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ABSTRACT 

 

 

Data mining is the process of extracting hidden predictive information from large 

databases, it has a great potential to help governments, researchers and companies focus on 

the most significant information in their data warehouses. High quality data and effective data 

publishing are needed to gain a high impact from data mining process. However there is a 

clear need to preserve individual privacy in the released data. Privacy-preserving data 

publishing is a research topic of eliminating privacy threats. At the same time it provides 

useful information in the released data. Normally datasets include many sensitive attributes; it 

may contain static data or dynamic data. Datasets may need to publish multiple updated 

releases with different time stamps. As a concrete example, public opinions include highly 

sensitive information about an individual and may reflect a person's perspective, 

understanding, particular feelings, way of life, and desires. On one hand, public opinion is 

often collected through a central server which keeps a user profile for each participant and 

needs to publish this data for researchers to deeply analyze. On the other hand, new privacy 

concerns arise and user’s privacy can be at risk. The user’s opinion is sensitive information 

and it must be protected before and after data publishing.  Opinions are about a few issues, 

while the total number of issues is huge. In this case we will deal with multiple sensitive 

attributes in order to develop an efficient model. Furthermore, opinions are gathered and 

published periodically, correlations between sensitive attributes in different releases may 

occur. Thus the anonymization technique must care about previous releases as well as the 

dependencies between released issues.   

This dissertation identifies a new privacy problem of public opinions. In addition it 

presents two probabilistic anonymization algorithms based on the concepts of k-anonymity 

[1, 2] and -diversity [3, 4] to solve the problem of both publishing datasets with multiple 

sensitive attributes and publishing dynamic datasets. Proposed algorithms provide a heuristic 

solution for multidimensional quasi-identifier and multidimensional sensitive attributes using 

probabilistic -diverse definition. Experimental results show that these algorithms clearly 

outperform the existing algorithms in term of anonymization accuracy. 
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ÖZET 

 

 

Veri madenciliği tahmin edilebilir gizli bilgiyi büyük very tabanlarından çıkarma 

işlemidir. Devletlere, araştırmacılara ve şirketlere veri ambarlarındaki en önemli bilgilere 

odaklanmaları konusunda yardım etmek gibi büyük bir potansiyele sahiptir. Veri 

madenciliğinin yüksek bir etki  sağlayabilmesi için yüksek kaliteli veriye ve etkin veri 

yayıncılığına ihtiyaç duyulur. Buna karşın, yayınlanan veri için kişisel mahremiyetin 

korunması da açık bir ihtiyaçtır. "Mahremiyet koruyan veri yayıncılığı" yayınlanan veriden 

faydalı bilgiler elde ederken mahremiyet ihlaline yol açabilecek tehlikeleri önlemenin 

yollarını inceleyen bir araştırma konusudur. Normalde veri kümelerinin birçok hassas özelliği 

vardır; durağan veya devingen veri içerebilirler. Veri kümeleri farklı zaman damgalı birden 

çok güncellenmiş sürümü yayınlamak durumunda kalabilirler. Somut bir örnek vermek 

gerekirse, kamuoyu bireyler hakkında yüksek hassaslıkta bilgi içerir ve bireylerin görüş 

açısını, anlayışını, duygularını, yaşam tarzını ver arzularını yansıtabilir. Bir yandan, kamuoyu 

her katılımcı için bir kullanıcı profilinin tutulduğu merkezi sunucular tarafından toplanır. Öte 

yandan, yeni mahremiyet sorunları ortaya çıkar ve kullanıcının mahremiyeti tehlikeye 

girebilir. Kullanıcının görüşü hassas bir bilgidir ve veri yayıncılığından önce ve sonra da 

korunmalıdır. Görüşler genelde birkaç mevzu hakkındadır ama, toplam mevzu sayısı çok 

fazladır. Bu durumda, etkili bir model geliştirebilmek için birden çok hassas özellikle başı 

çıkılmalıdır. İlaveten, görüşler belirli aralıklarla toplanıp yayınlandığında,hassas özelliklerin 

farklı sürümleri arasında ilişkiler ortaya çıkabilir. Bu yüzden, isimsezleştirme yöntemi 

yayınlanan konular arasındaki bağımlılığı incelediği gibi önceki sürümleri de göz önüne 

almalıdır.  

Bu tez kamuoyu hakkında yeni bir mahremiyet problemi tespit ediyor. Bunun 

yanında, devingen veri kümelerini yayınlamak ve birden çok hassas özellik içeren veri 

kümelerini yayınlamak problemlerini çözmek için k-isimsizleştirme [1, 2] ve ell-çeşitlilik [3, 

4]  kavramlarına dayanan iki olasılıksal algoritma sunuyor. Önerilen algoritmalar, olasılıksal 

ell-çeşitlilik tanımını kullanarak  çok boyutlu belirteçimsiler ve çok boyutlu hassas özellikler  

için sezgisel bir çözüm sağlıyor. Deneysel sonuçlar bu algoritmaların  isimsizleştirme 

doğruluk payı açısından var olan diğer algoritmaları geride bıraktığını gösteriyor. 
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1. INTRODUCTION  

1.1 Motivations 

Governments, political parties, social associations, etc., need to stay in touch with 

their audiences. Understanding public opinion is essential for a democratic process. Public 

opinion helps political decision-makers to understand underlying issues that are of utmost 

importance to them. Issues such as discrimination, gay rights, abortion, cloning, capital 

punishment, affirmative action, euthanasia, and national security are examples of hot public 

opinion topics governments need a comprehensive analysis of [5-8]. Social research and 

opinion polls give people the opportunity to express their views regularly on different topics 

and provide an efficient way to measure public opinion. Since 1973, the European 

Commission has been monitoring the evolution of public opinion in the Member States [9], 

information which helps in the preparation of texts, decision-making and the evaluation of its 

work.  

A user profile needs to be constructed for individuals to participate in the public 

opinion process. These profiles contain valuable data about the user, such as nation, gender, 

city, and so on. These data may also contain Name, address, User’s social ID, Date of birth 

and Sex. Due to the rapid developments in computer and network technologies, many on-line 

public opinion polls and mobile-based public opinion systems are used in the opinion 

process, thus enabling greater participation. Therefore, the public opinion process must 

guarantee that individuals can express their preferences freely without any threats to their 

own privacy. Polls done under the risk of identification may not be accurate. 

For example, Figure 1 shows that in Africa, Asia and the Middle East, attitudes 

toward homosexuals are generally negative while the European and American voters are 

generally positive [10]. Voters with Yes/No from an opposing/supporting country may 

receive public pressure from majority of their countryman if their identities are revealed. If 

voters are not convinced that such a risk is small, they may not want to reveal their true 

opinion causing a bias towards the more common attitudes. 
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Figure 1 : Public opinions on acceptance homosexuality in different countries[10] 

 

Public opinion privacy means that neither the organizing authorities nor any other 

third party can link an opinion to the individual who has cast it. This requires achieving some 

degree of anonymity. As a naive approach, anonymity can be achieved by removing the 

attributes which uniquely identify individual users such as name, SSN, address, phone 

number. However, as shown in [11-14], this approach will not be enough to ensure 

anonymity due to the existence of quasi-identifier attributes (QI) which can be used together 

to identify individuals based on their profile information. Attributes like birth date, gender 

and ZIP code, when used together, can accurately identify individuals. [15] 

In this dissertation, we examine a case in which we have a large number of opinions 

and the data holder needs to publish this data. Adversaries can launch an attack based on user 

profile and public opinion. We focus on the protection of the relationship between the quasi-

identifiers and multiple sensitive attributes. Many works like k-anonymity, -diversity, t-

closeness, etc., have been proposed as a privacy protection model for micro data [3], [4]. 

However, most of models only deal with data with a single sensitive attribute [3], [16], [17], 

[18], [19],[20]. In addition, we aim to preserve privacy when there are correlations between 

sensitive attributes within same release or different releases. 

Various techniques can be employed to provide anonymity in a public opinion 

process. Most electronic voting schemes like the Blind signature scheme [21],[22] the 

Homomorphism scheme [2] and the Randomization-Based scheme [23] are based on 

cryptography techniques. These provide on-line privacy preservation for voters, which is also 
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suitable for use in the public opinion process. Also, k-Anonymous message transmission 

protocol [24] preserves user privacy during the voting process, and does not require the 

existence of trusted third parties. This technique tries to protect a user’s privacy during the 

voting process; however, in public opinion polls we need to provide anonymity after the 

opinions are collected and more specifically when the central servers want to publish this 

data.  

To limit sensitive information disclosure in data publishing, -Diversity [3] has been 

proposed. One definition of -diversity requires that there are at least  values of sensitive 

attributes in each equivalence class. It has been shown in [11], [25], [12] that under non-

membership information -diversity fails to protect privacy. As an example, Table 1 shows 

some voter’s records, where age and zip code are the quasi-identifiers and Issue1 and Issue2 

are the sensitive attributes. The anonymization in Table 2 satisfies 3-diversity on Issue1 alone 

and Issue2 alone. Consider an adversary who has the background knowledge that Amy will 

not vote for (c) on Issue1, thus the adversary can exclude the tuples with (c) on Issue1. Since 

the remaining tuples all have (w) on Issue2, the adversary will conclude Amy has voted (w) 

on Issue 2.  

 Quasi-Identifiers (QI) Sensitive Attributes (SA) 

Tuple ID Age Zip code Issue1(I1) Issue2(I2) 

Amy 30 1200 b w 

Bob 20 2400 c x 

Che 23 1500 a w 

Dina 27 3400 c y 

 

Table 1 : The microdata sample T 

 

Quasi-Identifiers (QI) Sensitive Attributes (SA) 

Age Zip code Issue1(I1) Issue2(I2) 

[20-30] [1200-3400] b w 

[20-30] [1200-3400] c x 

[20-30] [1200-3400] a w 

[20-30] [1200-3400] c y 

 

Table 2 : Anonymized data T* 
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It has been shown in [11] that direct application of the techniques proposed for these 

models creates anonymizations that fail to protect privacy under additional background on 

non-memberships. As an example, take -diversity which ensures that each individual can at 

best be mapped to at least  sensitive values and suppose a data holder has the microdata 

given in Table 1. Directly applying a single-sensitive attribute -diversity (SSA-diversity) 

algorithm on the microdata would result in Table 2 which provides 3-diversity. (E.g., an 

adversary knowing the public table and seeing Table 2 can at best map, say Amy, to 3 distinct 

values a, b, and c for issue 1, and to w, x, and y for issue 2.) However, if the adversary also 

knows that Amy does not vote for c for issue 1, she can easily conclude that Amy voted for w 

for issue 2. Note that public opinion polls collect votes on many issues and it is easy to obtain 

such non-membership knowledge (compared to membership knowledge) making such attacks 

a threat in the domain of public opinions. 

 Explicit-Identifiers (EI) Quasi-Identifier (QI) 

Tuple ID SSN Name Age Zip code 

t1 2502 Bob 20 3000 

t2 2353 Ken 25 3500 

t3 2453 Peter 25 4000 

t4 1564 Sam 30 6500 

t5 5021 Jane 35 4500 

t6 9432 Linda 40 5500 

t7 5024 Alice 45 6000 

t8 1304 Mandy 50 5000 

t9 1202 Tom 55 6500 

 

Table 3 : Public data P 
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Work in [11] extended the definition of -diversity to provide protection against non-

memberships attacks. Their model ensures that an individual can at best be linked to at least  

distinct sensitive values and under i bits of non-membership knowledge, the released  data 

should still satisfy (-i)-diversity. 

For example in Table 4 and Table 5, each anonymization group satisfies 3-diversity that is 

every individual can at best be mapped to at least 3 sensitive values. Even if an adversary 

knows that, say Linda (t6), does not vote for c on issue1, the adversary will still not be sure 

whether Linda votes for y or x thus the model ensures 2-diversity within the group under one 

bit of non-membership knowledge. However, this work does not offer a probabilistic model. 

That is there is little relation between the privacy parameter  and the probability of 

disclosure. For example, the table in Table 5 is considered 3-diverse however the probability 

that Alice (t7) votes for c on issue1 is 1/2. This makes it difficult to make risk/benefit/cost 

analysis of publishing private data under a privacy parameter  [11, 12, 25]. 

 

 

 

Table 4 : Private data T 

 Quasi-Identifier (QI) Sensitive Attributes (SA) 

Tuple ID Age Zip code Issue1 (I1) Issue2 ( I2) 

Bob(t1) 20 3000 a w 

Ken(t2) 25 3500 b z 

Peter(t3) 25 4000 d x 

Sam(t4) 30 6500 a x 

Jane(t5) 35 4500 b y 

Linda(t6) 40 5500 a y 

Alice(t7) 45 6000 c z 

Mandy(t8) 50 5000 a x 

Tom(t9) 55 6500 c w 



6 

 

 

 Quasi-Identifier (QI) Sensitive Attributes (SA) 

Tuple ID Age  Zip code I1 I2 

t1 [20-25] [3000-4000] a w 

t2 [20-25] [3000-4000] b z 

t3 [20-25] [3000-4000] d x 

t6 [40-55] [5000-6500] a y 

t7 [40-55] [5000-6500] c z 

t8 [40-55] [5000-6500] b x 

t9 [40-55] [5000-6500] c w 

t4 * * * * 

t5 * * * * 

Table 5 : Gal’s et al released data [11] 
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1.2 Contributions 

In this dissertation, we combine the best of the two worlds and propose two probabilistic 

models, MSA-diversity to preserving privacy for data with multiple sensitive attributes, and 

ρ-different to preserve privacy for dynamic data, which  

 protects against identification and non-membership attacks even when we have 

multiple sensitive attributes,  

 and bounds the probability of disclosure allowing risk analysis on the publisher side.  

More precisely, MSA- diversity ensures that the probability of mapping an individual to 

a sensitive value is bounded by 1/(-i) under i bits of non-membership knowledge. As an 

example, given =3, our technique generates the anonymization in Table 42 (page 60) in 

which the probability of disclosure is bounded by 1/3 for all individuals. If an adversary 

knows that, say Bob (t1), does not vote for d on issue1, the probability that he votes for, say 

a, on issue1; or say w, on issue2 is still bounded by 1/2. Our contribution in this thesis can be 

summarized as follows: 

1) Formally define probabilistically MSA-diversity privacy protection model for datasets 

with multiple sensitive attributes. 

