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ABSTRACT: This paper presents and illustrates the application of an efficient Generalized
Beam Theory (GBT) semi-analytical solution procedure to determine elastic and plastic bifur-
cation loads (linear stability analysis) of stainless steel thin-walled members subjected to uniform
compression and exposed to fire. Besides global (flexural or flexural-torsional) buckling, the
proposed GBT formulation allows for cross-section deformation and therefore makes it possi-
ble to capture local and distortional buckling. The temperature effect is taken into account using
the material law for stainless steel specified in Eurocode 3 part 1-4 (CEN 2006) and Annex C
of part 1-2 (CEN 2009). For plastic buckling, the material tangent moduli are obtained using
both J2 small-strain incremental and deformation plasticity theories. For illustrative purposes, the
procedure is applied to columns with a lipped channel cross-section.

1 INTRODUCTION

Although initially more expensive than conventional carbon steel, stainless steel can be competi-
tive because of its increased fire resistance, lower maintenance needs, higher corrosion resistance,
better aesthetic appearance and lower life-cycle cost (SCI 2017). The fire behaviour of stainless
steel members has been the subject of research of recent studies (Gardner & Baddoo 2006, Ng &
Gardner 2007, Uppfeldt et al. 2008, Lopes et al. 2012). However, According to Eurocode 3, these
members should be checked using the buckling interaction formulas for carbon steel members,
which have been shown to be imprecise and even unsafe in some cases (Lopes et al. 2010). More-
over, studies concerning the behaviour of members with slender sections (Class 3 or 4 according
to Eurocode 3), susceptible to local and/or distortional buckling, are still lacking.

To increase the knowledge on the behaviour of thin-walled stainless steel structures in case of
fire, project “Fire design of stainless steel structural elements — StaSteFi” was launched in 2018
(see the acknowledgements for further details). This paper reports the first activities carried out in
the context of this project, which aimed at developing a fast and accurate tool to calculate elastic
and plastic buckling (bifurcation) loads/modes of thin-walled stainless steel columns (uniformly
compressed members) exposed to fire and undergoing global/local/distortional buckling. The tool
is based on a semi-analytical approach that relies on Generalized Beam Theory, a thin-walled
bar theory that efficiently accounts for cross-section arbitrary in-plane and out-of-plane (warp-
ing) deformation through the consideration of so-called “cross-section deformation modes” (see,
e.g., Schardt 1989, Camotim et al. 2010). The intrinsic non-linear stress-strain law of stainless
steel, including temperature effects, is taken into account using appropriate tangent elastic mod-
uli, based on both J2 (von Mises) small-strain incremental and deformation plasticity theories.
For illustrative purposes, the tool is applied to assess the elastic and plastic buckling behaviour of
thin-walled lipped channel columns made with steel grade 1.403 and subjected to fire.

The notation in this paper follows that introduced previously, which relies on a simple vec-
tor/matrix form of the equations (Gonçalves et al. 2010b, Gonçalves & Camotim 2011, 2012). A
derivative is indicated by subscript commas (e.g., f,x = ∂f/∂x), δ designates a virtual variation,
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Figure 1. Arbitrary thin-walled member geometry and local coordinate systems.

∆ is an incremental variation to the buckled state, d is a generic variation and superscripts (·)M
and (·)B are used for plate-like membrane and bending terms, respectively.

2 GBT SEMI-ANALYTICAL BIFURCATION EQUATION

2.1 Kinematics and strain

For an arbitrary thin-walled member, as shown in Figure 1, local axes for each wall are set, (x,
y, z), defining the member axis, wall mid-line and thickness directions, respectively. According
to the classic GBT kinematic description, Kirchhoff’s thin plate assumption is assumed and the
displacement vector U(x, y, z) for each wall is expressed as

U(x, y, z) =

[
Ux
Uy
Uz

]
=

(ū− zw̄)Tφ,x
(v̄ − zw̄,y)

Tφ
−zw̄Tφ

 , (1)

where ū(y), v̄(y), w̄(y) are column vectors containing the deformation mode displacement
components along x, y and z, respectively, and φ(x) is a column vector that contains the ampli-
tude functions of each deformation mode along the beam length, which constitute the problem
unknowns. The deformation mode displacement components are obtained from the so-called
“GBT cross-section analysis”, which is explained in, e.g., Gonçalves et al. 2010b, Bebiano et
al. 2018, and is implemented in the GBTUL program, freely available at www.civil.ist.utl.pt/gbt.

