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RESUMO 

Os animais têm uma capacidade notável de se adaptar ao ambiente que 

os rodeia e que está em constante mudança. Como animais, fazemo-lo 

aprendendo novas ações motoras e aperfeiçoando-as através de tentativa 

e erro, selecionando ações que anteriormente originaram resultados 

favoráveis em detrimento de ações que geraram resultados negativos. Está 

bem estabelecido que a aprendizagem de novas ações físicas é 

acompanhada por mudanças na atividade neuronal no córtex e no estriado. 

Milhões de pessoas em todo o mundo sofrem de condições que limitam a 

sua mobilidade e capacidade de produzir ações físicas. As Interfaces 

Cérebro-Máquina (ICM) transformam diretamente a atividade neuronal 

em sinais de controlo para dispositivos, sem a necessidade de comandos 

motores, podendo ajudar a restaurar ou substituir a função perdida desses 

pacientes. Importantes estudos em ICMs demonstraram que os animais 

são capazes de usar feedback para modular a atividade neuronal e que 

aprender a controlar novos padrões de ICM requer plasticidade cortical e 

no estriado, semelhante ao que acontece durante aprendizagem motora. 

No entanto, está ainda por demonstrar que uma abordagem de 

aprendizagem operante possa ser usada para controlar um padrão 

complexo e de múltiplas bandas de atividade de EEG. Aprender a 

controlar um padrão complexo de EEG, não relacionado com atividade 

motora, exigiria estabelecer uma nova ligação entre a atividade neuronal 

e as ações numa tarefa, ligação essa que teria que ser aprendida de novo, 

e seria, portanto, uma conexão natural à ação desejada. 

Na primeira parte desta dissertação, desenvolvemos um novo paradigma 

de aprendizagem operante com uma tarefa de ICM baseada em EEG para 

testar se sujeitos são capazes de controlar um complexo padrão de EEG. 
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O ICM implementa um transcodificador constante, dependente de um 

rácio de quatro bandas de EEG, que converte a atividade neuronal na 

posição de um cursor num ecrã e que os sujeitos precisam de controlar 

continuamente. Como o transcodificador é independente de qualquer plano 

motor preexistente, os sujeitos têm que aprender de novo uma nova ligação 

entre o padrão de EEG e a posição do cursor. Nesta tese mostramos que 

os sujeitos aprendem rapidamente a modular a atividade de EEG para 

aumentar o desempenho na tarefa, e que essa atividade é refinada ao longo 

do treino. Observamos ainda que a aprendizagem é consolidada ao longo 

do tempo e pode ser facilmente recuperada em cada dia de treino, bem 

como após um intervalo longo de três semanas no treino. 

Num segundo projeto, investigamos a aplicação da aprendizagem operante 

da ICM num cenário real: demonstramos a implementação bem-sucedida 

de uma ICM operante no controlo de um simulador de aeronave. 

Por fim, descrevemos o desenvolvimento de um novo headset de ICM 

baseado em EEG, capaz de gravar sinais de alta qualidade com elétrodos 

secos e ativos. Este headset é o primeiro sistema capaz de gravar, processar 

e transmitir sinais para uma ICM operante, permitindo a extensão desta 

tecnologia a um público-alvo mais alargado. 

Em suma, a ICM proposta nesta tese, baseada numa aprendizagem 

operante de sinais de EEG, juntamente com as suas aplicações práticas, 

oferece uma alternativa aos métodos de descodificação de atividade 

neuronal predominantes no campo. A capacidade de aprendizagem dos 

sujeitos tem um papel central nesta abordagem. Aqui, demostramos pela 

primeira vez que os sujeitos conseguem aprender a estabelecer um novo 

vínculo entre um padrão de EEG complexo e comandos para controlar um 

dispositivo. 
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SUMMARY 

Animals have a striking capacity to adapt to their surrounding, ever-

changing environment. As animals, we do this by learning new motor 

actions and perfecting them through trial and error, selecting actions that 

previously led to positive outcomes over actions that did not. It is well 

established that the learning of new physical actions is accompanied by 

changes in neural activity in the cortex and the striatum. 

Millions of patients worldwide suffer from conditions that limit their 

mobility and capacity to produce physical actions. Brain-Machine 

Interfaces (BMI) have the capability to bypass motor impairment and can 

help restore or substitute the lost function of these patients. BMIs directly 

translate neural activity into control signals for external devices. 

Prominent studies in BMIs, have demonstrated that animals are capable 

of relying on feedback to shape neural activity and that learning a new 

BMI pattern requires cortical and striatal plasticity, similarly to what is 

seen during motor learning.  

It remains to be demonstrated that feedback and an operant learning 

approach can be used for control of a complex, multiband pattern of EEG 

activity. Learning to control a complex EEG pattern, unrelated to motor 

activity, would require establishing a new link between the activity and 

task actions. This link would need to be learned de novo and would 

provide a natural connection to the desired task action. 

In the first part of this thesis, we developed a novel operant learning 

approach with a EEG-based BMI task to test whether subjects can learn 

to control a complex, multiband EEG pattern. The BMI implements a 
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fixed transcoder, dependent on a ratio of four EEG bands, that converts 

neural activity into cursor position on a screen, which the subjects need 

to continuously control. Because the transcoder is independent of a pre-

existent motor plan, a link between the EEG pattern and cursor position 

needs to be learned de novo. We demonstrated that users can rapidly learn 

to modulate their neural activity to more frequently produce a rare EEG-

pattern in order to increase success in task, and that the EEG activity is 

refined with training. We further showed that the learning is consolidated 

over time and can be readily recalled during each training day as well as 

after a long intermission in training. 

In a second project, we investigated the application of the operant learning 

BMI in a real-world scenario. We demonstrated the successful 

implementation of the operant BMI in the control of an aircraft simulator. 

Finally, we described the development of a novel, standalone EEG-based 

headset, capable of recording high-quality signals with active dry-

electrodes. This headset fully records, processes, and transmits signals for 

operant BMI applications, allowing for a more extensive reach of this 

technology. 

Taken together, our novel operant EEG-based BMI, along with its 

practical applications, offers an alternative to the prevalent decoder 

methods. The learning capabilities of the users are given a central role in 

this approach, and we show for the first time, to our knowledge, that 

subjects can learn to establish a new link between a complex, multiband 

EEG pattern and an effector. 
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INTRODUCTION 

 

 

Whether you are reading this thesis on paper or screen, it is easy to take 

for granted all the highly specialized movements you are doing at this very 

moment just to go through each page. Just to turn a page, you have to 

reach for and grasp it, turn it and let go at the precise moment not to rip it. 

If you're reading on a screen, you have to scroll through with the mouse or 

keyboard. The actions of scrolling through this document took you days or 

even months to master until you could perform them, almost flawlessly 

and unconsciously, every time. It is indeed fascinating to think about how 

we start with somehow uncontrollable movements in early life (motor 

babbling) and, by trial and error, we learn to tailor them to meet our 

intentions (Costa, 2011). We repeat more frequently the actions that lead 

to positive reinforcements (Skinner, 1938; Thorndike, 1898), and these 

actions become more stereotyped to achieve the desired outcomes (Cohen 

and Sternad, 2009; Santos et al., 2015; Shmuelof et al., 2012; Todorov and 

Jordan, 2002; Venkatraman et al., 2010; Wolpert et al., 1995), just like 

the ones you are using now. Fundamental discoveries in neuroscience made 

in the last century have shed light on our understanding of how motor 

learning happens and what brain structures are involved, such as the 

motor cortex, the striatum and the thalamus (Díaz-Hernández et al., 2018; 
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Georgopoulos et al., 1993; Jin and Costa, 2010; Karni et al., 1998; Serruya 

et al., 2002; Yin et al., 2009). Furthermore, the stereotyping of actions 

with training is accompanied by plastic changes in the motor cortex and 

striatum, showing a refinement of behavior-specific neural activity (Barnes 

et al., 2005; Cao et al., 2015; Costa et al., 2004; Jin and Costa, 2010; 

Santos et al., 2015). These changes in neural activity during motor 

learning suggest that the brain selects and refines the neural patterns that 

lead to successful behavior (Costa, 2011). Therefore,  similar neural 

processes could be used learning to operantly control external devices. 

Indeed, animals can learn to increase performance in operant learning 

tasks, by re-entering more often specific patterns of neural activity 

(Athalye et al., 2018; 2017; Carmena et al., 2003; Clancy et al., 2014; Fetz, 

1969; Ganguly and Carmena, 2009; Koralek et al., 2012).  

 

In this dissertation, we expand on these animal findings and focus on the 

development of a novel system that can bypass motor actions and exploit 

human subjects’ neural activity to directly control an external device just 

by thinking about it, independently of movement. Just as if we were 

controlling a new external thumb to scroll a thesis with. For that, we need 

a Brain-Machine Interface (BMI), which is the topic of the work presented 

here and what we will be discussing in this dissertation.  

 

Generally speaking, a Brain-Machine Interface (BMI) can be divided into 

two main classes. It can either be a system 1) that reads outputs from the 

brain into a machine, or 2) that writes inputs to the brain, from a machine. 

The latter is in itself an exciting field of research that has led to significant 
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medical applications and scientific discoveries, such as the cochlear 

implant (Wilson and Dorman, 2008), the deep brain stimulation (DBS) 

technique (Perlmutter and Mink, 2006) and transcranial magnetic 

stimulation (TMS) (Hallett, 2000). Given the subject of this dissertation 

and the work in the following chapters, we will focus this introduction on 

the first class of BMIs, the ones that record outputs from the brain. 

Hereafter, we shall refer to them merely as BMIs. In particular, we will 

focus on interfaces that can be used to control neuroprosthetic devices or 

communication interfaces. 

  

In this introduction, we will describe how the brain signals that are used 

for BMI are generated and summarize the techniques available to record 

them. We will then review some of the pioneering work in the BMI field 

and present the state of the art of several BMI approaches used both in 

humans and animal models. We will discuss the distinction between the 

operant learning and the decoder approaches to BMI, giving examples of 

significant works with both approaches. We will then summarize some of 

the clinical and research applications of BMIs. Finally, we will present a 

short description of what you will find in the next chapters of this 

dissertation. 

 

Brain signals that can be used for BMIs 

 

The performance of BMIs depends on the electrical activity recorded from 

neurons, most commonly from the brain. This electrical activity is 
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primarily generated by neurons capable of firing stereotyped electrical 

impulses, i.e., action potentials, to communicate within a vast neural 

network. It is the balanced activity of this neural network that allows us 

to control all our conscious and subconscious functions. Depending on 

where and how we measure the neural activity, we may be detecting 

different types of signals. When measuring activity intra-cortically with 

implanted microelectrode arrays, for example, we can capture the fast 

action potentials (~1 ms) representing the largest potential changes that 

we can notice in the brain. However, for distant techniques, such as 

electroencephalography and electrocorticography, to be able to detect 

these electrical changes, it requires the synchronous activity of many 

action potentials, which happens only at slower timescales (Buzsáki et al., 

2012). Furthermore, in these cases, the origin of the signal comes also from 

slower (and smaller) changes in postsynaptic potentials. Neurons 

communicate with neighboring cells forming synapses at their dendrites. 

At the synapses, the signal is transferred chemically via neurotransmitters, 

generating slower changes in the membrane potential. The postsynaptic 

potentials can either be excitatory (EPSP) or inhibitory (IPSP), 

depending on the kind of neurotransmitter involved. In the cases of 

EPSPs, current moves inward generating a sink in the extracellular 

medium, whereas in IPSPs, the current moves from the cell to the outside 

medium, thus generating a source on the outside (Lopes da Silva, 2010). 

Because many individual sources must overlap in time to induce a 

measurable signal far from its origin, e.g., EEG recording on the scalp, 

this overlap is mostly generated from slower events, such as postsynaptic 

potentials (Buzsáki et al., 2012).  
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Methods to record neural activity for BMI 

 

Several methods are currently used to record neural activity. Each of these 

methods has advantages and disadvantages which need to be taken into 

account when comparing their performances. Fig.1.1 exemplifies one of 

the trade-offs between the different available techniques for neural 

recordings, in this case, the temporal-spatial resolution of the method.  

 

 
Fig. 1.1 | Overview of the spatial and temporal resolution of BMI recording methods. Invasive 

(red): single unit (SU), local field potentials (LFP), electrocorticography (ECoG); Non-invasive 

(green): electroencephalography (EEG), magnetoencephalography (MEG), near infrared 

spectroscopy (NIRS), functional magnetic resonance imaging (fMRI). Figure adapted from 

(Sejnowski et al., 2014). 

 

One of the primary trade-offs of the different methods is whether it 

requires surgery and, thus, how safe they are to use. Invasive neuronal 
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recordings use electrodes that are implanted in the brain and can provide 

the best recording signal of all techniques, being able to measure signals 

ranging from action potentials (AP) up to local field potentials (LFP) 

(Collinger et al., 2013; Hochberg et al., 2012). Despite their unmatched 

low signal to noise ratio, invasive techniques are generally only 

implemented as a last resort in patients. The implantation of these 

electrodes requires open-skull surgery with all its associated risks and may 

lead to problems like biocompatibility and biostability in long-term 

applications (Waldert, 2016). 

 

Invasive methods also involve high costs and long waiting times for 

surgery. An alternative to invasive methods that have gained popularity 

in recent years is Electrocorticography (ECoG) (Benabid et al., 2019; 

Leuthardt et al., 2004; Wang et al., 2013). By being semi-invasive, this 

technique does not carry many of the burdens of the fully-invasive 

methods mentioned above (e.g., long-term signal stability, 

biocompatibility) while still offering high spatial resolution LFP recordings 

that can be beneficial to many BMIs. Despite these advantages, ECoG 

still requires a medical procedure making it impractical for most BMI 

applications.  

Although offering much higher signal quality, invasive techniques are 

undesirable due to the intrinsic risks for the subject. For this reason, 

invasive techniques, such as the ones described above, are not suitable to 

be used with healthy subjects. Non-invasive techniques have thus 

dominated the number of publications in the BMI field and, in particular, 

EEG has been the most adopted recording technique (Hwang et al., 2013). 
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Given its high temporal resolution, wide brain surface coverage, and lower 

costs, EEG is highly used in BMI applications. Despite their lower spatial 

resolution, EEG systems offer higher portability and ease of use. Other 

techniques such as Near-Infrared Spectroscopy (NIRS) (Reich, 2005; 

Sitaram et al., 2007b) , functional Magnetic Resonance Imaging (fMRI) 

(Sitaram et al., 2007a) and Magnetoencephalography (MEG) (Cohen, 

1972) have also been used for BMIs, but these still represent a very small 

fraction of the studies conducted with non-invasive techniques(Hwang et 

al., 2013). 

 

In this thesis, we use an EEG-based BMI. EEG is a non-invasive 

technique, initially discovered by Hans Berger, who published the reports 

on the first experiments in 1929 (Birbaumer, 2006). EEGs record the 

synchronous activity of tens of thousands of neurons at a time (both action 

potentials and synaptic potentials), by placing electrodes on the subjects' 

scalp, Fig. 1.2. This activity largely corresponds to the summation of 

EPSPs and IPSPs at the synapses of cortical neurons (Lopes da Silva, 

2013). In particular, cortical pyramidal neurons contribute the most to the 

EEG signal(Kirschstein and Köhling, 2009). These neurons typically 

receive their inputs from corticocortical and thalamocortical nerve fibers. 

Due to pyramidal neurons' characteristic long apical dendrites when a 

postsynaptic signal spreads electronically in the dendrite, it creates an 

extracellular dipole perpendicular to the cortex. This dipole is the main 

contributor to the signal measured on the scalp. Typically, neurons that 

are located on the top of the gyri contribute more to the EEG signal than 

apical neurons located in the gyral walls forming horizontal dipoles or at 
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a depth of the sulci due to their distance to the scalp (Kirschstein and 

Köhling, 2009). 

 

 
Fig. 1.2 | An EEG electrode measures the synchronous activity of a large number of neurons in 

the underlying regions of the brain, image from (Purves et al., 2012). 

The EEG detects the difference in potential of the signal measured in each 

specific electrode compared to a particular reference. The oscillatory 

activity, i.e. waves, measured in the EEG thus reflect the rhythmic 

fluctuation PSPs of the underlying neural populations. Particular 

frequency ranges have been consistently recognized in different 

behavioural and cognitive processes (Buzsáki, 2006; Schomer and Lopes 

da Silva, 2012). These waves are typically designated by Greek letters such 

as delta (0-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (14-30Hz) and 

gamma (>30Hz), and are commonly used in BMIs to detect users’ 

intention and processed to send control commands to external devices. 
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Brain-Machine Interfaces 

 

A BMI is a system capable of translating neural activity into control 

signals for effectors, like computers, neuroprosthetics, or muscles. Because 

movement is not required to operate these devices, they have been 

proposed to help rehabilitate/restore or substitute lost function in patients 

with motor disabilities and neurological disorders (Elbert et al., 2012; 

Sterman, 1977). This technology has demonstrated profound results in 

allowing patients with such disorders to re-establish communication with 

the people around them and interact with their surrounding world 

(Ajiboye et al., 2017; Benabid et al., 2019; Birbaumer et al., 1999; 

Collinger et al., 2013; Hochberg et al., 2012; Pandarinath et al., 2017). In 

the last decades, research in the BMI field with humans and animal models 

has helped us understand how neural activity is reorganized when the 

brain has to deal with controlling external devices (Carmena et al., 2003; 

Ganguly and Carmena, 2009; Ganguly et al., 2011) and how animals are 

able to learn to modulate it voluntarily (Clancy et al., 2014; Koralek et 

al., 2012; Neely et al., 2018). These findings may hold the key to the 

development of high-performing BMIs for patients and to the adoption of 

this technology in healthy individuals in the near future.  
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Pioneering works in BMI 

 

We can pinpoint the first invasive BMI demonstrations in animals to half 

a century ago with the pioneering studies of Eberhard Fetz, in 1969. In 

his work, monkeys learned to control an auditory or a visual feedback 

signal by modulating the activity of a single neuron in the motor cortex 

(Fetz, 1969; Fetz and Baker, 1973; Fetz and Finocchio, 1971). The 

monkeys were given a task to increase the firing rate of single neurons 

above a certain threshold in order to receive food rewards. After several 

training sessions, the animals learned to increase these cells' activity up to 

5 times above their normal levels. These findings demonstrated, for the 

first time, the animals' capacity to learn to regulate neural activity directly 

in order to achieve behavioral outcomes. The same year, Joe Kamiya 

published the first report showing that healthy human subjects could self-

control alpha waves recorded with EEG in real-time. The control could be 

modulated when given continuous sensory feedback of their activity, such 

as a rising or falling tone (Kamiya, 1969). These studies laid the 

groundwork for experiments in humans and animal models, using a 

diversity of invasive and non-invasive techniques that have shown that 

BMIs' can be used to voluntarily modulate neural activity and control 

external devices. 

