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Abstract

Multiple classifier systems are shown to be effective in terms of accuracy for multiclass

classification problems with the expense of increased complexity. Classifier combination

studies deal with the methods of combining the outputs of base classifiers of an ensem-

ble. Stacked generalization, or stacking, is shown to be a strong combination scheme

among combination algorithms; and in this thesis, we improve stacking’s performance

further in terms of both accuracy and complexity. We investigate four main issues for

this purpose. First, we show that margin maximizing combiners outperform the con-

ventional least-squares estimation of the weights. Second we incorporate the idea of

group sparsity into regularization to facilitate classifier selection. Third, we develop

non-linear versions of class-conscious linear combination types by transforming datasets

into binary classification datasets; then applying the kernel trick. And finally, we derive

a new optimization algorithm based on the majorization-minimization framework for a

particular linear combination type, which we show is the most preferable one.



SINIFLANDIRICI BİRLEŞTİRME İÇİN GRUP SEYREKLİĞİ İLE BERABER

SINIR ENBÜYÜKLEYEN YIĞITLAMA

MEHMET UMUT ŞEN

EE, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Hakan Erdoğan

Anahtar Kelimeler: yığıtlı genelleme, sınıflandırıcı birleştirme, menteşe kaybı, grup

seyrekliği, kernel hilesi

Özet

Çoklu sınıflandırıcı sistemlerinin, çok sınıflı sınıflandırma problemlerinde karmaşık fakat

doğruluk oranı yüksek bir sınıflandırma yöntemi olduğu, örüntü tanıma literatüründe

sıkça işlenmiştir. Sınıflandırıcı birleştirme, verilen bir sınıflandırıcı kümesini nasıl birleşti-

rilmesi gerektiği problemini çözmeye çalışır ve yığıtlı genelleme, başka bir deyişle yığıtlama,

çok güçlü sınıflandırıcı birleştiricilerden biridir. Bu tezde yığıtlamanın performansını

hem doğruluk oranı açısından, hem de karmaşıklık açısından artırıyoruz. Katkılarımız

dört ana başlıkta toplanabilir. Öncelikle, birleştiriciyi öğrenirken sınırı en-büyükleyen

menteşe kayıp fonksiyonu kullanmanın, literatürde daha önce kullanılan en küçük kareler

kayıp kestiriminden daha iyi sonuçlar verdiğini gösterdik. İkinci olarak, düzenlileştirme

için grup seyrekliği kullanarak otomatik sınıflandırıcı seçmeyi kolaylaştırıyoruz. Üçüncü

olarak, sınıf-bilinçli doğrusal birleştiricilerin doğrusal olmayan sürümlerini elde etmek

için, veritabanını dönüştüren bir yöntem geliştiriyoruz. Son olarak, doğrusal bir sınıflan-

dırıcı birleştirme yontemi için MM algoritmalarını kullanarak bir çözüm buluyoruz.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with multiclass classification problems, which constitute a wide

part of the vast pattern recognition literature and have a broad range of applications such

as protein structure classification, heartbeat arrhythmia identification, hand-written

character recognition, sketch recognition, object recognition in computer vision and

many others. Multiclass classification deals with assigning one of several class labels to

an input object. This problem is sometimes misguidedly called “Multi-label classifica-

tion”, which actually deals with problems in which examples are associated with a set

of labels, instead of with only one label. For instance, a movie may belong to categories

comedy and drama at the same time. In this thesis, we work on single-label, multiclass

classification problems. It is needless to say that our developed methods are also ap-

plicable to binary classification problems, since binary classification is a special case of

multiclass classification.

Early work in machine learning focused on using single classifier systems, but recently

there is an enormous amount of work on multiple classifier systems in which multiple

classifiers are trained and combined. A multiple classifier system mainly consists of two

subsequent problems: 1. How to construct the base classifiers of the ensemble? 2. How

to combine the outputs of the base classifiers? There are a large number of works that

try to solve these problems separately, moreover there are some methodologies that try

to solve these two problems simultaneously [3, 4]. In this thesis, we focus on the latter

1



Introduction 2

problem, i.e., we try to increase the performance of the combiner for any given base

classifier set and dataset. Among different combination methods in the literature, we

work on stacked generalization, also known as stacking, and improve its performance

further. The main performance criterion of a combiner is the generalization accuracy,

i.e., accuracy on test data. In addition, complexity of the combiner is also a crucial issue,

because some applications may necessitate small training time and/or testing time. Our

work contains methods each of which either increases the accuracy or decreases the

complexity of a combiner.

In Chapter 2, we give a literature review for multiple classifier systems and give brief

descriptions of well known combination methodologies. In Chapter 3, we introduce

stacking, internal cross validation, different linear combination types, which we call

weighted sum (WS), class-dependent weighted sum (CWS), linear stacked generalization

(LSG) and explain some stacking algorithms that are present in the literature. After

this literature review, we present our contributions in Chapters 4,5 and 6. In Chapter

4, we propose to use the hinge loss function for learning the combiner and show that it

outperforms the conventional least-squares estimation that is used in the literature for

stacked generalization. We also propose to use group sparsity in the regularization func-

tion of the learner, rather than using the l1 norm regularization which is used in previous

works, to facilitate classifier selection. We also describe a unifying framework for differ-

ent linear combination types, which is helpful for deriving optimization algorithms for

class-conscious linear combination types. With this framework, after obtaining a solu-

tion to the most general linear combination type, i.e. linear stacked generalization(LSG),

we are able to obtain the solutions of other linear combination types by adjusting and

incorporating tying matrices into the solutions. In Chapter 5, we work on nonlinear

combination with stacking. We derive methods to obtain the nonlinear versions of WS

and CWS combination with kernel trick for least-squares estimation. In Chapter 6, we

give an optimization algorithm for CWS combination using majorize-minimize (MM)

algorithms. We find a solution for only CWS because experiments given in Chapter 4

suggest that CWS seems to be the best type of linear combination considering accuracy

and training time together. In Chapter 7, we summarize our work, conclude the thesis

and present possible future directions.
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1.2 Contributions of the thesis

• We propose using the hinge loss function for learning the weights and obtain

statistically significantly better results compared to the previous methods which

use the least-squares loss function.

• We consider all three different linear combination types and compare them, where

previous works usually only attack one of them.

• We obtain a unifying framework for different linear combination types, which is

helpful for obtaining solutions to simpler linear combination types.

• We propose to use group sparsity in regularization to facilitate classifier selection

and obtain better results compared to the conventional l1 norm regularization.

• We give methods to obtain non-linear versions of WS and CWS combination types

for the least-squares loss function.

• We obtain a solution for CWS combination using majorize-minimize (MM) algo-

rithms.



Chapter 2

Multiple Classifier Systems

2.1 Introduction

When individuals are about to make a decision; they often seek others’ opinions, process

all the information obtained from these opinions and reach a final decision. This decision

may effect their life significantly as in a financial, medical way; or may not. Even when

they are about to buy an electronic device, they search forums on the Internet and try

to come up with a decision that is optimal for their benefits. Sometimes they reach

the perfect solution, sometimes they do not. However, consulting several resources,

regardless of the level of the expertise of these resources, prevents individuals for making

terrible choices at the end. This phenomenon has been deeply investigated and applied

to several areas in pattern recognition. Classifier ensembles; also known under various

other names, such as multiple classifier systems, committee of classifiers, hybrid methods,

cooperative agents, opinion pool, or ensemble based systems; have shown to outperform

single-expert systems for a broad range of applications in a variety of scenarios. In this

chapter, we give a summary of the vast literature on multiple classifier systems.

2.2 Why classifier combination?

Why might an ensemble work better than a single classifier? Dietterich [1] suggested

three types of reasons for that question: statistical, computational, and representational

reasons. We add another category, namely natural reasons and explain all of them.

4
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H H

H

Statistical Computational

Representational

h1

h3h4

h2

f f

f
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h2 h3
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Fig. 2. Three fundamental reasons why an ensemble may work better than a singleclassi�er (c) Representational

Figure 2.1: Three fundamental reasons of why an ensemble may work better than a
single classifier suggested by Dietterich. Figure taken from [1].

2.2.1 Statistical Reasons

In classification problems, good performance on training data does not necessarily lead

to good generalization performance, defined as the performance of the classifier on data

not seen during training, i.e., test data. For example, two classifiers that give the same

accuracy on training data may have different test accuracies. This problem arises from

insufficient number of training examples compared to the complexity of the problem,

which is often the case in pattern recognition problems. In such cases, training and

combining more than one classifier reduces the risk of an unfortunate selection of a

poorly performing classifier. Combined selection may not beat a single classifier on a

particular data-point, but it will surely beat most of the classifiers; and given the dif-

fering performance of base classifiers on different datasets and even on different subsets

of datasets, an ensemble leads to good generalization performance in general. An illus-

tration is given in Figure 2.1(a), in which, f is the optimal classifier, H is the classifier



Multiple Classifier Systems 6

space and h1, h2, h3, h4 are the individual classifiers in the ensemble. We try to find a

classification hypothesis which is as close to f as possible by combining individual clas-

sifiers. Another statistical reason that motivates ensembles systems, which is addressed

in [2], is named too little data. In the absence of adequate training data, resampling

techniques can be used for drawing overlapping random subsets of the available data,

and from each subset a base classifier can be trained. Ensembles constructed this way

are proven to be effective.

2.2.2 Computational Reasons

Classifiers in the ensemble are learned by some algorithms and there are some computa-

tional problems concerning these learning algorithms. Training of a classifier starts from

a point in the classifier space and we want it to end near f as illustrated in Figure 2.1(b).

Some training algorithms perform local search that may get stuck in local optima. We

can deal with this problem by running the local search from many different starting

points and obtain a better approximation to the true unknown function than any of

the individual classifiers [1]. Another issue regarding training time for large volumes of

data is addressed in [2]. In the case of a large amount of data to be analyzed, a single

classifier may not be able to effectively handle it. In this case, dividing the data into

overlapping or non-overlapping subsets, training a single classifier from each subset and

combining them may result in faster training time overall and in better accuracy.

2.2.3 Representational Reasons

In most of the cases, the classifier space H does not contain the true classification

hypothesis, as illustrated in Figure 2.1(b). In such cases, combining several classifiers in

the classifier space H may lead to a classifier that is out of H and closer to the optimal

classification f . An illustration for such a case is given in Figures 2.2(a) and 2.2(b).

The optimal classification boundary is not reachable with linear or quadratic classifiers,

since it is much more complex. In that case, combining several quadratic classifiers are

helpful to get close to the more complex optimal classifier as illustrated in Figure 2.2(b).



Multiple Classifier Systems 7

an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary. 

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers
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Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers. 
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Figure 2. Ensemble of classifiers spanning the decision
space. 

(a) Optimal boundary

an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary. 

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers
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Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers. 
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Figure 2. Ensemble of classifiers spanning the decision
space. 

(b) Base classifiers

Figure 2.2: A binary problem that cannot be learned by quadratic classifiers and but
can be learned by an ensemble of quadratic classifiers. Figure taken from [2].

2.2.4 Natural Reasons

In some cases, we may have a classification problem in which data are obtained from

various sources leading to sets of features that are heterogeneous. These feature sets

may have dissimilar characteristics, such as different distributions, or in the worst case

some features can be categorical and some of them can be numerical. In such cases, a

single classifier may not be used to learn the information contained in all of the data and

this situation induces a natural decomposition of the problem: training base classifiers

from each set of features and combining them, that is more natural and leads to better

performance than using a single classifier. Ho says that “In these cases, the input can be

considered as vectors projected to the subspaces of the fill feature space, which have to



Multiple Classifier Systems 8

be matched by different procedures” [5]. An example to such a case is the audio-visual

speech recognition problem [6, 7], in which there are features from both audio and video

of the same class. Another example is authentication by several biometrics, such as

fingerprint, voice, face, etc.

2.3 Types of Classifier Outputs

Combiner of an ensemble receives the outputs of base classifiers and makes a final decision

after a combination procedure. Base classifiers can produce different kinds of outputs

and some combination methods are not applicable to certain kinds of outputs types.

Types of classifier outputs are as follows:

• Class Labels: Given a data-point, a base classifier outputs the estimated label of

the data-point. This type of output is called “the abstract level” output in [8]. In

this case, combiners like majority voting or weighted majority voting can be used.

• Class Ranks: In this type, each base classifier produce a sequence of labels

decreasing in probability of being the correct class for a given data-point. This

type of output is called “the rank level” output in [8]. Class ranks gives more

information than the abstract level outputs.

• Confidence Scores: In this type, each base classifier produces a continuous-

valued score for each class that represents the degree of support for a given data-

point. They can be interpreted as confidences in the suggested labels or estimates

of the posterior probabilities for the classes [8]. Former thinking is more reasonable

since for most of the classifier types, support values may not be very close to the

actual posterior probabilities even if the data is dense, because classifiers generally

do not try to estimate the posterior probabilities, but try to classify the data

instances correctly; so they usually only try to force the true class’ score to be

the maximum. Confidence scores have the most information among output types

and most ensemble and combiner methods work with this type of output. In this

thesis, we deal with the combination of continuous valued outputs.
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2.4 Ensemble Construction Methods

How to obtain different base classifiers for a given problem is a crucial issue in multiple

classifier systems. There are four elements that can differ between two base classifiers:

• Classifier type

• Classifier meta-parameters

• Training data-points

• Features

Latter two elements result in more diverse ensembles. There are different measures of

diversity of an ensemble, but diversity simply means that base classifiers make errors

on different examples. Diverse ensembles result in higher performance increase with a

reasonable combiner. There is a trade-off between the accuracies of the base classifiers

and diversity. In fact, as the base classifiers get more accurate, their correlations increase,

i.e., diversity decreases. Therefore, it is usually beneficial to include weak base classifiers

in the ensemble rather than constructing the ensemble with only strong base classifiers.

Because, weak base classifiers contains complementary information, which is helpful for

increasing the performance of a multiple classifier system.

Below, we explain two well-known ensemble construction methods, namely bagging and

boosting.

2.4.1 Bagging

Bagging is a term introduced by Breiman as an acronym for Bootstrap AGGregatING [9].

The basic idea of bagging is constructing base classifiers from randomly selected subsets

of data-instances. A uniform distribution is used for selection and data-instances are

selected with replacement, i.e., a data-instance can be included more than once. After

constructing the base classifiers, majority voting is applied for combination; but the

prominent idea of bagging is how the base classifiers are constructed, rather than how

they are combined.
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2.4.2 Boosting

Origins of boosting algorithms rely on the answer by Schapire [10] to the question posed

by Kearns [11]: can a set of weak learners create a single strong learner? The basic

idea of boosting is to build the base classifiers iteratively such that each base classifier

tries to compensate the weaknesses of previous base classifiers. To achieve this goal,

each data-instance is given a probability to be included in the training data and this

probability distribution is initialized to be uniform. At each iteration, a base classifier is

trained with data-instances that are randomly selected with this probability distribution.

