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Summary 
 

Optimal organismal function and survival in adverse conditions require robust 

homeostatic responses to challenging environmental conditions. Surviving a 

severe infection requires the synergy between resistance and disease 

tolerance, two evolutionarily conserved defense strategies that limit disease 

severity. Sepsis – a dysregulated host response to infection that leads to high 

risk of death – is a prime example of extreme homeostasis disruption and 

therefore constitutes an excellent model to study homeostasis and inter-organ 

communication principles.  

An increasing number of studies have described cellular surveillance 

mechanisms that detect and correct deviations in homeostasis. How these 

protective programs can be harnessed to improve organismal fitness in extreme 

disruptions of homeostasis, such as sepsis, is still unknown. This thesis 

presents several lines of evidence for the protective effect of mild perturbations 

of core cellular functions in the context of infection. We began by gathering 

evidence from the literature that pathogen-induced homeostasis perturbations 

can be used by the host as an alarm sign for infection, thus triggering the 

appropriate defense responses.  

We then hypothesized that pharmacologically targeting core functions of the cell 

might unveil protective effects that can be used as new therapeutic options for 

sepsis and other inflammatory conditions. Using a mouse model of bacterial 

sepsis, we tested the protective effect of clinically approved drugs known to 

perturb cellular functions. We found that tetracycline antibiotics – in particular 

doxycycline – robustly increase survival to sepsis by inducing disease tolerance, 

independently from their direct antibiotic properties. By analyzing the effects of 

doxycycline in the main targets of organ dysfunction during sepsis, we found 

improved fatty acid oxidation and glucocorticoid signaling in the liver, together 

with increased damage repair in the lung.  

Mechanistically, we found that doxycycline – by binding to the mitochondrial 

ribosome and blocking the translation of mitochondrial-encoded transcripts – 
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decreases mitochondrial respiration in vivo, without compromising mitochondrial 

viability. Using a partial and acute deletion in the liver of CRIF1, a critical 

mitoribosomal component for protein synthesis, we found that mice are 

protected against bacterial sepsis. This observation is phenocopied by the 

transient inhibition of respiratory chain complex I activity by phenformin. 

Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial 

beyond their antibacterial activity. Furthermore, we prove that mitochondrial 

protein synthesis inhibition leading to respiratory chain perturbation is a novel 

mechanism for the induction of disease tolerance. 
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Resumo 
 

A manutenção de funções corporais e a sobrevivência em condições adversas 

requerem respostas homeostáticas a condições ambientais adversas. A 

sobrevivência a uma infeção grave envolve a sinergia entre resistência e 

tolerância, dois mecanismos de defesa conservados ao longo da evolução que 

limitam a gravidade da infeção. A sépsis – uma resposta desregulada do 

hospedeiro a uma infeção, que conduz a um elevado risco de mortalidade – é 

um caso exemplar de desvio extremo da homeostasia e, como tal, constitui um 

modelo excelente para estudar os princípios fundamentais de homeostasia e 

comunicação entre órgãos. 

Um número crescente de estudos tem descrito mecanismos celulares de 

vigilância que detectam e corrigem desvios nas condições de homeostasia. No 

entanto, a forma como estes programas celulares podem ser usados para 

melhorar a resposta do organismo a desvios extremos da homeostasia – como 

é o caso da sépsis – permanece desconhecida. Esta tese apresenta várias 

linhas que suportam a ideia de que perturbações ligeiras em funções celulares 

básicas têm um efeito protetor no contexto da infeção. Começamos por 

apresentar evidências publicadas na literatura de que perturbações da 

homeostasia provocadas por microrganismos patogénicos podem ser usadas 

pelo hospedeiro como um sinal de alarme que indicia uma infeção e ativa os 

mecanismos de defesa necessários.  

Levantámos então a hipótese de que fármacos que perturbam as funções 

básicas das células podem ter efeitos benéficos que podem ser usados para 

novas opções terapêuticas na sépsis e em outras condições inflamatórias. 

Usando um modelo de sépsis bacteriana em ratinhos, testámos o efeito 

protetor de fármacos aprovados para uso clínico, conhecidos por perturbar 

determinadas funções celulares. Descobrimos que o grupo de antibióticos 

tetraciclinas – em particular, a doxiciclina – aumentam a sobrevivência à sépsis 

por indução de mecanismos de tolerância, que são independentes do efeito 

antibiótico destes fármacos. Ao analisar os efeitos da doxiciclina nos principais 
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órgão afectados pela sépsis, mostrámos que este fármaco melhora a oxidação 

de ácidos gordos e a resposta aos glucocorticóides no fígado, aumentado 

também a reparação das lesões pulmonares. 