 

Closed-Loop Motor Brain-Machine Interface Systems 

 

A BMI is characterized by three main components, Fig. 1.3: 1) an 

acquisition system or sensors used to record the brain activity; 2) a 
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processor or mathematical algorithm that translates the recorded neural 

activity into a control command for an effector; and 3) a device or effector 

that is to be controlled by the user's intended actions (e.g., computer, 

neuroprosthetic or our muscles). 

 

 
Fig. 1.3 | Schematic representation of a Brain Machine Interface (BMI) closed loop. Neural 

signals are recorded from the brain and the signals are processed and transformed in realtime. 

The result of the transformation is sent as an input command to actuate on the effector. Changes 

in the state or movement of the effector and fed back to the brain, closing the BMI loop.  

 

In most cases, the BMI is part of a closed feedback loop, which is 

established by providing the subject with visual or sensory feedback of the 

changes in the effector in near-real-time (Carmena et al., 2003). For a 

closed-feedback BMI loop to operate correctly, there needs to be 

adaptation within the control loop. This is a critical step of a BMI to 

guarantee that the subject's intentions are matched with the appropriate 

control changes on the device. Within the control loop, there are two 
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places where the adaptation can occur: the algorithm and the brain. 

Depending on where in the control loop the adaptation happens, we can 

either have a decoder (adaptation of the algorithm) or a learning 

(adaptation of the brain) approach to the BMI (Carmena, 2013). Each of 

these approaches can have advantages and disadvantages, and we will 

review them in more detail below. 

 
The decoder approach 

 

During the last decades and with the rise of the field of machine learning, 

the development of brain-machine interfaces has mostly focused on the 

decoder approach. The goal of this approach is to decode a natural plan 

in the subject's neural signals. A mathematical model is trained to decode 

and categorize the subject's brain activity of pre-existing natural plans 

and relate it to specific control actions on a device. Early invasive studies 

developed decoder approaches that were able to offline reconstruct an 

animal’s movement, only based on the recorded neural activity 

(Georgopoulos et al., 1986). Expanding on these results, further studies 

demonstrated that the decoder approach could be used online to 

reconstruct movement and that the decoded neural activity could be 

applied in the control a neuroprosthetic skill (Carmena et al., 2003; Chapin 

et al., 1999; Hochberg et al., 2006; Serruya et al., 2002; Taylor et al., 2002).  

The decoder approach has been used with notable results in human 

patients, leveraging the use of invasive microelectrode arrays (Aflalo et 

al., 2015; Ajiboye et al., 2017; Collinger et al., 2013; Gilja et al., 2015; 

Hochberg et al., 2006; 2012; Kim et al., 2008; Pandarinath et al., 2017). 
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For example in two of these studies, patients with tetraplegia were 

implanted with one (Hochberg et al., 2012) or two (Collinger et al., 2013) 

microelectrode arrays in the motor cortex (MI), capable of recording 

single- and multi-unit activity . The activity from MI was initially 

recorded while the subjects observed a robotic arm moving in several 

dimensions. A decoder was then used to relate the recorded activity to the 

corresponding state of the robotic arm. The decoder was then used online 

to translate the subject’s neural activity into commands to the arm. 

Subjects were able to successfully move the robotic arm in several degrees 

of freedom to reach for objects and to grasp those same objects.  

The decoder approach has also been widely implemented in human EEG 

studies. The execution and imagination of particular motor 

commands/limb movements are typical examples of natural plans used for 

BMI (Blefari et al., 2015; McFarland et al., 2000; Meyer et al., 2014; Millan 

et al., 2004a; Pfurtscheller et al., 1997). In such cases, EEG records 

changes over the sensorimotor cortex, while the subject is, for example, 

imagining the movement of the left or right arm. A decoder is used to 

classify the activity and relate it to the intended action. The outcome of 

the decoder is then used to link the activity to specific commands to 

control a device.  

Other implementations of the decoder approach have been proposed, 

which are not motor related. BMIs focused on the exploitation of Visual 

Evoked Potentials (VEP), and in particular Steady-State VEPs, rely on 

the decoding of the photic driving response over the visual cortex at a 

specific frequency when a subject looks at a stimulus that is blinking at 

that particular frequency (Vialatte et al., 2010; Yijun Wang et al., 2008). 
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Also, very commonly exploited are Event-Related Potential (ERP), which 

rely on evoked potentials time-locked to cognitive or sensory/motor 

events. The P300 application of ERPs, typically used for spellers, for 

example, is a response to a stimulus that can be decoded from a positive 

peak of EEG activity over the parietal cortex. These peaks can be seen to 

occur about 300ms after the presentation of infrequent stimuli in oddball 

paradigm tasks (Fazel-Rezai et al., 2012). Other implementations of 

cognitive ERPs seen in Error-Related Potentials (ErrP), which are evoked 

when the subject realizes an error (Chavarriaga et al., 2010) and 

Contingent Negative Variation (CNV), which are typically linked to 

attention and anticipation (Walter et al., 1964). 

 With the extensive development of ever more sophisticated algorithms to 

implement decoder approaches (Lotte et al., 2018; 2007), many times these 

applications end up neglecting the subject in the BMI loop and their 

capacity to learn (Lotte et al., 2013; McFarland and Wolpaw, 2018; 

Perdikis et al., 2018). 

  

The learning approach 

  

In contrast to the decoder approach described above, the learning 

approach uses a mathematical transformation, which is mostly kept fixed 

throughout the training, and that needs to be learned by the brain. In this 

thesis, we propose the term transcoder for the mathematical 

transformation of neural activity with the operant learning approach, thus 

differentiating from the conventional decoder approaches. The transcoder 

is a new pathway between activity and the device to be controlled. In 
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these cases, there is not an a priori natural motor plan that can solve the 

task, and the brain needs to adapt to the transcoder, much like having a 

new spinal cord directing the transformed brain activity to a new limb. 

The transformation needs to be learned de novo (Carmena, 2013; Costa, 

2011). Several studies have shown that animals can learn a fixed 

transcoder (Athalye et al., 2018; Clancy et al., 2014; Fetz, 1969; Fetz and 

Baker, 1973; Ganguly and Carmena, 2009; Koralek et al., 2012) when 

trained through a closed-loop operant learning task to increase rewards 

(Skinner, 1938; Thorndike, 1898). During operant BMI learning, cortico-

striatal plasticity is shown to be necessary for learning to re-enter specific 

motor cortex activity (Koralek et al., 2012; 2013). Neurons in cortex that 

are directly controlling the BMI develop coherence with dorsal striatum 

spiking (Koralek et al., 2013), while coherence is not observed for task-

unrelated neurons. The striatum seems to be critical during the learning 

phases of BMI when subjects learn to re-enter target cortical patterns, but 

not required to execute the same entrance after learning (Koralek et al., 

2012; Neely et al., 2018). Moreover, task-relevant cortical neural activity 

is refined (Athalye et al., 2018). Neurons directly implicated in the BMI 

task progressively increase and align their covariance to the target pattern, 

while the variability of neural activity uncorrelated with the BMI task 

decreases with training (Athalye et al., 2018; 2017). Similarly, the 

refinement of activity is also seen during motor skill learning (Costa et al., 

2004; Jin and Costa, 2010; Rioult-Pedotti et al., 2000; Santos et al., 2015). 

The operant learning approach expands on the range of possible sources 

of control signals that the BMI can achieve when compared to decoding 

pre-existent natural plans, as described before.  
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In human studies, an implementation of the operant learning approach 

has explored Slow Cortical Potentials (SCPs) (Roberts et al., 1989). In 

such systems, subjects modulate the excitation or inhibition of local 

cortical networks voluntary, which can be noticed in the EEG as potential 

shifts that occur over 0.5–10.0s. Such an application was a major 

breakthrough in the field of BMI, allowing patients to control a cursor and 

type letters on a screen (Birbaumer et al., 1999). Besides this significant 

application, most human studies that have implemented the operant 

learning approach have used it during regulation of one band decoder that 

can be linked to particular mental states (e.g., meditative, relaxed or 

excited states). Operant learning is also commonly implemented as a 

training method to generate a natural pattern more consistently. Often  

referred to as neurofeedback training in the literature, this approach has 

been shown to help subjects disrupt or enhance particular behaviors. 

Studies have showed that neurofeedback can improve selective visual 

attention (Schafer and Moore, 2011), decrease the onset of movement 

execution (Khanna et al., 2017) and even decrease seizure frequency in 

epilepsy patients (Tan et al., 2009). Neurofeedback has also been 

successfully used for the modulation of neural activity in patients with 

Parkinson’s disease (PD) implanted with an Activa PC neurostimulator. 

In this study, PD patients were showed to be able to learn to modulate 

beta frequencies in order to control a cursor to hit 4 different targets. 

The modulation of a more consistent pattern through the operant learning 

approach is also valuable for the decoder approaches described previously. 

For example, in motor imagery, the subject is fed back the output of the 
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decoder so that they can produce consistent and stable signals that the 

decoder is able to classify (Lotte et al., 2013). 

Despite these implementations, it still remains to be demonstrated that 

the operant learning approach can be used for control of a complex, 

multiband pattern of EEG activity. Learning to control a complex EEG 

pattern, unrelated to motor activity, would require establishing a new link 

between the activity and task actions. This link needs to be learned de 

novo, and provides a natural connection to the desired task action. 

 

The two-learner system 

 

Recent studies have proposed an emerging paradigm that relies on the 

online adaptation of the decoder to rapidly increase the initial performance 

in BMI control. Known as the closed-loop decoder adaptation (CLDA), 

this paradigm adapts the parameters of the decoder by taking into 

consideration relevant information about task goals, while the subjects 

perform the BMI task (Dangi, et al. 2014; Gilja et al., 2012; Orsborn, et 

al. 2012). This approach may lead to a better representation of the link 

between the neural activity controlling the task and the subjects’ intended 

actions. The difficulty in this approach is to understand how and when to 

change the decoder parameters without hindering the subject’s capacity 

to learn to modulate their neural activity. In other words, how to minimize 

the moving-target problem, where the decoder is constantly changing 

while the subjects are also learning it. Co-designing an optimal decoder 

that is able to co-exist with the corresponding engagement of neural 

activity will be one of the major challenges to achieve a high-performing, 
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robust and generalizable BMIs (Shenoy and Carmena, 2014). Studies have 

implemented CLDA approaches by first initializing the parameters of the 

decoder from arm reaching movements (Gilja et al., 2012), or through 

visual feedback of cursor movements (Orsborn, et al. 2012). Once the 

decoder parameters are set, the subjects have to select the corresponding 

brain activity to control the BMI task. At every timestep the algorithm 

estimates intention, by rotating the cursor’s decoded velocity vector 

towards the target while keeping its magnitude unchanged, and by 

equating it to zero when reaching the target. Taking into account the 

estimated intention, a maximum-likelihood technique is used to change 

the decoder parameters converging them to a better solution (Dangi, et 

al. 2014; Gilja et al., 2012; Orsborn, et al. 2012).	This technique can be 

used to adapt the decoder parameters during early training phases of 

closed-loop control and until a specified level of performance is reached. 

Once these criteria are achieved, the parameters are can be fixed during 

training allowing for neural adaptation similar to the methods described 

in the learning approach section above.  

The CLDA method has also been implemented in non-human primates in 

the control of a 2D continuous BMI task, using an LFP-based decoder (So, 

et al. 2014), as opposed to spike-based BMIs. This study showed that 

monkeys were able to learn arbitrary transforms of selective LFP 

frequency bands. Here, the CLDA approach was used initially to adapt 

the decoder to subject-specific modulations of different LFP frequency 

bands in order to increase task performance. Given the similarities 

between LFP and EEG signal sources, the demonstration of the CLDA 
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approach in LFP-based BMIs, suggests that such methodology could also 

play an important role in future EEG-based BMI work.  

 

Clinical and research implementation of BMIs  

 

Given the characteristics of BMIs mentioned above, this technology has 

naturally found its most essential role in applications for disabled people, 

helping in the restoration and substitution of a lost motor ability or 

communication capacity. However, BMIs have been tested extensively in 

the control of diverse applications with populations of healthy subjects 

and patients alike. A boom of interest in the field since the 1990s has 

showcased the effectiveness of BMI systems in numerous applications and 

paradigms.  

One of the most widely used applications of BMI has been in cursor 

control, with studies showing control of one (Buch et al., 2008; Wolpaw 

et al., 1991), two (Leuthardt et al., 2004; Wolpaw and McFarland, 2004), 

and three degrees of freedom (McFarland et al., 2010). Spellers have also 

been an essential application of BMI systems with which disabled patients 

were able to communicate and write messages (Birbaumer et al., 1999; 

Millan and Mourino, 2003; Nijboer et al., 2008; Pandarinath et al., 2017). 

Control of moving robots (Bell et al., 2008; Millan et al., 2004b) as well 

as wheelchairs (Galán et al., 2008) have also been demonstrated. Perhaps 

one of the most impressive applications of BMI to date has been regarding 

prosthetic control, where BMIs have been used for reaching and grasping 

control of robotic limbs (Collinger et al., 2013; Hochberg et al., 2012), full 
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exoskeletons (Benabid et al., 2019) and for the stimulation and control of 

muscles of the subject’s natural limb (Ajiboye et al., 2017; Biasiucci et al., 

2018; Ethier et al., 2012; Pfurtscheller et al., 2000; Shaikhouni et al., 2016). 

 

Clinical applications for motor control have been tested in individuals with 

different neurological disorders. In general, the implementation of BMIs in 

a clinical setting is done in patients whose lesions or injuries have rendered 

parts of or all of the PNS system and muscles dysfunctional. However, 

these patients should still have intact or otherwise not fully compromised 

brain functions to be able to control the BMI. The main clinical 

applications for BMI have been demonstrated in patients with 

amyotrophic lateral sclerosis (ALS) (Birbaumer et al., 1999; Nijboer et al., 

2008), high levels of spinal cord injury (SCI) (Leeb et al., 2007; Müller-

Putz et al., 2005), severe cerebral palsy (CP) (Neuper et al., 2003), 

Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy type 

II (SMA II) (Cincotti et al., 2008), and stroke (Buch et al., 2008). For 

many of these patients, their disabilities still allow the use of other 

assistive technologies (AT) such as eye trackers or recordings of EMG. In 

such cases, BMIs can be viewed as supplementary or supportive 

technology. However, BMIs are currently the only available option for 

patients with complete paralysis of all voluntary muscles, including eye 

movements (CLIS). 
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WHY KEEP READING THIS THESIS? 

 

In this thesis, we expand on the existent studies from animal models and 

human subjects described above, implementing an operant learning 

approach to an EEG-based BMI task. The BMI uses a fixed transcoder 

that converts neural activity into cursor position. The success in the task 

depends on re-entering more often rare states of EEG activity which are 

converted by the transcoder to uncommon target cursor positions on 

screen. Because the transcoder is not selected for its relation to a mental 

state or motor action, a link between the EEG pattern and cursor position 

needs to be learned de novo. The complex pattern of activity depends on 

a ratio of four EEG bands, making it less likely to be controllable by 

simple changes of mental states, such as relaxed or excited states. 

Implementing a ratio of four bands also makes the transcoder more robust 

to muscular and ocular activity, as well as external noise, than a single 

band transcoder. This main reasons are that the 1) noise affecting bands 

in the numerator and denominator of the ratio will be evened out and 2) 

if the muscular or ocular activity affects a specific band, this will have a 

lower impact on the overall result of the transcoder when compared to a 

transcoder composed of only that particular band.  

In this dissertation, we describe in detail the experiments conducted with 

this approach and the subsequent findings. We show that subjects are able 

to rapidly learn to modulate the EEG activity in order to increase 

performance in the task. The EEG activity is refined throughout training, 

which can be seen by the distribution of the overall EEG patterns 
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becoming closer to the optimal pattern to reach the target, even for period 

when target has not been reached. We also show that all EEG bands of 

the fixed transcoder are used during target reach. The learning is 

consolidated, and when tested after three weeks of training intermission, 

we show that the learning is retained and can be readily recalled.  

We present a "real world" implementation of the BMI paradigm described 

in the previous chapter. We show that the BMI can be used for the control 

of the horizontal displacement of an aircraft. We also briefly discuss the 

on-going development of a novel EEG headset. The headset uses active, 

dry-EEG sensors that record and process the signal locally to be used with 

the operant learning BMI paradigm. This EEG headset fully records, 

processes and transmits a signal that can be used for operant BMI tasks, 

opening up a range of applications and allowing a wider reach of the 

technology.  