After the training process, distribution is updated according to some criteria based on

the classification results of the training data with the recently trained classifier and

previous classifiers. These criteria basically increase the probability of a data-instance

to be selected if that data-instance is believed to be a “difficult” point to be correctly

classified. Base classifiers obtained this way reflect some sort of local information and

they are weak learners. But with a good combination scheme, their ensemble constitutes

a strong classification algorithm. A disadvantage of boosting is shown to be that it may

be sensitive to the outliers in the dataset, but good boosting algorithms are able to

eliminate this problem successfully. There are a wide range of algorithms that rely on

the boosting method such as the Adaboost algorithm [4], arc-x4 algorithm [3], etc.

In this thesis, we are not interested in the methods of obtaining an ensemble, but we

investigate various linear and nonlinear combination types and learners for a given set

of base classifiers.

2.5 Combiners

Combination methods can be grouped as trainable and non-trainable combiners. We

first define the combination problem, than describe some well known trainable and non-

trainable combiners.

2.5.1 Problem Formulation

In the classifier combination problem with confidence score outputs, inputs to the com-

biner are the posterior scores belonging to different classes obtained from the base
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classifiers. Let pnm be the posterior score of class n obtained from classifier m for

any data instance. Let pm = [p1
m, p

2
m, . . . , p

N
m]T , then the input to the combiner is

f = [pT1 ,p
T
2 , . . . ,p

T
M ]T , where N is the number of classes and M is the number of classi-

fiers. Outputs of the combiner are N different scores representing the degree of support

for each class. Let rn be the combined score of class n and let r = [r1, . . . , rN ]T ; then

in general the combiner is defined as a function g : RMN → RN such that r = g(f). On

the test phase, label of a data instance is assigned as follows:

ŷ = arg max
n∈[N ]

rn, (2.1)

where [N ] = {1, . . . , N}. Block diagram of the classifier combination problem with

confidence score outputs is given in Figure 2.3.
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𝑟1

𝑟2

⋮
𝑟𝑁

 

Figure 2.3: Outputs of the base classifiers and the combiner.

2.5.2 Non-trainable Combiners

This category contains simple rules that constitutes a large volume of the multiple

classifier system literature. These simple rules may be preferable to trainable combiners

in the case of inadequate training data.
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2.5.2.1 Mean Rule

This type of combination is also called the sum rule or the average rule. The basic idea

is simply summing, or averaging, the confidence scores of a particular class through base

classifiers to obtain the final score of that class,:

rn =
1

M

M∑
m=1

pnm (2.2)

Mean rule is one of the strongest non-trainable combination types.

2.5.2.2 Trimmed Mean

This combination rule tries to eliminate harms of the outliers in the ensemble for the

mean rule. Some classifiers may give unusually high or low scores to a particular class

and these scores are not included in the averaging. For a U% trimmed mean, we remove

U% of the scores from each end, and take average; so that we are able to avoid extreme

support values.

2.5.2.3 Product Rule

In the product rule, instead of summing the scores as in the mean rule, we multiply the

scores. This rule is very sensitive to the outliers in the ensemble, because if a score is

very low or very high, it has a huge effect on the resulting score. But if the posterior

scores are estimated correctly, then the product rule provides a good estimate. The rule

is as follows:

rn =
M∏
m=1

pnm (2.3)

2.5.2.4 Minimum Rule

We just simply take the minimum among the classifiers’ output scores:

rn = min
m

pnm (2.4)
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The motivation behind this rule is to assign the test instance to the class for which there

is no base classifier that disagrees on the decision. Performance of the minimum rule

tends to increase as the base classifiers are all strong.

2.5.2.5 Maximum Rule

In this type of combination, we just take the Maximum among the classifiers’ output

scores:

rn = max
m

pnm (2.5)

With this combination, if one base classifier insists on a particular class for a given

test instance, final decision assigns the test instance to that class; even if all other base

classifiers disagree.

2.5.2.6 Median Rule

For median rule, we simply take the Median among the classifiers’ output scores:

rn = median
m

pnm (2.6)

This decision rule also provide robustness to outliers, like the trimmed mean rule.

2.5.2.7 Majority Voting

This is another one of the strongest non-trainable combiners besides the sum rule. To

find the final score of a class, we simply count the number of classifiers that chooses

that particular class, i.e., classifiers that assign the highest score to the class. This rule

is also suitable for ensembles that outputs class labels or class ranks, in fact, it does

not use the scores, it just uses the class labels. If only class labels are obtained from

base classifiers, majority voting is the optimal rule under minor assumptions: (1) The

number of classifiers are odd and the problem is a binary classification problem, (2) The

probability of each classifier for choosing any class is equal for any instance, (3) Base

classifiers are independent [2].
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2.5.3 Trainable Combiners

With trainable combiners, we learn some parameters, usually viewed as and called

weights, from a set of training data. Let I be the number of training data instances

of the combiner, f i contain the scores for training data point i obtained from base clas-

sifiers and yi be the corresponding class label; then our aim is to learn the g function

using the data {(f i, yi)}Ii=1. Given a dataset to train the whole ensemble, including

base classifiers and the combiner, handling of the dataset is a crucial issue for train-

able combiners. Duin [12] suggests that, if we use the same data-instances to train both

base classifiers and the combiner, we should not overtrain the base classifiers because the

combiner will be biased in this case. But if we train the base classifiers and the combiner

from two disjoint subsets of the dataset, than base classifiers can be overtrained, since

the bias will be corrected by training the combiner on the separate training set. But

when we use separate training sets for the base classifiers and the combiner, training

dataset eventually is not efficiently used. Wolpert [13] deals with this problem using

internal cross-validation (CV). We explain internal CV in section 3.3.

We consider weighted mean rule and weighted product rule under trainable combiners,

even though they are much simple compared to other trainable combiners such as deci-

sion templates, Dempster-Shafer based combination and stacked generalization that we

describe below. The reason is, we may still use the training data for finding the weights,

even if the learning methods are simple such as determining the weights according to

cross-validation accuracies of the base classifiers. In fact, we include the weighted mean

rule in our experiments under the framework of stacked generalization. We define the

most well known trainable combiners in the subsequent sections.

2.5.3.1 Weighted Mean Rule

The basic idea of weighted mean rule, which is also called weighted average rule, is

reflecting confidences of the individual classifiers to the mean rule. We assign each

classifier a weight and take the weighted average:

rn =
1

M

M∑
m=1

ump
n
m, (2.7)



Multiple Classifier Systems 15

where um is the weight of classifier m. Learning the weights is a crucial issue, especially

if the diversity of the ensemble is large. We include this type of combination in our

experiments under the framework of stacked generalization.

2.5.3.2 Weighted Product Rule

With weighted product rule, the final score of class n is estimated as follows:

rn =
M∏
m=1

(pnm)um , (2.8)

where um is the weight of classifier m. This rule is equivalent to taking logarithms of

posterior scores and then applying weighted mean rule, which follows from the following

fact:

arg max
n

M∑
m=1

um ln pnm = arg max
n

M∏
m=1

(pnm)um (2.9)

2.5.3.3 Decision Templates

Kuncheva described decision templates in 2001 [14]. On the training phase of decision

templates, we find a decision template for each class. On the test phase, we find the

decision profile of a given data-instance and find the distance of this decision profile

to decision templates of each class with a particular distance metric. We assign the

test instance to the class that has the minimum distance. Given a data-instance x,

a decision profile DP ∈ RM×N is a matrix, containing the scores obtained from base

classifiers: [DP(x)]m,n = pnm. An illustration for a decision profile matrix is given in

Figure 2.4.

Decision template of a class is found by averaging the decision profiles of training data-

instances that belong to that particular class:

DTn =
1

|An|
∑
i∈An

DP(xi), (2.10)

where An is the set of data-points that has the label n. After learning the decision

templates from training data, we find the score of a data-instance by calculating the
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Figure 2.4: Decision profile matrix.

similarity S between DP(x) and DTn for each class n:

rn(x) = S (DP(x),DTn), n = 1, . . . , N (2.11)

The similarity measure is usually found by the square of the Euclidean distance:

rn = 1− 1

NM

N∑
n=1

M∑
m=1

(DTn(m,n)− pnm)2, (2.12)

where DTn(m,n) is the element of DTn at row m and column n. Decision templates

with squared Euclidean distance can be formulated in the framework of stacking. In

particular, it corresponds to the nearest mean classifier, which is a linear classifier, on

posterior scores of the base classifiers.

2.5.3.4 Dempster-Shafer Based Combination

The Dempster-Shafer (DS) Theory [15], which is the basis of many data fusion tech-

niques, is also applied to many decision making problems, including classifier combina-

tion [16, 17]. Instead of combining data from different sources as in data fusion problems,

DS theory is used to combine the evidence provided by ensemble classifiers trained on

data coming from the same source. Let DTm
n denote the mth row of the decision tem-

plate DTn. Then we calculate a proximity value, Φn,m(x), for classifier m, class n and

for data-instance x as follows:
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Φn,m(x) =
(1 + ‖DTm

n − pm‖
2)−1∑N

n′=1 (1 + ‖DTm
n′ − pm‖

2)−1
, (2.13)

where, pm is defined in Section 2.5.1. After calculating these proximities for each class

and classifier, we compute the belief, or evidence, that classifier m correctly identifies

instance x as class n:

bn(pm) =
Φn,m(x)

∏
n′ 6=n (1− Φn′,m(x))

1− Φn,m(x)(1−
∏
n′ 6=n (1− Φn′,m(x)))

(2.14)

After we obtain the belief values for each classifier, we combine them using Dempster’s

rule of combination:

rn = K
M∏
m=1

bn(pm), (2.15)

where K is a normalization constant.

2.5.3.5 Stacked Generalization

Stacked generalization, also known as stacking, is first introduced by Wolpert in 1992

[13]. It works with the assumption that there are still some patterns at the posterior score

level after classification with the base classifiers. Hence, another generalizer/classifier is

applied to posterior scores to catch these patterns. All the work in this thesis follows the

idea of stacked generalization and we improve stacking’s performance further, in terms

of both accuracy and train/test time. We give a comprehensive introduction to stacking

in Chapter 3.



Chapter 3

Stacked Generalization

3.1 Introduction

A novel approach has been introduced in 1992 known as stacked generalization or stack-

ing [13]. The basic idea of stacking is applying a meta-level (or level-1) generalizer to

the outputs of base classifiers (or level-0 classifiers). This method makes the assumption

that there are still some patterns after the classification by the base classifier and the

combiner tries to catch these patterns. Wolpert focused on the regression problem and

he combined the predictions of individual classifiers with this framework as if they are

features. He also points out that the meta-feature space can be augmented with the

original inputs or with other relevant measures. He used internal cross-validation to use

the training data more efficiently for learning the combiner. Internal cross-validation is

explained in Section 3.3. Ting & Witten applied stacking to classification problems by

combining continuous valued probabilistic predictions of base classifiers [18].

Seewald in [19] showed that stacking is universal in the sense that most ensemble learning

schemes can be mapped onto stacking via specialized meta classifiers. He presented

operational definitions of these meta classifiers for voting, selection by cross-validation,

grading, and bagging. In addition, decision templates with squared Euclidean distance,

which is a more sophisticated method compared to the schemes given above, can also

be formulated in the framework of stacking. In particular, it corresponds to a naive

learning of the weights of Linear Stacked Generalization (LSG) combination, which is

described in Section 3.4.3.

18
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3.2 Problem Formulation

Among combination types, linear ones are shown to be powerful for the classifier com-

bination problem. For linear combiners, the g function introduced in Section 2.5.1 has

the following form:

g(f) = W f + b. (3.1)

In this case, we aim to learn the elements of W ∈ RN×MN and b ∈ RN using the

database {(f i, yi)}Ii=1. So, the number of parameters to be learned is MN2 +N . This

type of combination is the most general form of linear combiners and called type-3

combination in [20]. In the framework of stacking, we call it linear stacked generalization

(LSG) combination. One disadvantage of this type of combination is that, since the

number of parameters is high, learning the combiner takes a lot of time and may require

a large amount of training data. To overcome this disadvantage, simpler but still strong

combiner types are introduced with the help of the knowledge that pnm is the posterior

score of class n. We call these methods weighted sum (WS) rule and class-dependent

weighted sum (CWS) rule. These types are categorized as class-conscious combinations

in [8].

3.3 Internal Cross Validation

For training the level-1 classifier, we need the confidence scores (Level-1 Data) of the

training data, but training the combiner with the same data instances which are used

for training the base classifiers will lead to overfitting the database and eventually result

in poor generalization performance. So we should split the dataset into two disjoint

subsets for training the base classifiers and the combiner. But this partitioning leads to

inefficient usage of the dataset. Wolpert deals with this problem by a sophisticated cross-

validation method (internal CV), in which training data of the combiner is obtained by

cross validation. In k-fold cross-validation, training data is divided into k parts and each

part of the data is tested with the base classifiers that are trained with the other k − 1

parts of data. So at the end, each training instance’s score is obtained from the base

classifiers whose training data does not contain that particular instance. This procedure

is repeated for each base classifier in the ensemble. An illustration of 4-fold internal CV
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for just one base classifier is given in Figure 3.1. We apply this procedure for the three

different linear combination types.

1st Part

2nd Part

3rd Part

4th Part

2nd Part

3rd Part

4th Part

1st Part

1st Part

3rd Part

4th Part

2nd Part

1st Part

2nd Part

4th Part

3rd Part

1st Part

2nd Part

3rd Part

4th Part

1st  Classifier

2nd  Classifier

3rd  Classifier

4th  Classifier

1st Part Scores

2nd Part Scores

3rd Part Scores

4th Part Scores

Figure 3.1: An illustration of 4-fold internal CV.

Let Πm, Qm, and Fm be the meta-parameters, subsets of training data-point indices

and subsets of feature indices that are given as inputs to the classifier Cm, respectively.

Qm may contain repeated indices, as in the case of bagging. Let D = {(xi, yi)}Ii=1

be a training dataset and let Om be the resulting model: Om = Cm(D;Qm, Fm,Πm).

Let T map a set of test instances to posterior scores using a given model: PR
m =

T ({xi}i∈R , Om) where [Pm]i,n is the confidence score of class n for data point i and R

contains the test data points. Then we give the overall stacking procedure, including

the test phase, with L-fold internal cross validation in Algorithm 1.

