
1 
 

Cohesion failure and Mitosis: 

From Molecular Mechanisms to 
Organismal Consequences 

 

Mihailo Mirkovic 

Dissertation presented to obtain the PhD degree in Molecular 
Biology 

Instituto de Tecnologia Química e Biológica António Xavier | Universidade 
Nova de Lisboa 

Research work coordinated by: Instituto Gulbenkian de Ciencia 

Oeiras, May 2018 

 

 

                  
 



2 
 

Table of Contents 

Declaration………………………………...….................................6 

Declaração....................................................................................6 

Summary.......................................................................................7 

Resumo........................................................................................11 

Acknowledgments........................................................................15 

List of Publications.......................................................................17 

Introduction: 

1.0 General Introduction…………………………………........…...19 

1.1 Cohesin-Molecular Glue and much more………...............22 

1.1.1 The importance of gluing DNA molecules……….…..…..23 

1.1.2    The Cohesin Cycle……………………………..…............34 

A) The cohesin cycle: Chromatin Loading……..……...........34 

B) The cohesin cycle: Cohesion establishment………........36 

C) The cohesin cycle: Prophase and Cohesion retention at the 

centromere……………………………………………….....38 

D) The cohesin cycle: The final cut……….…..……….…….41 

     1.1.3 Multiple-step cohesin removal…………….…….....42 

1.1.4 Sister Chromatid Resolution………………..….......43 

 1.1.5 Inner-centromere defining platfor…………….…....51 

 1.1.6 Force Balance…………………………………….....53  
 1.1.7 Anaphase sharpness…………………………….….56 

 1.1.8 Concluding Remarks………………………….........57 

 



3 
 

1.2 The Guardians of Mitotic Fidelity……………………………70 

1.3 Aneuploidy and its Consequences………………………….86 

Results: 

Chapter I:  

Premature loss of cohesion and Mitosis………………….……100 

I.1 Premature Loss of Sister Chromatid Cohesion Does Not Elicit a 

Robust SAC Response…………………………………………...…104 

I.2 Loss of Sister Chromatid Cohesion Activates EC Mechanisms 

during Early Mitosis……………………………………………...…..107 

I.3 Attachments of Single Chromatids to the Mitotic Spindle Are 

Progressively Stabilized……………………………………….…….113 

I.4 Cyclin B Is Gradually Degraded during Cohesin Cleavage….119  

I.5 Mathematical Modeling of Multiple Feedback across the Mitotic 

Network………………………………………………….…….…...…120 

I.6 Cells with Premature Loss of Sister Chromatid Cohesion Are 

Ultrasensitive to Cdk1 Inhibition………………………………....…127 

I.7 Discussion……………………………………………….…....…..131 

I.8 Materials and Methods…………………………….……..……...132 

 

 

 



4 
 

Chapter II:  

Spindle Assembly Checkpoint aggravates cohesin defects in 
mitosis……………………………………………….………..….139 

II.1 Drosophila wing modifier screen reveals that depletion of Mad2 

and Mps1 suppresses the developmental defects associated with 

loss of cohesion………………………………………..…......…..141 

II.2 SAC inactivation rescues chromosome segregation defects 

associated with loss of cohesion……………………….…........146 

II.3 SAC inactivation suppresses chromosome shuffling after loss 

of cohesion…………………………………………………......…155 

II.4 SAC inactivation restores cell survival after loss of 

cohesion……………………………………………….....…...…..163 

II.5 Discussion………………………………………………....…165 

II.6 Materials and Methods……………………………….…..…168 

 

Chapter III:  

Cohesin loss and Aneuploidy in the developing fly………...180 

III.1 A genetic system for acute and time-controlled generation of 

aneuploidy in a developing organism…………..………….......…183 

 

III.2 Reversible removal of cohesin results in a single round of 

mitotic abnormalities and consequent aneuploidy…………........186 
III.3 Larvae challenged with aneuploidy during development hatch 

into impaired adults…………………………………………….…...196 



5 
 

III.4 Aneuploidy results in chromosomal instability and chromosome 

accumulation in the Neuroblasts……………………….….....….199 

III.5 Karyotype restrictions in the proliferating aneuploid Neuroblast 

population…………………………………………………….…….208 

III.6 Aneuploidy elicits a stress response in the brain tissue.….210 

III.7 Neural stemness delays aneuploidy stress response……..214   

III.8 Developmental aneuploidy does not alter significantly adult 

brain size and shape………………………………………..…......217 

III.9 Protecting only the developing brain from induced aneuploidy 

rescues the lifespan of the ecloded flies……………………...…219 

III.10 Discussion…………………………………..…….…………222 

III.11 Materials and Methods………………………………..……229 

General Discussion……………………………….……….…….242 

 

 
 
 
 
 
 
 
 
 
 



6 
 

Declaration 
 

I declare that this dissertation and the data presented are the result 

of my own work, developed between 2014 and 2018 in the 

laboratory of Dr. Raquel Oliveira at the Instituto Gulbenkian de 

Ciência in Oeiras, Portugal. Specific author contributions are 

indicated in each chapter, in the Acknowledgements section. 

Financial support was granted by Fundação para a Ciência e a 

Tecnologia, doctoral fellowship PD/BD/52438/2013 and  ERC 

Starting Grant (StG), LS3, ERC-2014-STG-638917, Marie Curie 

Career Integration Grant (MCCIG321883/CCC) and an EMBO 

Installation Grant (IG2778). 

 
Declaração 
 

Declaro que esta dissertação de doutoramento e os dados nela 

apresentados são o resultado do meu trabalho, desenvolvido entre 

2014 e 2018 no laboratório do Dr.Raquel Oliveria no Instituto 

Gulbenkian de Ciência em Oeiras, Portugal. As contribuições de 

cada autor são indicadas em cada capítulo na secção dos 

Agradecimentos/Acknowledgements.O apoio financeiro foi 

concedido pela Fundação para a Ciência e Tecnologia, através da 

bolsa de doutorame nto PD/BD/52438/2013e porfundos do 

Conselho Europeu de Investigação ERC Starting Grant (StG), LS3, 

ERC-2014-STG-638917, Marie Curie Career Integration Grant 

(MCCIG321883/CCC), EMBO Installation Grant (IG2778). 

 

                          
 
 



7 
 

                                         Summary 
 

Mitosis is a dynamic culmination of the cell cycle, resulting in 

generation of two daughter cells from one mother. In order for this 

to happen, the cell must package its DNA into chromosomes and 

divide it equally amongst progeny. To ensure this process happens 

accurately, the cell glues identical chromosomes together so it can 

segregate them in symmetrical fashion during anaphase. The glue 

holding chromosomes together is a molecule called cohesin, which 

encompasses replicated DNA fibers via topological entrapment. 

The aim of this thesis was to study the immediate mitotic response 

to premature cohesion loss, as well as the long term consequences 

of such perturbed mitosis for the cell and the whole organism. In 

order to study cohesion loss in mitosis, we utilized an established 

acute system for cohesin depletion, via the use of TEV protease, 

which cleaves TEV sites inserted into cohesin within hours after 

heat shock induction, or minutes after injection. To study cohesion 

loss in the entire organism, we modified the existing TEV tool in 

D.melanogaster to include a cohesin rescue step, generating a 

transient cohesin loss, which would impair mitosis in a window 

time, while minimizing chronic damage to the organism. 

 

The Chapter I of the thesis focuses on the interplay between 

cohesin loss and mechanisms protecting mitotic fidelity. It has 

previously been demonstrated that premature cohesion loss 

triggers the activation of the Spindle Assembly Checkpoint (SAC), 

a system for mitotic delay generated by unattached chromosomes, 

whose main role is to provide more time for Aurora B, the main 

error correction protagonist, do destabilize erroneously attached 

chromosomes and allow for biorientation. However, cells escape 
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SAC surveillance upon cohesion loss relatively fast, resulting in 

aneuploidy. Our work provided additional insight on why cohesin 

loss is not robustly detected by the SAC. We have demonstrated 

that upon premature cohesion loss, chromosomes undergo cycles 

of attachment and detachment to the mitotic spindle, which are 

Aurora B dependent. However these cycles of detachment and 

consecutive SAC generation decline during the arrest and result in 

aberrant mitotic exit. The likely reason behind this is the fact that 

Aurora B, as well as SAC are dependent on the activity of Cdk1-

Cyclin B complex. On the other hand, the stability of Cyclin B is 

SAC dependent, as SAC abolishment leads to Cyclin B 

degradation. To add an additional layer of complexity, Aurora B 

activity, which leads to SAC generation, is also Cyclin B 

dependent. 

This places the entire system in a positive feedback state, where 

the activity decline in any of the three main modules (SAC, Aurora 

B and Cyclin B) results in a mitotic exit, despite the dire 

consequences for the cell. 

 

In the Chapter II of the thesis, we examined situations that 

alleviate mitotic defects caused by premature loss of cohesin. An 

interesting modulator screen of our collaborators, in the Drosophila 

wing disc, revealed that cohesion defects can be suppressed if the 

SAC is downregulated. This is a very counterintuitive result, as the 

SAC is one of the main guardians of mitotic fidelity. However, we 

demonstrate that the prolonged mitosis due to SAC activation in 

the absence of cohesin is actually detrimental to the symmetry of 

genome segregation, when compared to mitosis without cohesion 

where SAC is not active. The culprit behind this aggravated 
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asymmetry when mitosis is prolonged is the error correction and 

Aurora B activation, which results in continuous cycles of 

chromosome shuffling, attachment and detachment. Live imaging 

and the quantification of centromere segregation at the anaphase 

in the embryo, as well as the wing disc, demonstrated that mitotic 

fidelity can be enhanced in the absence of cohesin in two major 

ways. The first is the SAC inhibition, which shortens mitosis and 

allows for mitotic exit without excessive chromosome shuffling and 

motion. The second is the inhibition of Aurora B, which results in a 

similar rescue of symmetry, as it prevents chromosome spindle 

disengagement and inhibits SAC in the process. Surprisingly, even 

in the complete absence of cohesin, the initial chromosome-

microtubule capture is quite accurate, and additional rounds of 

trying to correct an unfixable error only make the situation worse. 

               

The Chapter III of the thesis examines the consequences of 

mitosis without cohesin at the level of a developing organism. 

Since cohesin has numerous interphase roles, we developed a 

system in which the initial cleavage of cohesin is followed by a 

rescue with a TEV-resistant, wild type variant. This tool was 

adapted to use in the entire developing Drosophila melanogaster, 

and when used to generate cohesin loss and subsequent genome 

imbalance, it resulted in eclosion of adult flies with severe motion 

defects and an extremely short lifespan. We traced the fate of 

aneuploid cells in two tissues, the epithelial wing disc, and the stem 

cell of the nervous system, the Neuroblast. We demonstrate, as 

previously published, that aneuploidy in the wing results in cell 

death and compensatory proliferation. However, the brain stem 

cells, Neuroblasts, display a high tolerance for aneuploidy, 
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undergoing multiple aneuploid cell cycles, accumulating 

chromosomes, and showing a delayed appearance of aneuploid 

stress response. These cells displayed chromosomal instability just 

hours after becoming aneuploid, further contributing to their 

karyotype diversity. We then utilized drosophila genetics to 

examine organ sufficiency when faced with developmental 

aneuploidy. We did so by protecting only the brain from 

developmental aneuploidy with the use of Neuroblast-specific 

drivers to express the non-cleavable version of cohesin 

constitutively. Protecting only the brain, but not the rest of the 

developing organism from aneuploidy induction completely rescues 

the motion defects and the lifespan of adults. This result points to 

the brain as a limiting tissue in metazoan aneuploid development. 
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                                           Resumo 

A mitose é o culminar dinâmico do ciclo celular, que resulta na 

geração de duas células filhas a partir de uma mãe. Para que isso 

aconteça, a célula deve empacotar o DNA em cromossomas e 

dividi-lo igualmente entre as células descendentes. De forma a 

garantir que este processo aconteça com precisão, a célula “cola” 

os cromossomas idênticos um ao outro para assim os segregar 

simetricamente durante a anafase. A cola que mantém os 

cromossomas juntos é uma molécula chamada coesina, que 

engloba as fibras de DNA vizinhas, prendendo-as 

topologicamente. O principal objetivo desta tese foi estudar a 

resposta mitótica imediata à perda prematura dessa coesão, bem 

como as consequências a longo prazo de uma mitose perturbada 

por tal, para a célula e para o organismo como um todo. Para 

estudar a perda da coesão na mitose, este trabalho baseou-se 

num sistema de perturbação agudo, estabelecido para depleção 

da coesina, através do uso da protease TEV. Esta cliva 

sequências TEV inseridas na coesina, horas após a indução de 

choque térmico ou minutos após a injeção. Para estudar a perda 

de coesão em todo o organismo, modificamos a ferramenta TEV 

existente em D. melanogaster para incluir uma etapa de resgate da 

coesina, gerando uma perda transitória desta, que prejudicaria a 

mitose numa janela de tempo limitada, minimizando os danos 

crónicos no organismo. 

 

O Capítulo I deste trabalho foca na interação entre a perda de 

coesina e o mecanismo que protege a fidelidade mitótica. Foi 

demonstrado anteriormente que a perda prematura de coesão 
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desencadeia a ativação do ponto de controlo mitótico (SAC), um 

sistema de atraso mitótico gerado por cromossomas não ligados, 

cujo principal papel é o de fornecer mais tempo para a Aurora B, 

principal protetora de correção de erros, fixar cromossomas 

erroneamente ligados. No entanto, após perda de coesão, as 

células escapam à vigilância do SAC relativamente rápido, levando 

a células aneuploides. O nosso trabalho forneceu informações 

adicionais sobre como a perda de coesina não é detetada de 

forma robusta pelo SAC. Nós demonstramos que, após a perda 

prematura da coesão, os cromossomas sofrem ciclos de fixação e 

desprendimento do fuso mitótico, que são dependentes da Aurora 

B. No entanto, esses ciclos de desprendimento e ativação 

consecutiva do SAC diminuem durante o bloqueio e resultam 

numa saída mitótica aberrante. A razão provável por trás disso é o 

fato de que a Aurora B, bem como SAC, são dependentes da 

atividade do complexo Cdk1-Ciclina B. Por outro lado, a 

estabilidade da Ciclina B é dependente do SAC, uma vez que a 

supressão do SAC leva à degradação da Ciclina B. Para adicionar 

uma camada adicional de complexidade, a atividade da Aurora B, 

que leva à ativação do SAC, também é dependente da Ciclina B. 

Tal coloca o sistema num estado de feedback positivo, onde o 

declínio em qualquer um dos três módulos principais (SAC, Aurora 

B e Ciclina B) resulta numa saída mitótica, apesar das terríveis 

consequências para a célula. 

 

No Capítulo II desta tese, examinamos situações que aliviam 

defeitos mitóticos causados pela perda prematura da coesina. Um 

screen fenotípico interessante a partir do disco imaginal da asa de 
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Drosophila revelou que os defeitos de coesão podem ser 

suprimidos se o SAC for regulado negativamente. Este é um 

resultado muito contra-intuitivo, uma vez que o SAC é um dos 

principais guardiões da fidelidade mitótica. No entanto, 

demonstramos que a mitose prolongada devido à ativação do SAC 

na ausência de coesina é realmente prejudicial à simetria da 

segregação do genoma, quando comparado à mitose sem coesão 

onde o SAC não está ativo. O culpado por trás dessa assimetria 

agravada quando a mitose é prolongada é a correção de erros e a 

ativação da Aurora B, que resulta em ciclos contínuos de 

reordenação, fixação e desprendimento dos cromossomas. 

Através de live imaging e da quantificação da segregação do 

centrómero na anafase no embrião, bem como no disco imaginal 

da asa, demonstraram que a fidelidade mitótica pode ser 

aumentada na ausência de coesina de duas formas principais. A 

primeira é através da inibição do SAC, que encurta a mitose e 

permite a saída mitótica sem o excessivo embaralhamento e 

movimento dos cromossomas. A segunda é através da inibição da 

Aurora B, que resulta num resgate semelhante de simetria, já que 

impede o desprender dos cromossomas do fuso mitótico, inibindo 

o SAC no processo. Surpreendentemente, mesmo na ausência 

completa de coesina, parece que a captura inicial dos 

cromossomas e microtúbulos é bastante precisa, e tentativas 

adicionais de corrigir um erro não-remediável só pioram a situação. 

O Capítulo III desta tese examina as consequências da mitose 

sem coesina ao nível do organismo em desenvolvimento. Uma vez 

que coesina tem numerosos papéis interfásicos, desenvolvemos 

um sistema no qual a clivagem inicial da coesina é seguida por um 

resgate com uma variante de tipo wild-type resistente a TEV. Esta 
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ferramenta foi adaptada de forma a poder ser usada durante todo 

o desenvolvimento da Drosophila melanogaster. Quando usada 

para gerar perda da coesina e subsequente desequilíbrio do 

genoma, resultou na eclosão de moscas adultas com defeitos de 

movimento severos e um tempo de vida extremamente curto. 

Traçamos o destino das células aneuploides em dois tecidos, o 

disco epitelial da asa e a célula estaminal do sistema nervoso, o 

neuroblasto. Demonstramos, como publicado anteriormente, que a 

aneuploidia na asa resulta em morte celular. No entanto, as células 

estaminais cerebrais, os neuroblastos, apresentaram uma alta 

tolerância à aneuploidia, sofrendo múltiplos ciclos celulares 

aneuplóides, acumulando cromossomas e apresentando um atraso 

no aparecimento das respostas dos sinalizadores de stress. Essas 

células apresentaram instabilidade cromossômica apenas algumas 

horas após se tornarem aneuploides, contribuindo ainda mais para 

a diversidade cariotípica. Utilizamos então a genética da 

Drosophila para examinar a suficiência de cada órgão quando 

confrontados com a aneuploidia ao nível do desenvolvimento. 

Fizemos isso protegendo apenas o cérebro da aneuploidia no 

desenvolvimento, fazendo com que a versão não-clivável da 

coesina fosse expressa constitutivamente e especificamente em 

neuroblastos. Proteger apenas o cérebro, mas não o resto do 

organismo em desenvolvimento da indução de aneuploidia, 

resgata completamente os defeitos de movimento e o tempo de 

vida dos adultos. Este resultado aponta para que o cérebro seja 

um tecido limitante no desenvolvimento aneuplóide metazoário. 
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1.0 General Introduction 

Mitosis as the culmination of the cell cycle 

Cell division is a fundamental process of life.  It allows the 

transmission of information, encoded in the genome or the cytosol, 

from one generation to another, while simultaneously providing the 

capacity for rejuvenation. As such, this process is repeated 

numerous times during the lifetime of unicellular organisms, and 

billions of times during the development and growth of metazoans. 

Just the sheer numerical scale of this process requires extreme 

accuracy as errors in cell division can lead to cell death, decline of 

cell fitness or the rise of a disease. 

Cell division is the last stage of the process known as the cell 

cycle. Cell cycle consists of the G1 stage, mainly characterized by 

rapid growth and cell volume increase, S phase, where DNA is 

replicated and the cell is already committed to division. After 

replication takes place, G2 stage represents a time when the cell 

undergoes large scale biosynthesis in order to prepare for mitosis. 

Each of these stages and their transitions are highly regulated 

events, with multiple checkpoints. The G1 to S transition is mainly 

dependent on cell growth, allowing the cell to measure its own size 

before committing to DNA replication and consequent division. S 

phase is marked by replication of genomic loci, and has a 

checkpoint of its own, as errors during DNA replication can recruit 

the DNA damage and repair machinery. G2 to Mitosis transition is 

regulated by the tug of war between Cyclin B-Cdk1 accumulation 

and activation, and its inhibitors, such as the Wee phosphatase. 

Once the cell commits to mitotic entry, there is no going back. 
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Mitosis in its self is a fascinating process. To put on a bit of a 

personal twist on this introduction, after the first time of observing 

mitosis at the microscope, I had no qualms about studying this 

process during my PhD. I knew nothing about it (and still know very 

little), but I knew I wanted to study it. The sheer speed and 

magnificent orchestration of this process is the reason why every 

microscopist remembers his first live encounter with a dividing cell. 

Cell division happens on the timescale from minutes to up to an 

hour in metazoans, and is by far the shortest stage of the cell cycle. 

However, in that time, the changes in the cell architecture are both 

rapid and profound. In metazoans, the nuclear envelope, the great 

barrier between the cytosol and the DNA is destroyed by the 

activity of Cdk1-Cyclin B mitotic complex. At the same time, the 

migration of duplicated centrosomes, coupled with the 

polymerization of tubulin give rise to the mitotic spindle, which fills 

the space vacated by the nuclear envelope. This mitotic spindle 

aims to make contact with the DNA, which itself undergoes rapid 

and profound changes. 

The DNA undergoes a poorly understood process known as 

condensation, in which the entire genome is compacted into 

distinct units, called chromosomes. This takes place by extensive 

and dynamic DNA looping and reorganizing, chaperoned by the 

activity of Mitotic kinases and numerous molecules regulating 

chromatin structure. Among the key structural molecules involved 

in chromosome organization and architecture are cohesin and 

condensin. One ensures that the chromosomes which are identical 

are linked, while another ensures their discrete existence as 

compact units, structurally independent from each other. 
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All these rapid changes result in a classical mitotic image which is 

present in any elementary school textbook; Metaphase, a stage 

where condensed chromosomes are bioriented on the mitotic 

spindle, in the middle of the cytosol. 

The end of mitosis is carefully orchestrated and rapid. 

Simultaneously, Cohesin is destroyed, allowing the spindle to pull 

the chromosomes to the poles, and at the same time, Cyclin B-

Cdk1 activity is downregulated, unleashing the activity of 

phosphatases and allowing for cytokinesis and mitotic exit to take 

place. This is followed by the reformation of the nuclear envelope, 

which results in two daughter cells arising from a common mother. 
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Introduction 1.1- Cohesin and its role in the cell cycle 

This chapter is adapted from: 

Centromeric Cohesin: Molecular Glue and Much More. 

Mirkovic M, Oliveira RA. 

Progress in Molecular and Subcellular Biology. 2017;56:485-513.  

ABSTRACT  

 

Sister chromatid cohesion, mediated by the cohesin complex, is a 

pre-requisite for faithful chromosome segregation during mitosis. 

Premature release of sister chromatid cohesion leads to random 

segregation of the genetic material and consequent aneuploidy. 

Multiple regulatory mechanisms ensure proper timing for cohesion 

establishment, concomitant with DNA replication, and cohesion 

release during the subsequent mitosis. Here we summarize the 

most important phases of the cohesin cycle and the coordination of 

cohesion release with the progression through mitosis. We further 

discuss recent evidence that has revealed additional functions for 

centromeric localization of cohesin in the fidelity of mitosis in 

metazoans. Beyond its well-established role as “molecular glue”, 

centromeric cohesin complexes are now emerging as a scaffold for 

multiple fundamental processes during mitosis, including the 

formation of correct chromosome and kinetochore architecture, 

force balance with the mitotic spindle, and the association with key 

molecules that regulate mitotic fidelity, particularly at the 

chromosomal inner-centromere. Centromeric chromatin may be 

thus seen as a dynamic place where cohesin ensures mitotic 

fidelity by multiple means.  
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1.1.1 The importance of gluing DNA molecules 

Mitosis is the most dynamic period in the life of the cell. In a short 

period of time, the cell condenses its DNA into discrete 

chromosomes, aligns them on the metaphase plane, and finally, 

destroys the forces that hold equal-DNA molecules together, 

creating two identical daughter nuclei in the process. The fidelity of 

this process relies on cells’ ability to keep the two identical sister 

chromatids together from the moment of DNA replication until the 

later stages of mitosis, once (and only when) the conditions for 

their separation are met.  

 

Sister chromatid cohesion provides cells with the ability to 

determine chromosome identity, as cohesed sister chromatids are 

identical and therefore need to be pulled to opposite poles. 

Moreover, sister chromatid cohesion provides the counterforce that 

resist the pulling force of the spindle, thus preventing premature 

sister chromatid separation (Oliveira et al., 2010; Tanaka et al., 

2000), and random chromosome segregation. Cohesin is also 

essential for the correct geometry of the kinetochore region which 

promotes effective, stable capture of the kinetochores by the 

mitotic spindle, leading to the biorientation of chromosomes during 

metaphase (Ng et al., 2009; Sakuno et al., 2009; Stephens et al., 

2013). 

 

Therefore, to align chromosomes at the metaphase plane and 

segregate them symmetrically, chromosomal cohesive state must 

be maintained until anaphase at all cost. Premature separation of 

chromosomes renders the cell unable to align chromosomes 

correctly, causing random segregation of the genetic material and 
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consequent aneuploidy (Figure 1), which is usually lethal and a 

common cause of human pathological conditions (Box 1).  

 
 

 
 
 
Fig. 1 Sister chromatid cohesion during mitosis. Cohesin is essential 
for biorientation of chromosomes on the metaphase plane and the 
symmetry of subsequent anaphase. Defects in sister chromatid cohesion 
result in premature separation of sister chromatids, resulting in random 
chromosome segregation and aneuploidy 
 

____________________________________________________ 
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Box 1 – Sister Chromatid cohesion defects and human 
disease  
Proteins involved in keeping the two sister DNAs together have 

been linked to several human-health and reproduction conditions. 

Defects in cohesion and mechanisms regulating cohesin are 

common amongst cancer cells (De Koninck and Losada, 2016; 

Losada, 2014). Cancer cells display Chromosomal Instability (CIN) 

characterized by frequent gain or loss of chromosomes (Holland 

and Cleveland, 2009). CIN enhances the speed at which the 

cancer cells can evolve, by gaining or losing whole chromosomes, 

making them highly adaptable to any possible treatment. 

Interestingly, recent studies have been able to reverse the 

chromosomal instability of multiple cancer-derived cells lines by 

reinstating the network associated with protection of cohesin 

(Tanno et al., 2015).  

 

Age-related female infertility has also been proposed to relate 

with cohesion decay, giving rise to genetic abnormalities such as 

Down’s syndrome (Reviewed in (Webster and Schuh, 2016). 

“Cohesion fatigue”, evidenced by decreased levels of cohesion is 

followed by segregation defects and decreased fertility in oocytes 

(Patel et al., 2015; Zielinska et al., 2015). It is currently thought that 

the meiotic cohesin variant is loaded into an oocyte only during the 

germ-line development (pre-meiotic S-phase) without significant 

turn-over (Burkhardt et al., 2016; Tachibana-Konwalski et al., 

2013). This would mean that oocytes solely rely on cohesion 

established during their creation, and maintain it throughout the 

entire reproductive life cycle of the female, which lasts for decades 

in humans. Studies in human oocytes have shown that cohesin 

deficiency, present in older females, contributes to the increased 
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distance between bivalents in meiosis and leads to aberrant 

kinetochore attachments and segregation errors, resulting in the 

increased frequency of aneuploidy (Patel et al., 2015; Zielinska et 

al., 2015). 

 

Other rare developmental disorders have also been linked to the 

cohesion process and are now known as “Cohesinopathies” 

(reviewed in references (Dorsett, 2007; Liu and Krantz, 2008; 

Remeseiro et al., 2013)).  Most of these diseases are linked to the 

non-mitotic roles of the cohesion apparatus (e.g. regulation of 

transcription and genome architecture). However, a certain number 

of Cohesinopathies, such as the Roberts or Warsaw breakage 

syndromes exhibit cohesion defects between replicated chromatids 

during mitosis, resulting in aneuploidy and mitotic defects (Tomkins 

et al., 1979; van der Lelij et al., 2010).  

_____________________________________________________ 

 

In order to understand how defects in chromosome cohesion take 

place, it is fundamental to understand the molecular structure of the 

cohesin complex, as well as the principle mechanisms underlying 

its loading, establishment and release during the cell cycle. Here 

we summarize our current knowledge on the regulation of sister 

chromatid cohesion. We further highlight the importance of such 

dynamic regulation for the efficiency of mitosis, in mechanisms that 

go far beyond cohesin’s primary role in sister chromatid cohesion. 

 

Cohesin: the molecular glue that holds chromosomes together 
 

The molecule responsible for the pairing of replicated 

chromosomes is called cohesin (Guacci et al., 1997; Michaelis et 
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al., 1997) (Figure 2). Cohesin is a tripartite ring complex, which 

topologically entraps replicated DNA molecules keeping them 

together until the onset of anaphase (Haering et al., 2008; Ivanov 

and Nasmyth, 2005). The core of this ring complex is composed 

out of three molecules: SMC 1 and SMC 3 (belonging to the 

Structural Maintenance of Chromosomes protein family) and the 

kleisin subunit Scc1, which connects them (Nasmyth and Haering, 

2009; Peters et al., 2008). (Figure2). Additional proteins directly 

associate with the cohesin complex (Scc3/SA, Pds5, WAPL, 

Sororin) and are thought to have critical roles in cohesin dynamics, 

and consequently mitotic fidelity (summarized in Box 2).  

 

 

 

 

 

 
Figure. 2 The cohesin complex. Cohesin complex forms a ring-shaped 
molecule that topologically embraces sister DNA molecules inside its ring 
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Cohesin and its regulators 
 
 

 
 
Figure 3: Cohesin and associated molecules. The cohesin complex and 
the different associated molecules that modulate cohesin’s function. 
Molecules are color-coded according to their influence on the stability of 
cohesin’s association with chromatin (molecules that promote cohesion 
are in green; cohesion antagonists in red and proteins with dual effect in 
orange) 
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The most popular, and soundly tested cohesin ring model 

postulates that cohesin keeps sister chromatids together by 

entrapping sister DNA fibers within the same cohesin ring (Haering 

et al., 2008).  EM-studies support that cohesin rings are about 40 

nm in diameter (Haering et al., 2002) thus providing sufficient 

space for enclosing two 11 nm fibers. Other models have been 

proposed, such as the “handcuff” model, in which cohesion is 

mediated by two interlinked cohesin complexes, each entrapping 

its own DNA fiber (Diaz-Martinez et al., 2008; Guacci, 2007). In 

either case, solid evidence supports that cohesin’s interaction with 

DNA is of a topological nature (Haering et al., 2008; Ivanov and 

Nasmyth, 2005), emphasizing that regulation of cohesin binding 

and function relies on the opening and closing the interphases 

between the core components (discussed below).  

 Besides its role in sister chromatid cohesion, cohesin also 

regulates transcription, contributes to the DNA repair mechanisms, 

and participates it the organization of the genome in mitotic and 

post-mitotic tissues (Nasmyth and Haering, 2009; Peters et al., 

2008)  

The distribution and presence of cohesin on chromatin during the 

cell cycle coincides with its multiple roles. Cohesin is loaded onto 

chromatin during G1 phase in budding yeast (Guacci et al., 1997) , 

and already in telophase in vertebrates (Losada et al., 1998). 

During G1 phase, Fluorescence Recovery After Photo-bleaching 

(FRAP) studies have shown that cohesin is dynamically interacting 

with the DNA (Gerlich et al., 2006).  Similar dynamics was 

observed in cells that are not undergoing mitotic divisions, for 

example, endocycling Drosophila Salivary glands (Eichinger et al., 

2013). This highly dynamic nature of cohesin-DNA interaction in 

non-dividing or non-replicated cells is believed to relate to 
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cohesin’s role in transcription regulation and interphase genome 

architecture. 

Following the onset of S phase, a fraction of cohesin molecules 

establishes cohesion between newly replicated sister chromatids. 

Specific changes on the cohesin complex (discussed below) 

ensure the post-replicative stabilization of cohesin-DNA interaction 

concomitantly or right after replication fork passage. This cohesive 

state is then maintained until the subsequent mitosis. 

In early mitosis, the majority of the cohesin complexes are released 

from chromosome arms. By the time cells reach metaphase, 

cohesion is solely maintained by a small pool of cohesin molecules 

retained at the centromeric and pericentromeric regions (Losada et 

al., 1998; Waizenegger et al., 2000; Warren et al., 2000). 

At the onset of anaphase, remaining centromeric cohesin is 

destroyed in a rapid and acute manner by a cysteine protease 

named Separase, allowing the segregation of sister chromatids by 

the spindle (Uhlmann et al., 1999). This enzyme cleaves the kleisin 

subunit Rad21/Scc1 releasing sister chromatids from topological 

entrapment. The destruction of cohesin during anaphase marks the 

point of no return for the mitotic cell: once cohesin is cleaved, 

separation of the chromatids is rapid and irreversible. 

Consequently, release of cohesin from mitotic chromosomes is a 

highly regulated affair. The key surveillance mechanism governing 

cohesin release is the Spindle Assembly Checkpoint(SAC) 

(Reviewed in (Musacchio and Salmon, 2007). The SAC regulates 

cohesin cleavage by delaying the onset of anaphase until all the 

chromosomes are bioriented on the metaphase plane. SAC 

mediates this delay by directly inhibiting the Anaphase Promoting 
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Complex/Cyclosome (APC/C), whose activity is needed for 

anaphase events. APC/C mediates cohesin cleavage trough 

indirect activation of Separase, the protease responsible for 

proteolytic opening of the cohesin ring.  

Loss of cohesin or cohesin-regulators in virtually all organisms 

results in premature separation of sister chromatids (Guacci et al., 

1997; Losada et al., 1998; Michaelis et al., 1997; Mirkovic et al., 

2015; Sumara et al., 2000; Vagnarelli et al., 2004), arguing that 

cohesin is the most significant force that counteracts spindle 

forces. Nevertheless, it is conceivable that other forces may 

additionally play a role in chromosome cohesion. In particular, 

DNA-DNA intertwines (catenation) have long been argued to 

contribute to cohesion during mitosis (Reviewed in (Diaz-Martinez 

et al., 2008; Guacci, 2007; Liu et al., 2009b). Due to the helical 

nature of the DNA molecule, the replication fork passage creates 

tangles between replicated DNA molecules. These catenations 

need to be resolved before the onset of anaphase; otherwise, the 

entanglements will cause chromosome bridges and breakages in 

the DNA molecule. Topoisomerase II is the molecule responsible 

for de-catenation of these linkages and inhibition of this enzyme 

leads to accumulation of catenations, which are sufficient to confer 

cohesion even in the absence of cohesin proteins (Toyoda and 

Yanagida, 2006; Vagnarelli et al., 2004). 

