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Abstract
In this paper, we present a solution to the constrained ℓ1-norm minimization problem for sparse SAR imaging. The
techniques rely on the recent advances in the solution of optimization problems, based on the Augmented Lagrangian
Methods (ALMs), namely the Alternating Direction Method of Multipliers. Here, we present an application of C-
SALSA (an ALM for constrained optimization problems) to SAR imaging, and introduce a new weighting scheme to
improve the sparsity of the reconstructions. We then compare the performances of several techniques to understand the
effectiveness of the ALMs in the context of SAR imaging.

1 Introduction
In this paper we consider the problem of sparse re-
construction of SAR images using an Augmented La-
grangian approach to the optimization problem associ-
ated with the SAR observation model.
There are several sparsity-driven techniques in the con-
text of SAR imaging [?, ?], though an important factor
hindering their use in practice is the excessively high
computational cost of solving the associated optimiza-
tion problem. From this standpoint, it is important to
incorporate recent advances in optimization techniques,
where the computational complexity associated with the
solution of optimization problems has been receiving an
increasing interest. The motivation for our work comes
from our search for such computationally efficient algo-
rithms for compressed sensing in SAR, with a potential
for parallel implementation.
As such, Alternating Direction Method of Multipliers
(ADMM) techniques have been successfully applied to
signal and image recovery problems [?, 1]. provides a
divide-and-conquer approach by splitting unconstrained
multi-objective convex optimization problems, augment-
ing the Lagrangian of the convex optimization problem
with a norm-squared error term, and using a non-linear
block Gauss-Seidel approach on the resultant terms in the
optimization problem. The resulting problem is guaran-
teed convergence under mild conditions [1].
In this work, we provide a framework for the appli-
cation of the ADMM method C-SALSA (Constrained
Split Augmented Lagrangian Shrinkage Algorithm) [1]
to SAR imaging, and provide a refinement that enhances
sparsity, inspired by the use of p-norms with p < 1 for
feature-enhanced SAR imaging methods [2].

2 Background

2.1 SAR Observation Model
The SAR observation model can be considered linear in
the relating the vector containing the SAR image pixels to

the data vector, e.g., as in phase history data for spotlight
mode SAR imaging. Mathematically speaking, we can
denote the image vector to be constructed by sequentially
indexed pixel-values x ∈ CN and the matrix B ∈ CM×N

relating x to the measurement vector y ∈ CM:

y = Bx+ n, (1)

where n ∈ CM is the additive noise vector, typically
from a normal distribution. The data y can lie in the phase
history domain, in which case the matrix B would be a
spatial Fourier transform type operator; or y can be a con-
ventionally reconstructed image, in which case B would
be a convolution operator representing the point spread
function of the entire imaging process. In this paper, the
data are assumed to be in the phase history domain, there-
fore a two-dimensional Fourier transform type model is
appropriate for modeling the relation between the data
vector and the unknown SAR image vector. In the recon-
struction algorithms we use, however, the matrix is never
formed explicitly but FFT’s are performed to perform the
associated matrix-vector products.

2.2 Sparse reconstruction approaches
In this paper, we consider and compare the use of feature-
enhanced imaging method [2], focusing on the specific
case of point-enhanced (PE) imaging where point-like
features are preserved through the regularized form in (3),
and C-SALSA [1] for the reconstruction of SAR images,
as well as a modification of C-SALSA through the intro-
duction of an iteratively updated diagonal weighting at
the soft-thresholding step of the algorithm as described in
the sequel. For the compressed sensing problem, where
sparsity in the SAR images is in the spatial-domain, the
problem can be cast as the minimization of the ℓ1-norm
of the SAR image vector;

minimize
x

∥Bx− y∥22 + λ∥x∥p . (2)

with p = 1. Additionally, other sparse reconstruction
techniques use p-norms with p < 1 with encouraging re-
sults [2].
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An alternative form of the problem is such that the con-
straint comes from the error in the measurements, where
the error norm is prescribed to be smaller than a radius ϵ
suggested by the signal-to-noise ratio (SNR) that can be
estimated from the data.