Em termos mecanísticos, reportámos que a doxiciclina – ao ligar-se ao 

ribossoma mitocondrial e ao bloquear a tradução de transcritos mitocondriais – 

diminui a atividade respiratória da mitocôndria in vivo, sem afectar a viabilidade 

mitocondrial. Usando uma deleção parcial e aguda da proteína CRIF1 no 

fígado, que tem um papel crítico na síntese proteica mitocondrial, descobrimos 

que os ratinhos ficam protegidos contra a sépsis bacteriana. Este resultado é 

replicado pelo o tratamento com fenformina, outra intervenção farmacológica 

que provoca uma inibição transitória na atividade do complexo I da cadeia 

respiratória. 

Em conjunto, estes resultados demonstram que antibióticos que se ligam ao 

mitoribossoma têm um efeito benéfico que vai além da sua atividade 

antimicrobiana. Adicionalmente, provámos que a inibição da síntese proteica 

mitocondrial, que conduz a uma perturbação na atividade da cadeia 

respiratória, constitui um novo mecanismo de indução de tolerância à infeção. 
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1.1 Introduction to homeostasis and stress responses 
 

The notion that organisms regulate their body functions in order to maintain a 

stable environment that is resilient to changes from the outside dates back to 

ancient Greece. At the time, different ‘humors’ were thought to regulate organ 

function, such that any disease could be explained by an imbalance of these 

essential fluids, either caused by endogenous factors or environmental stimuli. 

In the 19th century, Claude Bernard founded the basis of modern physiology by 

proposing that the ‘milieu intérieur’ – the fluids that comprise the inner part of an 

organism, which regulate its balance and protect it from external stress1 – are 

the most basic condition to support independent forms of life. This concept 

would be later explored by Walter B. Cannon, who coined the term homeostasis 

and proposed the existence of active mechanisms that work cooperatively to 

detect and correct even mild deviations from the setpoint2.  

In the subsequent decades, our understanding on how complex multicellular 

organisms regulate and maintain homeostasis has increased dramatically. We 

now know that mammals, for example, have evolved ways of maintaining 

temperature, pH, levels of glucose and ions, cell number, and countless other 

parameters, within very narrow ranges that result in optimal function of 

biochemical processes. Regulation of homeostasis encompasses two major 

steps: surveillance mechanisms that recognize deviations from setpoints, and 

compensatory responses – globally known as stress responses – that promote 

the adequate changes3.  

Surveillance mechanisms are represented at an organismal level (e.g. sensory 

neurons that detect changes in temperature and pressure, or pancreatic cells 

that sense blood glucose levels), but also at a cellular level (e.g. sensing of 

intracellular ATP levels by AMPK)4. Likewise, stress responses span from cell-

autonomous to systemic reactions (Figure 1-1). While the former usually involve 

cellular signal transduction pathways, ultimately leading to changes in gene 

expression or protein function that correct the necessary deviations (e.g. heat 

stress leads to an increase in the expression of heat shock proteins that prevent 
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protein misfolding)3; the latter are typically mediated by the central nervous 

system, resulting in increased circulating levels of catecholamines, 

glucocorticoids, and other ‘stress hormones’ that mediate a complex set of 

biochemical and behavioral changes5. The integration between cellular and 

organismal stress responses through the release of ‘danger signals’ remains 

poorly understood6,7, although a few elegant studies using the nematode 

Caenorhabditis elegans have provided valuable insights8,9.  

 

 
Figure 1-1 – Cellular and organismal stress responses that restore homeostasis (taken 

from6).  
Local stress induces cellular stress responses aimed at restoring homeostasis. Affected cells that 
are unable to correct the defects are removed by senescence or cell death programs, thus sparing 

neighboring tissues from further damage. In some cases, local stress responses are communicated 
distally and trigger systemic changes. 

 

Despite the advances in understanding basic mechanisms of physiology, the 

remarkable complexity of organisms – in which different organs need to be 

simultaneously independent and cooperative – and the myriad of cell 

autonomous and non-autonomous stress responses does not cease to motivate 

intense research efforts10. The next sections will provide a more detailed 

description of how animals respond to a major threat to homeostasis: invasion 

by pathogens. Later, we will come back to the concept of stress responses, and 

explore the central role of mitochondria in perceiving deviations in the 

environment and triggering compensatory changes in cellular function. 