How much residual catenation contributes to cohesion during 

normal mitosis is a matter of debate. Although residual catenation 

has been observed even in anaphase segregating chromatids 

(Baumann et al., 2007), inhibition of topoisomerase specifically 

during metaphase has only a small effect on the efficiency of 

chromosome segregation (Oliveira et al., 2010). This suggests that 



33 
 

residual catenation may contribute to chromosome cohesion; yet, it 

is insufficient to resist the drastic spindle forces affecting 

chromosomes during mitosis. More importantly, unlike cohesin’s 

destruction, which requires SAC silencing and APC/C activation, 

there is little to no evidence that removal of residual catenation is 

delayed by cell cycle progression checkpoints which control 

mitosis. SUMOylation of topoisomerase II has been proposed to 

restrict centromeric de-catenation during mitosis (Bachant et al., 

2002; Dawlaty et al., 2008; Ryu et al., 2010), but there is no 

evidence that this reaction is under surveillance of the SAC. Thus, 

regulation of the cohesive state of chromosomes is mechanistically 

linked to the control of cohesin’s association with chromatin 

throughout the cell cycle, which will be discussed below. 

Fig. 4 Overview of the cohesin cycle. Cohesin is loaded in telophase or 
G1, and is dynamically associated with chromatin. Upon replication, 
cohesion is established, connecting two replicated strands. Non-
centromeric cohesin is removed from chromosome arms during prophase 
in metazoans, resulting in X-shaped chromosomes in metaphase. Finally, 
cohesin is cleaved during anaphase, allowing for the separation of sister 
chromatids. 
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1.1.2 The Cohesin Cycle 
A) The cohesin cycle : Chromatin Loading 

 

 
Fig. 5 Cohesin loading and turnover. Cohesin loading onto DNA 
depends on the Scc2/4complex. DNA loading involves opening of the 
SMC1/3 interface, the hinge. Before replication, this interaction is 
dynamic, as loaded cohesin can be destabilized by WAPL, which opens 
the SMC3/Kleisin interface and releases cohesin from the chromatin. 
 

Cohesin loading onto chromatin is dependent on a two-protein 

complex known as Scc2/4 , also known as NIPB (Nipped-B) in 

D.melanogaster, or NIPBL (NIPB-Like) complex in humans 

(Ocampo-Hafalla and Uhlmann, 2011). The Scc2/Scc4 loading 

complex is essential for sister chromatid cohesion during G1/S 

phase, but not during G2 (Ciosk et al., 2000; Uhlmann and 

Nasmyth, 1998). This would entail that the Scc2/Scc4 has a 

primary function of loading cohesin onto the chromatin, but not in 

its stabilization or maintenance.  

Given the ring-like architecture of cohesin, its loading onto 

chromatin requires opening of the ring. Elegant experiments with 

fusion of interfaces between different cohesin components support 

that the entry gate for cohesin loading resides at the interface of 

the SMC1 and SMC3 hinge domains, in an ATP-dependent 

process (Arumugam et al., 2003; Gruber et al., 2006; Weitzer et al., 
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2003). Nevertheless, the molecular mechanism by which Scc2/4 

promote cohesin’s loading remains unknown. 

Sites of cohesin loading do not necessarily coincide with cohesin’s 

accumulation. This is mostly due to the fact that once loaded, 

cohesin complexes can slide on the DNA molecule (Hu et al., 2011; 

Lengronne et al., 2004; Ocampo-Hafalla et al., 2016; Stigler et al., 

2016). Additionally, before DNA replication, the cohesin molecules 

display a highly dynamic association with DNA (Gerlich et al., 

2006).  Dissociation of cohesin from un-replicated DNA molecules 

is mediated by Wings-apart like protein (WAPL) (Gandhi et al., 

2006; Kueng et al., 2006; Verni et al., 2000). Upon binding to the 

cohesin complex, WAPL removes cohesin from chromatin by 

disrupting the interface between SMC3 and Rad21/Scc1 subunits 

(Buheitel and Stemmann, 2013; Eichinger et al., 2013). 

Cohesin loading is not a uniform event across the chromatin 

landscape and is found to be enriched at the 

centromeric/pericentromeric regions in most species studied so far 

(Blat and Kleckner, 1999; Glynn et al., 2004; Oliveira et al., 2014). 

Studies in budding yeast support that cohesin enrichment at the 

centromere is dependent on centromeric DNA sequences as well 

as proteins involved in kinetochore assembly (Megee and 

Koshland, 1999; Tanaka et al., 1999; Weber et al., 2004). 

However, species with longer centromeric sequences, such as 

fission yeast, rely on heterochromatin rather than centromeric 

sequences for cohesin enrichment (Bernard et al., 2001; Nonaka et 

al., 2002). In accordance, recent studies in D. melanogaster 

showed that cohesin enrichment at ectopic regions of 

pericentromeric heterochromatin occurs in the absence of a 

proximal centromere, most likely due to preferential binding of the 
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cohesin loading factor Scc2/Scc4 (Nipped B) (Oliveira et al., 2014). 

The preferential activity of Nipped B at the centromeric region is 

thought to be due to the specific state of pericentromeric 

heterochromatin, mainly H4K20 and H3K9 methylations and the 

presence of HP1 protein, tough clear links have been controversial 

(Hahn et al., 2013; Koch et al., 2008).  

B) The cohesin cycle II: Cohesion establishment 

 

Fig. 6 Cohesion establishment during S phase. Upon DNA replication, 
a fraction of cohesin becomes stable on the chromatin. This happens due 
to SMC3 acetylation by Eco1 and recruitment of Sororin, protecting the 
cohesin complex from WAPL removal. This stable fraction of cohesin is 
considered “cohesive” cohesin, stably binding sister chromatids until the 
end of mitosis 
 

Cohesin establishment occurs during replication, at the time the 

newly replicated DNA molecule is being formed.  Disruption of 

cohesin loading during G1 results in sister chromatid defects, while 

disruption during G2 does not. This means that the “effective” 

cohesion is established during S phase, during DNA replication 

(Uhlmann and Nasmyth, 1998). At the onset of replication, the 

dynamic properties of cohesin turnover change and a new pool of 
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stable, “cohesive” cohesin can be identified by FRAP (Gerlich et 

al., 2006).   

Stabilization of cohesin complexes upon replication depends on the 

Eco1 acetyl transferase (Skibbens et al., 1999; Tanaka et al., 2000; 

Toth et al., 1999). This enzyme acetylates cohesin associated with 

replicated DNA at specific lysine residues on SMC3 and failure to 

acetylate leads to cohesion defects and cell death. The mechanism 

by which SMC3 lysine acetylation prevents cohesin de-association 

once it is bound to chromatin is contentious (reviewed in (Rudra 

and Skibbens, 2013)). Some studies propose models in which the 

acetylation locks the SMC3/kleisin interface, effectively closing the 

ring; however, these findings are inconsistent with the fact that 

SMC3 can be acetylated before replication (Rudra and Skibbens, 

2013). SMC3 acetylation during the S phase has also been shown 

to confer cohesin protection by aiding the recruitment of Sororin, 

which favors cohesion establishment by protecting acetylated 

cohesin complexes from WAPL-mediated removal (Nishiyama et 

al., 2010). 

These stably associated cohesin molecules (~30% of total 

chromatin bound cohesin (Gerlich et al., 2006)) are responsible for 

sustaining cohesion from the time of DNA replication until the 

subsequent mitosis. 
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C) The cohesin cycle: Cohesin’s Prophase Release and 
retention at the centromere 
 

 
Fig. 7 Cohesin release during early mitosis and centromeric 
protection. In metazoans, cohesin is removed from the arms by the 
prophase pathway. Mitotic kinases phosphorylate Sororin and SA. 
Phosphorylation induces Sororin displacement, which allows WAPL to 
destabilize cohesin. Centromeric cohesin complex are protected from this 
removal process as Shugoshin/PP2A complex protects centromeric 
cohesion from WAPL-mediated removal 
 
Once the cell enters mitosis, profound changes in the distribution of 

cohesin begin to take place. Cohesin at the chromosome arms is 

removed while centromeric cohesion is retained (Losada et al., 

1998; Waizenegger et al., 2000; Warren et al., 2000). The loss of 

arm cohesion, coupled with centromeric retention gives the 

characteristic “X” shape to the metaphase chromosomes. The 

removal of cohesin from the arms in early mitosis is a consequence 
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of the “prophase pathway” which mainly relies on action of WAPL 

protein (Gandhi et al., 2006; Kueng et al., 2006). 

WAPL imposes opening of the cohesin ring by disrupting the 

interface between SMC3 and Rad21/Scc1 subunits (Buheitel and 

Stemmann, 2013; Eichinger et al., 2013). Consequently, WAPL 

mutations or knockdown leads to the loss of the characteristic X 

shape of chromosomes, with cohesin remaining all over 

chromosome arms (Gandhi et al., 2006; Haarhuis et al., 2013; 

Kueng et al., 2006). 

Several mitotic kinases contribute to the process of cohesin 

removal, by phosphorylating key proteins involved in the cohesin 

cycle. Aurora B and Cyclin Dependent Kinase 1 (Cdk1) were 

shown to antagonize Sororin by phosphorylation, resulting in its 

dissociation from chromosome arms during prophase (Dreier et al., 

2011; Nishiyama et al., 2013). WAPL and Sororin directly compete 

for the binding to the cohesin-associated protein Pds5 (Nishiyama 

et al., 2010). The removal of Sororin from chromosome arms 

during prophase favors WAPL binding, and consequently the 

removal of cohesin complexes from chromosome arms. In addition 

to antagonizing Sororin, Aurora B seems to participate in WAPL 

activation, thus directly promoting cohesin removal (Nishiyama et 

al., 2013) 

Polo Like kinase (Plk) is another key mitotic kinase participating in 

the cohesin cycle. The phosphorylation activity of Plk1 is crucial for 

the release of cohesin during the prophase pathway by 

phosphorylation of SA (Hauf et al., 2005; Lenart et al., 2007; 

Sumara et al., 2002). The net result of these changes in the 
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cohesin complex results in the removal of most of cohesin from 

chromosome arms but not from the centromeric region. 

How are centromeric complexes protected from prophase 
pathway removal? 

A key molecule in the protection of centromeric cohesion is called 

Shugoshin, meaning “Guardian Spirit” in Japanese (also known as 

MEI-S332 in D. melanogaster). Shugoshin confers protection of 

cohesin specifically at the centromere of both mitotic and meiotic 

cells (Kerrebrock et al., 1992; Kitajima et al., 2004; McGuinness et 

al., 2005). 

Shugoshin is moved to the centromeric chromatin in complex with 

the PP2A phosphatase at the onset of mitosis (Kitajima et al., 

2006; Liu et al., 2013b). Sugoshin-PP2A complex protects 

centromeric cohesin from WAPL-mediated removal by several 

means:  

It antagonizes the Aurora B/Cdk1 mediated phosphorylation of 

Sororin and thereby favors Sororin interaction with Pds5, shifting 

the WAPL/Sororin competition for cohesin binding towards Sororin, 

preventing WAPL-mediated removal (Dreier et al., 2011; Liu et al., 

2013b; Nishiyama et al., 2013). Aurora B and Cdk1 also 

phosphorylate and aid in the centromeric localization and activation 

of Shugoshin (Kitajima et al., 2006; Liu et al., 2013b; Tanno et al., 

2010). This means that Cdk1 and Aurora B have conflicting roles in 

cohesin maintenance. They destabilize Sororin and thereby 

promote cohesin dissociation along chromosome arms, while at the 

same time localize and activate Shugoshin at the centromere, 

allowing for cohesin protection. Shugoshin-PP2A also protects 

cohesion by counteracting Plk1-mediated phosphorylation of SA 
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(Hauf et al., 2005; Kitajima et al., 2006; McGuinness et al., 2005) 

and by directly competing with WAPL for the binding to cohesin 

(Hara et al., 2014).  

This protection mechanism is of outmost importance as 

centromeric cohesin complexes are the only ones that suffice 

cohesion maintenance during prometaphase and metaphase, while 

chromosomes are under drastic pulling and pushing forces exerted 

by the mitotic spindle to accomplish chromosome alignment. 

D) The cohesin cycle:  The final cut 

Mitosis is a process of trial and error, with a few decisive 

breakpoints. Mitotic events of chromosome attachment, substrate 

phosphorylation, and biorientation are mostly redundantly 

regulated, and reversible. This allows for ample error correction in 

an otherwise error prone process. However, once the metaphase is 

formed, and chromosomes are bioriented, the cell reaches the 

point of no return: cohesin cleavage.  

The cleavage of cohesin at the metaphase-to-anaphase transition 

is conducted by a large cysteine protease called Separase, which 

cleaves the kleisin subunit, distancing the heads of SMC1 and 

SMC3 subunits (Lin et al., 2016; Uhlmann et al., 2000). This opens 

the cohesin ring, releasing sister DNA molecules from the 

proteinaceous cage.  

Once the forces that hold chromosomes together are released, 

there is no going back: therefore, centromeric cohesin cleavage 

must occur only after multiple safeguard mechanisms have been 

satisfied. Separase activity is tightly regulated and inhibited through 

multiple mechanisms until the onset of anaphase.  
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Firstly, Separase is inhibited by the binding of Securin, whose 

degradation is a prerequisite for sister chromatid separation (Ciosk 

et al., 1998; Hirano et al., 1986; Zou et al., 1999). Securin inhibits 

Separase by binding to its active site and abolishing its interaction 

with other substrates (Hornig et al., 2002; Lin et al., 2016). 

However, mutants for Securin in several organisms do not suffer 

from premature loss of cohesion, evidencing that other 

mechanisms of Separase inhibition must be in place (Alexandru et 

al., 2001; Hellmuth et al., 2015) (see below). Furthermore, Securin 

has been proposed to work as a Separase chaperone by binding to 

bind to the nascent Separase and aiding in its proper folding and 

activity (Jallepalli et al., 2001). Consequently, Securin was shown 

to be required for sister chromatid separation in fission yeast and 

D. melanogaster (Funabiki et al., 1996; Stratmann and Lehner, 

1996). 

The second layer of Separase inhibition is mediated by the Cdk1-

Cyclin B complex. Cyclin B-Cdk1 phosphorylates Separase and 

this phosphorylation promotes Cdk1-CycB-separase binding, 

preventing Separase activation until the onset of anaphase (Gorr et 

al., 2005; Stemmann et al., 2001). The dual inhibition of Separase 

by CycB-Cdk1/Securin is lifted by the APC/C, an E3 ubiquitin 

ligase, which is the main effector of anaphase (reviewed in 

(Primorac and Musacchio, 2013; Sullivan and Morgan, 2007)). The 

APC/C ubiquitinates both Securin and Cyclin B, targeting them for 

the degradation by the proteasome, releasing the Separase from 

its double leash. This, in turn, leads to cohesin cleavage and the 

onset of anaphase (Oliveira and Nasmyth, 2010). 

Given the importance of this transition, the APC/C itself is tightly 

regulated during mitosis by a surveillance mechanism known as 



43 
 

the Spindle Assembly Checkpoint (SAC) (Musacchio and Salmon, 

2007; Sullivan and Morgan, 2007). The key effector of this 

mechanism is the Mitotic Checkpoint Complex (MCC). Unattached 

kinetochores catalyze the formation of this inhibitory complex, 

which sequesters Cdc20, a key activator required for APC/C 

activity (Musacchio and Salmon, 2007; Sullivan and Morgan, 

2007). The MCC complex is composed of Mad2, BubR1, Bub3 and 

Cdc20, and that form a complex that actively binds and inactivates 

the APC/C (Primorac and Musacchio, 2013). As long as the SAC is 

active and the MCC is being produced at unattached kinetochores, 

the APC/C will not be activated by cdc20, Cyclin B and Securin will 

remain intact, Separase inactive, and cohesin will not be cleaved. 

This equilibrium changes once metaphase is achieved and 

chromosomes are bioriented. Stable chromosome attachments 

result in SAC satisfaction and the release of Cdc20 from the 

inhibitory MCC complex (Primorac and Musacchio, 2013; Sullivan 

and Morgan, 2007). Once this happens, APC/C binds Cdc20 

becoming active to ubiquitinate Cyclin B and Securin. 

Ubiquitination promotes the proteasome-mediated degradation of 

these targets and consequently the release of Separase from its 

inhibition. Anaphase is imminent. 

Since chromosome biorientation and microtubule attachment are 

highly dynamic processes, once all the chromosomes are 

bioriented, the decision to commit to anaphase must be rapid and 

the execution swift. Indeed, live imaging analysis revealed that 

separase-mediated cohesin cleavage happens within a few 

minutes during the metaphase-to-anaphase transition (Gerlich et 

al., 2006; Oliveira et al., 2014; Yaakov et al., 2012). 
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In order to achieve this sharp metaphase to anaphase transition 

and rapid cohesin cleavage, multiple positive feedback 

mechanisms are needed to create a molecular switch. Firstly, 

Separase has autocatalytic activity, and once released from its 

Cyclin B-Cdk/Securin inhibition, it is able to cleave itself, and 

convert to an even more enzymatically potent form (Waizenegger 

et al., 2002). Furthermore, APC/C is constantly ubiquitinating the 

MCC and trying to pry away the Cdc20 subunit away from it, 

weakening the SAC signal in the process (He et al., 2011; Uzunova 

et al., 2012). In this way APC, accelerates its own release from 

SAC inhibition during anaphase.  

In addition (or in parallel) to separase-mediated cleavage, the 

cohesin protection machinery is also released from centromeres at 

the metaphase to anaphase transition, which may accelerate 

cohesin release. Release of Shugoshin/PP2A from the 

centromeres may additionally promote the Plk1-mediated 

phosphorylation of Rad21/Scc1 (Plk1-mediated), which enhances 

its cleavage by the Separase (Alexandru et al., 2001; Hornig and 

Uhlmann, 2004). 

Moreover, both Shugoshin and Sororin, two key molecules involved 

in cohesin protection, are directly targeted for degradation by the 

APC/C (Karamysheva et al., 2009; Rankin et al., 2005). Whether or 

not removal of the mechanisms involved in cohesin protection 

actively contribute to the sharp cohesion release process remains 

to be determined. 

As discussed above, cohesin cleavage is only initiated once 

chromosome biorientation is achieved. Thus, given that 

chromosomes at this stage are being pulled by mitotic spindle, 
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release of cohesin is on its own sufficient to trigger pole-ward 

chromosome movement (Oliveira et al., 2010; Uhlmann et al., 

2000). This, however, is insufficient for efficient anaphase 

chromosome movement. Sister chromatid separation, when 

triggered alone, results in ~1/3 slower movements, and 

concomitant re-activation of the SAC and error-correction 

mechanisms (Mirchenko and Uhlmann, 2010; Oliveira et al., 2010) 

. Uncoupling cohesin cleavage from Cyclin B destruction leads to 

similar failures in chromosome segregation (Parry et al., 2003; 

Vazquez-Novelle and Petronczki, 2010; Vazquez-Novelle et al., 

2014). Successful anaphase onset thus relies not only on a sharp 

anaphase transition but also on a synchrony between sister 

chromatid cohesion release and cell cycle progression. The fact 

that cohesin cleavage is regulated by the APC/C, which cleaves 

both securin (cohesin release) and Cyclin B (cohesin release + cell 

cycle transition) should in principle provide this synchrony. 

Additional feedbacks, however, further ensure that sister chromatid 

separation occurs in synchrony with inactivation of Cdk1  (reviewed 

in (Kamenz and Hauf, 2016)). 
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Fig. 8 Cohesin cleavage at the metaphase-to-anaphase transition 
In the presence of unattached kinetochores, the spindle assembly 
checkpoint is activated and generates the formation of the mitotic 
checkpoint complex (MCC) that prevents anaphase promoting 
complex/cyclosome activation. Separase is kept inactive by securin and 
Cdk1/CyclinB binding. b Upon bipolar attachment, the SAC signal is 
extinguished and the APC/C is activated. Active APC/C ubiquitinates 
securin and Cyclin B and targets them for degradation. c Active separase 
cleaves the Rad21/Scc1 subunit and causes ring opening. This opening 
allows the spindle to drag sister chromatids to opposite poles 
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1.1.3 Functional implications for a multiple-step cohesin 
removal 
Cohesin binding and release is a dynamic and multi-step process 

whose mechanisms are mostly conserved across species. 

Exception goes for the dual-step removal for cohesin during 

mitosis. In budding yeast, unlike in metazoans, arm cohesion is not 

removed at the onset of mitosis and the entire cohesin pool is 

removed at the metaphase to anaphase transition by Separase. 

The question does arise as to why do metazoans have a two-step 

removal of cohesin? Does accumulation and retention of cohesin 

specifically at the centromeric region play any specific function in 

metazoans? When considering the biological significance of 

multiple steps for cohesion removal present during mitosis, one 

must have interphase functions of cohesin in mind. During 

prophase removal of cohesin, the Scc1 subunit is not cleaved, but 

disengaged from SMC3 (see above), leaving intact cohesin 

complexes in the cytoplasm. This cohesin is not reloaded during 

mitosis, possibly due to the dissociation of the Scc2/4 loading 

complex from chromosomes (Watrin et al., 2006; Woodman et al., 

2014). However, this cohesin can load freely during the impending 

telophase/G1 and preform roles in transcription regulation and 

interphase genome architecture early in the subsequent cell cycle. 

Thus, the prophase pathway may be seen as a recycling 

mechanism, protecting the majority of cohesin from cleavage 

during anaphase. It is nevertheless becoming more and more 

evident, however, that the concentration of cohesin specifically 

around the centromere fulfills important functions for the efficiency 

of mitosis, as outlined below.   
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1.1.4 Sister Chromatid Resolution 

 

Fig. 9 Cohesin and sister chromatid resolution. Cohesin entrapment 
prevents efficient decatenation by topoisomerase II. Cohesin removal 
from chromosome arms ensures proper sister chromatid resolution. 
Abnormal retention of cohesin on the arms results in residual 
entanglements and consequently mitotic defects 
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During replication, sister DNA molecules become heavily 

intertwined as a consequence of the unwinding of parental DNA 

strands and/or colliding replication forks. In order to segregate 

these tangled sister molecules into two daughter cells, their 

catenations must be resolved. Failure to resolve such DNA 

intertwines by topoisomerase II leads to breaks in the DNA 

molecules during anaphase, when chromosomes are pulled to the 

poles by the spindle. Cohesin was shown to block the action of 

Topoisomerase II (Farcas et al., 2011; Sen et al., 2016), possibly 

by keeping the two sisters in such close proximity that disfavors 

their efficient decatenation. Thus, cohesin removal from 

chromosome arms during prophase is believed to aid sister 

chromatid resolution along chromosome arms, providing 

Topoisomerase II with enough space to resolve catenations.  

The degree to which sister chromatid resolution can occur in the 

presence of chromosome-bound cohesin has been hard to 

estimate. A recent study has elegantly shown that in the absence 

of WAPL, when cohesin is retained all over chromosome arms, 

most of sister chromatid resolution can be observed, at least at the 

limit of the cytological method applied to differentially label 

individual sister chromatids (Nagasaka et al., 2016). Thus, although 

cohesin may impair efficient decatenation, the degree of 

chromosome intertwines even in the presence of cohesin must be 

residual.   

These residual levels of chromosome intertwines are nevertheless 

sufficient to impair efficient chromosome segregation. When 

cohesin is not removed from chromosome arms in a timely manner, 

which happens if WAPL is down-regulated and the prophase 

pathway inhibited, chromosomes lose their characteristic “X-shape” 
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and cells undergo an erroneous anaphase, marked by detectable 

chromosome bridges during anaphase (Haarhuis et al., 2013; 

Tedeschi et al., 2013). Similar results were observed in cells 

expressing a modified version of Sororin that lacks its Cdk1-

phosphorylation site. This version is not removed from 

chromosomes arms at the onset of mitosis leading to over-

cohesion of metaphase chromosome arms and lagging 

chromosomes during anaphase (Nishiyama et al., 2013). 

Moreover, chromosome rearrangements that misplace 

pericentromeric heterochromatin away from the centromere were 

shown to abnormally accumulate non-centromeric cohesin (Oliveira 

et al., 2014).  These chromosomes also exhibit chromatin 

stretching during anaphase, specifically at ectopic cohesin-

retention sites. Thus, the spatial and temporal positioning of 

cohesin on the mitotic chromosome is crucial for timely 

chromosome resolution. Any disturbance, such as prolonged 

retention or enrichment of cohesin along chromosome arms leads 

to incomplete sister chromatid separation, followed by mitotic 

errors.  
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1.1.5 Inner-centromere defining platform:  

 

Fig. 10 The inner centromere network. Cohesin sets the blueprint for 
the inner centromere network, regulating chromosome architecture and 
microtubule attachment. Cohesin is needed for the recruitment of Haspin 
kinase, which triggers the cascade resulting in recruitment of CPC and 
Shugoshin to the pericentromeric region 
 

Centromeric cohesin has recently emerged as a core component of 

the inner centromeric network and thereby influences the 

localization of important machinery that regulates mitotic fidelity.  

Kinetochore microtubule attachments are regulated by the actions 

of Aurora B, a key mitotic kinase that destabilizes erroneous 

kinetochore-microtubule attachments. It is well established that 

Aurora B destabilizes attachments that are not under tension 

through the phosphorylation of key kinetochore substrates (Biggins 

and Murray, 2001). This phosphorylation results in microtubule 
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detachment and the creation of unattached kinetochores that can 

trigger SAC signaling. Aurora B, together with its regulatory 

partners INCENP, Borealin and Survivin, forms the Chromosome 

Passenger Complex (CPC). This complex decorates the entire 

chromosome length during early mitotic stages but dynamically 

shifts its localization towards prometaphase/metaphase, becoming 

highly enriched at the inner centromeric region (Reviewed in 

(Carmena et al., 2012). 

Cohesin’s importance for CPC localization has been documented 

in several studies (Carretero et al., 2013; Haarhuis et al., 2013; 

Kenney and Heald, 2006; Mirkovic et al., 2015; Sonoda et al., 

2001; Vass et al., 2003) but only recently the mechanistic details 

for this interaction are being elucidated. CPC localization to the 

inner centromere was shown to depend on two histone marks: 

Histone H3 phosphorylation on Threonine 3 (H3pT3) and histone 

2A-serine 121 (H2A-S121) phosphorylation (Yamagishi et al., 

2010). The cohesin subunit PDS5A interacts with the Haspin 

Kinase, which is the kinase responsible for H3T3 phosphorylation 

(Yamagishi et al., 2010). Depletion of Pds5 or Cohesin subunits 

result in delocalized Aurora B and possibly impaired error 

correction (Carretero et al., 2013; Mirkovic et al., 2015; Yamagishi 

et al., 2010). Interestingly enough, “too much” cohesin produces a 

similar phenotype, as WAPL depleted cells also exhibit delocalized 

Aurora B signals and defective error-correction capacity (Haarhuis 

et al., 2013).  

In addition to CPC localization, cohesin also plays a role in the 

localization of another key inner centromere component: 

Shugoshin. Shugoshin interacts directly with cohesin and requires 

this interaction for its activity (Liu et al., 2013a; Liu et al., 2013b). In 
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this way, cohesin enhances its own centromeric protection but also 

contributes to other events that are governed by Sgo1 at the 

centromeres, namely biorientation of sister chromatids, localization 

of the CPC and SAC silencing (reviewed in (Marston, 2015)).  

Thus, while enhancing its own protection, cohesin plays a pivotal 

role in the establishment of the inner centromere network. 

1.1.6 Force Balance  

 

Fig. 11 Force balance. Cohesin is the major force resisting the mitotic 
spindle during metaphase. The antagonism between cohesin and the 
spindle results in sufficient tension that is required to stabilize the 
attachments of microtubules to the kinetochore. Erroneous attachments 
(e.g. mono-oriented chromosomes or chromosome with the two 
kinetochores bound to the same pole)are not under sufficient tension. This 
reduced tension leads to destabilization of these interactions by Aurora B 
kinase 
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Centromeric retention of cohesin has profound roles in mitotic 

fidelity, as it is the condition for biorientation of chromosomes and 

symmetrical segregation of the genome. The binding and stability 

of microtubule attachments to the kinetochore is enhanced by the 

tension between the spindle and the kinetochore, both in vivo and 

in vitro (reviewed in (Biggins, 2015)). Tension-dependent 

stabilization of kinetochore-microtubule interactions depends on an 

intrinsic stabilization ability of the mechanical force exerted by the 

microtubule pulling forces (Akiyoshi et al., 2010), as well as on 

biochemical changes that promote the stabilization of kinetochore-

microtubule interactions. The latter are regulated by Aurora B 

kinase, responsible for the correction of erroneous microtubule-

kinetochore interactions through the phosphorylation of key 

kinetochore substrates. Upon bipolar attachment, i.e. maximal 

tension, the increase in the distance between the inner-centromeric 

Aurora B and the kinetochore is believed to displace Aurora-B 

away from its targets thus reverting Aurora-B mediated 

destabilization of microtubule attachments (Liu et al., 2009a). 

How chromosome tension is established, sensed and ultimately 

regulates kinetochore- microtubule interactions has been widely 

investigated. Bipolar attachment increases tension across the 

entire pericentromeric domain (inter-kinetochore tension), but also 

within each individual kinetochore, marked by the increase in the 

distance between the proteins of inner and outer kinetochore 

(reviewed in (Maresca and Salmon, 2010). Both intra- and inter-

kinetochore stretch require a counterforce to the spindle to 

generate stable microtubule attachment and tension. The cohesin 

ring presents the only force at the centromere that is able to resist 

the pulling forces of the spindle. Thus, centromeric cohesion 
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contributes to the generation of tension needed for stable 

chromosome biorientation on the metaphase plane (Figure X). It 

provides the counterforce necessary to maintain a force-equilibrium 

between with the mitotic spindle, which can generate forces of up 

to hundreds of piconewtons (Nicklas et al., 1995; Ye et al., 2016). 

In agreement with cohesin’s major role in the establishment of both 

inter and intra-kinetochore tension, loss of cohesin prior to or 

during metaphase leads to extensive chromosome shuffling along 

the spindle, as attachments to isolated single sisters are highly 

unstable (Drpic et al., 2015; Mirkovic et al., 2015; Oliveira et al., 

2010). 

Whether or not cohesin could also contribute to tension sensing 

has also been speculated. Upon bipolar attachment, tension across 

sister chromatids will influence the entire pericentromeric domain 

and evidence suggests that this alone can lead to removal of 

centromeric cohesin complexes (Eckert et al., 2007; Ocampo-

Hafalla et al., 2007). More distal pericentromeric domains would 

then provide the necessary antagonistic force to the spindle. This 

dynamic change on the cohesive forces could alone provide a clue 

to sense bipolar attachment. In agreement, cohesin-associated 

molecules, particularly Shugoshin, have been proposed to 

contribute to tension sensing and SAC silencing at the metaphase 

to anaphase transition (reviewed in (Marston, 2015)). 

However, inter-kinetochore stretch does not seem to be necessary 

for tension sensing as chromosomes in which two neighboring 

kinetochores were artificially tethered, preventing the inter-

kinetochore stretch, still resulted in normal metaphase attachment. 

These experiments imply that mechanical tension exerted on the 

single kinetochore might be more important than the stretching 
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between kinetochore pairs itself to stabilize chromosome 

attachments (Nannas and Murray, 2014). 

Regardless of the exact location that senses chromosome tension, 

the structure of the pericentromeric domain will likely play a major 

influence on the force provided by the chromosomes (Stephens et 

al., 2013). Does this force balance require a specific amount of 

cohesin at chromosomes and does centromeric accumulation play 

a role? It is conceivable that reaching the right spindle counter-

force requires a fine-tuning of cohesin levels at chromosome. This 

has been difficult to tackle experimentally as manipulating cohesin 

levels is not a trivial task. Metazoan chromosomes with artificial 

high levels of cohesin (e.g. WAPL knock-down) do display defects 

in chromosome attachment. Although these have been largely 

attributed to defects in the localization of the machinery that 

regulates microtubule-kinetochore attachments (see above), it 

remains to be determined the consequences of too much cohesion 

on tension establishment and sensing, independently of Aurora B 

localization. 

1.1.7 Anaphase sharpness 

Cohesin destruction marks the onset of anaphase, a point of no 

return for every dividing cell. As discussed above, several feedback 

loops operate at this stage to ensure efficient cohesin cleavage at 

this crucial transition. Restricting cohesin to centromeric region 

may be an additional mechanism to ensure fast anaphase onset 

and promote synchrony of anaphase movements, particularly in 

organisms containing variable chromosome sizes. Separase is 

functionally active along the entire chromosome, as evidenced by 

complete cohesin cleavage in WAPL mutants, in which cohesin is 
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now all over chromosome arms, or in cells expressing Separase 

sensors targeted to the entire chromosomes (Haarhuis et al., 2013; 

Oliveira et al., 2014; Shindo et al., 2012; Yaakov et al., 2012).  

Whether or not the efficiency of cohesin cleavage is the same all 

over the chromatin mass has been quite controversial. Direct 

measurements of Separase activity using engineered sensors at 

different chromosome loci in budding yeast, failed to detect any 

delay of cleaving telomeric vs centromeric sites (Yaakov et al., 

2012). In contrast, other studies support that removal of cohesin at 

regions distal to the centromere is less efficient than at centromere-

proximal ones (Oliveira et al., 2014; Renshaw et al., 2010). These 

studies thus suggest that although Separase is capable of cleaving 

cohesin all over chromosome arms, coupling residual cohesion to 

the centromere may be an efficient way to accelerate cohesin 

degradation. This could be due to the pulling force of the spindle 

that could aid in cohesin release, or enhanced Separase activity at 

the centromeric region. 