minimize
x

∥x∥p
subject to ∥Bx− y∥2 ≤ ϵ

(3)

where the value of p = 1 is chosen to improve sparsity in
the reconstructed images.
Motivated by the use of such norms, we propose to use
an Augmented Lagrangian based algorithm for the recon-
struction of SAR images, where a new weighting scheme
is introduced. While it is possible to formulate an Aug-
mented Lagrangian Method (ALM) directly for (2) with
p < 1, we instead use the ADMM method C-SALSA [1],
as well as a modification thereof using an iteratively re-
weighted soft-thresholding scheme based on the p-norm
of the input to the soft-thresholding step at each iteration.
Although an augmented Lagrangian method such as
SALSA [4] for unconstrained convex optimization prob-
lems is in a more direct correspondence with the regu-
larization based techniques such as in (3), we prefer the
constrained form of the problem (2) with p = 1 due to
its simplicity in its parameter choice where an estimate
of the SNR can be obtained easily [1].
For the purposes of comparison, however, we first pick a
regularization value λ to solve the problem (3) using the
point-enhanced reconstruction algorithm [2], and in se-
quence, use the resulting value of the error norm to sub-
stitute for the value of ϵ in (2). In practice, a good selec-
tion of the error radius is given by ϵ =

√
M2 + 8Mσ [1]

for a noise variance of σ2, i.e., E
[
nnH

]
= σ2I; while

other choices of ϵ are certainly possible.
Further details regarding the Point-Enhanced Reconstruc-
tion Method (PERM) obtained by the imaging algorithm
can be found in the references [2, ?]. In the next sec-
tion, we describe the algorithm C-SALSA [1], as well as
the proposed modification obtained by the iteratively up-
dated weighting therein.

3 ADMM applied to SAR Imaging

3.1 C-SALSA
The problem in (2) with p = 1 can be expressed in an
unconstrained form as [1]:

minimize
x

∥x∥1 + ιE(ϵ,I,y) (Bx) (4)

where ιE(ϵ,I,y) (Bx) is the indicator function of the fea-
sible set E(ϵ, I,y) such that

E(ϵ, I,y) =
{
x ∈ CN : ∥Bx− y∥2

}
≤ ϵ, (5)

ιS(s) =

{
0, if s ∈ S
+∞, if s /∈ S

. (6)

Algorithm: C-SALSA [1]

1. Set k = 0, choose µ > 0, v(1)
0 , v(2)

0 , d(1)
0 , d(2)

0

2. repeat
3. rk = v

(1)
0 + d

(1)
0 +BH

(
v
(2)
0 + d

(2)
0

)
4. uk+1 =

(
I+BHB

)−1
rk

5. v(1)
k+1 = Ψϕ/µ

(
uk+1 − d

(1)
k

)
6. v(2)

k+1 = ΨιE(ϵ,I,y)

(
Buk+1 − d

(2)
k

)
7. d(1)

k+1 = d
(1)
k − uk+1 + v

(1)
k+1

8. d(2)
k+1 = d

(2)
k −Buk+1 + v

(2)
k+1

9. k ← k + 1
10. until some stopping criterion is satisfied.

The vectors v
(1)
0 and d

(1)
0 are in CN , whereas v

(2)
0 and

d
(2)
0 are in CM . The operators Ψϕ/µ and ΨιE(ϵ,I,y)

are the Moreau proximal maps for 1
µϕ(x) = ∥x∥1

µ and
ιE(ϵ,I,y) (s) given by

Ψϕ/µ(s) = soft(y, 1/µ), (7)

and

ΨιE(ϵ,I,y)
(s) =

{
s, if ∥s− y∥2 ≤ ϵ

y + ϵ (s−y)
∥s−y∥2

, if ∥s− y∥2 > ϵ
,

(8)