 

We humans have mastered the use of our bodies and muscles to interact 

with the world. However, in a world where computers and electronic 

devices have become the norm, our muscles may not be the most efficient 

way to communicate with these new devices. Brain-Machine Interfaces, 

offer us a key to by-pass muscular activity, directly interfacing these 

devices with the brain and allowing us to expand the ways to interact with 

the world. 
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2 
OPERANT LEARNING OF A COMPLEX, 

MULTIBAND EEG PATTERN 

 

SUMMARY 

Most non-invasive Brain-Machine Interfaces (BMI) for control use online 

decoder approaches. Despite the constant development of high-performing 

classification algorithms, these studies overlook the users’ capabilities to 

learn. In this study we introduce a novel EEG-based BMI using an operant 

learning approach. The BMI implements a fixed transcoder, i.e. a new 

pathway between activity and the device to be controlled. The choice of 

the transcoder is unrelated to a priori natural plans, requiring the brain 

to establish a new link between the activity and task performance, much 

like having a new spinal cord directing the transformed brain activity to 

a new limb. We show that users can modulate their neural activity to 

learn to more frequently produce a rare, complex EEG-pattern to increase 

success in task. The specific pattern depends on the continuous modulation 

of four EEG frequency bands and is selected with increasing accuracy 

throughout training. We observe that users rapidly learn the new 

transformation and that the EEG activity is refined with training. The 
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learning is consolidated and can be readily recalled during each training 

day, as well as after a three-week training intermission. The approach 

proposed in this chapter offers an alternative to the prevalent decoder 

approaches used for non-invasive BMI. Our results suggest that this 

approach can be useful for BMI control extending possible applications of 

this technology, since the subjects are not constrained by pre-existent links 

between neural activity and movements. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

All data discussed in this chapter is currently in preparation as the 

following manuscript: Nuno Loureiro, Vitor B. Paixão, José Carmena, José 

Del R. Millán, Rui M. Costa, Operant learning, refinement, and 

consolidation of a complex EEG pattern controlling an actuator 
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INTRODUCTION 

 

Millions of patients worldwide suffer from conditions that limit their 

mobility e.g. stroke, spinal cord injury, amyotrophic lateral sclerosis, or 

amputation. BMIs have been proposed as a promising way to improve 

these conditions by giving patients direct control of devices using their 

brain activity. In particular, the use of non-invasive techniques like 

electroencephalography (EEG) has demonstrated the invaluable clinical 

potential of BMIs for such patients (Birbaumer et al., 1999), avoiding the 

need of invasive surgery with all its associated risks. Early BMI studies 

using EEG have demonstrated that humans are capable of relying on 

feedback to shape neural activity and increase task performance (Vidal, 

1973; Wolpaw et al., 1991). Results from such studies were vital for 

identifying EEG activity based on simple decoders that can be voluntarily 

modulated, and for documenting the possible applications of non-invasive 

BMI techniques, as well as their limitations.  

However, during the last decade, developments in the field of machine 

learning have directed the research of human BMI mostly towards 

improvements in the so-called decoder approach, where the algorithms are 

optimized to decode pre-existing natural brain patterns to control an 

external device. In these cases, a mathematical model is generated linking 

the subject’s recorded neural activity to a particular action (e.g. a physical 

or imagined limb movement). The model is then used to predict 

movements based on the neural activity alone (Carmena, 2013) which can 

be linked to specific task commands (e.g. movement of a cursor or an 
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avatar). Throughout the task, the subject is required to produce the same 

activity in a stable and consistent way, so that the model robustly 

recognizes those patterns and converts them into the appropriate 

commands. A typical implementation of this approach in human BMI can 

be found in the modulation of sensorimotor rhythms (SMR) recorded over 

the sensorimotor regions during movement execution, imagined movement 

or movement preparation (Birbaumer et al., 1999; McFarland and 

Wolpaw, 2017; Pfurtscheller and Neuper, 2001; Roberts et al., 1989)   

These studies, however, commonly neglect the subject’s capacity to learn 

(Lotte et al., 2013; McFarland and Wolpaw, 2018; Perdikis et al., 2018). 

The fact that the subject is not required to learn new neural patterns but 

instead to produce existent and stable EEG signals, even when 

environmental conditions change, has played a critical role in 

the reliability of such approaches. In the presence of noisy, non-stationary 

signals, current algorithms fail to robustly extract the information needed 

to identify long-lasting patterns. Consequently, many studies often require 

daily changes to their algorithm, involving new calculations of activity 

patterns. These changes can lead to inconsistent BMI performances and 

to the BCI-illiteracy phenomenon observed in many studies (Blankertz et 

al., 2010; Guger et al., 2003; 2009). 

Here, we introduce a novel human EEG-based BMI task with an operant 

learning approach that contrasts with the prevalent decoder methods. 

Subjects are required to voluntarily modulate their brain activity to learn 

a new neuroprosthetic skill in order to control a cursor on a screen and 

increase task performance. We implement a fixed mathematical 

transformation (transcoder) that converts neural activity into cursor 
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position. We propose the term transcoder for the mathematical 

transformation of neural activity with the operant learning approach, in 

order to differentiate it from the conventional decoder approaches. By 

using a fixed transcoder, we relate any changes that occur throughout the 

training to changes in the subjects’ neural activity alone. We design the 

task so that subjects need to be in continuous control of the activity in 

multiple EEG frequency bands in order to direct the cursor to the correct 

target. This differs from the traditional neurofeedback approaches of 

changing the baseline activity level of an EEG pattern that relates to a 

particular state. Moreover, by not decoding the initial activity from a 

specific natural plan, we reduce the possibility that the BMI control can 

be attained solely by changing a mental state or motor image. This 

approach requires that the subjects learn a new abstract skill, which 

cannot be accomplished by simply increasing the frequency selection of 

pre-existent state.  

Our results show that subjects learn to modulate their EEG activity to 

continuously control the cursor and increase task performance over 

training. We also show that this learning is consolidated and can be readily 

recalled in each training day, as well as after a long intermission in 

training. The continuous control of cursor position is seen in multiple task 

measures, showing a refinement of the activity throughout training. 

Moreover, we observe that the EEG activity is modulated in all of the four 

EEG bands that are fed into the transcoder. Overall, here we introduce a 

new and alternative approach to EEG-based BMI, where subjects learn an 

arbitrary transcoder with long-lasting effects and without the need for 

signal classification or machine learning algorithms. 
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RESULTS  

We collected behavioral and EEG data over the motor and prefrontal 

cortices from 15 subjects during a self-paced, closed feedback loop BMI 

task, Fig. 2.1A. The fixed transcoder, which transformed activity into 

cursor position, used a ratio that included four EEG bands: delta [1-4Hz], 

theta [4-8Hz], beta [14-25Hz] and gamma [30-80Hz], from five specific 

channels. This ratio of bands followed several requirements such as varying 

smoothly in time and showing low contamination from motor artifacts. 

We tested the influence of facial muscle activity and eye movement, and 

saw no significant changes in the result of the transcoder (cf. Methods) 

An index made of these four activity bands had also previously been found 

to be correlated with behavioral states in rodents (Costa et al., 2006), 

further suggesting it as a good candidate for a transcoder in an operant 

learning task. The change in cursor position provided the subject with 

continuous, real-time visual feedback. The task was run during 10 

consecutive weekdays, each day (session) consisting of three 10-minute 

runs with feedback of the cursor position. Following the three runs, 

another 10-minute run without feedback was performed each day, which 

served as an experimental control of the task, Fig. 2.1B. During the no-

feedback run the subjects simply looked at the screen which displayed a 

still frame of the task. 

In feedback runs, subjects had to modulate their activity to maintain the 

cursor in the region between the two innermost lines (base area) for 2 

consecutive seconds (i.e. 8 timesteps) in order to start a new trial. Once 

started, the trial type was indicated with an up or down arrow, displayed 
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in a pseudo-random sequence indicating that the objective was to reach 

either the top or bottom horizontal target, respectively, Fig. 2.2A. Each 

trial could end in one of three possible ways: correct, incorrect or timeout 

if no target was reached within a set time limit of 30 seconds.  
 

 
Fig. 2.1 | Closed-loop operant EEG-based BMI task with visual feedback. (A) Schematic of the 

BMI task. The subject’s EEG activity was recorded and transformed using a fixed transcoder into 

cursor position on a screen. Visual feedback was given in near real-time and the subject needed 

to adapt EEG activity in order to correctly position the cursor on screen and increase task 

performance. (B) Task protocol. Each subject performed the experiment during ten consecutive 

weekdays, with a 2-day interval in the middle of training. Each day (session) consisted of three 

feedback runs of 10 minutes (blue), each separated by 5 minutes of interval (green). At the end of 

each session, a run without feedback of EEG activity (no FB, brown) was performed. A 

consolidation test session was run 3 weeks after the last day of training to assess capacity to recall 

learning of the abstract skill (light blue). Before starting the task on the first day, a short channels 

selection and target calculation session (red, panel D for detail). Throughout the rest of training, 

the transcoder, the electrode positions and the target positions remained constant. 

 

During the trial, visual reinforcements were displayed to the subjects when 

they crossed the base limit (inner-lines) in the correct direction (as a 

lighter patch displayed on the screen) or crossed the correct target (as a 

darker patch). Besides having constant feedback of cursor position, these 
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reinforcements further indicated that the recorded neural activity was 

moving the cursor towards the correct target. 

 
 

Fig. 2.2 | Schematic of the BMI paradigm in task and selection of channels. (A) EEG channel 

activity was recorded and processed in near real-time. For each 1 second-window, the activity of 

the five selected electrodes was converted to power spectral density (PSD) and the average 

activity of each specific frequency band was fed into the transcoder that outputted a new cursor 

position. In order to start a new trial the cursor needed to be kept in the base area (between the 

two inner lines) for two consecutive seconds. Once a new trial started, an arrow was displayed 

randomly on the right-hand side of the screen, pointing up or down. The objective was to direct 

the cursor to cross the top- or bottom target, respectively. Positive reinforcement in the shape of 

a colored patch was shown when EEG activity translated into a cursor position that crossed the 
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first horizontal line in the direction of the target. In the rarer events of a correct target hit, a darker 

colored patch was shown and the trial finished. Crossing an incorrect target ended the trial, which 

was classified as incorrect but there was no display of a negative visual feedback besides cursor 

position. (B) Channels selection and target calculation session. Five minutes of EEG data were 

collected in the beginning of the first training day. This data was used to calculate target positions, 

base limits and select 5 channels out of a pool of 17 possible electrodes. All these parameters 

were maintained constant throughout the rest of the training.  

Each subject underwent a short channel selection and target calculation 

session, which took place on the first day before starting the training. In 

this session we chose 5 electrodes from an initial pool of 17 possible 

positions above the motor and frontal cortices and calculated the position 

of the horizontal base limits and targets for the task, Fig. 2.2B (cf. 

Methods). 

 

Performance in Brain-Machine Interface task increases with 

training 

 

We started by investigating whether subjects were able to modulate their 

activity to direct the cursor to reach a specified target, and increase task 

performance over training. Over the course of 30 training runs, subjects 

exhibited marked improvement in the percentage of trials in which the 

cursor crossed the correct target as opposed to the incorrect one, Fig. 

2.3A (n=15; Nonparametric one-way repeated ANOVA **,p=0.0047). 

This finding contrasts with the performance for runs without feedback as 

well as with Monte Carlo simulations using the recorded data of the 

feedback runs (cf. Methods), neither of which showed significant change 

over the course of training (no feedback: n=15; Nonparametric one-way 
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repeated ANOVA ns, p=0.2434). The percentage of correct trials increased 

significantly from the first to last session of training, Fig. 2.3D left panel 

(Mixed model F1.7,22.8 = 11.2 ***,p=0.0007; post hoc analysis (Tukey): 

first vs last session ***, p=0.0008).  

 
Fig. 2.3 | Subjects learn to volitionally control an EEG-based BMI abstract skill. (A) Mean 

percentage of correct target crosses for all subjects across training runs 1-30 and consolidation 

runs 1-3. Performance increases over training during feedback runs (blue), while it is kept at 50% 

chance level for no feedback runs (red) and for Monte Carlo simulations using the original 

feedback data (green). (B) Mean percentage of correct base limits (central horizontal lines in task 

display) crosses for all subjects across training. As seen in (A), the percentage of correct base limits 

crosses also increases over training for feedback runs (blue), showing no difference from chance 

level for runs without feedback (red) and for Monte Carlo simulations (green). (C) Mean 

percentage of correct crosses for down (left panel) and up (right panel) arrow trials. Performance 

in both directions is seen to increase during training under feedback condition. Again, runs 

without feedback and Monte Carlo simulations show no improvement in performance. (D) 
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Percentage of correct trials for the first and last sessions of training, as well as for the consolidation 

test following 3 weeks without training (left). Performance increases significantly from first to last 

session and is maintained during consolidation test. This profile is also seen when looking at the 

results per run on each of these training sessions (right). Error bars represent s.e.m., *p<0.05 

We showed that the transformation was rapidly learned, starting at chance 

level 50%, in run 1 and run 2 of session 1, Fig. 2.3D right panel (run 1 

ns,p=0.1054;  run 2 ns,p=0.1319; run3 *,p=0.0276) and quickly becoming 

significantly (trial 11) different than chance Fig. 2.4 inset (one sample 

t-test (chance 50%) for trials 1-10,15,16 ns,p>0.05 and for trials 11-14,17-

30 *,p<0.05 ), and then increased throughout the rest of the training, Fig. 

2.4 main (longitudinal regression model, **,p=0.03). 

 
Fig. 2.4 |  Individual subject performance across all training trials (average of a 10-trials sliding 

window, top panel).  Mean percentage of correct trials across all trials. Performance is seen to 

increase across training (main – sliding window size, 10 trials). As expected, performance starts at 

50% chance level when focusing on the first 30 trials of training (inset – note that the sliding 

window size is reduced to 3 trials to increase resolution and the y-axis shows the cumulative 

percentage of correct trials). 

We also found an increase in the percentage of correct base limit crosses 

(i.e. when the cursor crosses one of the two innermost horizontal lines in 
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the target’s direction), indicating that learning in the task is not restricted 

to the target crossings, Fig. 2.3B (n=15; Nonparametric one-way 

repeated ANOVA **,p=0.00123). Furthermore, for both up and down 

directions (longitudinal regression model up: ****,p<0.0001; down: 

****,p<0.0001), the fraction of correct trials improved from first to last 

day of training, Fig. 2.3C left panel (n=15; Wilcoxon test, *, p=0.0156) 

and right panel (n=15; Wilcoxon test, *, p=0.0125), respectively. For 

every measure analyzed, we found the performance to be significantly 

above chance level on the last day of training for the feedback runs, Fig. 

2.3A–C (2.3A: one sample t-test (chance 50%) (run 

28)****p<0.0001,(run 29) ****p<0.0001, (run 30) ****p<0.0001; 2.3B: 

one sample t-test (chance 50%) (run 28)****p<0.0001,(run 29) 

***p=0.0002, (run 30) ****p<0.0001; 2.3C left: (run 28)***p=0.0007; 

(run 29) ****p<0.0001; (run 30) ***p=0.0002; 2.3C right: (run 28) 

**p=0.0075; (run 29) ****p<0.0001; (run 30) ****p<0.0001).  

 

One of the major caveats of using EEG is that it’s signal can capture the 

facial muscles and ocular activity, which can have much higher amplitudes 

than the typical neural activity. In this study, we took several measures 

to ensure that facial muscle activity and ocular activity from eye 

movement did not explain task success. We selected a transcoder that 

depended on a ratio of four bands, which made the transformation robust 

to noise since a signal affecting the bands in the numerator and 

denominator of the transcoder would be evened out. In cases where there 

would be specific muscular or ocular activity in a particular frequency 

band, its effect is also felt less strongly in the outcome of the transcoder 
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than using only one band, since the other 3 frequency bands would still be 

contributing with the non-contaminated signal. We performed a series of 

tests when choosing the transcoder and verified that even in situations of 

uncommon, very high muscular and ocular activity, the result of the 

transcoder would still be kept within acceptable values, Fig. 2.5. We also 

instructed the subjects to not rely on any kind of muscular activity to 

control the cursor, and not to perform movements that could lead to 

noticeable changes in the cursor position.  

 

 
Fig 2.5 | Testing decoder resistance to major muscular and ocular activity. A test of 320 seconds 

was run where we asked subjects to perform major facial and eye movements while recording the 

activity and investigating the influence to the outcome of the transcoder. The subject was 

instructed to blink slowly, grind their teeth, raise eyebrows, look up, look down, blink fast, blink 

slowly again, squint the eyes and open eyes widely (top) Activity recorded from an external 

electrode placed on top of the right eye of the subject. Signal is filtered from 0.5-200Hz for display 

purposes. (bottom) Cursor position, calculated during the test with the activity of the 5 electrodes 

of the subject. We can observe that the activity is kept mostly within the target positions, does 

showing robustness of the transcoder. 
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We measure the EMG and EOG signal using external electrodes in a 

subset of the subjects and confirmed that the activity measured did not 

explain target reaches (cf. Methods and Fig 2.12A-B). Moreover, in order 

to ascertain that there was no influence of external muscular or ocular 

activity, we also conducted a new, subset of control experiments, Fig 

2.13, where the cursor position was not updated in the presence of any 

facial muscle or ocular activity, identified with the use of external 

electrodes placed around the subjects’ eyes, Fig. 2.14A-B. Similar to the 

results previously described, we found that subjects performed above 

chance. Taken together, these results show that human subjects are able 

to learn a new EEG pattern by controlling a cursor displayed on a screen 

in an operant learning task providing positive reinforcement for selecting 

the desired activity. 