3.4 Linear Combination Types

In this section, we describe and analyze three combination types, namely weighted sum

rule (WS), class-dependent weighted sum rule (CWS) and linear stacked generalization

(LSG) where LSG is already defined in (3.1).
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Algorithm 1 Training and test procedure of stacked generalization with internal CV

1: Receive training data: D = {(xi, yi)}Ii=1, Indices: Q = {1, . . . , I}.
2: Receive base classifier types and parameters: Cm, Qm, Fm,Πm for m = 1, . . . ,M
3: Set parameter L . Number of stacks for internal CV
4: Split the set Q into non-overlapping almost equal sized subsets

{
Q1, . . . , QL

}
5: for m = 1, . . . ,M do
6: for l = 1, . . . , L do
7: Olm = Cm(D;Q−lm , Fm,Πm) where Q−lm =

{
Q\Ql

}
∩Qm . Train base

classifier
8: P l

m = T ({xi}i∈Ql
m
, Olm), where Qlm = Qm ∩Ql . Obtain the posterior

scores of stack l
9: end for

10: Pm = [P 1
m
T
, . . . ,P L

m
T

]T . Concatenate posterior scores of classifier m
11: end for
12: F = [P 1, . . . ,PM ] . Concatenate posterior scores (F = [f1, . . . ,f I ]

T )
13: Learn the combiner g using {(f i, yi)}Ii=1

14: for m = 1, . . . ,M do . Train base classifiers for test
15: Om = Cm(D;Qm, Fm,Πm) . Train base classifier
16: end for
17: Receive test data: D′ = {x′i}

I′

i=1 . Started test phase
18: for m = 1, . . . ,M do
19: P ′m = T (D′, Om) . Obtain posterior scores with base classifiers
20: end for
21: F ′ = [P ′1, . . . ,P

′
M ]

22: ri = g(f ′i) for i = 1, . . . , I ′ . Combine the posterior scores using combiner g

3.4.1 Weighted Sum Rule

In this type of combination, each classifier is given a weight, so there are totally M

different weights. Let um be the weight of classifier m, then the final score of class n is

estimated as follows:

rn =
M∑
m=1

ump
n
m = uTfn , n = 1, . . . , N, (3.2)

where fn contains the scores of class n: fn = [pn1 , . . . , p
n
M ]T and u = [u1, . . . , uM ]T . An

illustration of WS combination for M = 2 and N = 3 is given in Figure 3.2. For the

framework given in (3.1), WS combination can be obtained by letting b = 0 and W be

the concatenation of constant diagonal matrices:

W = [u1IN | . . . |uMIN ], (3.3)
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Figure 3.2: Illustration of WS combination for M = 2 and N = 3.

where IN is the N ×N identity matrix. We expect to obtain higher weights for stronger

base classifiers after learning the weights from the database.

3.4.2 Class-Dependent Weighted Sum Rule

The performances of base classifiers may differ for different classes and it may be better

to use a different weight distribution for each class. We call this type of combination

CWS rule. Let vnm be the weight of classifier m for class n, then the final score of class

n is estimated as follows:

rn =
M∑
m=1

vnmp
n
m = vTnf

n , n = 1, . . . , N, (3.4)

where vn = [vn1 , . . . , v
n
M ]T . There are MN parameters in a CWS combiner. An illus-

tration of CWS combination for M = 2 and N = 3 is given in Figure 3.3. For the

framework given in (3.1), CWS combination can be obtained by letting b = 0 and W to

be the concatenation of diagonal matrices; but unlike in WS, diagonals are not constant:

W = [W 1|W 2| . . . |WM ], (3.5)
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Figure 3.3: Illustration of CWS combination for M = 2 and N = 3.

where Wm ∈ RN×N are diagonal for m = 1, . . . ,M .

3.4.3 Linear Stacked Generalization

This type of combination is the most general form of supervised linear combinations and

is already defined in (3.1). With LSG, the score of class n is estimated as follows:

rn = wT
nf + bn , n = 1, . . . , N, (3.6)

where wn ∈ RMN is the nth row of W and bn is the nth element of b. LSG can be

interpreted as feeding the base classifiers’ outputs to a linear multiclass classifier as a new

set of features. This type of combination may result in overfitting the database and may

yield lower accuracy than WS and CWS combinations when there is not enough training

data. From this point of view, WS and CWS combination can be treated as regularized

versions of LSG. A crucial disadvantage of LSG is that the number of parameters to be

learned is MN2 +N which will result in a long training period.
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There is not a single superior one among these three combination types since results are

shown to be data dependent [21]. A convenient way of choosing the combination type

is selecting the one that gives the best performance in cross-validation.

3.5 Previous Stacking Algorithms

After obtaining level-1 data, there are two main problems remaining for a linear combina-

tion: (1.) Which type of combination method should be used? (2.) Given a combination

type, how should we learn the parameters of the combiner? For the former problem,

Ueda [20] defined three linear combination types namely type-1, type-2 and type-3; for

which, we use the descriptive names weighted sum (WS), class-dependent weighted sum

(CWS) and linear stacked generalization (LSG), respectively and investigate all of them.

LSG is used in [22, 23], and CWS combination is proposed in [18]. For the second main

problem described above, Ting & Witten proposed a multi-response linear regression al-

gorithm for learning the weights [18]. Ueda in [20] proposed using minimum classification

error (MCE) criterion for estimating optimal weights, which increased the accuracies.

MCE criterion is an approximation to the zero-one loss function which is not convex, so

finding a global optimizer is not always possible. Ueda derived algorithms for different

types of combinations with MCE loss using stochastic gradient methods. Both of these

studies ignored “regularization” which has a huge effect on the performance, especially

if the number of base classifiers is large. Reid & Grudic in [24] regularized the standard

linear least squares estimation of the weights with CWS and improved the performance

of stacking. They applied l2 norm penalty, l1 norm penalty and combination of the two

(elastic net regression).

Another issue, recently addressed in [25], is combination with a sparse weight vector so

that we do not use all of the ensemble. Since we do not have to use classifiers which have

zero weight on the test phase, overall test time will be much less. Zhang formulated this

problem as a linear programming problem for only the WS combination type [25]. Reid

used l1 norm regularization for CWS combination [24].



Chapter 4

Max-Margin Stacking & Sparse

Regularization

4.1 Introduction

The main principle of stacked generalization is using a second-level generalizer to com-

bine the outputs of base classifiers in an ensemble. In this chapter, we investigate and

compare different combination types under the stacking framework; namely weighted

sum (WS), class-dependent weighted sum (CWS) and linear stacked generalization

(LSG). For learning the weights, we propose using regularized empirical risk minimiza-

tion with the hinge loss. In addition, we propose using group sparsity for regularization

to facilitate classifier selection. We performed experiments using two different ensemble

setups with differing diversities on 8 real-world datasets. Results show the power of reg-

ularized learning with the hinge loss function. Using sparse regularization, we are able

to reduce the number of selected classifiers of the diverse ensemble without sacrificing

accuracy. With the non-diverse ensembles, we even gain accuracy on average by using

group sparse regularization. 1

1Preliminary works of this chapter are published at International Conference on Pattern Recognition,
2010 [21] and 18th IEEE conference on Signal Processing and Communication Applications [26].

25
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4.2 Learning the Combiner

We use the regularized empirical risk minimization (RERM) framework [27] for learning

the weights. In this framework, learning is formulated as an unconstrained minimization

problem and the objective function consists of a summation of empirical risk function

over data instances and a regularization function. Empirical risk is obtained as a sum of

“loss” values obtained from each sample. In general, we want to minimize the following

objective function:

φ(W , b) =
1

I

I∑
i=1

N∑
n=1

L(f i, yi, n,wn) + λR(W ). (4.1)

where, L is the loss function. Different choices of loss functions and regularization

functions correspond to different classifiers. Using the hinge loss function with l2 norm

regularization is equivalent to support vector machines (SVM). It has been shown in

studies that the hinge loss function yields much better classification performance as

compared to the least-squares (LS) loss function in general. Earlier classifier combination

literature uses LS loss function [18, 23, 24], which is less favorable as compared to the

hinge loss that we promote and use in this thesis. Least-squares loss function is as

follows:

L(f i, yi, n,w) = (s(yi, n)− fTi wn − bn)2, (4.2)

where s(yi, n) = 1 if yi = n, −1 otherwise and bn is the nth element of b. Instead of the

s function, we can use the δ(yi, n) which is zero if yi 6= n instead of −1. LS loss function

forces the true class’ scores to be one and wrong classes’ scores to be zero or −1. This

problem can be seen as a regression problem. Using least-squares with l2 regularization

is equivalent to applying least-squares support vector machine (LS-SVM) [28] to the

level-1 data.

As mentioned above, we promote to use the hinge loss function for the combiner. Using

the hinge loss function with the l2 norm regularization is equivalent to using Support

Vector Machine classifier. SVMs were originally designed for binary classification and

there are a lot of ongoing research on how to effectively extend it for multiclass clas-

sification. Current methods can be grouped into direct and indirect multiclass SVMS.

Indirect methods construct several binary SVMs and combine them, whereas direct

methods consider all classes at once. Two well-known indirect multiclass methods are
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one-versus-one [29] and one-versus-all [30] methods. In one-versus-one method, we train

a binary SVM using only datapoints of two particular classes for each class pair. Test

phase is done by a max-wins voting strategy, in which each binary classifier assigns the

instance to one of the two classes, then finally the class with most votes determines the

instance classification. In one-versus-all method, a binary SVM is trained by treating

one class as the positive class, and the rest of the classes as negative class. In test phase,

an instance is tested with each binary SVM and it is assigned to the class which has the

maximum score. Another method of indirect multiclass classification is an application

of error correcting output codes (ECOC) to the multiclass classification problem [31].

Direct multiclass SVM methods try to solve one problem only [32–35]. We use the

method defined by Crammer and Singer [33]. With this method, we find the linear

separating hyper-plane that maximizes the margin between true class and the most

offending wrong class. When we apply this idea to our problem, we obtain the following

unconstrained minimization problem for LSG:

φLSG(W , b) =
1

I

I∑
i=1

(1− ryii + max
n6=yi

rni )+ + λRLSG(W ), (4.3)

where RLSG(W ) is the regularization function, (x)+ = max(0, x) and rni is the posterior

score of data instance i for class n:

rni = wT
nf i + bn. (4.4)

λ ∈ R in (4.3) is the regularization parameter which is usually learned by cross validation.

The objective function given in (4.3) encourages the distance between the true class’

score and the most offending wrong class’ score to be larger than one. A conventional

regularization function is the Frobenius norm of W :

RLSG(W ) = ||W ||2F =
N∑
n=1

||wn||22, (4.5)

Equation (4.3) is given for LSG but it can be modified for other types of combinations

using the unifying framework described in [21]. But we also give objective functions for
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WS and CWS explicitly. The objective function for WS is as follows:

φWS(u) =
1

I

I∑
i=1

(1− uTfyii + max
n6=yi

(uTfni ))+ + λRWS(u). (4.6)

For regularization, we use the l2 norm of u: RWS = ||u||22. For CWS, we have the

following objective function:

φCWS(V ) =
1

I

I∑
i=1

(1− vTyif
yi
i + max

n 6=yi
(vTnf

n
i ))+ + λRCWS(V ), (4.7)

where V ∈ RM×N contains the weights for different classes: V = [v1, . . . ,vN ]. As

for LSG, conventional regularization function for CWS is the Frobenious norm of V :

RCWS(V ) = ||V ||2F .

4.3 Unifying Framework

Another issue we address in this thesis is the solution algorithms for the objective func-

tions defined in the previous chapter. For the LSG combination defined in (4.3), state-

of-the-art SVM solutions can be used [36]. However, for the WS and CWS combinations,

there is no solution available. One possible solution to this problem might be modifying

these algorithms. Another possible choice is using a tying matrix in the objective func-

tion of LSG (4.3) to obtain WS and CWS combinations as described in [21]. Letting

wn = Anu and bn = 0 in the objective function of LSG leads to WS combination, where

An ∈ RMN×M is the fixed tying matrix associated with class n. Letting wn = Anṽ

and again bn = 0 leads to CWS combination where An ∈ RMN×MN and ṽ is the con-

catenation of the weights of CWS combination: ṽ = [vT1 , . . . ,v
T
N ]T . The tying matrices

of WS and CWS combinations for a problem with N = 3 and M = 2 are given in Fig-

ures 4.1(a) and 4.1(b) respectively. Once we obtain an optimization algorithm for LSG

combination, by incorporating these tying matrices into the algorithms, we can obtain

solutions of WS and CWS combinations.

We give an optimization algorithm for the CWS combination in Chapter 6, but the

unifying framework described here is applicable to different loss functions, and once an

algorithm for the LSG combination type is found, the unifying framework can be used

to adapt the algorithm to obtain solutions for the WS and CWS combinations.
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(a) WS combination
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(b) CWS combination

Figure 4.1: Tying matrices An and unique weights of WS and CWS combination for
N = 3 and M = 2.

4.4 Sparse Regularization

In this section, we define a set of regularization functions for enforcing sparsity on the

weights so that the resulting combiner will not use all the base classifiers leading to a

shorter test time. This method can be seen as a classifier selection algorithm, but here

classifiers are selected automatically and we cannot determine the number of selected

classifiers beforehand. But we can lower this number by increasing the weight of the

regularization function (λ), and vice versa. With sparse regularization, λ has two main

effects on the resulting combiner. First, it will determine how much the combiner should

fit the data. Decreasing λ results in more fitting the training data and decreasing it too

much results in overfitting, on the other hand, increasing it too much prevents the

combiner to learn from the data and the accuracy drops dramatically. Secondly, as

mentioned before, it will determine the number of selected classifiers. As λ increases,

the number of selected classifiers decreases.

4.4.1 Regularization with the l1 Norm

The most successful approach for inducing sparsity is using the l1 norm of the weight

vector for WS [25]. For CWS and LSG, in which the combiner consists of matrices, we

can concatenate the weights in a vector and take the l1 norm or equivalently we can sum

the l1 norms of the rows (or columns) of the weight matrices. We have the following
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sparse regularization functions for WS, CWS and LSG respectively:

RWS(u) = ||u||1, (4.8)

RCWS(V ) = ||V ||1,1 =
N∑
n=1

||vn||1, (4.9)

RLSG(W ) = ||W ||1,1 =

N∑
n=1

||wn||1. (4.10)

If all weights of a classifier are zero, that classifier will be eliminated and we do not

have to use that base classifier for a test instance, so that testing will be faster. But the

problem with l1-norm regularizations for CWS and LSG is that we are not able to use

all the information from a selected base classifier, because a classifier may receive both

zero and non-zero weights. To overcome this problem, we propose to use group sparsity,

as explained in the next section.