respectively, where soft(y, 1/τ) denotes the element-
wise application of yi → sign(yi)max {|yi| − τ} to en-
tries yi of y for i = 1, . . . ,M [1].
For SAR imaging problem sizes that are relevant in prac-
tice, it is not desirable to form the matrix B due to pro-
hibitively large dimensions. As such, the most critical in
C-SALSA is its fourth step, where a matrix-vector equal-
ity is solved in each step of the iterative algorithm. There-
fore, it is of utmost interest to perform this computation
using fast transforms [1], such as the FFT.
Similar to medical imaging applications such as MRI and
CT, SAR imaging can be viewed as an image recovery
problem with partial Fourier domain observations, where
the samples are available on a polar grid [5]. As a result,
following an interpolation in the two-dimensional Fourier
transform domain, it is possible to relate the resulting data
vector to the SAR image through a 2-D FFT. Hence, the
multiplications by B and BH can be performed via 2-
D FFT operations (that effectively perform the multipli-
cation by a matrix U containing the Fourier basis vec-
tors), and a masking operator (that effectively performs
multiplication by a diagonal matrix M with only 1’s and
0’s along its diagonal, so that MMH = I) such that
B = MU. Such a matrix satisfies [1]:(

I+BHB
)−1

= I− 1

2
UHMHMU (9)

and therefore step 4 of C-SALSA can be performed at
the cost of O(N logN) multiplications [1]. In the exam-
ples in Section 4, (9) is implemented via 2-D FFT’s and
consequent masking in the Fourier domains as described
above.



A commonly used stopping criterion is the relative dif-
ference of the iterates in comparison to the previous step
[1, 2].

3.2 Iteratively Re-Weighted Augmented
Lagrangian Method (IRWALM)

In this section, we provide a further refinement to C-
SALSA, inspired by the effectiveness of p-norms used in
the objective function with p < 1, as they improve spar-
sity compared to the case with p = 1. While the direct
use of p-norms with p < 1 in (2) or (3) renders the prob-
lem non-convex, thus voiding any guarantees relating to
global optimality of the solutions; a locally-optimal so-
lution is provided nonetheless. A quasi-Newton method
with a Hessian update scheme has been previously used
successfully to obtain a solution to (3) in the SAR imag-
ing context [2], which provides us the motivation to incor-
porate into the solution a weighting related to the p-norm
of the solution for p < 1.

While it is possible to apply the ADMM techniques di-
rectly for the case with p < 1 for the constrained problem
(2), in this paper we take a simpler approach where only
the soft-thresholding step of the iterative algorithm is
modified to incorporate a pre- and post-diagonal weight-
ing related to the p-norm of the input to the associated
soft-thresholding function.

Algorithm: IRWALM

1. Set k = 0, choose µ > 0, v(1)
0 , v(2)

0 , d(1)
0 , d(2)

0

2. repeat
3. rk = v

(1)
0 + d

(1)
0 +BH

(
v
(2)
0 + d

(2)
0

)
4. uk+1 =

(
I+BHB

)−1
rk

5. Wk+1 = diag
(
|uk+1 − d

(1)
k |1−p

)
6. v(1)

k+1 = W−1
k+1

{
Ψϕ/µ

[
Wk+1

(
uk+1 − d

(1)
k

)]}
7. v(2)

k+1 = ΨιE(ϵ,I,y)

(
Buk+1 − d

(2)
k

)
8. d(1)

k+1 = d
(1)
k − uk+1 + v

(1)
k+1

9. d(2)
k+1 = d

(2)
k −Buk+1 + v

(2)
k+1

10. k ← k + 1
11. until some stopping criterion is satisfied.

At each iteration, the wei gut s are updated based on the
input to the soft-thresholding function. The weighting
matrix is chosen to have diagonal entries proportional to
the powers (1− p) of the absolute values of the elements
in the input vector, i.e., W = diag

(
| · |1−p

)
, where (·) is

the input to the soft thresholding function. Thus, the soft-
thresholding Ψϕ/µ is replaced by W−1

{
Ψϕ/µ [W(·)]

}
,

which provides the basis for improved sparsity by incor-
porating the effect of p-norm with p < 1 with a slight
modification of the Augmented Lagrangian Method for
p = 1.