1.1.8 Concluding remarks 

In the cell biology field, centromeric cohesin is mostly viewed as an 

architectural molecule, a molecular glue linking sister chromatids 

and preventing random chromosome segregation. However, it is 

crucial to shift such a viewpoint in order to encompass all the 

diverse functions of cohesin during nuclear division. Restricting 

cohesion to the centromeric region during mitosis is of paramount 

importance for efficient chromosome resolution and segregation. 

Cohesin itself provides the main elastic force necessary to resist 

the metaphase spindle and establish biorientation of the 

chromosomes during metaphase. Cohesin is also crucial for the 
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establishment of an inner-centromere network thus contributing to 

the localization and function of proteins involved in the regulation of 

chromosome attachments and spindle assembly checkpoint. As 

such, mitotic cohesin is way more than a pure “architectural” 

molecule and should be viewed as a dynamic scaffold for multiple 

mitotic processes, rather than a hinge keeping chromosomes 

together. 
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Introduction 1.2 

Guardians of Mitotic Symmetry 

The symmetry of genome segregation is fundamental for 

successful mitosis. Disturbance of mitotic symmetry leads to 

aneuploidy, a phenomenon where the genome is unequal in two 

daughter cells. Aneuploidy is a hallmark of cancer and multiple 

developmental disorders, with a high fitness cost for the cell, often 

resulting in cell death. Aneuploidy and its consequences will be 

reviewed in the section 1.3 of the introduction. 

A dividing cell has multiple ways of monitoring that symmetrical 

genome segregation takes place. There are intricate mechanisms 

ensuring that cohesin cleavage and anaphase separation of 

chromatids can happen only when chromosomes are correctly 

aligned and bioriented on the metaphase plane. For this to happen, 

the two main processes of chromosome congression and 

separation need to be placed in a chronologically conditional 

relationship. First, chromosomal congression must take place, a 

process of chromosome transport to the spindle mid-zone, and 

their capture by the spindle from each pole, in a symmetric, 

bioriented manner. Following this process is chromosome 

separation, marked by cohesin cleavage and movement of single 

chromatids to the poles, finalized by mitotic exit and nuclear 

envelope reformation. Correct chromosome congression and 

alignment must precede separation and mitotic exit; otherwise, 

mitotic errors are imminent. 

Different biological systems have different ways of giving the cell 

enough time to properly align its chromosomes in order to 

guarantee mitotic fidelity. Across most metazoans, the Spindle 
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Assembly Checkpoint (SAC) plays a fundamental role in regulating 

mitotic timing and allowing for proper chromosome congression 

and biorientation. The SAC is a complex mechanism which 

effectively acts as a mitotic break, halting the onset of anaphase 

until everything is ready. 

The first experiments which postulated that there is some kind of  

mechanism that delays mitotic progression when chromosome-

spindle interactions are perturbed were done almost fifty years ago 

(Nicklas and Koch, 1969; Zirkle, 1970). 

The Spindle Assembly checkpoint was further characterized in 

budding yeast screens for spindle poisons, where it was observed 

that yeast cells in which the spindle was depolymerized would 

delay cell cycle progression an accumulate in mitosis (Li and 

Murray, 1991; Rieder and Palazzo, 1992). Further genetic screens 

identified the genes responsible for the mitotic arrest in the 

absence of the spindle in vertebrates (Li and Benezra, 1996). 

Since then, the Spindle Assembly checkpoint has been intensely 

studied for decades, and most of its molecular framework is 

characterized and somewhat defined (Reviewed in Lara-Gonzalez 

et al., 2012; Musacchio and Salmon, 2007). What we know today is 

that the “Spindle Assembly Checkpoint”, is a misnomer, as the 

checkpoint does not sense “spindle assembly”, but reacts to the 

presence of unattached chromosomes during mitosis. 

The main source of active SAC signaling is the unattached 

kinetochore. The kinetochore is a complex molecular machinery 

consisting of hundreds of proteins, which serves as the point of 

interaction between the mitotic spindle and the chromosome. 

Centromere is the basis for the formation of the kinetochore. 
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Centromeres are marked by CENP-A deposition, which is 

epigenetically inherited from one generation to another(Black and 

Cleveland, 2011). At the unattached kinetochore, a cascade of 

molecular events is needed in order to mount the SAC response. 

The core components participating in the SAC initiation are the 

kinases: Bub, BubR1 and Mps 1. The exact chronology of steps by 

which the initial SAC response is mounted is not completely 

understood. 

The initial activities of Bub and Mps1 kinases result in Mad1 

recruitment and phosphorylation (London and Biggins, 2014). 

Phosphorylated Mad1 serves as a scaffold for recruitment of Mad2 

and enables conversion of MAD2 from an open (O-Mad2), to an 

active, closed protein form: C-Mad2 (De Antoni et al., 2005; Luo et 

al., 2002). Alongside C-Mad2, three other factors are recruited to 

the kinetochore: BUBR1, Bub3 and CDC20. Together, they are 

assembled into a diffusible complex made called the MCC (Mitotic 

Checkpoint Complex), which is the effector of the Spindle 

Assembly Checkpoint (Chao et al., 2012).  

The formation of MCC at the kinetochore is a quick and dynamic 

process, and was thought to be amazingly efficient. Early studies in 

which laser ablation was used to detach a single chromosome 

during mitosis postulated that only one unattached kinetochore can 

generate enough SAC signaling to delay an entire cell in mitosis for 

a long period of time (Rieder et al., 1995) Together with the 

discovery of the kinetochore’s ability to catalyze O-Mad2 to C-

Mad2 conversion, this lead to an “all or nothing” model of the SAC, 

where a single unaligned chromosome was thought to act as a “red 

light” for mitotic progression (Rieder et al., 1995).  
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Only within last five years, conclusive studies demonstrated that 

one signaling kinetochore is not SAC “saturating”, and that the 

efficiency of MCC production is directly proportional to the number 

of unattached kinetochores in SAC-arrested cells (Collin et al., 

2013; Dick and Gerlich, 2013).  

After being assembled at the unattached kinetochore, the MCC 

diffuses through the mitotic cytosol where it acts as an inhibitor of 

the Anaphase Promoting Complex (APC/C), previously discussed 

in the Introduction 1.1 and reviewed in (Sivakumar and Gorbsky, 

2015). The APC/C is an E3 ubiquitin ligase, whose ubiquitination 

activity is strictly regulated during mitosis. The MCC acts as an 

inhibitor of APC/C in a twofold manner. Firstly, the MCC binds and 

sequesters Cdc20, which is the key factor needed for the 

ubiquitination activity of the APC, secondly, the MCC complex itself 

docks on the APC and inhibits free Cdc20 binding(Izawa and 

Pines, 2015). 

The possible reason to why the inhibition of APC/C is so tightly 

regulated is because APC/C activation marks the onset of 

anaphase, which results in cohesin cleavage and mitotic exit, 

representing the point of no return for the dividing cell.  

When APC/C is coupled to Cdc20 it has the ability to ubiquitinate 

Securin and target it for degradation by the proteasome. This 

releases Separase from inhibition (Reviewed in 1.1), resulting in 

the cleavage of the kleisin subunit of Cohesin, allowing for 

chromosome separation to take place. 

On the other hand, APC/C-Cdc20 has the ability to directly target 

Cyclin B for ubiquitination and degradation(Hershko, 1996). 

Without the functional Cyclin B subunit, the Cdk1-Cyclin B complex 
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is rendered inactive, allowing for the phosphatases to revert mitotic 

phosphorylation invoked by this complex, resulting in mitotic exit 

(Visconti et al., 2013).  

The exact mechanism by which the SAC is generated at the 

kinetochore and its very nature has been a topic of debate for 

decades. 

The very first experiments of Nicklas (Nicklas and Koch, 1969), 

where performed by mechanical tweezers, used to misalign 

chromosomes during grasshopper spermatocyte meiosis. This 

resulted in a mitotic delay. Many following studies noted that 

disruptions of microtubule-kinetochore interactions by the loss of 

proper spindle rigidity and tension also caused a mitotic delay. 

Therefore, a big question in the field became if the SAC senses the 

lack of chromosome attachment, or a perturbed tension state on 

the chromosomes? 

This conundrum arose from the studies where the spindle was 

perturbed in a manner that would influence the tension between the 

chromosomes and the spindle, but supposedly, not the attachment 

state at the kinetochore (Biggins and Murray, 2001; Hardwick et al., 

1996) 

Today we know that this debate was framed in a wrong manner, 

mostly akin to the “Which came first, the chicken or the egg?” type 

of debate. The SAC itself is a downstream process, a direct result 

of the absence of chromosome-microtubule interactions, which are 

regulated by other mechanisms; and although these mechanisms 

technically do not belong to the “SAC”, are functionally and 

fundamentally inseparable from it. 
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Such are the error correction mechanisms of the mitotic cell, whose 

principal effector is the Chromosomal Passenger Complex (CPC) 

consisting of Survivin, Borealin, INCENP and Aurora B (Reviewed 

in (Carmena et al., 2012) The main active component of the CPC is 

the Aurora B kinase,  a kinase with the breath of effect similar to 

the one of Cdk1-Cyclin B during mitosis. Aurora B is involved in 

many processes, including chromosome condensation, error 

correction, checkpoint function, cytokinesis, through the 

phosphorylation of numerous mitotic substrates. The main function 

of Aurora B that will be discussed here is the one related to the 

SAC generation and error correction activity at the 

kinetochore(Biggins et al., 1999). 

Aurora B is required for the SAC response if the tension between 

the chromosome and the spindle is impaired (Biggins and Murray, 

2001). One of these tension-impaired states is the premature loss 

of cohesin (Mirkovic et al., 2015). Studies where Aurora B function 

was impaired by RNAi identified it as a tension sensor at the 

kinetochore which allows for metaphase formation (Adams et al., 

2001)  Aurora B plays the role of error correction by sensing 

incorrect chromosome attachments which do not result in 

chromosome bi-orientation; such is the case with merotelic and 

syntelic attachments. Error correction of aberrant attachments is 

done through the phosphorylation of outer kinetochore proteins by 

Aurora B (Reviewed in (Lampson and Cheeseman, 2011). Aurora 

B has the ability to phosphorylate Ndc80/Hec1 and KNL1, key 

kinetochore components for microtubule attachment stability. Once 

phosphorylated, these kinetochore components change 

microtubule binding affinity, resulting in a catastrophe of the 
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adjacent microtubule fiber. This in return liberates the kinetochore 

from attachment and allows for SAC signal generation. 

The way in which Aurora B activity senses tension seems to be 

dependent on the distance between Aurora and its kinetochore 

substrate (Liu et al., 2009). The bulk of Aurora B is localized at the 

inner centromere during mitosis. Aurora B localization is dependent 

on two phosphorylation marks and their intersection at the inner 

chromatin, deposited by two kinases: Haspin and Bub (Yamagishi 

et al., 2010). Haspin is a cohesin associated kinase, which 

phosphorylates the H3TH histone mark. Bub kinase, on the other 

hand, phosphorylates HS120. Studies demonstrate that the CPC 

complex is localized to the inner centromere at the intersection of 

these two marks in human cells. The relationship between 

cohesion and the inner centromere, as well as cohesin and Aurora 

B recruitment is described in more detail in Introduction 1.1-

Cohesin and the inner centromere network. 

The positioning of Aurora B in between the two kinetochores is 

critical in our understanding of tension sensing. It is thought that 

during metaphase, when the centromeres are being pulled to the 

opposite poles while still being bound by cohesin, the stretching 

provided is enough to distance Aurora B away from its substrate 

(Liu et al., 2009)This physical model assumes that the destabilizing 

activity of Aurora B is conveyed by the pool located in between the 

two centromeres. Therefore, the “tension” sensed would be the 

distance between the inner centromere Aurora B pool and the outer 

kinetochore substrates. This leads us to another conundrum 

present in the field. 
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What is the location and nature of tension that is being sensed by 

the error correction machinery? The canonical model implies inter-

kinetochore tension, which is the consequence of centromeric 

chromatin stretching under the forces exerted by the metaphase 

spindle(Shelby et al., 1996). This is an interesting model, but not 

quite in tune with the kinetochore “breathing”, a phenomenon of 

oscillatory motion of kinetochores observed in the metaphase cells 

(Jaqaman et al., 2010). Interestingly, during metaphase, chromatin 

acts like an elastic spring, implying that maintaining stable 

attachments in these oscillating conditions would be a difficult task, 

if the inter-centromere tension was the only readout. Furthermore, 

what is clearly evident from live imaging is that not only that the 

distance between the centromeres is increased during the 

biorientation, but the very architecture attached kinetochore 

changes and stretches. This Intrakinetochore stretch was 

implicated in SAC silencing during metaphase (Maresca and 

Salmon, 2009; Uchida et al., 2009)  

The Intrakinetochore stretch measurements are done by taking 

advantage of the kinetochore size, and differentially labeling 

molecules that are closer to the attachment site (outer 

kinetochore), and ones anchoring the kinetochore to the chromatin 

(inner kinetochore). These studies clearly displayed that the 

distance between inner and outer kinetochore increases during 

metaphase biorientation. This lead to the classification of a new 

kind of tension called the Intrakinetochore tension(Maresca and 

Salmon, 2010). Therefore it is important to understand which kind 

of tension satisfies Aurora B, and results in SAC silencing: “inter” or 

“intra” kinetochore tension? (Reviewed in (Khodjakov and Pines, 

2010)  



78 
 

Reinforcing the intra-kinetochore stretch argument , experiments in 

which the kinetochores from the same chromosome were tethered 

to each other, and unable to stretch during the metaphase 

displayed normal mitotic progression (Nannas and Murray, 2014), 

showing that the error correction can be satisfied without the 

increase of the distance between the centromere pair. However, 

the interpretation of these experiments is somewhat ambiguous, as 

tethering still creates a rigid force connecting the two opposing 

kinetochores, and the Intrakinetochore stretch might me directly 

dependent on the interkinetochore rigidity and tension. 

On the opposite end of the spectrum, studies in which kinetochores 

are separated and inter-kinetochore tension is completely 

eliminated via cohesin cleavage or replication inhibition provided 

different conclusions. If kinetochore pairs are separated, the 

spindle still interacts with isolated single kinetochores, but these 

interactions are unstable, and highly erroneous to say the least. 

The only way to stabilize interactions is tough the inhibition or 

decay of normal error correction activity (Drpic et al., 2015; 

Mirkovic et al., 2015; O'Connell et al., 2008).  

In addition, experiments with Eg5 inhibitors like Monastrol, where 

cells form monopolar spindles, and chromosomes can only from 

syntelic attachments, result in robust SAC activation. This further 

validates that not any kind of kinetochore-spindle interaction can 

satisfy the SAC , bipolarity is required (Brito et al., 2008) 

Therefore, both intra and inter kinetochore tension are able to 

satisfy the error correction to a certain degree, but not in complete 

absence of one another. As is usually the case, the answer to the 

conundrum goes far beyond the simple “either/or” question. 
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Aurora B and the CPC activity are far from being the only 

mechanisms regulating kinetochore-microtubule stability. The 

polymerization and dynamics of microtubules themselves change 

under tension and during mitosis. In vitro essays in which the 

extending microtubules were allowed to bind to a “kinetochore” 

attached to a substrate, therefore generating tension, decreased 

their rate of de-polymerization and catastrophe(Akiyoshi et al., 

2010). Furthermore, the activity of mitotic Cyclins A and B are 

implicated in microtubule dynamics and stability (Kabeche and 

Compton, 2013; Ookata et al., 1995).  

Therefore, tension sensing at the kinetochore is regulated in a 

complex and intricate manner, probably depending on intra 

kinetochore architecture changes, as well as elastic stretching of 

the inter kinetochore chromatin. 

Now, after having described how error correction senses tension 

defects and contributes to their de-stabilization of erroneous 

attachments, we can go back to the original question of whether 

the SAC on its own can sense tension defects. 

The most likely answer is no. Recent elegant studies put a nail in 

the coffin to the tension-SAC model, by utilizing Hec1 (NDC 80) 

alanine mutants that are resistant to Aurora B mediated 

phosphorylation, and therefore, CPC-mediated error correction. 

The authors of these studies then incubated the Hec1 alanine 

mutants in Monastrol, a drug resulting formation of monopolar 

mitotic spindles. This leads to accumulation of aberrant, yet stable 

kinetochore-microtubule attachments, which cannot generate 

normal tension. No additional SAC signal was generated in this 

situation, proving that attachment is enough to prevent SAC 
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signaling in the absence of proper tension (Etemad et al., 2015; 

Tauchman et al., 2015). 

However, in the context of physiological mitosis, the SAC and the 

error correction mechanisms are inseparable. The unattached 

kinetochore is the generator of the SAC signal, but in the presence 

of the spindle, the only way to generate the unattached kinetochore 

is through the action of the error correction. Microtubule dynamics 

are measured in milliseconds, while an average metazoan mitosis 

lasts for tens of minutes. As such, the only physiological way of 

generating a “wait for anaphase” signal in the presence of an active 

spindle is trough constitutive action of the error correction 

machinery.  

In summary, the error correction and the SAC are the two main 

guardians of mitotic symmetry. They are fundamental for 

congression, biorientation and timely anaphase onset, and as such 

represent the two pillars of accurate genome segregation. 

Therefore, it would seem completely unimaginable that any dividing 

organism could function without a SAC. However, SAC mutants are 

viable in S.cerevisiae, D.melanogaster and C.elegans (Buffin et al., 

2007; Kitagawa and Rose, 1999; Li and Murray, 1991). This does 

not mean that the checkpoint is redundant, but rather replaceable 

in “ideal” conditions, such are the ones in the laboratory. Perturbing 

these conditions resulted in lower fitness and aneuploidy in 

organisms without the SAC (Buffin et al., 2007). 

This draws a very interesting distinction mentioned at the beginning 

of this introduction. Most metazoans require SAC to buy time for 

proper chromosome capture, but some can obviously do quite fine 

without it. Why is this case? It seems that the distinction might lie in 
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the kinetics of Cyclin B degradation in mitosis. In vertebrates, if 

SAC is inhibited, mitotic exit takes place far before normal 

anaphase timing (Liu et al., 2003; Meraldi et al., 2004), resulting in 

miss-segregation and aneuploidy. In Drosophila however, this 

difference is quite mild, as mutants for SAC in the Neuroblast 

undergo mitosis about one minute faster than the control (Buffin et 

al., 2007). Therefore, the efficiency of mitosis in D.melanogaster, 

and C.elegans which contain four and six chromosomes 

respectively might not require additional time, and SAC might be 

relegated to a “seat belt” function: present in all situations, but 

useful only in the case of the crash.  

Recently, new studies have started to shed the light on other 

mitotic “breaks” that might work independently of the SAC. For 

instance, hipomorphic Aurora A mutants in Drosophila Neuroblasts 

undergo a mitotic delay even when placed in a Mad2 mutant 

background (Caous et al., 2015). In fission yeast, Shugoshin 

seems to be implicated in generating a mitotic delay that is SAC 

independent (Meadows et al., 2017). And while most of the SAC 

community is investing immense power of in vitro approaches, 

coupled to finest structural biology and large scale “-omics” to sort 

out the finest kinks of conventional SAC mechanisms, more 

interesting things might be hiding in plain sight 
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1.3. Aneuploidy and its consequences 

Aneuploidy is a state of chromosome imbalance in the cell, where 

chromosome number or composition is different from the canonical 

2n, haploid or polyploid karyotype. Aneuploidy can also be 

“segmental”. This is the case when the cell contains an imbalance 

in certain chromosomal loci. 

Aneuploidy has been observed over a century ago by Theodor 

Boveri in sea urchin embryos. The experiments he conducted 

included urchin eggs that were fertilized by two sperm 

simultaneously, resulting in the presence of multiple centrosomes 

and formation of multipolar spindles .This leads to mitotic errors 

and genome imbalance in the developing urchin embryo.  

In the next few years, Boveri started hypothesizing about the 

origins of tumorigenesis which resulted in publication of his book 

“Concerning the origin of malignant tumors” in 1914 which 

postulated that the aneuploidy is a causative event for malignancy 

(Boveri, 2008; Hansford and Huntsman, 2014). 

Today we know that aneuploidy is a hallmark of cancer and 

common in developmental disorders, frequently resulting in 

miscarriage (Hassold and Hunt, 2001; Santaguida and Amon, 

2015). As such, it has been profusely studied for decades, through 

numerous different approaches. Unfortunately, studying aneuploidy 

is very akin to studying cancer. To quote Leo Tolstoy ““All happy 

families are alike; each unhappy family is unhappy in its own way.” 

Same can be said for aneuploid cells. Every euploid cell is 

functional; each aneuploid cell is perturbed in its own way. For 

organisms that carry their genome over multiple chromosomes, 
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there can be thousands to billions of combinations of possible 

aneuploid karyotypes(Zhu et al., 2018). 

Furthermore, contributing to this aneuploid “individuality” is the fact 

that chromosome imbalance causes disruption in hundreds if not 

thousands of genes simultaneously, causing complete havoc in 

multiple signaling networks and resulting in a general stress 

response. This large scale network disruption can lead to diverse 

phenotypic outcomes, even in aneuploid cells of the same 

karyotype (Beach et al., 2017). 

The general stress responses associated with aneuploidy might be 

the only conclusive features arising from decades of studying it. 

There is general stress response to genome imbalance, 

independent of the aneuploid karyotype (Reviewed in (Santaguida 

and Amon, 2015; Zhu et al., 2018).  This is due to the fact that 

chromosome numbers different than 2n result in two of the 

following outcomes at the transcript, and then at the protein level: 

either the cell has too much of X, or the cell has too little of X.  

The only way to compensate for genome imbalance would be 

some sort of chromosomal “buffering”, a phenomenon where copy 

number of a gene is perturbed, but the protein and transcript 

content stays relatively similar to the wild-type situation. This 

phenomenon is common in sex chromosomes, as organisms have 

evolved tools of compensating the for copy number difference 

between the sexes either by overexpression or inhibition; however, 

in autosomes, chromosomal buffering is controversial and has 

been a subject of much dispute (Gasch et al., 2016; Hose et al., 

2015; Torres et al., 2016). 



88 
 

In the case of whole-chromosome aneuploidy, genetic imbalance 

inevitably results in protein imbalance and severe strain for the 

protein quality machinery of the cell (Donnelly and Storchova, 

2015; Oromendia et al., 2012; Torres et al., 2010). 

In this case, chromosome loss can either cause the loss or 

downregulation of proteins necessary for proper protein folding and 

quality control, or chromosome gain can cause protein 

overexpression and overload for the protein quality control 

machinery. Gene imbalance can disrupt multimeric protein 

complexes coded on different chromosomes, which need the 

product from both copies to be in a defined stoichiometry in order 

to function.  

Yeast and mammalian aneuploid cells exhibit upregulation of heat 

shock proteins (Aivazidis et al., 2017; Torres et al., 2007). Heat 

shock proteins belong to the chaperone family, and aid in proper 

protein folding and maturation, as well as protection in the time of 

stress. Another important factor for protein homeostasis is the 

ubiquitin machinery required for protein targeting for degradation by 

the proteasome. Ubiquitination has been observed to be 

upregulated in cells isolated from Down’s Syndrome patients 

(Engidawork and Lubec, 2001), also, aneuploid yeast mutants that 

exhibited improved ubiquitination capability had higher proliferation 

rates than other aneuploid counterparts  (Torres et al., 2010). 

Therefore, aneuploidy is associated with severe protein dosage 

imbalance and general stress for the protein quality control 

machinery, regardless of the exact karyotype of aneuploidy in 

question. 
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As a consequence of different gene copy number and protein 

imbalance, numerous other processes are affected. Aneuploid cells 

commonly exhibit metabolic stress response, DNA replication 

stress, impairment of autophagy, and other stress responses, 

extensively reviewed in (Santaguida and Amon, 2015; Zhu et al., 

2018).  

For the purpose of this PhD thesis, some of the more interesting 

consequences of aneuploidy are mitotic errors and aberrations 

arising from the aneuploid state. The imbalance in protein 

stoichiometry caused by aneuploidy likely translates onto mitotic 

proteins as well, resulting in errors and unpredictable outcomes in 

terms of genetic material distribution.  

This phenomenon of mitotic uncertainty is known as “chromosomal 

instability”: the possibility of the cell to lose or gain chromosomes 

due to its impaired mitotic fidelity. 

First observations of aneuploid cells undergoing aberrant divisions 

date from almost forty years ago, where trizomic budding yeast 

strains were shown to be prone to chromosome loss(Campbell et 

al., 1981). 

Chromosomal instability of aneuploid cells leads to an interesting 

positive feedback loop: cells becoming chromosomally unbalanced, 

aneuploid, could generate even more imbalanced genomes in their 

progeny. This has profound implications on evolution and diversity 

of aneuploid karyotypes, which are associated with malignancy. 

The link between aneuploidy and resulting chromosomal instability 

has been quite correlational until the last few years. Studies in 

colorectal tumors and aneuploid lymphocytes showed that these 
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cells undergo mitosis with a higher frequency of errors (Duesberg 

et al., 1998; Reish et al., 2006).  

Recently, development of new approaches and the advance of live 

imaging microscopy have led to experimental layouts where 

aneuploidy is induced in a controlled manner, and its mitotic 

consequences are traced in real time. One of these studies used 

an assay in which a single mitotic chromosome was added to the 

dividing cell, resulting in chromosomal instability and miss-

segregation (Passerini et al., 2016). Another study utilized the 

same approach to generate trizomic cell lines for multiple 

chromosomes only to find them evolve into complex karyotypes 

several days later (Sheltzer et al., 2017). Furthermore, another 

study from the same group in which transient inhibition of the SAC 

resulted in aneuploid cells has shown that even after the SAC 

inhibitor has been washed out, the newly aneuploid cells continue 

dividing in an aberrant manner resulting in segmental and whole 

chromosome aneuploidies (Santaguida et al., 2017). 

These studies point to a self-perpetuating cycle of genome 

instability: once errors have been made, they can only become 

worse, resulting in even more genome instability. 

We have shortly summarized various heavy stresses associated 

with aneuploidy, most of them likely stemming from a gene dosage 

imbalance. However, aneuploidy is often observed in the context of 

a malignant tumor, whose defining feature is high fitness and 

proliferative capacity of cells. Also, it has been thought for decades 

that aneuploidy is widely present in the human organism, ranging 

from liver cells to adult neurons and hepatocytes, where aneuploidy 

was thought to confer additional adaptive roles. 



91 
 

On the other hand, aneuploidy has a high fitness cost for the cell, 

and is associated with developmental disorders such as the Down 

syndrome and microcephaly, as well as miscarriage or embryonic 

lethality. 

Therefore, it seems that aneuploidy and its effect could be highly 

dependent of the context and the aneuploid karyotype. Its presence 

in a certain stage of development, tissue, or a genomic background 

can lead to the death of a cell or an organism. In a different 

context, it can result in cell over-proliferation and cancer.  

The correlational link between aneuploidy and cancer stems from a 

simple, undeniable observation: 90% of solid tumors are aneuploid 

(Weaver and Cleveland, 2006). However, we know today that most 

tumors also harbor mutations in apoptotic genes which make these 

transformed cells resistant to almost anything. So the real question 

is: Is aneuploidy a cause or a consequence that might confer 

selective advantage, or maybe even simply a side-product of cell 

immortality?  

With the advancement of our knowledge about mitosis, some tools 

were in place to test these hypotheses. Characterization of the 

SAC genes, crucial for mitotic fidelity in vertebrates, led to studies 

in which SAC was impaired in mice to perturb mitosis (Baker et al., 

2004; Dai et al., 2004; Michel et al., 2001). Impairment of BubR1 

gene dosage led to chromosomal instability, premature ageing and 

aneuploidy, but not spontaneous cancer genesis (Baker et al., 

2004).Another common way of generating aneuploidy in animals or 

tissue culture became overexpression of Plk4, a protein controlling 

centrosome amplification (Habedanck et al., 2005). When 

conducted in mice, Plk4 overexpression was not enough to 
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spontaneously induce tumorigenesis without being placed in a p53 

mutant background (Vitre et al., 2015). However, the same 

perturbation, if done chronically, for months, was enough to elicit 

tumorigenesis in multiple affected mouse tissues, without p53 

disruption (Levine et al., 2017). The flaw of these studies is that 

they do not distinguish aneuploidy from p53 loss trough 

chromosome miss-segregation.  The origin of tumors in these 

experiments could be the clones which had lost apoptotic genes, 

bringing us back to square one. 

Drosophila melanogaster can also be used as a model system for 

overgrowth/invasiveness; some would even call it a “cancer” model 

system (Basto et al., 2008; Januschke and Gonzalez, 2008). An 

interesting Drosophila overgrowth assay relies on transplantation of 

a tissue from a larva to the abdomen of an adult fly. In these 

assays, the transplant tissue is labeled with a fluorescent tag, 

enabling growth and invasiveness tracking in the following days 

(Rossi and Gonzalez, 2015).Although flawed, this system can be 

extremely useful, as it allows the usage of immense drosophila 

genetic tool base for the study of invasiveness and overgrowth. 

Screens combining mitotic perturbations that would induce 

aneuploidy would not cause overgrowth unless coupled to the 

inhibition of cell death(Gonzalez, 2013). These results demonstrate 

that aneuploidy, on its own, is not enough for malignancy; 

suppression of apoptosis is needed as well. Furthermore, tools that 

generated trizomic lines in mammalian cells, across multiple 

chromosomes, observed a large loss of cell fitness and proliferation 

in malignantly transformed aneuploid cells, when compared to 

diploid malignant counterparts (Sheltzer et al., 2017).   
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Therefore, aneuploidy can act as a tumor suppressor(Holland and 

Cleveland, 2009).  

Thus, true adaptive power of aneuploidy likely lays in chromosomal 

instability which results in karyotype diversification, leading to the 

rise of malignant clones in certain circumstances. 

Knowing the price of aneuploidy, it is interesting to examine if there 

is any aneuploidy occurring during normal animal development.  

 Non-metazoan organisms seem to exhibit higher tolerance to 

aneuploidy, as wild type yeast strains can be aneuploid and 

successful, and plants as well as some other fungi have a high 

aneuploidy tolerance (Hose et al., 2015; Zhu et al., 2018). A 

comparative study of 38 aneuploid yeast strains has shown that 

while aneuploid yeast grow slower than the diploids in normal 

conditions, under stress, certain aneuploidies provided a significant 

growth advantage (Pavelka et al., 2010). 

However, in metazoan organisms, aneuploidy tolerance seems to 

be very low or nonexistent. 

Fruit flies for instance, can be triploid and viable, albeit sterile 

(Bridges, 1921b). However, the loss of whole chromosome is not 

tolerated in the fruit fly, unless it is the 4th chromosome, which 

contains a minimal number of genes (Bridges, 1921a). In humans, 

the only aneuploidy which is known to lead to adult viability is the 

trisomy of the 21st chromosome, also known as the Down 

Syndrome, occurring in about 0.1% of live births (de Graaf et al., 

2015). All other human aneuploidies result in embryo lethality 

(Hassold and Hunt, 2001). Therefore, at the level of the whole 
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metazoan organism, constitutive aneuploidy results in catastrophic 

outcomes. 

However, metazoan organisms are composed of diverse tissues, 

each containing specific cell profiles and local tissue niches. Could 

these be conductive to aneuploidy tolerance, otherwise lethal at the 

level of the entire organism? 

A recent  comprehensive review on aneuploidy (Zhu et al., 2018), 

previously cited in this introduction, states : “Various studies 

estimated 1-33% of human neurons to be aneuploid and 4-50% of 

human hepatocytes to be aneuploid”. Notice the tenfold variance in 

the bottom and the top number for aneuploidy percentage in the 

two respective tissues. For decades, Fluorescence In Situ 

Hybridization (FISH) experiments have been used to asses 

aneuploidy in human tissues. This lead to a wide spread belief that 

human neurons are frequently aneuploid, some papers even 

postulating that this aneuploidy promotes neural plasticity (Muotri 

and Gage, 2006; Rehen et al., 2001). The same was the case with 

human liver, where FISH karyotyping lead to the conclusion that 

the liver is composed out of a large portion (50%) of aneuploid 

hepatocytes, conferring selective advantage (Duncan et al., 2012; 

Duncan et al., 2010). However, FISH karyotyping is very prone to 

error, especially in interphase cells, which in human and 

drosophila, tend to cluster homologous genetic loci onto a single 

location in the nucleus (Wu and Morris, 1999). Recent emergence 

of single cell sequencing allows for more accurate karyotyping of 

cell populations from distinct tissues. A study from the Amon lab 

examined  mouse and human tissues by single cell sequencing 

and found extremely low rates of aneuploidy in the liver and the 

brain, comparable to the skin (below 1%) (Knouse et al., 2014). 
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Thus, the likely conclusion is that there is no organ specific niche 

that would compensate for the high physiological cost of 

aneuploidy. 

The one thing that cannot be emphasized enough is that there is 

no such thing as an “aneuploidy”, only “aneuploidies”. The major 

caveat of studying aneuploidy is the fact that we rely on 

uncontrolled mitotic perturbation to generate it. By doing so, we are 

unable to “design” an aneuploid karyotype of choice, and rely on 

randomization of genetic material. Randomization infers 

individuality, and as previously stated, even aneuploid cells of the 

same karyotype can display different outcomes (Beach et al., 

2017). Studying a random karyotype and hoping to elucidate 

anything beyond a general stress response is likely in vain. Another 

problem with the way we currently study aneuploidy is the lack of 

temporal resolution in tools used to induce aneuploidy in 

metazoans. As if the genome randomization alone is not enough to 

obstruct clear observation; a classical way of perturbing mitosis 

either in cell culture or in a metazoan organism is by chronic 

disturbance mitotic protein of interest, usually by RNAi or 

overexpression.  This means that not only we are studying a 

random genome; we are also studying a random genome at a 

random point in time since it became randomized. What this 

approach clearly negates is aneuploid evolution and history. As 

mentioned before, aneuploidy results in accumulation of different 

stress responses, and complex karyotype evolution. Chronic 

approaches utilizing non-selective mitotic perturbation do not allow 

us to dissect the temporal order of each of these events. 

