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Özet

Zararlı yazılım terimi genel olarak bilgisayar virüsleri , truva atları, kurtçuklar ve diğer
zarar verici program veya kodu belirtmek için kullanılır. Zararlı yazılımı kodlayan kişiler
antivirüslerin bulamaması için kodlarını gizlemeye çalışırlar. Antivirüsler şifreleme ve gi-
zleme yöntemlerini bulabilmek için değişik teknikler kullanmaktadırlar. Zararlı yazılımın
başka bilgisayarlara bulaşabilmesi, bulaştığı makinanın kaynaklarını kullanması ve kendi
kopyasını çıkarabilmesi için hayatta kalması saldırganın başlıca ilgilendiği konudur.

Darwin’in doğal seçilim teorisi ve Richard Dawkins’in bencil gen konseptinden yola
çıkarak zararlı yazılımın hayatta kalma şansını arttıracak yeni yöntemler anlatılmıştır.
Bencillik, fedakâr davranış, taklitcilik, grup seçilimi ve benzer davranış modelleri denek
zararlı yazılımımıza eklenmiştir ve önerilen teknikler mevcut çözümlere karşı test edilmiştir.
Bu tezde gösterilen özellikler ile zararlı yazılımı geliştirmek için yardımcı bir araç yazılmıştır.
Önerilen tekniklerin etkisi gösterilmiştir ve 300.000 üzerinde zararlı yazılım örneği ile
deney gerçekleştirilmiştir. Grup davranış modelleri tanıtılmıştır ve botnetleri geliştirip
daha sağlam hale getirmek için yöntemler önerilmiştir.
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Abstract

Malware, short for malicious software, is used as a general term for computer viruses,
Trojan horses, worms, and other harmful software or code. Malware authors try to ob-
fuscate their code in order to evade antiviral programs. Different analysis techniques are
used by antiviral programs in order to detect different encryption and obfuscation meth-
ods. Survivability of malware becomes the main concern for an attacker since the malware
should usually be able to spread to other computers; use resources of victim’s computer;
and create new copies of itself.

In this thesis, inspired by Darwin’s theory of natural selection and the selfish gene con-
cept explained by Richard Dawkins, we propose novel methods which increase the chance
of survivability for malware. We implement selfishness, altruistic behavior, mimicry,
group selection, and similar behavior models into our experimental malware and we also
test our techniques against existing solutions. We develop tools in order to enhance exist-
ing malware with features presented in this thesis. Effectiveness of proposed techniques
are presented and an experimental test is carried out with a dataset containing more than
300.000 malware samples. Group behavior models are also introduced and methods pro-
posed for enhancing botnets to have better stability (Evolutionarily stable botnet).
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Chapter 1

Introduction

Computer viruses are programmed to be stealth, persistent; and they are mostly well

crafted to be able to spread rapidly. Developing these viruses is a tedious task and virus

authors should be familiar with many areas of computer science such as network proto-

cols, information retrieval, cryptography, distributed systems, artificial intelligence, and

even computer vision. Moreover, a virus should generally be as small as possible and

should stay hidden in the victim’s machine long enough for a successful attack. Virus

authors know various advanced methods to obfuscate their code. As a result of this, an-

tiviral programs try to implement quick detection and disinfection methods against those

sophisticated viruses. Self-propagating viruses can spread to more computers for more

resources and Trojan horses can steal information without being detected for a long time.

As antivirus continue to advance, the survival of malware is rapidly becoming the virus

authors’ main priority.

Malware propagation includes different methods such as polymorphism and metamor-

phism. This creates different obfuscation methods and produces variants of a malware

which have the same functionality. We believe that new propagation techniques will not

only change the representation of the code, but help to create new functionality.

Motivated by “the Selfish Gene” concept [12], we believe that there are similar needs

for the malware as there are for genes. Computer viruses can be considered as a gene

or a meme[4]. We prefer to use the term gene instead of meme since the latter is not
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as common a term as the former, but a reader who is familiar with both terms should

be convinced that both behave in the same way to survive. However, it should be clear

that viruses are computer programs which make it impossible to propagate without hard-

coded instructions or user interaction. In addition to that, mutation is another feature for

genes which can hardly be observed in malware. Mutation is an error in the copying

process. Whenever a program copies itself, there is a small chance to see a disk error or

an environmental condition which can change some of the bytes being copied. This error

most of the time makes the program useless since there is a high chance for the program to

crash. This error may also help a virus to change its signature if the error in the copying

process does not effect the function of the program. In our work we will not go over

details of the computer virus mutations. We assume that these mutations may happen.

Despite the fact that genes are a part of living organisms and computer viruses are just

formed by instructions, their purposes are nearly the same. They both try to extend their

environment for survival and they both tend to replicate. Instead of genes, we refer to

species which are defined as survival machines controlled by their genes.

1.1 Our Contribution

The purpose of this thesis is twofold: first, we propose techniques which can be used by

malware to increase their survivability in the light of the behavior of different species;

and second, we present how strategies from game theory help to maintain a stable botnet.

Proposed techniques for survivability are mostly derived from the actions of the species

under a threat such as predators. We try to explain the use of many concepts from the

theory of natural selection[11] and “the Selfish Gene”[12]. We compare the survivabil-

ity of modern malware and our experimental malware which uses these concepts such

as selfishness, altruistic behavior, mimicry, group selection, and more. In our work we

present BEMWARE, which is our tool that can produce a new virus with the techniques

we present from existing viruses. A virus enhanced with the tool will preserve its ances-

tor’s functionality but will survive much longer. We also carried out an experiment with

more than 300.000 malware to evaluate our methods against current antiviral solutions.
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1.2 Goals

Our goal is to show similarities between living organisms and malware. From these simi-

larities we present some behavior models of species which can be used in malware devel-

opment. We call this BEMWARE (Behavioral Enhanced Malicious Software). We show

that our techniques can increase survival chance for malware

We defined a list of our arguments for this thesis below.

• We explain behavioral characteristics of evolution such as virus rivalry, viral adap-

tation, altruism, mimicry, parasitism, mutualist behavior, botnet as a species, and

strategies for botnets including ESS (Evolutionary stable strategy), Tit for Tat, and

Grim trigger.

• We will not discuss about virus mutations. Mutations can happen during any data

transfer and malicious code can change into something new. We also will not dis-

cuss whether these mutations can improve the ability of viruses or make them mal-

function.

• We do not make use of genetic algorithms in any technique, however we believe

that it can support the idea of mutation in malware. Our argument is to use be-

havior models of species and we do not want to restrict ourselves in one type of

evolutionary algorithm for implementation.

• We do not consider polymorphic code or metamorphic code as mutations or evolu-

tionary. These features will not change the function of the malware and they cannot

increase the chance of survival [8].

• We will be using our experimental BEMWARE for our test cases for most of

the time against common antiviral solutions. Our test dataset contains more than

300.000 malware samples and 10.000 benign samples. We only make use of this

dataset for specific tests.
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1.3 Challenges of the Field

In this section, we describe the difficulties and problems of our research.