2) Formally define probabilistically ρ-different privacy protection model for dynamic 

datasets. 

3) Design a heuristic anonymization algorithm for MSA-diversity. We borrow ideas 

from state of the art anonymization techniques such as Hilbert curve anonymization 

[26, 27] to increase utility.  

4) Moreover, a formally definition of a new attack for publishing dataset with fully 

dependent sensitive attributes. More details will be discussed in Chapter  4. 
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1.3 Structure of the Dissertation 

Unless otherwise stated, the dissertation examples will be on public opinion data. The 

data are practically organized as a table of rows (or records, or tuples) and columns (or fields, 

or attributes). The dissertation has seven chapters.  

Chapter ‎1 “INTRODUCTION”  

It provides an introduction to public opinion polls and its relation with privacy-

preserving data publishing. There is a clear demand for gathering and sharing public opinions 

without compromising the participant privacy. We demonstrate an example of public opinion 

polls and another example of challenges appears when publishing public opinions.  

Furthermore we declare contributions of this dissertation. 

Chapter ‎2 “BACKGROUND AND RELATED WORKS”  

This chapter presents some anonymization models for preserving privacy. In addition 

it explains a variety of attacks that can be used to disclose the released data, and the related 

privacy models proposed for preventing such attacks. All discussed models and attacks are 

applicable to one sensitive attribute. It is also presents three types of information loss metrics 

which will be used in the experiments part. These metrics are recently used by most of 

similar models and approaches in the privacy preserving data mining. 

Chapter ‎3 “PRIVACY-PRESERVING FOR MULTIPLE SENSITIVE ATTRIBUTES” 

It discusses most of the published work for preserving privacy for data with multiple 

sensitive attributes. In addition it explains the weaknesses and the attacks still applicable for 

the released data.  

Chapter  4 “PRIVACY-PRESERVING FOR DYNAMIC RELEASES” 

It explains recent work for preserving privacy for dynamic data releases and its 

relations with public opinion polls problem. As will it presents possible attacks applicable to 

the released data. ρ-different model will be present to preserve participants’ privacy. 

Chapter 5 “MSA DIVERSITY ALGORITHM” 

It explains in detail our MSA-diversity model. Also data preprocessing, Problem 

formulation, and constructing a probabilistic definition to preserve privacy are discussed. 
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Chapter ‎6 “EXPERIMENTAL RESULTS” 

It presents results of employing real data set to the MSA-model and Gal’s model. The 

experiments focus on the variation of the number sensitive attributes. In addition experiments 

show the effects of diversity variations. For case of comparison we show how MSA-model 

provides more accurate results than Gal et al’s model, what is more that MSA-model also 

presents the most accurate released data than other models described in chapter  3. 

Chapter ‎7 “CONCLUSIONS” 

It describes the overall conclusions and future work for releasing data with multiple 

sensitive attributes. 
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2. BACKGROUND AND RELATED WORKS  

2.1 Privacy of Public Opinions  

Public opinion is a psychological and social process to collect the individual views, 

attitude and beliefs about a specific topic. Public opinion has a significant impact on policy 

making process. A country president, parliament members, political parties, social groups, 

businessmen, human rights associations, journalists and consultants as well as candidate 

presidents and candidate parliament members, frequently ask the same question “How does 

the public think about a certain topic”. Public opinion is an indicator of the opposition and 

problems that may be faced in implementation of policies. Such information can be used by 

policy makers to device party, company or government policies to be realistic rather than 

idealistic. Politicians need to know public opinions to keep people trust and win reelection. 

Also, in private sources organizations as the Political Action Committees (PACs) raise 

money for or against elect  specific candidates. These groups can be very effective in policy 

decisions. Social groups may form interest groups to directly work to raise awareness and 

actively involved in everything from environmental issues to social issues, all having an 

impact on policy.  

Opinion polling is a way to understand public opinion. It tells us how a population 

thinks and feels about any given topic. It may use a survey, a questioner, electronic devices, 

web based polls or a mobile base polls. It categories individuals view about a specific 

viewpoint. Social scientists and scholars use polls results to explain why respondents still 

believe or change their minds about the poll topic. Opinion polling is usually designed to 

represent the opinions of people by conducting a series of questions and then conclude 

conceptions in ratio or within confidence intervals. These quantitative data often reveal 

citizens’ preferences, and tell us a sense of how people feel about policy issues, social 

practices, or lifestyle issues. Opinion polling was an important factor for Unites States 43
rd

 

president George W. Bush decision to attack Iraq in 2003 [28]. Bush conclude that American 

citizen support military actions. This example gives us how public opinion polling leads to 

critical decisions. 

Paper-form polling is traditional way to collect public opinion. A company organizing 

these polling needs to print many polling forms then destitute it in many places. This need a 
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large number of equipments and stuff, furthermore it’s time cost. The rapid developments in 

mobile, computer and network technologies change the whole polling process. Nowadays a 

company is able to use online systems such as web-based polling or social sites polling or 

even SMS messaging. Participants can use their own computers, tablet or smart phones to 

give her/his opinion. In order to implement web-based opinion polling, many companies 

construct a profile for each participant. This profile may contain important information about 

the participant such as user location, age, gender, occupation or marital status.  

The collection of public opinion information facilitates large-scale data mining and 

data analysis. The information holders such as governments, individual associations and 

companies have mutual benefits to sharing data among various parties.  Moreover, some 

regulations may require certain data to be released. For example, Netflix, a popular online 

movie and television rental service, aimed to improve the movie recommendations accuracy 

therefore released a data set contains anonymous movie ratings of 500,000 subscribers [29].  

Public opinion data contain sensitive information about individuals, and sharing such 

data immediately may reveal individual privacy. As a practical solution data holders may 

write an agreement, guidelines or general polices with other parties to restrict usage and 

storage of sensitive data. However to assume a high level trust is impractical solution. Such 

agreements cannot guarantee careless or misuse of sensitive data, which may lead to violate 

an individual privacy. A key point is to develop a practical approach keeps data useful and at 

same time protects individual privacy.  

 

 

 

2.2 Privacy-Preserving Data Publishing 

The privacy-preserving data publishing (PPDP) aims protecting the private data and 

preserving the data utility as much as possible. In PPDP process we have three main users: 

Data Holder Individual participant Recipients 

Gathering data Releasing data 

Figure 2 : Privacy-Preserving Data Publishing general process 
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1. Individual participant: In public opinion polling, voter will participate and give her/his 

opinion in a certain topic. 

2. Data holder: such as a corporation who organizes the data collection and then 

anonymizes it. Data holder may be untrusted and gathering information to his own 

purposes. The voter should be responsible to untrusted data holder scenario and has 

the ability to decide if it’s possible to vote or not. Another scenario might be happen 

when there is a non-expert data holder. This may leads to publishing a mis-

anonymized data. Therefore it’s necessary to find a PPDP model to be used in this 

scenario. 

3. Data recipient: researchers who need the data to perform demographic research. Or 

might be an adversaries use the data to reveal individual privacy. 

A common type of the data gathered by data holders is a table form. Many data 

holders use this table for its simplicity to voters; also data holders can analyze it fast. A 

table attributes can be categorized as following:  

 Explicit Identifiers: provide a means to directly identify a participant, such as 

name, phone number, and social security number (SSN). 

 Quasi Identifiers: attributes can be used together to identify individuals based on 

their profile information. Attributes like birth date, gender and ZIP code, when 

used together, can accurately identify individuals. 

 Sensitive Attributes: contain personal privacy information like participants’ 

opinion or vote. 

 Non-Sensitive Attributes: which when be released will not affect participant 

directly or indirectly. 

The PPDP mechanism namely anonymization or sanitization, seeks to protect 

participants privacy by hiding the identity of each participant and/or the sensitive data. 

Sanitization mechanism represents the variety of all possible data publishing in an 

application of privacy-preserving data publishing. An anonymization algorithm may use 

Randomization, Generalization, Suppression, Swapping or Bucketization mechanism to 

publish a useful and safe data. [30]. 
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2.3 Privacy-Preserving Data Publishing Models 

Removing Explicit-Identifiers attributes may not protect participant privacy. [13] 

shows a real-life privacy threat by linking a combination of attributes (zip code, date of birth, 

gender) from public voter table with released table. This combination of attributes called the 

Quasi-Identifiers. Research [31] showed that 87% of the U.S. population had reported 

characteristics that made them unique based on only such quasi-identifiers. For example, 

removing SSN and Name from Table 6 will produce Table 4, however it’s easy to re-identify 

participants by check the common Age and Zip code from Table 3 which publicity available 

and Table 4. 

 Explicit-Identifiers 

(EI) 

Quasi-Identifiers 

(QI) 

Sensitive Attributes 

(SA) 

Tuple ID SSN Name Age Zip code Issue1 (I1) Issue2 ( I2) 

t1 2502 Bob 20 3000 a w 

t2 2353 Ken 25 3500 b z 

t3 2453 Peter 25 4000 d x 

t4 1564 Sam 30 6500 a x 

t5 5021 Jane 35 4500 b y 

t6 9432 Linda 40 5500 a y 

t7 5024 Alice 45 6000 c z 

t8 1304 Mandy 50 5000 a x 

t9 1202 Tom 55 6500 c w 

Table 6 : Microdata Table MT 

 

Various privacy models have been proposed in literature. We can categories it in to 

three main types, Statistical models, Partition-based anonymization models and Probabilistic 

models. Some of often models will be described in the following sections.  
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2.3.1 Statistical Methods 

Some PPDP models use statistical methods to preserve individual privacy. In the 

following sections there will be a discussion about the randomization and swapping methods. 

2.3.1.1 The Randomization Method 

The randomization method has emerged as an important approach for data disguising 

in Privacy-Preserving Data Publishing (PPDP). It uses data distortion methods in order to 

create private representations of the records [32, 33]. The randomization method adds noise 

to the sensitive data so the participants’ records are anonymized and at same time it preserves 

statistical information such as average or mean values. In most cases, it’s possible to 

reconstruct aggregate answers from the data distribution by subtracting the noise from the 

noisy data, however participant records cannot be recovered. The randomization method 

could be classified in to two main classes;  

 Random Perturbation method, which creates anonymized data by randomly 

perturbing the attribute values. 

 Randomized Response method, which samples anonymized data from a 

probability distribution, given that the added noise is drawn from a fixed 

distribution.  

Work in [34] showed that the addition of public information makes the randomization 

method vulnerable in unexpected ways. Moreover the randomization method is unable to 

guaranty privacy in the high dimensional case.  

 

2.3.1.2 Swapping Method 

Data swapping is to anonymize a dataset by exchanging values of sensitive attributes 

among data tuples [35]. It provides protection from identity disclosure and it’s a value-

invariant technique. Data swapping perfectly maintains univariate statistics and partially 

maintains lower-order multivariate statistics [36].  It can be used to preserve privacy for both 

numerical attributes and categorical attributes. Data protection level depends on the 

anonymization level induced in the data. Predefined criteria needed to specify tuples or 

values to be swapped. Often, a most rare tuples cause more data disclosure risk, therefore 

swapping method is commonly applies in this case. The key point is to find a suitable data 
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swapping algorithm which preserves released data as well as preserves dataset statistics. Data 

swapping method is done globally or locally. Globally swapping causes high impact on data 

utility, while locally or rank-based data swapping causes high error rates for aggregate 

queries. [37] work showed an example of privacy breach when an adversary has a prior belief 

on a unique attribute.  

2.3.2 Partitions-Based Anonymization 

Many models are designed to prevent disclosure of sensitive information by dividing 

data into groups of anonymous records. k-anonymity, -diversity, t-closeness and other 

models will be discussed in the following sections. 

2.3.2.1 The k-anonymity Model 

The basic idea of k-anonymity is to reduce the granularity of representation of the 

quasi-identifier attributes such a way each record contained in the released data cannot be 

distinguished from at least k-1 participants whose information also appears in the released 

data [13]. 

k-anonymity firstly removes explicit-identifier attributes, and then suppresses, 

generalizes or bucketizes quasi-identifier attributes. k-anonymity thus prevents quasi-

identifier linkages. At worst, the data released narrows down an individual entry to a group of 

k individuals. Unlike randomization models, k-anonymity assures that the data released is 

accurate. Many methods have been proposed for achieving k-anonymity. In addition 

proposed methods use many mechanisms as suppression, generalization and bucketization to 

represent anonymized data.  

Suppression mechanism:  

It refers to replace certain attribute with the most general value, which means not 

releasing a value at all. Table 7 shows a released table satisfy 2-anonymity. t1 and t8 has been 

totally suppressed which means totally data loss. For t2 and t3 the zip code attribute has been 

suppressed. In t4 and t9 the age attribute has been suppressed. There are many suppression 

types like: 

 Tuples suppression: one or more tuples will be suppressed. It’s useful for 

outlier tuples. 

 Cell suppression: one or more cells will be suppressed, where a cell 

represents an attribute value for a tuple.  
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 Attribute Suppression: one or more attributes will be suppressed. It’s often 

used to suppress the explicitly identifier attributes.   

Work [13] showed a model which combines generalization and suppression to achieve k-

anonymity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalization mechanism:  

It refers to replace a value with a less specific value based on a predefined domain 

hierarchy trees. For instance generalize Age value 35 to Age range of values [30-45]. Table 8 

represents a released table satisfying 3-anonymity. There are 3 identical tuples for each quasi-

identifier. Using the hierarchy tree in Figure 3 (a), the age value for t1 and t2 have been 

generalized from 20 and 25 values to range of values 2* which equivalent to [20 - 29] and the 

(*) icon means all possible values in its position. After generalizing some attribute values, the 

set of quasi-identifier (QI) attributes (age and zip code) of tuples t1 and t2 become identical. 

Each group of tuples that have identical QI attribute values is called an equivalence class. 

  (QI)  (SA) 

Tuple ID Age Zip code Issue1 (I1) Issue2 ( I2) 

t1 * * * * 

t2 25 * b z 

t3 25 * d x 

t4 * 6500 a x 

t5 * * b y 

t6 * * a y 

t7 * * c z 

t8 * * * * 

t9 * 6500 c w 

Table 7 : Suppression mechanism 
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Figure 3 (b) represents a range-based example of constructing a hierarchy tree. 