Learning is consolidated and performance does not decrease after 

long training intermission 

 

Having analysed performance during training, we investigated 

consolidation of the learning to see if it could be recalled after a long period 

of training intermission. We ran a consolidation test session three weeks 

after the last training session, where subjects had to perform a similar test 

to the one during training. We found that the percentage of correct trials 

was above chance in all runs of the session, Fig. 2.3D right panel (one 

sample t-test (chance=50%), cons_run1 ***,p=0.0003; cons_run2 

***,p=0.0001; cons_run3 **,p=0.0035). We also observed a significantly 

higher performance during the consolidation session when compared to the 



OPERANT LEARNING OF A COMPLEX, MULTIBAND EEG PATTERN  |  65 

 

 
C

H
APTER

 2 

first day of training, but not when compared to the last training session, 

Fig. 2.3D left panel (One-way ANOVA F1.722, 22.39 = 10.87; ***p= 

0.0008; posthoc analysis (Tukey): first vs consolidation session *, p= 

0.0362 and last vs consolidation session ns, p= 0.3463).  

 

Moreover, the effect of learning consolidation could also be seen in all 

other performance measures (last 3 points on the right of Fig. 2.3A–C). 

Performance in no-feedback runs during consolidation testing was again 

not significantly different from chance. 

We also ran another follow-up consolidation test, where we retested four 

of the original subjects after more than two years after training. The 

results suggested that the effects of learning were still present even after 

an extensive training intermission (mean percentage of correct trials was 

66.9 ± 6.7% (sem)). 

These results show that the learning of the transcoder is consolidated and 

can be recalled by subjects readily when asked to perform the same task 

even after stopping the training for a long period of time. 

 

More than target reaching: Task-relevant EEG patterns are 

refined throughout learning  

 

To further characterize the improvement in performance throughout 

training, we evaluated how cursor position distribution evolved 

throughout training. We divided each run into three different task periods: 

up trials, down trials and pre-trial periods, Fig. 2.6A. During the pre-

trial periods, the subjects had to keep the cursor inside the base (region 
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between the two innermost lines) for 2 consecutive seconds in order to 

start a new trial (cf. Methods). For every run, we fitted a normal 

distribution to the histogram of cursor position in each set and evaluated 

the evolution of these distributions within three different training phases: 

early- (runs 1-6), mid- (runs 13-18) and to late-training (runs 25-30). We 

found that the distributions of cursor position for up and down trials 

overlapped for the early-training phase, Fig. 2.6B left panel, but became 

more distinct as training progressed into mid and late phases, Fig. 2.6B 

middle  and right panels, respectively. The distribution of cursor 

position during up and down trials were significantly different in mid 

(2way ANOVA repeated measures (direction x bins) F1,5 = 10.70, *, 

p=0.0220) and late training (2way ANOVA repeated measures (direction 

x bins) F1,5 = 10.70, **, p=0.0086), but not during early-training (2way 

ANOVA repeated measures (direction x bins) F1,5 = 0.046, ns, p=0.8389).  
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Fig. 2.6 | Distributions of transcoded EEG activity for the 3 different periods on the feedback 

runs (up and down trials and pre-trial periods). (A) Illustration of a representative cursor position 

during a 10-minute run. (Left) Sequences of up (red), down (blue) and pre-trial (black) periods are 

shown. (Right) The cursor position is represented for up (red binned histogram) and down (blue 

binned histogram) trials. Bin size represents average time spent in each bin position during the 

run. A Gaussian function was fitted to the histograms of cursor position distribution for the up 

(red line), down (blue line) and pre-trial (black line) periods. The difference in cursor position 

distribution between up and down trials was calculated (green dashed line) and was normalized 

to the sum of the up and down distributions (yellow line, see methods). (B) The distributions of 

position for up and down trials became more distinct with training, from early (runs 1-6), to mid 

(runs 13-18) and to late training phases (runs 25-30). (C) Mean position of up trial distributions 

increased across training phases while mean position of down trial distributions decreased across 

training phases (left). Standard deviation of distributions did not change across training phases 

(right). 
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When evaluating the means of these distributions, we observed an increase 

during up trials (nonparametric one-way repeated ANOVA *,p=0.0289) 

and a decrease during down trials (nonparametric one-way repeated 

ANOVA **,p=0.0055). The distribution mean in pre-trial periods 

remained unchanged (nonparametric one-way repeated ANOVA ns, 

p=0.1416), Fig. 2.6C, left panel. The difference in distributions was not 

due to a change in the shape of the distribution, as the standard deviation 

was unchanged throughout training (up trials: nonparametric one-way 

repeated ANOVA ns, p=0.9563; down trials: nonparametric one-way 

repeated ANOVA ns, p=0.1416; pre-trials: nonparametric one-way 

repeated ANOVA ns, p=0.1840), Fig. 2.6C, right panel. 

 

Having found a change in the distributions across trial type during 

different training phases, we then sought to establish a quantification of 

the evolution of cursor position distributions for up and down trials 

throughout training. For each run, we calculated the normalized difference 

between up and down trial distributions. This quantity represented the 

difference in time spent at each point of the screen between up and down 

trials (cf. Methods). We plotted these differences for each of the 30 runs 

of training, Fig. 2.7A. We found that the closer to the upper target the 

more positive the normalized difference was, meaning that cursor was in 

that position more often for up trials than down trials. Inversely, the closer 

to the lower target, the more negative the normalized difference was, and 

so the cursor occupied those positions more often during down trials than 

up trials. In the middle of the screen, the normalized difference was close 

to zero, meaning that the time spent at this position was the same for up 
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and down trials. This analysis also revealed that the longer into the 

training, the higher was the magnitude of the normalized difference closer 

to the extremities, and thus the cursor stayed longer in that position 

during the corresponding trials. Moreover, it is important to point out 

that the value of the normalized difference in the center of the screen did 

not vary with training, showing that the time spent in around that 

position was similar for up and down trials throughout training. 

Importantly, this profile in cursor position distribution is directly linked 

to a refinement of the EEG pattern over training. The overall EEG pattern 

becomes closer to the optimal pattern to reach the target, even during the 

periods when the target had not been reached. 

 

 
Fig 2.7 | Normalized difference of up and down cursor position distributions. (A) Normalized 

difference of cursor position distributions for runs 1-30. While values in the extremes of the screen 

(above target up and below target down) increased, in magnitude, as training progressed, there 

was no difference between time spent in up and down trials in the middle section of the screen. 

(B) Normalized difference of cursor position distributions for early-, mid- , and late-training 

phases. Same effect as in (A) can be seen when training is divided in three different phases.  

 



70  |  CHAPTER 2 

 

 
C

H
APTER

 2 

The same analysis was also performed for early-, and late-training, Fig 

2.7B. The normalized difference increased from early to late training 

phases around target up positions (2-way ANOVA repeated measures 

(training phase x bins), main effect (training) F1,14 = 6.77, *,p=0.0210) 

and decreased for the same phases around target down positions (2-way 

ANOVA repeated measures (training phase x bins), main effect (training) 

F1,14 = 18.47, ***,p=0.0007). Again, this meant that the cursor was 

occupying more often those positions during the corresponding up and 

down trials, respectively. 

 

EEG activity is modulated in four target bands in order to 

control cursor position on screen 
 

Next, we investigated how the recorded EEG activity changed as the 

cursor crossed the correct target. To do that, we divided each run into 

three distinct periods: up, down, and pre-trial. We considered the last 

second of each correct trial, corresponding to EEG data inputted to the 

transcoder that made the cursor position hit the target in the correct 

direction. Since pre-trial periods were longer than 1 second, we selected 

randomly 1 second of data during that period.  
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Fig. 2.8 | Correct targets are reached by modulating all four EEG frequency bands. (A) (Top) 

Segmentation of a run into 3 distinct periods: up (red), down (blue) and pre-trial (grey) periods; 

(Bottom) Trial’s Power Spectral Density (PSD) for all trials and all subjects for the corresponding 

periods of a run. Data is color coded from blue (-30dB/Hz) to red (30dB/Hz). White band 

represents notch filter ~50Hz to remove grid noise interference. (B) Median of PSD for all trials, 

corresponding to the data and periods represented above. (C) Comparison of mean PSD per 

period. Signal changes from pre-trial to up and down trial types in multiple EEG frequencies.  
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We evaluated the mean power spectral density (PSD) of the five electrodes 

used by each subject for all trials during these periods, Fig. 2.8A. For this 

analysis, we considered the frequency range used in the transcoder (1–80 

Hz). We found discernible differences in the average PSD of all trials when 

comparing up, down periods and ore-trial periods (2-way ANOVA 

repeated measures (trial type x frequency), main effect (trial type) F1.803, 

19.83= 5.82, *,p=0.012), Fig. 2.8B-C. 

 

We then sought to find out which EEG bands showed differences in 

modulation when comparing up and down trial types. Both up and down 

targets could have been reached by modulating a subset of the four EEG 

bands used in the transcoder. However, modulating all bands to move the 

cursor in the target's direction would minimize the modulation needed for 

each band. We started by normalizing the up and down data sets to the 

pre-trial periods of the same run and plotting the resulting ratio. We 

observed changes in the PSD profile for the up and down trial types across 

all 4 EEG frequency bands when normalized to the pre-trial period, Fig. 

2.9A. These changes were seen in the direction that facilitated the cursor's 

displacement to the correct target, e.g., for the up trials, we saw an 

increase in the transcoder result when compared to the pre-trial period. 

This increase resulted from an increment in PSD of the theta and gamma 

bands and a decrease in the delta and beta bands in comparison to the 

pre-trial periods. We found the inverse result for down trials compared to 

pre-trials. In contrast, we did not find such evident changes when 

analyzing similar periods during the no-feedback runs, Fig. 2.9B.  
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Fig 2.9 | PSD changes from correct up (red) and correct down (blue) trials to pre-trials, during 

the last second window of trial data. (A) Changes in PSD in comparison to pre-trial period for 

correct feedback runs. The changes are noticeable in all 4 bands of the transcoder, and happen in 

the direction that facilitates cursor movement to the correct target. (B) Changes in PSD during no-

feedback runs are not evident in the transcoder frequencies. (C) Average PSD changed from up 

and down trials to pre-trial. Also in this case the differences between up and down trial can be 

noticed.  

 

Next, we evaluated the mean PSD for each of these bands, since the 

transcoder used the mean activity in each band. We found that for each 

band, the averages PSD for up and down trials were significantly different, 
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further demonstrating that the subjects were able to modulate their EEG 

activity in all bands in order to control the cursor on the screen (paired t-

test, ****,p<0.0001 for all bands), Fig 2.9C. 

 

Taken together, we observed a modulation of the EEG signal in all 

frequency bands in order to achieve the task objectives. Although the 

subjects could have had reached the targets by modulating the EEG 

profiles in many different ways, this particular frequency profile requires 

the least variation in each EEG band, which could be interpreted as an 

efficient way of attaining the task objectives. 

 
 

DISCUSSION 
In this study we investigated human subjects’ capacity to learn a rare 

complex pattern of neural activity to directly control a cursor on a screen.  

Through a EEG-based Brain-Machine Interface (BMI), using an operant-

learning task, subjects needed to learn to continuously control a multiband 

EEG pattern. This novel approach to human BMI expands on recent 

findings from animal studies that demonstrate the capacity of the brain 

to create de novo circuits to perform neuroprosthetic actions when 

executing operant-learning BMI tasks (Athalye et al., 2018; Ganguly and 

Carmena, 2009; Koralek et al., 2012; Neely et al., 2018). We showed that 

subjects increase task performance over a two-week period, becoming more 

in control of a pattern that relies on the modulation of a fixed multi-band 

EEG transcoder. We also tested subjects’ capacity to recall learning after 
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a three-week training intermission during a consolidation test, showing 

that the task performance does not drop after the long training break and 

can readily be recalled. We further showed that the learning can be seen 

in multiple measures of performance, including significant changes in the 

distributions of cursor position throughout training. In these cases, the 

cursor position distributions for up and down trials started overlapping in 

the beginning of training but were shown to separate as training 

progressed. This separation demonstrates a continuous control of the EEG 

pattern and shows that the EEG patterns become more refinement with 

training, even during the periods when the targets were not being reached. 

Finally, we showed that the modulation of the activity when reaching the 

targets happens on the all four bands of the transcoder, which correspond 

to a strategy where the least amount of changes had to occur in each band 

for the trial to be successful.  

 

The majority of human-BMI studies have implemented the decoder 

approach focusing on machine learning (ML) techniques and signal 

processing. These techniques identify pre-existent EEG patterns and 

mostly require that the subjects produce stable, consistent signals to 

match the ML-learnt decoder. Despite significant progress using this 

approach, several downsides have been identified and proved difficult to 

overcome, e.g. recognizing input commands from EEG signals that are 

intrinsically noisy and being able to classify them as task actions, or 

relying on the subjects’ capacity to generate stable and consistent neural 

signals across days.  
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In order to deal with these issues, researchers typically rely on 

implementations that are known to generate more consistent and reliable 

EEG signals such as motor imagery, motor planning or movement 

execution (Blefari et al., 2015; Perdikis et al., 2014; Wolpaw and 

McFarland, 2000). In these cases, subjects are asked to think of specific 

motor actions, such as moving the left or right arm, while the 

corresponding neural activity is classified and used later in the BMI 

paradigm. For the most part, however, these studies neglect the users’ 

capacity to learn to generate and adapt their own neural activity (Lotte 

et al., 2013; Perdikis et al., 2018). Interestingly, even in studies where the 

decoder approach was implemented, using pre-existent natural activity as 

features, e.g. changes in sensorimotor area’s BOLD activity, it was shown 

that allowing the subjects to develop their own strategy revealed higher 

learning effects than following the researcher’s instructions (Sepulveda et 

al., 2016).  

 

Additionally, research in EEG-based BMI in humans, that rely on 

neurofeedback, have mostly targeted control of pre-existent EEG activity 

(typically one or two EEG bands such as mu or low beta). These 

approaches usually rely on identifying specific properties in that band (or 

set of bands) that can discriminate task conditions from the start of the 

training, e.g. an increase/decrease in the amplitude of a band is assigned 

to an increment in the up/down movement direction of a cursor in a 1D 

task (Wolpaw et al., 1991). Control in such tasks can be attained by 

managing to change the activity in relation to a baseline and is usually 

accomplished by evoking a pre-acquired action that relates to that 



OPERANT LEARNING OF A COMPLEX, MULTIBAND EEG PATTERN  |  77 

 

 
C

H
APTER

 2 

targeted neural activity e.g. or changing an emotional state like being more 

relaxed or more focused. Although demonstrating control of neural 

activity, the patterns of activity evoked during those BMI tasks mostly 

need to be similar to those evoked during the BMI algorithm training and 

do not require the generation and learning of new links between neural 

patterns and actions in task.  

 

Previous studies have shown that animals’ neural activity changes during 

BMI tasks (Carmena et al., 2003; Ganguly and Carmena, 2009; Ganguly 

et al., 2011) and that animals learn to more frequently enter arbitrary 

patterns of activity that lead to reinforcements (Athalye et al., 2018; 

Clancy et al., 2014; Fetz, 1969; Koralek et al., 2012). These studies have 

shown that cortico-striatal plasticity is necessary for the learning of new 

BMI skills (Koralek et al., 2012; 2013; Neely et al., 2018). As learning 

progresses, task relevant cortical patterns are gradually more refined and 

are optimized to achieve outcomes more directly. Task-relevant neuronal 

population activity increases its covariance throughout training, while 

indirect neurons variability decreases with training (Athalye et al., 2018; 

2017).  

Changes happening during operant BMI learning are similar to what is 

seen during motor learning (Barnes et al., 2005; Costa et al., 2004; Jin and 

Costa, 2010; Karni et al., 1998; Yin et al., 2009), thus indicating that BMI 

and motor learning implicate the similar neural strategies. 

 

The paradigm we implemented in this chapter expands on the studies in 

animal models, presenting an alternative to the existing human, non-
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invasive implementations in several fundamental ways: 1) the transcoder 

encompasses multiple EEG bands, and is selected independently of any 

link to a natural plan, suggesting that the transformation needs to be 

learned de novo and the pattern re-entered and refined; 2) subjects have 

to be in control of the activity to reach three specific targets (up and down 

targets and stay in the base area for two seconds); 3) the task is self-paced 

and does not rely on cues, increasing the dependence on the constant 

control of EEG activity; 4) neural modulation learned in task is readily 

recalled every day, and during a consolidation test after long training 

intermission task performance is maintained, indicating long lasting effects 

of BMI learning, 

 

In summary, these findings offer an alternative to the conventional human 

BMI approaches by implementing a complex fixed transcoder with 

multiple EEG bands. The implemented task reinforced the learning of a 

challenging EEG pattern, initially unrelated to any pre-existing motor or 

mental action. In order to increase task performance subjects needed to 

modulate EEG activity to more often enter the rare pattern. We showed 

that learning of such pattern was possible and that subjects re-entered it 

more efficiently throughout training. The continuous control of the EEG 

pattern was also refined throughout training, leading to improvement in 

performance measures related to task objectives, even during the periods 

when the targets had not yet been reached. Imposing the generation and 

learning of a new link between neural activity and actions in the task 

opens up the extent of possible applications of BMI systems, since the 
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subjects are not constrained by previous acquired skills and neural 

activity. 