 

which exposes DNA to the cytoplasm, followed by 
cGAS–STING activation, type I IFN secretion and 
consequent establishment of systemic immunity and 
immunosurveillance23,26. Accordingly, the therapeutic 
effect of microtubule- targeting anticancer agents (such 
as taxanes) might be, at least in part, linked to their abil-
ity to provoke micronucleation and consequent type I  
IFN secretion37, whereas the clinical failure of other 
antimitotic drugs may reflect their inability to trigger 
this process38. Thus, cancer cells may benefit from the 
inactivation of cGAS, STING or their downstream effec-
tors, including interferon regulatory factor 3 (IRF3)39.  
Of note, autophagy efficiently removes micronuclei40–42 
and hence might have an ambiguous role in tumour 
progression by avoiding chromothripsis (which would 
reduce the pace of clonal evolution) but at the same 
time suppressing micronuclei- driven type I IFN signal-
ling (which would compromise immunosurveillance). 
Whether the autophagic degradation of micronuclei con-
tributes to the well- established dual role of autophagy  
in tumour progression43,44 remains unresolved.

Additional links between the DDR and systemic 
homeostasis have been elucidated in Caenorhabditis  
elegans. DNA damage in C. elegans germ cells drives the 
activation of MPK1, the worm orthologue of mammalian 
MAPK3 and MAPK1 (REFS45), which causes the release 
of peptides that promote innate immunity response, 
followed by the activation of the ubiquitin–proteasome 
system in somatic tissues, enhanced proteostasis and 
systemic stress resistance45. In another study, localized 

exposure of nematodes to ultraviolet light to induce DNA 
damage was shown to trigger a systemic stress response 
that was dependent on cep-1, the orthologue of mam-
malian TP53 (encoding p53), and on cpr-4, the ortho-
logue of mammalian CTSB (encoding cathepsin B). In 
this case, local activation of CEP-1 promoted expression 
and secretion of CPR-4 into the extracellular fluids and 
into the culture medium. CPR-4 release was associated 
with reduced cell death in the non- irradiated tissues and 
neighbouring animals, as well as with larval lethality. 
Subsequently, CPR-4 was mechanistically identified as the 
factor responsible for these radiation- induced bystander 
effects46. This mechanism is an interesting example of 
intracellular adaptation to stress relaying a signal not 
only to the entire organism but also to other individuals. 
It remains to be seen whether extracellular CTSB (which 
is normally confined within lysosomes) also partici-
pates in the bystander effects of radiation in mammals. 
Of note, extracellular CTSB has been documented in 
human neoplasms47 and may influence tumour progres-
sion as well as responses to treatment48,49. Intriguingly, 
in mice, monkeys and humans, circulating CTSB levels 
are increased in response to exercise. In this context, 
CTSB was shown to act as a myokine that is required for 
the running-stimulated increase in adult hippo campal 
neuro genesis and spatial memory function50. Thus, CTSB 
may have multiple paracrine and endocrine effects in  
mammals as well. Whether CTSB secretion in mammals 
involves the DDR remains an open question.

Altogether, these examples illustrate some of the 
mechanisms through which the DDR can initiate para-
crine and endocrine signals with adaptive (or mal-
adaptive) consequences. To what degree the type and 
the extent of DNA damage influence these processes 
remains to be clarified. Moreover, it remains unclear 
whether there is a minimal degree of damage that is 
required to raise the systemic response and to what 
extent the intracellular output of the DDR (DNA repair) 
and its extracellular effects (paracrine and endocrine 
signalling) are coupled.

The unfolded protein response. The UPR operating at 
the ER, also known as UPRER, is an adaptive response 
aimed at resolving the accumulation of unfolded poly-
peptides in the ER lumen or eliminating cells that can-
not recover reticular proteostasis by inducing RCD3 
(BOX 2). In conjunction, the UPRER is able to initiate 
inflammatory responses that — if unresolved —  
contribute to pathogenic maladaptation, metabolic 
disorders and accelerated ageing51. For instance, renal 
epithelial cells subjected to ER stress secrete angiogenin 
(ANG) as a consequence of the activation of inositol- 
 requiring enzyme 1α (IRE1α; encoded by ERN1) and 
nuclear factor- κB (NF- κB) signalling, which favours the 
establishment of inflammation by tissue- resident  
macrophages52. Similarly, hepatocytes responding to 
ER stress secrete hepcidin antimicrobial peptide (HAMP)  
following the UPRER- dependent activation of cAMP- 
responsive element- binding protein 3-like protein 3 
(CREB3L3)53. Circulating HAMP ultimately causes 
hypoferraemia and splenic iron sequestration in 
mice53. This mechanism links the UPRER in a specific 
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Fig. 1 | Integration of cellular and systemic stress responses and their roles in the 
maintenance of organismal homeostasis. Mammalian cells respond to perturbations  
of the intracellular or extracellular microenvironment with mechanisms that are aimed 
at restoring cellular homeostasis. The successful preservation of physiological cellular 
functions supports, by extension, the maintenance of organismal homeostasis. 
If microenvironmental fluctuations are too intense or prolonged for cellular adaptation, 
however, mammalian cells actively undergo either senescence, resulting in their 
permanent proliferative inactivation, or regulated cell death (RCD), resulting in their 
elimination. Both cellular senescence and RCD constitute mechanisms for the 
preservation of systemic homeostasis when physiological cellular functions are terminally 
lost. Moreover, cellular adaptation to stress (be it successful, leading to damage repair 
and recovery , or not successful, leading to proliferative inactivation or elimination) 
is intimately linked to cell- extrinsic mechanisms that operate locally or systemically in 
support of organismal homeostasis. Thus, cellular responses to potentially threatening 
perturbations are efficiently relayed to the local and systemic microenvironment via a 
large panel of danger signals that operate as paracrine or endocrine mediators to 
promote the maintenance of organismal fitness.