4.4.2 Regularization with Group Sparsity

We define another set of regularization functions which are embedded by group sparsity

[37] for LSG and CWS to enforce classifier selection. The main principle of group sparsity

is enforcing all elements that belong to a group to be zero altogether. Grouping of the

elements are done before learning. In classifier combination, posterior scores obtained

from each base classifier form a group. The following regularization function yields group

sparsity for LSG:

RLSG(W ) =

M∑
m=1

||Wm||F . (4.11)

For CWS, we use the following regularization:

RCWS(V ) = ||V ||1,2 =
M∑
m=1

||vm||2, (4.12)

where vm is the mth row of V , so it contains the weights of the classifier m. After the

learning process, the elements of vm for any m are either all zero or all non-zero. This

leads to better performance than l1 regularization for automatic classifier selection, as

we show in Section 4.6. In the next section, we describe the setup of the experiments.
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4.5 Experimental Setups

We have performed extensive experiments in eight real-world datasets from the UCI

repository [38]. For a summary of the characteristics of the datasets, see Table 4.1. In

order to obtain statistically significant results, we applied 5x2 cross-validation [39] which

is based on 5 iterations of 2-fold cross-validation (CV). In this method, for each CV,

data are randomly split into two stacks as training and testing resulting in overall 10

stacks for each database.

We constructed two ensembles which differ in their diversity. In the first ensemble,

we construct 10 different subsets randomly which contain 80% of the original data.

Then, 13 different classifiers are trained with each subset resulting in a total of 130

base classifiers. We used PR-Tools [40] and Libsvm toolbox [41] for obtaining the base

classifiers. These 13 different classifiers are: normal densities based linear classifier,

normal densities based quadratic classifier, nearest mean classifier, k-nearest neighbor

classifier, polynomial classifier, general kernel/dissimilarity based classification, normal

densities based classifier with independent features, Parzen classifier, binary decision

tree classifier, linear perceptron, SVM with linear kernel, polynomial kernel, and radial

basis function (RBF) kernel. We used default parameters of the toolboxes. In the

second ensemble setup, we trained a total of 154 SVM’s with different kernel functions

and parameters. Latter method produces less diverse base classifiers with respect to

the former one. Training data of the combiner is obtained by 4-fold internal CV. For

each stack in 5× 2 CV, 2-fold CV is used to obtain the optimal λ in the regularization

function, i.e., λ which gives the best average accuracy in CV 2. For the minimization of

the objective functions, we used the CVX-toolbox [42]. We use the Wilcoxon signed-rank

test for identifying the statistical significance of the results with one-tailed significant

level α = 0.05 [43].

4.6 Results

First, we investigate the performance of regularized learning of the weights with the

hinge loss compared to the conventional least squares loss [24] and the multi-response

linear regression (MLR) method which does not contain regularization [18] with the

2We searched for λ in {10−11, 10−9, 10−7, 10−5, 10−3, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10}
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Table 4.1: Properties of the data sets used in the experiments

DB # of Instances # of classes # of features

Segment 3 2310 7 19

Waveform 4 5000 3 21

Robot 5 5456 4 24

Statlog 6 846 4 18

Vowel 7 990 11 10

Wine 178 3 13

Yeast 1484 9 8

Steel 8 1941 7 27

diverse ensemble setup described in section 4.5. It should be noted that results shown

here and in [18, 24] are not directly comparable since construction of the ensembles

is different. Error percentages of our method (Hinge Loss with l2 regularization), least

squares method, and MLR method for WS, CWS and LSG are given in Table 4.2. Results

for the simple sum rule, which is equivalent to using equal weights in the WS, are also

given in the column titled EW. The first entries in the boxes are the means of error

percentages over 5 × 2 CV stacks and the second entries are the standard deviations.

Star symbols (*) under the hinge loss column indicate that results of the hinge loss

function are significantly different from the results of the least squares loss function

with the corresponding combination type, i.e., WS, CWS, or LSG.

Table 4.2: Error percentages in the diverse ensemble setup (mean ± standard devia-
tion).

DB Hinge Loss with l2 regularization Least Squares Loss with l2 regularization MLR EW
WS CWS LSG WS CWS LSG WS CWS LSG

Segment 5.02 ± 0.88 * 3.53 ± 0.99 3.60 ± 1.05 6.34 ± 0.78 3.54 ± 0.82 3.57 ± 0.96 7.20 ± 1.02 6.66 ± 6.64 61.28 ± 9.35 7.37 ± 1.03

Waveform 13.20 ± 0.69 13.08 ± 0.76 13.05 ± 0.65 * 13.19 ± 0.73 13.17 ± 0.72 13.18 ± 0.69 13.33 ± 0.68 14.10 ± 0.56 18.40 ± 7.06 14.17 ± 0.60

Robot 3.95 ± 0.42 * 2.53 ± 0.28 2.61 ± 0.28 * 5.29 ± 0.61 2.55 ± 0.30 2.53 ± 0.31 5.05 ± 0.62 2.58 ± 0.30 3.19 ± 0.49 18.58 ± 0.61

Statlog 16.34 ± 1.15 16.12 ± 1.94 * 16.36 ± 1.67 16.78 ± 1.62 16.74 ± 1.91 16.88 ± 1.71 17.73 ± 2.11 58.01 ± 15.38 75.72 ± 6.18 23.03 ± 2.33

Vowel 13.84 ± 2.73 * 6.97 ± 1.73 6.32 ± 1.99 13.90 ± 2.63 6.42 ± 2.06 6.46 ± 2.22 17.15 ± 2.31 10.08 ± 1.75 9.76 ± 1.14 14.53 ± 3.30

Wine 1.57 ± 1.09 1.01 ± 1.45 * 1.69 ± 1.32 2.36 ± 1.54 2.13 ± 2.21 2.13 ± 1.79 3.71 ± 2.31 8.20 ± 16.19 2.47 ± 1.66 2.81 ± 1.52

Yeast 40.36 ± 1.21 40.63 ± 1.21 40.32 ± 1.19 40.26 ± 1.06 40.62 ± 1.44 40.94 ± 1.70 41.05 ± 1.04 53.11 ± 6.88 74.45 ± 6.42 40.26 ± 1.10

Steel 29.85 ± 1.86 * 27.37 ± 1.18 27.41 ± 1.22 30.73 ± 2.02 27.52 ± 1.17 27.64 ± 1.47 30.35 ± 1.34 51.40 ± 14.66 77.12 ± 7.82 31.57 ± 2.07

For seven datasets, the lowest error means are obtained with the hinge loss function

and for one dataset lowest error mean is obtained with the least-squares loss function.

On all datasets, MLR method results in higher error percentages compared to other

methods, and this shows the power of regularized learning, especially if the number of

3The full name of Segment dataset is “Image Segmentation”
4The full name of Waveform dataset is “Waveform Database Generator (Version 1)”
5The full name of Robot dataset is “Wall-Following Robot Navigation Data”
6The full name of Statlog dataset is “Statlog (Vehicle Silhouettes)”
7The full name of Vowel dataset is “Connectionist Bench (Vowel Recognition - Deterding Data)”
8The full name of Steel dataset is “Steel Plates Faults”
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Figure 4.2: Accuracy and number of selected classifiers vs. λ for WS combination of
Robot data in the diverse ensemble setup.

base classifiers is high. It should be noted that in [18], 3 base classifiers are used and

here we use 130 base classifiers.

We also investigated the performance of sparse regularization with the hinge loss func-

tion. We used two different ensemble setups described in the beginning of this section.

Regularization parameter λ given in the objective functions (4.3,4.6,4.7) is an important

parameter and if we minimize the objective functions also over λ, the combiner will over-

fit the training data, which will result in poor generalization performance. Therefore,

we used 2-fold cross-validation to learn the optimal parameter. We plot the relation of

λ with accuracies and the number of selected classifiers for different regularizations with

WS, CWS and LSG for the Robot dataset in Figures 4.2, 4.4 and 4.6 respectively.

In these figures, dashed lines correspond to the number of selected classifiers and solid

lines correspond to the accuracies. The l1 − l2 label represents group sparsity. In all

sparse regularizations, the best accuracies are obtained when most of the base classifiers

are eliminated. For all regularizations, accuracies make a peak at λ values between

0.001 and 0.1. For l1 norm regularization, accuracies drop dramatically with a small

increase in λ. However, with group sparsity regularization, accuracies remain high in a

larger range for λ than that with the l1 norm regularization. Thus the performance of

l1 regularization is more sensitive to the selection of λ. So we can say that the l1 − l2

norm regularization is more robust than the l1 norm regularization. As the number of
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Figure 4.3: Accuracy and number of selected classifiers vs. λ for WS combination of
Robot data in the non-diverse ensemble setup.
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Figure 4.4: Accuracy and number of selected classifiers vs. λ for CWS combination
of Robot data in the diverse ensemble setup.

selected classifiers decreases, accuracies increase for a large range of λ in general, but

this increase in the accuracy cannot be attributed only to the classifier selection, because

λ also determines how much the combiner should fit the data.

Next, we show the test results for all combination types with various regularization

functions. Error percentages (mean ± standard deviation) are shown in Table 4.3 for
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Figure 4.5: Accuracy and number of selected classifiers vs. λ for CWS combination
of Robot data in the non-diverse ensemble setup.
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Figure 4.6: Accuracy and number of selected classifiers vs. λ for LSG combination
of Robot data in the diverse ensemble setup.

the diverse ensemble setup and corresponding number of selected classifiers are shown

in Table 4.4. In the significance column, denoted by SIG, the letters “a,b,c,d,e,” denote

that the performances between l2 - l1 for WS, l2-l1− l2, l1-l1− l2 for CWS and l1-l1− l2

for LSG are statistically significant respectively.
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Figure 4.7: Accuracy and number of selected classifiers vs. λ for LSG combination
of Robot data in the non-diverse ensemble setup.

In general, we are able to use much less base classifiers with sparse regularizations with

the cost of a small decrease in the accuracies. For LSG, average error percentage of

group sparsity is a little less than that of the l1 norm regularization. But the number

of selected base classifiers is much less. So if classifier selection is desired, we suggest to

use either CWS or LSG combination with l1 − l2 regularization. If training time is also

crucial, CWS with l1 − l2 regularization seems to be the best option.

Error percentages and number of selected classifiers for the non-diverse ensembles are

given in Tables 4.5 and 4.6 respectively. We should note that the results in these tables

are from an earlier experiment and they are obtained using the l2 norm of the weight

vector for regularization rather than the square of the l2 norm; however, we expect the

results to be similar. With the non-diverse ensembles we are even able to increase the

accuracy with much less number of base classifiers with sparse regularization in CWS

and LSG. On average, l1 − l2 regularization results in lower error percentages for both

CWS and LSG, but the results are not statistically significant. But, the number of

selected classifiers is much less with l1 − l2 regularization than that of l1 regularization.

Except the statlog dataset, the lowest error percentages are obtained with the sparse

combinations with much less base classifiers than that of l2 regularization which uses 154

base classifiers. If we compare different combination types with the l2 norm, on average
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we see that, unlike in the diverse ensemble setup, WS and CWS outperforms LSG in four

databases. We can conclude that if the posterior scores obtained from base classifiers

are correlated, non-complex combiners are more powerful since complex combiners may

result in overfitting.

4.7 Conclusion

In this chapter, we suggested using the hinge loss function with regularization to learn

the parameters (or weights) of linear combiners in stacked generalization. We are able

to obtain better accuracies with the hinge loss function than conventional least-squares

estimation of the weights. Results also indicate the importance of regularized learning

of the weights. We also proposed l1 − l2 norm regularization (or group sparsity) to

obtain a reduced number of base classifiers so that the test time is shortened. Results

indicate that we can use smaller number of base classifiers with a small sacrifice in the

accuracy with the diverse ensemble. We show that l1 − l2 regularization outperforms l1

regularization in terms of both accuracy and the number of selected classifiers. With

the non-diverse ensemble setup, we even obtain better accuracies using sparse regular-

izations. If training time is crucial, we suggest using the CWS type combination. And

if test time is important, we suggest using group sparsity regularization.
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Chapter 5

Kernel Based Nonlinear Stacking

5.1 Introduction

Supervised linear combiners are shown to be strong combiners; but nonlinear combina-

tion methods are not well investigated in the literature. In the framework of stacking,

posterior scores that are obtained from base classifiers are treated as a new set of fea-

tures and the combiner tries to catch some patterns that are present in posterior scores.

Linear combiners work with the assumption that classes are linearly separable in this

new feature space. In this chapter, we question this assumption and do experiments

with nonlinear combiners. We generalize the WS, CWS, and LSG combinations to be

nonlinear, even though the descriptive names imply linear combinations. For WS com-

bination, the combiner, g : RM → R, takes M different input arguments for each class

and outputs the final score:

rn = g(pn1 , . . . , p
n
M ). (5.1)

For the CWS combination, each class has its own combiner, gn : RM → R:

rn = gn(pn1 , . . . , p
n
M ). (5.2)

For the LSG combination, each class has its own combiner, gn : RMN → R, and each

combiner takes MN different input arguments and outputs the final score:

rn = gn(p1
1, . . . , p

N
1 , p

1
2, . . . , p

N
2 , . . . . . . , p

1
M , . . . , p

N
M ). (5.3)

39
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For CWS and LSG combination, the combiner functions gn are estimated jointly for

each n with the direct multiclass hinge loss described in (4.3) and (4.7). But with the

least-squares loss function, we show that estimation of each gn function can be done

independently from each other.

Nonlinear version of the LSG combination can be obtained by directly applying the

kernel trick to the posterior scores. The WS and CWS combinations are actually linear

combinations of the posterior scores, but they can be also seen as linear boundaries that

pass through the origin in the posterior score space. So, our aim is to find nonlinear

boundaries that again pass through the origin in the same spaces. We obtain the non-

linear versions of WS and CWS combination types for least squares loss function by first

transforming the dataset into binary datasets, then applying the kernel trick. This data

transformation, however, is not valid for the direct multiclass hinge loss function given

in (4.6) and (4.7). For regularization function we only use the l2 norm, since the kernel

trick is not applicable to the l1 norm or group sparse regularization to our knowledge. 1

5.2 WS combination using binary classifiers

For LSG combination, we use the following objective function of regularized empirical

risk minimization framework:

φ(w) =
1

I

I∑
i=1

N∑
n=1

L(f i, yi, n,w) + λR(w). (5.4)

where L is the loss function. Previous objective function given in (4.3) was given for

the hinge loss with a modification. With this modification, instead of summing loss

functions also over classes, we only considered the most offending wrong class. This

modification prevents the data transformation method described below to be valid; but

it is valid for the least squares loss function. Here, we derive the combination method

for the least-squares loss function, which is as follows:

L(f i, yi, n,w) = (s(yi, n)− fTi wn)2, (5.5)

1A preliminary work of this chapter is published at 19th IEEE conference on Signal Processing and
Communication Applications [44].