Generalization is created by generalizing all values in an attribute to a specific level of 

generalization. Obviously more generalization decreases data utility therefore a 

generalization mechanism must generalize the data not more than needed. 

Attribute Generalization: It is applied at the level of column. When we perform 

generalization on column, it generalizes all values which belong to that column.  

Cell Generalization: We can perform generalization on any particular cell of any attributes 

rather than whole column. Using this we can generalize only those cells that need 

generalization. Disadvantage of this approach is that it will increase complexities to manage 

values which are generalized at various levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (QI)  (SA) 

Tuple ID Age Zip code Issue1 (I1) Issue2 ( I2) 

t1 [20-25] [3000-4000] a w 

t2 [20-25] [3000-4000] b z 

t3 [20-25] [3000-4000] d x 

t4 [30-45] [4500-6500] a x 

t5 [30-45] [4500-6500] b y 

t6 [30-45] [4500-6500] a y 

t7 [45-55] [5000-6500] c z 

t8 [45-55] [5000-6500] a x 

t9 [45-55] [5000-6500] c w 

Table 8 : Generalization mechanism 



18 

 

 

 

Bucketization mechanism:  

Instead modifying QI attributes and sensitive attributes, it divides the tuples into non-

overlapping groups (buckets) and assigns a GID for each group. Then it publishes two tables, 

the first table with QI and the corresponding group GID and the second table with sensitive 

attributes and the corresponding group GID. Here each group works as a quasi-identifier and 

the sensitive attribute value of any participant would not be distinguish from any other 

participant in the same group.  Table 9 shows two tables as result of bucketization 

mechanism. The first table represents QI tuples and the second represents SA tuples. 

However bucketization mechanism suffers from membership disclosure. Adversary can use 

the QI from the first table to check if a certain participant in this data.  

 

 

 

 

 

 

 

 

Tuple ID Age Zip code GID  GID Issue1 (I1) 

t1 20 3000 1  1 a 

t2 25 3500 1  1 b 

t3 25 4000 1  1 d 

t4 30 6500 3  3 a 

t5 35 4500 2  2 b 

t6 40 5500 2  2 a 

t7 45 6000 3  3 c 

t8 50 5000 2  2 a 

t9 55 6500 3  3 c 

 (a) QI table   (b) SA table 

Table 9 : Bucketization mechanism 

2* 

* 

25 

(a) Prefix-based 

Any 

[20-55) 

 

 [20-30) 

 

 [30-55) 

 

 [30-45) 

 

 [45-55) 

 

(b) Range-based 

Figure 3 : Age generalization tree 
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However k-anonymity does not provide full privacy due to the lack of diversity in the 

SA values (Homogeneity Attack) and if the adversary has additional background knowledge 

(Background knowledge Attack) these attacks will be discussed in details in section  2.3.3.2. 

2.3.2.2 -diversity Model 

-diversity is an effective model to remedy k-anonymity drawbacks. It’s not only 

preventing identification of a tuple but also it preventing inference of the sensitive values of 

the attributes of that tuple. The -diversity model for privacy requires that there are at least  

“well-represented” values of sensitive attributes in each equivalence class. Work [3] 

presented a number of different instantiations for the -diversity definition which differ the 

meaning of being “well-represented”. Simply it can mean  distinct values. Table 10 (b) 

shows a released table satisfies 2-diversity. There are three groups where t1, t2 and t3 are in 

the same group and have identical QI values. In each group, there are at least two distinct SA 

values. 

 (QI) (SA)  (QI) (SA) 

Tuple ID Age Zip code Issue1 (I1)  Age Zip code Issue1 (I1) 

t1 20 3000 a  [20-25] [3000-4000] a 

t2 25 3500 b  [20-25] [3000-4000] b 

t3 25 4000 d  [20-25] [3000-4000] d 

t4 30 6500 a  [30-40] [4500-6500] a 

t5 35 4500 b  [30-40] [4500-6500] b 

t6 40 5500 a  [30-40] [4500-6500] a 

t7 45 6000 c  [45-55] [5000-6500] c 

t8 50 5000 a  [45-55] [5000-6500] a 

t9 55 6500 c  [45-55] [5000-6500] c 

 (a)     (b)   

Table 10 : -diversity model 

 

However as shown in Table 10 the third group t7, t8 and t9 has two sensitive attributes where 

(c) value more frequent than (a) value. Therefore distinct -diversity cannot prevent 
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probabilistic inference attacks. Moreover -diversity does not consider semantic meaning of 

SA values therefore it cannot prevent similarity attack. 

2.3.2.3 t-closeness Model 

t-closeness model [4] bounds distance between the distribution of a sensitive attribute 

in any equivalence class and the distribution of a sensitive attribute in the overall dataset by a 

predefined threshold t. t-closeness model can prevent skewness attack (will be discussed in 

Section  2.5.4). Consider a voter table where 90% of tuples have (c) SA value and 10% of 

tuples have (a) SA value. Assume that we released a table satisfies 2-diversity. This group 

has 50% of (c) and 50% of (a). However, this group presents a serious privacy risk because 

any tuple in the group could be inferred as having (a) with 50% confidence, compared to 10% 

in the overall table. Such attack called skewness attack and t-closeness model can prevent it. 

The Earth Mover’s Distance (EMD) method [38] is used in order to quantify the distance 

between the two distributions of SA values.  Many distance metric methods have been 

proposed. Kullback-Leibler, Weighted-Mean-Variance and Chi Square but these don’t take 

into account ground distance (semantic distance), but EMD considers it. The EMD is based 

on the minimum amount of work required to transform one finite distribution into another 

one by moving distribution mass between each other [39]. 

Due to [40]  the EMD function cannot prevents attribute linkage on numerical 

sensitive attributes. Moreover t-closeness forcing all released groups to have close 

distribution to the original data which negatively affects the data utility. Also t-closeness 

generalizes each attribute independently which causes loss correlation between different 

attributes [41]. 

2.3.2.4 Other Models 

δ-Presence: work [42] presented δ-Presence metric to prevent table linkage threat. It 

concerns the case where a participant presence in the database causes a serious privacy risk. 

δ-Presence bounds the probability of inferring the presence of any participant within a range 

δ = (δmin, δmax). 

Personalized Privacy: work [43] presented personalized privacy metric to allow each 

participant to specify her/his own privacy level based on a predefined taxonomy tree for SA. 

For example a participant may be does not mind if others know that she/he have been voted 

positively/negatively for a certain topic. A table satisfies personalized anonymity with a 



21 

 

certain threshold if no adversary can infer the privacy requirement of any tuple with a 

probability above the threshold. 

(X, Y )-Linkability, (α, k)-Anonymity, LKC-Privacy and more proposed to give a 

general privacy preserving.  

2.3.3 Probabilistic Model 

Recently some probabilistic models [44-47] are designed to prevent disclosure of 

sensitive information by providing ability to statistical queries. ε-differential, (c, t)-isolation 

and (d, γ)-privacy will be discussed in the following sections. 

2.3.3.1 Differential Privacy 

As an alternative of the partition-based models, differential privacy allows only 

statistical queries like sum or count queries. [46] proposes ε-differential privacy model to 

preserve privacy. It shows that the risk of addition or removal of a tuple doesn’t affect the 

released data privacy. Consequently the computations will be insensitive to any changes in 

any tuple. Moreover the adversary will gain nothing. A random function Ƒ will be used to 

generate the data to be released, such that Ƒ is not very sensitive to any tuple in the data set.  

Formally, A randomized function F gives ε-differential privacy if for all data sets D and D’ 

differing on at most a single user, and all T ⊆ Range(Ƒ), where ε is a positive real constant. 

Pr[Ƒ(D)  ∈  T]

Pr[Ƒ(D′)  ∈  T]
≤ exp(ε) 

The key point is to add random noise to the queries answers so that the answer 

changes but not the overall statistics. Therefore more queries means more noise needed to be 

added. This noise depends on ε and the sensitivity of the function Ƒ. 

Differential privacy has two kind of interaction, non-interactive and interactive 

approaches. In the non-interactive approach all queries have to be known in advanced. After 

that a perturbed version of the data created. While the interactive approach answers only a 

sub linear number of queries [48]. In differential privacy model there is no assumption about 

adversary’s belief or tuples dependency [49]. 

  



22 

 

2.3.3.2  (c, t)-Isolation 

An adversary may try to isolate or to eliminate a tuple (a participant) from a dataset. 

PPDP requires that, using released data and background information should not increase the 

adversary ability to isolate any tuple. Work [15] has proposed a privacy model (c, t)-isolation 

to prevent tuple isolation in a statistical database. Suppose a data set D has been anonymized 

and released. Let D has n tuples. Suppose those tuples are represented as points in a certain 

space, where p is a point in D space and q is a point in D’ space. The adversary is able to 

know the q point. Let δ be the distance between p and q. Let B(q, cδ) is a ball of radius cδ 

around point q. Then the point q (c, t)-isolates point p if B(q, cδ) contains fewer than t points 

in the table. where c is an isolation parameter and t is a threshold of privacy. (c,t)-isolation 

can be viewed as a record linkage problem and is suitable for problems with numerical 

attributes.  

2.3.3.3  (d, γ)-Privacy  

Work [47] presented a probabilistic privacy model (d, γ)-privacy, which relates the 

adversary’s prior belief P(t) for a given tuple t, with the posterior belief P(t|D) for the same 

tuple. (d, γ)-privacy shows that when the P(t) is small, there is a reasonable trade-off between 

privacy and utility. The privacy definition requires that the posterior belief P(t|D) ≤ γ and 

P(t|D)

P(t)
≥

d

γ
 .  

2.4 Complexity of finding optimal k-anonymity 

In [50] work, authors have considered the complexity of finding an optimal value of k 

which ensure the anonymity of tuples up to a group of size k, while minimizing the amount of 

information loss. They showed that optimal k-anonymization for multi-dimensional QI is NP-

hard under the suppression model. Therefore to minimize the number of suppressed tuples, a 

greedy approximate model has been proposed. Two approximation algorithms were propose: 

the first algorithm runs in time O(n
2k

) and achieves an approximation bound of O(k log k), 

the second algorithm runs in a polynomial running time. Recently many improved models has 

been proposed  and showed  an approximation bound of O(log k) [51]. In [18] work, authors 

point up that suppression model is a special case of generalization model; furthermore they 

show that k-anonymization is also NP-hard under generalization model. 

Data recording is a way to achieve k-anonymity based on generalization. There are 

two kinds of recording: global-recording and local-recording. In global-recording, same value 

in an attributes must generalize to the same level. In local-recording, same value in an 
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attribute may generalize to different levels. Global-recording may cause a higher information 

loss than local-recording. For example, Table 11(a) shows a generalization for Age and Zip 

code attributes, where the first generalization in Table 11(b) is global-recording based and the 

second generalization in Table 11(c) is local-recording. It’s clear that in Table 11(b) the 

tuples t7, t8 and t9 are generalized more than the corresponding tuples in Table 11(c). 

In multi-dimensional generalization, recording may work in each attribute separately 

or mapping the Cartesian product of all attributes. Work [26] showed that applying recording 

process in the Cartesian product is more accurate than the separated manner.  Most of recent 

research like [23, 52]  proposed algorithms for one dimension and global-recording.   

Specialization is the reverse operates of generalization. It is a top-down process, 

which starts from the most general value and dividing data based on predefined conditions.  

 

 (QI)  (QI)  (QI) 

Tuple ID Age Zip code  Age Zip code  Age Zip code 

t1 20 3000  [20-25] [3000-4000]  [20-25] [3000-4000] 

t2 25 3500  [20-25] [3000-4000]  [20-25] [3000-4000] 

t3 25 4000  [20-25] [3000-4000]  [20-25] [3000-4000] 

t4 30 6500  [30-40] [4500-6500]  [30-40] [4500-6500] 

t5 35 4500  [30-40] [4500-6500]  [30-40] [4500-6500] 

t6 40 5500  [30-40] [4500-6500]  [30-40] [4500-6500] 

t7 45 6000  [45-55] [4500-6500]  [45-55] [5000-6500] 

t8 50 5000  [45-55] [4500-6500]  [45-55] [5000-6500] 

t9 55 6500  [45-55] [4500-6500]  [45-55] [5000-6500] 

 (a)   (b)   (c)  

Table 11: Global-recoding and local-recoding 

 

In Chapter  5 a local-recording, multi-dimensional generalization algorithm will be 

presented.   
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2.5 Privacy-Preserving Data Publishing Possible Attacks 

Many PPDP algorithms have been proposed in order to protect data after publishing it 

and at same time preserve maximum utility. However many attacks have been proposed to 

reveal participant privacy. One of the most cited example of this type of privacy breach is the 

AOL search data leak. In 2006, AOL researchers recently published the search logs of about 

650,000 members. The release intended for research purposes. Unfortunately, AOL did not 

notice that users’ searches may potentially identify individual users. Using search engines to 

find an individual’s name, address or a telephone number, could then leads to a specific 

individual. The release replaced users' names with persistent pseudonyms. It did not take 

much inspecting for The New York Times to conclude that searched words belong to Thelma 

Arnold, a 62-year-old widow who lives in Lilburn, Ga. [53] In the next section the often 

privacy attacked will be discussed. 

2.5.1 Linking Attack 

Simply removing Explicitly-identifier (EI) attributes not enough. Using linking attack; 

an adversary still be able to identify individual participant by linking external data to 

anonymized data [13]. 

k-anonymity model provide a solution to avoid linking attacks. It requires that each 

record in the released data is identical to at least k-1. Table 12 shows an example how the 

adversary compares QI values in the anonymized table (a) and public data (b). It obvious that 

t1 has the same QI values in both tables which conclude with high probability that they are 

the same participant.  

  (QI)  (SA)   (EI)  (QI) 

Tuple ID Age Zipcode Issue1  Issue2   SSN Name Age Zip 

t1 20 3000 a w  2502 Bob 20 3000 

t2 25 3500 b z  1304 Mandy 50 5000 

t3 25 4000 d x  1202 Tom 55 6500 

t4 30 6500 a x  1564 Sam 30 6500 

 (a) anonymized data  (b) Public  data 

Table 12 : Linking Attack  
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2.5.2 Homogeneity Attack  

Appears when an anonymous data groups lack of diversity. Table 13 shows a 2-

anonymity anonymized data, for the first group there are two tuples with same SA value. 