Proteostasis
The maintenance of protein 
homeostasis within a defined 
organelle, cell or tissue, which 
involves correct protein 
synthesis, folding, distribution 
and degradation.

Myokine
One of several small proteins 
or proteoglycans that are 
released by myocytes upon 
contraction to mediate 
autocrine, paracrine or 
endocrine effects.

Nuclear factor- κB (NF- κB) 
signalling
Biological output of NF- κB- 
dependent transcription, 
generally involving a robust 
pro- inflammatory component.

Hepcidin antimicrobial 
peptide
(HAMP). Key negative regulator 
of circulating iron availability in 
mammals, promoting a state of 
accrued bacterial resistance.
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1.2 Host-pathogen interactions: an evolutionary arms race 
 

Protection against invading pathogens is an essential component of any 

program of homeostasis maintenance. As metazoans strive to keep their interior 

sterile, a complex network of sensors and effectors is in place to: 1) detect the 

presence of microorganisms; 2) discriminate between commensal and 

pathogenic microbes; 3) assess the severity of the threat; and 4) start the 

adequate compensatory responses. 

1.2.1 Pathogen sensing 

1.2.1.1 Microorganism-associated molecular patterns (MAMPs) 

The idea that specific molecules expressed by microbes (MAMPs) are 

recognized by specialized sensors of the immune system, named pattern-

recognition receptors (PRR), was originally proposed by Janeway in 198911 and 

remains to this day as the most widely accepted mechanism for pathogen 

detection. Experimental proof to support this theory arouse from the discovery 

of the Toll protein in Drosophila melanogaster12, soon followed by its 

mammalian homologue Toll-like receptor (TLR) 413. PRRs recognize molecular 

signatures associated with basic biological functions of particular classes of 

microorganisms, such as components of the cell wall or nucleic acids. For 

example, binding of lipopolysaccharide (LPS) from gram-negative bacteria to 

TLR4 expressed at the surface of patrolling immune cells, such as 

macrophages, engages a signaling pathway that culminates with activation of 

innate immune responses. To this day, twelve TLR have been identified in mice, 

all localized at the cell surface or at the endosomal membrane and with a wide 

range of ligands that include proteins, lipoproteins, dsRNA and DNA from 

viruses and bacteria14. 

Besides TLR, a number of other PRR have been identified. NOD-like receptors 

(NLR) are cytosolic sensors that bind to a variety of ligands, most notably 
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bacterial peptidoglycan, and engage innate immunity pathways, such as the 

inflammasome15. RIG-I-like receptors (RLR) are cytosolic proteins specialized in 

the recognition of viral RNA, leading to the activation of antiviral programs such 

as the interferon (IFN) response16. Finally, C-type lectin receptors (CLR) are a 

large family of sensors that bind carbohydrates – the best characterized 

example being binding of β-glucan by dectin 1 – with an important role in 

antifungal responses17.   

While PRRs represent an effective tool to detect microbial components – as 

highlighted by the fact that they are conserved across most metazoans – the 

MAMP theory fails to grasp the complexity of pathogen sensing. In fact, MAMPs 

are expressed by commensals and pathogens alike, forcing hosts to employ a 

series of checkpoints and strategies to distinguish between harmful and 

innocuous threats18. Of particular interest is the strategic location of PRR in 

compartments where microbes are normally absent, such the basal surface of 

an epithelium rather than the apical, microbe-rich lumen, as proposed by the 

theory of patterns of pathogenesis19. 