Kernel Based Nonlinear Stacking 41

where, s(yi, n) = 1 if yi = n, −1 otherwise. Using the unifying framework defined in

Section 4.3, the LS loss function for WS combination becomes:

L(f i, yi, n,w) = (s(yi, n)− fTi Anu)2 (5.6)

= (ỹni − uTfni )2 (5.7)

= L̃(fni , ỹ
n
i ,u) (5.8)

where An is the tying matrix for class n and ỹni ∈ {−1,+1} is equal to s(yi, n). With

this loss function, the objective function becomes as follows:

φWS(u) =
1

I

I∑
i=1

N∑
n=1

L̃(fni , ỹ
n
i ,u) + λR(u). (5.9)

Minimizing this objective function is equivalent to learning a least-squares support vector

machine (LS-SVM) binary classifier using the binary dataset {{(fni , ỹni }Nn=1}Ii=1. This

transformation for a dataset with 3 classes and 2 base classifiers is illustrated in Figure

5.1. We can obtain the nonlinear version of WS combination by applying the kernel

trick [45] to the LS-SVM classifier. Kernel trick is explained in Section 5.4.

It should be noted that this transformation, and also the transformation for CWS com-

bination which is explained in the following section, is valid for the least-squares loss

function and it leads to an approximation for the hinge loss function. But we also applied

this transformation to the hinge loss function in the experiments.

5.3 CWS combination using binary classifiers

For the least-squares loss function, we can split the objective function of CWS for dif-

ferent classes:

φCWS(V ) =
N∑
n=1

φn(vn), (5.10)

where,

φn(vn) =
1

I

I∑
i=1

(ỹni − vTnfni )2 + λR̃(vn). (5.11)
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Figure 5.1: Transformation of a dataset with N = 3 and M = 2 for WS combination.

For this separation, regularization function should satisfy the following condition:

R(V ) =
N∑
n=1

R̃(vn) (5.12)

l2 norm and l1 norm regularizations satisfy this condition. Since the parameters of each

φn is independent from each other, instead of minimizing φCWS (5.10), we minimize

φn (5.11) for each n separately. Minimizing φn is equivalent to learning a binary LS-

SVM classifier from the dataset {fni , ỹni }Ii=1. This transformation for a dataset with 3

classes and 2 base classifiers is illustrated in Figure 5.2. This data transformation looks

like one-vs-all multiclass classification method, but it is not the same since input data

are different for each binary problem. We can obtain the nonlinear version of CWS

combination by applying the kernel trick to the LS-SVM classifier. The kernel trick is

explained in the following section.
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Figure 5.2: Transformation of a dataset withN = 3 andM = 2 for CWS combination.

5.4 The Kernel Trick

The kernel trick is a way of obtaining a non-linear classification method. The basic

idea is mapping the observations into a much higher dimensional space and applying

a linear classification in this space; instead of obtaining a nonlinear classifier directly.

Since linear classification only needs the inner product pairs of data instances, instead

of mapping the data instances and taking inner products, a kernel function is produced;

so that nonlinear classification is faster.

First, we apply the kernel trick to the CWS combination. We have the following objective

function to minimize for each class with l2 regularization:

min
vn

{φn(vn)} = min
vn

{1

I

I∑
i=1

(ỹni − vTnfni )2 + λvTnvn}. (5.13)
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According to the Representer Theorem [46] the minimizer of (5.13) lies in the data-space.

So we can write the vn as a linear combination of data instances:

vn =

N∑
i=1

αni ỹ
n
i f

n
i , (5.14)

for some αni > 0 for each i. If we replace above equation into (5.13), we obtain the

following objective function:

min
αn

{φn(αn)} = min
αn

{1

I

I∑
i=1

(ỹni −
I∑
j=1

αnj ỹ
n
j < f

n
j ,f

n
i >)2+λ

N∑
i=1

N∑
j=1

αni α
n
j ỹ

n
i ỹ

n
j < f

n
j ,f

n
i >}

(5.15)

subject to

α ≥ 0

where, αn = [αn1 , . . . , α
n
I ]T . We changed the optimization variable from vn to αn.

Notice that posterior scores in above equation are present only in pairwise dot products:

< fni ,f
n
j >. Now we map the posterior scores into a higher dimensional space with

ϕ : Fn → Un, where Fn is the observation space for class n, i.e. Fn = span(fn1 , . . . ,f
n
I ),

Un is an inner product space such that dim(Fn) < dim(Un). Instead of mapping the data

and taking inner product, we construct a kernel function k : Fn × Fn → R as follows:

k(fni ,f
n
j ) =< ϕ(fni ), ϕ(fnj ) > (5.16)

Given a mapping function ϕ, we can find the corresponding kernel function easily, but

given a kernel function it may not be easy to find the corresponding mapping function.

However, we do not require an explicit representation for ϕ: it is sufficient to know that

there is a corresponding ϕ, i.e. it is sufficient for Un to be an inner product space. For

Un to be an inner product space, kernel function should satisfy the Mercer’s condition:

There exists a mapping ϕ such that equation (5.16) holds, if and only if, for any g

function such that
∫
g(x)2dx is finite, the following holds:

∫ ∫
k(x,y)g(x)g(y)dxdy ≥ 0 (5.17)

We used two well known kernel functions that satisfy Mercer’s Condition. First one is

the polynomial kernel:

k(x,y) = (xTy + 1)d, (5.18)
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where d is a kernel parameter called ”degree“. Latter kernel function is the radial basis

function (RBF):

k(x,y) = e−γ||x−y||
2

(5.19)

Both the polynomial kernel and the RBF kernel corresponds to a mapping to an infinite

dimensional space. When we replace the inner products with kernel functions in (5.15),

we obtain the following objective function for the CWS combination:

φn(αn) =
1

I

I∑
i=1

(ỹni −
I∑
j=1

αnj ỹ
n
j k(fnj ,f

n
i ))2 + λ

N∑
i=1

N∑
j=1

αni α
n
j ỹ

n
i ỹ

n
j k(fnj ,f

n
i ) (5.20)

We minimize above function with respect to αn with the constraint that αn ≥ 0. For-

mulation given in (5.20) is in primal. For test phase, we keep the αn which minimize

the objective function:

α̂n = argmin
αn

φn(αn). (5.21)

In the test phase, given a test instance f , we find the score of class n as follows:

rn =

I∑
i=1

α̂ni ỹ
n
i k(fni ,f

n), (5.22)

where fn contains the elements in f associated with class n.

When we apply the kernel trick into (5.9) for the WS combination, we obtain the fol-

lowing objective function:

φWS(α) =
1

I

I∑
i=1

N∑
n=1

(ỹni −
I∑
j=1

N∑
n′=1

αn
′
j ỹ

n′
j k(fni ,f

n′
j ))2+λ

I∑
i=1

N∑
n=1

I∑
j=1

N∑
n′=1

αni α
n′
j ỹ

n
i ỹ

n′
j k(fn

′
j ,f

n
i ),

(5.23)

where α = [αT1 , . . . ,α
T
N ]T and α ≥ 0. In the test phase, for a given test instance f , we

find the score of class n as follows:

rn =

I∑
i=1

N∑
n′=1

α̂n
′
i ỹ

n′
i k(fn

′
i ,f

n) (5.24)

The kernel method, that we apply to the WS and CWS combinations, is equivalent

to mapping the data nonlinearly into a higher dimensional space and applying linear

classification in there. The generalization performance of the combiner may be sensitive

to the selection of the parameters d in polynomial kernel and γ in the RBF kernel. They
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Table 5.1: Properties of the data sets used in the experiments

DB Train Instances Test Instances # of classes # of features

optdigit 3823 1797 10 64
satellite 4435 2000 6 36
segment 1000 1310 7 19

waveform 2000 3000 3 21

are usually chosen according to cross-validation performances, as in the case of selection

of the regularization parameter λ. In the next section, we explain the experiment setups,

present results, and discuss them.

5.5 Experiments

We conduct experiments with 2 different ensembles. First, we constructed ensembles

using 4 datasets and obtained results for both the LS loss and the hinge loss function.

Then, we conducted experiments with the diverse ensembles obtained in Chapter 4 for

8 datasets using the hinge loss function.

5.5.1 Experimental setup - 1

For the former ensembles, we used 4 datasets from the UCI Machine Learning Repository

[38]. Some properties of these datasets are summarized in Table 5.1.

We constructed an ensemble with 13 different base classifiers for each dataset. These 13

different classifiers are: normal densities based linear classifier, normal densities based

quadratic classifier, nearest mean classifier, k-nearest neighbor classifier, polynomial

classifier, general kernel/dissimilarity based classification, normal densities based clas-

sifier with independent features, parzen classifier, binary decision tree classifier, linear

perceptron, SVM with linear kernel, polynomial kernel, and radial basis function (RBF)

kernel.

2-fold internal CV is applied for obtaining the training data of the combiner. Even

though data transformation methods explained in Sections 5.2 and 5.3 are not exact

for the hinge loss function, we also perform experiments with the hinge loss function.

We used the polynomial kernel and the RBF kernel functions. We searched for the
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regularization parameter (λ) and kernel parameters (d or γ) with 2-fold cross-validation.

We choose the parameter pairs that gives the best average combination accuracy, rather

than the ones that give best average binary classification accuracy. Combiners are

trained using the LS-SVM Toolbox in Matlab [28] for least-squares loss function and the

Libsvm Toolbox [41] for the hinge loss function.

Table 5.2: Error percentages for the WS combination

DB Hinge Loss LS Loss
Lin Poly RBF Lin Poly RBF

optdigit 1.67 1.95 2.28 1.78 1.78 3.36
satellite 10.05 10.55 10.60 9.95 9.95 12.25
segment 4.2 5.73 3.66 4.35 4.35 4.73

waveform 13.10 13.23 12.87 13.37 13.37 13.20

Table 5.3: Error percentages for the CWS combination

DB Hinge Loss LS Loss
Lin Poly RBF Lin Poly RBF

optdigit 2.95 2.95 4.06 1.89 1.89 1.95
satellite 12.85 10.70 10.40 12.20 12.20 12.60
segment 3.59 3.59 3.66 3.59 3.59 3.51

waveform 13.10 12.83 13.10 13.37 13.37 13.07

Table 5.4: Error percentages for the LSG combination with the hinge loss

DB EW Lin Poly RBF

optdigit 3.78 2.29 2.90 2.29
satellite 12.40 13.15 13.55 13.05
segment 7.33 3.90 5.65 3.21

waveform 13.37 13.00 13.14 13.00

For the WS and CWS combinations, we obtained results for both LS and the hinge loss

function. In Table 5.2, we give the results for the WS combination. Linear combiner

error percentages are given at the column titled Lin and nonlinear combination results

with polynomial and RBF kernel functions are given in the columns titled Poly and

RBF respectively. We give the error percentages for the CWS combination in Table 5.2.

We also give the error percentages for the LSG combination with the hinge loss function

and the mean rule (in the column titled EW ) in Table 5.4. For all combination types,

i.e. WS, CWS and LSG, we are able to obtain the lowest errors using the nonlinear

combiners. In general, RBF kernel function gives better accuracies than the polynomial

kernel. For LSG combination, RBF kernel outperforms both the linear combiner and

the polynomial kernel.
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In general we see that, nonlinear combination works slightly better than the linear

combination, but there is not much difference. This could result from the non-complexity

of the classifier combination problem, but it is a fact that there is not much study of the

nonlinear classifier combination problem. Additional improvements in this problem may

result in increased accuracies. One possible improvement might be finding or deriving

special kernel functions that are suitable for the classifier combination problem.

Developed data transformation methods are used for obtaining nonlinear versions of WS

and CWS combinations. However, even for linear combinations, the data transformation

may have a computational advantage. Since we transform a multiclass dataset into

binary datasets, training time will be much less; because binary classifiers work faster

than multiclass classifiers in general. As the number of data instances increase, time

advantage of our method would increase, especially if the optimization algorithm of the

combiner is in the primal domain.

5.5.2 Experimental setup - 2

For the second experimental setup, we used the ensembles obtained in Chapter 4. Since

results indicate that we can use the data transformation for the hinge loss even though

it is not valid for the hinge loss, we obtained results for the hinge loss function only for

the second experimental setup. We used the Libsvm Toolbox [41] for the combiner. For

the LSG combination, we used one-versus-one multiclass combination. For statistical

significance, we used Wilcoxon signed rank test with one tailed significance level of

α = 0.05 [43]. Results are shown in Table 5.5. The columns LIN indicate the linear

kernel and SIG indicate the significance. The letter “a,b,c” under the column SIG

indicate that performance difference between linear and RBF kernel are statistically

significant for WS,CWS and LSG combinations respectively.

Table 5.5: Error percentages with the diverse ensemble setup (mean ± standard
deviation).

DB WS CWS LSG EW SIG
LIN RBF LIN RBF LIN RBF

Segment 3.44 ± 0.67 3.08 ± 0.72 3.18 ± 0.79 3.01 ± 0.76 3.21 ± 0.53 2.99 ± 0.43 7.37 ± 1.03 ab

Waveform 13.56 ± 0.66 13.10 ± 0.65 13.08 ± 0.70 13.11 ± 0.65 13.20 ± 0.67 13.18 ± 0.64 14.17 ± 0.60 a

Robot 2.58 ± 0.38 2.48 ± 0.38 2.43 ± 0.31 2.41 ± 0.28 2.57 ± 0.37 2.63 ± 0.41 18.58 ± 0.61

Statlog 18.18 ± 1.69 16.45 ± 1.50 16.43 ± 1.27 16.43 ± 1.55 16.64 ± 1.47 17.40 ± 1.98 23.03 ± 2.33 a

Vowel 6.02 ± 1.97 5.88 ± 2.09 6.06 ± 1.97 6.22 ± 1.88 5.60 ± 1.57 5.43 ± 1.47 14.53 ± 3.30

Wine 1.57 ± 1.42 1.69 ± 1.52 1.57 ± 1.52 2.02 ± 1.57 1.35 ± 1.48 2.13 ± 1.45 2.81 ± 1.52 bc

Yeast 41.28 ± 0.78 39.99 ± 0.91 40.58 ± 1.48 40.75 ± 0.95 40.58 ± 0.88 40.70 ± 0.91 40.26 ± 1.10 a

Steel 27.46 ± 1.36 27.07 ± 1.19 26.76 ± 0.73 26.69 ± 0.65 26.30 ± 0.91 26.38 ± 0.98 31.57 ± 2.07
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In general, we see that, nonlinear combination with RBF kernel works much better than

the linear combination for the WS combination type. But there is not much difference

for CWS and LSG combinations.