Therefore an adversary can easily reveal participant’s privacy. k-anonymity requires each 

tuple in anonymized data to appear at least k times, but does not say anything about the SA 

values. If a SA values in a QI group are same then it violate privacy requirements.  

-diversity suggests that as improvement to k-anonymity, the anonymized groups should 

diverse the SA values for each QI attribute.[3] 

 (QI)  (SA) 

Age Zip code  (I1) 

   
[20-30] [1200-3400] c 

[20-30] [1200-3400] c 

   
[30-40] [5600-6600] a 

[30-40] [5600-6600] b 

Table 13 :  Homogeneity and background knowledge attacks  

 

2.5.3 Background Knowledge Attack 

An adversary has background knowledge about the SA values. For example if the 

adversary knows that certain city supports certain party with very high confidence. In Table 

13 if the city has the zipcode 6600 and support choice (a) and appears in the second group, 

then the adversary can concludes that participants from city with zipcode 5600 has been 

voted for I1 by (b). k-anonymity does not protect against background knowledge attack.  

-diversity provides a solution by increasing the diversity of SA values for each anonymized 

group. 
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2.5.4 Skewness Attack 

Adversary can reveal participants privacy if anonymized groups have a non-uniform 

distribution of SA values. -diversity model prevents direct attribute disclosure; however it 

doesn’t provide a sufficient distribution for sensitive attribute values. Table 14 shows an 

anonymized data which satisfies 2-diversity. The SA values include four (a) values and one 

(b) value. This implies that the participants have been voted for (a) choice by probability 

80%. This type of privacy threats called Skewness attack. t-closeness [4] model provides a 

solution for this attack. It bounds the data set distribution distance between the distribution of 

SA values in the original data set and the released data for each group. 

(QI)  (SA) 

Age Zip code  (I1) 

   
[20-30] [1200-3400] a 

[20-30] [1200-3400] a 

[20-30] [1200-3400] a 

[20-30] [1200-3400] a 

[20-30] [1200-3400] b 

Table 14 : Skewness attack  

 

 

2.5.5 Similarity Attack 

Participant’s privacy may be at risk if sensitive attribute values of anonymized groups 

are similar. An anonymization algorithm must consider semantic meanings of SA values. In 

public opinion polls such attack is rarely happen. Table 15 shows a 3-diversity anonymized 

data. Assume choices (a) and (b) have closed mining (first opinion) and choice (f) has a 

totally opposite meaning (second opinion). Then the similarity between (a) and (b) will 

implies that voters have choose 80% of the first opinion.       
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(QI)  (SA) 

Age Zip code  (I1) 

   
[20-30] [1200-3400] a 

[20-30] [1200-3400] b 

[20-30] [1200-3400] a 

[20-30] [1200-3400] b 

[20-30] [1200-3400] f 

Table 15 : Similarity attack  

2.5.6 Membership Disclosure 

An adversary can discover whether a participant presence in the released data or not. 

People have the right to hide their participation in any public opinion process. Bucketization 

mechanism for instant does not prevent this attack as we mentioned in  2.3.2.1. Generalization 

and slicing mechanisms [54] prevent membership attack. 

2.5.7 Multiple Release Attack 

A microdata often has to perform many operations for its tuples.  Insertions, deletions 

and updates operations may leads to republishing a new anonymized version. However 

multiple releases open to be linked together which may compromise data privacy (will be 

discussed in more details in chapter  4). A suggested solution is to consider all of the released 

data before publishing the new one. But it’s not always the case.  Data publisher may not 

notice that another release may happen in future; also other data holders are able to release 

some data. Table 16 shows a 3-anonymity and 2-diversity for the first release R1 and the 

second release R2. Assume an adversary knows that a voter presented in both releases and 

she/he is 40 years old and living in a city with 3000 zipcode. Examining R1 and R2 together, 

the adversary can eliminates r1, r2 and r6 tuples. Also the adversary can eliminate tuple r3 or 

r4 due to the distribution of SA values in R1.    

Preventing such attacks, called Multiple Release or correspondence attacks, needs to 

consider all changes occurred to the data moreover to consider the anonymization models 

used in previous releases [55-58]. 
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  (QI)  (SA)   (QI) (SA) 

TID Age Zipcode Issue1   TID Age Zipcode Issue1  

t1 [20-40] 30** a  r1 2* 3*** a 

t2 [20-40] 30** a  r2 2* 3*** a 

t3 [20-40] 30** b  r3 4* 3*** b 

     r4 4* 3*** b 

     r5 4* 3*** a 

     r6 2* 3*** b 

 (a) Release 1 (R1)  (b) Release 2 (R2) 

Table 16 : Multiple release attack  

 

2.5.8 Minimality Attack 

In addition to background knowledge and anonymized data, adversaries may have 

access to algorithms used to anonymize data. Based in this knowledge, work [59] presented a 

minimality attack which may be used by adversaries to breach participants’ privacy. Using a 

probabilistic formula, an adversary eliminates impossible cases in order to launch elimination 

attack. In general, the minimality principle state that a generalization algorithm should not 

synthesized data more than its necessary to achieve its requirement.   

2.5.9 Inference Attack 

Inference attack occurs when an adversary is able to infer a sensitive data with high 

confidence. The adversary deduces the sensitive data using trivial information. Even if the QI 

is not fully released it may be possible to infer missing QI values from other information. It’s 

possible to infer gender or religion from name, birth year from graduation year [60]. Several 

works [61-63] have proposed solutions for inference attack. 
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2.5.10 deFinetti Attack 

Using a statistical theorem known as deFinetti’s theorem, [64] showed that using a 

group of anonymized data deFinetti attack can build a classifier to predict the SA value 

associate with this group. Firstly, deFinetti attack guessing a random permutation for each QI 

in order to assign a SA value to each tuple. This step produces a set of conditional 

distributions as following  Pr(𝑄𝐼𝑖 |𝑆𝐴𝑗 ) where i is |QI| and j is the number of distinct SA 

values in each QI. The set of conditional distributions can be described as a classifier. 

Secondly, in each QI deFinetti attack uses the classifier to check the relative likelihood for 

the guessed permutation. Iteratively the process will construct a precise classifier. Thirdly, 

Anonymized data and the constructed classifier can be used to reveal participant privacy. 

[65].      

As showed in [64] deFinetti attack can be used against any model uses tuple-

independent model, the random-worlds method [66], or independent and identically 

distributed model.  

 

2.6 INFORMATION LOSS METRICS 

As mentioned in Chapter  1, one of the primary goals of data publishing utility is the 

quality of the released dataset. Unfortunately, de-identification of datasets degrades the utility 

of the dataset giving us a trade-off between privacy and utility. A good anonymization not 

only satisfies the underlying privacy standard but also minimizes information loss due to 

generalizations. To achieve such an anonymization, we first need a metric to measure the 

level of utility of a given anonymized dataset. A typical utility metric measures the data 

quality in the released data with respect to the data quality in the original dataset. This 

chapter describes three commonly used information loss metrics:  

2.6.1 Discernibility Metric 

The Discernibility Metric (DM) penalizes by a value of the anonymized group size 

each unsuppressed tuple and assigned a penalty of the input dataset size for each suppressed 

tuple. In addition each suppressed tuple incurs a cost |T|. Given that we did not perform any 

tuple suppression then the DM error is the normalized sum of all assigned penalties [23], 

[24]. The certainty loss is the sum of intervals size on all attributes of the generalized tuples 

[41]. DM can be mathematically stated as follows: 



30 

 

DM(T*) = ∑ tT|EC(t)|2 

Where t is a tuple from T and EC(t) is the Equivalence Class of T* indistinguishable from t. ( 

EC defined in section  5.1) 

 

2.6.2 Loss Metric 

The information loss metric (LM) is the sum of all normalized information loss for 

each column in the anonymized table. LM is between 0 and 1, where 0 means no information 

loss and 1 means total information loss. We use the [67] definition, which described 

mathematically as follows: For attributes with numerical values, assume for each interval the 

lower and upper values be L and U respectively. The information loss can be calculated by 

LM(T*) = ∑ tT(Ui-Li)/(U-L) 

For attributes with categorical values, assume N is the total number of leaf nodes in R. and 

NP is the total number of leaf nodes in a sub tree rooted in P. consider the generalization 

based on the domain generalization structure Ɽ (as shown in Figure 3). 

 

2.6.3 Average Query Error 

The Average Relative Error (AvRE) [68] measures the distortion by comparing the 

counts of the randomly generated SQL queries over T* to the counts over T. AvRE for each 

tuple can be measured as |act – est|/act. Where act means the actual results driven from the 

original data and est means the estimated results driven from the sanitized data. 

In the chapter  6 we will show a comparison between MSA-diversity model and Gal’s 

et al model in term of the Discernibility Metric, Loss Metric and Average Relative Error. 
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3. PRIVACY-PRESERVING FOR MULTIPLE SENSITIVE 

ATTRIBUTES 

Typical public opinion polls cover a very large number of issues. Each issue is 

recognized as a sensitive attribute. Therefore we will deal with multiple sensitive attributes in 

order to develop an efficient model. The data holder needs to publish a large number of 

opinions about many issues. Adversaries use participants’ profiles and public opinion to 

launch an attack. The main idea is to protect and secure the relationship between the quasi-

identifiers and multiple sensitive attributes. Many works like k-anonymity, -diversity, t-

closeness, etc., have been proposed as a privacy protection model for microdata [3], [4]. 

However, most of models assume there is one single sensitive attribute in the microdata table.  

 

 Explicit Identifiers 

(EI) 

Quasi Identifiers 

(QI) 

Sensitive Attributes 

(SA) 

Tuple ID SSN Name Age Zip code I1 I2 I3 … Id 

t1 2502 Bob 20 3000 a w e  k 

t2 2353 Ken 25 3500 b z e  m 

t3 2453 Peter 25 4000 d x f  k 

t4 1564 Sam 30 6500 a x e  k 

t5 5021 Jane 35 4500 b y g  n 

t6 9432 Linda 40 5500 a y f  l 

t7 5024 Alice 45 6000 c z f  m 

t8 1304 Mandy 50 5000 a x h  l 

t9 1202 Tom 55 6500 c w g  n 

Table 17 : Microdata Table with (d) SA 

 

Table 17 shows an example for a microdata with multiple sensitive attributes.  I1,  I2, 

to Id are opinions for different issues. Each issue has a number of distinct choices and a 
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participant can choose one. Issues can be related to each other, and have a strong dependency. 

In this case their joint distribution will be similar; therefore we can consider them as one 

issue. Also issues can be independent from each other, thus their join distribution are 

different. In this case we consider them as different issues.  

At present, few multiple sensitive attributes models have been proposed in the 

literature to prevent re-identification risks caused by external knowledge. In the following 

subsections will discuss it. 

3.1 Naïve Approach 

It has been shown in [11] [12], [25], that under non-membership information -

diversity fails to protect privacy. Simply using -diversity for MSA will cause privacy breach.  

As an example, Table 18 (i) shows some voter’s records. The anonymization in Table 

18 (ii) satisfies 3-diversity on I1 alone and I2 alone. Consider an adversary who has the 

background knowledge that Amy will not vote for (c) on I1, thus the adversary can exclude 

the tuples with (c) on I1. Since the remaining tuples all have (w) on I2, the adversary will 

conclude Amy has voted (w) on I2.  

 

 (QI) (SA)  (QI) (SA) 

Tuple ID Age Zip code I1 I2  Age Zip code I1 I2 

Amy 30 1200 b w  [20-30] [1200-3400] b w 

Bob 20 2400 c x  [20-30] [1200-3400] c x 

Che 23 1500 a w  [20-30] [1200-3400] a w 

Dina 27 3400 c y  [20-30] [1200-3400] c y 

 i. Microdata  ii. Anonymized data 

 

Table 18 : The microdata and anonymized data sample T 
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3.2 Machanavajjhala’s et al. Approach 

According to work by [3], if we have two sensitive attributes, the main idea is to treat 

the first sensitive attribute as part of the quasi-identifier when checking for diversity in the 

second sensitive attribute (and vice versa). Thus we can ensure the diversity principle is held 

for the entire dataset. However, this solution is impractical for use in public opinion data 

because of the huge number of opinions each participant is expected to express. Also the 

sensitive attribute which treated as part of QI may be generalized, which will rise the 

information utility loss. 

 

 (QI) (SA)  (QI) (SA) 

Tuple ID Age Zip code I1 I2  Age Zip code I2 I1 

Amy 30 1200 b w  30 1200 w b 

Bob 20 2400 c x  20 2400 x c 

Che 23 1500 a w  23 1500 w a 

Dina 27 3400 c y  27 3400 y c 

 i. Treat I1 as a part of QI  ii. Treat I2 as a part of QI 

Table 19 :  Microdata of Machanavajjhala et al. approach for MSA 

 

Consider the row microdata in Table 19. As first phase, suppose I1 treated as a part of 

QI, then checking the diversity of I2 will produce the anonymized data in Table 20(i). Second 

phase treat I2 as part of QI and check I1 diversity. As result shown in Table 20(ii) to produce 

2-diversity data, this approach generalized the QI and SA which causes utility loss. 
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 (QI) (SA)  (QI) (SA) 

Tuple ID Age Zip code I1 I2  Age Zip code I2 I1 

Amy [20-30] [1200-3400] [a,b] w  [20-30] [1200-3400] w [a,b] 

Che [20-30] [1200-3400] [a,b] w  [20-30] [1200-3400] w [a,b] 

Bob  [20-30] [1200-3400] c x  [20-30] [1200-3400] [x,y] c 

Dina [20-30] [1200-3400] c y  [20-30] [1200-3400] [x,y] c 

 i.  First phase  ii. Second phase (2-diversity) 

Table 20 : Anonymized data of Machanavajjhala et al. approach for MSA 

 

 

  



35 

 

3.3 Li and Ye Approach 

Work by [25] provided a two-step greedy generalization algorithm, which is used to 

carry out the multiple sensitive attributes processing. First phase: quasi-identifiers are 

generalized using a top-down specialization greedy algorithm. It starting with the whole data 

set as a single group and then trying to split it to smaller groups until further split will violate 

α-QI condition, where α-QI is the diversity requirement for QI. α-QI is predefined by data 

holder. Second phase: sensitive attributes are masked (generalized) using a bottom-up local 

recording algorithm. It checks the α-SA condition for each equivalence class - which 

constructed in the first phase-, where α-SA is the diversity requirement for SA. α-SA is 

predefined by data holder. 