4 Results

For the examples, we form the phase history data from
reference SAR images obtained from wide-angle, high
bandwidth SAR returns using the method described in
[3]. L denotes the bandwidth reduction ratio in each di-
mension (in terms of the bandwidth used to reconstruct
the reference image.) The number of available data sam-
ples is M = L2N , where N is the number of phase his-
tory samples in the full-bandwidth data used to form the
reference image.
Table 1 shows the results obtained with the methods
PERM and C-SALSA for the case with p = 1; whereas
Table 2 shows the results for p = 0.5. The first two
columns on Tables 1 and 2 are the times it took to com-
pute the results in Matlab with PERM and IRWALM, re-
spectively. Timing results are based on our implementa-
tion (non-optimized MATLAB code) run on a Macbook
Pro with an Intel Core i7 processor with 6 GB RAM. The
signal to noise ratio in the observations was 30 dB, and
the iterations in each casae were stopped when the rela-
tive difference between successive iterations dropped be-
low 0.005. The third and fourth columns in Tables 1 and 2
are the ratios of the data fidelity errors (data fidelity er-
ror in the reconstruction via C-SALSA and IRWALM di-
vided by the data fidelity error in the reconstruction via
PERM), as well as the 1-norms of the reconstructions.
For similar data fidelity errors with PERM and IRWALM,
the 1-norms of the reconstructions are slightly less for IR-
WALM, while the computation time is significantly re-
duced (4.8–5.8 times for p = 1 and 6.3–10 times for
p = 0.5, respectively.)

Data tpe tirwalm
ε

εpe

∥x∥1

∥xpe∥1

Slicy (L = 2/8) 1.8 s 0.5 s 0.9845 0.73
Backhoe (L = 3/8) 8.7 s 1.2 s 0.9995 0.97
Backhoe (L = 2/8) 8.4 s 1.3 s 0.9984 0.95
Backhoe (L = 1/8) 7.2 s 1.5 s 0.9987 0.92

Table 1: Computation times, error- and ℓ1-norm-ratios
for PERM and C-SALSA (p = 1).

Data tpe tirwalm
ε

εpe

∥x∥1

∥xpe∥1

Slicy (L = 2/8) 2.0 s 0.5 s 0.9449 0.90
Backhoe (L = 3/8) 32.1 s 3.2 s 0.9993 0.89
Backhoe (L = 2/8) 32.0 s 4.0 s 0.9969 0.88
Backhoe (L = 1/8) 30.3 s 4.8 s 0.9960 0.84

Table 2: Computation times, error- and ℓ1-norm-ratios
for PERM and IRWALM (p = 0.5).

Figure 1 shows the reconstruction the results for Slicy
with L = 2/8; while Figures 2, 3, 4 show the Backhoe
results for L = 3/8, L = 2/8, and L = 1/8, respectively.
Visually similar results are obtained in general by PERM
and C-SALSA (for the case with p = 1), while sparsity
of reconstructions is improved by the use of p = 0.5 in
comparison with both approaches.



5 Conclusions

In this paper, we investigate the use of Augmented La-
grangians in the context of sparse SAR image reconstruc-
tion from undersampled measurements. We propose a
new iteratively reweighted algorithm that enhances spar-
sity in the reconstructed images. The results show that it
is possible to obtain faster solutions than comparable so-
lutions for desirable levels of accuracy. The future work
will focus on more detailed analyses of the solutions via
ALMs, as well as parallel / fast implementations for prac-
tical use.
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Figure 1: Slicy, L = 2/8. (upper-left) reference im-
age, (upper-right) conventional reconstruction, (mid-left)
PERM with p = 1, (mid-right) C-SALSA,(lower-left)
PERM p = 0.5, (lower-right) IRWALM p = 0.5

Figure 2: Backhoe, L = 3/8. (upper-left) reference im-
age, (upper-right) conventional reconstruction, (mid-left)
PERM with p = 1, (mid-right) C-SALSA, (lower-left)
PERM p = 0.5, (lower-right) IRWALM p = 0.5

Figure 3: Backhoe, L = 2/8. (upper-left) reference im-
age, (upper-right) conventional reconstruction, (mid-left)
PERM with p = 1, (mid-right) C-SALSA, (lower-left)
PERM p = 0.5, (lower-right) IRWALM p = 0.5

Figure 4: Backhoe, L = 1/8. (upper-left) reference im-
age, (upper-right) conventional reconstruction, (mid-left)
PERM with p = 1, (mid-right) C-SALSA, (lower-left)
PERM p = 0.5, (lower-right) IRWALM p = 0.5