The non-null small strain components for each wall are grouped in vector ε, which is straight-
forwardly obtained from the displacements and reads

ε =

[
εxx
εyy
γxy

]
=

 (ū− zw̄)Tφ,xx
(v̄,y − zw̄,yy)

Tφ
(ū,y + v̄ − 2zw̄,y)

Tφ,x

 , (2)

where the terms with/without z correspond to bending/membrane deformation, respectively.
If null membrane transverse strains (εMyy = 0) are assumed, which is acceptable in most beam-

type problems, then v̄,y = 0. Furthermore, if Vlasov’s assumption is adopted (null membrane
shear strains, γMxy = 0), which is acceptable for open sections, then ū,y + v̄ = 0. These two
assumptions are essential to reduce the number of deformation modes (hence the problem DOFs)
while ensuring that accurate results are obtained in a wide range of problems.

For the calculation of bifurcation loads, the Green-Lagrange (non-linear) longitudinal strains
are required. Only the membrane component needs to be retained, which reads

Exx ≈ EMxx = εxx +
1

2

(
φT,x
(
v̄v̄T + w̄w̄T

)
φ,x + φT,xxūū

Tφ,xx
)
. (3)



In the latter equation, the term with ūūT may be discarded without significant loss of accuracy
(Gonçalves et al. 2010a). The relevant Green-Lagrange strains are therefore grouped in vector
ET = [Exx εyy γxy]

T

2.2 Stresses and constitutive laws

For the stresses, a plane stress state is assumed and the incremental constitutive relations between
the Green-Lagrange strains and second Piola-Kirchhoff stresses are written as

dS = Ct dE, (4)

where ST = [Sxx Syy Sxy] and Ct is the tangent elastoplastic constitutive matrix for the case
under consideration.

If null transverse membrane strains are assumed, the membrane and bending stresses are sepa-
rated to avoid over-stiff solutions, leading to

dSM = CM
t dEM , dSB = CB

t dEB, (5)

where CB
t = Ct, whereas CM

t is calculated for dSMyy = 0. If Vlasov’s assumption is further
enforced,CM

t is also calculated for dSMxy = 0, leading to a simple uniaxial law dSMxx = Et dE
M
xx,

where Et is the uniaxial tangent modulus.
The small-strain J2 (von Mises) theory is adopted, with associated flow rule and isotropic strain

hardening. In the following expressions, E and G are the elastic (initial) Young and shear moduli,
ν is Poisson’s ratio, Es is the secant modulus and H ′ = Et/(1− Et/E). In this case the tangent
constitutive matrix for the bending terms (plane stress) is given by (Gonçalves et al. 2010a)

Ct =

Cxxt Cxyt 0
Cyyt 0

Sym. 0 Gt,

 (6)

where the coefficients read, for the incremental (flow) theory

Cxxt =
E2 + 4EH ′

(5− 4ν)E − (ν2 − 1)4H ′ , Cyyt =
4E2 + 4EH ′

(5− 4ν)E − (ν2 − 1)4H ′ , (7)

Cxyt =
2E2 + 4νEH ′

(5− 4ν)E − (ν2 − 1)4H ′ , Gt = G (8)

and, for deformation theory,

Cxxt =
E2 + (1 + 3es)EH

′

(3es + 2− 4ν)E − (4ν2 − 3es − 1)H ′ , (9)

Cyyt =
4E2 + 4EH ′

(3es + 2− 4ν)E − (4ν2 − 3es − 1)H ′ , (10)

Cxyt =
2E2 + 4νEH ′

(3es + 2− 4ν)E − (4ν2 − 3es − 1)H ′ , Gt = Gs =
E

2ν − 1 + 3es
, (11)

where es = E/Es. For the membrane terms the same law applies unless dεMyy = 0 is assumed, in
which case dSMyy = 0, Cxxt = Et for both theories and Gt is given by G (incremental theory) or
Gs (deformation theory).