1.3.1 Biology, Philosophy, and Computer Science

Firstly, we are not biologists. Our knowledge and reasoning help us to put some ideas

from biological science into computer security field. Secondly, we presented implemen-

tations for most of our techniques but for some of the methods we presented, we could

not give any real life examples due to diccifulty of their implementations. We support

the efficiency of these methods by giving examples from other sciences. One can claim

that some of our ideas are based on philosophical assumptions. We want to quote Mark

Ludwig’s words about the philosophy and the science, and leave the judgement to the

reader.

“To be a good scientist, one must also be somewhat of a philosopher. A few centuries

ago, scientists were called natural philosophers. There was wisdom in that. When a

scientist fails to be a philosopher, he tends to be blinded by philosophy. Then he becomes

a slave to what he believes, rather than its master.”[21]

1.3.2 Implementation and Platform

We developed most of our techniques in x86 Assembly language. We selected Windows

platform for development since the vast majority of malware targets Windows users. We

also implemented most of our experimental BEMWARE using C++ language.

1.4 Terminology

Some of the terms we use in this thesis are somewhat different than their original mean-

ing. An example term is the “computer virus”. We used the term “malware” to represent

computer viruses, but computer viruses need not be used for malicious activity and the

term is a generalization for all types of harmful software. In this section, we describe most

4



frequent terms used in this thesis so reader should not be confused about their meanings.

Malware Malware, short for malicious software, refers to hostile and intrusive pro-

grams. The primary objectives of malware consist of gaining unauthorized control over

system resources; interrupting, initiating or denying operations; gathering private infor-

mation and exploiting or corrupting the collected data. The term is mostly used to describe

computer viruses, worms, Trojan horses, botnets, adware and spyware.

Altruistic Behavior Altruism is the act of selflessness, where an entity risks its own

welfare in order to increase another’s. The stinging bees protecting their food stocks

against honey robbers is a good example of altruistic behavior. The stinging bee attacks

the intruder and sacrifices itself to defend the honey, since the bee loses its vital organs

in the act of stinging. Therefore, the bee works for the greater good of the colony, even

though it cannot benefit from this situation.

Selfishness Selfishness is exactly the opposite of altruism. Selfish behavior indicates a

complete concern with oneself, where the individual consciously harms or impedes others

for personal gain. An example of this behavior can be observed in the emperor penguin

colonies, in the Antarctic. All penguins hesitate at the edge of the water before diving in,

in fear of becoming prey to seals. In order to minimize this threat, a penguin has to be the

bait and dive in before the others. Naturally, none of the penguins want to put themselves

in risk, leading to a selfish challenge of waiting at the edge of the water and trying to push

each other in.

Mimicry Mimicry is a term used in evolutionary biology, which refers to a species

imitating certain characteristics of another. This adopted aspect can be in appearance,

behavior, noise, smell and habitat, which increases the chance of survival of one or both

species.
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Parasitism Parasitism represents a type of relationship between two species, in which

the parasite takes advantage of the host at the expense of the latter. Parasites benefit from

the hosts’ resources to advance its chances of survival.

Tit for Tat Tit for tat is an expression that stands for retaliation in response to an injury

from another. The term is often used as a game strategy in “The Prisoner’s Dilemma”,

where the concept of equal retaliation results in the most rewarding outcome, regarding

the possibility of the opponents deceit.

Grim Trigger Grim trigger is a game strategy that can be adopted in a repeated game

such as “The Prisoner’s Dilemma”. In this approach, the player cooperates until the op-

ponent defects. Once the player realizes the betrayal, the trigger condition is satisfied,

which results in the player defecting for the remainder of the game.

Virus A virus is a computer program that is designed to interfere with the operation

of the system and the data on a computer. Viruses can replicate themselves and infect a

computer before spreading to other devices on a network or through a removable medium

such as USB drives.

Mutual relation Mutual relation, also known as mutualism, is the relationship be-

tween two species, in which both individuals benefit from the relationship and sometimes

even depend on it for survival.

Polymorphic Code Polymorphic code is code that mutates and changes each time it

is activated, without altering its functionality.

Metamorphic Code Metamorphic code is code that can reprogram itself. As a result,

everything within the program changes except for the actual functionality, so that the chil-

dren will never look like their parents.
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Static Analysis Static program analysis is the process of analyzing a computer soft-

ware without executing the program itself. This process is faster, but it can be easily

evaded by malware. Static analysis makes use of signature matching and flow analysis

graphs.

Dynamic Analysis Dynamic analysis is the process of analyzing a program by exe-

cuting it on an emulator, and watching its execution behavior. This technique is slower

than static analysis but necessary to examine the obfuscated code. An obfuscated code

or an encrypted code should be restored to its original form in order to be executed. Dy-

namic analysis helps to detect these behavioral abnormalities and decrypted code.

Binary The term binary refers to executable, i.e. a type of file that contains a code for

the computer.

Trojan Horse A Trojan Horse is a malicious program that is disguised as an appli-

cation. This program enables the attacker to access the victim’s computer without his

permission or knowledge. A Trojan Horse does not replicate or copy itself, but still com-

promises a computer’s security.

Crypter Crypter, also known as scrambler, is a utility that modifies an executable file

and is often used to obfuscate the code. When the obfuscated executable is initiated, the

code expands to the original form. Malware authors usually use crypters to avoid virus

detections.

Evolutionarily Stable Strategy Evolutionarily stable strategy, or ESS, is a strategy

which, if adopted by a majority of a population, cannot be overridden by an alternative

strategy that is initially rare.
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Botnet A botnet is a network of infected and compromised computers, referred to as

bots or zombies, that are used for malicious purposes without the owners’ knowledge or

permission.

Replicator The Replicator is a molecule that is able to make copies of itself.

1.5 Structure of the thesis

Outline of the rest of the thesis is as follows: In Chapter 2, we present related work

about evolution and malware. We explain how our work differs from the existing ones. In

Chapter 3, we explain behavior models for species and describe how malware can benefit

from those models. We give examples to show similar implementations of these methods

to enhance malware. Then, in Chapter 4, we present different strategy models and apply

these models into botnet to increase stability. We use common strategies such as Tit for

Tat, ESS, and Grim Trigger from game theory. In Chapter 5, we present an experimental

malware(BEMWARE) which uses some practical approaches to present our techniques.

Experiments and results are also presented in this chapter. Finally in Chapter 6, we con-

clude the thesis by providing an overlook and give some ideas for future research.
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Chapter 2

Related Work

There are a few similar topics which are related with our subject. A comprehensive work

is published by Mark Ludwig in his little book of computer viruses, namely “Computer

Viruses, Artificial Life and Evolution” [21]. He describes why it is important to study

viruses and try to show the links between life and computer viruses. He questions some

philosophical ideas such as “Are viruses alive?”, the importance of philosophy and its re-

lation with science, mechanical properties of life, and he describes the emergent behavior

which opens a debate about viruses as a deterministic living organism. He mainly de-

scribes mutation and explains this in mathematical terms. Our research,however,does not

try to answer whether a mutation can exist or not. We support the idea of studying viruses

so that we can learn more things about the life itself. Ludwig does not describe relations

and similarities between viruses and behavior model of species. Instead, he tries to answer

some important concepts such as artificial life, virus mutations, and incalculability.