Next, we compare the data transformation method for the hinge loss with linear kernel in

Table 5.6 with Crammer-Singer (CS) type WS and CWS combination types as found in

Chapter 4. The letter “a,b” under the significance column indicate that the differences

in the errors between data transformation method (DT) and the direct combination

using the Crammer-Singer method (CS) are statistically significant for WS and CWS

combinations respectively. On at least half of the datasets, using the data transformation

and then applying the hinge loss function works better than using the objective function

of Crammer-Singer with both WS and CWS combinations.

Table 5.6: Error percentages of Crammer-Singer method and Data transformation
with the diverse ensemble setup for WS and CWS. (mean ± standard deviation).

DB WS CWS SIG
DT CS DT CS

Segment 3.44 ± 0.67 5.02 ± 0.88 3.18 ± 0.79 3.53 ± 0.99 ab

Waveform 13.56 ± 0.66 13.20 ± 0.69 13.08 ± 0.70 13.08 ± 0.76 a

Robot 2.58 ± 0.38 3.95 ± 0.42 2.43 ± 0.31 2.53 ± 0.28 ab

Statlog 18.18 ± 1.69 16.34 ± 1.15 16.43 ± 1.27 16.12 ± 1.94 a

Vowel 6.02 ± 1.97 13.84 ± 2.73 6.06 ± 1.97 6.97 ± 1.73 ab

Wine 1.57 ± 1.42 1.57 ± 1.09 1.57 ± 1.52 1.01 ± 1.45

Yeast 41.28 ± 0.78 40.36 ± 1.21 40.58 ± 1.48 40.63 ± 1.21 a

Steel 27.46 ± 1.36 29.85 ± 1.86 26.76 ± 0.73 27.37 ± 1.18 a

Next, we compare the Crammer-Singer multiclass SVM with the one-versus-one SVM

for the LSG combination in Table 5.7. The results of datasets Waveform and Steel are

statistically significant. In general we see that, neither of them are superior over the

other one. So we conjecture that, lower error percentages of the data transformation as

compared to the Crammer-Singer method for WS and CWS combination types result

from the data-transformation rather than the bad performance of the Crammer-Singer

method.

Table 5.7: Error percentages of one-versus-one (OVO) versus Crammer-Singer (CS)
methods for LSG. (mean ± standard deviation).

DB OVO CS

Segment 3.21 ± 0.53 3.60 ± 1.05

Waveform 13.20 ± 0.67 13.05 ± 0.65

Robot 2.57 ± 0.37 2.61 ± 0.28

Statlog 16.64 ± 1.47 16.36 ± 1.67

Vowel 5.60 ± 1.57 6.32 ± 1.99

Wine 1.35 ± 1.48 1.69 ± 1.32

Yeast 40.58 ± 0.88 40.32 ± 1.19

Steel 26.30 ± 0.91 27.41 ± 1.22



Chapter 6

An MM Algorithm for CWS

Combination

6.1 Introduction

The results of the experiments in Chapter 4 suggest that, the CWS combination is the

most preferable method among linear combination types. Previous studies that perform

stacked generalization use the least-squares loss function, but we promote the hinge loss

function in Chapter 4. Optimization algorithms for least-squares estimation have been

thoroughly investigated in the literature and there are numerous algorithms/solutions.

But there is not much study for the multiclass SVM. Moreover, there is no specific

solution or software for the CWS combination, but only generic optimization toolkits.

These generic optimization toolkits, usually, solve the dual problem, which leads to

slower training as the number of data-instances increase, compared to the primal solu-

tion. In this chapter, we derive an optimization algorithm for the CWS combination

in the primal domain. We apply majorize-minimize (MM) algorithms with coordinate

descent method to our problem including l2, l1 and group sparse regularizations.

6.2 MM Algorithms

MM algorithms are first proposed by Ortega and Rheinboldt in 1969 [47]. MM stands

for “Majorize-minimize” for a minimization problem and “minorize-maximize” for a

50



An MM Algorithm for CWS Combination 51

maximization problem. MM algorithms are iterative methods and they are similar to

the expectation maximization (EM) algorithms. In fact, every EM algorithm is a special

case of the more general class of MM optimization algorithms [48]. Given an objective

function to minimize, the basic idea of MM is, at each iteration, finding a majorizing

function, called surrogate function, at the current point and minimizing this surrogate

function. We first discuss MM algorithms in a one-dimensional problem and move onto

higher dimensional cases. Let f(θ) be a real valued function of the parameter θ and we

want to minimize this function iteratively. We find a majorizing function of f at the

current point θ(t) and minimize this function rather than the original objective function.

t represents the iteration, so at each iteration, we find a majorizing function at the point

θ(t). The real valued function g(θ | θ(t)) is said to majorize f(θ) at the point θ(t) if the

following conditions hold:

g(θ | θ(t)) ≥ f(θ) for all θ (6.1)

g(θ(t) | θ(t)) = f(θ(t)). (6.2)

An illustration is given in Figure 6.1. Let θ(t+1) be the minimizer of the surrogate
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Figure 6.1: A quadratic majorizing function of an objective function at θ(t) = 1.5.

function g(θ | θ(t)). Using the conditions in (6.1) and (6.2), we can see that MM

algorithms ensure monotonic decrease of the objective function:

f(θ(t+1)) ≤ g(θ(t+1) | θ(t)) ≤ g(θ(t) | θ(t)) = f(θ(t)). (6.3)
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This descent property lends an MM algorithm remarkable numerical stability. If the

majorizing function is quadratic, it can be minimized in one step. So we construct

quadratic majorizing functions. A quadratic majorizing function of f(θ) at point θ(t)

can be formulated as follows:

g(θ | θ(t)) = f(θ(t)) + ḟ(θ(t))(θ − θ(t)) +
1

2
c(θ(t))(θ − θ(t))2, (6.4)

where ḟ(θ(t)) = ∂f(θ)
∂θ

∣∣
θ=θ(t)

. The formulation above follows from the facts that g(θ(t) |

θ(t)) = f(θ(t)) and first derivatives of f and g are equal at θ(t) since the surrogate function

is tangent to the objective function at that point. c(θ(t)) in (6.4) is the curvature value

and it can be chosen from the range [copt,∞) where copt is the minimum curvature value

such that condition (6.1) holds. In general, we want to choose the curvature value as low

as possible since lower curvature values lead to faster convergence. So we call copt the

optimum curvature value. For convex objective functions, this curvature value results

in a surrogate function such that it is tangent to the objective function at another point

besides θ(t). For special objective functions, there are simple ways to find the optimal

curvature. We use the following theorem which is proved in [49] to find the optimal

curvature for our problem:

Theorem 1. Let f(θ) be a one dimensional function such that its first derivative is

continuous. If ḟ(θ) has the property of odd symmetry with respect to a point a, in other

words if there is a b value such that

ḟ(a+ θ)− b = b− ḟ(a− θ) (6.5)

and if ḟ(θ) is convex for θ < a, then the minimum curvature such that condition (6.1)

holds can be found as follows:

c(θ(t)) =

∣∣∣∣∣ ḟ(θ(t))− ḟ(2a− θ(t))

2(θ(t) − a)

∣∣∣∣∣ (6.6)

Theorem 1 is used to find the minimum curvature possible such that the surrogate func-

tion majorizes the objective function at θ(t). We can also find the minimum curvature

for all θ values such that condition (6.1) holds. In [50], it is shown that minimum cur-

vature such that (6.1) holds for all θ is the maximum second derivative of the objective

function: cmax = maxθ f̈(θ). We call this curvature maximum curvature. It will lead
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to slower convergence on each iteration, but since the curvature value is fixed, saved

time by not calculating the curvature on each iteration may lead to faster convergence

overall.

Another property of MM algorithms that we use in our problem is that majorization

relation between functions is closed under the formation of sums. Let gi(θ | θ(t)) be the

majorizer of the function fi(θ) at θ(t) for i = 1, . . . , B and let f̃(θ) =
∑B

i=1 fi(θ). Then

g̃(θ | θ(t)) =
∑B

i=1 gi(θ | θ(t)) majorizes f̃(θ) at the point θ(t). This rule permit us to

work piecemeal in simplifying complicated objective functions. In the following sections,

we derive an MM algorithm for the CWS combination.

6.3 Problem Formulation

Recall that we have the following objective function for CWS combination with the

hinge loss function as described in (4.7):

φ(V ) =
1

I

I∑
i=1

(1− vTyif
yi
i + max

n6=yi
(vTnf

n
i ))+ + λR(V ), (6.7)

where vn is the nth column of V ∈ RM×N and it contains the weights for class n. The

mth row of V contain the weights of base classifier m for different classes. We write this

objective function as follows:

φ(V ) = L(V ) + λR(V ), (6.8)

Here L(V ) gives the summation of loss values over data-instances:

L(V ) =
1

I

I∑
i=1

h(zi(V )), (6.9)

where h(z) = max(0, 1− z) and

zi(V ) = vTyif
yi
i −max

n6=yi
(vTnf

n
i ). (6.10)

Since maximum among wrong classes leads to a non-differentiable function, we approxi-

mate the maximum operator with logarithm of sum of exponentials, which is also called
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softmax :

max
n6=yi

(vTnf
n
i ) ≈ log

∑
n 6=yi

ev
T
nf

n

i (6.11)

When we apply this approximation, we obtain the following zi function:

zi(V ) = vTyif
yi
i − log

∑
n6=yi

ev
T
nf

n

i . (6.12)

zi(V ) is an approximation of the difference between the score of the correct class and

the score of the most offending wrong class for data point i with the current combiner

V . From now, we sometimes drop the subscript i and the argument V of zi(V ) for

simplicity. h(z) is the hinge loss function and it is not differentiable at z = 1. For this

reason, as z gets close to one, copt goes to infinity. When copt is not bounded, there is no

guarantee of convergence [51]. To overcome this problem, we use the Huber-hinge loss

function defined as follows:

h(z, τ) =


1− z if z ≤ 1− τ

1
4τ (z − (1 + τ))2 if 1− τ < z ≤ 1 + τ

0 if z > 1 + τ

(6.13)

Huber hinge loss function smoothes the hinge loss function near z = 1. It should be

noted that the derivatives of the hinge loss function and Huber-hinge loss function at

the points z = 1 − τ and z = 1 + τ are equal. Plot of the hinge loss function and the

Huber-hinge loss function and their derivatives with respect to z are given in Figures

6.2(a) and 6.2(b) for τ = 0.5. The derivative of the Huber-hinge loss function is as

follows:

ḣ(z, τ) =


−1 if z ≤ 1− τ

1
2τ (z − (1 + τ)) if 1− τ < z ≤ 1 + τ

0 if z > 1 + τ

(6.14)

In the next section, we find quadratic surrogate functions for the Huber-hinge loss func-

tion with respect to z.
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Figure 6.2: Hinge Loss and Huber Hinge Loss and their derivatives for τ = 0.5.

6.4 Quadratic Majorizing Functions

We want to minimize the objective function defined in (6.8). We solve this problem iter-

atively. For each iteration, we construct a majorizing function at the current combiner

and minimize it using coordinate descent. In this section, we find majorizing functions

of the objective function, which consists of a loss value and regularization value. We first

derive a majorizer for the loss value in the next subsection, then handle the regularization

part in Section 6.4.2.

6.4.1 Majorizer of the loss function

We want to find a quadratic majorizer of the loss value given in (6.9). Then we minimize

this majorizer using a coordinate descent algorithm, which optimizes the majorizer with

respect to vn,m for each n and m consecutively, where vn,m is the weight of classifier m

for class n. We find the majorizer, gi(V ;V (t)), of the Huber-hinge loss function for the
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data-instance i by applying the one dimensional quadratic expansion defined in (6.4) to

our multi-dimensional problem as follows:

gi(V ;V (t)) = h(zi(V
(t)))+ḣ(zi(V

(t)))
(∂z(V )

∂ṽ

∣∣∣
ṽ=ṽ(t)

)T
(ṽ−ṽ(t))+

1

2
(ṽ−ṽ(t))TC

(t)
i (ṽ−ṽ(t)),

(6.15)

where ṽ ∈ RMN contains the weights, C
(t)
i ∈ RMN×MN is the curvature matrix at V (t).

For this multi-dimensional case, there is no method for finding the optimal curvature

values to our knowledge. To simplify this problem, instead of finding a majorizing

function with respect to V , we find the majorizer with respect to the one-dimensional

variable zi for each i:

g̃i(zi; z
(t)
i ) = h(z

(t)
i ) + ḣ(z

(t)
i )(zi − z(t)

i ) +
1

2
c(z

(t)
i )(zi − z(t)

i )2, (6.16)

Above function also majorizes h(z) at V (t) as gi(V ;V (t)) in (6.15). But unlike gi, g̃i

function is not quadratic with respect to V , but it is quadratic with respect to z only.

We obtain the majorizer of L(V ) at V (t) as follows:

G̃L(V ,V (t)) =
1

I

I∑
i=1

g̃i(zi, z
t
i) (6.17)

= L(V t) +
1

I

I∑
i=1

ḣ
(t)
i (zi(V )− zti) +

1

2I

I∑
i=1

cti(zi(V )− zti)2 (6.18)

where ḣ
(t)
i = ḣ(zi(V

(t))), cti = c(zi(V
(t))) and z

(t)
i = zi(V

(t)). G̃L majorizes the loss

function L(V ) at V (t), but it is not quadratic. So we find the second order Taylor

approximation of G̃L at V (t):

QL(V ,V (t)) = G̃L(V (t),V (t)) + (
∂G̃L(V ,V (t))

∂ṽ

∣∣∣
ṽ=ṽ(t))

T (ṽ − ṽ(t))

+
1

2
(ṽ − ṽ(t))T (

∂2G̃L(V ,V (t))

∂ṽ2

∣∣∣
ṽ=ṽ(t))(ṽ − ṽ(t)). (6.19)

The function above is now quadratic, but there is no guarantee that it will majorize the

loss function. But in the experiments, we observe the monotonic decrease of the loss

function, which shows that above approximation does not perturb the convergence of

the solution. Here, we make the assumption that z(V ) is linear in vn,m for any n, m

and we find the majorizer of L(V ) with respect to z values. zi is linear in vn,m if yi = n,
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approximately linear if n is the most offending wrong class; but it is not linear if vn,m

neither belongs to true class nor to the most offending wrong class. Linearity assumption

simplifies the problem a lot, especially the calculation of the optimal curvature values.