However, in the public opinion case we have few choices for each sensitive attribute 

which leads to a huge information loss if we apply the masking step of this solution. 

Moreover [25] doesn’t construct groups in  a probabilistic manner, which may leads to have 

one SA value more frequent than other SA values within a group.  For example, Table 21 

shows the process to satisfy α-QI = α-SA = 2. In the first phase there are two equivalence 

classes. In the second phase due to the local generalization step there are suppressions to two 

values. w value in the first equivalence class will be suppressed and c value in the second 

equivalence class will be suppressed.  

 

 (QI) (SA)  (QI) (SA) 

Tuple ID Age Zip code I1 I2  Age Zip code I1 I2 

          
Amy 30 1200 b w  [23-30] [1200-1500] b * 

Che  23 1500 a w  [23-30] [1200-1500] a * 

          
Bob 20 2400 c x  [20-27] [2400-3400] * x 

Dina 27 3400 c y  [20-27] [2400-3400] * y 

 i. First phase  ii. Second phase 

Table 21 : Li and Ye approach 
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3.4 Gal’s et al Model 

Work by [11] mentions that the table T satisfies both k-anonymity and -diversity if T 

is divided into a partition and each group contains at least k records, and to delete all rows in 

the group, at least  distinct values need to be deleted to delete all rows in the group. T is also 

anatomized or generalized. However this work isn’t the most appropriate approach to this 

problem. [11] model works top down, it starting with the whole data set as a single group and 

then trying to split it to smaller groups until further split will violate k-anonymity and -

diversity conditions.  

Using dataset in Table 4, as shown in  

Figure 4 it starts by select the attribute with widest normalized range. In this example it’s 

possible to choose Zip code or Age. By choosing the Age attribute and split it in to two 

groups 3000-5000 and 5500-6500 look to ( 

Figure 4). Then we will have t1, t2, t3, t5 and t8 in G1 and t4, t6, t7 and t9 in G2. Even the 

first part t1, t2, t3, t5 and t8 can construct G1 the second part cant construct any group. 

Therefore it’s only possible to make one partition and exclude the rest.  

It’s also possible choosing Age attribute to split the data to two groups. As results [11] 

will give us two groups t1, t2 and t3 as G1, t6, t7, t8 and t9 as G2, t4 and t5 will be excluded. 

Table 22 shows the anonymized data. 

 (QI) (SA) 

Tuple ID Age Zip code I1 I2 

     
t1 20-25 3000-4000 a w 

t2 20-25 3000-4000 b z 

t3 20-25 3000-4000 d x 

     
t6 40-55 5000-6500 a y 

t7 40-55 5000-6500 c z 

t8 40-55 5000-6500 b x 

t9 40-55 5000-6500 c w 

     
t4 * * * * 

t5 * * * * 

Table 22 : Gal’s et al released data T*1 
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Figure 4 shows a 2D space, where the x-dimension is Zipcode And y-dimension is Age. Each 

cell indicates a tuple in the dataset of Table 4. Dashed line represent [11] partitioning process. 

Assuming normal distribution, the probability that a tuple with age = 25 and Zipcode = 4000 

is 1/64. Where 64 is the total number of data cells. Clearly [11] model causes a large 

information loss. [11] model focuses on both k-anonymity and -diversity anonymization. 

However, [3] work mentions the k-anonymity drawbacks and how it fails to preserve privacy 

practically. k-anonymity still can’t prevent homogeneity attack and background knowledge 

attack. Therefore focusing on -diversity will provide stronger privacy preserving. 

 

 

Figure 4 : 3-diversity groups using Gal’s et al. model 
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3.5 Xiao-Chun et al Model 

Work by [12] shows a multi-dimensional bucket grouping for SA with multiple 

attributes. Table 24 shows the anonymized data of Table 23 based on the maximal multi-

dimension-capacity first algorithm. However it’s clear that [12] can’t prevent membership 

attack. Furthermore it doesn’t present a probabilistic model. For example, the G3 in Table 24 

has the probability that Mandy (t8) votes for z on issue2 is 2/3. This makes it difficult to 

make risk/benefit/cost analysis of publishing private data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Quasi-Identifier (QI) Sensitive Attributes (SA) 

Tuple ID Age Zip code Issue1 (I1) Issue2 ( I2) 

Bob(t1) 20 3000 a f 

Ken(t2) 25 3500 a w 

Peter(t3) 25 4000 a x 

Sam(t4) 30 6500 b f 

Jane(t5) 35 4500 b w 

Linda(t6) 40 5500 c y 

Alice(t7) 45 6000 c y 

Mandy(t8) 50 5000 d z 

Tom(t9) 55 6500 e f 

Table 23 : Microdata for Xiao-Chun et al. model  
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  (QI)   (SA) 

Tuple ID Age Zip code Group ID  Group ID I1,  I2 

t1 20 3000 G1  G1 c, y 

t2 25 3500 G2  G1 b, w 

t3 25 4000 G3  G1 a, f 

t4 30 6500 G2  G2 b, f 

t5 35 4500 G1  G2 a, w 

t6 40 5500 G1  G2 c, y 

t7 45 6000 G2  G3 e, z 

t8 50 5000 G3  G3 d, z 

t9 55 6500 G3  G3 a, x 

Table 24 : Anonymized data of Xiao-Chun et al (MMDCF algorithm) 
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3.6 Ye et al Model 

Work by [69] proposes decomposition  model for MSA privacy preserving problem. 

Basically, it decomposes the dataset into SA-groups.  For example, Table 25 (ii) shows an 

anonymized data for (i) table. For each group of tuples, instead of generalizing QI attributes it 

composes or bucketizes the SA values. firstly, [69] model constructs tuples equivalence 

classes based on -diversity model and using one sensitive attribute each time. However this 

model can’t prevent membership attack, all tuples are released as it is without anonymization 

process. Additionally, it doesn’t provide a probabilistic model; therefore a tuple may be more 

likely to appear than other tuples within same equivalence class.    

 

 (QI) (SA)  (QI) (SA) 

Tuple ID Age Zip code I1 I2  Age Zip code I1 I2 

Amy 30 1200 b w  30 1200 

b, c w, x 

Bob 20 2400 c x  20 2400 

Che 23 1500 a w  23 1500 

a, c w, y 

Dina 27 3400 c y  27 3400 

 i. Microdata   ii. Anonymized data 

Table 25 : Ye et al model example 

 

3.7 Fang et al Model 

Work by [70] provides a new model, CODIP, as a privacy preserving model for data 

with multiple sensitive attributes. CODIP projects the microdata on to SA groups, where each 

group satisfies t-closeness or any other anonymization algorithm. The anonymized data will 

be the projected data, where projected data isolates disjoint SA groups in separate tables. All 

tuples in the anonymized data will have a randomize order. However CODIP prevents 

intersection and minimality attacks it still doesn’t avoid attacks based on probability.  
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4. PRIVACY-PRESERVING FOR DYNAMIC RELEASES 

 

Recent research has been devoted to study the privacy preserving for multiple data 

publishing [28, 29, 44, 45, 57, 58, 61, 71, 72]. They refer to this kind of study as sequential 

releases [28, 29, 71], serial data publishing [44, 55], dynamic anonymization [58, 72] and 

multiple data releases depending on the difference between data releases. 

The dynamic data releases occur when data holder needs to publish new information 

for same data, another instance for same data or/and updated data. For example, data holder 

published data for an issue 1 (R1), another issue 2 needed to be published therefore dataset 

holder makes a new release (R2).   These releases may differ with quasi-identifier attributes 

/sensitive attributes or/and with period of time. The first release R1 released at timestamp1. 

The second release R2 will be released at timestamp2, and so on so forth, where timestamp1 

< timestamp2. Moreover, when anonymizing R2 we cannot modify R1; simply R1 becomes 

part of history. In public opinion polls privacy preserving area, polls may organize in a 

different periods of time. One may suggest accumulating all releases, and then anonymizing 

it together. The first public opinion issue will postponed until the second, third, or more ones 

are collected. This idea is a time consuming task. Its not be acceptable in public opinion 

problem.  

k-anonymity, -diversity, t-closeness, etc [3], [16], [17], [18], [19], have provided a 

number of valuable privacy-protecting techniques. However, they are only deal with one-time 

data release (static- release). This implies a significant limitation, as in many applications 

data have many releases which collected continuously.  

Simply using k-anonymity or other static-release approaches to anonymize the new 

releases independently without considering the previous releases may cause privacy 

violations. The relations between QI and SA in the releases data will give adversaries great 

opportunities to reveal individuals’ privacy. Illustrations of these threats will be present 

through some examples in the following sections.  

The key point is how to anonymize the current release so that it cannot be linked to 

previous releases, and still remains useful for its own release purpose. 
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Many types of dynamic data releases have been discussed, work by [73] discussed the 

sequential data releases when the sensitive attributes for new release doesn’t has any relation 

with the previous release. In [73] a global guarantee (across all releases) has been declared to 

give more accurate privacy measurement than the local guarantee (for each release). Work 

[71] studied the problem of releasing different attributes’ subsets for same microdata where 

Quasi-identifiers can be reconstructed from several releases. Work [58] defined a new model 

(m-invariance) for dynamic releases for same dataset with updated tuples. In [58] both 

insertions and deletions have been discussed. Both of [57] and [72] presented remedy models 

for m-invariance model. While [74] and [75] concerns only the insertion of new tuples. 

 

4.1 SAs Independent Approach 

 

-diversity ensures that the probability of mapping an individual to a sensitive value is 

bounded by 1/. Therefore, it guarantees that every equivalence class contains at least  

distinct SA values. Assuming there are no associations between issues SAs, which means that 

the first SA values are independent from the second SA values, and so on so forth.   

As an example, Table 26 shows two voters’ records where first issue SA doesn’t has 

any relation with second issue SA. The anonymization in Table 27 (i) satisfies 3-diversity on 

I1 and Table 27 (ii) satisfies 3-diversity on I2. Consider an adversary who has the background 

knowledge that Bob (t1) will vote for (a) on I1, thus the adversary can only exclude t1 tuple in 

the first group. Since there are no relations between the two SAs, the first group that includes 

t1 in Table 27 (ii) will not be affected. The adversary will not gain any new information and 

Table 27 will still satisfy 3-diversity on I1 and I2. 
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  (QI)  SA) 

Tuple ID Age Zip  I1 

Bob(t1) 20 3000 a 

Ken(t2) 25 3500 b 

Peter(t3) 25 4000 d 

Sam(t4) 30 6500 a 

Jane(t5) 35 4500 b 

Linda(t6) 40 5500 a 

Alice(t7) 45 6000 c 

Mandy(t8) 50 5000 b 

Tom(t9) 55 6500 c 

 

  (QI) (SA) 

Tuple ID Age Zip  I2 

Bob(t1) 20 3000 w 

Ken(t2) 25 3500 z 

Peter(t3) 25 4000 x 

Sam(t4) 30 6500 x 

Jane(t5) 35 4500 y 

Linda(t6) 40 5500 y 

Alice(t7) 45 6000 z 

Mandy(t8) 50 5000 x 

Tom(t9) 55 6500 w 

i. First Issue T1 ii. Second Issue T2 

Table 26 : The microdata of two independent issues 
 

 (QI) (SA) 

TID Age Zip code R1 

     
t1 [20-25] [3000-4000] a 

t2 [20-25] [3000-4000] b 

t3 [20-25] [3000-4000] d 

     
t4 [30-45] [4500-6500] a 

t5 [30-45] [4500-6500] b 

t7 [30-45] [4500-6500] c 

     
t6 [40-55] [5000-6500] a 

t8 [40-55] [5000-6500] b 

t9 [40-55] [5000-6500] c 
 

 (QI) (SA) 

TID Age Zip code R2 

     
t1 [20-25] [3000-4000] w 

t2 [20-25] [3000-4000] z 

t3 [20-25] [3000-4000] x 

     
t4 [30-45] [4500-6500] x 

t5 [30-45] [4500-6500] y 

t7 [30-45] [4500-6500] z 

     
t6 [40-55] [5000-6500] y 

t8 [40-55] [5000-6500] x 

t9 [40-55] [5000-6500] w 
 

a) First Release R1  b) Second Release R2 
Table 27 : The anonymized data for two independent issues 
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The non-membership attack doesn’t work in the independent association case. Even if 

an adversary knows i bits of non-membership knowledge, he/she cannot link it with the next 

release SA.  

However, in real life there are partially or fully associations among sensitive 

attributes. For instance, public opinion polls like “Do you approve or disapprove of Barack 

Obama’s performance as president? ” have been published five times during 2011 [62]. In 

this case, there are five polls where SAs are fully associated. Another partially association 

may also happens. In dynamic data releases it’s not possible to deal with the SAs as one SA, 

simply when anonymizing the second release; it’s not possible to change the first release.  In 

the next section, techniques prepared to this type of sensitive values will present.  

 

4.2 SAs Dependent Approaches 

 

Correlations between sensitive attributes in sequentially released data may leads to 

serious disclosure scenarios. It may happen that one SA work as identifier to another SA. In 

public opinion polls, a poll question about head of a party performance and another question 

about the party performance have a high association.   The following sections will represent 

the prepared approaches and possible attacks for SAs associations. 

 

4.2.1 Record-linking Attack 

Data holder release new data as it’s available. Different releases perhaps for same 

dataset with different attributes which may yield to record-linking across multiple anonymous 

releases. For instance, first release may contain Age, Zip code and Issue1 attributes, second 

release may contain participant’s name, Age and Zip code attributes. An adversary can 

launch a record-linking attack by joining the identical set of attributes from the two releases. 

In Table 28, the adversary may join the first tuple in Table 28 (i) with second tuple in Table 

28 (ii) to conclude that Bob has voted by (a) for issue1.  
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 (QI) SA) 

Age Zip code I1 

25 3500 b 

20 3000 a 

40 5500 a 

45 6000 c 

 

 (QI) 

Name Age Zip code 

Bob 20 3000 

Ken 25 3500 

Linda 40 5500 

Alice 45 6000 

i. First release R1 ii. Second release R2 

Table 28 : The microdata for Join Attack example 

 

The work in [71] considers record-linking attack and provide a remedy for this type of 

dynamic releases definition. It presents the concept of (X, Y)-privacy as a top-down 

specialization approach to prevent record-linking attack.  