 

1.2.1.2 Damage-associated molecular patterns (DAMPs) 

The ‘danger theory’, first proposed by Matzinger to explain immune tolerance, 

postulated that activation of immune responses relied on the detection of 

danger signals rather than specific non-self molecules20. It became apparent in 

recent years that signals released by necrotic or seriously injured cells are 

perceived as danger signals (or DAMPs) by the immune system. These include 

molecules normally present inside functioning cells that become immunogenic 

once exposed (such as DNA, ATP or HMGB1), and also inflammatory 

molecules (also known as alarmins, e.g. IL-33) that are released upon cell 

lysis21. Interestingly, DAMPs and MAMPs target similar PRRs, indicating that 

both types of signals converge in the activation of downstream immune 

responses22. The selective activation of patrolling cells by either or both signals 



	 7 

might help to set the threshold for a full-blown response – for instance, detection 

of commensal bacteria might be tolerated as long as it causes no harm to the 

surrounding cells. Conversely, the absence of a microbial pattern in the 

presence of damage signals resulting from physical damage might help limiting 

an otherwise excessive immune response to a sterile stimulus. 

 

1.2.1.3 Effector-triggered immunity (ETI) 

First described in plants, the ETI is associated with detection of specific 

effectors expressed by pathogens, such as toxins and virulence factors. Of 

note, these inducers are not directly detected, but rather their adverse effects on 

host tissues. Such mechanisms not only allow for a more robust distinction 

between commensal and pathogenic microorganisms but also evolved as an 

additional defense against pathogens that escape from the traditional MAMP-

PRR signaling23. Although there is currently limited evidence for ETI in animals 

– mostly confined to specific toxins produced by intracellular bacteria24,25 – it is 

tempting to speculate that detection of pathogen effectors might play a role in 

detecting a large array of potential pathogens with a limited set of surveillance 

mechanisms26. 

 

1.2.2 Mechanisms of host defense 
 

Host defense encompasses three categories of evolutionarily conserved 

responses: avoidance, resistance, and disease tolerance. 

1.2.2.1 Avoidance 

Avoidance consists of a set of behaviors that constitute the first line of defense 

against infection, as it allows animals to skip contact with noxious environments 

even before the interaction with pathogens occurs. Despite its importance for 
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survival, avoidance is the least studied of the mechanisms of host defense, in 

part due to the complex interaction of traits and trade-offs experienced by an 

animal in the wild, which are difficult to reproduce in the laboratory27.  

Avoidance results mainly from the integration of visual, olfactory, and gustatory 

cues that prevent animals from interacting with pathogens, either by avoiding 

contaminated food28, environment29 or conspecifics30,31. In C. elegans, although 

several Toll homologues have been identified, none of them was associated 

with inducible defense systems32. Instead, the tol-1 gene was found to be 

involved in the discrimination of pathogenic bacteria and induction of avoidance 

behavior32. Following this observation, much of the work on avoidance 

mechanisms has been carried out in this bacteria-feeding nematode, which, 

despite its rudimentary nervous system, has evolved aversive behavior towards 

pathogenic bacteria33 as well as defense and detoxification mechanisms8. Some 

of the sensory networks have been studied in other organisms, including 

mammals – examples include how the smell of rotting food impacts behavior30 – 

and helped to shed light on the adaptive role of repulsion and disgust34. 

 

More broadly, this set of behaviors is not limited to healthy animals when they 

avoid contact with pathogens. In gregarious species, infected individuals 

present with a set of behavioral changes known as sickness behavior, 

characterized by social isolation, anorexia, loss of libido, lethargy, and changes 

in physical appearance, such as curling35,36. Anorexia is the most studied of 

these behaviors, with reports pointing to its adaptive role in the activation of 

immune responses37 and energy saving programs38. For the large majority, 

however, the reasons for selecting such a complex set of behavioral traits in 

infected animals remain largely unknown; therefore, a putative role as an 

altruistic behavior to avoid contamination of healthy conspecifics cannot be 

ruled out39.  
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 1.2.2.2 Resistance 

Resistance mechanisms include all responses aimed at protecting the host by 

reducing pathogen load. These properties of immune systems – from the simple 

antimicrobial peptide responses in Drosophila to an intricate crosstalk of innate 

and adaptive immunity in mammals – have dominated research in host-

pathogen interactions over the past few decades22,40.  