Yet, recent advances open exciting new possibilities for the field. 

Both in yeast and human cells, new assays have been developed 
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to study aneuploidy of specific chromosomes. In yeast excision of 

the centromere of a specific chromosome leads to its miss-

segregation (Beach et al., 2017). When coupled to a fluorescence 

marker, this allows for identification of loss of function or gain of 

function events, and sorting populations of the same aneuploid 

karyotype which can then can be traced trough time. 

Another interesting addition to the field is, a new method of single 

chromosome introduction in vertebrate cells (Passerini et al., 2016; 

Sheltzer et al., 2017), which allows for specific chromosome gain of 

function analysis, in real time. 

The next step would be designing inducible metazoan systems, 

preferably with controlled nature of the aneuploid karyotypes 

studied. Ideally, aneuploidy induction would also be tissue specific 

and acute, allowing for temporal resolution of aneuploid events, in 

a highly physiological context. Some of these efforts will be 

discussed in Chapter III. 
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Abstract 

Sister chromatid cohesion, mediated by the cohesin complex, is 

essential for faithful mitosis. Nevertheless, evidence suggests that 

the surveillance mechanism that governs mitotic fidelity, the 

Spindle Assembly Checkpoint (SAC), is not robust enough to halt 

cell division when cohesion loss occurs prematurely. The 

mechanism behind this poor response is not properly understood. 

Using Drosophila developing brains, we show that full sister 

chromatid separation is insufficient for robust checkpoint response 

and cells abnormally exit mitosis after a short delay. Quantitative 

live cell imaging approaches, combined with mathematical 

modelling, indicate that frail SAC activation upon cohesion loss is 

caused by an intrinsic weak signalling capacity that is further 

potentiated by several feedback loops in the mitotic signalling 

network. We propose that upon premature loss of cohesion, 

multiple feedbacks involving Cyclin-dependent kinase 1 (Cdk1), 

gradually impair error-correction efficiency and accelerate mitotic 

exit. Our findings explain how cohesion defects may escape SAC 

surveillance.  
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Highlights: 

• Precocious sister chromatid separation does not elicit a 
robust SAC activation 

 

• Error-correction efficiency declines gradually upon 
premature cohesion loss  

 

• Mitotic exit upon cohesion loss is accelerated by multiple 
feedback loops  

 

• Stability of microtubule-kinetochore attachments is 
ultrasensitive to Cdk1 inhibition 
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Introduction 

Faithful chromosome segregation is governed by the Spindle 

Assembly Checkpoint (SAC), a surveillance mechanism that 

senses the state of spindle attachments and prevents progression 

through mitosis until all chromosomes are properly bi-oriented on 

the spindle (Musacchio, 2011; Nezi and Musacchio, 2009). This 

checkpoint operates by generating an inhibitory signal (Mitotic 

Checkpoint Complex, MCC) that inhibits the Anaphase-Promoting 

Complex/Cyclosome (APC/C) and thereby the onset of anaphase. 

Unattached kinetochores serve as a scaffold for the production of 

the MCC (Musacchio, 2011; Musacchio and Salmon, 2007) but it 

has long been debated whether or not tension across sister 

chromatids (and/or intra-kinetochore tension) can also be sensed 

by this checkpoint (Khodjakov and Pines, 2010; Maresca and 

Salmon, 2010; Pinsky and Biggins, 2005). Nevertheless, it is well 

accepted that tension plays a central role in the responsiveness of 

the SAC, even if indirectly, by modulating the stability of spindle 

attachments (Khodjakov and Pines, 2010; Maresca and Salmon, 

2010; Nezi and Musacchio, 2009; Pinsky and Biggins, 2005). This 

regulation is achieved by the error-correction mechanisms, 

primarily mediated by Aurora B kinase, that destabilize 

kinetochore-microtubule interactions that are not under tension 

(Carmena et al., 2012; Liu et al., 2009).  

Sister chromatid cohesion, mediated by the cohesin complex 

(Barbero, 2011; Losada, 2014), is a major contributor for tension 

establishment as it provides the counterforce that resists the 

opposite pulling forces of the microtubules upon spindle attachment 

(Oliveira et al., 2010; Tanaka et al., 2000). Cohesin is therefore 

essential for faithful mitosis, as it promotes biorientation and 
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thereby prevents random segregation of the genome. One would 

therefore expect that the SAC should be able to respond to 

cohesion defects and prevent mitotic exit upon premature cohesin 

loss. On the other hand, absence or mutations on cohesin subunits 

are associated with increased aneuploidy, including in some 

human disorders linked to cohesin malfunction (Barbero, 2011; 

Losada, 2014), implying that mitotic exit has taken place despite 

premature sister chromatid separation. Moreover, previous studies 

in budding yeast or mammalian cells have indicated that cells with 

unreplicated genomes or precociously separated sister chromatids, 

can eventually exit mitosis (Michaelis et al., 1997; O'Connell et al., 

2008). This conundrum raises the possibility that despite the 

established role for sister chromatid cohesion as a major tension 

contributor, and consequently on the stability of spindle 

attachments, cohesion loss results in weak activation of the SAC. 

The molecular mechanisms behind this poor response, however, 

are not fully understood. Here we report a quantitative analysis on 

the robustness of the SAC activation during mitosis when sister 

chromatid separation occurs prematurely.  

Results and Discussion 

I.1 Premature Loss of Sister Chromatid Cohesion Does Not 

Elicit a Robust SAC Response 

To determine the strength of the mitotic checkpoint response to 

premature loss of sister chromatid cohesion, we made use of a tool 

to induce acute removal of cohesin in living tissues, based on 

artificial cleavage of the cohesin protein Rad21 by an exogenous 

protease (Tobacco Etch Virus, TEV) (Oliveira et al., 2010; Pauli et 

al., 2008). We have focused our analysis on developing larval brain 
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Neuroblasts (NBs), stem cells that give rise to the central nervous 

system of the fly (Knoblich, 2008) and are known to have robust 

checkpoints. Accordingly, these cells arrest for many hours in 

mitosis when incubated with spindle poisons such as colchicine 

(Fig. 2 A, B). To induce cohesin cleavage, we used strains 

containing solely TEV-sensitive cohesin complexes and express 

TEV-protease under the heat-shock promoter (Pauli et al., 2008). 

Heat-shock delays mitotic entry (Maldonado-Codina et al., 1993) 

and nuclear division is resumed 148 ± 75 min (n=113 N=14) after 

heat-shock, enabling analysis of the consequences of cohesion 

loss within a single cell cycle (Fig. 1A).  

 

 

 

 

 

 

 

        Figure 1A – Heat shock inhibits mitotic entry of Neuroblasts. 

To evaluate the robustness of the SAC in the presence of 

premature sister chromatid separation, we have quantified the time 

cells spend in mitosis (from Nuclear Envelope Breakdown (NEBD) 

to Nuclear envelope Formation (NEF). 
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Figure 1B – Heat shock and TEV expression do not perturb mitotic 

duration in Neuroblasts. 

While control cells spend around 12 minutes in mitosis (with or 

without heat shock), TEV-mediated cleavage of cohesin results in a 

mitotic delay (38.3 ± 13.1 min) (Fig. 2 and Movies S1 and S2). NBs 

from larvae not subjected to heat-shock do not show any mitotic 

delay implying that leaky TEV expression, if it exists, is unable to 

induce mitotic errors (Fig. 1B). 

 These results indicate that NBs elicit a SAC response that delays 

mitotic exit in response to prematurely separated sisters. However, 

this arrest is relatively modest when compared to colchicine-

induced arrest (Fig 2B). A similar response was observed in 

Ganglion Mother Cells (GMCs), secondary precursor cells that 

derive from the NBs (1 C-D). Importantly, cohesin cleavage does 

not shorten the mitotic arrest in colchicine (Fig 2B); implying that 

cohesin depletion alone has no major effect on the SAC signalling 

capacity.  
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Figure 2- Premature loss of sister chromatid cohesion induces a 
short mitotic delay. A) Images of dividing Drosophila Neuroblasts from 

heat-shocked wild-type strains (top), strains surviving solely on Rad21TEV 

after heat-shocked induced TEV expression (middle) and wild-type brains 

incubated with 100 μM of colchicine (bottom). All strains express HisH2A-

mRFP to follow chromosome dynamics and times (min:sec) are relative to 

nuclear envelope breakdown (NEBD); scale bar equals 5 μm and applies 

to all images; B) Average mitosis duration (NEBD to NEF) in heat-

shocked control (n=41 N=4), TEV-mediated cohesin cleavage (n=93 

N=8), colchicine treated (n=57 N=6) and colchicine treated after cohesin 

cleavage (n=15, N=2) larval Neuroblasts represented as mean ± SEM; C) 
Mitosis duration (NEBD to NEF) in wild-type (heat-shock control) and 

TEV-mediated cohesin cleavage larval Neuroblasts; See also Figure S1 

and Movies S1 and S2 
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I.2 Loss of Sister Chromatid Cohesion Activates EC 
Mechanisms during Early Mitosis 

Drosophila neuronal cells are therefore highly SAC competent, yet 

fail to mount a robust response to cohesion loss if mitotic spindle is 

present. One would expect that even if transient spindle 

attachments take place in the absence of cohesin, these should 

become destabilized by the error-correction machinery, in response 

to lack of tension (Carmena et al., 2012; Liu et al., 2009). The 

resulting detached kinetochores should then provide a sufficiently 

strong SAC signal to prevent mitotic exit.  

 

Figure 1 C-D. 

C) Ganglion Mother Cells (GMC) exibit a mild mitotic delay upon 

premature cohesion loss D) Colchicine incubation results in robust mitotic 

arrest. 
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Our findings imply that the error correction machinery and the SAC 

show sub-optimal efficiency in detecting and arresting cell division 

in response to cohesion loss. Recent evidence suggests that 

Aurora B is not properly localized and shows reduced activity 

towards its known targets, upon depletion of cohesin subunits 

(Carretero et al., 2013; Kleyman et al., 2014; Yamagishi et al., 

2010). In accordance, we confirmed that Aurora B is delocalized 

and specifically reduced in the centromere vicinity upon cohesin 

cleavage (Fig. 3A). A similar reduction was observed for one of the 

chromatin marks that mediate Aurora B accumulation, H3T3ph 

(Fig. 3B), thought to be regulated by the interaction of the 

responsible kinase (Haspin) with the cohesin subunit Pds5 

(Yamagishi et al., 2010).  

Figure 3 A-B. 

A) Cohesin depletion results in delocalization of Aurora B and decreased 

centromere intensity. B) Upon cohesin cleavage by TEV, the H3T3ph 

phosphorylation is decreased in mean intensity. 
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Conversely, we also observe that engineered chromosomes 

containing ectopic heterochromatin sites, which are sufficient to 

recruit high levels of cohesin (Oliveira et al., 2014), are also able to 

accumulate significant levels of H3T3ph and Aurora B, despite not 

having a proximal centromere  (Fig. 3 D, E). This result indicates 

that heterochromatin and cohesin accumulation are major drivers 

of Aurora B accumulation. 

 

Figure 3 D-E. 

Ectopic heterochromatin on C(2)En chromosome is sufficient to drive 

H3T3ph and Aurora B recruitment in the absence of centromere. 

The observed correlation would support that weak SAC response 

in the presence of single sisters is related to defective Aurora B 

activity; however, two critical observations indicate that a 

malfunctioning error correction cannot fully explain the reduced 

SAC response. First, during initial stages of the arrest, we observe 

high levels of chromosome motion with oscillatory movements (Fig. 

4 and Movies S2 and S3). After NEBD, single chromatids are 

initially pulled towards the poles, but remain highly mobile and soon 

start to shuffle between the poles. Quantitative analysis of 
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chromosome movement, estimated from the displacement of 

kinetochore positions in consecutive frames, reveals a high degree 

of chromatid motion, as evidenced by the high frequency of non-

overlapping centromere positions between consecutive frames 

(Fig. 4 A, B and C). Such movements are likely the result of 

consecutive cycles of chromosome attachment, which are 

subsequently detached due to their tension-less nature, as 

previously suggested (Oliveira et al., 2010).  



111 
 

 

Figure 4- Single chromatids display a highly mobile behaviour that 

gradually declines during cohesin cleavage-induced mitotic delay.  

A) Stills from live cell imaging of CID-EGFP expressing neuroblasts upon 

cohesin cleavage at different time points (times are relative to NEBD). Left 

panel represents average of the binary images of 3 consecutive frames, 

used to estimate centromere displacements. Blue represents non-

overlapping pixels, green represents pixels that overlap in 2 out of 3 

frames and red represents pixels overlapping in the 3 frames. B) 
Centromere displacement during mitosis in the absence of cohesin (6 min 

post-NEBD to anaphase onset); graphs represent frequency of 

overlapping pixels from a walking average movies as illustrated in A. C) 
Centromere displacement at different times of arrest upon TEV-mediated 

cohesin cleavage: start: 6-10 min after NEBD; end: 6-10 min before 

anaphase onset; middle: 5 min at the midpoint of the arrest (n= 23 N=3); p 

represents the adjusted p-value by two-way ANOVA 

In accordance with this notion, movements are strongly reduced 

when Aurora B is inhibited by binucleine-2 (Smurnyy et al., 2010)  

(Fig. 4D). Secondly, the short but noticeable SAC response 

observed after cohesin cleavage, is dependent on Aurora B 

activity. Addition of binucleine-2 to cells that have just entered 

mitosis, and would therefore be expected to delay mitotic exit for 

additional 40 min, leads to abrupt mitotic exit in about 7,5 ± 0,5 min 

(Fig. 4E). This sharp mitotic exit could be attributed to the 

impairment of Aurora B activity in the destabilization of tensionless 

kinetochore-microtubule (KT-MT) attachments or, alternatively (or 

additionally), to the known role of this kinase in the SAC signalling 

(Hauf et al., 2003; Maldonado and Kapoor, 2011; Santaguida et al., 

2011; Saurin et al., 2011). If Aurora B activity contributes primarily 

to SAC activity than one would expect inhibition of this kinase to 
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abrogate the SAC abruptly when the checkpoint is activated by the 

absence of spindle attachments. We therefore monitored the time 

of mitotic exit upon Binucleine-2 addition to colchicine-arrested 

cells. Our results show that upon Aurora B inhibition, colchicine-

treated NBs eventually exit mitosis, but take a considerably longer 

time to do so, regardless whether cohesin has been cleaved or not 

(Fig. 4E). These results suggest that reversion of Aurora B 

mediated phosphorylation events required for SAC maintenance is 

kinetically slow. We therefore favour that the sudden mitotic exit 

observed upon Aurora B inhibition in TEV experiments, results 

primarily from the inhibition of the error correction activity rather 

than a direct inhibition on the SAC signalling capacity. 

Figure 4 D-E: Mitotic delay and chromatid motion upon cohesin loss 

can be halted by Binucleine 2, an Aurora B inhibitor 
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D) Centromere displacement before and after addition of an inhibitor that 

targets specifically Drosophila Aurora B (binucleine-2; final concentration: 

25 μM); binuclein 2 was added 6-10 minutes after NEBD and centromere 

displacement was measured immediately after until anaphase onset (n=8 

N=3); p represents the adjusted p-value by two-way ANOVA; E) Mitotic 

exit time after binuclein 2 addition in TEV-cleavage (n=33 N=3) and 

colchicine treatment (n=15 N=3) experiments represented as mean ± 

SEM.  See also Figure S3 and Movies S2 and S3. 

I.3 Attachments of Single Chromatids to the Mitotic Spindle 
Are Progressively Stabilized 

Taken together, these observations imply that Aurora B is at least 

partly functional in the absence of cohesin. If so, why is cohesion 

loss not sufficient to elicit a robust mitotic arrest? Given that the 

SAC response in the absence of cohesion depends on the ability to 

generate unattached kinetochores, we have monitored the state of 

KT-MT interactions throughout the entire duration of the arrest. We 

first monitored the degree of chromosome movement at different 

times of the arrest as mentioned above. While chromosomes are 

highly dynamic in the initial stages of the arrest, their movement 

becomes gradually reduced, suggesting that KT-MT interactions 

are progressively stabilized over time (Fig 4A, 4B). We envision 

three different possibilities that could account for KT-MT 

attachment stabilization in the presence of single sisters. First, 

stabilization of attachments could be caused by the accumulation 

of merotelic attachments, as previously reported in Mitosis with 

Unreplicated Genomes (MUGs) (O'Connell et al., 2008). Secondly, 

attachment could potentially be stabilized by tension in the absence 

of sister chromatid cohesion (for e.g. due to cytoplasmic drag). 

Lastly, attachments may be abnormally stabilized even in the 
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absence of maximal tension. To distinguish between these 

possibilities we have analysed the state of KT-MT attachments in 

more detail (Fig. 5A). This analysis revealed that the kinetochore 

occupancy is very high across the cells examined, and the most 

prevalent form of attachment displays kinetochores at the end of a 

well defined kinetochore bundle (end-on attachment). The high 

frequency of end-on attachments (66%) suggest that these are 

relatively stable (Fig. 5A). Importantly, we observed a low 

frequency of merotelic attachments (<15%, Fig. 5A), suggesting 

that accumulation of these abnormal attachments is unlikely to be 

the major cause for the observed decrease in motion. To confirm 

that this is also the case specifically at the time of mitotic exit, we 

have measured the positioning of centromeres at these later stages 

of mitosis. If abnormal mitotic exit were triggered by the 

accumulation of merotelic attachments one would expect 

centromeres to be preferentially placed in the middle of the 

segregation plane. In fact, in some cells we do find centromeres 

that lag behind the major chromatin mass (on average ~20%, Fig. 

5B) and display obvious stretching once mitotic exit takes place, 

consistent with being bound to both poles. However, most 

kinetochores were found to be placed facing the poles, and do not 

stretch during poleward movement, supporting they are end-on 

attached (Fig. 5B). These results indicate that unlike the previous 

results in MUG cells (O'Connell et al., 2008), cohesion depletion 

leads to mitotic exit without major accumulation of merotelic 

attachments. 
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Figure 5 A-B – Cohesin loss results in High frequency of end-on 

attachments  

A) Frequency of kinetochore attachment observed upon after cohesin 

cleavage; brains expressing HisH2Av-mRFP1 (red) and Cid-EGDP 

(green) were shortly incubated with 100 nM Sir-Tub probes (Cyan) before 

brain squash; graph shows the profile of 30 NBs (N=3) at the random 

stage of mitotic delay highlighting that the most prevalent type of 

attachments are the end-on attachments; B) Quantifications of the 

centromere distribution at the time of mitotic exit; for each image, the 

segregation plane, determined based on the two most distal centromeres, 

was divided into two equally-sized regions as exemplified. 

To confirm that KT-MT attachments are indeed stabilized, we 

furthermore monitored the levels of Mad2-EGFP at kinetochore in 

live cells, throughout the duration of the arrest. Mad2 is a key 

component of the Mitotic Checkpoint Complex (MCC) that localizes 

to unattached kinetochores (Buffin et al., 2005; Musacchio, 2011; 

Musacchio and Salmon, 2007). We observe that upon cohesin 

cleavage, kinetochores show significant levels of Mad2 after NEBD 
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that fluctuate during the initial stages of the aberrant mitosis (Fig. 

5C). Maximal amount is on average ⅓ the level observed in 

colchicine (data not shown). Importantly, at later stages the signals 

gradually decline. Cells exit mitosis once (and only when) all 

chromosomes are devoid of Mad2. These observations are further 

validated in fixed samples where we see significant asynchromy 

between different analysed cells but most lack high levels of Mad1 

at kinetochores (Fig. 6B). Additionally, quantitative analysis of 

BubR1, a MCC component that leaves the kinetochores only when 

sisters are under tension (Buffin et al., 2005; Logarinho et al., 

2004), reveals that its levels are reduced (⅓ of the levels in 

colchicine cells) but relatively constant throughout the arrest (Fig. 

5D and data not shown).  

Although there is a reduction during the arrest, the kinetics of 

BubR1 levels do not resemble the observed decrease in 

chromosome motion nor the dynamics of Mad2. Importantly, all 

kinetochores show similar levels of BubR1 across different cells 

analysed (Fig. 6C). We therefore favour that spindle attachments of 

single sisters, despite being mostly end-on, are progressively 

stabilized even without maximal tension. 
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Figure 5 C-E: Cohesion loss leads to low production of MCC and 

premature decay of Cyclin B.  

 (C-E) Stills from live-cell imaging of Mad2-GFP (C), BubR1-GFP (D) and 

Cyclin B-GFP (E) during the mitotic delay induced by cohesin cleavage. 

Times are relative to NEBD; scale bar equals 5 μm and applies to all 

images; graphs represent the relative fluorescence intensity in cohesin 

cleavage and colchicine arrested cells, normalized to the maximum value 

within each dataset. See also Figure S4 and Movie S4. 
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Figure 6 B-F B-C) Immunofluorescence depicting single cell BubR1 and 

Mad1 Kinetochore occupancy upon premature Cohesin loss or Colchicine 

incubation. D-F) Live kinetics of BubR1, Mad2 and Cyclin B decay in 

individual Neuroblasts. 
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I.4 Cyclin B Is Gradually Degraded during Cohesin Cleavage 
Mediated Mitotic Arrest 

The results above suggest that throughout the mitotic delay there is 

a gradual transition between an initial phase, characterized by 

highly unstable KT-MT interactions resulting in a sufficiently strong 

SAC signal to prevent mitotic exit, to a later period with more stable 

attachments to the spindle and consequently decreased production 

of inhibitory signal. Given that cohesin depletion is an irreversible 

step, we assumed that this transition would be primarily governed 

by downstream consequences of a dynamic network.  

In contrast to classical “all or nothing” view of the SAC (Rieder et 

al., 1995; Rieder et al., 1994), recent evidence supports graded 

SAC activity (Collin et al., 2013; Dick and Gerlich, 2013) arguing 

that its inhibitory activity is proportional to signal strength. It is 

therefore conceivable that an initial weak SAC signalling (caused 

by a high residence time of unstable attachments) leads to a partial 

activation of the APC/C and consequent partial Cyclin B 

degradation. To test this hypothesis we have monitored the levels 

of Cyc B-GFP in different experimental conditions. In the presence 

of spindle poisons such as colchicine, Cyc B levels remain high 

over the period of 1.5 hours (Fig. 6F; longer incubations cause a 

more pronounced decay in Cyc B levels, not shown). In contrast, 

mitosis in the presence of precocious sister chromatid separation 

leads to premature decay in Cyclin B levels. This is consistent with 

a graded SAC response (Collin et al., 2013; Dick and Gerlich, 

2013) predicting that low levels of MCC would produce weak 

inactivation of the APC leading to significant Cyc B degradation 

(Fig. 5E). 
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I.5 Mathematical Modelling of Multiple Feedback across the 

Mitotic Network 

Cdk1/Cyclin B activity is required for almost all aspects of mitosis; 

hence decay in Cyclin B levels is likely the major drive for mitotic 

exit. Nevertheless, several scenarios could serve as potential 

explanations for how Cyclin B decay can drive cells out of mitosis. 

To distinguish between different dynamic networks, we have 

adopted a mathematical modelling approach, which provides a 

quantitative framework for the description of accelerated mitotic exit 

observed upon premature sister-chromatid separation (Fig. 7). We 

have centred this analysis on the error correction (EC) module, 

characterized by the role of centromeric AuroraB complexes in 

destabilizing attached microtubule binding sites (MBSa) at KTs 

(AurB ǀ MBSa). Aurora B action is attenuated by KT stretching 

(Stretch ǀ AurB) which, in turn, is enhanced by sister chromatid 

cohesion during amphitelic attachment. We characterize KT 

tension by a “Stretch constant” (S), which is set to one during 

normal progression and to a small number when cohesin cleavage 

is induced. The choice for a small but larger than zero stretch value 

was based on recent findings that intra-kinetochore stretch 

contributes to SAC silencing (Maresca and Salmon, 2009, 2010; 

Nannas and Murray, 2014; Uchida et al., 2009) together with the 

fact that single sisters were often found attached to the spindle 

(Fig. 5A-B).   
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Figure 7 - Mathematical modelling of the interplay between error-
correction (EC) and Spindle Assembly Checkpoint (SAC). 
Comparison of three different scenarios for the interaction between the 

SAC and EC; Each panel shows a molecular influence diagram (top left), 

along with stochastic simulations for control cells and for the case of 

precocious loss of cohesin. The simulations show how these components 

change over time between nuclear envelope breakdown (t=0) and Cdk1 

inactivation (mitotic exit). For clarity, time-courses for the SAC 

components (bottom left), and for EC components (right part) are shown 

separately in each panel. Simulations of the EC depict the behaviour of an 

individual chromatid (top) as well as the bulk behaviour of all chromatids 

(bottom). A) “Basic model”. The EC module operating at centromeres-

kinetochores uses Aurora B activity (AurBa) to destabilise MT-KT-

attachments, and thereby converts attached microtubule-bindings sites 

(MBSa) into unattached bindings sites (MBSu). Attached MBS become 

stretched and thereby reduce the action of AurBa. This creates a double 

negative feedback loop. Both the activity of AurB, as well as the stretch 

depends on centromeric cohesins. MBSa act as input into the SAC 

module and suppress the formation of mitotic checkpoint complexes.  

MCC inhibition of APC/C-dependent CycB degradation regulates Cdk1 

activity, which is the output of the SAC module. B) The “SAC-feedback 

model” is an extension of the “basic model”: An additional internal positive 

feedback loop within the SAC module via Cdk1 and AurB promotes the 

production of MCC. C) The “SAC-EC-feedback model” is a further 

extension of the SAC-feedback model, where Cdk1 activity not only 

promotes MCC assembly, but additionally promotes AurB localisation. 

The mutual input-output relationship between ERC and SAC creates a 

positive feedback (amplification) loop (EC - SAC -EC).  

 

Cohesin plays a seemingly paradox role on the action and the level 

of Aur B at centromeres (see diagrams on Fig. 7 and Fig 8A). The 
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increased stretch caused by sister chromatid cohesion reduces 

AuroraB activity towards its targets (MBSa  Stretch ǀ AurBǀ  

MBSa), creating a double negative feedback loop at the heart of 

the EC module. On the other hand, cohesion potentiates error-

correction by stabilization of AurB molecules at centromeres (Fig. 

S2, (Carretero et al., 2013; Kleyman et al., 2014), which is captured 

by reduced dissociation constant of AurB in the model. 

 

                   Figure 8A- Wiring Diagram of the Model 

The net products of the EC module are unattached kinetochores 

(MBSu), which in turn, through the SAC module, catalyse the 

assembly of the inhibitory signal (MCC) that prevents mitotic exit by 

inhibiting APC/C-dependent Cyclin-B degradation (Fig 8A).  All 
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these reactions are shared by the three models presented below in 

order to capture the dynamics of our experimental observations 

upon cohesin cleavage. For each model, the stochastic behaviour 

of single KT and the full complement KTs is presented, including 

the levels of centromeric Aurora B (its ‘active’ form as well as 

centromeric pool) and the number of MBS (11 per kinetochore 

(Maiato et al., 2006)). The behaviour of the SAC-module is 

illustrated by time-courses of CycB, APC/C and MCC.  

In our “Basic model”, SAC signalling is strictly downstream of the 

EC module by assuming a constitutive rate for the localization of 

AurB to the centromere (Fig. 7A). In the presence of cohesin, 

tension brings the effective activity of Aurora B sufficiently down in 

order to allow for attachments to stabilise. Our experimental 

observations in control cells are nicely recapitulated by carefully 

chosen set of parameters (see parameter description in 

Supplemental Experimental Procedures). However, the induced 

cohesin cleavage experiments cannot be captured with low levels 

of stretch constant, a likely scenario in the absence of cohesin (Fig. 

8B provides an overview of the stretch parameter effect in all our 

models). The “basic model” predicts a mitotic arrest in the absence 

of sufficient tension because the EC module remains active and 

generates unattached kinetochores, which produce MCC and block 

mitotic exit (note persistent MCC levels and absence of APC 

activation on Fig. 7A). For these reasons, we assumed that 

additional feedback loops may be accelerating mitotic exit in the 

presence of single sisters.  
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In the “SAC-feedback model”, we have considered the role of 

Cdk1-CycB (D'Angiolella et al., 2003; Rattani et al., 2014; Vazquez-

Novelle et al., 2014) and Aurora B (Hauf et al., 2003; Maldonado 

and Kapoor, 2011; Santaguida et al., 2011; Saurin et al., 2011) in 

MCC assembly (Fig. 7B). Introduction of these feedbacks 

accelerates mitotic exit allowing us to establish kinetic parameters 

that can fit the mitotic timings observed in both control and TEV-

cleavage scenarios (Fig. 7B and 8). However, this model predicts 

persistent stochastic fluctuations for the microtubule attachment 

profile (Fig. 7B; note that MBSa do not increase over time), which 

is inconsistent with our experimental observations (Fig. 4 and 5). 

Additionally, this model postulates slowdown in Cyclin B 

degradation towards the later stages of the arrest (Fig. 7B). In 

contrast, we observe that CycB degradation occur in two stages: 

an initial linear decay followed sharp degradation at exit from 

mitosis (Fig. 3; see rates of CycB-degradation in Fig. 8C).  

For these reasons, an additional feedback loop was introduced by 

a positive effect of Cdk1-CycB on the error correction machinery 

(“SAC-EC-feedback model”). Since Cdk1-CycB may affect error 

correction by several mechanisms (e.g. Aurora-B kinase 

activity/localization or microtubule dynamics), we simply described 

this effect by Cdk1-CycB dependence on centromeric localization, 

based on the fact that Cdk1 inactivation is known to remove 

centromeric Aurora-B at the metaphase-transition (Hummer and 

Mayer, 2009; Mirchenko and Uhlmann, 2010; Pereira and Schiebel, 

2003; Tsukahara et al., 2010; Vazquez-Novelle and Petronczki, 

2010). Other mechanisms, if in place, should have additive effects 

on the network. With the SAC-EC feedback in place, in silico 

simulations of the model faithfully matches the mitotic progression 
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upon cohesion loss of our experimental observations (Fig. 7C). In 

particular, inclusion of a positive feedback between SAC-EC makes 

the EC module sensitive to the levels of CycB. Consequently, 

simulations predict a gradual stabilization of KT-MT attachments 

(illustrated by the saturation of aMBS), as seen experimentally (Fig. 

4). Additionally, this model also predicts that CycB degradation 

occurs slowly during early stages of the arrest, followed by higher 

degradation rates at the time of mitotic exit (Fig. 5E); see also 

CycB-degradation rates in Fig. 8C. This is consistent with a sharp 

activation of the APC/C, which is also predicted by the SAC-EC 

model (Fig. 7C, 8B) 
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Figure 8 B-C: the three models. 

B) Differential sensitivity towards the stretch parameter in three models 

C) Theoretical and experimental rates of Cyclin B degradation 

I.6 Cells with Premature Loss of Sister Chromatid Cohesion 

Are Ultrasensitive to Cdk1 Inhibition 

Our experimental data is therefore best described by the “SAC-EC-

feedback model”. Importantly, this model makes a critical testable 

prediction: mitosis duration upon cohesion depletion is 

ultrasensitive to mild Cdk inhibition (Fig 9A). In contrast to a linear 

sensitivity scenario, in which mitotic timing would be proportional to 

the level of residual Cdk activity, our model predicts that the 

multiple feedbacks will further accelerate mitotic entry and 

consequently mild Cdk inhibitions should have a strong effect on 

mitosis duration. Colchicine arrest is also predicted to display ultra-

sensitivity although, in this case, to a lesser extent (note that in the 

absence of MT attachment there is only one feedback (SAC-

feedback) potentiating Cdk inhibition sensitivity).  
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Figure 9A Mitosis with Precociously Separated Sister Chromatids Is 

Ultrasensitive to Cdk1 Inhibition 

(A) Predicted sensitivity of control, TEV-, and colchicine-treated cells to 

Cdk1-inhibition. Mitotic exit timing was determined by the time when 

theCycB level is reduced to 10% of its initial value. Bottom panel shows 

relative sensitivity of the different treatments; mitotic durations were 

rescaled between 0 (mitotic duration at 0% Cdk1- activity) and 1 (mitotic 

duration at 100% Cdk1activity). 

To test this prediction we have first investigated the efficiency of 

different doses of Cdk inhibitor Roscovitine in promoting mitotic exit 

in colchicine arrested cells (Fig 9B-C). While addition of 100 μM 

Roscovitine to Colchicine-arrested cells is sufficient to promote 

mitotic exit, 10 μM addition does not promote mitotic exit within the 

tested timeframe (2h). Importantly, control brains incubated with 

the same concentration prior to mitotic entry allow a significant 

number of control cells to enter and progress through mitosis with 

virtual no alteration in mitosis timing.  

In contrast, such mild inhibition had a strong impact in the mitotic 

timing of cells undergoing mitosis with precocious sister chromatid 

separation (Fig 9 D) A further prediction of the model is that the 

shorter mitosis duration observed upon mild Cdk inhibition is 

caused by the inability of the error-correction to destabilize KN-MT 

attachments (Fig 9E). To test this, we have monitored the degree 

of chromosome motion in TEV-cleaved brains upon mild Cdk 

inhibition. Strikingly, these cells undergo mitosis with virtually no 

chromosome movement. 
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Figure 9 B-D Roscovitine effect on the Control, Colchicine incubated, 

and Cohesin cleaved Neuroblasts 

B) and C) Frequency (B) and time (C) of mitotic exit observed upon the 

addition of different doses of roscovitine to colchicine-arrested brains 

within 2 hr.(D) Mitosis duration in wild-type and TEV-mediated cohesin 

cleavage larval neuroblasts, with and without prior incubation with 10 mM 

roscovitine; adjusted p value by one-way ANOVA. 