By Theorem 1 the optimal curvature for the Huber-hinge loss is found as follows:

copt(z) =


1

2|1−z| if |z − 1| > τ

1
2τ if |z − 1| ≤ τ

(6.20)

Maximum curvature for the Huber-hinge loss, which is equal to the maximum second

derivative of the objective function, is found as follows:

cmax(z) =
1

2τ
(6.21)

We plot the quadratic majorizing function with optimal curvature and maximum cur-

vature of the Huber-hinge loss function with τ = 0.5 at z = 0 in Figure 6.3. Next, we
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Figure 6.3: Quadratic majorizing function of the Huber-hinge loss with optimal
curvature and maximum curvature at z = 0.

show methods for incorporating regularization parts into the algorithms.

6.4.2 Handling regularizations

We derive methods for l2, l1 and group sparse regularizations in the subsequent subsec-

tions.
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6.4.2.1 l2 regularization

If the regularization function is the usual l2 norm squared, the surrogate function of it

can be the regularization function itself since the l2 norm square is a quadratic function.

So we add the regularization function to the surrogate function of the loss part to find

the overall surrogate function that majorizes φ(V ) at V (t) and minimize it.

Q(V ,V (t)) = QL(V ,V (t)) + λ||V ||2Fro, (6.22)

where || . ||Fro is the Frobenious norm.

6.4.2.2 l1 regularization

For l1 norm regularization, instead of finding a majorizing function, we use the shrinkage

thresholding operator. This method is applicable to our problem since the majorizer of

the loss part is approximately quadratic. Let v̂n,m be the minimizer of the surrogate

function given in (6.19) in one dimension:

v̂n,m = arg min
vn,m

QL(V ,V (t)) (6.23)

Now it can be shown that the one-dimensional objective function of vn,m can be approx-

imated as follows:

Q(V ,V (t)) ≈ C +
1

2
D′′n,m(vn,m − v̂n,m)2 + λ|vn,m|, (6.24)

where C is a constant independent of vn,m and D′′n,m = ∂2Q(V ,V (t)
)

∂v2n,m
. We can then find

the minimizer of the overall one-dimensional function which is a sum of an approximate

parabola and an absolute value function using the shrinkage thresholding operator:

v∗n,m = S

(
v̂n,m,

λ

D′′n,m

)
(6.25)

S(v, γ) = sign(v)(|v| − γ)+, (6.26)

where (x)+ = max(0, x). S(v, γ) is the shrinkage thresholding operator which shrinks a

parameter v towards zero. This result follows from the simple analysis of a minimum
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value of a single dimensional function that is a sum of a parabola and an absolute value

function.

6.4.2.3 l1 − l2 regularization

Recall that for group sparse regularization, we have the following regularization function:

R(V ) = ||V ||1,2 =
M∑
m=1

||vm||2 =
M∑
m=1

√√√√ N∑
n=1

v2
n,m, (6.27)

where vm is the mth row of V , so it contains the weights of classifier m. After learning,

any row of V is either all zero or all non-zero. Since this regularization is not quadratic,

we should find a quadratic majorizer of it. Since we are going to apply coordinate

descent algorithm to the surrogate function, we write the regularization function in one

dimension as follows:

Rn,m(vn,m) = C1 +
√
C2 + v2

n,m (6.28)

where C1 and C2 are independent of vn,m:

C1 =
∑
m′ 6=m

‖vm′‖2, (6.29)

C2 =
∑
n′ 6=n

v2
n′,m. (6.30)

As C2 gets smaller, the regularization gets close to the l1 normalization and if C2 = 0, it is

exactly the l1 norm regularization and in this case, we can use the shrinkage thresholding

operator to find the minimizer of the objective function. But if a classifier have nonzero

weights at some iteration, these weights cannot be exactly zero but will get close to

zero. And as C2 converges to zero, the optimal curvature value will increase, resulting

in a slower convergence. So, to speed up the convergence, we threshold the C2 value

for all n,m and if it is smaller than some value, ε, we apply the shrinkage thresholding

operator. If C2 is not close to zero, we find the quadratic majorizer of the regularization

function and minimize it. We can write this quadratic majorizer as follows:

Qn,m(vn,m, v
(t)
n,m) = Rn,m(v(t)

n,m) + Ṙn,m(v(t)
n,m)(vn,m − v(t)

n,m) +
1

2
cn,m(v(t)

n,m)(vn,m − v(t)
n,m)2

(6.31)
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Figure 6.4: Quadratic majorizing functions of group sparse regularizations for low
and high C2 values at vn,m = −0.8.

The optimal curvature is found by Theorem 1 as follows:

coptn,m(vn,m) =
1√

C2 + v2
n,m

(6.32)

The maximum curvature is found as follows:

cmaxn,m (vn,m) =
1√
C2

(6.33)

The majorizer of group sparse regularizations with optimal curvature and maximal cur-

vature for low and high C2 are given in Figures 6.4(a) and 6.4(b) respectively. Notice

that, for low C2, regularization is close to the l1 norm regularization. We add the surro-

gate function of the regularization function to the surrogate function of the loss function

to find the majorizer of the overall objective function.
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6.5 Coordinate Descent Algorithm

Coordinate descent algorithms update a single parameter while keeping other parameters

constant. We minimize the majorizing function using coordinate descent algorithms, i.e.,

we minimize with respect to vn,m one by one for each n and m. Since the majorizing

function is quadratic, we minimize it in one step using Newton’s method for a given n

and m:

v̂n,m = v(t)
n,m −

E′n,m
E′′n,m

, (6.34)

where E′n,m and E′′n,m are the first and second derivatives of the quadratic majorizing

function of the objective function respectively. Recall that for l2 regularization, we add

the regularization itself to the majorizing function and for l1 − l2 regularization we add

the majorizing function of the regularization function. For l2 regularization, we find

these derivatives as follows:

E′n,m = D′n,m + 2λvn,m (6.35)

E′′n,m = D′′n,m + 2λ, (6.36)

where D′n,m and D′′n,m are the first and second derivatives of the surrogate function of

the loss part. D′n,m is found to be as follows:

D′n,m =
∂QL(V ,V t)

∂vn,m
=

1

I

∑
i∈An

(ḣ
(t)
i + cti(zi − zti))f

n,m
i −1

I

∑
i∈A′n

(ḣ
(t)
i + cti(zi − zti))

ev
T
nf

n

i fn,mi∑
n′ 6=yi e

vT
n′f

n′
i

(6.37)

where An = {i : yi = n} and A′n = {i : yi 6= n}. D′′n,m is found to be as follows:

D′′n,m =
∂2QL(V ,V t)

∂v2
n,m

=
1

I

∑
i∈An

cti(f
n,m
i )

2
+

1

I

∑
i∈A′n

(fn,mi )
2

exp (vTnf
n
i )

(
∑

n′ 6=yi exp (vTn′f
n′
i ))2

{cti exp (vTnf
n
i )− (ḣ

(t)
i + cti(zi − zti))(

∑
n′ 6=yi exp (vTn′f

n′
i )− exp (vTnf

n
i ))} (6.38)
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For group sparse regularization, i.e., l1 − l2 regularization, first and second derivatives

of the overall objective functions are as follows:

E′n,m = D′n,m + λ
vn,m√

C2 + v2
n,m

(6.39)

E′′n,m = D′′n,m + λc(vn,m), (6.40)

where c(vn,m) is found by (6.32) for optimal curvature and maximum curvature is given

in (6.33).

For l1 norm regularization, we first minimize over the loss part and use the shrinkage

operator to incorporate the regularization part. For group sparse regularization, if C2

value is smaller than ε, we reduce the regularization part into l1 norm regularization. In

order to lower the computation time of the first and second derivatives of the surrogate

function of loss part, we define three accumalator arrays, namely T ∈ RI×N , q ∈ RI

and r ∈ RI , whose elements are defined as follows:

Ti,n = exp (vTnf
n
i ); (6.41)

qi = vTyif
yi
i ; (6.42)

ri =
∑

n′ 6=yi exp (vTn′f
n′
i ); (6.43)

We give the overall solution in Algorithm 2.
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Algorithm 2 MM Coordinate descent algorithm

1: Receive posterior Scores {fn,mi ∈ R : i = 1, . . . , I;n = 1, . . . , N m = 1, . . . ,M}

2: Receive labels {yi ∈ {1, 2, . . . , N} : i = 1, . . . , I}

3: Choose the curvature type ∈ {MC,OC}

4: Choose the regularization ∈ {l1, l2, l1 − l2}

5: Initialize vn = v0
n and calculate zi = vTyif

yi
i − log

∑
n′ 6=yi exp (vTn′f

n′
i ) for all i

6: Initialize accumulators Ti,n = exp (vTnf
n
i ), qi = vTyif

yi
i and ri =

∑
n′ 6=yi exp (vTn′f

n′
i )

for all i, n

7: Set parameters τ , λ, ε

8: if MC then

9: c
(t)
i = 1

2τ for i = 1, . . . , I

10: end if

11: for t← 0, NITER− 1 do

12: ḣ
(t)
i = −[[zi < 1− τ ]] + 1/2τ−1(zi − (1 + τ))[[|zi − 1| < τ ]] for i = 1, . . . , I

13: if OC then

14: c
(t)
i = 1/2|1− zi|−1[[|zi − 1| > τ ]] + 1/2τ−1[[|zi − 1| < τ ]] for i = 1, . . . , I

15: end if

16: Decide on coordinate update schedule Σ = [(σ1(l), σ2(l)) : l = 1, . . . , S].

17: for l = 1 to S do

18: Set n = σ1(l) (class) and m = σ2(l) (classifier)

19: D′n,m ← 0, D′′n,m ← 0

20: for i s.t. yi = n do

21: D′n,m := D′n,m + fn,mi {ḣ(t)
i + c

(t)
i (qi − log (ri)− z(t)

i )}

22: D′′n,m := D′′n,m + c
(t)
i (fn,mi )2

23: end for

24: for i s.t. yi 6= n do

25: D′n,m := D′n,m − Ti,n(ḣ
(t)
i + c

(t)
i (qi − log (ri)− z(t)

i ))/ri

26: D′′n,m := D′′n,m + (fn,mi )2Ti,n(c
(t)
i Ti,n − (ḣ

(t)
i + c

(t)
i (qi − log (ri)− z(t)

i ))(ri −

Ti,n))/ri
2

27: end for

28: D′n,m := D′n,m/I, D′′n,m := D′′n,m/I
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29: if l1 − l2 then

30: C2 =
∑

n′ 6=n v
2
n′,m

31: if C2 > ε then

32: D′n,m := D′n,m + λ
vn,m√
C2+v2n,m

33: if OC then

34: D′′n,m := D′′n,m + λ√
C2+v2n,m

35: else

36: if MC then

37: D′′n,m := D′′n,m + λ√
C2

38: end if

39: end if

40: end if

41: else

42: if l2 then

43: D′n,m := D′n,m + 2λvn,m

44: D′′n,m := D′′n,m + 2λ

45: end if

46: end if

47: vold
n,m = vn,m, vn,m := vn,m −D′n,m/D′′n,m

48: if l1 or (l1 − l2 and C2 ≤ ε) then

49: vn,m := S(vn,m, λ/D
′′
n,m)

50: end if

51: ∆vn,m = vn,m − vold
n,m

52: for i s.t. yi = n do

53: qi := qi + ∆vn,mf
n,m
i

54: Ti,n = exp (qi)

55: end for

56: for i s.t. yi 6= n do

57: ri := ri − Ti,n

58: Ti,n := Ti,n exp (∆vn,mf
n,m
i )

59: ri := ri + Ti,n

60: end for

61: end for

62: Compute z
(t+1)
i = qi − log (ri) for all i

63: end for
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6.6 Experiments

First, we obtained the results for the ensembles that are used in Chapter 4 and Chapter

5 for the 8 datasets. We used the optimal curvature for the surrogate function. We

initialized the combiner with zeros. For stopping criterion, we checked whether δmax is

smaller than ε2wmax; where δmax is the maximum change of the weights and wmax is the

maximum weight. We set the parameters: ε2 = 0.05, ε = 0.00001, τ = 0.5, NITER =

15. We used the same regularization parameters that are obtained and used in Chapter

4. We compared our algorithm with the solution of the cvx-toolbox, SeDuMi [52]. The

results are shown in Table 6.1. We applied Wilcoxon signed ranks test for statistical

significance with one tailed significance level of α = 0.05. The letters “a,b,c” in the

significance column titled SIG indicate that the accuracies between our algorithm and

SeDuMi for l2, l1 and group sparse regularization respectively are statistically significant.

Table 6.1: Error percentages with the MM algorithm and the SeDuMi for l2, l1, and
l1 − l2 norm regularization. (mean ± standard deviation).