 

4.2.2 Value-association Attack 

 

Another definition for dynamic data release state that: the same data and same 

attributes may anonymize differently for different purposes. m-invariance model [58]  

supports dynamic data release in both new tuple insertions and deletions scenarios. Value-

association attack happens if an adversary knows that a certain participant appears in both 

releases. Table 29 and Table 30 depict an anonymized data with two releases, where R1 is the 

first release and R2 is the second release. An adversary may know that Bob participates in R1 

and R2 and his age is 20, then by looking to the association between the first group in R1 and 

R2, it is easy to deduce that he has (a) as SA value. The m-invariance model effectively limits 

the risk of privacy disclosure caused by this attack.  It guarantees that each anonymized group 

has at least m tuples, each with a unique set of sensitive values. In order to make these groups 

m-invariance may insert some counterfeit tuples. Due to the sensitive values’ consistency, a 

value-equivalence attack may be used to breach privacy; this attack will be presented in 

Section  4.2.4.  
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Name 

QI 

SA 

Age Zip 

Bob 25 3500 a 

Ken 20 3000 b 

Linda 40 5500 a 

Alice 45 6000 c 

 

QI 

SA 

Age Zip 

[20-30] [3000-4000] a 

[20-30] [3000-4000] b 

[40-50] [5000-6000] a 

[40-50] [5000-6000] c 

i. Microdata T1 ii. First release (R1) 

Table 29 : First Release for the Value-association Attack 

 

 

Name 

QI 

SA 

Age Zip 

Bob 25 3500 a 

Peter  23 4000 c 

Linda 40 5500 a 

Mandy 50 6000 b 

 

QI 

SA 

Age Zip 

[20-30] [3000-4000] a 

[20-30] [3000-4000] c 

[40-50] [5000-6000] a 

[40-50] [5000-6000] b 

i. Microdata T2 ii. Second release (R2) 

Table 30 : Second Release for the Value-association Attack 

 

4.2.3 Correspondence Attack 

In dynamic data release, even if released data met the anonymization requirement; an 

adversary may focus on the groups’ relation and correspondence between released data. 

Possible scenario as presented in Table 31 and Table 32: an adversary may know that Jane is 

in R1 and R2. Therefore in R1, Jane may has ‹a, a, b› as sensitive values, while in R2 she 

may has ‹b, b, a›. This allow adversary to eliminate t1 or t2, also to eliminate r3 or r4. As 

result Jane has probability ½ to has a (or b) as SA.  
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Without delaying tuples or inserting counterfeit tuples, [57] work presented an 

example of correspondence attack. In addition, it presents BCF-anonymity method as a new 

generalization method secured from correspondence attack. However, [57] work concerns 

only in the tuple insertion scenario. It doesn’t provide a solution for new releases with 

updated tuple.  

[61] Work mentioned a possible approach to anonymize only new tuples for new 

releases. In addition it also declared such approach will cause a low quality data. [61] work 

proposes incremental anonymization techniques for insertion scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 32: An anonymized data for R2 in the Correspondence Attack 

 

 

TID 

QI 

SA 

Age Gender 

t1 35 * a 

t2 35 * a 

t3 35 * b 

Table 31 : An  anonymized data for R1 in the Correspondence Attack 

TID 

QI 

SA 

Age Gender 

r1 [20-40] M a 

r2 [20-40] M a 

r3 [20-40] F b 

r4 [20-40] F b 

r5 [20-40] F a 

r6 [20-40] M b 
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4.2.4 Value-equivalence Attack 

The m-invariance model [58] provides protection against value-association attack. It 

keeps the same sensitive values for each group while changes the QI tuples.  A serious 

privacy breach may appear if an adversary considers changes in QI tuples.  Table 33 

represents a microdata and anonymized data for first release R1 at time T1. Table 34 presents 

an updated microdata, where 3 tuples from Table 33 deleted and 4 new tuples added. Table 

34 (b) presents a 2-diversity anonymized data.  

If an adversary knows that Bob is in the first group in all releases R1 and R2, also 

knows that Ken voted by (b) then the adversary will reveal all votes for all participants in the 

first group. Furthermore if Bob is an adversary then he will reveal all other privacy this 

known as value-association attack.  

 

 

  (QI)  SA) 

TID Age Zip code I1 

Bob 20 3000 a 

Ken 25 3500 b 

Sam 30 6500 a 

Jane 35 4500 b 

Linda 40 5500 a 

Alice 45 6000 c 

(a) Microdata T1 

 

  (QI)  SA) 

TID Age Zip code I1 

Bob [20-25] [3000-3500] a 

Ken [20-25] [3000-3500] b 

Sam [30-35] [4500-6500] a 

Jane [30-35] [4500-6500] b 

Linda [40-45] [5500-6000] a 

Alice [40-45] [5500-6000] c 

 (b) Anonymized data at R1 

Table 33 : 2-diversity anonymization 
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  QI  SA 

TID Age Zip code I1 

Bob 20 3000 a 

Sam 30 6500 a 

Alice 45 6000 c 

Mandy 50 5000 b 

David 40 5000 a 

Tom 55 6500 c 

Carol 45 5000 a 

(a) Microdata T2 

 

  QI SA 

TID Age Zip code I1 

Bob [20-50] [3000-6000] a 

Alice [20-50] [3000-6000] c 

Sam [30-50] [5000-6500] a 

Mandy [30-50] [5000-6500] b 

David [40-60] [5000-6500] a 

Tom [40-60] [5000-6500] c 

Carol [40-60] [5000-6500] a 

 (b) Anonymized data at R2 

Table 34 : A naive 2-diversity anonymized data at R2 

 

 

The m-invariance model provides a solution in Table 35, m-invariance preserves same 

signature for the sensitive attribute values and uses a counterfeit tuples in order to keep it. In 

Table 35 (b) there are 4 groups, comparing the first group G1 with the same one in Table 33 

(b) it has the same sensitive values. In G2 there is no new tuple with sensitive value b, 

therefore a counterfeit value c1 has been used.  However if an adversary considers the 

changes in G1 for R1 and R2, He/she will notice from R1 that Bob and Ken voted by a and b, 

while from R2 Bob and Mandy voted by a and b, thus Kan and Mandy had same vote. This 

type of attack known as value-equivalence attack [72]. 

 

 

 

 



50 

 

 

  QI  SA 

TID Age Zip code I1 

Bob 20 3000 a 

Sam 30 6500 a 

Alice 45 6000 c 

Mandy 50 5000 b 

David 40 5000 a 

Tom 55 6500 c 

Carol 45 5000 a 

 

(c) Microdata T2 

 

  QI SA 

TID Age Zip code I1 

Bob [20-50] [3000-5000] a 

Mandy [20-50] [3000-5000] b 

Sam [30-40] [5000-6500] a 

c1 [30-40] [5000-6500] b 

Alice [40-50] [5000-6000] c 

David [40-50] [5000-6000] a 

Tom [40-60] [5000-6500] c 

Carol [40-60] [5000-6500] a 

 (d) Anonymized data at R2 

Table 35 : 2-invariance anonymized data at R2 

 

 He et al. model [72] presents value-equivalence attack. In addition it provides a graph-

based technique based on m-invariance model to protect sequential data releases against both 

value-association and value-equivalence attacks. Table 36 present three releases for 

microdata using He et al. model. It published same signatures in one bucket.  
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TID 

Bob 

 QI  SA 

[20-35] [3000-6500] a 

Ken [20-35] [3000-6500] b 

Sam [20-35] [3000-6500] a 

Jane [20-35] [3000-6500] b 

 
Linda [40-45] [5500-6000] a 

Alice [40-45] [5500-6000] c 

c1 [40-45] [5500-6000] a 

c2 [40-45] [5500-6000] c 

(a) Anonymized data at R1 

 

TID 

Bob 

 QI SA 

[20-50] [3000-5000] a 

Mandy [20-50] [3000-5000] b 

Sam [30-40] [5000-6500] a 

c3 [30-40] [5000-6500] b 

 
Alice [40-50] [5000-6000] c 

David [40-50] [5000-6000] a 

Tom [40-60] [5000-6500] c 

Carol [40-60] [5000-6500] a 

 (b) Anonymized data at R2 

 

TID QI SA 

Bob [20-50] [3000-5000] a 

Olga [20-50] [3000-5000] b 

Sam [30-40] [5000-6500] a 

Nic [30-40] [5000-6500] b 

 
Tom [40-50] [5000-6000] c 

Carol [40-50] [5000-6000] a 

c4 [40-60] [5000-6500] c 

c5 [40-60] [5000-6500] a 

(c) Anonymized data at R3 

 

Table 36 : 2-invariance, 2-value equivalence anonymized data 
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4.2.5 Tuple-equivalence Attack 

 

Table 36 represents an example of the most recent work in sequential releases 

problem. m-invariance [58] and He et al. [72] models provide solutions for value-association 

attack and value-equivalence attack respectively. The adversary scenario has been assumed 

that an adversary knows that a certain participant presents in two or more releases.  

Although these models successfully preserve data against for the known attacks 

discussed in  4.2, we observe that there is a new possible attack threatens the anonymized 

data; we call it Tuple-equivalence attack. An adversary may know that certain participants in 

a release will vote for same party. This background knowledge will breach privacy for 

participants in the following releases. For example, in Table 36 there are four tuples in the 

first group in each release, in R1 ‹Bob, Ken, Sam, Jane›, in R2 two tuples deleted and two 

new tuples added to become ‹Bob, Mandy, Sam, c3›, in R3 two tuples deleted and two new 

tuples added to become ‹Bob, Olga, Sam, Nic›. Let the adversary knows that ‹Ken, Jane› will 

vote by same SA value. Even if the adversary doesn’t know that they have voted by a or b, 

s/he can compare first group in R1, R2 and R3 and learns that ‹Mandy, c3› in R2 have voted 

by same value that ‹Ken, Jane› in R1 and ‹Olga, Nic› in R3 voted. Therefore the adversary 

will reveals all sensitive values if he/she knows only one sensitive value in any release. 
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4.3 ρ-different Approach 

The dynamic data releases occur when dataset holder needs to publish updated view 

for same dataset, also when dataset holder publishes dataset after certain time another dataset 

holder publishes an updated version for same or part of data participants. For example, 

dataset holder published data for an issue 1 (R1), another issue 2 needed to be published – by 

same dataset holder or other one- therefore dataset holder makes a new release (R2). These 

releases may differ with quasi-identifier attributes /sensitive attributes or/and with period of 

time. The first release R1 released at time stamped time1. The second release R2 will be 

released at time stamped time2, and so on so forth, where time1<time2. Some tuples 

appeared in R1 will be removed in R2 also new tuples will be added to R2.In addition some 

values in R1 will be updated and appear in R2. When anonymizing R2 we cannot modify R1.  

As mentioned in the introduction of chapter  4, recent researches on data 

anonymization focus on static datasets, which perform one-time release and did not support 

republication of updated data. In real datasets, there are many scenarios where dynamic 

datasets with multiple releases are published. For example, public opinions polling deal with 

multiple issues in a different timestamp. Hospitals may need to reveal data periodically to 

present the diseases changes for research purposes. An anonymization model must consider 

correlations between updated values. Many dynamic data studies consider only tuples 

insertion and deletion operations and did not offer value update operation (see section  4.2). 

Few works addressed the update operation but did not take in account the correlations 

between released data. To best of our knowledge there is no work consider the correlation 

between sensitive values.  

In this work, we identify the privacy problem regarding dynamic dataset publishing 

and propose a new probabilistic privacy model ρ-different, specifically defined on datasets 

with continually updated attributes’ values. We also present a heuristic anonymization 

technique to enforce p-different.  

An adversary may combine released datasets to breach participants’ privacy. He/she 

may compare or link tuples across released tables to identify a specific participant or to raise 

the likelihood for a certain participant with a certain sensitive value.  We illustrate these 

threats through the following example. 

A hospital periodically releases patient’s diagnosis data to public in order to allow 

medical researchers to find valuable data. Moreover, the hospital publishes the correlation 

information between all diseases such as the following:  
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P(Deafness | Rubella) 80% 

P(Deafness | Meningitis) 70% 

P(Migraine | Meniere) 50% 

P(Fever | Diarrhea) 70% 

P(Fever |Sore Throat)  50% 

P(Diarrhea| Gastrointestinal Infections)  50% 

P(Aids | Aids) 100% 

P(Cancer | Cancer) 100% 

Table 37 : Example of diseases correlations (C) 

 

P(Deafness | Rubella), 80%, which means that with 80% likelihood Rubella disease, 

will cause Deafness disease. P(Aids |Aids) with 100% likelihood means that Aids disease 

recognized as permanent diseases. 

In the following table there are two releases R1and R2 which represent anonymized 

version of dataset T1 and dataset T2 respectively. Ken’s tuple was deleted in the second 

dataset T2 and Frank’s tuple was inserted. The sensitive values for Bob and Linda were 

updated with new values. 

 

TID QI(Age) SA1 

Alice [20-45] Aids1 

Bob [20-45] Diarrhea 

Linda [20-45] GI 

Ken [20-45] Fever 
 

TID QI(Age) SA2 

Alice [20-45] Aids2 

Bob [20-45] Fever 

Linda [20-45] Diarrhea 

Frank [20-45] Cancer 
 

First release (R1) Second release (R2) 
Table 38 : Two datasets releases 

 

R1 represent one group with 4 sensitive values. An adversary can infer that the 

probability for each sensitive value in R1 is 0.25. However s/he may use the correlations 

between sensitive values as described in Table 37 to calculate the probability for each 

sensitive value in R2. For instance the probability that any participant in R2 got Aids
2
 is 

0.366. This can be calculated as follows: 
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 The correlation probability X  Y can be expressed as Conditional probability Pr(Y|X), 

where X is a sensitive value in the previous release R1 and the Y is a sensitive value in R2. 