Upon NEBD, sister centromeres separate and remain quite 

immobile throughout the duration of mitosis. To exclude that the 

observed low chromosome motion is an artefact of problems before 

mitotic entry, we have performed time-controlled addition of 10 μM 

Roscovitine to cohesin-cleaved cells minutes after NEBD, while 

high chromosome motion is maximal. Addition of 10 μM 

Roscovitine is sufficient to abolish chromosome movement almost 

instantly and trigger mitotic exit (Fig 9F). Altogether, these results 

suggest show that mild inhibition is Cdk is sufficient to impair error-

correction. This suggests that amongst the many aspects of mitosis 
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controlled by Cdk1, regulation of the stability of KN-MT 

attachments is amongst the most sensitive ones.  

 

Figure 9 E-F Mild Cdk1 inhibition results in Mad2 signal abolishment 
upon cohesin removal. 

(E) Comparison of simulated attachment profiles and rates of MCC 

formation for cohesin cleaved cells with full Cdk1 activity (top) and 

subjected to 30% Cdk1 inhibition (bottom).(F) Stills from live-cell imaging 

of Mad2-GFP during the mitotic delay induced by TEV-mediated cohesin 

cleavage with and without incubation with10 mM roscovitine. Times are 

relative to NEBD; scale bar, 5 mm. 
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I.7 Discussion 

In summary, our analysis reveals that removal of a major tension 

contributor, such as sister chromatid cohesion, is insufficient for 

robust SAC activation. Such poor response can be attributed to two 

major findings: Firstly, single chromatids attach to the spindle with 

a high residence time, due an intrinsic slow kinetics of the error 

correction mechanisms or, more likely, to a sub-optimal efficiency 

of the error-correction machinery (Carretero et al., 2013; Kleyman 

et al., 2014; Yamagishi et al., 2010)). This, in turn, results in low 

MCC production. 

Secondly, low MCC generation leads to partial CycB degradation, 

which feeds back on error-correction and MCC generation, 

promoting further stabilization of KT-MT attachments and reduction 

in MCC production. The feedbacks described in the “SAC-EC-

feedbacks model” depict an amplification (positive feedback) loop 

between the error-correction and the SAC modules (ERC → SAC 

→ERC) that in control cells stabilizes the high Cdk1 activity mitotic 

state until amphitelic attachment of all chromosomes is achieved. 

In response to cohesion loss, however, these feedbacks render 

premature cohesion almost insensitive to SAC surveillance. 

Additionally, the dependence on cohesin for efficient centromeric 

localization of Aurora B localization, together with the high 

sensitivity of error-correction to Cdk inhibition, may work as parallel 

mechanisms to ensure fast inactivation of the error correction 

mechanisms during anaphase, where cells have now to resist their 

tension-less state (Kops, 2014; Oliveira and Nasmyth, 2010). The 

caveat of such relationship is that it compromises how premature 

cohesion is sensed by the mitotic checkpoint.  
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 Drosophila has a low number of chromosomes (8) making it more 

prone to silence the SAC, upon cohesin cleavage, within a testable 

time-frame. As such, loss of cohesion in mammalian cells may lead 

to a more prolonged SAC response, due to the higher number of 

signalling kinetochores (e.g. mouse embryos arrest for over 17 

hours upon cohesin cleavage in mitosis (Tachibana-Konwalski et 

al., 2013)). Nevertheless, the regulatory networks described here 

are highly conserved across species predicting that mammalian 

cells with premature cohesion loss will likely eventually satisfy the 

SAC. Importantly, mild cohesion defects leading to partial levels of 

cohesion loss may be totally undetected by the SAC. This has 

important implications as known cases of mitotic cohesion 

problems associated with human disease (e.g. Cornelia de Lange, 

Roberts, Chronic Atrial and Intestinal Dysrhythmia (CIAD) 

Syndromes) are indeed characterized by relatively mild levels of 

sister chromatid separation (Chetaille et al., 2014; Jabs et al., 

1991; Kaur et al., 2005; Vega et al., 2005).  

I.8 Materials and Methods: 

Drosophila strains 

To destroy cohesin by TEV protease cleavage, Drosophila strains 

were used with TEV-cleavable Rad21 (Rad21TEV) in a Rad21-null 

background (Rad21ex15, Rad21550-3TEV-myc) (Pauli et al., 2008). 

TEV expression was induced by heat-shocking 3rd instar larvae at 

37ºC for 45 minutes. A complete list of used genotypes can be 

found in Sup. 
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Tissue Preparation for fixed and live-cell imaging 

Third instar brains were dissected and prepared as previously 

described (Oliveira et al 2014). Further details can be found in SSS 

Mathematical modelling  

The model was simulated by Gillespie’s Stochastic Simulation 

Algorithm (SSA) after converting the rate of elementary reactions 

into propensity functions. Details on model design, including 

equations and parameter can be found in Supp. 
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Abstract 
 
Sister chromatid cohesion is essential for faithful mitosis, as 

premature cohesion loss leads to random chromosome 

segregation and aneuploidy, resulting in abnormal development. To 

identify specific conditions capable of restoring defects associated 

with cohesion loss, we screened for genes whose depletion 

modulates Drosophila wing development when sister chromatid 

cohesion is impaired. Cohesion deficiency was induced by knock-

down of the acetyltransferase Separation anxiety (San)/Naa50, a 

cohesin complex stabilizer. Several genes whose function impacts 

wing development upon cohesion loss were identified. Surprisingly, 

knockdown of key Spindle Assembly Checkpoint (SAC) proteins, 

Mad2 and Mps1, suppressed developmental defects associated 

with San depletion. SAC impairment upon cohesin removal, 

triggered by San depletion or artificial removal of the cohesin 

complex, prevented extensive genome shuffling, reduced 

segregation defects and restored cell survival. This counterintuitive 

phenotypic suppression was caused by an intrinsic bias for efficient 
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chromosome bi-orientation at mitotic entry, coupled with slow 

engagement of error-correction reactions. We conclude that mitotic 

timing determines the severity of defects associated with cohesion 

deficiency. Therefore, although divisions are still error-prone, SAC 

inactivation enhances cell survival and tissue homeostasis upon 

cohesion loss. 

 
Results 

 

The fidelity of mitosis depends on cohesive forces that keep sister 

chromatids together. Sister chromatid cohesion is mediated by 

cohesin, a tripartite ring complex that embraces sister chromatid 

fibres from the time of their replication until the subsequent mitosis 

[1-3]. Cleavage of cohesin by Separase, a cysteine protease, 

marks the anaphase onset, where single chromatids are dragged 

to the poles by the mitotic spindle after cohesive forces are 

destroyed [4-6]. Cohesin cleavage should only occur when all 

chromosomes are properly bio-oriented to ensure equal genome 

distribution. Unscheduled loss of sister chromatid cohesion is 

catastrophic for the cell as premature release of cohesive forces 

leads to random chromosome segregation. 

Premature release of cohesive forces during mitosis is prevented 

by a safeguard mechanism known as the Spindle Assembly 

Checkpoint (SAC) (reviewed in [7, 8]). In the presence of 

unattached kinetochores, this safeguard mechanism prolongs 

mitosis by inhibiting the Anaphase Promoting Complex/Cyclosome 

(APC/C). SAC ensures that cohesin cleavage does not occur until 

all chromosomes are bioriented by blocking the APC/C, whose 

activation is needed for Separase activity. In contrast to its known 

role as a safeguard mechanism for mitotic fidelity, we describe the 
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unexpected observation that removal of the SAC alleviates mitotic 

errors when sister chromatid cohesion is compromised. 

 

II.1 Drosophila wing modifier screen reveals that depletion of 
Mad2 and Mps1 suppresses the developmental defects 
associated with loss of cohesion. 
 

Although the consequences of cohesin loss in unicellular 

organisms and cultured cells are well established, its impact on 

tissue proliferation and morphogenesis is poorly understood. To 

probe for conditions that would enhance or suppress cellular and 

tissue responses to cohesion defects, we performed a modifier 

screen in the adult Drosophila wing. We focused our analysis on 

the regulatory N-terminal acetyltransferase Separation anxiety 

(San) (also known as Naa50), required for establishment and/or 

maintenance of sister chromatid cohesion [9-12]. Our previous 

work proposed that San acetylates the N-terminus of Rad21 

cohesin subunit and regulates the interaction between Rad21 and 

Smc3 [10]. Knock-down of this protein during development gives 

rise to an intermediate adult wing phenotype that is sensitive to 

phenotypic modulation (Figure 1A,B) and defects associated with 

San knock-down can be efficiently suppressed by several 

conditions that enhance cohesin stability on chromatin [10]. To 

search for modifiers (enhancers and suppressors) of the adult wing 

phenotype induced by San depletion, we co-expressed the san 

RNAi with 2955 RNAis, which theoretically deplete 2920 gene 

products (21% of all gene products annotated in Flybase 

vFB2017_06), specifically in larvae imaginal wing discs (using the 

Nubbin-Gal4 driver [13-15]) (Figure 1A).  
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Figure1. SAC inhibition modifies san RNAi-induced adult wing 
developmental defects. 
A) Tissue-specific RNAi in the pouch of the larvae wing imaginal using the 

nubbin-Gal4 driver and the UAS/Gal4 system. B) Adult wings of wild type 

Drosophila (Oregon R), Drosophila expressing a control RNAi (mCherry 

RNAi) or expressing RNAi for san in the larvae wing imaginal discs. C) 
Representative adult Drosophila wing phenotypes co-expressing san 

RNAi with mCherry RNAi, mad2 RNAi or mps1 RNAi in the larvae wing 

imaginal discs. D) Adult wing phenotypic classes scored during the 

screen: class 1 (wild type wings); class 2 (weak wing developmental 

defects); class 3 (san RNAi-like wing phenotype); class 4 (highly abnormal 

wings); class 5 (absence or vestigial adult wings). Additional examples of 

the scored phenotypic classes are shown in [10]. E) Quantification of 

Drosophila wing phenotypes expressing individual RNAi transgenes for 

control (mCherry), mad2 or mps1 (grey bars) or co-expressing san RNAi 

with control (mCherry) RNAi, mad2 RNAi or mps1 RNAi (black bars) in the 

larvae wing imaginal discs. F) Quantification of Drosophila wing 

phenotypes expressing individual RNAi transgenes for control (mCherry), 

bubR1, mad1, fzy and cdc23 (grey bars) or co-expressing san RNAi with 

control (mCherry) RNAi, bubR1 RNAis, mad1 RNAis, fzy RNAi and cdc23 

RNAi (black bars) in the larvae wing imaginal discs. bubR1 RNAi1, bubR1 

RNAi2, mad1 RNAi1 and mad1 RNAi2 were identified by a candidate gene 

analysis and correspond to the TRiP RNAis GL00236, GLV21065, 

GLV21088 and HMC03671, respectively. Phenotypic quantification of 

adult wings is mean ± SD of three independent experiments and is based 

on the classes described in (D) (***p < 0.0001, One-way ANOVA with 

Bonferroni's multiple comparison test; n represents the total number of 

scored flies).  

 

The resulting wings were scored in 5 categories, according to the 

severity of the phenotype (Figure 1D) [10]. Co-expression of san 

RNAi with a control RNAi transgene did not modify the adult wing 
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phenotype when compared to san RNAi transgene alone (Figure 

1B and Figure 1C) [10]. Any isolated enhancer gene whose 

depletion alone resulted in adult wings phenotypes was discarded. 

All tested RNAi lines and scored wing phenotypes are shown in the 

Source Data file. 

 

We identified 19 suppressors and 10 enhancers whose depletion 

specifically modified the san RNAi adult wing phenotype (Figure 

2B). Given the increased regenerative capacity of wing discs [16-

18] we expected to isolate genes involved in cohesin maintenance, 

in mitotic fidelity, and also in tissue response to mitotic damage. 

As expected, the screen revealed components previously 

implicated in cohesin dynamics (Mau2 and eco), validating its 

accuracy at isolating modifiers of cohesion state (Figure S1B) [10]. 

This approach also identified the cohesin component vtd/RAD21 

RNAi as a modifier of san RNAi adult wing phenotype [10]. Most of 

the 29 genes identified in the screen, were already characterized in 

Drosophila and/or in other species (Table S1). About half of the 

identified genes were either related with mitosis (Claspin, asp, 

Mps1, Eb1, eco, Mau2, γTub23C and mad2) or with gene 

expression (CG5589, JMJD7, Pabp2, His3 and jumu). Other 

identified genes were described to be important for maintaining 

apicobasal cell polarity and for actin cytoskeleton organization 

(capu, cno and Cad99C). We identified additional 

suppressors/enhancer genes related with different metabolic 

processes (Sfxn1-3, CG3842, Dhap-at, and MFS18), protein 

glycosylation (CG11388), synaptic adhesion (Nlg4), a paralogue of 

Naa20 N-terminal acetyltransferase (CG31730), and DNA 

repair/transcription (Parp).  
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Figure 2B List of genetic modifiers of san RNAi wing phenotype. The 

gene abbreviations used in this figure are from Flybase version 

FB2017_06. The RNAi GL00255 also theoretically depletes the histone 

H3 isoforms CG33833, CG33806, CG33839, CG33827, CG33854, 

CG33824, CG33818, CG33830, CG33863, CG33815, CG33866, 

CG33836, CG33803, CG33851, CG33809, CG33821, CG33845, 

CG33857, CG33848, CG33860, CG33842 and CG33812 and the RNAi 

HMJ23608 also theoretically depletes CG31687, a poorly expressed 
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chimeric gene between cdc23 and CG31688. The gene CG5589 was 

classified as suppressor due to the strong adult wing phenotype of the 

correspondent RNAi when expressed in the wing imaginal discs with 

nubbin-Gal4 and the genetic interaction with eco and Mau2 has been 

previously described in [10]. The genetic interactions marked with an 

asterisk (*) were identified by a candidate gene approach. Results are 

mean of three independent crosses. 

 

Surprisingly, two of the strongest suppressors were proteins that 

participate in the SAC, Mps1 and Mad2, and whose depletion 

specifically suppressed san RNAi adult wing phenotypes (Figure 

1C,E). Given that both of these proteins belong to the same 

biological pathway, and both were isolated as suppressors of san 

RNAi, we hypothesized that impairment of SAC could rescue 

mitotic defects caused by cohesin deficiency. We tested this notion 

by a candidate gene approach and probed for genetic interactions 

with other SAC genes. Among the 4 additional SAC components 

probed (Bub3, Bub1, BubR1 and Mad1) (Source Data), RNAi for 

both Mad1 and BubR1 similarly suppressed the morphological 

defects associated with San depletion (Figure 1F and Figure 2B).  

 
II.2 SAC inactivation rescues chromosome segregation 
defects associated with loss of cohesion. 
To gain further insight on whether SAC inactivation could indeed 

rescue cohesion defects we sought out to evaluate mitotic fidelity in 

various experimental conditions. Live cell imaging analysis in the 

developing wing disc revealed, as expected by our previous work 

[10], that upon san RNAi, cells exhibited various degrees of sister 

chromatid cohesion defects. In control strains all cells underwent 

mitosis with normal metaphase morphology (Figure 3A, Figure 4 
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and Movie S1). Upon san RNAi only 13±10% displayed normal 

mitosis and most cells underwent partial or full sister chromatid 

separation (17±6 and 70±13%, respectively), resulting in SAC 

activation and extended mitosis (Figure 3A, B, Figure 4 and Movie 

S1).  

Figure 4 A-B SAN RNAi results in mitotic cohesion defects 
A) Stills from Live movies of wing disc cells dividing upon SAN RNAi 

expression. His-REF CID-EGFP B) Frequency of cohesion defects in the 

control, san RNAi expression, and hs-TEV induced cleavage of cohesin.  

 

More severe defects were obtained when cohesion loss was 

induced by acute artificial cleavage of cohesin Rad21 subunit, 

using a previously established TEV protease-mediated cleavage 

method [19]. In these experiments, wing imaginal discs were 

allowed to develop normally until 3rd instar larvae stage, when TEV 

protease was induced by heat-shock. After heat-shock Rad21 

became quickly undetectable in cells expressing exclusively TEV-

sensitive Rad21-EGFP (Figure 4C, D). TEV expression resulted in 
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full sister chromatid separation across all cells analysed (Figure 

4B), leading to extended mitosis and chromatid shuffling between 

the poles (Figure 3C, D and Movie S2).  

 
Figure 4 C-D. Premature sister chromatid separation upon TEV-
mediated Rad21 cleavage C) Western blot analysis of Rad21TEV-EGFP 

levels before and after heat shock-induced TEV protease expression, 

probed with an anti-Rad21 antibody. Each lane corresponds to 10 

dissected wing discs; anti-a-tubulin was used as loading control. D) Live-

cell imaging analysis of strains surviving on Rad21TEV-EGFP (green) 

without and with heat-shock induced TEV protease expression. Cells also 

express HisH2AvD-mRFP1. Times are relative to NEBD and scale bar is 

5 µm and applies to all images. 
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Figure 3 A-D Inhibition of SAC in wing imaginal discs abolishes the 
mitotic delay upon cohesin depletion 
A) Images from movies of the wing disc pouch in the control, san RNAi 

and san and mad2 RNAi strains. Strains contained HisH2Av-RFP (red) 

and CID-EGFP (green). Times are relative to NEDB. Scale bar is 5 µm. B) 
Quantification of mitotic duration in control, san RNAi, or san and mad2 

RNAi strains. The duration of mitosis was measured from nuclear 

envelope breakdown (NEBD) to nuclear envelope formation (NEF) using 

H2Av-RFP channel. Images were taken every 2 minutes. Each dot 
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represents an individual cell and lines represent mean ± SD (n= 71/5 for 

control, 77/5 for san RNAi and 124/5 for san+mad2 RNAi, n=number of 

cells/number of independent discs). C) Images from movies of the wing 

disc from strains surviving solely on TEV-cleavable Rad21 (Rad21TEV) 

with and without heat-shock induced TEV protease cleavage, in strains 

wild type or homozygous mutant for the mad2 gene. Strains also 

expressed HisH2Av-RFP (red) for visualization of mitotic duration and 

phenotype. Times are relative to NEDB. Scale bar is 5 µm D) 
Quantification of mitotic duration of the no heat shock control, upon TEV-

protease mediated cleavage of Rad21TEV and TEV-protease mediated 

cleavage of Rad21TEV in a mad2 mutant background. The duration of 

mitosis was measured from nuclear envelope breakdown (NEBD) to 

nuclear envelope formation (NEF) using H2AvD-mRFP1. Images were 

taken every 2/3 minutes. Each dot represents an individual cell and lines 

represent mean ± SD (n= 27/4 for Rad21TEV - TEV (no HS), 46/8 for 

Rad21TEV + TEV, 46/4 for Rad21TEV+TEV in a mad2P background and 

60/4 for mad2P after heat-shock (HS), n=number of cells/number of 

independent discs). 

 

In order to inhibit the SAC, we focused on genetic conditions that 

remove Mad2, a key component of this checkpoint, as to date this 

protein is thought to be solely required for SAC response (in 

contrast to Mps1 that has been implicated in other mitotic functions 

[20]. Flies carrying null alleles for the mad2 gene were previously 

shown to be viable [21] and its depletion in the larvae wing imaginal 

disc did not compromise wing development (Figure 1E). As 

expected, removal of Mad2 by RNAi or the mad2P null allele 

abolished the mitotic delay in both experimental conditions for 

cohesion loss, san RNAi and TEV-mediated Rad21 cleavage 

(Figure 3A, B, C, D and Movies S1 and S2). More importantly, 

shortening of mitotic timing drastically reduced the frequency of 
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abnormal anaphase figures (Figure 3E). Whereas upon premature 

loss of cohesin mitotic exit often displays lagging chromatids or 

chromatin bridges, these segregation defects were significantly 

reduced when SAC was removed (Figure 3E). 

Figure 3E-F SAC removal enhances mitotic fidelity in cohesin 
absence 
E) Quantification of mitotic exit defects observed in the different 

experimental conditions; graph represents mean ± SEM of errors of 

individual discs F) Representative images of mitotic cells from San RNAi 

undergoing mitosis with normal and defective CID-EGFP distribution; 

Quantification of CID EGFP symmetry during mitotic exit.  

 

To further evaluate segregation defects we also estimated 

numerical errors in chromosome segregation. For this purpose, we 

measured the area occupied by centromeres in the vicinity of each 

pole during mitotic exit and segregation symmetry was calculated 

as the ratio between the areas occupied by each cluster of 

centromeres (Cid-EGFP) (Figure 3F).  As expected, this value was 

close to one in control strains. San depletion caused a high degree 

of asymmetry between centromeric signals placed at the poles 
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(Figure 3F). Importantly, segregation symmetry was significantly 

restored when San was co-depleted with Mad2 (Figure 3F).  

 

To test whether these results were restricted to larval wing discs, a 

parallel evaluation of chromosome segregation was performed in 

early syncytial blastoderm embryos. Cohesin cleavage in 

Drosophila syncytial embryos was induced by microinjection of 

TEV protease during interphase, as previously described [22]. This 

led to full separation of sister chromatids after NEBD and a short 

mitotic delay (Figure 5A, B, Movie S3). To test if such mitotic delay 

was SAC dependent, we performed similar experiments in a mad2 

mutant background. Mitotic duration under these conditions was 

indistinguishable from controls, implying that SAC surveillance is 

responsible for the delay in mitotic progression upon premature 

loss of sister chromatid cohesion (Figure 5A, B, Movie S3).  

 

Analysis of chromosome distribution revealed strong asymmetry 

upon cohesin cleavage (Figure 5C). We additionally estimated the 

frequency of chromosomes that lag behind the segregation plane, 

ending up in the middle of the segregation plane during mitotic exit 

(most likely due to merotelic attachments) (Figure 5D). 

 

Consistent with our previous results (Figure 3F), loss of SAC led to 

a significant reduction of the segregation error frequency after TEV-

cleavage, as evidenced by the significant recovery in centromere 

distribution symmetry and the decrease in lagging centromeres  

(Figure 5C,D). Altogether, these results demonstrate that SAC 

inactivation rescues the chromosome segregation defects 

associated with premature loss of sister chromatid cohesion. 
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Figure 5. Inhibition of SAC in syncytial blastoderm embryos 
alleviates mitotic errors caused by premature loss of cohesin. 
 
A) Embryos surviving solely on Rad21TEV either non-injected (up) or 

injected with 5 mg/ml TEV protease (middle and bottom panels). Embryos 

are derived from females that are wild type or homozygous mutant for 

mad2 gene and express HisH2Av-RFP (red) and CID-EGFP (green). 

Images were taken every 30 seconds and times are relative to NEBD. 

Scale bar is 10 µm. B) Quantification of mitotic duration in un-injected 

embryos and embryos injected with TEV protease in strains containing 

solely Rad21TEV and wild type or mutant for mad2. The duration of 

mitosis was measured from nuclear envelope breakdown (NEBD) to 

nuclear envelope formation (NEF) using HisH2Av-RFP. Images were 

taken every 30 seconds. Each dot represents a single mitosis and lines 

represent mean ± SD (n= 20/4 for Rad21TEV no TEV, 40/8 for Rad21TEV 

+ TEV and 55/11 for Rad21TEV+TEV in a mad2P background, n=number 

of mitosis/number of independent embryos). C) Quantification of 

segregation asymmetry in control, cohesin cleavage, and cohesin 

cleavage in mad2 mutant background. Each value was quantified by 

normalizing the area of pole A (with higher area) and the area of pole B 

(lower area) (n= 46/5 for Rad21TEV no TEV, 60/6 for Rad21TEV + TEV 

and 60/6 for Rad21TEV+TEV in a mad2P background, n=number of 

telophases/number of independent embryos) D) Relative area of lagging 

centromeres in control, RAD21TEV + TEV protease, and RAD21TEV + 

TEV protease in a mad2 mutant background; statistical analysis was 

performed using one-way ANOVA test. E) Kymographs of HisH2Av-RFP 

and CID-EGFP of cells entering mitosis in control, cohesin cleavage, and 

cohesin cleavage in mad2 mutant background. Arrow points to 

centromere separation and arrowhead to the shuffling onset. Scale bars 

are 5 min and 5 µm. F) Quantification of time for chromosome shuffling 

onset upon TEV-mediated cohesin cleavage, relative to NEBD. Each dot 

represents a single dividing nuclei from >10 independent embryos. 
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II.3 SAC inactivation suppresses chromosome shuffling after 
loss of cohesion. 
 

We demonstrated that loss of SAC enhanced mitotic fidelity upon 

cohesin impairment. The severity of the phenotypes associated 

with premature cohesion loss is associated with extensive genome 

randomization. Upon premature cohesin loss, single chromatids 

lack the opposing forces to ensure proper tension across and/or 

between kinetochores, leading to unstable microtubule-kinetochore 

interactions and error correction [8, 23, 24]. These reactions are 

mediated by Aurora-B kinase that destabilizes kinetochore-

microtubule interactions that are not under tension [22-25]. Aurora 

B activity results in consequent cycles of chromosome attachment 

and de-attachment, leading to extensive shuffling of isolated sister 

chromatids between the spindle poles [22, 25]. Therefore, mitosis 

in absence of cohesion results in random chromosome 

segregation, with close to absolute probability of generating 

aneuploid cells. 

 

We postulated that reduction of mitotic timing due to SAC loss 

limits the degree of chromosome shuffling and enhances mitotic 

fidelity. To evaluate this hypothesis we probed for genetic 

interactions between san RNAi and RNAi for genes whose 

depletion should prolong mitotic duration (Source data). In 

accordance with our hypothesis, RNAi for the APC subunit cdc23 

and the cdc20 homologue (Fzy) aggravate the morphological 

defects in the wing associated with san RNAi (Figure 1E and 

Figure 2B). 
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The degree of aneuploidy should be proportional to number of 

events of isolated chromatids crossing the middle of the 

segregation plane. Therefore, we quantified the frequency of 

shuffling events, defined as each time one isolated chromatid close 

to one pole undergoes an erratic motion towards the opposite pole.  

 

In embryos, the SAC-dependent mitotic delay observed upon 

cohesin cleavage, albeit short (~ 4 min) (Figure 5B), was long 

enough for a high degree of chromosome shuffling before mitotic 

exit (movie S3, Figure 6A, B). In the absence of a functional SAC, 

however, and despite the evident and full premature loss of 

cohesion, there was a decrease in chromosome shuffling events 

(Figure 6B and movie S3). Thus, SAC abolishment substantially 

decreases the amount of shuffling by shortening the mitotic 

duration.  
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Figure 6A. Analysis of frequency and onset of chromosome shuffling 
events  A) Representative images centromere behaviour (Cid-EGFP) 

from embryos surviving solely on Rad21TEV that were either non-injected 

(top), injected with TEV protease (+TEV) or injected with TEV protease in 

mad2P embryos. Shuffling events were classified as each time 

centromeres were seen invading and/or crossing the middle of the 

segregation plane (dashed circles). Right panels depict the corresponding 

kymograph 

 

Altogether, these results suggest that despite cohesin loss, 

engaging into error-correction does not take place during early 

mitotic stages. To test this possibility, we sought out to measure 

the kinetics of chromosome shuffling onset upon full loss of sister 

chromatid cohesion. Analysis of chromosome configuration, both in 

embryos and wing disc cells, revealed that despite cohesin 

removal, chromosomes retain a pseudo-metaphase configuration 

for an extended period of time.  
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During this pseudo-metaphase stage, sister centromeres were 

found fully disjoined, confirming loss of sister chromatid cohesion. 

However, separation of chromatin itself was only initiated several 

minutes later. Even upon full sister chromatid separation, there was 

an evident delay in the initiation of chromosome shuffling, implying 

that sister chromatid separation does not trigger immediate error-

correction. To confirm this possibility, the timing of error-correction 

engagement was analysed using kymographs that plot the 

positioning of centromeres along the segregation plane over time. 

The time of centromere separation can be easily detected by the 

split in centromere signals and the onset of chromosome shuffling 

by the time centromeres start crossing the middle of the 

segregation plane (Figure 5E arrow and arrow heads, respectively). 

This analysis revealed that upon cohesin cleavage, chromosome 

shuffling was only initiated 4.07±0.96 min after NEBD (1.3±0.4min 

for NEBD to centromere separation and 2.8±0.8min from 

centromere separation to initiation of shuffling) (Figure 5F).  
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Figure 6B-D. Analysis of frequency and onset of chromosome 
shuffling events B) Frequency of chromosome shuffling events 

quantified as in exemplified in A. C) Kymograph of HisH2AvD-mRFP1 and 

CID-EGFP of nuclei entering mitosis upon TEV-mediated cohesin 

cleavage in a SAC-competent wing disc cell. Scale bars are 10 min and 

10 μm. Note that centromere separation (arrow) precedes chromosome 

individualization (*). Onset of chromosome shuffling is also indicated 

(arrowhead) D) Quantification of time between NEBD and centromere 

separation and centromere separation and the onset of chromosome 

shuffling in wing disc cells, upon TEV-mediated cohesin cleavage, relative 

to NEBD. Each dot represents a single cell derived from 4 independent 

wing discs. 
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This analysis reveals a significant delay in the initiation of major 

error-correction events. A similar, yet extended behaviour was also 

observed in larvae wing disc cells. Upon NEBD, chromosomes 

retained a prolonged pseudo-metaphase configuration despite 

sister chromatid separation (as judged by centromere distances) 

and chromosome shuffling was only observed much later (11.4± 

2.9min after NEBD, Figure 6C, D). The observed delay in extensive 

shuffling engagement is similar to the mitotic timing in the absence 

of a functional SAC (Figures 3B, D and 5B). Thus, SAC 

counteracts genome shuffling in the absence of cohesin by 

shortening mitosis duration and thereby preventing extensive error-

correction.  

 

A key prediction from this observation is that initial kinetochore-

microtubule interactions are quite accurate, and that inhibition of 

error-correction, through modulation of Aurora B activity, should 

restore mitotic fidelity to a similar extent as SAC inactivation does. 

Knowing that Aurora B has multiple roles during mitosis [26], we 

first titrated the levels of Aurora B inhibitor, Binucleine 2, to a 

concentration that does not impair chromosome condensation, 

mitotic timing, SAC competency, or separation of daughter nuclei in 

dividing wing disc cells (Figure 7A-D). Using such concentration 

(5µM), we show that mild Aurora B inhibition shortened the mitotic 

delay induced by TEV-mediated Rad21 cleavage (Figure 7E).  
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Figure 7A-E Binucleine 2 titration and effect on mitotic timing upon 
cohesin depletion by TEV  

A-E) Titration of Binucleine 2 concentration (0-25μm) to examine the 

inhibitor dose effect on chromosome condensation, nuclear separation, 

mitotic duration and SAC competency in control cells. Still images from 

live imaging of the wing disc pouch. Graphs depict frequencies or time (in 

minutes), N represents the number of independent wing discs and n the 

number of analysed cells. E) Mitotic duration of control, TEV cleavage and 

TEV+B2 incubated wing disc cells. N represents the number of 

independent wing discs and each dot corresponds to a single cell.  
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Figure 7. F-H Aurora B inhibition prevents chromosome shuffling 
and improves mitotic fidelity upon cohesin cleavage.  
F) A kymograph representing centromere positioning (Cid-EGFP) from 

Control, TEV cleavage, and TEV cleavage with 5μM Binucleine 

incubation. G) Segregation symmetry of control, TEV cleavage and TEV+ 

5μM B2 incubated wing disc cells H) Lagging chromosome at anaphase 

frequency for control, TEV cleavage and TEV+B2 incubated wing disc 

cells 

 

Furthermore, this treatment completely abolished chromosome 

shuffling and motion after the initial separation of single chromatids 

to the poles (Figure 7F Movie S4). Importantly, such decrease in 

Aurora B activity is sufficient to restore centromere segregation 

symmetry upon premature cohesion loss, and eliminate the 

frequency of lagging chromosomes during mitotic exit (Figure 7G, 

H).  
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We therefore conclude that initial capture of kinetochores by the 

microtubules has a strong bias for symmetry, even in the complete 

absence of cohesin. Major asymmetry in chromosome distribution, 

in turn, depends on error correction events.  

 

II.4 SAC inactivation restores cell survival after loss of 
cohesion. 
Our results indicate that the mitotic defects upon loss of cohesion 

are less detrimental in the absence of SAC. If so, the degree of 

aneuploidy should follow a similar trend. Larvae wing discs are well 

known to eliminate cells with an erroneous DNA content by 

apoptosis [16, 17]. Therefore, SAC inactivation should reduce the 

levels of apoptosis after loss of cohesion. To evaluate the extent of 

apoptosis upon full cohesion loss, larvae carrying a TEV-sensitive 

Rad21 were heat-shocked to induce TEV protease expression and 

wing discs were dissected 24h after heat-shock. Virtually no 

apoptosis was detected (staining for cleaved caspase 3 (CC3)) 

within the control wing discs (Rad21TEV in the absence of TEV 

protease) (Figure 8A, B). In contrast, TEV-mediated cohesin 

cleavage induced high levels of apoptosis within 24hr, extending to 

over 15±2% (mean ± SD, n=7) of the entire wing disc area (Figure 

8A, B). Remarkably, the levels of apoptosis were significantly 

reduced if cohesin loss was induced in the absence of a functional 

SAC (3±3%, mean ± SD, n=10) (Figure 8A, B). Similar results were 

obtained upon depletion of San (san RNAi), where apoptosis 

covered approximately 7±4% (mean ± SD, n=5) of the wing disc 

pouch area, compared to only approximately 0.9±0.6% (mean ± 

SD, n=6) of the pouch area after co-depletion of San and Mad2 

(Figure 8C, D). These results show that inactivation of SAC in a 
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proliferating tissue significantly increases cell survival upon loss of 

cohesion. 
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Figure 8. Inhibition of SAC suppresses imaginal wing disc apoptosis 
caused by premature loss of cohesin. 
A) Images of Cleaved Caspase 3 (CC3) immunofluorescence in controls 

(Rad21TEV without TEV and mad2P after heat-shock (HS)), RAD21TEV 

+ TEV protease and RAD21TEV + TEV protease in mad2 mutant 

background after HS. Scale bar is 100 µm. B) Quantification of CC3 

positive area of the entire wing disc, in the indicated experimental 

conditions; n≥ 5 independent discs per experimental condition; statistical 

analysis was performed using one-way ANOVA test.  C) Representative 

images of CC3 immunofluorescence in control, san RNAi and san and 

mad2 double RNAi. D) Quantification of CC3 positive area of the wing 

disc pouch, in control, san, and san and mad2 RNAi; n≥ 4 independent 

discs per experimental condition; multiple comparison analysis was 

perform using a one-way ANOVA test. 