Another research which is related to malware survival is explained in the book “Ma-

licious Cryptography: Exposing Cryptovirology” by A.Young and M.Yung [32]. They

describe how to use elements of game theory and cryptography to create a survivable

malware. Cryptovirology is a field which combines cryptography and virology. The field

studies advantages of using cryptography for malicious intent. In their book A.Young and

M.Yung proposes methods to enhance computer viruses to use strategies which help them

to gain opportunities against humans and disinfection. In Chapter 4, we present some sim-
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ilar methods for botnets which are derived from group behavior and game theory. Most

of our techniques can also be considered as practical examples of cryptovirology.

In [27] H. Spafford defines computer virus generations, virus metabolism, and presents

his idea of artificial life. It is also the only work which mentions the individual virus

behavior. He gives the example of territorial behavior, predatory behavior, and self-

protective behavior. In his paper, he also notes that virus characteristics come from its

author and living organisms generally change without any obvious exterior agency unlike

viruses. His work supports our ideas about using behavior to understand more complex

interactions between viruses and clarifies the concept of malware mutation.

Evolution in malware is also discussed in [28]. Authors define a model for evolution

using API selection from environment. They also define Clean-application mimicry and

explain how new APIs can be beneficial for malware to evade antiviral solutions. Authors

also give example from biology and explain relations between biological viruses and mal-

ware. In Chapter 5 we give a runtime crypter as a Mimicry example. However, we define

evolution in terms of gaining new functionality later in that chapter. Our mimicry example

is given to clarify the subject, not to present an evolutional change.

Malware detection is closely related to survivability. In [7], authors show that there is

no algorithm that can perfectly detect all viruses by using notions and Cohen’s existing

work [9]. Authors also show that even if we have a sample of a virus, we cannot write a

program which detects that particular virus without any false positives.

In [2], authors define evolution and discuss the fittest malware in terms of their detec-

tion level. Antiviral solutions shape the surviving viral population by deleting the unfit

individuals. Authors discuss malware mutation and they group evolution into two classes.

Mutations can occur from environmental changes or in the virus body itself, which is de-

fined as somatic changes. Authors claim that environmental changes may occur due to

a number of factors such as compilation of different compilers and somatic changes can

be observed in accidental disruption of virus code or mutation. In this paper, mutation

is explained as an outcome of an accidental event such as system crash, corrupted disk,

electromagnetic radiation, faults in hardware or storage media.
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There is another publication which proposes genetic algorithms for malware evolution

[25]. Authors extracted features from Bagle worm and used standard genetic algorithm to

produce new variants of it. We believe that the functionality of the malware should also

be changed in order to call it an evolution which makes this work an extended version of

polymorphism. However, it is the first example of using a genetic algorithm on malware

which is worth mentioning.

As far as we know there are no documented practical methods to include behavior

in malware. In this thesis, we propose behavior models to improve malware survival.

We implement different tools and develop experimental malware to test the efficiency of

our ideas. We explain different strategy models for botnets agaisnt their rivals. We also

propose a practical approach for malware evolution with genetic algorithms. We believe

that our work is the first step in a series of novel experiments and research directions in

computer security.
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Chapter 3

Behavior Models

Think about an environment in which there is enough food for a single predator to be fully

fed. If a secondary predator comes to the same habitat, a competition for resource starts

to emerge. Dilemma for the predator is either to defend the resource by facing the risk

of death or search for other resources. It is not an easy task for the predator to calculate

the utility of attacking the other predator. We should focus on the purpose of the predator

and define consciousness before making an approximation of its action. We will not be

discussing consciousness in this thesis. Instead we will try to calculate the utility for

viruses using different behavior models.

3.1 Virus as an individual

A malware author generally has a motive. Malware can be designed to spread to as many

computers as they can, target a single machine to extract information, or can be used

as a tool of hacktivism for a socially motivated purpose. Malware author’s role is to

teach the malware how to reach its goal by coding functions for all encounters. Slammer

worm which infected about 75.000 machines within 10 minutes in 2003 did not have any

purpose of being stealth and it did not contain any malicious code against its host[23]. The

purpose of Slammer worm was to infect all possible computers by using an unpatched

vulnerability. It was designed as small as possible to achieve this goal. The author of

the worm actually made a mistake when developing pseudorandom generator module.
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When trying to convert a number into negative, author used a “sub” instruction instead

of “add”. This error affected spreading speed of the worm since ip scan algorithm is

based on this random number generator. The opcode for add eax,1 is 83 C0 01 in x86

assembly instruction set and sub eax,1 is defined as 83 E8 01. These two instructions

only differ by 1 byte (C0 for add, E8 for sub). During the spreading process of the worm,

a packet corruption or a disk error can change C0 into E8, thus putting more machines in

danger and creating more hosts for the worm’s survival. Can this error be considered as

a mutation? We leave this question to our reader and continue to explain the purpose of

malware.

If we consider a virus as the predator and the internet as its habitat, we can think of

actions which give maximum utility for the virus whenever it encounters another predator.

Think of a virus in a machine which uses resources to stay persistent for a long time. If

it detects that an antivirus is trying to be installed, it can either try to stop the installation

process or try to spread to other computers by using more resources before the installation

completes. Stopping the installation might increase the user’s suspicion about a virus ex-

istence in the system and may lead to attempting to install other antiviruses or a complete

format. On the contrary, user may not want to spend more time trying more solutions

and gives up the idea of installing an antivirus. The efficiency of this virus is based on its

choices for a given set of purposes.

3.2 Virus adaptation

Modern viruses are adaptive and they have protection mechanisms from common antiviral

solutions. What we mean by adaptive is they can sense the presence of an antivirus or

other viruses which exist in the same host. They can also detect the capability and size of

the resources that they can use to reach their purpose. A good example is a hybrid botnet

in which individual bots should detect if the host is behind a NAT or not [31]. This helps

the botnet to form a better network structure to reach its goal. We will be explaining group

behavior later in this chapter.

Adaptation also creates an opportunity for any problem that viruses may encounter.
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A virus which operates when the CPU is idle is less suspicious from the user level than

where the resources are allocated for something else. They may also use peripherals of

a computer to detect the surroundings. This includes listening around, checking from

webcam to see if anyone is using the computer, or even detecting the temperature for a

possible CPU overclock to increase its resources.

3.3 Parasitism and Mutualism

Adaptation was a primal feature that should be inherited by malware but surely is not

enough for its survival. If a malware needs to stay hidden and transfer itself to other hosts,

it may need different behavior models. One example is parasitism. The detection ratio for

a malware increases whenever it tries to interact with its environment. The host in which

the virus resides in might also be so paranoid that it only allows certain applications for

communicating with other hosts. A virus in this environment can make use of the existing

software in the host to spread to other computers and protect its significance in the gene

pool. We developed a proof of concept code of such a virus where it only infects the

programs which use WinSock library for communication. The virus uses direct code

injection and hooks send() and recv() functions of the host program. The virus starts to

monitor outgoing packets and whenever a PE(Portable Executable) header or a ZIP header

is detected, it sends its own code instead of the original packet. The virus is 5,192 bytes

in size and developed in x86 assembly language using Masm32 compiler.