 

METHODS 

Subjects 
  

15 volunteers (9 female and 6 male; mean age 29.4 years old, SD 7.7years 

old, Table S1 in Supplementary Materials) took part in the study without 

any type of monetary compensation. Subjects reported no history of 

psychiatric or neurological disorders, nor did they report chronic use of 

medication. Subjects had not participated in any prior brain-machine 

interface experiments. All subjects were asked to keep a similar schedule 

during the two weeks of experiment and if at all unavoidable to keep a 

regular schedule in the hours prior to the experiment on each day. No 

physiological sleep disruptions were reported by the subjects during the 

experimental period. Informed consent was obtained from all subjects. 

 

Subject Age Electrodes Used  Subject Age Electrodes Used  Subject Age Electrodes Used 

A 42 FC1; AF4; Fz; FC6; FC4;  F 37 F1; F5; FC1; AF4; AFz;  K 35 F1; FC3; AF4; FC2; FCz; 

B 27 AF3; F3; F5; Fz; FC6;  G 24 F1; AF4; F2; F4; F6;  L 23 F3; FC5; FC1; F2; F4; 

C 31 F5; F4; F6; FC6; FCz;  H 25 AF3; F2; F4; FC4; FC2;  M 21 F3; F5; FC5; Fz; FC6; 

D 28 AF3; FC5; FC6; FC2; FCz;  I 24 FC3; FC1; AF4; F4; FC6;  N 23 F5; AFz; F2; FC6; FCz; 

E 33 F3; F5; FC1; AF4; AFz;  J 46 F3; FC5; FC6; FC4; FCz;  O 22 F5; FC5; Fz; F6; FC6; 

 
Table 2.1 | Electrode locations for the 15 subjects.  
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Experimental Design 

 

All subjects were assigned the same experimental protocol with a duration 

of 10 consecutive weekdays (Monday to Friday, for two weeks). Every day 

during the two weeks, subjects were requested to allocate one hour and 

thirty minutes to the experiment, enough time to prepare and set up the 

EEG recording system, perform the experiment session and clean after the 

experiment. Subjects were also requested to allocate the same 1.5 hours 

three weeks after the last training session, with the objective of performing 

another session to re-test if there had been consolidation and retaining of 

learning. Each training and consolidation sessions consisted of 3 runs of 

10 minutes with 5 minutes breaks in between. In each of these runs, 

subjects were comfortably seated in a chair while their EEG data was 

recorded and transformed with a transcoder. The subjects were asked to 

try to control a cursor displayed on a screen approximately 1.5m away 

from them, at eye-level. No indication or strategy were given on how to 

execute the task. At the end of these 3 runs, a fourth run was recorded, 

during which the subjects were shown a still frame taken from the task 

and thus were not given any feedback of their EEG activity. This last run 

was used as a control setting to assess performance without feedback. 

 

Fixed Transcoder 

 

The fixed transcoder that converts neural activity into cursor position is 

a mathematical function of four specific EEG frequency bands. This 
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particular index of bands was previously found to be correlated with 

dopamine-related states in rodents (Costa et al., 2006). In this specific 

transcoder the average power in the previous second of the theta (4-8Hz) 

and gamma (30-80Hz) bands had the opposite effect in the cursor position 

to the average power in the delta (1-4Hz) and beta (14-25Hz) bands. An 

increase in average power per electrode in theta and gamma, as well as a 

decrease in power in the delta and beta bands led to a higher cursor 

position, while a decrease in the former two bands and an increase in the 

latter two bands led to lower cursor position. The mathematical 

transformation to calculate the position at time t was given by: 

 	

"($) = '()	 *		+ 	
,[./0,.]
3444444444	5[./0,.]

3444444444

6[./0,.]
3444444444	7[./0,.]

3444444444		
8

9:0

;																																					(2.1) 

 

The ratio is calculated for each electrode i and summed over all 5 

electrodes chosen for each subject. The result is then log-transformed, 

which transforms the output in a normal distribution. Every 250ms a new 

cursor position was calculated and displayed on the screen by taking into 

account the last 1 second of EEG data from the 5 chosen electrodes, Fig. 

2.2A. The mathematical expression for the transcoder in Eq. 2.1 was the 

same for all 15 subjects, while the 5 electrodes were picked specifically for 

each subject from a pool of 17 electrodes located above the motor and 

frontal cortices (AF, Fp, F, C locations in the modified international 10-

20 system (Klem et al., 1999)), cf. section Channel Selection and 

Calculation of Target Positions. This selection was done before the first 
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training session, during a short channel selection and target calculation 

session which took into account the EEG activity at rest during 5 minutes.  

 

Task description and objectives 

 

Subjects were informed their EEG activity was going to be recorded, 

processed and transmitted to the computer, so that the cursor on the 

screen would change its vertical position according to the transformed 

EEG activity. Subjects were shown a still frame of the task in order to 

explain its layout, Fig 2.10A. The subjects were told that the blue line 

before the cursor represented the history position of the cursor during the 

five timesteps prior to the current position, which represented 1.25seconds 

in total. The current position was represented by a red circle, displayed 

horizontally in the center of the screen, but allowed to move vertically. 

The four horizontal lines on the screen represented important positions for 

the task: The top and bottom lines represented the targets to be crossed 

in the cases of up and down trials, respectively, Fig. 2.10A-F. The inner-

up and inner-down lines represented the base area, in between which the 

subject had to maintain the cursor for two seconds in order to start a new 

trial. Every time a new trial was started an arrow was displayed on the 

top- or bottom-right side of the screen, indicating in which direction the 

subject should direct the cursor to. 
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Fig. 2.10 | Example of situations occurring during one run of the task. (A) During pre-trial periods 

no arrow is shown and the subject needs to direct the cursor to the middle of the screen where it 

needs to stay for 2 consecutive seconds in order to start a trial; (B) Trial down, indicated by blue 

arrow in the bottom corner, Cursor is crossing the base area in the wrong direction, no feedback 

is given besides cursor position; (C) Cursor crosses the base area in the correct direction during a 

trial down. Light patch of color appears reinforcing the action; (D) Down target is reached during 

trial down. Darker patch of color is displayed, trial is considered correct and arrow disappears 

shortly after; (E) and (F) same as (C) and (D) but exemplified for an up trial. 

The generation of trial direction was done in a random way and, in order 

to avoid a biased performance, we limited the number of consecutive trials 

to the same side to four, after which we would force the trial target to be 

in the opposite direction. We also explained to the subjects that each trial 

had a maximum of 30 seconds during which three possible outcomes were 

allowed: 1) the trial ended correctly if the subject reached to the desired 

target; 2) the trial ended incorrectly if the subject reached the opposite 

target, and 3) the trial ended as a timeout if during 30 seconds no target 

had been reached. After the end of each trial, the arrow disappeared and 

the subject had to return the cursor to the base area for two seconds to 

start a new trial. Subjects were informed that they were going to receive 
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a visual feedback every time they were going in the desired direction. If 

the cursor crossed the first horizontal line, i.e. left base area, in the desired 

direction of the trial a short and light color patch was displayed on the 

screen between the first and second lines in that direction, Fig. 2.10C,E. 

On the other hand, if the cursor passed the first line in the opposite 

direction, no negative visual feedback was shown to the subject, Fig. 

2.10B. In the cases that the cursor crossed the top/bottom goal line, a 

darker and larger patch of light was displayed indicating that the trial had 

been successfully completed, Fig. 2.10D,F. If the cursor crossed the 

incorrect target line, the arrow disappeared and the trial was classified as 

incorrect. 

 

Channel Selection and Calculation of Target Positions 

 

After setting up the EEG system and before starting the training on the 

first session, the subjects were informed about the experiment’s protocol 

and its objectives. The subjects were asked to sit on a chair and look at 

the computer screen for 5 minutes, which displayed a still frame taken 

from the task they were about to perform, Fig. 2.10A. Subjects were 

informed that an EEG reference signal was going to be recorded and were 

asked to avoid movement as much as possible in order not to contaminate 

the recorded signal. After the 5-minute period of EEG signal collection, a 

script was run to calculate the most suitable electrodes and the 

corresponding horizontal targets for the specific subject using the 

transcoder. A flow diagram of the channel selection and target position 
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calculation can be seen in Fig. 2.11. All the combinations of five 

electrodes, out of the 17 initial electrodes located above the motor and 

frontal cortices Fig. 2.2B, were taken into consideration and the EEG 

signals from each ensemble of five electrodes were transformed with the 

transcoder to calculate the arrays of cursor positions for the 5 minutes.  

 
Fig. 2.11 | Flow diagram illustrating the procedure for channel ensemble selection and target 

position calculation before the beginning of first training session. 
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The electrodes and targets were then chosen to guarantee that over the 5-

minute reference activity the distribution of cursor position would follow 

a Gaussian distribution and that naturally the subject would be able to 

reach both targets the same number of times, thus making sure that the 

distribution was unbiased and attainable, Fig. 2.2B - right panel.  

The number of target crossings during the 5-minute period was set to 4 

on each target. The reasoning behind this value was to make these events 

possible to reach but rare enough that would allow feedback to reinforce 

the behavior. The proposed value was considered to be not too small 

(which could lead to a lack of enough correct trials and loss of motivation) 

nor too high (which could result in a greater amount of correct but also 

incorrect trials), which in both cases would render the task more difficult 

to learn. The limits of the base area were set at the position calculated by: 

 

?	@AB
C@/EAFG = "($).:[0,HII]444444444444444 	± 	σL"($).:[0,HII]	M																					(2.2) 

 

where, "($).:[0,HII]444444444444444 is the mean of the reference signal acquired during the 

5 minutes (300 seconds) and  σL"($).:[0,HII]	M is the standard deviation of 

the distribution. The target positions were calculated by: 

 

N	@AB
C@/EAFG = "($).:[0,HII]444444444444444	± 	O ∗ σL"($).:[0,HII]	M															(2.3) 

 

Where O is a constant calculated in the first day of training, cf. Fig. 

2.11, that guarantees a fixed and balanced number of target crossings 

within the 5 minutes, as explained above. The target positions as well as 

the limits of the base area were then linearly scaled into pixel position on 
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the screen so that they would always be displayed in the same absolute 

position to the subject. Once the parameters were set, the rest of the first 

session was designed to be the same as the remainder trainings session.  

The parameters obtained during the first day, were kept constant 

throughout the experiment which allowed us to link any changes in 

performance exclusively to changes in recorded activity. Nevertheless, 

during each run, the distribution of position was evaluated every 3 

minutes. In the rare cases that the mean of the position distribution during 

the previous 3 minutes shifted more than a pre-defined threshold given by: 

 

"($)[./0RI,.]444444444444444 > 	 T0.5	 ∗ 	 (NWXB.
C@ 	–	"WXB.444444	)T																																								(2.4) 

 

both targets and base area limits were realigned by ∆	= (	"($)[./0RI,.]444444444444444 −

		"WXB.444444	). This realignment was implemented to prevent any bias to a 

specific side and making sure that the task would continue to present the 

same level of difficulty towards the up and down targets.   

 

Equipment and Signal transformation 

 

EEG signals were acquired using an ActiveTwo measurement system 

(BioSemi Instrumentation, Amsterdam, Netherlands), with a sampling 

frequency of 2048Hz. EEG was recorded using 64 electrodes arranged in 

the modified 10/20 international standard (Klem et al., 1999). 

Electrooculogram (EOG) and facial electromyogram (EMG) signals were 

synchronously acquired using four external electrodes with the same 
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system for 6 subjects (S9 - S15). The external electrodes were placed next 

to the left and right canthi of the eyes as well as above and below the 

subject’s left eye, in order to capture both horizontal and vertical EOG 

components. The data was collected under Ubuntu Linux 10.04 Operating 

System and the recording was done based on the CNBI Toolkit (CNBITK) 

framework for BCI, developed in the CNBI lab at EPFL which 

implemented a standardized communication interface based on the Tools 

for Brain Computer Interaction (TOBI) project (Müller-Putz et al., 2011).	

The EEG data was filtered and processed online in steps of 250 ms taking 

into account the last 1 second of data (or 2048 points). The EEG signal 

of the 64 electrodes was bandpass filtered between 1-80Hz (zero-phase 

Butterworth, 4th order) using a zero-phase filter and a notch filter was 

applied to the signal at 50Hz, second-order Infinite Impulse Response (IIR) 

filter. We then calculated the power spectral density (PSD) using the 

Welch's method (pwelch function implemented in MATLAB) of the 5 

chosen electrodes for the subject. The Welch's method segmented the time 

windows into 8 different intervals with a 50% overlap. Each segment was 

windowed with a Hamming window and a modified periodogram was 

computed for these segments where the resulted values were averaged to 

obtain the PSD estimate. The average PSD per frequency band was 

calculated and input in the transcoder to obtain the cursor position 

according to Eq. 2.1. 
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Data Analysis 

 

Analyses were performed in MATLAB (Mathworks) with custom-written 

routines. For the feedback and no-feedback results in Fig. 2.3A-C, the 

performance of the corresponding run for all subjects was averaged and 

the standard error of the mean was calculated.  

The Monte Carlo simulations were performed using the feedback data of 

each 10-minute run, but reconstructing a new cursor position array from 

that data as follows: 1) the initial element of the array was the cursor 

position of the feedback run at a random time t; 2) the following elements 

in the array corresponded to the original cursor positions to the end of the 

run; 3) the remaining data, which corresponded to the interval [0, t-1], 

was concatenated to the end of the array, resulting in a new 10-minute 

vector with the same number of data points as the original array. This 

method was preferred to randomly sampling a new data array from the 

original 10-minute cursor position, to prevent the loss of temporal 

information. The performance of the simulated run was calculated 

considering the new array of cursor positions and following the same 

protocol as if a normal feedback run was being conducted. 

In Fig. 2.3D, the performance for each of the three represented sessions 

corresponded to the mean ± s.e.m. of the respective three runs in the 

session, for all subjects. The right panel data is the same as represented 

in the corresponding runs in Fig. 2.3A. 

For Fig. 2.4, the trial-by-trial analysis was performed using a sliding 

window length of 10 trials in the main panel and a sliding window of 3 

trials for the inset panel. This difference in the window size was used to 
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show how the performance started at chance level during the first few 

trials. This detail result could not be captured with the original 10-trial 

window size due to the fast rise in performance above chance in early 

training.  

In Fig. 2.6A we showed how a typical run is divided into 3 periods: up 

and down trials and pre-trial. For each of the subjects’ runs we performed 

the same analysis. We started by subtracting the mean cursor position of 

the run so that the runs for all subjects were centered around the same 

value. We then fit a normal distribution to the distributions of cursor 

position for each of the periods (using the functions fitdist() and normpdf() 

in MATLAB). We subtracted the fitted distributions for the up and down 

periods to obtain the difference in cursor position distribution for the two 

different trials (green dashed line). We then normalized this result to the 

sum of the two fitted distributions to obtain a visual representation of the 

change in cursor distribution per trial type (yellow solid line). In Fig. 

2.6B we averaged the distributions of each period for three different 

training phases, early- (runs 1-6), mid- (runs 13-18) and late-training (runs 

25-30) and present the average for all subjects ± s.e.m highlighted. The 

average of the means and average of standard deviations of the fitted 

distributions is displayed in Fig. 2.6C. Finally, in Fig. 2.7A we show 

normalized difference of the cursor position distributions for up and down 

trials, as explained above. Each line represented the average of each run 

over all subjects. Fig. 2.7B, shows a similar analysis but, instead, 

averaged over the runs of the corresponding period. 

In Fig. 2.8, we analysed the EEG data during the last second of the 

correct trials. This one second window of EEG data corresponded to the 
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transformed signal that when passed through the transcoder allows the 

cursor to reach the up or down targets. For all panels in this figure, the 

analyses were run on all the trials of all subjects, concatenated together. 

For each trial (up or down) the mean PSD corresponding to the five used 

electrodes was calculated and a PSD profile within 1-80Hz was represented 

in each line of Fig. 2.8A. To maintain the same number of data points 

going into each analysis, for pre-trial periods we randomly selected 1 

second window from the data when the subject had to start a new trial. 

The median of all trials was then calculated and is represented in Fig. 

2.7B-C. Shaded areas of the plots represent the 25% and 75% quantiles. 

In Fig. 2.9, the PSD for up and down trials were divided by the pre-trials 

to obtain the profile of change between these different periods. The 

calculation of each ratio was performed for the corresponding run, e.g. 

PSD of up trials in run 1 of subject A was normalized by the PSD of pre-

trials in the same run 1 of subject A. This was done to avoid contamination 

mixing the signal from different subjects and different runs, which could 

have a different baseline from the start. The same analysis was run for the 

runs without feedback. Although the subject was not receiving any 

feedback of the cursor position, the simulation was still running in the 

back and by chance targets would be reached, see Fig 2.2 for chance level 

performance of no feedback runs. Fig. 2.9C resulted from evaluating the 

mean PSD of each band from the data of Fig. 2.9A. 
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Testing external EMG/EOG activity 

 

Measuring EMG/EOG activity during BMI task 

 

We recorded electrooculogram (EOG) and facial electromyogram (EMG) 

signals synchronously with the EEG signal for 6 of the 15 subjects (J–O, 

Table 2.1). We analyzed the data around the target crossing events for 

the correct and incorrect trials in order to evaluate if there was a link 

between the activity registered with the external channels and that 

particular period of the task. Fig 2.12 shows the median EEG activity in 

a window of five seconds before and after target crossings for correct, Fig. 