 
II.5 Discussion 
 

In agreement with the “safeguard” function for the Spindle 

Assembly Checkpoint, mitotic errors are often exacerbated by 

impairment of the SAC. These include defects associated with 

multiple centrosomes, defective microtubule assembly or 

kinetochore structure [27-31]. Here we demonstrate that the 

opposite happens with regard to cohesion defects. Absence of the 

SAC alleviated mitotic errors and improved mitotic fidelity after 

cohesion loss. Cells with a functional SAC undergo extensive 

chromosome shuffling and consequent randomization of the 

genome, whereas virtually no shuffling could be observed in 

absence of the SAC. The detrimental nature of SAC in the 

presence of cohesion defects is likely related to the irreversibility of 

cohesion loss. Most mitotic defects can be corrected over time (e.g. 

SAC-mediated mitotic delay enables clustering of multiple 
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centrosomes [32]). In sharp contrast, premature cohesin loss is an 

irreversible error and prolonging mitosis duration further enhances 

genome randomization. 

 

The improved mitotic fidelity after cohesion loss in the absence of 

SAC is likely a consequence of slow kinetics of error-correction 

engagement coupled with a bias for chromosome orientation 

towards a correct alignment. Several mechanisms are known to 

bias chromosome segregation towards the right orientation, 

including chromosome positioning [33], centromere geometry [34], 

bias on microtubule growth towards the kinetochores [35, 36] 

and/or kinetochore-mediated microtubule nucleation [37, 38]. Of 

these, chromosome geometry is believed to facilitate bipolar 

attachment by facing one kinetochore to the opposite pole upon 

attachment to a pole. If so, what ensures geometric arrangement 

during the initial mitotic stages, even in the absence of cohesin? A 

possible mechanism enabling a transient organization of sister 

chromatids towards opposing poles is incomplete resolution of 

sister chromatid intertwines. Yet, residual catenation present in 

metaphase chromosomes is unable to confer functional cohesion 

as removal of cohesin is sufficient to induce immediate sister 

chromatid separation [4, 22]. Additional mechanisms may thus 

impair prompt resolution of sister chromatids specifically during 

early mitosis, in contrast what is observed in metaphase 

chromosomes. Spindle forces were described to enhance 

decatenation [39-41] and thus resolution of several DNA-

intertwines may only be achieved upon chromosome capture. 

Recent findings propose that efficient decatenation requires 

constant “guiding action” from condensin I [42]. Maximal levels of 

this complex are only observed on mitotic chromosomes once in 
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late-metaphase/anaphase [43, 44], which could also limit full 

decatenation to the later stages of mitosis. Residual catenation is 

unable to sustain cohesion and chromosome alignment in a SAC 

competent cell, yet it may be nevertheless sufficient to allow a 

transient pseudo-metaphase alignment that biases initial 

chromosome attachment to the right orientation. Although certainly 

error-prone, this process would be more accurate than the total 

genome randomization due to extensive chromosome shuffling. 

 

Why separated single sisters are inefficient at triggering error-

correction mechanisms during early mitosis remains to be 

addressed. This could be related to a partial tension state 

facilitated by pseudo-metaphase chromosomal configuration, 

precluding error-correction activation. Additionally, an intrinsic 

delayed action of error correction machinery may further account 

for observed late shuffling onset. Indeed, slow kinetics or a lag time 

of Aurora B-mediated chromosome detachment has been 

hypothesized in several theoretical studies [45-47] but so far little 

experimental observations support this claim. Such intrinsic delay 

would solve the “problem of initiation of biorientation” whereby 

initial interactions (necessarily under low tension) are able to 

survive such a tension-sensitive mechanism for chromosome 

detachment [24, 45].  

 

Interestingly, the interplay between mitotic timing and sister 

chromatid cohesion has been previously reported in mammalian 

cells whereby extension of mitosis predisposes to sister chromatid 

cohesion defects. Cells arrested in mitosis for long periods were 

shown to display sister chromatid separation (referred as “cohesion 

fatigue”) [48]. Moreover, defective sister chromatid cohesion was 
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described to be synthetically lethal with impaired APC/C function in 

Warsaw breakage syndrome (WABS) patient-derived cells as well 

as several cancer cell lines with cohesion defects [49]. Our 

observations now demonstrate how reduction of mitotic timing is 

sufficient to rescue segregation defects associated with premature 

cohesin loss. Importantly, these experiments highlight the 

detrimental effect of the SAC upon cohesion defects. When sister 

chromatid cohesion is compromised, and thus mitotic fidelity 

irreversibly affected, the SAC exacerbates mitotic errors in contrast 

to its canonical protective function. 

 

II.6 Materials and Methods 

 

Drosophila strains and rearing conditions 
Drosophila melanogaster flies were raised at 25ºC or 18ºC for hs-

TEV containing crosses in polypropylene vials (51 mm diameter) 

containing enriched medium (cornmeal, molasses, yeast, soya flour 

and beetroot syrup). All RNAi lines used in the screen are from the 

Transgenic RNAi project (TRiP), are available in the Bloomington 

Drosophila Stock Center and are listed in the Source Data file. 

Other Drosophila stocks used in this study are also indicated in 

Source Data file (S5). To induce full cohesin cleavage in a 

temporally controlled manner, by TEV protease cleavage, 

Drosophila strains were used with TEV-cleavable Rad21 

(Rad21TEV) in a Rad21-null background (rad21ex15, Rad21271-3TEV-

myc or rad21ex15, Rad21550-3TEV-EGFP) [19, 50], in strains mutant or 

wild type for the Mad2 gene [21, 51]. TEV expression was induced 

by heat-shocking 3rd instar larvae at 37ºC for 45 minutes. Larvae 

were then left to recover at room temperature. For live cell imaging, 
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fly strains also expressed His2AvD-mRFP1 and Cid-EGFP [52] 

fluorescent markers. 

 

Drosophila screen Details 
In the screen we analysed 2955 RNAi lines that theoretically 

deplete 2920 proteins, corresponding to approximately 21% of all 

protein coding genes annotated in Flybase (Flybase 

versionFB2017_06). To select the lines to test we followed a list of 

available RNAi downloaded from the TRiP website. In this list, the 

lines are ordered alphabetically, according to gene name or CG 

number. However, our results do not strictly follow this list, since 

we mainly used lines constructed with Vallium20 or Valium22 

vectors and some lines did not survive shipping. In the screen, 

females carrying the nubbin-Gal4, UAS-san RNAi were crossed 

with males of different RNAi lines from TRiP (see diagram in Figure 

S1A). The progeny of these flies were classified into different 

classes according to the adult wing phenotypes: class 1 - wild type 

wings; class 2 – flies with wings that present only mild 

morphological defects; class 3- flies whose wing morphological 

defects are intermediate (similar san RNAi); class 4 – flies whose 

wings show strong morphological defects; class 5 – flies without 

wings or vestigial wings (Figure 1C) [15]. The average adult wing 

class for each condition was always calculated using more than 50 

adult flies (n≥50). If the average class for a given genetic 

interaction was equal or below 2.6 than the RNAi line tested was 

classified as suppressor, if the average class was equal or above 

3.5 than the RNAi line was classified as enhancer (Figure S1A). To 

exclude RNAi lines whose expression by itself led to wing 

morphological defects, in otherwise wild type imaginal discs, we 

crossed all lines carrying RNAis identified in the first cross with 
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nubbin-Gal4 and discarded all RNAi lines that were enhancers and 

produced significant phenotypes by itself (Figure S1A). 

 

Live imaging 
For imaging of wing discs, larval imaginal wing discs were 

dissected in Schneider medium with 10% FBS. Dissected discs 

were placed and oriented in a 200μl drop of medium at the bottom 

of a glass-bottom petridish (MakTek). For Aurora B inhibition 

experiments (Figure S4), discs were incubated with Binuclein 2 

(Sigma-Aldrich) at the indicated concentrations. Time lapse 

imaging analysis was performed on a spinning disc microscope 

using either a Revolution XD microscope (Andor, UK), equipped 

with immersion a 60x (water) and 100x (oil) objectives (Nikon, 

Japan) and a iXon +512 EMCCD camera (Andor, UK), or a 

Revolution XD microscope (Andor, UK) equipped with immersion a 

60x glycerol-immersion 1.30 NA objective (Leica Microsystems, 

Germany) and a 100x oil-immersion 1.4 NA objective (Leica 

Microsystems, Germany) and a iXon Ultra 888 1024*1024 EMCCD 

(Andor, UK). Stacks of 20-30 frames 0,5 μm apart were taken 

every 1 to 3 minutes. For syncytial embryo imaging, embryos were 

aligned on coverslips and covered with Series 700 halocarbon oil 

(Sigma-Aldrich). Time-lapse microscopy was performed with an 

inverted wide-field DeltaVision microscope (Applied Precision Inc., 

Issaquah, WA) in a temperature-controlled room (18–20°C). One 

stack of 15 frames (0.8 mm apart) was acquired every 30 sec with 

a 100x 1.4 oil immersion objective (Olympus, Japan) and captured 

by an EMCCD camera (Roper Cascade 1024, Roper 

Technologies). Movies were assembled using FIJI software [53] 

and selected stills were processed with Photoshop CS6 (Adobe). 
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Microinjections 
Microinjections were performed as previously described [22, 42]. 1-

1.5 hr old embryos were collected and processed according to 

standard protocols, and were injected at the posterior pole. 

Injections were performed using a Burleigh Thorlabs 

Micromanipulator, a Femtojet microinjection system (Eppendorf, 

Germany), and pre-pulled Femtotip I needles (Eppendorf). TEV 

protease was injected at 5 mg/ml TEV protease in 20 mM Tris-HCl 

at pH 8.0, 1 mM EDTA, 50 mM NaCl and 2 mM DTT. 

 

Immunofluorescence 
Third instar wing imaginal disc fixation and staining was performed 

using standard procedures (Lee and Treisman, 2001). Briefly, third 

instar larvae wing disc tissue (still attached to the larva body) was 

fixed on ice for 30 min. The fixative consisted of 4% formaldehyde 

(Polysciences) in 1X PEM buffer solution. Following were washed 

by gentle agitation three times for 20 min in PBS-T (1x PBS + 0.1% 

Triton X-100). Primary antibodies incubation was performed 

overnight at 4 °C in PBS-T supplemented with 1% BSA and 1% 

donkey serum. The following day, the tissues were washed again 

and incubated for 2h at room temperature with the appropriate 

secondary antibodies diluted in PBS-T solution. Finally, after the 

wash of the secondary antibodies, wing discs were mounted in 

Vectashield (Vector Laboratories). Fluorescence images were 

acquired with a ×40 HCX PL APO CS oil immersion objective 

(numerical aperture: 1.25–0.75) on a Leica SP5 confocal 

microscope. Rabbit anti-cleaved caspase 3 at 1:300 (Cell 
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Signaling, 9661S) and anti-Rabbit Alexa Fluor 488 at 1:1000 

(Molecular Probes). 

 

Quantifications and statistics 
Imaging analysis was performed using FIJI software [53]. Statistical 

analysis and graphic representations were performed using Prism 

7 software. Multiple comparisons were performed using one-way 

ANOVA, using the Bonferroni's multiple comparison test. Graphs 

depict mean ± standard deviations (SD) or mean ± standard error 

of the mean (SEM), as indicated. Sample size details are included 

in the respective figure legends. 
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Summary  
 

Studying aneuploidy during organism development has strong 

limitations, as chronic mitotic perturbations used to generate 

aneuploidy result in lethality. We developed a genetic tool to induce 

aneuploidy in an acute and time controlled manner during 

Drosophila development. This is achieved by reversibly depleting 

cohesin, a key molecule controlling mitotic fidelity.   

Larvae challenged with aneuploidy hatch into adults with severe 

motor defects shortening their lifespan. Despite being aneuploid, 

neural stem cells keep dividing, resulting in the quick appearance 

of chromosomal instability, complex array of karyotypes and 

cellular abnormalities. Notably, when cells are forced to do self-

renewal, the aneuploidy-associated stress response is significantly 

delayed; indicating that stemness state confers resistance to 

aneuploidy. If only the brain is spared from induced aneuploidy, all 

motor defects are rescued as well as the adult lifespan, suggesting 

that neural tissue is the most ill-equipped to deal with 

developmental aneuploidy. 

 



181 
 

Highlights 

 

• Reversible depletion of cohesin results in just a round or 

two of aberrant cell divisions, generating aneuploidy. 

• Larvae challenged with aneuploidy during development 

hatch into impaired adults 

• Few cell cycles are sufficient for chromosomal instability 

emerge from a previously stable aneuploid state.  

• Neural stemness delays aneuploidy stress response. 

• Protecting only the neural tissue from aneuploidy 

completely rescues adult lifespan. 

 
Introduction 

 

Aneuploidy, a state of chromosome imbalance, was observed over 

a century ago by Theodor Boveri. Since then, numerous studies 

have shown that aneuploidy is largely detrimental both at cellular 

and organism level. In multicellular organisms chromosome gain or 

loss results in lethality or developmental defects (Ambartsumyan 

and Clark, 2008; Holland and Cleveland, 2009). At the cellular 

level, studies in yeast and cell culture have demonstrated that 

aneuploidy has a high fitness cost for the cell, as unbalanced 

karyotypes lead to activation of multiple stress response pathways, 

resulting in reduced proliferation, cell cycle arrest, or cell death 

(Reviewed in (Santaguida and Amon, 2015). The aneuploidy stress 

response and consequential drop in fitness seems at odds with the 
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hypothesized role of aneuploidy in promoting malignancy, which is 

usually marked by over-proliferation (Sheltzer et al., 2017). Ninety 

percent of solid tumors harbor whole chromosome gains and/or 

losses (Gordon et al., 2012). Therefore, although usually 

detrimental to cell fitness, aneuploidy and its effects on cell 

proliferation can be context dependent, which emphasizes our 

need for a better understanding of the immediate and ultimate 

consequences of this abnormal cellular condition in a tissue context 

and through development. 

However, study of aneuploidy in vivo is challenging since somatic 

aneuploidy is a rare event, difficult to capture and to trace in real 

time due to several constraints: i) Cells are equipped with 

surveillance mechanisms that prevent chromosome miss-

segregation (e.g Spindle Assembly Checkpoint (SAC) (Reviewed in 

(Lara-Gonzalez et al., 2012) making naturally occurring aneuploidy 

events virtually impossible to evaluate; ii) experimentally-induced 

aneuploidy, by compromising mitotic fidelity, if often of low 

prevalence, as it has been demonstrated for several mammalian 

(Knouse et al., 2014) (Pfau et al., 2016) and Drosophila tissues 

(Dekanty et al., 2012; Poulton et al., 2017) and iii) induction of 

somatic or constitutional aneuploidy in metazoans relies on chronic 

mitotic perturbation (Listed in (Ly and Cleveland, 2017) which 

usually causes embryonic lethality (Reviewed in(Hassold and Hunt, 

2001) as a result of progressive accumulation of damage in the 

developing organism. Thus, from these studies, it is impossible to 

disentangle short term and long term consequences of aneuploidy, 

or to examine kinetics of the response to aneuploid state during 

development. To circumvent these limitations, we generated a 

genetic system with the power to induce aneuploidy in an acute 

and time-controlled manner, in all the dividing tissues of the 
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developing Drosophila. The tool is based on reversible depletion of 

cohesin, a key molecule regulating mitotic fidelity (Guacci et al., 

1993; Michaelis et al., 1997). Cohesin is a tripartite ring complex, 

composed by SMC1, SMC3 and the bridging kleisin subunit RAD21 

(Mirkovic and Oliveira, 2017; Nasmyth and Haering, 2009). The 

primary mitotic role of cohesin is to mediate sister chromatid 

cohesion, by topologically entrapping DNA fibers from neighboring 

chromatids (Haering et al., 2008; Ivanov and Nasmyth, 2005). Cells 

entering mitosis with premature loss of cohesion and sister 

chromatid separation activate the Spindle Assembly Checkpoint 

(SAC) resulting in prolonged mitosis (Michaelis et al., 1997; 

Mirkovic et al., 2015). During this SAC-dependent mitotic delay, 

chromosomes are shuffled from one cell pole to the other by the 

mitotic spindle (Mirkovic et al., 2015). Consequently, chromosome 

shuffling induces genome randomization and aneuploidy upon 

mitotic exit with a theoretical rate of nearly 100%. Our engineered 

system enables a quick restoration of this complex shortly after its 

inactivation, thereby restricting mitotic abnormalities to a short time-

frame, concomitantly with the generation of high levels of 

aneuploidy. Using such tool, we dissect the kinetics of aneuploidy 

response across various cell/tissue types and developmental 

timings. 

 

Results 
 
III.1 A genetic system for acute and time-controlled generation 
of aneuploidy in a developing organism 
 

To induce aneuploidy in an acute and time-controlled manner, we 

developed a genetic system based on rapid removal of cohesin 
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complex, the molecular glue that holds sister chromatids together. 

To prevent a chronic cohesion depletion state and restrict mitotic 

failure to a single cell cycle, our genetic system is able to induce 

cohesin inactivation, followed by subsequent cohesion rescue. The 

system relies on the artificial cleavage of a modified version of the 

RAD21 cohesin subunit that contains TEV protease cleavage sites 

(RAD21-TEV). Cohesin is therefore quickly inactivated upon 

expression of the exogenous Tobacco Etch Virus (TEV) protease, 

induced by a heat-shock promoter (Oliveira et al., 2010; Pauli et al., 

2008). After TEV-mediated inactivation, cohesin integrity is 

promptly rescued by inducing the expression of TEV-resistant 

RAD21 protein (RAD21-WT). For this purpose, RAD21-WT 

expression is under the control of UAS promoter (UAS-Rad21-wt-

myc) that is induced by a Gal4 protein induced concomitantly with 

the TEV protease (also under a heat-shock promoter, HSprom-

GAL4) (Figure 1A). Given that the TEV protease is under a direct 

control of heat-shock promoter, whereas RAD21-WT  relies on a 

dual expression-system (Gal4-UAS); we anticipated that the 

temporal delay in RAD21-WT expression relative to the induction of 

TEV protease would lead to a short time window of cohesin 

inactivation (RAD21 cleavage) (Figure 1A). 

 

To test this, we probed for the kinetics of TEV-mediated cleavage 

of RAD21-TEV and synthesis of RAD21-WT (Figures 1A´ and 1A´´) 

in different tissues of the developing larvae. After heat shock, both 

Drosophila larvae brains and wing discs, showed similar kinetics of 

the TEV-sensitive RAD21 disappearance followed by the 

appearance of RAD21-WT (Figures 1A´ and 1A´´). The timing of 

protein depletion/re-establishment differs slightly among different 
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tissues or developmental stages, but leads on average to a period 

of ~1 hour without cohesin (Figures 1A´; 1A´´). 

 
Figure 1A 
Reversible system for acute cohesin depletion and generation of 
aneuploidy in the developing Drosophila 
 

A genetic system for rapid cohesin cleavage relies on the expression of 

TEV protease from a heat shock promoter. This allows for complete 

Rad21 (TEV) removal in a Rad21WT excision background.  To quickly 

rescue Rad21 and sister chromatid cohesion, we use the expression of 

UAS-Rad21WT from hs-Gal 4 promoter. The rescue should be slower 

than the cleavage to the one additional step of protein synthesis and 

binding in the Gal4-UAS system. 
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Figure 1A’-A’’ 
Kinetics of Rad21 (TEV) depletion and Rad21-WT in the larval brain 
and wing disc 
A’-A’’) Time course of Rad21 (TEV) cleavage and expression of Rad2WT 

in the brain and wing disc, after the heat shock of the 3rd instar larvae. 

Rad21(TEV) cleavage takes place within two hours, followed by 

Rad21WT rescue. 

 
III.2 Reversible removal of cohesin results in a single round of 
mitotic abnormalities and consequent aneuploidy. 

 

The cohesive function of cohesin is established in S-phase, 

concomitantly with DNA replication. Once stabilized on the 

replicated genome, cohesin does not turn over (Gerlich et al., 

2006). As such, loss of cohesin using our system will affect sister 

chromatid cohesion in all cells that are in S/G2/M phase during the 

short period between TEV protease expression and synthesis of 
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RAD21-WT (Figure 1A). In contrast to the cohesive pool, cohesin 

molecules involved in regulation of gene expression are known to 

be highly dynamic (Gerlich et al., 2006) and cohesin-mediated 

loops were recently reported “memorable” and quickly reformed 

upon cohesin re-establishment (Rao et al., 2017). We therefore 

anticipated that this function should not be severely affected by our 

system. In sharp contrast, mitotic errors induced upon cohesin 

cleavage are irreversible as there is no way to restore cellular 

ploidy after a compromised round of mitosis. 

 

In contrast to canonical mitotic perturbations, that lead to several 

rounds of mitotic failures, our novel genetic system should lead to 

cohesion defects only in the first mitosis following the heat-shock, 

as the expression of RAD21-WT should be able to rescue cohesion 

in the subsequent cell cycle, if given enough time (see Figure 1A). 

To confirm that our genetic system works as anticipated, we 

focused our analysis on two different cycling tissues from the larva: 

the developing brain and the epithelial wing discs.  

 

The developing brain of Drosophila is an excellent model to study 

the consequences of developmental aneuploidy. The well 

characterized cell lineages of the tissue in combination with our 

tractable system to induce miss-segregation of chromosomes offer 

a unique opportunity to trace the fate of aneuploid cells in real time 

and analyze their effect on the nervous system development. 

Through larval development ~100 large neural stem cells called 

Neuroblasts (Nbs) (Urbach et al., 2003) located in the central brain 

(CB) region divide asymmetrically to self-renew and generate 

distinct neuronal lineages via differentiating progeny (Homem and 

Knoblich, 2012)  
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We evaluated, by live cell imaging, mitotic fidelity using two 

independent criteria to estimate the state of sister chromatid 

cohesion: i) the presence of single sisters (a direct consequence of 

cohesion loss), as opposed to metaphase chromosome alignment 

and ii) the time cells spend in mitosis, given that premature loss of 

sister chromatid cohesion is known to activate the SAC and delay 

mitotic exit (Mirkovic et al., 2015). 

 

As expected by our system, the first division after the heat shock 

results in full cohesin cleavage in Nbs, followed by cohesin rescue 

in subsequent divisions (see Sup Movie 1 and 2). The fast cell 

cycle of Nbs, coupled with continued proliferation of these cells 

despite their abnormal genome content (further discussed below), 

enables analysis of mitotic fidelity throughout several consecutive 

divisions in great detail. Consistently, in the first mitosis AHS, 95% 

of Nbs contain single sisters, and exhibit mitotic delay and 

chromosome shuffling (Figures 2A; 2B). In the subsequent mitosis, 

however, normal cohesion is observed in ~80% of the Nbs, with 

clear metaphases and a shorter mitotic delay (Figures 2A; 2B and 

2C).  Finally, during the third cell division AHS, the mitotic timing 

and the cohesive state of Nbs are comparable to heat-shocked 

controls (Figures 2A; 2B and 2C). Similar results were obtained for 

larvae heat-shocked at earlier stages of development (Figure 3A to 

A´´). 
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Figure 2A-C 
Kinetics of reversible loss of cohesin in the 3rd instar brains  
A- Stills from live imaging of Nbs after the heat-shock.Transient loss of 

cohesion results in a round of defective mitosis and genome shuffling (1st 

division AHS). After this round of division, the following mitosis (2nd and 
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3rd divisions AHS) shows the restoring of cohesion function and mitotic 

fidelity in larvae Nbs. B- Quantification of Cohesive states of 3rd instar 

larvae Nbs following RAD21-TEV cleavage and RAD21-WT restoring of 

cohesin function. More than 80% of the 2nd divisions AHS are already 

totally -or partially cohesed.  

C- Quantification of mitotic timing and delay caused by Spindle Assembly 

Checkpoint activation after RAD21-TEV cleavage and RAD21-WT rescue 

in the 3rd instar Nbs (2 to 24hs AHS). 2nd divisions AHS evidence a 

significant reduction in the mitotic timing as a consequence of the rescue 

of cohesin function. **** = P<0.0001. 
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 Figure 3 
Heat-shock treatment induces brain aneuploidy at all stages of 
development. 
 
A to A´´- Stills from live imaging of lobe brains at different larvae stages 

(48, 72 and 96hs AEL); dashed circles are highlighting the Nbs in the 

lobes (N>3 brains per condition). The number of dividing Nbs increase 

with larvae development. Cohesive state of Nbs after the loss of cohesion 

and subsequent rescue in 48, 72 and 96hs AEL larvae were plotted.   

B- Western blot of RAD21 cleavage and rescue dynamics in 72hs AEL 

larvae brains. 

 

In contrast to the Neuroblasts, in the epithelial cells of the wing 

disc, we observe the presence of single sisters and a mitotic delay 

even at 48hs AHS, despite the presence of high levels RAD21-WT 

(Figure 1A´´; 2D; 2E and 2F).These findings are consistent with the 

long cell cycle of the wing discs cells (Milan et al., 1996; Neufeld et 

al., 1998). The high incidence of cells affected by reversible-

cohesin cleavage is also consistent with a high frequency of cells in 

S/G2 in this tissue, estimated using the fly FUCCI system (Zielke et 

al., 2014) (Figure 4B). To fully demonstrate the ability of our tool to 

induce aneuploidy in an acute manner in epithelial tissues we 

tested their regeneration capacity. In Drosophila epithelial cells, 

multiple cellular insults, including aneuploidy, can activate the Jun 

N-terminal kinase (JNK) signaling pathway, thus inducing the 

expression of pro-apoptotic genes and triggering the apoptotic 

cascade (Dekanty et al., 2012; Milan et al., 2014). In agreement 

with these studies, 24hs AHS in the wing disc, Cleaved Caspase 3 

(CC3) staining reveals a large population of dying cells thus 

reinforcing the notion that cell death is mostly a consequence of the 

induced chromosome segregation errors and the resulting 
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aneuploidy (Figure 4A and 4A´). However, at 48hs AHS, the 

number of dying cells decreases significantly if cohesin activity is 

brought back, but not if the cohesion depletion by TEV is chronic 

(Figure 4A and  4A´). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2D-F 
Kinetics of reversible loss of cohesin in the 3rd instar wing disc  
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D- Cohesin cleavage in the Wing disc of 3rd instar larvae. Stills from live 

imaging showing single chromatids during mitosis.  

E- Quantification of Cohesive states of divisions in the 3rd instar larvae 

wing disc following RAD21-TEV cleavage and Rad21-WT rescue from 2 

to 80hs after heat-shock. Given the long cell cycle and the heterogeneous 

rate of division of cells in this tissue the presence of single sisters can be 

observed up to 72h after the heat-shock. 

F- Quantification of mitotic timing and delay caused by Spindle Assembly 

Checkpoint activation after Rad21-TEV cleavage and Rad21-WT rescue 

in the 3rd instar wing discs from 2 to 80hs AHS. 

In all panels n= number of cells. **** = P<0.0001; ** = P<0.01. 

 

 
Figure 4B 
Cell cycle profile evaluation of the 3rd instar wing disc, using the 
FLY-FUCCI system 
The high incidence of cells affected by reversible cohesin cleavage is 

consistent with a high frequency of cells in G2/M in this tissue and slow 

cell cycle (see Merge). GFP: G1 cells; RFP: S phase cells; Merge: G2/M 

Cells. 
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Figure 4 
Epithelial tissues recover from high levels of aneuploidy by cell 
death and compensatory proliferation. 
 
A to A´: A- Reversible cohesin cleavage results in apoptosis in the 3rd 

instar wing discs (dashed shapes depict the wing disc areas). The amount 

of apoptosis per disc area was measured by cleaved caspase 3 (CC3) 

immunofluorescence at 24, 48 and 72hs AHS. A´- Rescue of cohesin 

function reduced significantly the amount of apoptosis 48hs after of the 

induced mitotic disruption. Contrastingly, a chronic inactivation of cohesin 

complex (No cohesin rescue) showed high levels of apoptosis through 

time. Control- (Control HS); Control+ (Irradiation: 4,000 rads); BHS 

(Before Heat-Shock, genetic control); AHS (After Heat-Shock, condition); 

BI (Before Irradiation); AI (After Irradiation). * = P<0.05; **** = P<0.0001. 

Scale bar = 40µm. z-proj (z projection). 
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Figure 5A 
RAD21 cleavage and rescue induces loss of cohesion in all 
examined dividing tissues 
A- Stills from live imaging of leg, eye, antennae and halter 3rd instar 

imaginal discs after induction of RAD21 cleavage. Dashed squares 

display epithelial cells from the imaginal discs undergoing mitosis with 

loss of cohesion and single chromatids (see enlarged picture). 

 

These results suggest that tissue recovery is limited and only 

possible if the mitotic disruption is restricted in time (or cell cycle), 

as achieved by our reversible genetic system. Although quantitative 

analysis was performed exclusively for wing discs epithelial cells 

and brain Nbs, analysis of other epithelial dividing tissues of the 

Drosophila larvae reveal a similar high incidence of single sisters 

3hs AHS, implying that our system is able to induce a reversible-

whole organism loss of cohesion (Figure 5A). 

 

We therefore conclude that our novel genetic tools is able to induce 

a single round of aberrant cell division, followed by quick rescue of 

mitotic fidelity, across the entire organism, leading to tissue-specific 

responses.  

 

III.3 Larvae challenged with aneuploidy during development 
hatch into impaired adults  
 

To understand how the entire organism would respond to such high 

degree of induced chromosome segregation errors and consequent 

aneuploidy, we tracked the larvae through development after 

cohesin cleavage. For comparative analysis, we monitored 

eclosion rates for organisms with the “chronic” TEV-protease 
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cleavage system (inducing cohesin removal for ~48hs) and our 

newly developed system with reversible inactivation of cohesin. 

Both systems represent a strong insult for all the dividing tissues of 

the larva; therefore, we expected them to be lethal in the pupa to 

adult transition. However, in contrast to several studies using 

chronic mitotic perturbations (Gogendeau et al., 2015; Poulton et 

al., 2017) flies challenged with aneuploidy using a reversible mitotic 

perturbation ecloded into adult flies at high frequency, particularly if 

challenged up to 72hs after egg laying (AEL) (Figure 6A and Movie 

Sup 3). Eclosion rates of adults were dependent on the 

developmental stage at which cohesin was reversibly cleaved 

(Figure 3A). Early induction of aneuploidy, at 48hs AEL, resulted in 

eclosion both with and without cohesin rescue. However, with 72hs 

AEL heat-shock, there was almost no eclosion if the RAD21 protein 

subunit was not brought back (Figure 6A). If the larvae were heat-

shocked 96hs AEL, no cohesin rescue resulted in dead pupae, 

while cohesin rescue resulted in flies trying to escape the pupa, but 

unable to do so (“Head-out pupae”) (Figure 6A and 6B). These 

differences in developmental response to aneuploidy are likely due 

to increase of cell proliferation during larval development (Ito and 

Hotta, 1992; Poulton et al., 2017). Regardless of the developmental 

stage, all flies that were able to eclode into adults after the 

aneuploidy challenge were completely unable to fly or move 

normally even when showing serviceable wings and appendages 

(see Sup Movie 3, 4 and Figure 6B´). Consequently, these flies 

exhibited markedly shorter lifespans than their control counterparts 

(Figure 6B). 
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Figure 6 
Larvae challenged with organism-wide mosaic aneuploidy hatch into 
adult flies with severe motor defects and reduced lifespan. 
 

A- Percentages of adult eclosion according to the stage of development at 

which reversible loss of cohesin (aneuploidy) was inducted (48, 72, 96 

and 120hs after egg laying, AEL). n= number of flies. 

B to B´: B- Kaplan-Meier survival curves showing fractional survival as a 

function of time. Ecloded flies with 72hs AEL induced aneuploidy showed 

reduced lifespan when compared with control flies (only heat-shocked). 

B´- Climbing assay comparing adult flies with 72hs induced aneuploidy 

and control flies. Percentage of climb success was plotted over the 

halfway point (10cm). Ecloded flies with 72hs AEL induced aneuploidy 

showed impaired motor behavior 
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III.4 Few cell cycles are sufficient to induce chromosomal 
instability in aneuploid Neuroblasts. 
 

We hypothesized that the severe motor defects in the newly 

hatched flies are a direct consequence of aneuploidy in the 

developing larva brain. Recently, it has been proposed that neural 

stem cells with unwanted karyotypes are eliminated (Gogendeau et 

al., 2015; Poulton et al., 2017). To measure the number of neural 

stem cells over time after aneuploidy induction, we used the Nb 

marker Deadpan (DPN) to quantify all the nuclei with Nb 

morphology (Nb-like cells), defined based on their size, and located 

at the central brain area (CB) per lobe. The analysis indicates that 

there is a gradual decline in the Nbs number after the induction of 

aneuploidy from 12hs AHS onwards, but never a complete loss of 

the neural stem cell population (Figure 7A and 7A´). The slow 

kinetics and incomplete elimination of the stem cell population was 

quite surprising given the high levels of aneuploidy generated upon 

cohesin loss (~100%).  
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Figure 7A 
Aneuploidy causes a gradual reduction in Neuroblasts numbers, but 
never a complete loss.  
 