Mutualism can also be used to stay resident for a long time. Suppose a virus used a

vulnerability of the operating system or a program to propagate. It can then update the op-

erating system and programs frequently so that no other predator can compete with itself.

This is good from the user level since it will be harder for other malware to compromise

the system and it is beneficial for the virus since all the resources belong to itself. Viruses

developed without any malicious intent can also be used to patch vulnerable systems.
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3.4 Mimicry

Mimicry is one of the most used behavior models for survival by modern malware. We

can see many real life examples to evade antiviral solutions and trick users to believe that

they are in fact benign programs. One famous mimicry behavior can be observed in the

FakeAV virus 1. The virus disguises itself as a legitimate antivirus and warns the user of

a possible detection and prompts them to download itself. FakeAV virus also contains

such properly designed GUI and informational messages that even an advanced user can

fall for the trick of this mimicry. Another form of mimicry is to trick antiviral solutions

so that they believe the virus is a benign application. Implementation of this feature is

more complicated since FakeAV only tries to trick users whereas this technique is used

to evade a predator which is programmed to delete malware. We explain the details of

implementation in Chapter 5.

3.5 Altruistic Behavior

Viruses do not generally have distinct purposes and children inherit this purpose from

parents most of the time. An individual virus can act in order to help other viruses to

achieve this global goal. Altruistic behavior, just like in nature[16], can help a family of

viruses to survive longer. This behavior can be perfectly examined in a botnet since each

member of the botnet can be considered as an individual of the same species. Antiviruses

update their definitions frequently and it becomes a real challenge for a virus to keep

control over its host. Another disadvantage for the virus is the number of antiviruses and

different signature databases they use. Whenever a new threat is detected either by static

or dynamic analysis,the user is notified with a warning from the antivirus and multiple

choices will be presented to user including deletion, disinfection, and quarantine. If a

member of a botnet is detected by an antivirus or even found as suspicious, there is a huge

chance that it will be sent to the antivirus company for further analysis. This process is

necessary for any antivirus company to update their signature database and helps them to

1http://www.symantec.com/business/security response/writeup.jsp?docid=2007-101013-3606-99
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implement new detection techniques based on trending threats. It is also beneficial for an

antivirus company to share their signature database with other companies. This will result

in losing more members of a botnet within short period.

Some techniques were used to prevent the user from deleting malware. One example

is to create other processes to watch each others’ back. In this way, whenever one of these

processes is terminated, others try to initialize it again by downloading from a fixed source

or constructing it from the payload that they carry. Antiviruses did not have any difficulties

to counter this strategy. Botnets need an efficient method to prevent losing control over

the hosts and we claim that altruistic behavior can help them to survive longer.

Imagine a variant of a bot which is detected by an antivirus as a new threat. The bot

can change its definition to a known virus signature by analyzing that its being scanned by

hooking antivirus itself. An example of such a bot is developed as a proof of concept. This

signature will make the bot look like it belongs to a known malware family and antivirus

will not try to examine the sample since it is already known. Sacrificing its own life, the

bot probably saved many variants of itself on other hosts. Another desirable action for the

bot is the ability to delete itself completely instead of using mimicry to look like another

virus. This behavior is harder to implement but it is also another use of altruistic behavior.

Another example is to have a virus coded as a node of a linked list. The node is

the virus code itself. The previous node pointer actually contains the difference from

its parent’s code in encrypted form. Whenever the virus creates a new variant, it also

encrypts the new differences from its child as its next node pointer. If the viruses are

adaptive, they can detect which nodes are missing due to detection and they can analyze

what changes triggered the detection. Knowing this will help the remaining viruses to

create new variants based on what they’ve learned from their loses.

3.6 Virus Rivalry

Virus rivalry is a common situation when two or more parties start to use same resources.

This environment causes a long term competition.

There are two ways in which a virus can win this competition. Firstly, a virus can start

16



a fight and develop detection and removal procedures against its rival. It should be noted

that any feature malware inherits is susceptible for detection by antiviral solutions. What

we recommend here is not armoring malware with numerous codes against all enemies

but to develop a behavioral algorithm which changes its actions based on its rivals proper-

ties. A famous game “Core War” is a nice example in which rival programs compete for

survival on the same memory [13]. The game simulates a shared memory and executes

two programs by running them on random locations. Each battle program is coded in an

abstract assembly language similar to x86 Assembly and executed by a virtual machine

called MARS (Memory Array Redcode Simulator) [10]. Both programs have their own

instruction pointers but they do not have any knowledge of their location on memory since

the memory address is wrapped around. They also do not have any clue about their rival’s

location and they should somehow use the most dominant strategy to survive.

The game represents a real world scenario exactly for a virus competition.2 A more

complicated situation occurs when antivirus also starts competing against the viruses.

This gives the opportunity for a virus to use a second way to win the competition. It

triggers the antivirus or creates some diversion for the user like opening some popups,

making him suspicious about his computer’s integrity. This behavior can be seen in jack-

als. When a pack of hyenas feed on a prey, they do not share their trophy with other

animals. Knowing this,the jackal shouts and calls the lions to turn their enemies against

each other. It then waits for a right time to jump in and take a piece from the prey. In our

case, if the virus does not contain any clever solution against a competing virus, it can

then use other fighting strategies such as initiating a scan 3, or notifying the user about

other viruses’ actions or place.

2One can claim that Windows operating system reserves isolated memory for each process. However, a
virus can detect other viruses’ exact location on RAM

3The virus must be sure that it is not detected by the antivirus which it asked for help
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Chapter 4

Botnet strategies

We discussed the behavior of viruses, but most of the time, viruses spread to other com-

puters and form a network in which they can communicate. This structure is called a

botnet and the individual viruses are referred as bots.

Bots generally inherit the same behavior models since spreading does not change their

functionality. They use different methods to communicate with each other. When we are

talking about botnets we should also mention that their purpose can change dynamically.

Current botnets do not have distinct behavior models for different purposes. Basically,

bots can be classified based on their connection protocols and topology [33]. Mainly, there

are centralized botnets which use a server to issue commands and control all connected

bots to that server. These are decentralized or commonly known as P2P botnets which

are formed by bots connected to each other. In order to command this type of botnet, an

attacker can issue a command from any bot belonging the network. There is also a hybrid

model which is mentioned in [31] but does not have any real life examples yet.

It will be helpful to imagine the botnet as a secret organization with members who

know each other but try to protect their identities and purpose from the outer world. The

purpose of this organization is mainly earning money, making a political statement, or to

sabotage. There are also some organizations which are formed just for fun. We discuss the

strategies used by the members of the botnet in the following sections. We give example

of a botnet which uses a poor strategy. Then, we propose another strategy which has a
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higher utility in most cases. At the end of the chapter, we discuss the possible expected

state of botnets.

4.1 Grim Trigger

Grim trigger is a strategy for a repeated game where a player starts defecting as soon as

the opponent refuses cooperation [22]. We wanted to explain this strategy since it is used

in a widely known botnet called SpyEye even if it performs poorly.

