e^{1} \perp W e^{2}$, we have

$$
w_{11} \overline{w_{12}}+w_{21} \overline{w_{22}}=0 .
$$

W is an isometry, so $\left\|W e^{1}\right\|=\left\|e^{1}\right\|$ and $\left\|W e^{2}\right\|=\left\|e^{2}\right\|$ which gives

$$
\begin{aligned}
& \left|w_{11}\right|^{2}+\left|w_{21}\right|^{2}=1, \\
& \left|w_{12}\right|^{2}+\left|w_{22}\right|^{2}=1 .
\end{aligned}
$$

By the equations above, about the entries of W,

$$
\left(\begin{array}{ll}
w_{11} & w_{21} \\
w_{12} & w_{22}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\overline{w_{11}} & \overline{w_{12}} \\
\overline{w_{21}} & \overline{w_{22}}
\end{array}\right)
$$

So

$$
\operatorname{det}\left(\begin{array}{ll}
w_{11} & w_{21} \\
w_{12} & w_{22}
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
\overline{w_{11}} & \overline{w_{12}} \\
\overline{w_{21}} & \overline{w_{22}}
\end{array}\right)=1
$$

which means

$$
\operatorname{det} W \cdot \overline{\operatorname{det} W}=1 \quad \text { and } \quad|\operatorname{det} W|=1
$$

By the previous theorem, we have a self-adjoint extension B_{W} of L_{00}^{0} corresponding to each isometry W and

$$
\operatorname{Dom}\left(B_{W}\right)=\left\{f+g+W g: f \in \operatorname{Dom}\left(L_{00}^{0}\right), g \in L_{+}\right\} .
$$

Next we show that the functions in $\operatorname{Dom}\left(B_{W}\right)$ satisfy certain $b c=b c(W)$ that are uniquely determined if given by the matrix of the form (??). So next we look for a matrix

$$
\left(\begin{array}{llll}
1 & b & a & 0 \\
0 & d & c & 1
\end{array}\right)
$$

such that every $h \in \operatorname{Dom}\left(B_{W}\right)$ satisfies the $b c$ defined by that matrix.
Let $f \in \operatorname{Dom}\left(L_{00}^{0}\right)$ and $g \in L_{+}$such that

$$
g=c_{1} e^{1}+c_{2} e^{2}=\binom{c_{1} e^{x}}{c_{2} e^{\pi-x}} .
$$

Then

$$
W g=c_{1} W e^{1}+c_{2} W e^{2}
$$

and

$$
f+g+W g=f+c_{1}\left(e^{1}+W e^{1}\right)+c_{2}\left(e^{2}+W e^{2}\right)
$$

Let

$$
\begin{aligned}
& k:=e^{1}+W e^{1}=\binom{e^{x}+w_{11} e^{\pi-x}}{w_{21} e^{x}}, \\
& l:=e^{2}+W e^{2}=\binom{w_{12} e^{\pi-x}}{e^{\pi-x}+w_{22} e^{x}} .
\end{aligned}
$$

Since $(f+g+W g) \in \operatorname{Dom}\left(B_{W}\right)$, it must satisfy the boundary conditions. Since $f \in \operatorname{Dom}\left(L_{b c}^{0}\right)$ and boundary conditions are given by linear equations, if we let $c_{1}=1$ and $c_{2}=0$, then k must satisfy the boundary conditions of B_{W}. So

$$
\begin{aligned}
& k_{1}(0)+b k_{1}(\pi)+a k_{2}(0)=0 \\
& d k_{1}(\pi)+c k_{2}(0)+k_{2}(\pi)=0
\end{aligned}
$$

which means

$$
\begin{gathered}
1+w_{11} e^{\pi}+b\left(e^{\pi}+w_{11}\right)+a w_{21}=0 \\
d\left(e^{\pi}+w_{11}\right)+c w_{21}+w_{21} e^{\pi}=0
\end{gathered}
$$

Similarly if we take $c_{2}=1$ and $c_{1}=0$, then l must also satisfy the boundary conditions of B_{W}. So

$$
\begin{aligned}
& l_{1}(0)+b l_{1}(\pi)+a l_{2}(0)=0 \\
& d l_{1}(\pi)+c l_{2}(0)+l_{2}(\pi)=0
\end{aligned}
$$

which means

$$
\begin{gathered}
w_{12} e^{\pi}+b w_{21}+a\left(e^{\pi}+w_{22}\right)=0 \\
d w_{21}+c\left(e^{\pi}+w_{22}\right)+1+w_{22} e^{\pi}=0
\end{gathered}
$$

By solving these equations for a, b, c, d, we get that

$$
\begin{gathered}
a=\frac{w_{12}\left(e^{2 \pi}-1\right)}{\Delta} \\
b=-\frac{w_{21} w_{12} e^{\pi}-\left(e^{\pi}+w_{22}\right)\left(1+w_{11} e^{\pi}\right)}{\Delta} \\
c=\frac{w_{12} w_{21} e^{\pi}-\left(e^{\pi}+w_{11}\right)\left(1+w_{22} e^{\pi}\right)}{\Delta} \\
d=\frac{w_{21}\left(e^{2 \pi}-1\right)}{\Delta}
\end{gathered}
$$

where $\Delta=w_{21} w_{12}-\left(e^{\pi}+w_{11}\right)\left(e^{\pi}+w_{22}\right)$.
So for each isometry W, we found corresponding boundary conditions $b c$ given by the matrix

$$
\left(\begin{array}{llll}
1 & b & a & 0 \\
0 & d & c & 1
\end{array}\right)
$$

where a, b, c, d are uniquely determined by the equalities above and every $h \in$ $\operatorname{Dom}\left(B_{W}\right)$ satisfy bc.