A to A´: A- Nbs counts at the central brain (dashed shape) in 3rd instar 

lobe brains assessed by immunofluorescence with the Nbs marker 

Deadpan (DPN). A´- Nb numbers were quantified based on the correlation 

between morphology and positive signal for DPN at 12, 24 and 48hs AHS. 

Reversible loss of cohesion and aneuploidy are followed by a reduction in 

Nbs numbers, but not a complete loss of the neural stem cell pool. n= 

number of lobe brains. *** = P<0.001; **** = P<0.0001; ns= not significant. 

Scale bar = 40µm. 

 

Premature differentiation and apoptosis were suggested as the 

main mechanisms of aneuploid Nb elimination, reported in two 

recent studies (Gogendeau et al., 2015; Poulton et al., 2017). 

However, after acute aneuploidy induction in the entire Nb 

population, we found a very low frequency of cells undergoing 

premature differentiation or cell death (Figure 8). As a proxy for 

premature differentiation events, we quantified Nb-like cells that 

had either lost the DPN marker or abnormally exhibit the 

differentiation marker Prospero (Pros) with or without co-

expression of DPN (Figure 8A and 8A´, arrowheads and dashed 

circles).  Pros is the key factor acting as a switch for the transition 

from stem cell self-renewal to terminal differentiation (Choksi et al., 

2006); therefore, should not be present in Nbs. We observed that 

upon acute aneuploidy induction in the entire Nb population, there 

is a very low frequency of cells indicative of premature 

differentiation (Figure 8). These findings suggest that premature 

differentiation, although still taking place, is unlikely to be the major 

form of stem cell elimination. 
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Figure 8 
Aneuploidy promotes low frequency of loss of identity and/or 
premature differentiation in Neuroblasts  
A to A´: A- Pictures from fixed samples of 3rd instar larva brains stained 

with Deadpan (DPN), Prospero (Pros) and Histone RFP (DNA). Induction 

of aneuploidy results in the loss of stem cell identity measured by the 

absence of Deadpan (stem cell marker, white arrowhead with dashed 

circle), appearance of Prospero (differentiation marker, yellow arrowhead 

with dashed circle) or both markers together in cell nucleus with “Nbs 

shape like”. A´- Percentage of loss of stem cell identity in the neural stem 

cell pool at different time points after the induction of aneuploidy. These 

events are observed at very low frequency. n= number of Nbs like cells. 

Scale bar = 40µm 

 

To estimate the levels of apoptosis, we also counted cells positive 

for cell death markers like CC3 and DCP1. We found a significant 

increase in CC3 and DCP1 positive cells in aneuploid brains 

(Figure 8B´ and 8B´´) indicating that induction of apoptosis may 

also contribute to the elimination of aneuploid cells, as recently 

proposed (Poulton et al., 2017). However, CC3 and DCP1 signals 



202 
 

rarely correspond to Nb-like cells (For CC3 staining: Control: N=4 

lobes Nbs/CC3=157/0 (0%) and Aneuploidy induced 24hs AHS: 

N=9 lobes Nbs/CC3=159/6 (3,7%); for DCP1 staining Control: N=5 

lobes Nbs/CC3=201/0 (0%) and Aneuploidy induced 24hs AHS: 

N=10 lobes Nbs/CC3=191/5 (2,6%) (Figure 8B, B´ and B´´, 

arrowheads and dashed circles), suggesting that apoptosis may 

not be the major cause for NB elimination. Thus, loss of stem-cell 

identity and/or cell death are more likely potential consequences of 

genome randomization, rather than a specific mechanism 

controlling aneuploidy in the neural stem cell population (see 

discussion). Supporting this idea, inhibition of apoptosis by over-

expression of the baculovirus protein P35 does not rescue Nbs 

number per brain lobe 24hs after induction of aneuploidy (Figure 

8C). 
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Figure 8B-C 
Aneuploidy promotes low frequency of cell death in Neuroblasts. 
 
B to B´´:  B- Pictures from fixed samples of 3rd instar larvae lobe brains 

stained with Deadpan (DPN), Cleaved Caspase 3 (CC3, death marker), 

DCP1 (death marker) and rhodamine phalloidin (Actin). Induction of 

aneuploidy results in cell death measured by the presence of CC3 or 

DCP1 signals (white arrowheads with dashed circles) in cells with “Nbs 

shape like”. B´ and B´´- Quantification of cell death signals CC3 and 

DCP1 per larvae brain lobes at 24hs AHS. The presence of positive signal 

for the cell death markers in Nbs shape like cells is very low. ** = P<0.01.  

ns= not significant. Scale bar = 40µm. z-proj (z projection) 

C- Quantification of Nbs at the central brain in 3rd instar lobe brains 

assessed by immunofluorescence with the Nbs marker DPN. Inhibition of 

apoptosis by over-expression of baculovirus P35 does not rescue Nbs 

number after 24hs induced aneuploidy. n= number of lobe brains. **** = 

P<0.0001.  ns= not significant. 

 

To dissect the kinetics of the aneuploid response, we took 

advantage of the temporal resolution our system allowing for the 

tracking of aneuploid fate in real time. We restricted our analysis to 

3rd instar wandering larvae as at this stage no new Nbs are 

generated from the neuro-epithelium (Homem and Knoblich, 2012). 

Induction of aneuploidy at this developmental stage, therefore, 

affects the entire Nbs population, which facilitates cell fate analysis. 

Consistently with our hypothesis, we observed a significant amount 

of Nbs proliferating for several days and displaying a tendency for 

chromosome accumulation over time (Figure 7B and 7B´). To 

analyze the number of chromosomes in each dividing Nbs we 

performed chromosome spreads and counted the number of 

centromeres per mitotic figure (each chromosome contains 2 
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centromere dots in mitosis). A single round of mitosis upon 

premature loss of sister chromatid cohesion should result in a 

maximum of 16 chromosomes per Nbs, in the rare cases of 

complete asymmetric segregation (the total set of chromosomes in 

the fly is 8). However, chromosome numbers can reach over 20 

chromosomes per cell 24hs after loss of cohesion was induced 

(Figure 7B´).This analysis suggests that chromosome accumulation 

does not solely result from the initial perturbation.  
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Figure 7B 
Aneuploidy causes chromosome accumulation in proliferating 
Neuroblasts 
B to B´: B-Chromosome counts were assessed by CID 

immunofluorescence (Centromere counts) in 3rd instar Nbs arrested at 

metaphase with Colchicine (dashed circle) at 24 and 72hs AHS. B´- 

Aneuploid Nbs accumulate chromosomes through time. n= number of 

cells. **** = P<0.0001; ** = P<0.01. Scale bar = 5µm. 

 

To investigate this further, we characterized the mitotic fidelity of 

aneuploid Nbs. As described above, mitotic divisions that 

immediately follow the initial perturbation do not display significant 

mitotic errors and the low frequency of defects observed is 

cohesin-related (as expected from our experimental setup). 

However, 16hs AHS, aneuploid cells start changing their behavior 

and a variety of mitotic defects appear, becoming more frequent 

over time (Figure 7C). Detailed characterization of the mitotic 

defects arising 16hs after the induction of aneuploidy revealed that 

majority of them (~60%) are mild, consisting of either a prolonged 

metaphase or a lagging chromosome. However, the remaining 

~40% consisted of cytokinesis defects, tri-polar spindles and sister 

chromatid cohesion defects, which are serious abnormalities that 

can drastically alter numerical ploidy (Figure 7D´ and 7D´´).  

Interestingly enough, this analysis shows that few hours are 

enough for the previously stable divisions of aneuploid karyotypes 

to become unstable, leading to further randomization of the 

genome. Furthermore, this chromosomal instability can also 

contribute to Nbs number decline, as catastrophic mitotic errors 

can result in complete loss of Nbs morphology and positioning 

(Figure 7E). All together, we conclude that neural stem cells exhibit 
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a complex array of abnormalities as consequence of their 

karyotype diversification, such as loss of identity, cell death, or 

chromosomal instability, contributing to their gradual loss over time. 

 

Figure 7C-E 
Aneuploid Neuroblasts become chromosomally instable over time  
C- Assessment of mitotic defects after aneuploidy induction from 2 to 

48hs AHS. Chromosome instability arises shortly after aneuploidy 

induction (red dashed box). n= number of cells. 
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D to D´´: D and D´- Profile of mitotic errors as a consequence of reversible 

cohesin depletion and consequent aneuploidy from 2 to 12hs AHS and 16 

to 48hs AHS. D´´- Stills from live imaging documenting mitotic 

abnormalities in aneuploid Nbs (dashed circles). n= number of cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

E- Graph displaying the frequency per mitosis of catastrophic mitotic 

events which result in Nbs loss from 2 to 48hs AHS. Chromosomal 

instability can result in complete loss of Nbs morphology. n= number of 

cells. 
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III.5 Karyotype restrictions in the proliferating aneuploid 
Neuroblast population 

 

To test if there is a selection of specific karyotypes in the 

population of dividing aneuploid Nbs, we preformed FISH analysis 

at 8hs and 24hs after aneuploidy was induced. To estimate the 

predicted frequency of specific karyotypes we first modeled the 

probability of each karyotype, assuming full random chromosome 

segregation in a single round followed by a second round of 

random segregation in ~20% of the cases (this was based on our 

experimental observations, see Figure 2B). FISH profiles were then 

compared with the statistical predictions. The FISH profiles 

confirmed the propensity for chromosome accumulation over time 

(Figure 9A and 9B). Additionally, this analysis revealed that the 

karyotypes that can be tolerated by dividing Nbs are restricted to 

those containing at least one of the major three chromosomes, II III 

or X. The rate of complete loss of these chromosomes in the 

proliferating Nbs population was comparable to the control, and 

thus likely a consequence of experimental error of the FISH (Figure 

9C; 9C´; 9D and 9D´). We concluded that, although dividing 

aneuploid Nbs can persist in the tissue, this also has boundaries, 

as complete loss of any of the big three chromosomes prevents 

their proliferation in the developing brain. In contrast, other 

aneuploid combinations are compatible with continued proliferation, 

particularly when cells gain chromosomes. 
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 Figure 9 
Karyotype restrictions in the proliferating aneuploid Nbs population 
 
A- Panels of Fluorescent in situ Hybridization (FISH) of aneuploid Nbs 

and Control. Schematic of the FISH probe chromosome labeling. 

B- Theoretical segregation of sister chromatids after cohesion loss, 

assuming segregation to be random. Full modeling data available. 

C to C´: C- Frequency distribution of chromosome copy per Nbs, 8hs after 

aneuploidy induction. C´- Calculated theoretical loss rate for chromosome 

II, III or X, and the observed frequency of loss of any of these three 

chromosomes in the proliferating aneuploid Nbs. 

D to D´: D- Frequency distribution of chromosome copy per Nbs, 24hs 

after aneuploidy induction. D´- Calculated theoretical loss rate for 

chromosome II, III or X, and the observed frequency of loss of any of 

these three chromosomes in the proliferating aneuploid Nbs 

 
III.6 Aneuploidy elicits a stress response in the brain tissue. 
 

Our findings revealed that aneuploid cells are not promptly 

eliminated but instead continue to proliferate within certain 

karyotype restrictions. This should lead not only to the maintenance 

of aneuploid stem cells (due to Nb self-renewal) but also to the 

accumulation of  differentiated aneuploid progeny (note that each 

Nb divides every ~2 hours (Ito and Hotta, 1992)). We therefore 

tested how such increase in aneuploid cells within the tissue could 

affect cellular physiology and influence normal tissue development. 

 

Several aneuploidy-associated stresses that include oxidative, 

metabolic, and proteotoxic stress are likely to alter cellular 

homeostasis (Santaguida and Amon, 2015), which ultimately lead 

to p53 activation and a p53-dependent cell-cycle arrest (Kruiswijk 
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et al., 2015; Thompson and Compton, 2010). Interestingly, 

elevated levels of p53 have been observed in the Central Nervous 

System of Down syndrome patients (Liao et al., 2012). We decided 

to take advantage of our in vivo system to acutely induce 

aneuploidy to examine whether abnormal karyotypes trigger a 

stress response in the developing Drosophila brain and if so, what 

is the kinetics of such response. We assessed by 

immunohistochemistry the presence of P53 and the senescence 

marker Dacapo (DAP, a p21/p27 homologue (Lane et al., 1996)), 

after the loss of cohesin and consequent aneuploidy. We 

determined that both stress markers start to be evident at 12hs 

AHS in the tissue but only at 24hs AHS significant number of cells 

labeled with these markers are observed (Figure 10A; 10A´ and 

10A´´). Furthermore, the large majority of the cells that appeared 

stress positive are not Nbs-like cells since the signal is limited to 

the small cells in the brain at that time (Figure 10A). 
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Figure 10A 
Aneuploidy induced stress response is delayed in the neural tissue. 
 
A to A´´: A- Kinetics of the aneuploidy induced stress response at 6, 12, 

24, and 48hs AHS; assessed by immunofluorescence of canonical 

markers P53 and Dacapo (DAP). Nbs show a delayed aneuploidy stress 

response at 48hs AHS (arrowheads with dashed circles). A´ and A´´- 
Counts of overall numbers of p53 and DAP signals per lobe, displaying a 

significant increase from 24hs AHS. ; *** = P<0.001; **** = P<0.0001. 

Scale bar = 40µm. z-proj (z projection). 

 

Nbs-like cells stained with the stress markers are noticeable only at 

48hs AHS (Figure 10A, arrowheads and dashed circles), 

suggesting that despite their aneuploid state, neural stem cells are 

delayed at displaying an evident stress-response. We confirmed 

this observation by quantifying the appearance of cells co-stained 

with the stress markers and the Nb marker DPN through time 

(Figure 11). We concluded that even when being induced in a time 

controlled, acute manner, or very early in development, aneuploidy 

has a strong impact on the development of the Drosophila nervous 
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system. This is the case at it affects not only the dividing 

progenitors cells like Nbs and ganglia mother cells (GMC), but also 

their progeny, resulting in loss of tissue architecture. 
 

  
Figure 11 
Aneuploidy stress response is delayed in Neuroblasts 
 
A to A´´: Pictures from fixed samples of 3rd instar larvae lobe brains 

showing the immunofluorescence of canonical stress response markers 

P53 and Dacapo (DAP) together with the Nbs marker (DPN) at 48hs AHS. 

Nbs display a delayed aneuploidy stress response at 48hs AHS 

(arrowheads with dashed circles). A´ and A´´- Quantification of the 

kinetics of the aneuploidy induced stress response at 6, 12, 24, and 48hs 

AHS in Nbs (DPN+). Scale bar = 40µm.  
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III.7 Neural stemness delays aneuploidy stress response.   
 

The delayed stress response (i.e. ~48hs after induction of 

aneuploidy) in the neural stem cell pool may imply selective stem 

cell tolerance for the aneuploid condition when compared to the 

other cell types of the developing brain. To test this idea we took 

advantage of the brat mutant condition (Arama et al., 2000). In brat 

mutant larvae brains each Nb divides into two daughter cells grow 

that retain Nbs properties, leading to the formation of a tumor-like 

neoplasm (Betschinger et al., 2006). We reasoned that cellular 

stemness confers tolerance to aneuploidy, the complete occupancy 

of the developing brain by Nbs-like cells observed in the brat 

mutant phenotype should be sufficient to prevent the stress 

response observed at 24hs AHS. To test this idea we combined 

our system for acute induction of aneuploidy with brat mutations to 

be able to induce aneuploidy in a brat mutant background and 

analyze the presence of stress markers at 24 and 48hs AHS. As 

predicted, DAP appearance was significantly delayed in aneuploid 

brat mutants when compared to aneuploid brains alone (Figure 

10B and 10B´). The same result is observed for P53 staining 

(Figure 12). Note that the Nbs marker (DPN) stain almost all the 

cells in brat mutant brains, demonstrating the stem cell state of the 

entire tissue (Figure 10B and 10B´). This result strongly suggests 

that the neural stem cell identity confers extreme tolerance to 

aneuploidy-associated stresses. 
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Figure 10B 
Stem cell state of the Neuroblast confers aneuploidy tolerance: B- 
Pictures from fixed samples of 3rd instar larvae lobe brains showing the 

immunofluorescence of the stress marker DAP and the Nbs marker (DPN) 

at 24 and 48hs after induction of aneuploidy. B´- Quantification of relative 

DAP positive signal per lobe area from 24 to 48hs AHS tissues. Brat 

mutant lobe brains showed a clear reduction in the presence of the 

aneuploidy induced stress marker DAP at 24hs AHS. n= number of lobe 

brains. **** = P<0.0001. Scale bar = 40µm. z-proj (z projection). 
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Figure 12 
Aneuploidy induced P53 appearance is delayed in the neural stem 
cell pool. 
 
A to A´: A- Brat mutant lobe brains showed a clear reduction in the 

presence of the aneuploidy induced stress marker P53 at 24hs AHS. A´- 
Quantification of relative P53 positive signal per lobe area from 24 to 48hs 

AHS. n= number of lobe brains. **** = P<0.0001. Scale bar = 40µm. z-proj 

(z projection 

 
III.8 Acute induction of developmental aneuploidy does not 
significantly alter adult brain size. 
 

All the flies that survive the developmental aneuploidy show severe 

motor defects suggesting an impaired central nervous system. 

Previously, it has been reported in a centrosome amplification 

models that the generation of aneuploid cells during brain 

development resulted in microcephaly (Marthiens et al., 2013; 

Poulton et al., 2017). Contrary to our expectations, size 

measurements of dissected brains from adult flies (i.e. 1-day old) 

both control and developmental aneuploidy-induced (72hs and 

96hs AEL heat-shock) showed no major differences in the total 

length of the brain or diameter of the optic lobes (Figure 13; 13B´ 

and 13B´´).  Moreover, no signs of neurodegenerative process 

(such as dramatic cortical cell loss and/or vacuolation) were 

detected (Figure 13B).These results indicate that understanding 

how aneuploidy in the developing brain influences the adult tissue 

homeostasis requires a more exhaustive analysis of the adult brain 

architecture.  
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Figure 13 
Adult brains do not show any significant alteration in shape and size 
after induction of aneuploidy during development. 
 
A to A´´: A- Dissected brains of adult flies from a control and a 

developmental aneuploidy-induced (72hs AEL heat-shock) organisms. A´ 
and A´´- Quantifications of lobe diameter and brain length in control and 

developmental aneuploidy-induced (72 and 96hs AEL heat-shock) adult 

flies showed no significant differences. n= number brains. ns= no 

significant 

B- Histology analysis of brains from control and aneuploidy-induced 

during development (72hs AEL heat-shock) adult flies, one day after 

eclosion. Frontal sections at approximately midbrain showed no signal of 

neurodegenerative process (vacuolization). H&E= Hematoxylin and Eosin 
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III.9 Protecting only the developing brain from induced 
aneuploidy rescues the lifespan of the ecloded flies. 
 

Upon aneuploidy challenge, we observed a striking difference 

across analyzed Drosophila tissues: whereas epithelial tissues like 

wing discs are able to regenerate from this insult, neural stem cells 

are either irreversibly lost or become highly chromosomally 

unstable. These findings, together with the fact that most flies that 

survive the developmental aneuploidy induction show severe motor 

defects in otherwise healthy adult morphology, led us to 

hypothesize that the brain is the only limiting tissue in response to 

aneuploidy during development. 

To test this hypothesis, we devised a system to selectively protect 

only the brain from cohesin removal and consequent aneuploidy. 

To achieve this, we complemented our reversible cohesin cleavage 

system with Brain-specific expression of RAD21-WT throughout the 

course of the experiment (Figure 14A). In this way, TEV expression 

should lead to cohesion loss in all larval tissues that survive solely 

on RAD21-TEV at the time of heat shock. In contrast, neural stem 

cells should be resistant to this challenge, as they express both 

RAD21-TEV and RAD21-WT (Figure 14B). Neuroblast-specific 

expression of RAD21-WT was achieved by the use of inscuteable-

Gal4 (insc-Gal4) or worniu-Gal4 (wor-Gal4) drivers, to constitutively 

express UAS-Rad21-wt-myc in the developing brain (Figure 14B). 

As expected, constitutive presence of TEV-resistant RAD21 in the 

brain prevents any cohesion defects in 3rd instar larvae Nbs (Figure 

14C). To confirm that the rescue of sister chromatid cohesion 

occurs exclusively in the brain; we performed parallel 

characterization of the first mitotic division after the heat shock in 
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the wing, derived from the same larvae. As anticipated, full cohesin 

cleavage was observed in all the dividing epithelial cells from the 

wing discs (Figure 14D). 

 

Figure 14A-B 
Modifying the reversible cohesin cleavage system to protect only the 
developing Brain from aneuploidy 
 
A- Graphic scheme depicting how the developing brain is protected from 

the loss of cohesion and induction of aneuploidy upon the constitutive 

expression of the RAD21-WT driven by Nbs specific Gal4 (Insc-Gal4 or 

Wor-Gal4). In contrast, the rest of the dividing tissues from the larva 

experience the acute inactivation of cohesin complex (by TEV cleavage of 

RAD21-TEV) after the heat-shock. 

B- Western blots showing the expression of both the cleavable (RAD21-

TEV) and non-cleavable RAD21 (RAD21-WT) in 3rd instar brains. Insc-

Gal4 and Wor-Gal4 drivers result in expression of RAD21-WT in the 3rd 

instar brain before the heat-shock.  
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C- Quantification of Cohesive states of 3rd instar larvae Nbs and epithelial 

cells from wing discs following heat-shock. Insc-Gal4 protects the brain 

from cohesin loss, but has no effect in the wing disc. 

D- Live imaging cohesion profiles of Nbs and epithelial cells during mitotic 

divisions after the heat-shock. Insc-Gal4 prevents mitotic delay caused by 

cohesion loss in the Nbs. 

Notably, protecting only the brain from developmental aneuploidy 

fully rescued the severe motor defects of the ecloded flies from the 

72hs AEL heat-shock, as demonstrated by mobility essays (Figure 

14E´). Even more surprisingly, the brain protection was enough to 

rescue the lifespan of ~70% of the adult flies affected by organism-

wide aneuploidy during development, demonstrating that the brain 

is indeed the most sensitive tissue when challenged with 

aneuploidy (Figure 14E). 
 

Figure 14E 
Protecting only the developing brain from induced aneuploidy 
rescues the lifespan of the ecloded flies. 
E to E´: E- Kaplan-Meier survival curves showing fractional survival as a 

function of time. Protection of the brain tissue from the induced aneuploidy 

rescues the adult lifespan of the ecloded flies with 72hs AEL heat-shock. 

E´- Climbing assay of adult flies. Percentage of climb success was plotted 

over the halfway point (10cm). Protection of the brain tissue from induced 
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aneuploidy rescues motor defects of the ecloded flies with the 72hs AEL 

heat-shock. 

 
III.10 Discussion  
 

Acute disruption of mitotic fidelity enables tracing of 
aneuploidy per se. 
 

We developed a novel genetic tool in Drosophila to study 

aneuploidy in vivo. This tool enables the induction of a controlled 

pulse of aneuploidy, at the developmental stage of choice. The 

outcomes using a reversible perturbation are significantly different 

to the ones resulted from a chronic disruption of mitotic fidelity. 

Whereas chronic mitotic perturbation is incompatible with organism 

viability, here we show a high survival rate upon controlled and 

acute organism-wide aneuploidy challenge. The long term survival 

after aneuploidy challenge coupled with the reversibility of the 

mitotic perturbation induced, overcomes one of the major 

limitations present in other metazoan models:  We are able the 

study of the kinetics response to aneuploidy across different 

tissues/developmental stages, focusing solely on the effects 

aneuploidy and without the confounding variable the mitotic 

perturbation used to cause aneuploidy. 

Cohesin loss and induction of aneuploidy is tolerated better by the 

organism if induced early in development, as observed comparing 

the rates of eclosion. The developing larvae are progressively 

scaling mitotic machines, with each consecutive stage containing 

more divisions than the previous one (Ito and Hotta, 1992). This 

implies that the heat-shock at the 1st and 3rd instar larvae are not 

the same, as they affect different number of dividing cells, thus 
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generating different numbers of aneuploid progeny, as 

demonstrated by our data. Although, the more parsimonious 

explanation for aneuploidy tolerance in early development would be 

a quantitative one, it is also important to mention that a 

developmental delay is observed after aneuploidy induction (e.g. 

delayed pupariation stage). It is well known that delayed 

development allows the organism to adjust their growth programs 

after disturbances (Gontijo and Garelli, 2018; Hackney and 

Cherbas, 2014).  This induced delay is a development-stage 

dependent response, as some perturbations only appear to retard 

pupariation when induced at or before a certain stage in larval 

development as for example, beginning of the third instar (Garelli et 

al., 2012; Halme et al., 2010; Simpson et al., 1980). This clearly 

exposes the different tissue sensitivities, showing that the 

developing brain is extremely sensitive to any level of aneuploidy 

during development. 

 
Chromosome mis-segregation in Neuroblast leads to a 
complex array of karyotypes and cellular abnormalities. 
 

Neuroblasts have been used as a system to study aneuploidy in 

previous studies (Gogendeau et al., 2015; Poulton et al., 2017). 

These studies postulate two different but not mutually exclusive 

mechanisms of response to induced aneuploidy: premature 

differentiation (Gogendeau et al., 2015) and cell death by apoptosis 

(Poulton et al., 2017). We reasoned that if these are the major 

mechanisms of response to aneuploidy in neural stem cells, they 

should be detectable in high frequency after the aneuploidy 

induction by our acute approach. Contrary to that notion, after 

examined in detail the kinetics of the response, both premature 
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differentiation and cell death were detected at low frequency even 

days after cells became aneuploid. It is important to note that the 

degree of aneuploidy in the Nbs upon cohesin loss should be 

around 98% due to the extensive genome shuffling prior to mitotic 

exit. Therefore, the finding that aneuploidy does not eliminate the 

entire Nb population, strongly argues against the existence of 

specific, active mechanisms controlling the integrity of the neural 

stem cell genome. The more plausible explanation is that the Nb 

elimination due to aneuploidy stems from a wide spectrum of 

abnormalities due to a randomized genome. Supporting this idea, it 

has been shown in yeast cell-to-cell variability in cell-cycle 

progression and robustness of multiple cellular processes even 

among cells harboring the same aneuploidies (Beach et al., 2017) 

Examination of Nbs in real time after aneuploidy induction further 

revealed that aneuploidy is sufficient to induce chromosomal 

instability within a short time-.period (~12h). The appearance of 

obvious chromosomal instability, characterized by a wide range of 

mitotic defects, takes several cell cycles after cohesin has been 

restored, which strongly supports the notion that chromosomal 

instability is consequence of the abnormal karyotype and not the 

mitotic disruption initially applied. Overall, we observe a selection 

towards the accumulation of chromosomes, generating huge Nbs, 

which keep proliferating despite their increased ploidy (Gogendeau 

et al., 2015).  

Thus, our in vivo detailed examination of the aneuploid Nbs 

(immediately after aneuploidy was induced) and kinetics of events 

(through several hours) clearly demonstrates that just a single 

round of chromosome miss-segregation in these cells is enough to 

originate a complex array of karyotypes which can lead to a 

variability of mitotic abnormalities. 
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Neural stemness confers resistance to aneuploidy-associated 
stress response. 
 

During the last years, studies from tissue cultured and yeast cells, 

have collected solid evidence on how abnormal karyotypes can 

remarkably alter physiology of eukaryotic cells (reviewed in 

(Santaguida et al., 2015). They can lead to a different aneuploidy-

associated stresses that include oxidative, metabolic, and 

proteotoxic stress which likely contribute to p53 activation and cell 

senescence (Kruiswijk et al., 2015). However, our understanding 

about how the aneuploidy induced stress at cellular level influences 

development of disease-free tissues, is very limited.   

Our time-course assessment of classical stress response markers 

(P53 and DAP) following chromosome mis-segregation in the brain 

tissue, clearly showed that aneuploidy response is not immediate 

and takes several hours for the cells to exhibit their up-regulation 

(12 to 24hs AHS). This delayed stress response is in agreement 

with recent observations in culture cells where it has been shown 

that chromosome miss-segregation did not lead to arrest in the 

following G1 in the vast majority of aneuploid daughter cells 

(Santaguida et al., 2017; Soto et al., 2017).  

Interestingly, our results highlight that cell identity determines the 

kinetics of this stress response. Aneuploidy response is specifically 

delayed in the neural stem cell pool (displayed mainly at ~48hs 

AHS) compared to the rest of the tissue, which exhibits it 

considerably earlier. Forcing self-renewal is sufficient to delay 

stress response in the entire tissue, suggesting that cellular 

stemness alone makes cells less sensitive to aneuploidy-induced 
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stresses. Accordingly, unusual resistance to altered ploidy was 

observed in human and mouse embryonic stem cells (ESCs), 

mostly achieved by relaxing the cell cycle control and uncoupling 

the spindle checkpoint from apoptosis (Mantel et al., 2007). The 

ability of neural stem cells to continue dividing despite the 

aneuploid karyotype dubbed them as aneuploidy “tolerant” (Poulton 

et al., 2017). Yet, based on our findings it is clear that keeping 

these aneuploid cells is catastrophic is for normal tissue 

architecture and development. Thus, aneuploidy may be “tolerated” 

better in Nbs, but the tissue as a whole is unable to be functional. 

In contrast, the “sensitivity” of epithelial cells enables the tissue to 

clean up and regrow properly. 

 
The developing brain restricts organism recovery after 
induced aneuploidy. 
 

Chromosomal aberrations have been long associated with 

neurological disorders (Bushman and Chun, 2013). However, their 

impact on brain development and function remains complex and 

poorly understood, partially due to limitations of available 

experimental approaches. In almost all animal model system used 

to study aneuploidy and its consequences until now, the organisms 

die prematurely due to the chronic disruption of mitotic fidelity to 

generate chromosome imbalance. Therefore, it is only possible to 

address the short term effect of aneuploidy in nervous system 

development, but not to understand the ultimate consequences for 

brain function. Our acute system, reversibly affects chromosome 

segregation to induce just a pulse of aneuploidy, enabling to the 

organism recover from the insult and complete its development. 

The most noticeable phenotype observed in the adult was the 
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severe motor and behavioral defects that clearly affect the lifespan 

of the flies, evidencing the sensitiveness of the nervous system to 

aneuploidy. Previous studies in Drosophila have shown that the 

mitotic disruption in larvae Nbs generates a reduction of their brain 

size (Gogendeau et al., 2015; Poulton et al., 2017) reinforcing the 

idea about a link between aneuploidy and microcephaly. However, 

our results showed that induced acute aneuploidy has no 

significant impact in the size of the brain. These findings suggest 

that the continued proliferation of neuronal stem cells, caused by 

incomplete cell elimination and delayed aneuploidy-stress 

response, is sufficient to support the development of an apparently 

normal-sized organ. It is conceivable that the observed normal size 

reflects a sample selection, as this analysis was restricted to flies 

that survived the aneuploid challenge (~70%). Supporting this 

possibility, a screening performed to isolate anatomical brain 

mutants of Drosophila have shown that mutant strains showing 

altered brain shape and particularly small brains are very weak 

being mostly lethal at pupa stage (Heisenberg, 1979). Despite 

unaltered shape and size of the adult brains, we reasoned that the 

neural circuits are likely impaired in those brains giving rise to the 

adult phenotype observed in surviving flies. 

In accordance with the notion of the brain as the tissue most 

sensitive to aneuploidy, we show that preventing aneuploidy 

exclusively in the brain is sufficient to rescue all the behavioral 

defects previously observed. This brain protection not only rescued 

motor defects but also the lifespan of the flies ecloded upon 72hs 

AEL heat-shock, suggesting that neural tissue is the most ill-

equipped to deal with aneuploidy during development and impose 

a significant cost for the organism. Several pathophysiological 

chromosomal disorders in humans including trisomy 21, trisomy 18, 
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and trisomy 13, as well as the mosaic disorder MVA (mosaic 

variegated aneuploidy, characterized by the presence of a different 

number of chromosomes in some cells), are well-known to display 

intellectual disability (Bushman and Chun, 2013), yet the impact of 

the aneuploid condition on brain development is still unclear 

(Oromendia and Amon, 2014; Ricke and van Deursen, 2013). 

Therefore, it become evident the necessity of future studies in 

different animal model systems based on an acute induction of 

aneuploidy to properly investigate its consequences for tissue 

development and homeostasis. These approaches could help to 

elucidate the molecular mechanisms underlying the physiological 

changes in stem/somatic cells generated by aneuploidy and its 

implications on tissue development and homeostasis.  
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III.11 Materials and Methods 
 
Fly husbandry and genetics 
Flies were raised using standard techniques at room temperature 

(20-22 ºC). We stablished both the chronic and the acute 

inactivation of cohesin complex by crossing the following 

genotypes: w; hspr-nlsV5TEV; Rad21(ex3)/TM6B with w;; tubpr-

Rad21(550-3TEV)-EGFP, Rad21(ex15), polyubiq-His-RFP, and w; 

hspr-nlsV5TEV; Rad21(ex3), hspr-Gal4, UAS-Rad21(wt)-

myc/TM6B with  w;; tubpr-Rad21(550-3TEV)-EGFP, Rad21(ex15), 

polyubiq-His-RFP, respectively. The progeny was then heat 

shocked once at 37°C for 45min at the desired developmental 

stage. The correct genotype larvae were selected based on the 

absence of the “tubby” phenotype; the heat shocked “tubby” larvae 

were used as negative controls (control HS). As genetic control we 

used the same genotypes for the induction of aneuploidy but 

without performing the heat-shock. 