2.12A, and incorrect, Fig. 2.12B, trials. We calculated the range of 

signal activity in a window [-3 s, -1 s] before the target crossing window 

for the four recording electrodes. This window was taken because it was a 

period that we knew the cursor had not crossed the target. The activity 

was deemed statistically significant when more than 20 ms bins (40 

consecutive data points) within the 1 s target window laid outside the [1%, 

99%] of activity at the intervals [-3 s, -1 s]. Although there is a clear change 

in activity after the event, this change is not noticeable during the event 

window. Taken together, these results allow us to conclude that the use of 

external artifacts was not necessary for task performance. 
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Fig 2.12 | EOG/EMG activity measured around event. (A) Activity measured with the four 

externals electrodes around correct target crossings and (B) incorrect target crossings.  

 

Subset of experiments with enforced artefact detection and avoidance  

 

We designed and conducted a subset of experiments to probe BMI 

performance under stricter task rules. In these experiments we analyzed 

the data recorded with the external electrodes in real time while the 

subjects were performing the task. We established an online rule that 

allowed us to identify whether a source of external muscular or ocular 

activity was being used. Because we were mostly interested in artifacts 

that could be related to eye movement and blinks, the detection of 

artefacts was done by assessing the skewness of the distribution of the 

recorded signal on the electrode placed above the right eye, during 1 s 

windows. Before each subject began the BMI task, we evaluated the 

minimum and maximum skewness values that would detect artefacts. We 

selected specific values for each subject, so that the detection was very 

conservative Fig. 2.13A, left panel. We opted to have a conservative 

method and increase the number of false positives detected, making the 
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task more difficult to control. During training, every time the activity was 

recorded outside the limits of the criteria, we triggered a flag on the BMI 

code that prevented the update of the cursor position for 1 second and 

subjects saw a continuation of the last allowed cursor position, Fig. 

2.13A, right panel.  

 

 
Fig 2.13 | Subset of experiments with enforced artefact detection and avoidance. (A) Protocol 

of experiment; (left) In the first day of training the experiment was the same as the subjects had 

already trained on. From days 2-4 the new protocol was implemented. In this case the EMG/EOG 

signal recorded with electrodes around the eyes was evaluated in real-time and if the skewness 

of the signal in 1 s window was outside the indicated criteria the cursor position would not be 

updated (right). (B) Even with much stricter rules than in the original experiment, performance in 

task was above chance for both the percentage of correct target hits and the percentage of correct 

base limits crosses (central horizontal lines in task display) for all subjects across training.  
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The cursor would maintain the position constant for 1 s after the last 

activity outside the criteria had been verified. When the signal was back 

to permitted activity, the ball position would be updated again. No 

reinforcements were displayed during the periods when the flag was on. 

Even in such challenging conditions for the subjects, we found that 

performance was above chance, Fig. 2.13B.  

Fig. 2.14 shows the activity measured around event for correct (A) and 

incorrect (B) target crossings, during this subset of experiment. The 

analysis was conducted as before, and again we see no statistical 

differences during the 1 s window of target crossings and the 3s windows 

of baseline considered.  

 

 
 

Fig 2.14 | EOG/EMG activity measured around event during task to enforced artefact detection 

and avoidance. BA)Activity measured with the four externals electrodes around correct target 

crossings and (B) incorrect target crossings.  
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Fig Description Statistical test Values 

2.3A 

Feedback; n=15 Nonparametric one-way repeated ANOVA **p=0.0047 

No Feedback; n=15 Nonparametric one-way repeated ANOVA ns, p=0.2434 

Three last runs one sample ttest (chance = 0.5) (run 28)****p<0.0001,(run 29) ****p<0.0001, (run 30) ****p<0.0001 

2.3B 

Feedback; n=15 Nonparametric one-way repeated ANOVA **p=0.00123 

No Feedback; n=15 Nonparametric one-way repeated ANOVA ns; p=0.8834 

Three last runs one sample ttest (chance = 0.5) (run 28)****p<0.0001,(run 29) ***p=0.0002, (run 30) ****p<0.0001 

2.3C 

Down Feedback; n=15 Longitudinal regression model beta_1 = 0.91± std_error = .018;  ****,p<0.0001 

Down Feedback; First vs Last Session 

n=15 
Wilcoxon test (non-parametric) *p=0.0156 

Up Feedback; n=15 Longitudinal regression model beta_1 = 0.34± std_error = .12;  ***,p<0.004 

Up Feedback; First vs Last Session 

n=15 
Wilcoxon test (non-parametric) *p=0.0125 

Down Feedback, Three last runs one sample ttest (chance = 0.5) (run 28)***p=0.0007; (run 29) ****p<0.0001; (run 30) ***p=0.0002 

Up Feedback, Three last runs one sample ttest (chance = 0.5) (run 28) **p=0.0075; (run 29) ****p<0.0001; (run 30) ****p<0.0001 

2.3D 

First Session vs last session vs Re-test 

session 
One-way ANOVA F (1.722, 22.39) = 10.87; ***p=0.0008 

First Session vs Last Session Multiple Comparisions Tukey corrected ** p=0.0013 

First Session vs Consolidation Session Multiple Comparisions Tukey corrected * p=0.0362 

Last Session vs Consolidation Session Multiple Comparisions Tukey corrected ns, p=0.3463 

first 3 runs vs chance one sample ttest (chance = 0.5) run1, ns p=0.1054; run2, ns, p=0.1319; run3, *p==0.0276 

last 3 runss vs chance one sample ttest (chance = 0.5) run28, ****p<0.0001; run29, ****p<0.0001; run30, ****p<0.0001 

Consolidation runs vs chance one sample ttest (chance = 0.5) cons_run1, ***p=0.0003; cons_run2, ***p=0.0001; cons_run3, **p=0.0035 

2.4 
Main Longitudinal regression model beta_1 = 0.057± std_error = .01921;  **,p=0.003 

Inset one sample ttest (chance = 0.5) trials 1-10,15,16 ns,p>0.05 and for trials 11-14,17-30 *,p<0.05 

2.5B 

Early: Up vs Down 2way ANOVA repeated measures (direction x bins) F(1,5) = 0.046, ns, p=0.8389 

Mid: Up vs Down 2way ANOVA repeated measures (direction x bins) F(1,5) = 10.70, *p=0.0220 

Late: Up vs Down 2way ANOVA repeated measures (direction x bins) F(1,5) = 17.54, **p=0.0086 

2.5C 

Mean up: early vs mid vs late (left 

panel) 
Nonparametric one-way repeated ANOVA *p=0.0289 

Mean down: early vs mid vs late (left 

panel) 
Nonparametric one-way repeated ANOVA **p=0.0055 

Mean pre-trial: early vs mid vs late 

(left panel) 
Nonparametric one-way repeated ANOVA ns; p=0.1416 

Sigma up: early vs mid vs late (right 

panel) 
Nonparametric one-way repeated ANOVA ns; p=0.9563 

Sigma down: early vs mid vs late (right 

panel) 
Nonparametric one-way repeated ANOVA ns; p=0.1416 

Sigma pre-trial: early vs mid vs late 

(right panel) 
Nonparametric one-way repeated ANOVA ns; p=0.1840 

2.6B 

Early vs Late: center to top screen 
2way ANOVA repeated measures (training phase x 

bins) 

Main effect (training) F(1,14)=18.47 ***,p=0.0007; 

Bin effect F(39, 546)=29.94 ****,p<0.0001; 

Interaction training x bin F(39,546)  =10.11, ****,p<0.0001 

Early vs Late: center  to bottom screen 
2way ANOVA repeated measures (training phase x 

bins) 

Main effect (training) F(1,14) = 6.77 *,p=0.0210; 

Bin effect F(40, 560)= 13.85 ****,p<0.0001; 
 

2.7C 
PSD of all trials for up down and pre-

trial 

2way ANOVA repeated measures (trial type x 

frequency) 

Main effect (trial type) F(1.803,19.83)=5.82 *,p=0.0120; 

frequency effect F(1.116, 12.28)=21.28 ***,p=0.0004; 

Interaction frequency x trial type F(1.118, 12.30)  =14.34 , **,p=0.0020 

2.8C 
Log average PSD up vs down trials, 

normalized to pre-trial 
paired t-test 

delta, **** p<0.0001 

theta, **** p<0.0001 

beta, **** p<0.0001 

Table 2.2 | Statistical analysis and results. 
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“We are stuck with technology when what  

we really want is just stuff that works.” 

 

 

Douglas Adams in  

The Salmon of Doubt: Hitchhiking the Galaxy One Last Time 
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SUMMARY 

This chapter discusses applications of what we learned in chapter 2, and 

is divided into two main sections. In section A, we describe a proof of 

concept of the EEG-based Brain-Machine Interface (BMI) using operant 

learning control introduced in chapter 2. BMIs have been tested in a wide 

range of applications, from controlling computer cursors to wheelchairs 

and neuroprosthetic arms. In this work, we expanded on such applications 

and assessed if a pilot could use a BMI to control an aircraft successfully. 

For this purpose, we combined the operant learning BMI approach 

discussed in chapter 2 with a custom-designed flight controller to provide 

control over a light airplane’s flight path. We tested the system in a fixed 

base flight simulator, where we conducted several pilot-in-the-loop 

experiments. The output of the flight controller allowed for horizontal 

airplane motion in different operational and laboratory tasks. This section 

discusses the main results of the approach and the lessons learned from 

such an application scenario. In section B, we present on-going work on 

the development of a dry-electrode EEG headset, that records neural 

activity and implements the operant learning BMI paradigm directly on 

the headset, sending the output command wirelessly to control a device. 

The system presented in this section opens up a range of applications and 

allows a wider reach of the BMI technology.  
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SECTION A - Proof of concept of the operant learning bmi 

paradigm: controlling an airplane1 

 

The dream of flying has been linked to human history for millennia. With 

mentions dating back to the Babylonians and Ancient Greece, history is 

full of curious descriptions of flying machines and airplanes, and their 

flying attempts. We have demonstrated our ability to fly machines 

consistently over the last century. However, the way we input our 

commands and intentions to the machine is still very much the same as 

when we first started flying. Presently, autonomous flying has been 

replacing many of the conventional control tasks in aircraft, and 

Unmanned Air Vehicles (UAV) are currently widely used in situations 

where human lives could be at risk. However, even in such cases, keeping 

a human in the loop, either as a pilot or a remote operator, is crucial for 

the success of the flight. A pilot’s manual operation of an aircraft, using 

hands and feet, is still commonplace today. We seem far from the mind-

controlled airplanes seen in science-fiction books and movies such as 

Firefox, where an airplane is controlled in part by the pilot’s EEG signals 

(Eastwood, 1982). The possibility to accurately by-pass the manual inputs 

to the airplane and directly control its behavior using neural signals would 

be a breakthrough in the field of aviation.  

 

1 All experiments and data discussed in this chapter were collected in collaboration with 

the Department of Institute of Flight System Dynamics of the Technical University of 

Munich 
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Under the FP7 Project BRAINFLIGHT (FP7 European Commission, 

2015) we proposed to implement a Brain-Machine Interface (BMI) 

controlled airplane without the need for physical interaction with the 

controls. The main goal of the project was to assess the performance of 

this concept and encourage a long-term vision of enabling physically 

disabled people to control a General Aviation (GA) aircraft, spreading the 

access to general aviation. In order to accomplish this goal, we combined 

an EEG-based BMI operant learning approach, cf. Chapter 2, with a 

custom-developed flight controller to control the inputs to an airplane 

simulator. Given the characteristics of the project, the experiments in the 

simulator were exploratory, with an emphasis on understanding and 

engineering appropriate flight-control parameters to translate the neural 

activity into useful aircraft controls. In this chapter, we describe a subset 

of the experiments and analysis performed under the BRAINFLIGHT 

project and the FCT-DAAD collaborative project with the Technical 

University of Munich (TUM). The results discussed in this Chapter are 

limited to the experiments conducted with the implementation of a BMI 

system using an operant learning approach. As part of the 

BRAINFLIGHT project, a BMI with a Motor Imagery (MI) approach to 

control the aircraft simulator was also tested in a collaboration between 

the Technical University of Munich and Technical University of Berlin. 

The results from those studies can be found in (Zander et al., 2014) and 

(Fricke and Holzapfel, 2014). Other studies have also reported on the use 

of MI for the control of virtual (Doud et al. 2011) and physical drones 

(LaFleur et al, 2013) in three-dimensional spaces. These studies attest to 

the control of a drone using BMIs, but require the use of proxy commands 
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for the control since subjects needs to imagine movement of the arms, foot 

or tongue to control different flight dimensions. These methods contrast 

with the control through an abstract approach, as detailed in chapter 2, 

which would allow a direct control of the dimensions of flight without the 

need for proxies through imagined movements. 

The details about the experiments in this Chapter are published in (Fricke 

et al., 2015), co-authored by N.J.L. A comparison between the MI and 

operant learning approaches in the control of the aircraft can be found in 

(Fricke, 2017). 

 

Results 

 

All the experiments reported in this chapter were conducted in the DA42 

flight simulator at the TUM’s Institute of Flight System Dynamics, Fig. 

3.1A. The flight simulator was a real-size, two-seat cockpit of an actual 

DA42 aircraft, built by Diamond with the original aircraft components. 

The original DA42 airplanes, as depicted in Fig. 3.1B, use a mechanical 

control system, where displacements of a center stick and rudder pedals 

are translated into control surface movements by rods and wires. 

(Diamond Aircraft Industries, 2009).  
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Fig 3.1 | Schematic of the DA-42 and its simulator counterpart. (A) Diamond DA42 aircraft, 

reproduced from (Diamond Aircraft Industries, 2009); (B) DA42 Flight simulator at the TUM’s 

Institute of Flight System Dynamics, reproduced from (Diamond Aircraft Industries, 2019) 

 

The actual displacement of control surfaces was simulated in a virtual 

world created in the flight simulator. The inputs to the simulator and 

flight dynamics implemented in the system were designed to be an 

accurate representation of a real flight. Around the cockpit, a three-

channel External Visual System (EVS) projected a simulation of the world 

on a 180° cylindrical screen. The simulator, Fig. 3.1A, was certifiable up 

to Flight Training Device (FTD) level 5 as defined by the Federal Aviation 

Administration (FAA) (Federal Aviation Administration, 2006) and was 

frequently used in the training and preparation of commercial pilots for 

Lufthansa Airlines. Fig. 3.2 shows a representation of the flight simulator 

and its typical configuration for the BMI control protocol.  
 

A B 
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Fig 3.2 | Experimental setup on the DA42 aircraft simulator. (left) Pilot controls the aircraft while 

seated on the right-hand side of the cockpit during experiment. Visual feedback of the task is 

provided to the subject through a custom-built display. (right) Schematic of the experimental 

apparatus. It includes the BMI station and the Flight controller station.  

 

Aircraft visual feedback  

 

During the experiments, the subject had, at all times, two visual feedback 

reports of the inputs that were sent to the aircraft simulator. The first was 

the simulated world in the EVS and the traditional four aircraft 

instruments onboard the cockpit (airspeed indicator, attitude indicator, 

altimeter and magnetic compass). The second means of feedback was 

provided by a custom-made screen that was placed on the dashboard of 

the cockpit in front of the subject, Fig. 3.3. In this screen, the background 

displayed an artificial horizon, and other parameters such as airspeed, 

altimeter and heading were displayed in the foreground in a standard T 

configuration as is usual in aircraft. The rate of turn was displayed as a 

magenta arc on top of the compass rose. In the example shown, the 

airplane is flying at an altitude of 5000ft, pitched up by about 2.0°, banked 

25° to the right, and with an indicated airspeed of 120 kt. The aircraft is 

custom display
for BMI task

BMI
control seat

Seat with
stick controller

flight controller 
station

BMI station

simulated world
projected in 180º screen
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currently crossing the heading 244º at a rate of turn higher than the 

standard turn rate of 3º/s.  

 

 
Fig 3.3 | Custom built display indicating main control parameters of the aircraft and BMI task 

The visual feedback from the operant learning BMI task was also displayed 

on the top left corner of the screen so that the subject was able to relate 

the feedback regarding the aircraft’s outputs and the BMI feedback 

trained previously (cf. Chapter 2). In that display, the ball position in 

relation to the horizontal lines indicated the strength of the command 

being sent to the flight controller, scaled linearly to [-1,1] (cf. BMI control 

section in Methods). The cursor’s tail, displayed in magenta to the left of 

the ball, indicated previous commands up to 1.5 seconds into the past. 

The movements of the ball in the upward/downward directions were 

translated to left/right commands sent to the aircraft.  

The target heading was indicated with a heading bug, which was red when 

the difference between the current heading and the target was above 10º, 
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it turned yellow when it was between 5º and 10º error and was green when 

the error was below 5º. These values follow the requirements for pilot 

license flight tests (Joint Aviation Requirements Flight Crew Licensing, 

2006). 

 

During a flight, there are many external factors that may affect the flight 

direction of an aircraft, e.g. winds and gust, air space regulations, 

deviating from other in-route aircraft. One of the main onboard 

instruments available to a pilot is the magnetic compass, Fig. 3.4. It 

allows the pilot to know in which heading the aircraft is flying and whether 

changes to that heading are needed to keep a specific direction of flight. 

In this work, we took advantage of the information displayed on the 

magnetic compass and designed an experiment where the pilot needed to 

turn the aircraft to a designated heading on the compass using the signal 

provided by the BMI.  

 

 
 

Fig. 3.4 | Example of aircraft compass displayed during the BMI task. Aircraft is flying on the 

magnetic heading 126º and the target heading to turn the aircraft to is 074º. The pink arc on the 

top of the compass indicates the speed at which the aircraft is currently turning to the left. 
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We divided the experimental setup into two main tasks. In the first task, 

the objective was to direct the aircraft to an indicated fixed heading on 

the aircraft’s compass and once reached keep the aircraft flying in that 

direction. In the second task, the goal was to follow a heading bug that 

would be in continuous motion, thus constantly turning the aircraft into 

a designated direction.  