4.1.1 Zeus vs SpyEye

Zeus is a widely known banking malware also known as ZBot [3]. It is actually a cen-

tralized botnet which has a main purpose of getting the victims’ credit card numbers and

bank login information. ZBot was identified at the end of July 2007 and become pop-

ular in 2009 with continuous updates and modules by its authors. SpyEye is a similar

bot which is known as ZBot’s rival. The reason for calling it as a rival is that it uses a

specialized strategy against Zbot. It scans the processes until it locates ZBot’s presence,

and then terminates all threads of ZBot, cleaning the ZBot binary afterwards[5].

Aggression of SpyEye did not help much in terms of propagation since ZBot does

not prevent any communication of other processes. It only helped SpyEye to use more

resources of the compromised host. We can also say that SpyEye became much more

popular because of the “Kill ZBot” module and many malware researchers began to ana-

lyze it giving information to antivirus vendors. The strategy for the SpyEye did not help

the purpose of the botnet at all.

Things started to get complex when ZBot authors implemented an anti-SpyEye mod-

ule into ZBot. The consequence of the implementation is interesting for our research.

After a short while, Zeus and SpyEye both lost their significance and ZBot source was

given to SpyEye author, then leaked into public.1 This is a good example to show that

the grim trigger strategy is a poor strategy when the purpose is to stay longer on many

1You can download it from www.cryptovirology.org
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computers. It should be noted that the actions of these bots are limited by their authors

since they pick a strategy and implement it into them. This somehow opposes our idea

of behavior enhanced malware since what we want to achieve is an individual malware,

which can change its strategy against any encounters based on its purpose.

4.2 Tit for Tat

In order to understand the efficiency of an aggressive strategy like the one SpyEye uses,

we should focus on “Prisoner’s Dilemma”. It is a simple gambling game played by two

people. Although it has many versions, it is better to explain it using its original form. Two

suspects are arrested and questioned by the police. They cannot communicate with each

other and both have two options to choose from (testifying against the other or remaining

silent). If one testifies against the other (Defects) and the other remains silent (Cooper-

ates), the defector goes free and the other will be sentenced for one-year in prison. If both

remain silent, they will be sentenced to one month in prison. Instead of remaining silent,

they can both testify against each other. In this situation both suspects will be sentenced

for 3 month in prison. Each prisoner must choose either to testify against other or remain

silent.

If you play this game, you will realize that always defecting will be the only strategy

that gives you highest payoff. However, it is known by both parties that if both cooperate,

their individual reward will be greater.This is why the game is called a dilemma.

In this version of the game, there is no way of ensuring trust. If we repeat the game

a couple of times with the same players and letting them choose based on their past ex-

periences, they may start forming some kind of trust. There are different strategies for

the iterated version of Prisoner’s dilemma but we will focus on tit for tat strategy which

initially cooperates then chooses to cooperate or defect based on the opponents’s previous

action.

Tit for tat strategy is an effective strategy for our case [14]. Suppose that a bot and its

rival coexist in a host. If both bots use the resources of the computer by defending, they

both gain 30$ per day. If one of them attacks the other and successfully prevents it from
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accessing the resources, then the attacker will gain 50$ per day and leaves the other party

with no money. If both attack and try to prevent each other, they will both gain a sum of

10$ per day.

This is an example of a Prisoner’s dilemma and we can examine the efficiency of a

SpyEye, ZBot and two other botnets (We call them TFT1 and TFT2 for this example)

which play tit for tat strategy. We assume that SpyEye and ZBot always attack other bots

and try to get a better payoff.

Suppose that the game lasts for 10 days and each day is an iteration of the game which

has a scoring as described in Table 4.1.

Table 4.1: Payoff table for bots

Defend Attack
Defend 30,30 0,50
Attack 50,0 10,10

Also, suppose that these bots coexist with each other in different machines, making

use of the resources to gain money for their authors. Let’s calculate each bot’s 10 day

earnings.

The SpyEye bot which coexists with TFT1 will earn 50$ for the first day. TFT1 plays

the tit for tat strategy and it will attack for the rest of the game so SpyEye will earn a total

of 50+9*10 = 140$ whereas TFT1 earns a total of 90$

On the second host SpyEye bot coexists with TFT2 and again the same amount of

money is collected by SpyEye bot in 10 days. TFT2 earns 90$ since first day it defended

SpyEye’s attack and started attacking for the rest of the game due to tit for tat strategy.

Lastly SpyEye bot coexist with ZBot. Since both will try to attack each other, they

will both earn 100$ in 10 days.
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SpyEye collected 140 + 140 + 100 = 380$ in 10 days with its aggressive strategy.

TFT1 earned 90$ from the host which is shared with SpyEye and another 90$ from

the machine of ZBot. When TFT1 coexist with TFT2, since they both defend for the

whole game, both will earn 300$. The sum of TFT1’s individual earning is 480$ which is

greater than the SpyEye’s earnings. Table 4.2 lists sum of earnings.

Table 4.2: Total earnings of bots.

Bot Name Total earnings
SpyEye 380$
ZBot 380$
TFT1 480$
TFT2 480$

Table 4.3: Modified payoff table for bots

Defend Attack
Defend 30,30 0,200
Attack 200,0 10,10

If we change the payoffs and make it more advantageous for the aggressive strategy as

in Table 4.3 and increase the game duration to 1 month, then we can still observe tit for

tat strategy is dominant over the others. Total earnings for the bots can be seen in Table

4.4.

Table 4.4: Total earnings of bots for modified payoff table

Bot Name Total earnings
SpyEye 1280$
ZBot 1280$
TFT1 1480$
TFT2 1480$

The tit for tat strategy is mostly preferred when the most of the bots in the population

tend to defend.
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4.3 Evolutionarily Stable Strategy

In the previous section, we described that tit for tat strategy results in a better payoff in

the longer run if the majority of the bots chooses to defend. In an environment where all

bots try to prevent each other from using resources, it may not be feasible to use a tit for

tat strategy. So the question is: Which of these strategies will overrun others?

Let us define the environment, rules, and behavior models which coexist in our model.

The first rule is whenever two bots compromise a host, they will have two options. They

can either choose to attack the other bot, or they can try to avoid the attack. Suppose we

have two distinct types of bots. ZBot variants and replicators. Replicators are stealthy

survivors which cannot be detected easily. They do not have a fighting strategy other than

attacking random memory locations. On the other hand, ZBot variants uses aggression

against other ZBot variants and replicators. It quickly develops a cleaning routine and

deletes the rival malware. If two ZBots attack each other, one of them will survive and

the other will use the remaining resources on the host. If a ZBot variant fights with a

replicator,the replicator will quickly back off and spread to the other computer. If both

replicators meet each other, they will try to eliminate each other by writing to random

memory locations.

We assign scores based on their success of obtaining resources like the following:

• If a ZBot deletes a rival it will gain 50 points.

• If a ZBot is deleted by its rival, -100 points will be given as a punishment.

• Replicator will gain 50 points if it can win any fight

• If both replicators fight, one of them will back off after being found by its rival. We

will give a score of -10 for both replicators since they used time and resources to

attack each other.