To determine the proportion of adult eclosion, the crosses 

mentioned were raised in cages to monitor the time of egg 

collection. After 6hs collection, the plates were removed from the 

cages, the number of eggs counted and the plates were kept until 

larvae hatched.  The plates were then heat-shocked at 37°C for 

45min at different larvae developmental time (~48hs AEL, ~72hs 

AEL, ~96hs AEL and ~120hs AEL (± 6hs)) and placed in a new 

clean plastic cage. Once they reached pupae stage (“yellow body”) 

the pupae were gently removed with a wet brush and separated in 

“tubby” (control HS) and “no tubby” phenotype (condition). The 

different batches of pupae were placed over agar plates covered 

with two layers of absorbent paper to maintain the humidity and 



230 
 

counted. The plates with the pupae were kept at room temperature 

until flies ecloded and the proportion of eclosion calculated. 

To combine the induction of Aneuploidy (acute cohesion 

inactivation) and the brat mutant genetic background we generated 

the following stocks: w; brat1/CTG; Rad21(ex3), hspr-Gal4, UAS-

Rad21(wt)-myc/TM6B and w; hspr-nlsV5TEV,bratTS/CTG; tubpr-

Rad21(550-3TEV)-EGFP, Rad21(ex15), polyubiq-His-RFP. These 

stocks were crossed and the progeny was heat shocked once at 

37°C for 45min at the developmental stage desired and the 

genotype w; brat1/hspr-nlsV5TEV, bratTS; Rad21(ex3), hspr-Gal4, 

UAS-Rad21(wt)-myc/tubpr-Rad21(550-3TEV)-EGFP, Rad21(ex15), 

polyubiq-His-RFP,  was selected at larva stage based on the 

absent of both, GFP signal and “tubby” phenotype.  

To inhibit apoptosis we induced the over-expression of the 

baculovirus p35 in the context of the genetic background for acute 

inactivation of cohesin complex. To achieve this purpose, we 

generated the following stock w; UAS-P35; tubpr-Rad21(550-

3TEV)-EGFP 3, Rad21(ex15), polyubiq-His-RFP to be crossed with 

w; hspr-nlsV5TEV; Rad21(ex3), hspr-Gal4, UAS-Rad21(wt)-

myc/TM6B. The progeny was then heat-shocked once at 37°C for 

45min at the developmental stage desired.  

Finally, for the “brain rescue” experimental setup, we generated the 

following stocks:  w; insc-Gal4; tubpr-Rad21(550-3TEV)-EGFP, 

Rad21(ex15), polyubiqpr-His-RFP and w; wor-Gal4; tubpr-

Rad21(550-3TEV)-EGFP, Rad21(ex15), polyubiqpr-His-RFP. These 

stocks were crossed with the w; hspr-nlsV5TEV; Rad21(ex3), hspr-

Gal4, UAS-Rad21(wt)-myc/TM6B stock. The crosses and the 

progeny were raised and treated as described above for the 

determination of the eclosion proportion.  
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              Table with all stocks used in this study: 
 
 

Stock genotype Reference 

w; hspr-nlsV5TEV; Rad21(ex3)/TM6B Pauli et al. 2008 

w;;tubpr-Rad21(550-3TEV)-EGFP, Rad21(ex15), polyubiq-His-

RFP 

Oliveira et al. 2010 

w; hspr-nlsV5TEV; Rad21(ex3), hspr-Gal4, UAS-Rad21(wt)-

myc/TM6B  

This study 

w; hspr-nlsV5TEV,bratTS/CTG; tubpr-Rad21(550-3TEV)-EGFP, 

Rad21(ex15), polyubiq-His-RFP 

This study 

w; brat1/CTG; Rad21(ex3), hspr-Gal4, UAS-Rad21(wt)-

myc/TM6B 

This study 

w; UAS-P35;tubpr-Rad21(550-3TEV)-EGFP 3, Rad21(ex15), 

polyubiq-His-RFP  

This study 

w; HisH2AvD mRFP1 II.2/CyO; 363, CGC III.1 (R26)/TM3,Ser Mirkovic et al. 2015 

bratts1 rdo1 hook1 pr1/CyO BDSC #3991 

brat1 rdo1 hook1 pr1/CyO BDSC #3988 

w*; P{wor.GAL4.A}2; Dr1/TM3, P{Ubx-lacZ.w+}TM3, Sb1 BDSC #56553 

w*; P{GawB}inscMz1407 BDSC #8751 
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Lifespan analysis 
Lifespan was measured at room temperature according to standard 

protocols. In brief, newly ecloded animals (0 to 3 days) were 

collected (50 per genotype: “control”, “Aneuploidy” and “Aneuploidy 

+ brain rescue”), and then placed in vials (up to 10 per vial), and 

transferred to fresh vials every two days. Survival was recorded for 

each vial. Due to the reduced mobility of the aneuploidy genotypes, 

we scored flies stacked in the food as death events in all the vials 

analyzed. We created survival curves with Prism 5.00 for Windows 

(GraphPad Software, San Diego, CA, USA) using the method of 

Kaplan and Meier.aq 

 
Climbing assay 
For climbing assay flies were anesthetized with CO2, separated in 

groups of around twenty adults (3 replicas for each genotype) and 

allowed to recover for 2hs until to be subjected to a climbing assay. 

Briefly, the groups of over twenty flies were placed in an empty 

climbing vial and then tapped down to the bottom. They were 

allowed to climb past the halfway point from the bottom of the vial 

for 30 seconds (10cm). The number of flies above the 10 cm mark 

was recorded as a percentage of flies able to climb. 

 

Histology 

Briefly, flies were anesthetized with CO2 and then were placed 

gently in agarose blocks to immobilize them and prevent any 

damage to the head or eyes. The agarose blocks with the flies 

were immersed in Carnoy fixative overnight, at 4ºC. The next day 

the Carnoy solution was removed and three 70% ethanol washes 
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were performed. Immediately after, the flies were decapitated and 

the heads were oriented one by one in melted 2% agarose to 

guarantee similar orientation of the tissue sections. Agarose blocks 

were then processed, embedded, the whole head was sectioned 

into 5um-thick sequential sections and stained with Hematoxylin & 

Eosin. The histology was performed in the Histopathology unit at 

Instituto Gulbenkian de Ciência and the slides were analyzed by a 

pathologist with a DMLB2 microscope (Leica). Images were 

acquired with a DFC320 camera (Leica) and NanoZoomer-SQ 

Digital slide scanner (Hamamatsu). 

 
Live-cell imaging 
Larvae 3rd instar brains were dissected in Schneider medium 

supplemented with 10% FBS and intact brains were mounted on a 

glass-bottom dish (MakTek), covered with an oxygen-permeable 

membrane (YSI membrane kit), and sealed with Voltalef oil 10S 

(VWR). This procedure allowed long-term imaging of brains for 

periods up to 10 hours. 

For imaging of imaginal discs and early instar larvae brains, tissues 

were dissected in Schneider medium with 10% FBS. Dissected 

discs were placed and oriented in a 200μl drop of medium at the 

bottom of a glass-bottom dish (MakTek). 

Live imaging was performed on a spinning disc confocal using 

imaged on a Revolution XD microscope (Andor, UK) equipped with 

immersion a 60x glycerol-immersion 1.30 NA objective (Leica 

Microsystems) and a iXon Ultra 888 1024*1024 EMCCD (Andor, 

UK).  25-35 Z-series optical sections were acquired 0.5-1 μm apart. 
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Brain spreads and Immunofluorescence 
For brain spreads and immunofluorescence, 3rd instar larvae brains 

were dissected in PBS, incubated with 100 µM colchicine for one 

hour, hypotonic shocked in 0.5% sodium citrate for 2–3 minutes, 

and fixed on a 5 µl drop of fixative (3.7% formaldehyde, 0.1% 

Triton-X100 in PBS) placed on top of a siliconized coverslip. After 

30 seconds, the brains were squashed between the coverslip and a 

slide, allowed to fix for an additional 1 min and then placed in liquid 

nitrogen. Slides were further extracted with 0.1% Triton-X100 in 

PBS for 10 min, and used for immunofluorescence following 

standard protocols. Primary antibodies were rat anti-CID (gift from 

Claudio E. Sunkel) used at 1:2000 Cleaved Drosophila Dcp-1 

(Asp216) Antibody (1:300) # 1679578S (Cell Signaling 

Technology), Cleaved Caspase-3 (Asp175) Antibody #9661 (1:300) 

(Cell Signaling Technology), Anti-Deadpan antibody #ab195173 

(1:1500) (Abcam). Secondary antibodies conjugated with 

fluorescent dyes from Alexa series (Invitrogen) were used 

according to the manufacturer's instructions. 

Third instar wing imaginal disc fixation and staining, as well as 

immunofluorescence of whole brains was performed using 

standard procedures (Lee and Treisman, 2001). Briefly, third instar 

larvae wing disc tissue (still attached to the larva body) was fixed 

on ice for 30 min. The fixative consisted of 4% formaldehyde 

(Polysciences) in 1X PEM buffer solution. Following were washed 

by gentle agitation three times for 20 min in PBS-T (1x PBS + 0.1% 

Triton X-100). Primary antibodies incubation was performed 

overnight at 4 °C in PBS-T supplemented with 1% BSA and 1% 

donkey serum. The following day, the tissues were washed again 

and incubated for 2h at room temperature with the appropriate 

secondary antibodies diluted in PBS-T solution. Finally, after the 
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wash of secondary antibodies, wing discs were mounted in 

Vectashield (Vector Laboratories). Fluorescence images were 

acquired with a ×40 HCX PL APO CS oil immersion objective 

(numerical aperture: 1.25–0.75) on a Leica SP5 confocal 

microscope. 

 
Fluorescence In Situ Hybridization 

Brains from 3rd instar larvae were dissected in PBS, incubated with 

100 µM colchicine for one hour, and transferred to 0.5% sodium 

citrate solution for 3-4 minutes. Then, the brains were transferred to 

a fixative containing 11:11:2 Methanol: Acetic Acid: MQ Water, for 

30 seconds before being placed in a droplet of 45% Acetic acid for 

2 minutes, squashed and transferred to liquid Nitrogen. Then, the 

coverslip was removed and the slide incubated in absolute ethanol 

for 10 min at −20 °C (Freezer incubation). The slides were air dried 

at 4 °C. (20 minutes).The slides were dehydrated at room 

temperature in 70%, 90% and absolute ethanol for 3 minutes, prior 

to DNA denaturation in 70% formamide- 2xSCC solution for 

2 minutes at 70 °C.  This is done on the thermomixer set at 70 °C 

with a formamide solution heated to70 °.Then, the slides were 

transferred to cold 70% Ethanol (−20 °C) and dehydrated at room 

temperature in 90% and absolute ethanol for 3 min. FISH probes 

were denatured in the hybridization buffer at 92C for 3 min 

.Hybridization was done over-night at 37 °C using 30 ul of FISH 

hybridization buffer/probe mix per slide. Hybridization buffer: 20% 

dextran sulfate in 2x SCCT/50% Formamide/0,5mg/ml Salmon 

sperm DNA. Then, slides were washed 3 × 5 min in 50% 

formamide-2xSCC at 42 °C and 3 × 5 min in 0.1xSCC at 60 °C.  

These steps are done on the thermomixer, with the solutions 

previously heated to desired temperatures. Finally, the slides are 
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washed in PBS, and mounted in Vecta shield with DAPI. The 

probes were used in the final concentration of 70Nm in 

hybridization buffer. Probes used were: Chr_X (359 bp satellite 

DNA) A546-GGGATCGTTAGCACTGGTAATTAGCTGC, and Ch_3 

(dodeca satellite DNA) Cy5-ACGGGACCAGTACGG DNA probes, 

Chr_2 A488-(AACAC). 

 

Western-blot 
To analyze RAD21 protein amounts, Drosophila tissues were 

dissected in PBS and homogenized with a pestle in Sample buffer. 

Samples were centrifuged, and boiled for 5 minutes in 2x Sample 

Buffer.  Samples were loaded on a 13 % SDS-gel for 

electrophoresis and and then transferred to nitrocellulose 

membranes.  Western-blot analysis was performed according to 

standard protocols using the following antibodies: anti-α-tubulin 

(1:50.000, DM1A, Sigma-Aldrich Cat# T9026), guinea pig anti-

Rad21 (Heidmann et al., 2004) and V5 Tag Mouse Monoclonal 

Antibody (Novex®). 

 

Image analysis 

Imaging  analysis  was  performed  using  FIJI  software  

(Schindelin  et  al.,  2012). For z-projections slices were stacked 

into maximum intensity (10 frames, 2µm each). Some pictures 

were rotated and/or flipped to orient them in the same way. 

 
Statistical analysis 
Statistical analysis and graphic representations were performed 

using Prism 5.00 for Windows (GraphPad Software, San Diego, 

CA, USA). Unpaired t test or one-way ANOVA (using the 

Bonferroni’s multiple comparison) were applied depending the 
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measurements analyzed in the corresponding experiment. Sample 

size details are included in the respective plotted graphs. 
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General discussion: 

 

 

 

 

 

 

 

 

 

In modern Science, the process of discussion happens in the group 

meetings, hallways, conferences, but almost never within the 

scientific publication itself. The reason behind this is that today’s 

scientists are pigeonholed into making “stories”, matching pieces of 

data into a smooth narrative, packaging it nicely, and almost forcing 

the reader to take it at face value (Katz, 2013). This kind of 

packaging is required by all the major journals in order to have a 

chance of publishing in the first place. Pointing to the downsides of 

the study or the scientific approach is left to the reviewers during 

the revision process, and the general public after the paper is 

accepted. If done by the author himself, within a publication, it is 

usually perceived as a weakness in the scientific argument. 

Everyone who has ever set a foot in the laboratory knows that this 

is fundamentally wrong approach, and that every biological story, 

no matter how sound or smoothly packaged, has gaping holes, 

either conceptual or experimental. And more often than not, the 
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author of the study knows very well what they are. Overlooking 

them for the sake coherence and storytelling is a scientific crime, 

the one which the entire community is guilty of, as authors will 

almost never criticize or point to caveats of their own experiments 

in scientific publications. It is unfortunate that within these gaps, 

many interesting topics and potential new avenues of research lay 

unexplored. 

Therefore, I will use most of this general discussion to examine the 

caveats of our research as well as some interesting possibilities 

that we have not explored or have overlooked. In addition to this 

unorthodox general discussion, every one of the three chapters has 

a more conventional discussion section  

(See Discussion in Chapter I, II, and III). 

Chapter I 

In Chapter I (Mirkovic et al 2015, Cell Reports), we discussed the 

interplay between cohesin loss and the machinery in charge of 

mitotic fidelity. The complexity of the SAC response, and the 

numerous feedback loops involved in the process are immense, 

and doing clean experiments in this kind of system is amazingly 

difficult. 

In order to study the mitotic response to cohesin loss, we utilized 

the previously developed TEV protease system. Such a system 

presents great advantage over any other means of protein 

depletion, apart from maybe the Auxin-Degron inducible system. 

The TEV is rapidly expressed, and all cohesin is cleaved within two 

hours, just in time when Neuroblasts start entering mitosis after the 

heat shock. This has really worked in our favor, as we are sure that 
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there is no partial cohesin depletion that would make our analyses 

more difficult. The mitotic phenotype observed was very dynamic, 

with chromosomes oscillating from one pole to another. They 

displayed an oscillating, relatively weak Mad2 signal, which 

declined as the cells progressed through the mitotic delay. One 

thing that our analyses were unable to trace is the motion and 

signaling of individual kinetochores on single sisters. Due to photo-

toxicity limitations, one must compromise when imaging a tissue, 

either limiting the depth, intensity, or time resolution of the imaging. 

In order to image and trace single kinetochores reliably, one should 

image at least 0.5 micrometer thick z stacks, which is quite 

incompatible with the long term imaging of the thick live tissue. To 

trace the motion of individual kinetochores, 5-10 second imaging 

intervals are needed, which is completely incompatible with our 

laser exposure conditions. 

The reason why single kinetochore tracing and imaging could be 

very interesting is because we could identify the possible 

preferential locations where error correction takes place, as well as 

the possible Mad2 signaling by “attached” chromosomes. During 

chromosome shuffling, we can clearly observe Mad2 positive 

signals in the mid-zone between the two poles where the 

chromosomes initially segregate after entering mitosis with no 

cohesin. This could mean three different things: 1) chromosomes 

engage in Mad2 signaling while being attached and yanked 

between the two poles 2) chromosomes are in the process of 

losing attachments midway through the motion (not likely, as they 

seem to usually complete the pole to pole motion) 3) chromosomes 

need some time to silence Mad2 attachment by RZZ dependent 
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stripping, after the attachment occurs, thus the residual Mad2 

occupancy on the moving chromosomes. 

For me, the most interesting out of these three is the possibility that 

chromosomes can engage in SAC signaling even when “attached” 

to the spindle. When we discuss kinetochore attachment, we tend 

to do it in the same way as we discussed the SAC twenty years 

ago. Either the chromosome is attached, or it is not, a false binary 

dilemma. However, the kinetochore has multiple microtubule 

attachment sites. The Drosophila kinetochore for instance, has 

eleven microtubule attachment sites (Maiato et al., 2006). 

Therefore, it is not likely that a single attached microtubule would 

silence the SAC same with the same efficiency as a fully occupied 

kinetochore would. Indeed, if viewed like this, SAC and 

chromosome attachment might not be mutually exclusive, as partial 

kinetochore occupancy might still lead to SAC signaling. This is a 

plausible conclusion, as it is mathematically impossible for the 

attachment to be synchronous on all sites across the large 

kinetochore. Therefore, a model in which the binding of initial 

microtubules provides some tension and allows for more efficient 

further binding might be a more accurate one. At the same time, 

these partial attachments would still generate the MCC at the 

unoccupied binding sites, signaling to the cell that the attachment 

process is not complete. 

The decay in the MAD2 signaling activity and chromosome motion 

led us to postulate that this is due to the declining activity of the 

error correction mechanisms, resulting in the decline of the SAC 

signaling and Cyclin B levels. While this is likely to be true, these 

three are almost impossible to disentangle in our experimental 

setup. Our hypothesis was that the declining rate or error correction 
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occurs due to inevitably declining Cyclin B levels. To test this, we 

used Roscovitine addition, which negatively affects all three 

modules: Cyclin B, Aurora B, and the SAC. The roscovitine 

concentration we used resulted in no mitotic acceleration in the 

control cells, and no mitotic exit in colchicine incubated cells, 

however, it resulted in 50% shortening of the mitotic delay when 

cohesin was cleaved. This result shows that the cohesin dependent 

mitotic delay is very Cdk1 inhibition sensitive, yet which of the three 

main components is the most sensitive one is impossible to 

determine. Cohesin cleaved cells will generate fewer Mad2 

signaling kinetochores and a weaker Mad2 signal than the 

colchicine will, so it is logical that the Cdk1 inhibition will have a 

stronger result on the weaker SAC signaling. Furthermore, the 

decay in error correction activity, which is also Cyclin B dependent, 

accelerates the process of SAC inhibition. Therefore, it is 

impossible to disentangle what happens first: The weak SAC 

inhibition by Roscovitine or the error correction inhibition by 

Roscovitine.  Our feedback model accounts for this however, as 

decay in any of the three main players (Cyclin B, SAC, and Aurora 

B) will lead to the decay of others.  

A better experiment to test these dependencies would be the 

following: stabilize the Cyclin B levels and see if the checkpoint 

signaling and error correction activity stay high throughout the 

arrest. Unfortunately, it is hard to inhibit the APC/C in Drosophila 

tissues as Ubch10, MG132, Protame, Apcin and other proteasome 

inhibitory drugs have no effect, and non-degradable Cyclin B has 

mosaic expression in Neuroblasts, making these experiments 

technically difficult. 
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Another interesting caveat of our study of cohesin defects during 

Neuroblast mitosis is that we were unsure if Aurora B activity is 

lower in cohesin depleted cells. We noticed that Aurora B gets 

delocalized if cohesin is cleaved, shifting its distribution from a 

sharp signal at the inner centromere region, to a smear of about 

50% lower mean fluorescence, in a wide chromatin region. 

However, we had no assay to assess the amount of functional 

Aurora B at the kinetochore, as phosphorylation antibodies for 

Aurora B activation did not work, and FRET sensor development 

and optimization were too time-consuming for the purpose of this 

study. It would be very interesting to see if cohesin depletion 

directly impairs error correction before the cascade of mitotic 

events takes place. The proper experiment for this would be a 

comparison of single sisters with cohesin depletion and delocalized 

Aurora B versus the single sisters with normal cohesion and Aurora 

B levels, which seems quite biologically impossible, without a very 

artificial experimental setup, such as Aurora B tethering.  

In the same publication, we demonstrated that the duration of 

mitotic arrest and chromosome shuffling upon cohesin depletion is 

Aurora B dependent. We did so by addition of 25µM Binucleine 2, 

which is a specific Aurora B kinase inhibitor. Addition of Binucleine 

2 resulted in a halt of chromosome motion and abrupt mitotic exit 

(3-5min after addition). However, this concentration of Binucleine 

caused mitotic exit after some time colchicine as well, which is a 

positive control for SAC activation in the Neuroblast. When using 

such high Binucleine concentration in our system, it is impossible to 

dissect if we preferentially inhibit the weak checkpoint mounted by 

cohesin cleavage, or the error correction mechanism. However, in 

our more recent study (Silva et al 2018) we have used a 5µM 
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concentration of Binucleine in the wing disc. This Binucleine 

concentration does not cause mitotic exit in colchicine, but 

completely prevents chromosome motion and shuffling for the 

duration of mitotic delay if cohesin is cleaved. This occurs in the 

Neuroblast as well (not shown), validating our hypothesis from the 

previous study (Mirkovic et al 2015). 

 An ideal experiment for testing Aurora B involvement in 

chromosome motion and shuffling would be the usage of 

Binucleine 2 in a situation where Cyclin B degradation is prohibited, 

allowing us to separate the Cyclin B effect on error correction 

activity from the error correction activity itself. This is important, as 

Cyclin B and Cyclin A levels have been implicated in microtubule 

dynamics.  

However, situations in which the 5µM Binucleine is used resulted in 

no shuffling motion in both the Neuroblasts and the wing disc, even 

at the beginning of mitosis when Cyclin B-Cdk activity is still high. 

Taken in sum, these observations would point out that the shuffling 

of chromosomes which occurs when cohesin is depleted indeed 

relies on the error correction activity of the CPC complex, and that 

the likely order of events after Binucleine addition is error correction 

inhibition, followed by SAC silencing, resulting in mitotic exit. 

Chapter II 

In the Chapter II (Silva et al 2018) of the thesis we investigated 

conditions that might alleviate the consequences of cohesin loss 

during mitosis. This was a product of an interesting collaboration 

with a group that performed a modulator screen for RNAi against a 

cohesin regulator, San, probing for genes that might 

rescue/enhance cohesion defects in the wing disc. The discovery 
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of SAC genes (Mps, Mad1, Mad2, and BubR1) as modulators of 

the cohesin loss phenotype was quite surprising and unexpected. 

What we noticed in our previous study (Mirkovic et al., 2015) is that 

the shuffling motion of chromosomes from pole to pole took some 

time to initiate. This lead to the hypothesis that the rescue of 

cohesion defects by SAC impairment came from mitotic shortening 

which did not allow for the chromosome content to be randomized. 

This hypothesis was validated by the measures of segregation 

efficiency in cohesive defective wing discs and embryos, with and 

without the SAC. 

A validating result came when we tested if error correction 

inhibition produces the same rescue of symmetry in the absence of 

cohesin. To our surprise, it did, showing that initial attachments 

made by the spindle are quite close to the ones you want to be 

having in the first place, even in complete absence of cohesin. 

However, we had to titrate Binucleine 2 in order to avoid the side 

effects of Aurora B inhibition. This likely means that the inhibition 

we enforced on the error correction is partial. An interesting thing 

would be to see if mutants for Ndc80/Hec1, which would be unable 

to engage in error correction, would be viable in flies. This would 

point to the immense efficiency of initial microtubule capture in 

Drosophila. Another observation arising from this work is that the 

initial microtubule capture is quite accurate, even in complete 

absence of cohesin. Previous studies in mammals showed that the 

kinetochore geometry biases their orientation for bipolar 

microtubule capture and congression. In Drosophila, this seems to 

be the case even in the absence of cohesin. Cohesin is thought of 

as the major modulator of elasticity and kinetochore architecture, 

so the fact that the flies can segregate their genome quite fine 
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without any cohesion, as long as mitosis is shortened, is quite 

surprising. 

Probably contributing to this phenomenon is the fact that complete 

absence of cohesion does not result in complete chromosome 

separation at the very beginning of the mitosis. After the nuclear 

envelope breakdown, it takes a few minutes for chromosomes to 

segregate to the poles. This is likely due to the fact that the 

processes of condensation and catenation are not complete, and 

still confer some cohesive forces between the chromosomes. What 

is possible here is that the attachments that occur in this state, are 

still under some tension, and therefore, quite accurate. Indeed, it is 

known that Topoisomerase II inhibition can rescue cohesion 

defects via enforcing catenation, generating “cohesion” which is 

cohesin independent. We also observed this with our experimental 

system, using low doses of Topo II inhibitor, ICRF-193, which can 

rescue cohesin defects (data not shown). It would be interesting to 

dissect the temporal resolution of cohesive forces during mitosis in 

the cell. While it is clear that in late mitosis, with a fully active 

spindle and condensed chromosomes, cohesin is the only force 

strong enough to resist the spindle; in early mitosis, this might not 

be the case.  

Chapter III 

In the last part of the thesis, Chapter III (Mirkovic, Guilgur et al), we 

started off by designing a tool for reversible loss of cohesin, in hope 

of generating aneuploid karyotypes in order to follow their evolution 

and selection. What we did not count on is the rise of chromosomal 

instability in previously stable aneuploid cells, as well as the fact 

that the flies would actually eclode into adults when challenged with 
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aneuploidy. This enticed us to switch to the more holistic approach 

of studying an entire organism instead of focusing on a cell line, 

which was quite a challenge. 

For starters we were amazed with the ability of Neuroblasts to 

tolerate aneuploidy. I have seen thousands of aneuploid divisions 

and karyotypes, and there is something about these cells that 

makes them uniquely resistant to aneuploidy and cell death. It goes 

to say that in two years of reading papers on Neuroblasts and 

aneuploidy, I am yet to see a convincing panel showing apoptosis 

of a larval Neuroblast using conventional apoptosis markers. 

This amazing aneuploidy tolerance should be a target of a directed 

genetic screen, challenging selected mutations with DNA damage 

or mitotic perturbations and observing if they induce apoptosis in 

the Neuroblast. Furthermore, aneuploid Neuroblasts which 

persisted after the challenge, accumulated chromosomes in absurd 

numbers, likely due to chromosomal instability. In introduction 1.3 

about Aneuploidy, it was mentioned that aneuploidy results in a 

severe strain for the proteasome machinery of the dividing cell due 

to imbalances in genomic content, coupled to protein 

overexpression. Therefore, it is fascinating how a Neuroblast can 

cope with this kind of stress for so long. 

Furthermore, the aneuploid stress inflicted on the brain resulted in 

no detectable reduction of brain size or shape in the adult. Previous 

studies reported that aneuploid larval brains are smaller. This is 

likely a difference between the acute mode of aneuploidy induction 

and the chronic mode that earlier studies utilized. If the system is 

challenged with aneuploidy for the entirety of its lifespan, the 

kinetics of aneuploid response are impossible to dissect. Therefore, 



252 
 

microcephaly observed in Plk4 overexpression and SAC larva 

mutants is likely due to this tissue succumbing to aneuploidy after 

days of aneuploid proliferation. In our system however, it is clear 

that while aneuploidy results in appearance of stress markers, 

Neuroblast loss and chromosomal instability, the tissue still holds a 

great proliferative potential for several days. This is likely enough to 

achieve the proper size of the tissue, when morphogenesis can 

take over and mold it into a “normal”-looking brain. Still, the 

tolerance of the tissue to aneuploidy is simply remarkable, and 

although it might be an insect-specific phenomenon, it needs to be 

investigated further. 

One of the reasons for developing a genetic system for reversible 

mitotic perturbation is the lack of the tools to induce controlled 

aneuploidy in metazoans. The concept of removing the source of 

aneuploidy (Cohesin cleavage, in this case), and then studying 

aneuploidy alone is the only way to study this very complex 

phenomenon in a somewhat clean manner. Otherwise, the effects 

of perturbation and aneuploidy might both be contributing to the 

phenotype. In retrospect, an ideal protein for perturbation would be 

a purely mitotic one, with no other characterized interphase roles, 

which cohesin has plenty (Such for example, would be a CenpC-

TEV system).  

The acuteness of our approach resulted in a full metazoan 

development cycle, after a severe aneuploidy challenge. As our 

expertise is far from development, developmental regulation, and 

drosophila tissue biology, we are very excited to make this acute 

tool for aneuploidy induction available for the community, as there 

is a dearth of good tools to study aneuploidy in metazoans, 
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especially ones resulting in the entire developmental cycle after 

perturbation. 

The amazing power Drosophila compensatory proliferation 

response has been well characterized and studied for decades. 

Therefore, it is not surprising that a transient insult for the 

epithelium can result in almost full recovery.  What is more 

interesting is what happens in the aneuploid brain. The possible 

mechanisms of regeneration are not well studied in the drosophila 

brain. Therefore, in light of our current knowledge, there are two 

options when brain is faced with severe aneuploidy: the aneuploid 

cells persist throughout adulthood, or they are eliminated. 

The problem with the elimination hypothesis is that this should 

severely alter brain size or shape in the absence of compensation 

mechanisms. However, when we dissected adult brains from flies 

that were induced to aneuploidy 72 or 96 hours after egg laying, we 

observe no drastic difference. We know that in our system, heat 

shock at 96 hours after egg laying results in aneuploidy in every 

single dividing Neuroblast. Coupled to the continued proliferation of 

these cells, as well as cohesin cleavage in other cells of the larval 

brains, this would mean that the massive part of the brain is 

aneuploid. If indeed these cells were eliminated, and there was no 

compensation, there should be a clear size difference between a 

brain challenged with aneuploidy and a control. 

This leaves the other option: the aneuploid Neuroblasts and their 

progeny remain, and become a part of an adult, aneuploid brain. 

We tried assessing the ploidy state of the neurons in the adult brain 

through multiple means: FISH, FACS, protein fluorescence, DNA 

content, just to name a few. However, this is a very difficult task, as 
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each one of these methods has profound flaws which preclude any 

definitive conclusion on the state of ploidy. The optimal thing to do 

would be to separate the neurons in the adult brain challenged by 

aneuploidy and the control, and compare DNA content by single 

cell sequencing. 

Inducing aneuploidy in the entire organism, studying and tracking 

its consequences in tissues is too big of a task for any single 

scientific group. Therefore, I think one of the strongest parts of this 

work is the tool for the entire drosophila community, which can be 

used to study aneuploidy in metazoans in a controlled and acute 

manner, in vivo. 
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	Histology
	Briefly, flies were anesthetized with CO2 and then were placed gently in agarose blocks to immobilize them and prevent any damage to the head or eyes. The agarose blocks with the flies were immersed in Carnoy fixative overnight, at 4ºC. The next day t...
	Live-cell imaging
	Larvae 3rd instar brains were dissected in Schneider medium supplemented with 10% FBS and intact brains were mounted on a glass-bottom dish (MakTek), covered with an oxygen-permeable membrane (YSI membrane kit), and sealed with Voltalef oil 10S (VWR)....
	For imaging of imaginal discs and early instar larvae brains, tissues were dissected in Schneider medium with 10% FBS. Dissected discs were placed and oriented in a 200μl drop of medium at the bottom of a glass-bottom dish (MakTek).
	Live imaging was performed on a spinning disc confocal using imaged on a Revolution XD microscope (Andor, UK) equipped with immersion a 60x glycerol-immersion 1.30 NA objective (Leica Microsystems) and a iXon Ultra 888 1024*1024 EMCCD (Andor, UK).  25...
	Brain spreads and Immunofluorescence
	For brain spreads and immunofluorescence, 3rd instar larvae brains were dissected in PBS, incubated with 100 µM colchicine for one hour, hypotonic shocked in 0.5% sodium citrate for 2–3 minutes, and fixed on a 5 µl drop of fixative (3.7% formaldehyde,...
	Third instar wing imaginal disc fixation and staining, as well as immunofluorescence of whole brains was performed using standard procedures (Lee and Treisman, 2001). Briefly, third instar larvae wing disc tissue (still attached to the larva body) was...
	Fluorescence In Situ Hybridization
	Brains from 3rd instar larvae were dissected in PBS, incubated with 100 µM colchicine for one hour, and transferred to 0.5% sodium citrate solution for 3-4 minutes. Then, the brains were transferred to a fixative containing 11:11:2 Methanol: Acetic Ac...
	Western-blot
	To analyze RAD21 protein amounts, Drosophila tissues were dissected in PBS and homogenized with a pestle in Sample buffer. Samples were centrifuged, and boiled for 5 minutes in 2x Sample Buffer.  Samples were loaded on a 13 % SDS-gel for electrophores...
	Image analysis
	Imaging  analysis  was  performed  using  FIJI  software  (Schindelin  et  al.,  2012). For z-projections slices were stacked into maximum intensity (10 frames, 2µm each). Some pictures were rotated and/or flipped to orient them in the same way.
	Statistical analysis
	Statistical analysis and graphic representations were performed using Prism 5.00 for Windows (GraphPad Software, San Diego, CA, USA). Unpaired t test or one-way ANOVA (using the Bonferroni’s multiple comparison) were applied depending the measurements...
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