The Joint probability for dependent values can be calculated using the following equation:   

Pr YX = 𝑃𝑟 𝑌 𝑋 . 𝑃(𝑋) 

While for independent values can be expressed as: 

Pr YX = Pr⁡(𝑌). 𝑃(𝑋) 

Then we need to calculate all combination of values in the two groups. It’s clear that the 

probabilities of inferring sensitive values in the new release have been affected by the 

correlations between these sensitive values. The probability of Aids disease rose. To protect 

participant’s privacy, we would like the probability of linking a sensitive attribute to a certain 

participant in one or more data releases to be at most ρ. 

We assume the following adversary model in the case of public opinions scenario: 

 The adversary has access to an external dataset P that contains EI and QI attributes.  

 The adversary may know R1, R2, and correlations (C) between sensitive values in R1 

and sensitive values in R2. 
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Italic letters: tuples will be removed in R2, underline letters: tuples will be in both releases   

Bold letters: tuple will be added in R2 

Consider a hospital that releases medical data for researchers’ project every six months. The 

hospital tried to preserve patients’ data. Table 39 depicts the microdata T1 and its first 

anonymized release R1. R1 guarantee 2-diversity therefore, an adversary cannot identify any 

patient with probability more than ½.  Table 39 (iii) represents the correlations between 

sensitive values from R1 and R2, where g(R1)g(R2) 100% means that 100% likelihood 

that g(R2) occurs knowing that g(R1) has occurred. 

 QI  SA 

ID Age Zip I1 

t1 21 12k d 

t2 22 14k b 

t3 24 18k f 

t4 23 25k g 

t5 41 20k f 

t6 36 27k g 

t7 37 33k d 

t8 40 35k f 

t9 43 26k g 

t10 52 33k d 

t11 56 34k g 
 

  QI  SA 

ID GID Age Zip I1 

t1 1 [21-22] [12k, 14k] d 

t2 1 [21-22] [12k, 14k] b 

t3 2 [23-24] [18k, 25k] f 

t4 2 [23-24] [18k, 25k] g 

t5 3 [36-41] [20k, 27k] f 

t6 3 [36-41] [20k, 27k] g 

t7 4 [37-43] [26k, 35k] d 

t8 4 [37-43] [26k, 35k] f 

t9 4 [37-43] [26k, 35k] g 

t10 5 [52-56] [33k, 34k] d 

t11 5 [52-56] [33k, 34k] c 
 

 

         P(g| g) 100% 

 

         P(d| d) 50% 

 

         P(c| c) 100% 

 

         P(m| m) 50% 

i. Microdata (T1) ii. First Release (R1) iii. Sensitive values 

correlations (C) 

Table 39 : 2-diversity anonymized data at R1 

 

The microdata at second released has been updated as follows, all underlined IDs 

‹t1,t4,t5,t7,t9 and t11› will stay in R2, while all italicized IDs ‹t2,t3,t6,t8 and t10› will be 

deleted in R2, moreover tuples ‹n1, n2, n3, n4 and n5› with bold letters and start with n 

character will be added to R2.  
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 QI  SA 

ID Age Zip I2 

t1 21 12k d 

t4 23 25k g 

n1 25 21k f 

t7 37 33k d 

t9 43 26k g 

t5 41 20k f 

n2 46 30k g 

n3 54 31k d 

t11 56 34k g 

n4 60 44k g 

n5 65 36k f 
 

  QI  SA  Pr 

ID GID Age Zip I2  % 

t1 1 [21-22] [12k-14k] d  50 

c1 1 [21-22] [12k-14k] b  50 

n1 2 [23-25] [21k-25k] f  25 

t4 2 [23-25] [21k-25k] g  75 

t7 3 [37-43] [26k-33k] d  27 

c2 3 [37-43] [26k-33k] f  20 

t9 3 [37-43] [26k-33k] g  53 

t5 4 [41-56] [31k-34k] f  25 

n2 4 [41-56] [31k-34k] g  75 

n3 5 [54-56] [31k-34k] d  25 

t11 5 [54-56] [31k-34k] c  75 

n4 6 [60-65] [36k-44k] g  50 

n5 6 [60-65] [36k-44k] f  50 
 

i. Microdata  (T2) ii. Second Release (R2) (2-invariance) 

Table 40 : 2-invariance anonymized data at R2 

 

Table 40 depicts 2-invariance anonymization for T2. It keeps same signature for the 

sensitive values. For that it uses a counterfeit tuples in order to keep it. EC1
1 is the first 

Equivalence Class in R1 which has t1 and t2 tuples with d and b as sensitive values.  EC2
1 is 

the first Equivalence Class in R2 which has t1 and c1 tuple with d and b as sensitive values. 

Therefore for eachECj
i, the j value represent the release number and the i value represent the 

equivalence class number within each release. 

  However the requirement of m-invariance model met in Table 40 (ii), it still violate 

patients privacy. The last column of Table 40 (Pr) represents the probability of each sensitive 

value based on the correlations between sensitive values. It shows that in EC2
2, EC2

3, EC2
4 and 

EC2
5 the calculated probabilities are more than the allowed one 50%. Therefore an adversary 

can identify that t4 in EC2
2 has g disease with probability 75%. 

The update operation and the correlations between sensitive values allow the 

adversary to enhance his likelihood to identify a certain participants. Furthermore, it shows 

the in effectiveness of existing solutions in privacy preserving.   



58 

 

Definition 1: We say a released table T* is ρ-different if for all individual P(individual has 

any specific sensitive value| F, C) < p where F is the frequency(priori belief) and C is the 

correlation information(likelihood).  

Table 41 depicts ρ-different approach, which considers tuples’ deletion and insertion 

operations as well as value update operation. What's more, ρ-different considers the full range 

of correlations between sensitive values. In Table 41 each group constructed based on the 

conditional probabilities caused from previous release. For instance EC2
2 has two tuples t4 

and c1 with two sensitive values g and c based on the correlations between sensitive values 

we have P(g| g) = 100% and P(c| c) = 100%. The probabilities for sensitive values in this 

group will be 50% which met the ρ-different requirement. The adversary will not be able to 

identify any participant with probability more than 50%. 

  QI SA  Pr 

ID GID Age Zip I2  % 

t1 1 [21-25] [12k-25k] d  50 

n1 1 [21-25] [12k-25k] f  50 

c1 2 [23-24] [21k-22k] c  50 

t4 2 [23-24] [21k-22k] g  50 

t7 3 [37-38] [33k-34k] d  50 

c3 3 [37-38] [33k-34k] m  50 

c2 4 [43-44] [26k-27k] c  50 

t9 4 [43-44] [26k-27k] g  50 

t5 5 [41-56] [31k-34k] f  50 

n3 5 [54-56] [31k-34k] d  50 

n2 6 [41-56] [31k-34k] g  50 

t11 6 [54-56] [31k-34k] c  50 

n4 7 [60-65] [36k-44k] g  50 

n5 7 [60-65] [36k-44k] f  50 
 

i. Second Release (R2) (2-different) 

Table 41 : 2-different anonymized data at R2 

 

Hilbert curve (see  5.5.1) allow us to map Quasi-identifiers attributes to one dimension.  

Figure 5 represent the mapping to T1 and T2 datasets. Hilbert curve preserves the data points’ 

locality, which allows us to join closed tuples together.  
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5. MSA DIVERSITY ALGORITHM 

5.1 Adversary Model and Privacy Standard 

We assume that the private data is in the form of a table T (see Table 4). Each tuple in 

T is related to an individual and the table contains a set of attributes called quasi-identifiers 

(QI) and another set of attributes called sensitive attributes. QI attributes are attributes that, 

when used together, can be used to identify individual users. SA attributes contain 

individual’s opinions in our case.  

We also assume there is no unique identifiers (UI) in T such as SSN, name. We assume 

the following adversary model in the case of public opinions scenario: 

1) The adversary has access to an external dataset P (see Table 3) that contains UI and 

QI attributes. 

2) The adversary may know non-membership knowledge on some individuals. 

Non-membership knowledge is defined as follows:  

Definition 2: (non-membership information) For a group G of individuals, we say an 

adversary has one bit of non-membership information if the adversary knows that an 

individual u in G does not vote for opinion o on some issue i for exactly one u, o, and i. The 

adversary can have many bits of non-membership information on the same individual or on 

up to i different individuals. 

Our adversary model is realistic for public opinion datasets for the following reasons: 

It has been shown in [13] that the external tables as in table P are available in the form of 

public datasets (such as voters datasets in US). Besides, the QI information for a specific 

individual can easily be known by an adversary that has close relations with the individual 

(such as friends and family). The non-membership information mentioned in  1.1 can be 

gained from two sources. As the public opinion datasets are open to public, the adversary 

herself might be one of the voters or might collude with some other voters to learn their 

opinions. As we shall see shortly, due to the nature of anonymization, this creates non-

membership knowledge on some groups of people. The non-membership information might 

also come from close relationships. Note that, given only background knowledge, the data 

holder cannot release T as it is even though T does not contain any UI attributes. Otherwise, 

an adversary knowing P and seeing T, can join the two tables to discover that , say Bob, votes 
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for a and w on issues I1 and I2. Thus, the released data has to ensure that such disclosure is 

limited probabilistically. The following definition highlights one of our privacy requirements:  

Definition 3: (-pdiversity) We say a released table T* is -pdiverse if and only if given T* 

and P, the probability that any individual t in T can be mapped to any opinion o on any issue i 

is bounded by 1/. The following definition makes it easy to check if a given anonymization 

is -pdiversity.  

Definition 4: (Equivalence Class) The set of all tuples in a table T* containing identical 

values of QI.  

For example, in Table 42, t1, t2, and t3 form an equivalence class as they have the same age 

and zip code. Similarly, t6, t8, and t9 form another equivalence class. 

 (QI) (SA) 

Tuple ID Age Zip code I1 I2 

     
t1 [20-25] [3000-4000] a w 

t2 [20-25] [3000-4000] b z 

t3 [20-25] [3000-4000] d x 

     
t6 [40-55] [5000-6500] a y 

t8 [40-55] [5000-6500] b x 

t9 [40-55] [5000-6500] c w 

     
t4 [30-45] [4500-6500] a x 

t5 [30-45] [4500-6500] b y 

t7 [30-45] [4500-6500] c z 

Table 42 : MSA-diversity released data 𝐓𝟐
∗  

 

Theorem 1: An anonymization T* of T is -pdiversity if and only if for every equivalence set 

in T* and for every issue; 
the  number  of  the  most  frequent  opinion

the  size  of  the  equivelance  class  
<

1


 .  

Note that in Table 42, T2
∗ is 3-pdiverse anonymization of T given P. For example, an 

adversary knowing that Linda (t6) is in the anonymization can map Linda to the second 
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equivalence class. The probability that Linda votes for any opinion on any issue is bounded 

by 1/3. In Table 22, T1
∗ is 2-pdiverse; the probability that Linda votes for c is 1/2. 

We now formally define MSA-diversity for non-membership attacks: 

Definition 5: (MSA-diversity) We say a released table T* is -mdiverse if and only if T* is 

(-i)-pdiverse under i bits of non-membership knowledge for i >= 0. 

Surely, MSA diversity is a harder problem, especially when one faces multiple issues 

in the dataset. As an example, in Table 2; even if the dataset is 3-pdiverse, it violates 3-

mdiversity. If the adversary knows that Amy does not vote for c for issue 1, the 

anonymization would still satisfy 2-pdiversity with respect to the same issue. However, the 

anonymization would violate 2-pdiversity with respect to issue 2. On the other hand, in Table 

42, Table T2
∗ is 3-mdiverse anonymization of T. Even if the adversary knows that Linda does 

not vote for c, the probability that she votes for any opinion on any issue is still bounded by 

1/2. 
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As an example, consider Table 4 and Table 42 . Figure 6 shows a 2D representation of 

table T, where the x-dimension is Zipcode And y-dimension is Age and tuples are placed 

according to their Age and zip-codes. As we shall see in chapter  5, our approach creates the 

anonymization T2
∗ . In Figure 6, dashed rectangles represent the grouping in T2

∗. The groups 

are enclosed by three rectangles and the corresponding anonymization is more utilized with 

respect to the metrics mentioned in chapter  2.6. 

5.2 Problem Formulation 

Given a private table T with quasi-identifiers and sensitive issues, and a privacy 

parameter , find an anonymization T* of T, such that  

 T* is -mdiverse with respect to the adversary given in this section. 

 T* minimizes the information cost metric. 

5.3 Data preprocessing 

Data preprocessing is an important step to the dataset to make it more suitable for data 

mining and getting more efficient results. Datasets may be noisy, incomplete, and 

inconsistent due to their huge size. Bad or low data quality will lead to poor results.  Many 

data preprocessing techniques can be used like: data cleaning, data transformation, attribute 

construction, data reduction, data discretization and/or data linkage. In our experiments we 

have used data cleaning to remove noisy data specially outliers tuples and data reduction to 

reduce the data size. 

5.4 Checking for MSA Diversity 

Checking if a given group of tuples (e.g., equivalence class) satisfies MSA Diversity 

is a sub-problem in our algorithm. Unfortunately, checking an arbitrary group for MSA 

diversity is not a trivial task. Instead, we aim to create a subfamily of groups that are proven 

to be MSA diverse. Such groups satisfy the ’SA-distinct’ property which is defined as 

follows:  

Definition 6: (SA-distinct Group) A given group of tuples G is SA-distinct group if and only 

if for any pair of tuples t1  G and t2  G and for any issue i, t1[i] ≠ t2[i]. For a given group 

of tuples, assuming we have two issues i1 and i2, one can plot the distribution of sensitive 

opinions in a group G over a matrix. The dimension i of the matrix represents the issue i. Any 

tuple t  G is drawn on the matrix index (q, r) if t[i1] = q and t[i2] = r. The group G is SA-

distinct if every row and column of the matrix contains at most one tuple. As an example, in 
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Figure 10(a), we place the first three tuples t1, t2, and t3 on the matrix. This group is SA-

distinct as no row or column contains more than one tuple. However the group t5, t6, t8 and 

t9 is not SA-distinct as can be seen in Figure 10(b). 

 

Theorem 2: SA-distinct group of at least  elements satisfies -mdiversity.  

 

5.5 Generalization Algorithm 

We now propose an efficient heuristic algorithm for the MSA diversity problem. Our 

algorithm has two phases:  

 Dataset grouping: T is partitioned into a set of disjoint groups such that each group is 

SA-distinct, thus -mdiverse. 