This example is a modified version of hawk-dove game from “the Selfish Gene” book

[12] and it is given to describe evolutionary(or evolutionarily) stable strategy. Evolution-

ary stable strategy is a strategy which, if adopted by a majority of a population, cannot be
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overridden by an alternative strategy[30]. For our example, lets consider all the hosts that

contain only replicators. We can expect that a replicator wins half of the fights since both

of them uses a random strategy in order to get rid of the other. This results 40 points for

winning (50 points winning and -10 penalty for using a lot of time and resources) and -10

points for losing. We can also say that a replicator gets 15 points on average. This can

be considered as a real life example since bots do not have many strategies against their

rivals. Now suppose that a ZBot variant joins as an alternative to replicators. ZBot will

quickly start dominating replicators since replicators will leave the host whenever ZBot

tries to attack them. This results in a huge advantage for ZBot variant since its avarage

payoff will be 50 points. ZBot variants quickly begin to take over hosts.

Now imagine all hosts are compromised with ZBot variants. If a ZBot spreads to a

host and starts a fight with another ZBot, one of them will be deleted. Winner will get all

the resources of the system which is represented as 50 points whereas deleted ZBot gets

-100 points. ZBot can expect to win half of his battles and on average ZBot will get -25

points. Now suppose that a replicator arises in the network. Its average payoff will be 0

since it does not win any fights. This average payoff is better than ZBot variants’ which

help replicators to spread quickly.

It will be naive to expect that this network will always change between ZBot and

replicator domination. There is a stable ratio of Zbots to replicators. Whenever this

ratio is reached, the average payoff for both malware will be equal. A good property of

this stable state is that no other strategy is able to dominate it in the long-term since an

individual is liable to act with a better average payoff, thus forming a new EES. Botnets

can maximize their payoff with a dynamic strategy based on discussed average payoff.
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Chapter 5

BEMWARE

So far we described behavior models and strategies for malware. In this chapter, we

will start from the techniques to evade antiviral solutions and present methods which can

change the functionality of the malware. The important thing is that we are not interested

in any form of polymorphism[24] or metamorphism [18]. These are well known and

implemented techniques to generate new variants which have different signature but same

functionality. Since variants cannot be considered as evolution we should focus on how

to change the purpose and methods of the malware. We use the term “BEMWARE” to

describe a malicious software which uses behavioral algorithms or evolutionary behavior

in order to survive longer. We first present a mimicry behavior for malware which enable

to bypass many protection mechanisms.

5.1 Mimicry implementation

In section 3.4 we explained how mimicry can increase malware survivability. A common

example is a crypter which can enhance malware with mimicry feature to evade antiviral

solutions. We will explain how a crypter works and present parts from our implementa-

tion. Our experimental crypter currently produces a representation of any malware with-

out changing their functionality and the output becomes undetectable by all antiviruses

we tested.

Crypters are programs which encrypt the code of the malware [6]. This encryption
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helps them to bypass signature detection of antiviruses. This method is extremely effec-

tive against static analysis, since antivirus tries to match the patterns in the malware with

the ones in its database. Dynamic analysis, on the other hand, executes the code in an

emulator and tries to detect a malicious code or behavior. Based on the fact that an en-

crypted code should be decrypted in order to be executed, dynamic analysis easily detects

the malicious code once it is decrypted in the emulated environment [20]. Next section

describes techniques to prevent dynamic analysis from detecting the code by changing

properties of the malware and showing it as a benign file.

5.1.1 Inner workings of a Crypter

We explained that a crypter encrypts the malicious code but we did not elaborate on this

topic. We already mentioned that an encrypted code needs to be decrypted. Crypter adds

this encrypted data to a program which is responsible for the decryption. We will call

this program “Stub”. Stub is a regular program which,upon execution, decrypts the data

attached to it and executes whatever is stored in that data. If the stub tries to write this

decrypted (original) form of malware into the disk and attempts to execute it, antiviruses

will detect its presence since they observe essential APIs such as CloseHandle() and Cre-

ateFile(). This is why we need a way to execute the decrypted code on memory.

The difficulty of executing raw program data from memory is caused by the Windows

operating system design. Each binary in Windows contains a PE (Portable Executable)

header. This header contains information about the binary execution details such as po-

sition and size of its code section, data section, functions of the program, and resources

it carries. Whenever a program is executed, PE header is parsed by the operating system

and all registers, memory sections, and libraries are arranged based on this header. How

could it be possible to execute a program code which is in memory then?

Most programs use APIs (Application Programming Interface) in order to interact

with the operating system. Crypter uses some specific APIs in order to execute the mal-

ware code from memory. Now we briefly explain the steps for our crypter and give tech-

nical description later.
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• Crypter takes a malware as an input. It reorders its bytes by randomly switching

each byte position with the other. In this way, it evades any form of static analysis.

• A small graphic file is constructed. Shuffled malicious code is added at the end of

this graphic file.

• Crypter generates an executable called “Stub”. The stub is responsible for the re-

construction of the malicious code in memory and execution. Stub code does not

have any signature detected by antiviruses.

• Crypter then adds the graphic file which contains the shuffled malicious code as a

graphic resource into the stub.

• Stub is ready for execution. A smaller stub size increases propagation speed for

malware

Crypter can process new malware and adds it into a new stub each time. Crypter is

a program used by the attacker so that the application, which will be distributed to the

victims, is the stub with encrypted resource.Now we define the execution steps of the

Stub.

• Stub uses some anti-emulator tricks and tries to force any antiviral solution to check

for different execution paths.

• Graphic resource attached to stub is filled in memory. Since Stub already knows

that a graphic file is added, it quickly finds the actual shuffled malware code.

• Stub reconstructs the file on memory. Since antiviruses already stop searching for

the real execution path, they will try to detect any malicious behavior from now on.

• Reconstructed file on memory has a valid PE section and code. It is not possible to

execute the code directly without letting the operating system read the PE section.

• Stub executes a benign program such as Internet Explorer or it may even execute

self. This execution is different than normal execution. Benign program executed
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by Stub is suspended and its memory is reachable by the Stub. The benign program

will only resume its execution with a command from the Stub.

• Stub reads the PE header of the malicious program in memory and makes all nec-

essary changes in the benign program’s execution flow.

We implement the Crypter in C++ and the Stub in x86 Assembly language. We will

give technical description of both programs in the following section.

5.1.2 Technical details

We list some of the code that Crypter and Stub use. The explanation of the code will also

be given afterwards.

5.1.2.1 Crypter Implementation

The code in 5.1 enables us to randomly shuffle payload(malware) code. It should be noted

that the seed for the random number generator is already known by both the Crypter and

Stub. In this way, Stub knows how to reconstruct the code.

Figure 5.1: Random shuffling of payload

An image is constructed using the BMP header in 5.2. The shuffled malicious code

will look like a legitimate image. It will start after 174 bytes of a valid bmp header+data.
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Figure 5.2: BMP header for the payload

Constructed buffer is added into the Stub program which is given as the argv[2] 5.3.

Stub is ready to be executed. In the following section we describe the technical details

for our Stub and show how it bypasses most prevention systems.