DB MM SeDuMi SIG
l2 l1 l1 − l2 l2 l1 l1 − l2

Segment 4.94 ± 0.95 3.98 ± 1.16 4.58 ± 1.00 3.90 ± 1.00 3.62 ± 0.62 3.74 ± 0.40 ac

Waveform 13.08 ± 0.83 19.14 ± 17.07 29.42 ± 25.63 13.05 ± 0.72 13.46 ± 0.74 13.42 ± 0.76 bc

Robot 3.50 ± 0.62 3.02 ± 0.56 2.93 ± 0.48 2.59 ± 0.33 2.57 ± 0.35 2.49 ± 0.33 abc

Statlog 17.23 ± 2.00 16.86 ± 1.28 34.40 ± 28.16 16.12 ± 1.53 17.45 ± 1.74 17.33 ± 1.42 a

Vowel 10.08 ± 3.07 7.03 ± 2.12 48.77 ± 44.27 7.66 ± 2.29 7.62 ± 2.02 7.17 ± 1.50 a

Wine 1.46 ± 1.41 14.61 ± 27.26 21.12 ± 31.19 1.12 ± 1.40 2.25 ± 1.18 1.91 ± 1.30

Yeast 41.86 ± 1.54 70.58 ± 17.73 70.90 ± 20.49 40.23 ± 1.29 42.40 ± 4.10 41.19 ± 1.57 abc

Steel 29.29 ± 2.25 28.16 ± 1.26 28.42 ± 1.25 28.27 ± 1.38 28.31 ± 1.39 27.41 ± 1.21 ac

Table 6.2: Elapsed CPU times with the MM algorithm and the SeDuMi for l2, l1, and
l1 − l2 norm regularization. (mean ± standard deviation). Bold values are the lowest

CPU times among the algorithms for that regularization

DB MM SeDuMi
l2 l1 l1 − l2 l2 l1 l1 − l2

Segment 119.24 ± 2.77 118.35 ± 4.29 45.27 ± 19.95 309.41 ± 65.13 215.44 ± 79.48 115.74 ± 22.97

Waveform 109.10 ± 3.91 78.97 ± 26.69 21.70 ± 16.48 70.71 ± 17.99 116.46 ± 35.99 60.25 ± 13.00

Robot 154.44 ± 20.10 119.75 ± 25.45 69.88 ± 8.57 143.32 ± 47.94 157.31 ± 40.25 80.40 ± 23.82

Statlog 24.77 ± 1.18 24.09 ± 3.14 7.14 ± 5.31 19.24 ± 2.87 32.30 ± 10.78 15.02 ± 9.06

Vowel 59.51 ± 27.33 77.62 ± 10.53 22.07 ± 20.12 33.30 ± 5.56 54.62 ± 6.90 53.42 ± 24.02

Wine 2.75 ± 1.10 0.88 ± 0.50 0.47 ± 0.28 1.47 ± 0.90 1.87 ± 0.95 1.42 ± 0.77

Yeast 93.39 ± 8.62 40.12 ± 33.38 11.92 ± 6.43 206.98 ± 72.53 75.72 ± 17.97 65.83 ± 23.22

Steel 100.57 ± 3.76 86.14 ± 21.20 38.59 ± 10.30 271.06 ± 57.60 166.04 ± 58.71 105.54 ± 25.23

In general, the softmax and Huber loss approximations drop the accuracy. For some

databases and for some combination types these accuracy drops are significant. On

some stacks of 5×2 cross validation, l1 norm and group sparse regularization resulted in
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high error percentages with the MM algorithm. But the running time of our algorithm

is much more smaller compared to the SeDuMi algorithm.

We conducted additional experiments on datasets Statlog and Waveform. We ran-

domly split the datasets into two as train and test parts and trained base classifiers with

the framework described in Chapter 4 as the diverse ensembles. We set the parameters

of the algorithm as follows: λ = 0.1, τ = 0.5. We initialize the weights with zeros. It

should be noted that results shown here are not directly comparable to the results in

Chapter 4 since we do not perform 5x2 CV here. First we show the change in objective

values, train and test accuracies for the two datasets in Figures 6.5(a) and 6.5(b). We
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Figure 6.5: Change in train, test accuracies and objective function for Statlog and
Waveform datasets.
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Figure 6.6: Comparison of optimal curvature and maximum curvature with respect
to iteration Statlog and Waveform datasets.

see the monotonic decrease of the objective values, but the accuracies contain changes

even when the objective value gets close to the convergence point. Even though these

changes are not significant, it shows us that the stopping criteria cannot be based on

the change in the objective value, but it should depend on the change in the weights.

Next we show the comparisons of optimal curvature and maximum curvature with re-

spect to iteration number in Figures 6.6(a) and 6.6(b) and with respect to time in Figures

6.7(a) and 6.7(b). We see that optimal curvature outperforms the maximum curva-

ture. Maximum curvature will result in much higher convergence time, especially if the

stopping criteria is tight. Another issue regarding group sparsity is the parameter ε that

thresholds C2 values. When we set it to zero, i.e., not thresholding, the weights will
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Figure 6.7: Comparison of optimal curvature and maximum curvature with respect
to CPU time for Statlog and Waveform datasets.

never be zero, but get close to zero. This will lead to slower convergence and this effect

is shown in Figures 6.8(a) and 6.8(b). We see that, with ε = 0.00001, sparse solution is

obtained much faster and the objective value still monotonically decreases, causing no

convergence trouble.
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and thresholding (T) with ε = 0.00001 for group sparse regularization for Statlog and

Waveform datasets.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we worked on improving a novel approach for classifier combination:

stacked generalization. Our contributions improved the performance of stacking in terms

of both accuracy and speed.

For accuracy improvement, we proposed using the hinge loss function for learning the

weights. This loss function results in a combiner such that the margin is maximized and

our extensive experiments show that there is a statistically significant increase in the ac-

curacy for all combination types. Our experiments involve three different combination

types; namely weighted sum (WS), class-dependent weighted sum (CWS) and linear

stacked generalization (LSG); that are used in the literature and provides a good com-

parison between these combination types. Experiments suggest that CWS outperforms

the WS combination significantly. However, higher accuracies of the LSG combination

with respect to the CWS combination are not statistically significant. Considering the

much higher number of parameters of the LSG combination with respect to CWS, we

suggest to use the CWS combination.

In order to speed up the test process, we implemented sparse regularizations in our ex-

periments. Besides the conventional l1 regularization that has been used in the literature

for stacking, we proposed to use group sparse regularization, in which posterior scores of

a particular classifier forms a group. Experiments show the superiority of group sparse

70



An MM Algorithm for CWS Combination 71

regularization as compared to the l1 norm regularization, in terms of accuracy, number

of selected classifiers, and robustness.

In Chapter 5, we worked on non-linear combinations under the stacking framework.

Since the LSG combination is equivalent to applying a linear classifier to the posterior

scores of base classifiers as if they comprise a new set of features, we can obtain a

non-linear version of it by using the kernel trick. However, non-linear versions of WS

and CWS combinations are not straightforward. For WS combination, we developed

a method, in which level-1 data are transformed, together with the class labels, into a

binary classification dataset. We implement the combiner by applying a binary classifier

on this transformed dataset. For the least-squares loss function, we apply LS-SVM

to the binary dataset. This method is not necessarily exactly equivalent to the original

problem for a given loss function such as the hinge loss, but it is equivalent for the LS loss

function. For the CWS combination, we apply the same procedure for each class, obtain

N different binary datasets and train a binary classifier from each of them to obtain the

scores of different classes. Experiments show that we can obtain the best accuracies by

using the non-linear combiners. But the results are not statistically significant.

Since there is not a specific optimization algorithm for CWS combination in the liter-

ature; we derive a primal optimization algorithm for the CWS combination using MM

algorithms in Chapter 6. Since MM algorithms ensure monotonic decrease of the objec-

tive function and our objective function is convex, our proposed algorithm converges to

the optimal solution. We find the optimal curvatures and maximum curvatures for our

problem, and observe that optimal curvature outperforms the maximum curvature in

terms of speed of convergence. We also see that, by assuming the weights of a classifier

to be exactly zero when they are close to zero, we speed up the the algorithm for group

sparse regularization.

7.2 Future Work

In this section, we present possible future directions. A major contribution of the thesis

is using group sparse regularization of the weights for learning the combiner, and in this

case, the regularization parameter (λ) has two main effects on the resulting combiner

as mentioned. First, it determines how much the combiner should fit the data, as in
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the case of the l2 norm regularization. Second, it effects the number of selected base

classifiers. These two effects play a major role in the performance of the combiner, so

it could be better to adjust these effects separately. One possible way to do this is

first doing cross validation with l1 − l2 norm regularization, selecting the appropriate

regularization parameter and keeping track of the base classifiers that are selected, then

doing another cross validation with the l2 norm regularization but with only the base

classifiers that are selected in the previous cross-validation, choosing the λ that results

in the best accuracy, and finally training the combiner with the final selected λ and the

base classifiers with the l2 norm regularization.

Another possible extension of the thesis could be about the nonlinear combination. We

used the RBF kernel, which is favorable for classification problem in general; but other

kernels could result in better accuracy for classifier combination problem. One possi-

ble direction could be deriving a kernel function specifically for classifier combination

problem.

In Chapter 6, we derived an optimization algorithm for the CWS combination with

l2, l1 and l1 − l2 norm regularizations. Unfortunately, the algorithm results in very low

accuracies for some stacks of some datasets for l1 and group sparse regularizations, which

use the shrinkage thresholding operator. One possible future work is investigating the

reason behind this and finding a solution to the problem.



Bibliography

[1] Thomas G. Dietterich. Ensemble methods in machine learning. In International

Workshop on Multiple Classifier Systems, pages 1–15. Springer-Verlag, 2000.

[2] R Polikar. Ensemble based systems in decision making. Ieee Circuits And Systems

Magazine, 6(3):21–45, 2006.

[3] Leo Breiman. Arcing Classifiers. The Annals of Statistics, 26(3):801–824, 1998.

ISSN 00905364.

[4] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. In Proceedings of the Second European

Conference on Computational Learning Theory, pages 23–37, London, UK, 1995.

Springer-Verlag. ISBN 3-540-59119-2.

[5] Tin Kam Ho. Multiple Classifier Combination: Lessons and Next Steps, volume 47

of Series in Machine Perception and Artificial Intelligence, chapter 7, pages 171–

198. World Scientific, 2001.

[6] I.S. Topkaya, M.U. Sen, M.B. Yilmaz, and H. Erdogan. Improving speech recog-

nition with audio-visual tandem classifiers and their fusions. In Signal Processing

and Communications Applications (SIU), 2011 IEEE 19th Conference on, pages

407 –410, april 2011. doi: 10.1109/SIU.2011.5929673.

[7] I.S. Topkaya, M.B. Yilmaz, M.U. Sen, Tarasov A., and H. Erdogan. An audio-

visual speech recognition system with live inputs. In Proceddings eNTERFACE’10,

Summer Workshop on Multimodal Interfaces, pages 48 –57, 2010.

[8] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

Wiley-Interscience, 2004. ISBN 0471210781.

73



Bibliography 74

[9] Leo Breiman and Leo Breiman. Bagging predictors. In Machine Learning, pages

123–140, 1996.

[10] Robert E. Schapire. The strength of weak learnability, 1990.

[11] Michael Kearns. Thoughts on hypothesis boosting. Unpublished manuscript, 1988.

[12] The combining classifier: to train or not to train?, volume 2, 2002. doi: 10.1109/

ICPR.2002.1048415.

[13] David H. Wolpert. Stacked generalization. Neural Netw., 5(2):241–259, 1992. ISSN

0893-6080.

[14] Ludmila I. Kuncheva, James C. Bezdek, and Robert P. W. Duin. Decision templates

for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34:

299–314, 2001.

[15] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,

Princeton, 1976.

[16] Yi Lu. Knowledge integration in a multiple classifier system. Applied Intelligence,

6:75–86, 1996. ISSN 0924-669X. URL http://dx.doi.org/10.1007/BF00117809.

10.1007/BF00117809.

[17] Galina Rogova. Combining the results of several neural network classifiers. Neural

Netw., 7:777–781, May 1994. ISSN 0893-6080. doi: 10.1016/0893-6080(94)90099-X.

[18] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization. J. Artif. Int.

Res., 10:271–289, May 1999. ISSN 1076-9757.

[19] Seewald AK. Towards understanding stacking - studies of a general ensemble learn-

ing scheme. PhD thesis, TU Wien, 2003.

[20] Naonori Ueda. Optimal linear combination of neural networks for improving clas-

sification performance. IEEE Trans. Pattern Anal. Mach. Intell., 22(2):207–215,

2000. ISSN 0162-8828.

[21] H. Erdogan and M.U. Sen. A unifying framework for learning the linear combiners

for classifier ensembles. In Pattern Recognition (ICPR), 2010 20th International

Conference on, pages 2985 –2988, aug. 2010.

http://dx.doi.org/10.1007/BF00117809


Bibliography 75

[22] Michael LeBlanc and Robert Tibshirani. Combining estimates in regression and

classification. Technical report, Journal of the American Statistical Association,

1993.

[23] Kai Ming Ting and Ian H. Witten. Stacking bagged and dagged models. In In

Proc. 14th International Conference on Machine Learning, pages 367–375. Morgan

Kaufmann, 1997.

[24] Sam Reid and Greg Grudic. Regularized linear models in stacked generalization.

In Proceedings of the 8th International Workshop on Multiple Classifier Systems,

MCS ’09, pages 112–121, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-

642-02325-5.

[25] Li Zhang and Wei-Da Zhou. Sparse ensembles using weighted combination methods

based on linear programming. Pattern Recognition, 44(1):97 – 106, 2011. ISSN

0031-3203.

[26] H. Erdogan and M.U. Sen. A combined approach to regularized linear combiner

learning. In Signal Processing and Communications Applications Conference (SIU),

2010 IEEE 18th, pages 483 –486, april 2010.

[27] Yann Lecun, Sumit Chopra, Raia Hadsell, Fu Jie Huang, G. Bakir, T. Hofman,

B. Scholkopf, A. Smola, and B. Taskar (eds. A tutorial on energy-based learning.

In Predicting Structured Data. MIT Press, 2006.

[28] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.

Neural Processing Letters, 9:293–300, 1999. ISSN 1370-4621.

[29] Ulrich H.-G. Kressel. Pairwise classification and support vector machines, pages

255–268. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-19416-3.

[30] Comparison of classifier methods: a case study in handwritten digit recognition,

volume 2, October 1994.

[31] Jrg Kindermann, J Org Kindermann, Edda Leopold, and Gerhard Paass. Multi-

class classification with error correcting codes. Technical report, In, 2000.

[32] J. Weston and C. Watkins. Multi-class support vector machines, 1998. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9594.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9594
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9594


Bibliography 76

[33] Koby Crammer and Yoram Singer. On the learnability and design of output codes

for multiclass problems. In In Proceedings of the Thirteenth Annual Conference on

Computational Learning Theory, pages 35–46, 2000.

[34] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines,

theory, and application to the classification of microarray data and satellite radiance

data. Journal of the American Statistical Association, 99:67–81, 2004.

[35] Emmanuel Monfrini and Yann Guermeur. A quadratic loss multi-class svm. CoRR,

abs/0804.4898, 2008.

[36] Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multi-

class problems. Journal of Machine Learning Research, 3:2003, 2001.

[37] A. Majumdar and R.K. Ward. Classification via group sparsity promoting regu-

larization. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE

International Conference on, pages 861 –864, april 2009. doi: 10.1109/ICASSP.

2009.4959720.

[38] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL

http://www.ics.uci.edu/$\sim$mlearn/{MLR}epository.html.

[39] Thomas G. Dietterich. Approximate statistical tests for comparing supervised clas-

sification learning algorithms. Neural Computation, 10:1895–1923, 1998.

[40] Duin R.P.W., Juszczak P., Paclik P., Pekalska E., de Ridder D., Tax D.M.J., and

Verzakov S. PRTools4.1, A Matlab Toolbox for Pattern Recognition, 2007. Delft

University of Technology.

[41] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-

chines, 2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[42] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,

version 1.21, April 2011. Available at http://cvxr.com/cvx.
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