 Generalization: The groups are generalized or anatomized. 

 

Figure 7 : Hilbert curve mapping 
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5.5.1 Mapping multi-dimensional QI to one-dimension 

MSA- diversity model works in a top-down manner. QI attributes needed to be 

arranged in a way that similar tuples with respect to QI stay closed to each other. 

Constructing equivalence classes from similar QI and diverse SA will produce a high-quality 

released data. 

QI have many attributes therefore a mechanism needed to map multidimensional 

attributes to one dimension, moreover this mechanism should preserving locality of the data 

points. Let represent tuples as data points in a 2D space (for Example Figure 7). One way of 

mapping the multi-dimensional QI to one-dimension is space-filling curve. It works like a 

single path passes over all data points (tuples).  Many types of space-filling curves have been 

discussed in literature. The main diffidence between it is the way of representing the one-

dimension space. Figure 8 shows three different kinds of space-filling curves. 

  
 

(a) Peano curve[76] (b) Z-order curve[77] (c) Sierpinski curve[78] 

Figure 8 : Different types of space-filling curves 

 

The Peano curve is the first space-filling curve technique [76].The mapping is based 

on the ternary subdivision. Its structure is shown in Figure 8(a) The Z-order curve technique 

[77] maps quadrants recursively. The resulting order is similar to results from depth-first 

traversal of a quad-tree.  Therefore the Z-ordering can be used to construct high dimensional 

data structures. Its structure is shown in Figure 8(b). The Sierpinski curve is based on a 

triangular subdivision. Its geometric construction is shown in Figure 8(c). The Hilbert curve 

is a space filling curve that visits every data point in a square grid. It makes better use of the 

harmony of neighboring data points. [79] and [80] show that Hilbert curve outperforms other 

techniques by minimizing the number of clusters for 2×2 range queries. It provides the 

minimum number of clusters. Moreover it preserves the data points’ locality. Therefore we 

deployed Hilbert curve in our work.  
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The pseudo code for our heuristic algorithm is given in Figure 13. The algorithm 

accepts two parameters: the microdata T and the privacy parameter , obtains QI groups for 

publication. The algorithm first maps the multi-dimensional QI attributes to a single 

dimension using Hilbert space filling curve as shown in Figure 7, and sorts the records 

according to their QI value as shown in Table 43 (lines 1-3). Then in each iteration, the 

algorithm constructs SA-distinct groups of at least  tuples heuristically. Starting with the 

first  tuples; it checks if it’s possible to construct an SA-distinct group. If it’s possible; 

proceeds to the next QI group. Else if there are extra tuples which cannot be added to any 

group, the algorithm borrows some tuples from the next tuple in order to construct a new 

partition. The remaining ungrouped tuples are grouped together.  

 (QI) (SA) 

Tuple ID 1D (I1) (I2) 

t1 1 a w 

t2 3 b z 

t3 8 d x 

t5 11 b y 

t6 34 a y 

t8 37 b x 

t9 43 c w 

t7 46 c z 

t4 50 a x 

 

Table 43 : Microdata with one dimension QI 

 

From Table 43 we have two issues (I1 and I2) and for each issue there are 4 distinct 

opinions. Figure 9 depicts the 3D scatter plot for Table 43. For the first three tuples, we can 

easily construct a SA-distinct group which by definition 2 satisfies 3-mdiversity. This can be 

seen from the matrix in Figure 10(a), as t1, t2 and t3 are in different rows and columns, thus 

G1= ‹t1, t2, t3› becomes the first group. As shown in Figure 10(b) for t5, t6, and t8; we can’t 

construct a SA-distinct group as t5[I2] = t6[I2] therefore we remove t5 and borrow t9 in order 

to construct another SA-distinct group G2= ‹t6, t8, t9›. Moreover, t5 still does not belong to 

any group. By grouping the remaining tuples we construct the last SA-distinct group as G3= 

‹t5, t7, t4›. The three resulting groups G1, G2, and G3. 
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Figure 9 : 3D scatter plot for Table 43 

 

 

Figure 10 : Groups construction process 
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Figure 10 represents the groups’ construction process. To construct an equivalence 

class which respect -pdiversity, we need to represent the SA values in a matrix like Figure 

10(a). Next MSA-diversity algorithm checks the -pdiversity condition.  

A permutation matrix is a square binary matrix. It has a property that all its entries are 

0’s and 1’s, where each row and each column has a single 1.  

 

1 0 0  1 0 0  0 1 0 

0 1 0  0 0 1  1 0 0 

0 0 1  0 1 0  0 0 1 

           

0 1 0  0 0 1  0 0 1 

0 0 1  1 0 0  0 1 0 

1 0 0  0 1 0  1 0 0 

Figure 11 : Permutation matrices for 3 elements 

 

Figure 11 depicts 6 different matrices for 3 elements. The number of permutations matrices 

of n distinct elements is equals the n factorial. Therefore in Figure 11 example there are six 

different matrices. 

*   

 *  

  * 

Figure 12 : One matrix of Costas arrays for 3 elements 

 

Costas array [81-83] is a special permutation matrix. For n elements it can constructs 

n! matrices having same property of permutation matrix. Costas arrays arise in sonar, radar 

and cryptography applications. In our model, we have a set of sensitive attribute values and 

each row/column represent a distinct SA value. The key question is to find maximum number 

of Costas arrays.  



68 

 

As shown in dataset of Table 4 and its generalization data in Table 42, there are 3 different 

groups have been constructed heuristically based on the general idea of Costas array. Figure 

10 depicts the construction process.   
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5.5.2 The MSA-diversity Heuristic Algorithm 

Algorithm 1 Heuristic algorithm 

Require: microdata T, value of   ; 

Ensure: output T* satisfies probabilistic -m diversity. 

1: Map the MD QI to 1D using Hilbert space filling curve 

2: Sort the records according to their 1D QI value 

3: P = empty set, F = empty set 

 

Traverse( 

4: for ( i=0, i<k, i++ ) {  /* where k is the number of distinct QI values */ 

5:      Gi = QIi tuples 

6:       j = 0 

7: Group: 

8:      Grouping(Gi, Pi, , j) 

9:      if ( |Fij| = 0) {  /* no groups in Pi */ 

10:          Gi= Gi + Gi+1   /*merge the current QI values with the next one */ 

11:          i = i +1 

12:         Go to Group 

13:      } 

14:  } 

 

Grouping(G, P, , j ) 

15: while (!Satisfy(P, ) and |G| > 0) { 

16:   maxitems(x): Select value x which has max number of items in its row (r) and column 

(c). 

17:    G’=G\‹r,c› 

18:    Add x to P 

19:    Grouping(G’, P, , i ) 

20: }  

21: if (Satisfy(P, )) { 

22:    Fij = P /* to save the final groups for each QI*/ 

23:    j =  j+1 

24:   G= G\P 

25:   P = Ø 

26: if (Satisfy(G, )){ 

27:       Grouping(G, P, , i ) 

28:       } 

29: } 

 

Satisfy(P, ) 

30: if  |P| ≥  

31:     return true 

32: else 

33:    return false 

Figure 13 : Pseudo code for our heuristic algorithm 
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6. EXPERIMENTAL RESULTS 

In this chapter, we compare our model with the existing state-of-the-art. The 

Algorithm is implemented in C# and the experiments were run on a Dell 2.4GHz machine 

with 2GB of memory, running windows 7.  

We used MovieLens dataset obtained from the GroupLens research lab1. It contains 

10000054 ratings applied to 10681 movies by 71567 users. Ratings for each movie vary from 

1 to 7. We used three quasi-identifier attributes Age, Gender and Zip code.  We picked seven 

movies from the dataset that are the most frequently rated among all movies. We marked the 

movie ratings as sensitive (movies can be thought as issues and actual ratings as opinions). In 

our experiment we chose a sub set contains users will 7 ratings for all of them, therefore our 

data set become 684 users. We used mainly discernibility metric (DM), loss metric (LM) and 

average relative error (AvRE) as information loss metric. We evaluate data accuracy using 

aggregate query answering as follows. First, we compute the corresponding generalized 

groups [24, 58, 84]. Second, we process a workload of 684 queries one query for each tuple- 

on the resulting tables. The effectiveness of generalization is computed by the average 

relative error. 

 

 

Figure 14 : LM, Information loss with varying  and d 

                                                 
1 URL: http://www.grouplens.org  

http://www.grouplens.org/node/73
http://www.grouplens.org/
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Figure 15 : DM, Information loss with varying  and d 

 

6.1 Utility - varying  and d 

Figure 14 depicts the LM for various  and d (number of ratings). Recall that a 0 value 

of LM means no information loss. Figure 15 reports DM. As can be seen from the figures, an 

increase in the privacy parameter  results in more information loss due to the privacy/utility 

tradeoff. Similarly higher numbers of ratings have similar effect due to curse of 

dimensionality. Compared to the parameter d, utility is more sensitive to the changes in . For 

very small and very large , the number of ratings has little effect of the utility. 

6.2 Comparison with Previous Work 

We now compare our approach with the state-of-the-art anonymization algorithm for 

multiple sensitive attributes by Gal’s et al. For Gal’s et al model, we assume k=. We would 

like to emphasize that in terms of probability of disclosure, the -diversity definition adapted 

by Gal et al is weaker than -mdiversity proposed in  4.2.5. At the same privacy level  and no 

non-membership information, -diversity by Gal et al ensures the number of distinct sensitive 

values should be smaller than , thus does not guarantee a bound on the probability of 

disclosure. -mdiversity, on the other hand, bounds the probability by 1/. Moreover, MSA 

diversity algorithm ensures both privacy metrics. Thus, in our domain, MSA-diversity 

algorithm offers higher levels of privacy for all . We experimentally demonstrate 

probabilities of disclosure for both algorithms in Section  6.2.3. 
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Figure 16 : DM comparison, varying  and d=2 

 

 

Figure 17 : Query accuracy with varying  and d=2 

 

6.2.1 Utility comparison - varying  

For d=2 and d=5, we depict utility metric results in Figure 16and Figure 17. Query 

accuracy results given in Figure 18 and Figure 19 show a similar behavior. For low  values 

(which we believe to be the most practical privacy parameters as utility drops fast with high  

values), MSA-diversity method results in less information loss. As mentioned in  retpahC5, 

Hilbert curve-based generalizations are more flexible than partition-based approaches and can 

achieve higher levels of utility. The reason why we do not have the same relative 

performance for larger  is because the -diversity definition adapted by Gal et al is less 

restrictive. 
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Figure 18 : DM comparison, varying  and d=5 

 

 

Figure 19 : Query accuracy with varying  and d=5 

 

6.2.2 Utility comparison - varying d 

Figure 20 and Figure 21 depict the utility comparison of two approaches. As also 

shown earlier, The MSA-diversity algorithm, when compared to Gal et al, creates better 

utilized anonymizations for  = 2 but performs worse for  = 5. We also observe that the 

utility performance of both algorithms is not very sensitive to the number of sensitive 

attributes. Figure 22 and Figure 23 showing query accuracy results support these results. 
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Figure 20 : DM, varying number of sensitive attributes and =2 

 

 

Figure 21 : Query accuracy with varying number of sensitive attributes and  = 2 
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Figure 22 : DM, varying number of sensitive attributes and  = 5 

 

 

Figure 23 : Query accuracy with varying number of sensitive attributes and  = 5 

 

6.2.3 Probability of disclosure comparison 

As mentioned earlier, work by Gal et al does not guarantee a bound on the probability 

of disclosure (e.g., the probability that an individual will be associated with an opinion). 

Figure 24 and Figure 25 show the disclosure probabilities for all tuples after applying MSA-

diversity model and Gal’s et al model, where the x-dimension represents the probability of 

disclosure and y-dimension represent the number of tuples. Figure 24 depicts the results for d 

= 2 and  = 5. MSA-diversity algorithm ensures a maximum of 0.2 probability for all non-

suppressed tuples, while Gal’s et al anonymization algorithm results in disclosures with 

probabilities that can be as high as 0.6. Similarly, in Figure 25, we show disclosure 
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probabilities for d = 5 and  = 2. The MSA-diversity algorithm ensures a maximum of 0.5 

probability for all non-suppressed tuples. However Gals et al algorithm results in disclosures 

with probabilities that can be as high as 0.86. This clearly shows that MSA-diversity 

algorithm achieving -mdiversity, provides better privacy by protecting sensitive information 

against probabilistic adversaries. 

 

 

Figure 24 : Probability of disclosure for each tuple, d=2 and  = 5 

 

 

Figure 25 : Probability of disclosure for each tuple, d=5 and =2 
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7. CONCLUSIONS  

In this thesis, new anonymization models are proposed. ρ-different is a probabilistic 

model for dynamic release data. MSA-privacy is a probabilistic definition for releasing data 

with multiple sensitive attributes. It’s an alternative model that allows accurate 

anonymization. Most well known anonymization models are designed for data with single 

sensitive attributes; these models are not applicable for data with multiple sensitive attributes. 

Adversaries can use a new attack like non-membership attack to breach individual privacy.  

Some of recent research concerns this type of attacks and provides a remedy for it. However 

they are fallen in other types of attacks such as membership attack and probabilistic attack.  

ρ-different preserve privacy for dynamic data with insertion, deletion and update 

operations. What’s more it considers all correlations between sensitive values.  

The important advantage of the MSA-diversity model is the simplicity of deploying 

the algorithm. Data holder needs only to feeds the algorithm with the data set and the privacy 

level ( value). 

ρ-different and MSA-diversity models are applicable to publish anonymized tabular 

data for any other domain. Public opinion polls problem is an example.   

For future work, ρ-different and MSA-diversity may used to solve sequential data 

release problem with multiple sensitive attributes. Where a released data has been published 

and data holder needs to publish another modified copy.  
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APPENDIX A: LIST OF ACRONYMS 

 

T Table 

G Group 

o Opinion 

MSA Multiple Sensitive Attributes 

SSA Single Sensitive Attribute 

PPDP Privacy-Preserving Data Publishing 

QI Quasi-Identifiers 

EU Explicit Identifiers 

EC Equivalence Class 

UI Unique Identifiers 

DM Discernibility Metric 

LM Information Loss Metric 

 AvRE Average Relative Error 

EMD Earth Mover’s Distance 

CODIP Complete Disjoint Projections 

PAC Political Action Committees 
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