Now we consider the partial case where the entries of the matrix W are real numbers. Then W can be written in the form

$$
W=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

for some $\theta \in[0,2 \pi)$, where det $W=\cos ^{2} \theta+\sin ^{2} \theta=1$. Now if boundary conditions of B_{W} are given by the matrix (??), then the numbers a, b, c, d becomes

$$
\begin{gathered}
a=\frac{\sin \theta\left(e^{2 \pi}-1\right)}{\Delta} \\
b=\frac{2 e^{\pi}+\cos \theta+\cos \theta e^{2 \pi}}{\Delta} \\
c=b \quad \text { and } \quad d=-a
\end{gathered}
$$

where $\Delta=-1-e^{2 \pi}-2 e^{\pi} \cos \theta$.
The boundary conditions given by the matrix (??) where a, b, c, d are given by the above equalities is self adjoint if $b c-a d=1$, by the proposition about self-adjoint boundary conditions. But

$$
\begin{aligned}
& b c-a d=b^{2}+a^{2}=\frac{\left(2 e^{\pi}+\cos \theta\left(e^{2 \pi}+1\right)\right)^{2}+\sin ^{2} \theta\left(e^{2 \pi}-1\right)^{2}}{\left(1+e^{2 \pi}+2 e^{\pi} \cos \theta\right)^{2}} \\
& =\frac{4 e^{2 \pi}+4 e^{\pi} \cos \theta\left(e^{2 \pi}+1\right)+\cos ^{2} \theta\left(e^{2 \pi}+1\right)^{2}+\sin ^{2} \theta\left(e^{2 \pi}-1\right)^{2}}{\left(e^{2 \pi}+1\right)^{2}+4 e^{\pi} \cos \theta\left(e^{2 \pi}+1\right)+4 e^{2 \pi} \cos ^{2} \theta}
\end{aligned}
$$

Since

$$
\begin{gathered}
\cos ^{2} \theta\left(e^{2 \pi}+1\right)^{2}+\sin ^{2} \theta\left(e^{2 \pi}-1\right)^{2}=e^{4 \pi} \cos ^{2} \theta+2 e^{2 \pi} \cos ^{2} \theta+\cos ^{2} \theta+e^{4 \pi} \sin ^{2} \theta-2 e^{2 \pi} \sin ^{2} \theta+\sin ^{2} \theta \\
=e^{4 \pi}+1+2 e^{2 \pi}\left(2 \cos ^{2} \theta-1\right)
\end{gathered}
$$

we get

$$
b c-a d=\frac{4 e^{2 \pi}+4 e^{\pi} \cos \theta\left(e^{2 \pi}+1\right)+1+e^{4 \pi}+4 e^{2 \pi} \cos ^{2} \theta-2 e^{2 \pi}}{e^{4 \pi}+2 e^{2 \pi}+1+4 e^{\pi} \cos \theta\left(e^{2 \pi}+1\right)+4 e^{2 \pi} \cos ^{2} \theta}=1
$$

Thus the boundary conditions $b c$ corresponding to the isometry W is self-adjoint.
Recall that the boundary condition given by the matrix (??) is strictly regular if

$$
(b-c)^{2}+4 a d \neq 0
$$

We have found the form of the boundary conditions $b c$ of B_{W}, the self-adjoint extension of L_{00}^{0} which corresponds to an isometry W defined by a real-valued matrix. If these boundary conditions are not strictly regular then

$$
(b-c)^{2}+4 a d=-4 a^{2}=-4 \frac{\sin ^{2} \theta\left(e^{2 \pi-1}\right)^{2}}{\Delta^{2}}=0
$$

which implies

$$
\sin \theta=0 .
$$

So there are two cases, either $\theta=0$ or $\theta=\pi$. First case is that $\theta=0$. Then the matrix which gives the boundary conditions becomes

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) .
$$

This boundary condition is called periodic since we have

$$
\begin{aligned}
& y_{1}(0)=y_{1}(\pi), \\
& y_{2}(0)=y_{2}(\pi) .
\end{aligned}
$$

In the second case $\theta=\pi$. Then the matrix which gives the boundary conditions becomes

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

This boundary condition is called anti-periodic since we have

$$
\begin{aligned}
& y_{1}(0)=-y_{1}(\pi), \\
& y_{2}(0)=-y_{2}(\pi) .
\end{aligned}
$$

References

[1] P. Djakov and B. Mityagin, "Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions", arXiv:1008.4095., (2010).
[2] O. Christensen, "An Introduction to Frames and Riesz Bases ", Birkhäuser, Boston, (2003).
[3] J. B. Conway, "A Course in Functional Analysis", Springer, New York, (1990).
[4] I. Gohberg and M. Krein, "Introduction to the Theory of Linear Nonselfadjoint Operators ", American Mathematical Society, Providence, Rhode Island, (1969).
[5] M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Volume II: Fourier Analysis, Self-adjointness", Academic Press, California, (1975).