For stainless steel members subjected to fire, the material law specified in Eurocode 3 part 1-4
(CEN 2006) and Annex C of part 1-2 (CEN 2009) is adopted. In the example presented in Section
3, the cross-section thickness is smaller than 6 mm. For such small values it may be assumed
that the temperature is uniform over the member volume. An austenitic steel grade 1.4301 is
considered, in which case one has, for a cold-rolled strip product with t ≤ 6 mm, E = Ea = 200
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Figure 2. Uniaxial constitutive laws for the stainless steel adopted.

GPa, ν = 0.3, fy = 230 MPa, fu = 540 MPa and the uniaxial law under fire conditions reads

σ =
Ea,θε

1 + aεb
, (ε ≤ εc,θ), (12)

σ = f0.2p,θ − e+ (d/c)
√
c2 − (εu,θ − ε)2, (εc,θ < ε ≤ εu,θ), (13)

where θ is the temperature, Ea,θ = EakE,θ, f0.2p,θ = fyk0.2p,θ, and the coefficients ki and a-e, as
well as the tangent modulus Et, are given in Annex C of EC3 part 1-2 (CEN 2009), as a function
of the temperature θ (their values and expressions are not reproduced here due to lack of space).
For illustrative purposes, Figure 2 shows the uniaxial law for the stainless steel grade considered,
for temperatures ranging between 20 and 1000 oC.

2.3 Bifurcation equation

In a linearised bifurcation analysis, the fundamental path is determined assuming geometric lin-
earity and the bifurcation equation corresponds to an “initial stress” problem, obtained from the
linearization of the virtual work equation in the direction of an incremental configuration change,

∆ (δW (φ = 0, λ)) = 0, (14)

where λ is the loading parameter. Since the displacement vector U is a linear function of φ and
φ,x, only the internal part of the virtual work is non-null and the bifurcation equation reads∫

V

(
δεTCt∆ε+ λS̄Mxx ∆δEMxx

)
dV0 = 0, (15)

where V is the beam initial volume, S̄Mxx are the membrane longitudinal normal stresses for λ = 1
and the first term must be separated into membrane and bending terms if null transverse membrane
strains are assumed, as previously discussed.

In the following derivations, null transverse membrane strains/stresses are assumed. The inte-
gration of Equation 15 along the cross-section leads to a standard eigenvalue problem of the
form ∫

L

[
δφ
δφ,x
δφ,xx

]T  B 0 D2

0 D1 0

DT
2 0 C

[ ∆φ
∆φ,x
∆φ,xx

]
dx+ λ

∫
L
δφT,x X ∆φ,x dx = 0, (16)
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Figure 3. Lipped channel geometry (the dimensions correspond to the wall mid-line) and shapes of the
first 12 GBT deformation modes.

where L is the member initial length and the GBT modal matrices are given by

B =

∫
S
Cyyt

t3

12w̄,yyw̄
T
,yy dy, C =

∫
S

(
Ettūū

T + Cxxt
t3

12w̄w̄
T
)
dy, (17)

D1 =

∫
S
Gt

(
t(ūy + v̄)(ū,y + v̄)T + t3

3 w̄,yw̄
T
,y

)
dy, (18)

D2 =

∫
S
Cxyt

t3

12w̄,yyw̄
T dy, X =

∫
S
S̄Mxxt(v̄v̄

T + w̄w̄T )dy, (19)

where S is the cross-section mid-line and t is the wall thickness. In these expressions, the mem-
brane terms are affected by t, whereas the bending terms are multiplied by t3.

2.4 Semi-analytical bifurcation equation

For simply supported members under uniform stress states, sinusoidal amplitude functions of the
form ∆φk = φ̄k sin (nπx/L) constitute the exact solutions, where n is the number of half-waves
of the buckling mode and φ̄k is the deformation mode amplitude. Substituting the exact solution
into the bifurcation Equation 16 leads to(

nπ2

L2
C + D1 − D2 − DT

2 +
L2

nπ2
B + λX

)
φ̄ = 0. (20)

This equation is quite efficient from a computational point of view, since the number of DOFs
equals the number of deformation modes included. Each bifurcation load λ (eigenvalue) is asso-
ciated with a buckling mode φ̄ (eigenvector) whose elements correspond to the participation of
each GBT deformation mode.