 

For both tasks, the flight controller received input commands from the 

BMI station which was connected to the EEG system. The activity 

recorded by the EEG system was transformed in near-real-time with a 

fixed transcoder, as explained in chapter 2. The resulting output command 

from the BMI was sent to the flight controller that further transformed 

the signal into appropriate commands to control the aircraft simulator. 

The flight controller was engineered to implement specific transfer 

functions that translated the commands sent by the BMI station into 

different control strategies to displace the aircraft laterally. For each 

transfer function implemented, different parameters were tuned to better 

accomplish the goals of the designed tasks. Several tests were run with 

three main configurations implementing three types of transfer functions 

(cf. Methods). Below we describe the main results for each of the tasks. 

 

Task A – Turning the aircraft to a fixed heading 

 

The first task’s objective was to simulate potential real flight situations 

where changes in an aircraft heading are issued by the controller, for 

example by an airfield tower. In such cases the pilot needs to turn the 
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aircraft to the new heading indicated on the magnetic compass. In this 

experiment, each trial can be divided into two different phases: reaching 

the target heading, followed by maintaining that same heading. During 

flight, each target heading was indicated by a green heading bug on the 

compass on top of the corresponding magnetic heading, Fig. 3.4. The 

pilot was advised to always choose the shortest turn to acquire the next 

heading and to turn with standard rate of turn (3º/s), if possible. After a 

period of time, a new target heading was calculated using Eq. 3.1, where 

the heading variations Δ^ could be any integer multiple of 10º to the left 

or right direction. 

 

ψ.` = ψ. + 	Δψ                            (3.1) 

These arbitrarily chosen values ensured that the next target was always 

unpredictable. The maximum time allowed to reach the target, as 

calculated by Eq. 3.2, was a function of the heading variations Δ^ and of 

the standard turn rate (3º/s). This rate of turn is typical in flight control 

because it allows the pilot sufficient time to cross-check the flight 

instruments and avoid drastic changes to the aerodynamic forces being 

exerted on the aircraft. 

 

$ = bc
H°/B

+ 63f                        (3.2) 

 

The constant in the end accounted for time to maintain the target heading 

and enough time for turn initiation and termination. 
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The first transfer function we implemented in the flight controller, YA,  

was a double integrator which changed the turn rate by 1.5º/s, every 

second the command would be at a maximum input, Eq. 3.3. 

 

Yh = ih 	.		
0
Bj
= 	 0.8°	.k/0RI°

Bj
= I.Ilml

Bj
										               (3.3) 

 

A high-level filter like the double integrator was chosen for an initial 

attempt because it corresponded to the control of the rate of rate of turn 

of the aircraft. This meant that once a turn was initiated with a correct 

rate of turn, the subject would only have to keep close to zero input values 

until the turn was finished. Zero input command meant constant rate of 

turn. The result of the use of this transfer function is shown in Fig. 3.5A. 

The target heading is represented in green and the steps indicate the 

arbitrary changes in heading which happened after specific periods given 

by Eq. 3.2. The blue line represents the flight path of the aircraft during 

the run. With this transfer function we saw that the aircraft was flown 

with constant turn rates and smooth paths, which can be seen by the 

straight lines in the plots. However, controlling the rate of rate of turn 

made the aircraft less responsive and less agile, as can be seen by the small 

amount of inflexions of the blue curve during the run.  
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Fig 3.5 | Aircraft heading during Task A. The target heading changes at variable time intervals as 

a function of the initial heading separation (see Eq. 3.2). Flight controller transfer function YA was 

used on the top left plot while YB ,with different time constants, was used for the other three runs. 

 

This lack of agility demanded for an anticipation of the end of turn much 

earlier than with a reactive filter, which resulted in a higher mental effort 

to predict when to start undoing a turn. Furthermore, the turns were 

difficult to start and finish, which resulted in overshooting some of the 

targets.  

 

In order to introduce more maneuverability to the control, one of the poles 

in YA was changed from a pure integrator to a first-order filter, Eq. 3.4.  
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Yn = Kn
0

(	pqBr0)B
	= I.0

(	H.RlBr0)B
																													    (3.4) 

 

The values of TB and KB were set after a few training turns, to assess 

which values would provide the best feeling of control to the subject. Even 

though the aircraft was more reactive with this new filter, it also 

demanded constant non-zero control inputs during turns. This resulted in 

more jitter during the control of the aircraft, in particular during the first 

attempts, Fig. 3.5B. 

 
Even in such cases the control still felt sluggish to the subject, which led 

to a further decrease of time constant in the first-order lag to TB = 1.5, 

Fig. 3.5C, and later to TB = 1.2, Fig. 3.5D. In these attempts, we see a 

definite increase in performance over training, benefiting from the 

adjustment of the parameters discussed previously, which can be 

translated into faster reaches and staying longer in the target heading. 

Still, we see some that some of the turns were not easy to maintain, in 

particular on the three last right turns of Fig. 3.5C. 

A third transfer function was attempted to reduce jitter in the flight path 

while maintaining the responsiveness and maneuverability of the system. 

In order to do this, we filtered the signal obtained from the BMI station 

with a low-pass filter, Eq. 3.5, before applying YB from Eq. 3.4 with the 

same parameters as described above. The resulting transfer function was 

called YC. 

 

Ys9W. =
0
Br0
																																																			    (3.5) 
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With this new transfer function, the aircraft was more responsive and the 

targets could be more easily reached. Changes in direction were also easier 

to perform, Fig. 3.6A,B. The introduction of the filter, however, also 

introduced considerable lags into the control. All in all, this was still seen 

as a good compromise to the other transfer functions tested.	 
 

 
Fig 3.6 | Aircraft heading during Task A. Flight controller transfer function YC was used for both 

plots. 
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Task B — Heading Bug tracking 

 

For task B, we explored the capacity of the pilot to control the lateral 

maneuverability of the aircraft by continuously tracking a moving heading 

bug. The continuous displacement of the heading bug was given by Eq. 

3.6. 

 

ψ.` = 	∑ u9 	sin(	y9	$	)0I
9:0                        (3.6) 

 

where y9 and u9 changed according to Table 3.1. 

For this task we used transfer function YC, since it was the one providing 

the best results in task A. Fig 3.7A,B shows the results of the 

continuously tracking of a moving heading bug for two runs (target 

represented in green and actual flight path represented in blue). 

 

 

Table 3.1 | Components of Eq. 3.6 to calculate the continuous displacement of the heading bug. 

 

Due to the nature of the task and constant changes in the heading bug 

direction, the difficulty of this task was much higher than in task A. We 

can observe that although very few attempts to the task were performed, 

Frequencies	
z{	[Hz]	

Frequencies	
z{	[rad/s]	

Amplitudes	
|{	[º]	

12/300	 0.251	 5	
21/300	 0.44	 0.5	
34/300	 0.712	 0.5	
57/300	 1.19	 0.5	
95/300	 1.99	 0.5	

Frequencies	
z{	[Hz]	

Frequencies	
z{	[rad/s]	

Amplitudes	
|{	[º]	

1/300	 0.0209	 5	
2/300	 0.0419	 5	
3/300	 0.0628	 5	
4/300	 0.0838	 5	
7/300	 0.147	 5	
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the subject was able to track the heading bug continuously, improving 

performance from first to second attempt and maintaining the angle to 

the target within a few degrees. In the second attempt although there was 

a sudden deviation of 50º from the target, the subject was able to return 

to the desired path just before the finish of the run.  

 

 
Fig 3.7 | Aircraft heading during Task B. Flight controller transfer function YC was used for both 

plots. 

Discussion 

The objective of the work described in this chapter was to showcase a real-

world application of the operant learning BMI paradigm that was 

introduced in Chapter 2. The outcome of this project was successful in 

reporting that the control of an aircraft can be attained. By engineering 

specific control functions that translated the BMI output commands into 

control commands to the aircraft flight controller, we were able to show 

that targeting specific fixed headings and performing slight changes of 

heading to track a moving object are possible with BMI control. The 

results obtained during this project should, however, be validated in 

follow-up experiments, including a higher number of subjects and longer 
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training sessions to evaluate changes in performance with training. 

Previous work has demonstrated BMI control of virtual and physical 

drones using motor imagery (MI) approaches (LaFleur et al., 2013; Doud 

et al. 2011). Under the BRAINFLIGHT project a MI-based BMI approach 

was also used to control the DA42 simulator (Zander et al., 2014; Fricke 

and Holzapfel, 2014). Comparison of the different BMI approaches is 

important to evaluate under which circumstances each technique plays a  

more relevant role. The current results, however, are difficult to compare 

with previous literature results since the tasks performed are not the same 

and the metrics to evaluate performance change. In order to compare the 

approaches and their results, future work should it would develop a 

standardized experiment with different BMI control methods and establish 

pre-defined measures of performance. 

 

Methods 

Participant 

 

Here we report the experimental results conducted with one subject (male, 

27 years old). The main goal of the project was to provide a proof of 

concept that the aircraft control with operant learning BMI was possible. 

The efforts in this project were concentrated in developing and tuning 

parameters to prove the concept. The flight simulator location was far 

away from the BMI laboratory (a 3-hour flight between Munich and 

Lisbon), which rendered the experiments more infrequent than would have 

been necessary to conduct an experimental protocol that could be tested 

and replicated with several subjects and more sessions. The subject that 
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performed the experiment reported in this chapter had a valid private 

pilot license and was familiarized with the aircraft instruments that were 

used during the experiments. The subject had also undergone significant 

training using the BMI operant learning paradigm that was implemented 

to control the aircraft.  
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EEG equipment and Signal Transformation 

 

EEG signals were acquired using an ActiveTwo measurement system 

(BioSemi Instrumentation, Amsterdam, Netherlands), with a sampling 

frequency of 2048Hz. EEG was recorded using 64 electrodes arranged in 

the modified 10/20 international standard (Klem et al. 1999).  

The data was collected under Ubuntu Linux 10.04 Operating System and 

the recording was done based on the CNBI Toolkit (CNBITK) framework 

for BCI, developed in the CNBI lab at EPFL which implemented a 

standardized communication interface based on the Tools for Brain 

Computer Interaction (TOBI) project (Muller-Puftz et al. 2011).	The EEG 

data were filtered and processed online in steps of 250 ms taking into 

account the last 1 s of data (or 2048 points). The EEG signal of the 64 

electrodes was bandpass filtered between 1-80Hz (zero-phase Butterworth, 

4th order) using a zero-phase filter and a notch filter was applied to the 

signal at 50Hz (second-order Infinite Impulse Response (IIR) filter). For 

each segment of 1 s., we calculated the power spectral density (PSD)) of 

the 5 chosen electrodes for the subject, using the Welch's method (pwelch 

function implemented in MATLAB).  The PSD was then used to calculate 

the resulting signal for the BMI control and sent to the aircraft flight 

controller, as described below. 

 

BMI control 

 

The BMI ran on a standalone computer, i.e., BMI station, that was 

connected via Ethernet to the flight controller. The neural activity 
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recorded with the EEG system was transmitted to the BMI station in real-

time and a fixed transcoder was used to convert the signal into an input 

command to the flight controller, where it was further modified to actuate 

on the aircraft controllers. The transcoder was a mathematical function of 

the four specific EEG frequency bands described in Chapter 2. The average 

power spectral density (PSD) of the theta (4-8Hz) and gamma (30-80Hz) 

bands had the opposite effect of the ones in the delta (1-4Hz) and beta 

(14-25Hz) bands. An increase in the average power per electrode in theta 

and gamma, as well as a decrease in power in the delta and beta bands, 

led to a command that changed the aircraft’s roll angle more to the left, 

while a decrease in the former two bands and an increase in the latter two 

bands led to a command to change the aircraft’s roll angle to the right, as 

follows: 

  

}n~� = '()	 Ä		∑ 	 ÅÇ	ÉÇ
ÑÇ			ÖÇ

		8
ÜáG:0 à																																				(3.7) 

 

The ratio of band powers was calculated and summed for the 5 electrodes 

chosen for the subject, and it was log-transformed in the end so that the 

variation of output commands would follow a Gaussian 

distribution.  Every 250ms (4Hz), an output command was calculated 

taking into account the last 1sec of EEG data from the 5 chosen electrodes. 

The result of Eq. 3.7 was then scaled linearly, so that a value of YBMI = 

targetUP on the original task would be converted and sent to the flight 

controller as YBMI_sent = 1; and a value YBMI = targetDOWN would be sent 

to the flight controller as YBMI_sent = -1. The flight controller would then 

take the YBMI_sent value received and pass it through an engineered 
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transfer function, tailored to increase maneuverability of the aircraft (cf. 

Flight controller transfer function) 
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SECTION B – Development of a dry-electrode EEG headset for 

operant learning BMI 

 

Electroencephalography (EEG) systems typically provide a wide range of 

advantages that make them attractive to be used in BMI applications, 

when comparing to other recording techniques (cf. chapter 1). However, 

EEG systems that provide good quality recordings and are used in research 

and clinical applications, like the ones used in chapter 2 and section A of 

this chapter, still have some disadvantages. In particular, these systems 

can be time-consuming to assemble and require a specialist to set them 

up. The typical implementation of an EEG system requires the use of 

conductive gel, necessitating the need to shower after each utilization, 

require dedicated hardware and software to process the data, and 

transform it to be used for a BMI application, etc. Several companies have 

started addressing these problems by providing systems that are easier to 

set up, use semi-dry or dry electrodes and may provide wireless 

transmission of raw EEG data. Among others, Neuroelectrics 

(https://www.neuroelectrics.com/), Bitbrain (https://www.bitbrain.com/)  

Cognionics (https://www.cgxsystems.com/), and mBrainTrain 

(https://mbraintrain.com/) have been developing interesting solution that 

provide solutions to some the issues mentioned above. 

 

In this section we briefly present on-going work on the development of a 

novel, wireless EEG system that is portable and easy-to-use while 

providing high-quality signals. The system is a headset with five active, 
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dry EEG electrodes placed above the motor and frontal cortices, that 

record and amplifying the signal locally, Fig. 3.8. The processing of the 

recorded signals is fully done within the headset via a transcoder that is 

programmable in hardware, thus avoiding the need for extra, proprietary 

software for signal processing. The result of the programmable transcoder 

is directly and wirelessly sent to any external device to be controlled. 

 

The headset can be used directly with an operant learning task that runs 

in the user's phone or other devices and allows them to learn to voluntarily 

control specific EEG patterns, through an approach similar to the one 

described in chapter 2. The system is versatile, allowing the 

implementation of adaptive algorithms that enable changes in the 

transcoder, thus making it more adapted to the user and the specific device 

to control. Together with the headset, we developed an Android app and 

a Virtual Reality (VR) game that serve as show cases for the technology. 

 

 

  
Fig. 3.8 | Design of the portable EEG headset. (Left) Computer generated render of the headset; 

(Right) Working 3D printed protoype built from the specifications of the rendered design. 
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Headset specifications 

 

EEG SENSORS  

5 Channels: Active electrodes C3, Cz, C4, F3, F4  

2 References: Passive electrode: Bias - left mastoid A1 

Reference - right mastoid A2 

Sensor material:  

Active electrodes  - Currently using Flexible dry 

electrode Cognionics;  

Passive electrodes - Biomedical Sensor Pads - H124SG 

 

EEG SIGNAL 

Sampling method: Sequential sampling, single ADC 

Sampling rate: 500 SPS or 1kSPS (user configured) 

Resolution: 24 bits with 1 LSB = 0.012µV  

Bandwidth: 0.1 – 80Hz 

Filtering: Built in digital 5th order butterworth filter 

bandpass; Digital notch filters at 50Hz or 60Hz 

Dynamic range (input referred): 100mV(pp) 

  

MOTION SENSORS 

Accelerometer: 3-axis +/-2g 

Sampling rate: 100 Hz 

Resolution: 12 bits 

 

CONNECTIVITY 

Wireless: Bluetooth 2.1 

Wireless Range: 10 meters 

 

POWER 

Battery: Internal Lithium 

Polymer battery 1200mAh 

Battery life: up to 6 hours 

Charger method: MicroUSB 
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4 
DISCUSSION 

 

 

The purpose of this research was to 1) develop a novel non-invasive Brain-

Machine Interface (BMI) with a fixed transcoder to continuously control 

a device and 2) test if human subjects can learn and consolidate a 

transformation between a complex EEG pattern and an effector. 

The approach to BMI required that the subjects operantly learned to 

modulate their neural activity establishing a new link between the activity 

and the intended control action. In order to do so, subjects had to enter 

the neural pattern of the transcoder more efficiently. We showed that 

subjects learned a fixed, complex BMI transform, increasing their task 

performance throughout training. The learning was consolidated and 

recalled after a long training intermission. The findings within this thesis 

advance our understanding of non-invasive human BMI, opening up a 

range of possibilities for the implementation of new BMI transcoders and 

their application in real-world scenarios. 

  

The goal of a Brain-Machine Interface is to reliably and robustly convey 

enough intent from the central nervous system (CNS) to accurately control 

an effector such as a prosthetic device, a computer or even our own 
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muscles. Ideally, controlling a BMI should be as seamless and natural as 

controlling one's own limb, and the control should be stable and last for 

long periods of time.  

  

The first experiments with brain-machine interfaces were conducted over 

half a century ago (Fetz, 1969; Kamiya, 1969). Since then, different 

technical implementations of BMIs have demonstrated the potential to 

restore communication and movement in patients with neurological 

injuries and movement disorders (Benabid et al., 2019; Birbaumer et al., 

1999; Collinger et al., 2013; Donati et al., 2016; Hochberg et al., 2012). 