5.1.2.2 Stub Implementation

Most of the Stub contains an anti-emulator code in order to evade dynamic analysis meth-

ods. Antiviruses try to detect APIs which show malicious behavior. In our Stub, we also

use a method which executes functions of the operating system by calculating their ad-

dresses in runtime. Stub is coded in x86 Assembly language since size of the Stub is
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Figure 5.3: Appending payload data into the Stub

important for malware propagation and also helps to avoid signature matching. Fistly

we execute the actual Stub code by creating a thread. 5.4 This helps to avoid some an-

tiviruses since they cannot emulate threads. System waits for 5.5 seconds for the Stub

code to complete. Usually Stub code completes within 1 second. The reason for using

longer time intervals is to evade some antivirus detection.

Figure 5.4: Creating a thread to bypass some dynamic analysis methods

Timing tricks are essential in order to evade emulators like many other techniques

[15]. This trick uses the assumption that emulators are slower than real cpu, so a malware

can detect if its own code is running fast or slow. Below, our Stub is making two con-

secutive calls to GetSystemTime and measuring the time difference. If there exists a time

difference, it quickly terminates instead of executing the rest of the code 5.5.

We then access the our resource and reconstruct malware code. Reconstruction step

is easy since it uses the same random number generator with the same seed 5.6.

The rest of the execution will contain the following path. Stub will execute a benign

program with CreateProcessW API in suspended mode. It allocates the memory of this

process with VirtualAllocEx. Stub iterates through PE header of the reconstructed file

and uses NtWriteVirtualMemory API to change the code of the benign program with the

malware. It then uses NtResumeThread API to give the control to benign program which
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Figure 5.5: Timing trick example

actually contains the malicious code.

We test our program on a well known Trojan horse called Poison Ivy and two other

bots. Table 5.1 shows the detection rate before crypting and Table 5.2 shows after they

are crypted by our tool. Results are based on both static and dynamic analysis.

5.2 Evolving malware

In previous section, we defined API as a function of the program. Applications use APIs

for various purposes such as drawing windows, interacting with the user, compression,

modifying files and more. In short, APIs create a link between the operating system and

programs. We believe that it is the API which defines the functionality of a program. It is

also true that APIs are a group of some low level instructions but we choose to explain our

ideas in a higher abstract level. Our application mimicry is a built-in feature so it cannot

be considered as a functionality gained from a mutation.

This section completely focuses on malware evolution. Artificial life researchers have

studied self-replication since 1979 [19] [1]. There is no example of a malware which can

increase its functionality when spreading to other computers. Our research shows that it
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Figure 5.6: Reconstructing the file on memory

is possible for a malware to achieve this by adding API into its code which is taken from

other applications.

We collected over 300.000 malware samples from Hispasec Company which runs a

website to scan samples uploaded by its users.1 Import Table in PE contains APIs which

the program can use upon execution. However, most crypted malware hides its Import

Table by calling APIs indirectly. We did not include crypted malware in our tests, however

an extension of this work is possible by monitoring API calls of a crypted malware upon

execution. After extracting APIs, we tried to classify most used APIs by malware and

benign files separately. We selected unpacked unique malware samples which have an

Import Table with at least 10 APIs. From the 300.000 samples we processed, we found

72.524 malware which satisfy our conditions. We selected 10.000 samples randomly from

1Automated online virus scan page http://www.virustotal.com/
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Table 5.1: Detection results for PoisonIvy,Dorkbot, and Boinberg

Antivirus PoisonIvy Dorkbot Boinberg
AVG Free Found Found Found
ArcaVir Not Found Not Found Not Found
Avast 5 Found Found Not Found
Avast Found Found Not Found
AntiVir (Avira) Found Found Found
BitDefender Not Found Not Found Not Found
VirusBuster Internet Security Found Found Not Found
Clam Antivirus Found Not Found Not Found
COMODO Internet Security Found Found Not Found
Dr.Web Found Found Found
eTrust-Vet Found Not Found Not Found
F-PROT Antivirus Found Found Found
F-Secure Internet Security Found Found Found
G-Data Found Found Found
IKARUS Security Not Found Found Not Found
Kaspersky Antivirus Found Found Found
McAfee Found Found Not Found
MS Security Essentials Found Found Found
ESET NOD32 Found Found Found
Norman Found Found Found
Norton Antivirus Not Found Found Found
Panda Security Not Found Not Found Not Found
A-Squared Found Not Found Found
Quick Heal Antivirus Found Found Not Found
Rising Antivirus Found Found Not Found
Solo Antivirus Not Found Not Found Not Found
Sophos Found Found Found
Trend Micro Internet Security Found Found Not Found
VBA32 Antivirus Not Found Not Found Found
Vexira Antivirus Found Found Not Found
Webroot Internet Security Found Found Not Found
Zoner AntiVirus Found Not Found Not Found
AhnLab V3 Internet Security Not Found Not Found Not Found
BullGuard Found Not Found Not Found

this suitable dataset for our research.

We also processed 10.333 benign files for our test. Benign files are mostly gathered

from Windows operating system and softpedia site which contains over 500.000 appli-

cations. Most binary samples from softpedia site includes installers which contain same

APIs. We excluded installers from our test and used actual programs which are extracted
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Table 5.2: Detection results of samples after crypting with our tool

Antivirus PoisonIvy Dorkbot Boinberg
AVG Free Not Found Not Found Not Found
ArcaVir Not Found Not Found Not Found
Avast 5 Not Found Not Found Not Found
Avast Not Found Not Found Not Found
AntiVir (Avira) Not Found Not Found Not Found
BitDefender Not Found Not Found Not Found
VirusBuster Internet Security Not Found Not Found Not Found
Clam Antivirus Not Found Not Found Not Found
COMODO Internet Security Not Found Not Found Not Found
Dr.Web Not Found Not Found Not Found
eTrust-Vet Not Found Not Found Not Found
F-PROT Antivirus Not Found Not Found Not Found
F-Secure Internet Security Not Found Not Found Not Found
G-Data Not Found Not Found Not Found
IKARUS Security Not Found Not Found Not Found
Kaspersky Antivirus Not Found Not Found Not Found
McAfee Not Found Not Found Not Found
MS Security Essentials Not Found Not Found Not Found
ESET NOD32 Not Found Not Found Not Found
Norman Not Found Not Found Not Found
Norton Antivirus Not Found Not Found Not Found
Panda Security Not Found Not Found Not Found
A-Squared Not Found Not Found Not Found
Quick Heal Antivirus Not Found Not Found Not Found
Rising Antivirus Not Found Not Found Not Found
Solo Antivirus Not Found Not Found Not Found
Sophos Not Found Not Found Not Found
Trend Micro Internet Security Not Found Not Found Not Found
VBA32 Antivirus Not Found Not Found Not Found
Vexira Antivirus Not Found Not Found Not Found
Webroot Internet Security Not Found Not Found Not Found
Zoner AntiVirus Not Found Not Found Not Found
AhnLab V3 Internet Security Not Found Not Found Not Found
BullGuard Not Found Not Found Not Found

from the installers for more accurate result.

We only parsed APIs from ntdll.dll and kernel32.dll in order to make our analysis

simpler. Our kernel32.dll includes 1654 APIs and our ntdll.dll includes 2419 APIs. After

parsing benign files, we observe that 636 different APIs from kernel32.dll were used more

than 50 times in benign files. 110 different APIs are used in benign files from ntdll.dll
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more than 50 times. APIs used less than 50 times are not included in our experiments.