 

Overview of innate and adaptive immunity 

In vertebrates, specialized cells of the innate immune system (neutrophils, 

eosinophils, monocytes, macrophages, mast cells, natural killer cells, innate 

lymphoid cells, and dendritic cells) patrol blood and tissues, detect invading 

microbes, and start resistance programs. As previously discussed, activation of 

PRR typically engages the activity of transcription factors41 – the most widely 

studied of which is nuclear factor-κB (NF-κB) – which in turn activate a 

specialized transcriptional program42. In the case of bacterial infections, within 

minutes from LPS detection by TLR4 at the surface of tissue-resident 

macrophages, NF-κB drives transcription of tumor necrosis factor α (TNFα), 

interleukin (IL)-1, IL-6 and other pro-inflammatory cytokines whose main 

function is to promote local changes in tissue function that facilitate killing of the 

invading pathogens43. These include vasodilation and increased expression of 

adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), in 

vascular endothelial cells, which facilitate monocyte and neutrophil recruitment 

from blood vessels into the injury site. In turn, neutrophils respond to these cues 

by producing chemokines (namely CXCL1 and CXCL5) that enter circulation 

and participate in the recruitment of more neutrophils44, thus propagating the 

inflammatory response.  

In addition to cytokine and chemokine secretion, this acute phase response 

involves a variety of other mediators, such as vasoactive amines (histamine and 

serotonin, released by mast cells and platelets), vasoactive peptides (e.g. 

bradykinin and substance P), complement components, lipid mediators 
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(prostaglandins and thromboxanes), and proteolytic enzymes (e.g. elastin and 

matrix metalloproteinases)45 (Figure 1-2).  

 

 
Figure 1-2 – Overview of innate immune responses triggered upon infection (taken from46). 
 

The combined effect of these mediators causes dramatic changes in the 

vasculature, extracellular matrix, and surrounding sensory nerves, producing 

the classical signs of inflammation, such as swelling, pain, changes in 

temperature and behavioral alterations46. 

At the site of infection, resident and recruited leukocytes are now able to 

perform their specialized killing functions: macrophages and neutrophils take up 

bacteria by phagocytosis and digest them in vesicles through the action of 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), as well as 

enzymes (such as neutrophil elastase) and antimicrobial peptides (such as 

defensins)46. Dendritic cells also perform phagocytic functions, but, unlike 

macrophages, preserve the structure of microbial antigens and subsequently 

express them at the cell surface by major histocompatibility complex (MHC) 

molecules, which are then recognized by CD4+ T-helper (TH) cells via T-cell 

receptors (TCR)47. This provides a link between the innate and adaptive 

immune systems, and starts a slower, antigen-specific response involving clonal 

selection and expansion of different subsets of T and B cells, and production of 

antibodies48,49. 

fluorescence-activated cell sorting (FACS); direct binding
to Gram-negative and positive bacteria has been demon-
strated by SR-A I and II and to S. aureus by the related
collagenous SR, MARCO. Consistent with this pattern of
carbohydrate recognition, the mannose receptor is dis-
tributed on macrophages and dendritic cells throughout
the body and recognizes a range of mannosylated molec-
ular patterns. While there is clearly a functional role for
mannose receptors in particulate clearance, mannose re-
ceptor ligation additionally regulates the release of cy-
tokines such as IL-6 [48] and IL-12 [49] and macrophage
activation.

Intracellular Receptors
The LRR domain, as described in TLR family proteins,
has become synonymous with pattern recognition. Exam-
ples of LRR in innate immunity can be found throughout
evolution. In plants, disease resistance genes (R) are com-
posed of repeated LRR domains. The mammalian nu-
cleotide-binding oligomerigation domain (NOD) family
of proteins contain LLR repeats but were originally cloned
based on the presence of a caspase activation and recruit-
ment domain (CARD) [50, 51]. This family, numbering
33 members to date, contains carboxy-terminal LLR do-
mains that are responsible for ligand binding. All mem-
bers of this family have a nucleotide-binding domain
whose function is not well defined. Their amino-terminal
domain is varied depending presumably on the function of
each protein. The family includes members with amino-
terminal death domains, pyrin domains, or CARDs. The
CARD domain is found in two members of this family,
Nod1 and Nod2 [52]. These proteins have been impli-
cated, by dominant-negative and overexpression experi-
ments, in the recognition of cytoplasmic LPS. While con-
firmation awaits description of the knockout phenotype,
patients with a frameshift deletion of the terminal LRR of
Nod2 present with Crohn’s disease, a chronic inflamma-
tory disease of the gastrointestinal tract [53, 54]. Point
mutations or deletions in the LRR domain of Nod2 are
also associated with Blau’s syndrome, another disease
marked by chronic inflammatory symptoms such as
arthritis and uveitis [55]. It has been suggested that Nod
mutations prevent recognition of intracellular pathogens
that therefore persist, leading to a chronic infection state.
This persistent infection causes inflammation character-
ized by Crohn’s and Blau syndromes. Enthusiastic support
for this model is provided by the recent description of the
muramyl dipeptide, the minimal immunostimulatory
component of bacterial peptidoglycan, as the specific lig-
and for Nod2 [56, 57]. 
In contrast to bacterial infections, awareness of such in-
tracellular innate receptors has a long history in host de-
fense to viral infection. As for bacterial infection, innate
immunity plays a critical role in immediate early re-