BMIs have also played an essential role in fundamental neuroscience and 

in our understanding of how the brain changes during learning, in 

particular, how neural activity is shaped when acquiring new abstract 

skills and perfecting them (Athalye et al., 2018; 2017; Ganguly and 

Carmena, 2009). Despite these many advances, there are still barriers to 

the development of BMIs that prevent their widely accessible 

implementations. In particular, current non-invasive BMI performance is 

still far from the practical efficacy necessary to be used on a daily basis.  

 

We can categorize the current challenges of the field into two main classes. 

The first class has to do with the quality of signal information that a non-

invasive device can acquire. Although the most extensively used non-

invasive BMI technique has been the electroencephalography (EEG), these 

systems still provide a low signal-to-noise ratio (SNR) when compared to 

invasive (Ball et al., 2009) and other non-invasive techniques (Goldenholz 

et al., 2009) and require complex and cumbersome equipment. The 



DISCUSSION   |  133 

 

 
C

H
APTER

 4 

primary source of the EEG is the synchronous activity of thousands of 

cortical neurons, reducing the spatial resolution of the recorded signal. 

Additionally, by recording the activity on the scalp, the EEG is affected 

by artifacts and outside noise, further affecting the quality of the signal. 

The second class of challenges has to do with high inter- and intra-subject 

signal variability when subjects perform BMI tasks. Signal variability has 

proven to be one of the most difficult BMI challenges to overcome. With 

the rise in popularity of the field of Machine Learning, many studies have 

proposed highly complex algorithms capable of classifying and linking 

neural activity to the subject's intentions (Lotte et al., 2018; Müller et al., 

2008). However, the lack of consistency in the recorded signal over time 

hinders the algorithms' performance, which negatively affects the control 

of a device through the BMI. Our work and this dissertation have mainly 

addressed the second limitation, proposing an alternative approach to 

BMIs in chapter 2. Moreover, in chapter 3, we also briefly addressed some 

of the concerns of the first challenge, and we return to that discussion at 

the end of this chapter. 

  

As described in chapter 1, a closed-feedback BMI loop typically comprises 

three main components: The sensors (collecting neural activity from the 

subject's brain), the processor (that implements mathematical 

transformations of the neural activity through specific algorithms) and 

lastly the device that is to be controlled. The subject's transformed neural 

activity is sent to actuate on the device, changing its state. A closed-loop 

is then established by providing the subject with visual or sensory feedback 

of these changes in near-real-time. For a closed-feedback BMI loop to 
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operate correctly, there needs to be adaptation within the control loop. 

This adaptation is a critical step of a BMI to guarantee that the subject's 

intentions match the appropriate control changes on the device. Within 

the control loop, there are two places where the adaptation can occur: the 

algorithm and the subject. Depending on where in the control loop, the 

adaptation happens, we can either have a decoder (adaptation of the 

algorithm) or a learning (adaptation of the subject) approach to the BMI 

(Carmena, 2013). 

  

In chapter 2, we described the task and results of an operant learning 

approach to BMI, where subjects learned a fixed transcoder to 

continuously control a cursor on a screen. However, most brain-machine 

interfaces, and in particular the non-invasive ones, have focused on the 

decoder approach. This approach's goal is to decode a natural plan in the 

neural signals. A mathematical model is trained to decode and categorize 

the subject's neural activity of pre-existing natural plans and relate it to 

specific control actions on a device. Examples of natural plans for BMI 

control are the imagination, planning, or execution of specific motor 

commands or limb movements. Additionally, the modulation of a mental 

state such as relaxed/meditative or attentive/aroused can also be natural 

plans used for a BMI. These plans can be decoded by analyzing shifts in 

the amplitudes of the signal or specific EEG frequency bands.  

 

Although the decoder approach has shown remarkable performance 

results, it has also underlined some of its issues. In particular, authors 

have recently started to question the attention paid to the development 
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of the classification algorithms of natural plans while overlooking the 

subject's role in the BMI loop (Lotte et al., 2013; McFarland and Wolpaw, 

2018; Perdikis et al., 2018). Decoding pre-existent natural plans comes 

with a few problems. The first is the assumption that the intended plan is 

always generated in a similar way, and expressed by similar neural 

activity. The task's performance will depend on the stability of the natural 

plan and its corresponding brain activity. As long as the activity is kept 

sufficiently constant, the algorithm will be able to classify it according to 

the categories it was trained on. However, as soon as it changes, the 

algorithm will no longer be able to recognize it and will need to be 

retrained. Changes from day to day in the EEG when performing the 

natural plans are frequent, thus affecting the decoder's performance and 

requiring its recurrent adaptation. A second problem is more fundamental 

and arises from the actual design approach to BMIs. When subjects use a 

BMI to receive continuous feedback of activity and accomplish a goal in a 

neuroprosthetic task, e.g., moving a cursor on a screen, they are readily 

confronted with the fact that the neuroprosthetic is not the natural limb 

or mental state that they are used to control. In fact, the neuroprosthetic 

is an entirely novel limb, and the brain needs to learn to adapt to this new 

situation (Carmena et al., 2003; Ganguly and Carmena, 2009; Ganguly et 

al., 2011). If a neuroprosthetic skill is similar to introducing a novel limb 

in the system, then why would we require the subjects to control it through 

pre-established natural plans? We know that animals have the striking 

capacity to adapt to their environment, selecting neural activity that 

shapes actions that are optimized to increase rewards (Athalye et al., 2018; 

Costa, 2011). Then, why not exploit this capacity and design BMIs that 



136  |  CHAPTER 4 

 

 
C

H
APTER

 4 

fully capitalize on this property of our brains? This is where the learning 

approach can be essential. 

  

The learning approach takes on these two problems of the decoder 

approach by shifting the role of adaptation to the subject. As introduced 

in chapter 1, the learning approach uses a fixed transcoder that needs to 

be learned by the brain. This transcoder is an entirely new pathway 

between activity and a prosthetic skill. Since it is not selected for its link 

to an a priori natural motor plan the brain needs to adapt to the 

transcoder and the transformation needs to be learned de novo (Carmena, 

2013; Costa, 2011). Learning to establish a new link between the brain 

activity and the control of an effector through a fixed transform is much 

like having a new spinal cord directing the transformed brain activity to 

a new limb. Previous studies have shown that animals can learn a fixed, 

arbitrary transcoder of neural activity (Athalye et al., 2018; Clancy et al., 

2014; Koralek et al., 2012). These studies have implicated brain structures 

such as the motor cortex, and striatum as playing important roles in 

establishing new neural patterns in BMI tasks, similar to what happens 

during motor skill learning (Barnes et al., 2005; Costa et al., 2004; Jin and 

Costa, 2010; Karni et al., 1998; Yin et al., 2009). In one of these studies 

(Koralek et al., 2012), animals learned to modulate the pitch of a speaker, 

i.e., the neuroprosthetic skill, which is dependent on the differential 

activity of two ensembles of cells in the motor cortex, in order to get 

sucrose or pellet rewards. Our work expands on the results of those studies, 

implementing a similar operant learning approach in a human BMI task 

using EEG. 



DISCUSSION   |  137 

 

 
C

H
APTER

 4 

Here, we developed a task that uses a fixed transcoder, constructed from 

an original rare EEG pattern that depends on four frequency bands. The 

transcoder was not initially related to any mental or motor task and thus 

had to be learned de novo in order to increase rewards in the task. We 

showed that subjects increased task performance over two weeks, i.e., 

learned the transcoder, and became more in control of the arbitrary EEG 

pattern. We showed that there was a phase of rapid improvement in early 

training, followed by a phase of slower learning. This learning profile is 

also typically observed in motor skill learning (Costa et al., 2004; Karni et 

al., 1998), further strengthening the link between the BMI learning 

approach and the learning of a new motor skill. As expected, learning 

could not be seen when subjects were not provided with the feedback of 

their transformed activity.  

 

We also demonstrated subjects' capacity to recall the learning after a 

three-week training intermission during a consolidation test, showing that 

task performance did not drop after the long training break and could be 

readily recalled. This last result is important for two reasons. Firstly, it 

shows how this BMI approach can be valuable for real-life scenarios. Being 

able to recall a learned skill and having it readily available would be 

paramount if we want to introduce such technology in the daily control of 

devices. Retraining a classifier to account for pattern changes after 

training intermission is not ideal for such applications. Secondly, the fact 

that the learned transcoder was able to be recalled after a long training 

intermission gives confidence to the robustness of the consolidation. This 

can be important when other transcoders are introduced and need to be 
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learned. Being able to keep the consolidated learning of the first transcoder 

is crucial if we want BMIs to achieve the control of multiple degrees of 

freedom. Additionally, the results of the re-test after more than two years 

of training intermission, despite the few subject points, suggested that 

learning could still be recalled, further supporting the robustness of the 

consolidation. 

 

Importantly, we observed no significant changes in EMG signals before 

and during target reach, as measured by external electrodes around the 

eyes with a subset of the subjects during the experiment. We do see, 

however, evident changes in EMG after target reach, as subjects relax and 

prepare to start a new trial. Furthermore, when conducting a subset of 

experiments where the cursor position would not be updated if the 

algorithm identified an artifact condition, we still observed the subjects' 

capacity to perform the task. These data suggest that subjects do not rely 

on physical movements to learn the task and continuously control the 

cursor. However, it is difficult to exclude the possibility that subjects use 

some movement to generate neural activity and drive the cursor. A 

possible way of testing such a scenario would be to perform the task in 

patients with complete locked-in syndrome (CLIS) and evaluate whether 

the increase in performance could still be seen. 

 

We also evaluated how the subjects performed the task. For that, we 

tested different performance measures that had not been stated as the 

primary task objective, but still could be thought to be related to task 

performance. Studies have shown that brain activity is refined with 
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training (Athalye et al., 2018; 2017; Costa, 2011). The basal-ganglia 

reinforces inputs to the cortex, which lead to the co-activation of task-

relevant neurons, and the refining of their dynamics (Koralek et al., 2012). 

Task-unrelated activity, on the other hand, is not reinforced as much and 

is thus seen to decrease with training (Athalye et al., 2018; Ganguly and 

Carmena, 2009). In this study we showed that with training subjects were 

able to increase the percentage of time spent in the correct direction. This 

result helped to understand that the control of the EEG pattern happens 

even when targets had not been reached. We could also further test this 

observation by analyzing the changes in cursor position distribution. In 

these analyses, we showed that the difference in cursor position 

distributions between up and down trials became more distinct with 

training, moving into the direction of the target. Increasing the separation 

of the distributions implies that the learning of the EEG pattern becomes 

more refined with training. Being able to understand the subject's intent 

during the trial, even at times when the correct target has not been 

reached, could play a significant role in the use of BMI for real-world 

application. This would be particularly important if one were to move in 

the direction of mutual learning, where both the subject and the algorithm 

adapt (Carmena and Cohen, 2013; Dangi et al., 2014; 2013; Kim et al., 

2006; Gilja et al., 2012; Perdikis et al., 2018). For example, (Dangi et al., 

2013) proposed the implementation of a closed-loop decoder adaptation 

(CLDA) that uses information about the task objective to fit the decoder 

to the subject's activity patterns. Using such approaches, the transcoder 

could be tweaked to approximate the subjects' intentions during the trial 

without largely affecting the performance and learning of the subject. 
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Combining operant-learning with decoder adaptation and even with 

shared-control between the algorithm and the subject (Kim et al., 2006) 

could lead to increased performance in tasks, and provide the practical 

efficiency needed for real-world implementations. As described in chapter 

1, however, one possible difficulty in this approach is to understand when 

to change and how to change the decoder parameters without affecting 

the subject’s capacity to modulate their neural activity and still increase 

task performance. The combination of the adaptation in both agents 

(algorithm and subject) in such BMI closed-loops needs to be carefully 

considered in order to account for the problem of the moving-target and 

allow for robust and high-performing BMIs.  

 

Another important topic to discuss within this dissertation is the choice 

of the transcoder. All subjects used the same transformation of neural 

activity to the cursor position, changing only the electrodes used for each 

subject and the position of the targets. Both properties were calculated 

before the first day of training and maintained constant throughout 

training; as mentioned before, the target position was allowed to change 

as an offset in very particular conditions, but their distance to the center 

was always constant, thus not changing the task and maintain it unbiased. 

Was there anything specific to this transcoder that led to the positive 

results we reported? Would subjects have learned any other transcoder?  

 

We can address each of the questions independently. For that, we must 

first review the reasons that led to the choice of this particular transcoder. 

When choosing the transcoder we established a few a priori requirements: 
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1) the decoder should be robust and shouldn't depend on the power of 

only one frequency band, which could probably be controlled by changes 

of mental state, 2) it should change smoothly in time, providing relevant 

feedback to the user, 3) it should be resistant to significant motor artifacts, 

such as moving the head, chewing or moving the eyes, and 4) if possible, 

it shouldn't need the use of noise extraction during online control, such as 

Independent Component Analysis (ICA) (Delorme et al., 2007; Makeig et 

al., 1996). Although different transcoders were tested at first, the 

transcoder we ended up using met the above criteria. Additionally, 

previous findings had reported that Local Field Potentials (LFP) 

measured in the motor cortex and striatum of rodents showed a strong 

correlation of the gamma*theta/delta*beta index with dopaminergic 

activity (Costa et al., 2006). Given that this particular index is a naturally 

occurring frequency in the brain and is correlated with dopaminergic 

activity, which has been linked to motivation and learning (Berke, 2018), 

there is a higher likelihood that subjects would be able to learn this 

transcoder. 

 

Regarding the question of whether subjects could have learned a different 

transcoder, it is difficult to answer without further investigations. 

However, to the best of our knowledge, there is nothing particular in this 

transcoder that would make it unique. Thus, we would assume we can find 

other decoders that meet the requirements stated above and that subjects 

could also learn. Targets for different decoders would still need to be 

calculated so that the operant learning protocol would provide enough 

rewards to reinforce the learning. With this transcoder, we observed that 
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when reaching the targets, the four EEG frequency bands were modulated 

differently from the EEG activity during pre-trial periods, and each of the 

bands was modulated in the direction that facilitated target crossing. This 

was not seen, however, during runs without feedback. It would be 

interesting to evaluate if subjects would still be able to learn the transcoder 

if some of the bands were inverted, or if their frequency ranges changed.   

  

Despite pointing out in chapter 1 that BMIs can hold a promise for 

patients suffering from neurological injuries and movement disorders, this 

topic was not fully addressed in this thesis. Our experiments in chapter 2 

were conducted with healthy individuals. In chapter 3, we demonstrated 

the practical use of our approach with a healthy subject in an application 

that would probably not have the highest demand by patients suffering 

from neurological disorders that limit their mobility, as discussed in 

chapter 1. Further work on this topic would benefit from investigating 

whether this approach can be used as an alternative to the currently 

implemented non-invasive BMI methods for patients with movement 

disorders. In particular, testing the paradigm with locked-in syndrome 

(LIS) and complete locked-in syndrome (CLIS) patients would be 

instrumental in understanding whether these patients can learn a new 

EEG skill. Studies have reported that patients that attempted to used 

BMIs after they had entered CLIS state were not able to generate 

consistent voluntary signals to control the BMI (Birbaumer, 2006). Our 

paradigm has shown stability across days and is independent of motor 

activity, which would be an essential property for application with LIS 

and CLIS patients. Event related potentials (ERP) measured in CLIS 
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patients show reactions to different stimuli, suggesting that some 

processing modules are still intact (Hinterberger et al., 2005a; 2005b; 

Wilhelm et al., 2006). However, motor imagery tasks conducted with such 

patients do not always seem to result in high performing control (ibid.). 

One possible explanation is that by not being able to move, these patients 

may lose the contingency between physiological behavior and its 

consequences. In such cases, extinction can set in due to the lack of 

reinforced activity. It would thus be interesting to test whether these 

patients could still be able to acquire BMI skills through an operant 

learning approach as the one described above.  

                                    

In chapter 3, part A, we showed a practical demonstration of the operant 

learning BMI paradigm. The main objective was first to prove that the 

paradigm could be used in the airplane simulator. For that, we engineered 

flight controller parameters that would appropriately translate the 

outcome from the learned transcoder into a command to control the 

airplane simulator. The demonstration was successful, showing control 

over several runs to direct the aircraft to specific fixed headings and to 

track a heading bug. These demonstrations offered a useful proof of 

concept but would need to be replicated to evaluate the extent of control 

and the generalization to other subjects and flight profiles. Nevertheless, 

we were able to show the generalization of the learned transcoder to other 

tasks and control of a different dimension of movement than the one that 

had been trained initially (horizontal in the aircraft vs. vertical in the BMI 

training). 
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In chapter 3, part B, we briefly described on-going work related to the 

development of a new EEG headset. The currently available EEG systems 

that provide acceptable SNR for research and real-world applications are 

still cumbersome and expensive. Our objective with this development is to 

facilitate access to high-quality signals without the requirement of complex 

systems that require long setups and dedicated software. We described an 

EEG headset using active dry-electrodes, capable of processing EEG data 

in real-time on the headset through a fixed transcoder like the one 

described in chapter 2. The transformed signal is sent wirelessly to a device 

to be controlled without the need for extra analysis software. We predict 

such systems may open the access to EEG data to the general public, and 

the use and improvement of EEG-based BMIs. 

 

Summing up, the findings in this dissertation show that operant learning 

of an EEG-based task is possible and that it can be consolidated and 

recalled after long training intermissions. We also showed an application 

of this BMI approach in a real-world scenario of controlling an aircraft. 

Finally, we described the on-going development of an EEG headset 

capable of providing high-quality EEG signals and processing them locally 

in the system. This work thus expands on the currently available non-

invasive BMI paradigms and opens up the possibility for future 

investigations in this field.  
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