Our results show that there are 14 APIs from ntdll.dll which are heavily used in benign

files. These APIs are given in Table 5.3. Most of these APIs are functions which require

ring-0 privilege. Rootkits most of the time use ring-0 functions in order to communicate

with kernel[17] but they are usually in packed format. Packed files are excluded from our

experiments. There are 416 APIs from kernel32.dll which do not exist in any malware

samples. We think that these results are critical for antiviruses since their detection algo-

rithm relies on detecting malicious and benign behavior. We investigate the methods to

copy benign files functionality in next section.

Table 5.3: Most APIs used in benign files which are not common in malware samples

API Name
NtDisplayString
RtlCopyMemory
RtlFindNextForwardRunClear
RtlLookupFunctionEntry
RtlVirtualUnwind
ZwCreateFile
ZwDeleteFile
ZwOpenKey
ZwQueryValueKey
ZwReadFile
ZwSetInformationFile
ZwSetValueKey
ZwWriteFile

chkstk

5.3 Changing Functionality

We implement an experimental malware which iterates through the import table of the

target application and grabs the function name and address. By iterating through the bi-

nary of the target application, our malware finds the offset for the call procedure for that

specific function. This call procedure is further examined to approximate how many ar-

guments there are and what type of arguments it needs. Function names are stored in the
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resource section of our sample malware and they are triggered randomly within 5 sec in-

tervals with appropriate random arguments from its data section. In order to make things

easier, instead of adding the function to its own import table, malware uses GetProcAd-

dress to find the exact API address from the function name. We test our malware on 20 dif-

ferent benign applications. As a result, 16 of the resulting malware crashed due to incom-

patibility of new function’s arguments. 4 of them successfully executed new functions that

they randomly copied from benign files. These APIs are: ContinueDebugEvent, Regis-

terServiceCtrlHandlerW, SetUnhandledExceptionFilter, and GetCurrentProcess. Further

examination revealed that 3 of these APIs resulted in an error due to invalid arguments.

However, these errors did not affect the flow of the program. GetCurrentProcess exe-

cuted successfully in our experimental malware after grabbing this function from another

application.

Our results show that with a better algorithm and randomization, we can produce

self-controlled malware which can add or remove its functionality. We used standard

genetic algorithm in order to observe how this evolution might work for our malware. We

extracted a total of 1242 different benign APIs (population) and formed a deserved state.

Our deserved state contains 101 APIs which are used by famous ssh client called Putty

[29]. We only used kernel32.dll APIs for this scenario.

We give details of our genetic algorithm parameters as follows:

• Population contains 1242 APIs

• Desired state contains 101 APIs which are extracted from a benign application

• Crossover probability is 90%

• Mutation probability is 0.01%

On an average of 594 generations with 10 consecutive runs, we succeeded in reaching

our desired state. Malware combined all APIs of Putty with its malicious functions. We

believe that the scoring function of our genetic algorithm can evaluate a benign file by

randomly selecting samples from the computer and generating a random desired state in-

stead of using a fixed one. This will help each malware to add new random functionalities
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from random benign programs. It should be noted that some APIs are also removed from

the malware in order to reach desired state (mutation). We believe that our work is a novel

and practical approach to evolution.

5.4 Discussion on possible antiviral solutions against BE-

MWARE

There are several ways that an antivirus can detect a BEMWARE. Generic prevention

techniques for existing propagation methods include detecting a malware based on its

fixed code chunk. For instance, antiviruses focus on detecting decryption routine for

a polymorphic malware since its encrypted with another key in each generation. The

decryption routine is generally fixed and little changes can be done without losing its

functionality. Our evolution method which uses standard genetic algorithm is susceptible

for such detection.

The genetic algorithm should also be changed in each generation which is a tedious

task for virus authors. Antiviral solutions should exploit this and focus on detecting such

evolutionary behavior. Fixed code chunks for the evolution algorithm can be included in

a signature database in order to detect all variants of a BEMWARE.

Moreover, it is necessary to analyze different samples of the malware to detect its

purpose since the evolution algorithm uses a scoring function for each generation. The

scoring function clearly represents the behavior of the malware and gives valuable infor-

mation about its next generation. Behavior based detection features of antiviruses may

help to notify user about suspicious activity whenever malware tries to get the list of all

functionality that it can produce.

Dynamic analysis methods should also be improved since recent attacks involve emu-

lator’s weaknesses and cryptography. Modern antiviruses use whitelist scan technique in

order to warn user about a suspicious binary. The whitelist is formed by programs which

are trusted by the majority of the population. Engine updates should also use this whitelist

to prevent false positives whenever a change occurs in antiviruses’ algorithm. This will
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quicken the release procedure for an update and helps antivirus to take countermeasures

faster.
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Chapter 6

Conclusion and Future Work

Malware is advancing more rapidly than ever before. Old methods like polymorphism

and metamorphism are widely used but they are not solutions against antiviruses [26][8].

We presented that techniques from the theory of natural selection and behavior models

of species can help criminals to develop more efficient malware and we should focus on

preventing these types of attacks. We explained different behavior models and presented

our ideas about how these behaviors can be used by malware authors. We showed SpyEye

and Zbot examples and we expect more virus rivals trying to compete for resources soon.

Our research also focused on an evolution algorithm for malware which can change its

functionality rather than only signature. The changing functionality of the malware will

help us to work on this topic since the power of evolution is limitless.

We expect to see malware which makes use of modern communication channels and

social media. Imagine a decentralized botnet communicating through twitter or facebook.

It can spread faster with social engineering attacks. This will create a great advantage for

the bot since the more machines it spreads to, the higher chance it will have to evolve.

Undetectable viruses clearly show that the antiviruses are not a solution to stop malware.

However, they are the only option that people can trust for now.

More importantly, we will possibly see more cyberwarfare attacks in the future like

the well-armored but unintelligent Stuxnet example. We should predict and work methods

for fighting with malware. Electrical power grids, military, power reactors, hospitals,

39



telecommunication systems, as well as our economy can be controlled with evolutionary

malware. They can be used in various disruption and monetary techniques.

One of the great advantages for malware is the speed of technological advancement.

Technological advancement also brings new opportunities for malware survival. Enhanc-

ing human capabilities by using computational devices is becoming more popular. There

are already examples of artificial eyes, hearts, arms or other body parts. If an evolutionary

malware spreads into these kind of devices, the problem will be more complex because of

the human factor. No one wants an artificial heart with a malware in it, especially when it

can think and evolve.

As a future work, we will focus on preventing malware attacks with a rival malware

designed specially for this purpose. We succeeded at compromising one of the botnet

machines under a DDOS to get the malware responsible for the attack. We examined the

malware code and found the server which its gets commands from. With the help of a

vulnerability in the server, we were able to shut down the server which the attack origi-

nated from. This experience gives us the idea for automating this process and inheriting

it in a malware which can be used for good purposes. We believe that the combination of

evolution, cryptography, and malware can be the biggest threat or the greatest cure.
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