2608 P. W. Dempsey, S. A. Vaidya and G. Cheng The Art of War: Innate and adaptive immune responses

sponses to viral infection. The double-stranded RNA
(dsRNA)-dependent protein kinase (PKR) is expressed in
latent form in the cytoplasm of most cells. Upon exposure
to viral genomic dsRNA, PKR phosphorylates a large
number of substrates. Phosphorylation of the translation
initiation factor eIF2a inhibits protein synthesis in the cell
[58]. Activation of PKR also leads to induction of apop-
tosis by activation of the caspase-8 pathway. Thus the
virus is contained by destruction of the host cell. Consis-
tent with this, PKR-deficient animals are extremely sen-
sitive to viral infection [59]. The 2¢, 5¢ oligoadenylate syn-
thetases (OASs) represent another family of interferon
(IFN)-inducible antiviral enzymes (reviewed in [60]).
Upon exposure to dsRNA, OAS oligomerizes ATP, in turn
activating IFN-inducible RnaseL. RnaseL-deficient ani-
mals show a suppressed interferon-a antiviral response,
possibly due to alterations in the apoptosis mechanisms
accessed by RnaseL. An indication of the importance of
these pathways is measured by 100% mortality following
West Nile virus infection in mice that carry a nonsense
mutation in exon 4 of OAS and a significantly diminished
morbidity or mortality in animals bearing wild-type OAS
alleles [61].

Innate Immune Responses

Upon detection of infection, the first lines of host defense
are quickly initiated (see fig. 2). Cellular mediators of in-
nate immunity include tissue macrophages, neutrophils,
and natural killers (NK) cells. These cells migrate towards
the source of the infection. Macrophages are phagocytic
cells that reside in many tissues and produce high levels
of cytokines and chemokines that function as the ‘red
alert’ of infection [62]. Immediate changes at the site of
infection include increased vascular permeability, in-
creased expression of adhesion markers and recruitment

Figure 2. Overview of the multiple mechanisms used by innate im-
mune cells in response to pathogenic challenge.
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The innate immune response allows for a very fast (minutes to hours) control of 

infection even in first-time encounters with a pathogen, by starting resistance 

programs that target broad classes of microorganisms. In spite of its relatively 

unspecific function, the selective activation of PPRs, followed by secretion of 

specific cytokines and chemokines is of paramount importance to instruct the 

appropriate adaptive immune response – for example, secretion of IL-6 from 

macrophages upon bacterial infection engages a so-called type 1 immune 

response from TH cells, whereas production of IL-13 upon helminthic infection 

leads to a type 2 response48. This depends on a complex communication within 

innate immune cell populations and between the innate and adaptive branches 

of immunity, which tailors a directed response from very early stages of 

infection22,50. 

 

Regulation of the immune response 

As any stress response, activation of immunity aims to restore homeostasis – in 

this case, by clearing the underlying infection. The magnitude of the 

inflammatory response is dictated by the initial stimulus (i.e. the number of 

activated PRR, which is proportional to the pathogen load), but also by a 

number of regulatory mechanisms that avoid excessive reactions. Small, local 

infections are frequently ablated by tissue-resident populations alone, whereas 

slightly larger affected areas might result in paracrine cytokine signaling, which 

recruits leukocytes from the bloodstream and neighboring tissues45. In more 

severe cases, activated neutrophils, monocytes, and TH cells can travel to 

lymph nodes and propagate inflammatory signals to their resident cells51, thus 

starting a cascade of distal communication that constitutes the first step of a 

systemic inflammatory response. 

Control of the magnitude of inflammation is exerted at the cellular level via 

production of anti-inflammatory molecules, the most important of which is IL-

1052. This anti-inflammatory cytokine is produced by virtually any cell of the 

innate and immune system in response to PRR activation. Numerous pathways 

converge in IL-10 transcription (including NF-κB) making its production the 
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product of the integration of several cues. Importantly, inflammation-induced IL-

10 secretion is an attempt to self-limit the inflammatory response by repressing 

antigen presentation, pro-inflammatory cytokine transcription, and type 1 TH 

responses52. Other anti-inflammatory signaling molecules include transforming 

growth factor-β (TGF-β), cAMP, and nuclear hormone receptors, all of which act 

as brakes for the immune response in a tissue-specific manner41.  