Since the GBT matrices depend on λ through the tangent moduli, an iterative strategy is
necessary to calculate the bifurcation loads. For the calculation of the critical load (the lowest
bifurcation load), the procedure increases λ and calculates the tangent moduli at each step until
|λcr−λ| < TOL, where λcr is the critical load parameter obtained from Equation 20 at each step.
To increase the speed of the procedure, the GBT matrices are initially stored without the tangent
moduli and are updated at each step by multiplying each one with the corresponding moduli.
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Figure 4. Lipped channel columns: signature curve, buckling modes and modal participation diagram for
elastic behaviour.

3 ILLUSTRATIVE EXAMPLE

For illustrative purposes, columns with the lipped channel section shown in Figure 3 are analysed.
The material properties correspond to those given in the previous section.

For the calculation of the GBT cross-section deformation modes, three/four equally spaced
intermediate nodes are included in the flanges/web, respectively, leading to 48 deformation modes.
However, only the so-called conventional modes (Bebiano et al. 2018) are relevant for the buckling
problem under consideration and therefore are the only ones included in the analyses: 4 rigid-body
modes, 2 distortional modes and 12 local-plate modes. This means that the bifurcation problem
has only 18 DOFs and it is worth mentioning that all these deformation modes comply with the
εMyy = 0 and γMxy = 0 assumptions. The in-plane and warping displacements of the first 12 modes
are displayed in Figure 3.

First, a buckling analysis is carried out assuming a linear elastic material law withEt = Ea,θ =
EakE,θ. The graphs in Figure 4 show the the critical stress as a function of the buckling mode
half-wavelength (i.e. n = 1, the so-called “signature curve”) and the temperature, as well as
the GBT modal participations and the mid-span cross-section deformed configuration associated
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Figure 5. Lipped channel columns: signature curve and modal participation diagram for plastic behaviour.

with the elastic buckling mode for selected half-wavelengths (top of the figure). These results
show a rather small variation of the critical stresses for 0 ≤ θ ≤ 700, since kE,θ = 0.71. How-
ever, for 1000 oC one has kE,θ = 0.20 and the drop in the critical stresses is significant. The
modal participation graphs show that the mode transitions occur for smaller half wavelengths as
the temperature increases. Nevertheless, the trend of the buckling modes is similar (from small
to large half wavelengths): (i) local (7+9), (ii) symmetric distortional (5), (iii) anti-symmetric
distortional-flexural-torsional (6+2+4), (iv) flexural-torsional (2+4) and finally (v) minor axis
flexural.

Consider now the plastic buckling case. Figure 5 shows the results obtained for both the incre-
mental (left) and deformation (right) theories. Although both theories yield virtually identical
results for θ = 20 oC, the differences increase with the temperature, with deformation theory
providing the lowest critical loads, as expected (see, e.g., Gonçalves & Camotim 2004, 2007).
Concerning the mode participation diagrams, in all cases the nature of the buckling mode changes
with the half wavelength in a manner similar to that obtained for the elastic cases. However,
it should be noted that the incremental theory predicts mode transitions for smaller half wave-
lengths, most remarkably for θ = 1000 oC (bottom left graph), in which case the local mode
(7+9) does not appear in the graph. Finally, attention is called to the fact that the “kink” appearing
in the critical stress curve for the incremental theory, θ = 1000 oC and L = 1000 mm, is not
due to a change in the buckling mode shape but rather to a discontinuity of the tangent moduli for
εxx = εc,θ, due to the particular form of the uniaxial constitutive law adopted, given by Equations
12-13.

4 CONCLUSION

This paper reported the first activities carried out in the context of project “StaSteFi”. A fast
and accurate numerical tool to assess the elastic and plastic local/distortional/global bifurcation



behaviour of thin-walled stainless steel columns exposed to fire was presented. The tool is based
on a GBT-based semi-analytical approach and therefore is capable of handling, efficiently and
accurately, cross-section arbitrary in-plane and out-of-plane (warping) deformation with a very
small computational cost. Moreover, the intrinsic non-linear stress-strain law of stainless steel,
including temperature effects, can be straightforwardly taken into account using the appropriate
tangent elastic moduli pertaining to J2 small-strain incremental and deformation plasticity theo-
ries. For illustrative purposes, the elastic and plastic bifurcation behaviour of thin-walled lipped
channel columns made with steel grade 1.403 and subjected to fire was assessed.

Future developments, which are already under way and will be reported in the near future,
include extending the proposed GBT formulation to a finite element setting, in order to handle
arbitrary loading and support conditions.
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