At the organismal level, another level of regulation of inflammation is set 

centrally by the neuroendocrine system. Pro-inflammatory cytokines such as 

TNFα, IL-1β, and IL-6 stimulate the hypothalamic-pituitary-adrenal (HPA) axis, 

accounting for the central effects of inflammation (such as changes in body 

temperature and sickness behaviors, as previously described) and also 

stimulating the release of glucocorticoids from the adrenal cortex53. Increased 

circulating levels of glucocorticoids lead to inhibition of NF-κB signaling and 

constitute an essential negative feedback loop to systemically control 

inflammation54, as highlighted by the fact that mice with impaired glucocorticoid 

signaling are unable to resolve inflammatory processes55. 

 

Consequences of inflammation 

As discussed above, the initial steps of immune response provoke dramatic 

changes in tissue architecture that help fighting infection. In most cases, tissue 

remodeling is self-contained and is followed by repair mechanisms orchestrated 

by cytokines, chemokines, proteolytic enzymes, and growth factors, which 

ultimately restore normal tissue function56.  

Cell fate determination also plays a key role in the outcomes of inflammation. 

Cells infected with viruses or intracellular microorganisms, as well as old 

leukocytes, preferentially undergo programmed cell death mechanisms – most 

notably apoptosis, but also pyroptosis and necroptosis57 – and are then 

removed by phagocytosis. In contrast, severely damaged cells may undergo 

necrosis and release their cellular contents into the extracellular matrix (ECM), 

thus providing DAMPs that contribute to aggravate, rather than resolve, the 

inflammatory response58. Failure to clear the infection and resolve inflammation 
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may have serious consequences for tissue function – examples include the 

formation of granulomas in cases where macrophages cannot effectively 

eliminate the pathogen; deposition of collagen in the ECM, leading to fibrosis 

and loss of tissue function; and persistence of large neutrophil infiltrates59. 

Despite all the checks and brakes, inflammation always comes at a cost for the 

host. Not only is it energetically expensive, but it also involves the use of highly 

toxic and reactive species (namely ROS and RNS) to kill pathogens, which 

cause some degree of tissue damage – these collateral effects are collectively 

known as immunopathology60. As a consequence, regulation of the immune 

response entails a trade-off between the necessary effector mechanisms (to 

clear the infection) and damage control tools. The level of immunopathology 

correlates with the magnitude and duration of inflammation, and can pose a 

dramatic threat to host physiology and survival when not properly controlled, as 

we will discuss later (section 1.4.2). 

 

1.2.2.3 Disease tolerance 

The concept of tolerance – a mechanism of host protection that does not exert a 

direct negative impact on pathogen load – was first introduced in the field of 

plant-pathogen interactions to explain how survival of crops to fungal pests 

could be uncoupled from resistance mechanisms61. Over the past century, 

theoretical models and experimental evidence have supported the importance 

of these mechanisms in plant ecology and crop productivity62 as well as its 

impact on pathogen evolution63. 

In animals, research on host-pathogen interactions has been largely dominated 

by studies on the function of the immune system and resistance mechanisms, 

which led to remarkable success in fighting infectious diseases, for example 

using vaccines and antibiotics. It was not until the beginning of the 21st century 

that a study identified genetic variants that confer protection to malaria in mice 

independently of the pathogen load64. By analyzing a collection of inbred mouse 
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strains with considerable genetic variability and plotting disease severity 

(anemia and weight loss, in this case) against pathogen load, the authors 

successfully identified genotypes that correlate with better infection outcomes 

despite high parasitemia, therefore applying the theoretical principles of plant 

disease tolerance to animal models64. The first mechanistic insights followed 

soon with the identification of heme oxigenase 1 (HO-1) as an essential 

component for survival to severe malaria, by minimizing the oxidative damage 

resulting from hemoglobin release upon infection65,66. In D. melanogaster, a 

genetic screen identified several mutants conferring protection to Listeria 

monocytogenes infection independently of immune functions67, while in C. 

elegans the proteostasis regulator XBP-1 was deemed essential to maintain 

fitness upon activation of immunity68. These initial observations helped to 

strengthen the notion that, regardless of the studied infection model and host, 

resistance mechanisms are not sufficient to explain infection outcomes. Most 

likely, disease tolerance mechanisms co-evolved with immune systems to limit 

infection-related damage. From that point on, more research groups became 

committed to the intense effort of uncovering the underlying mechanisms of 

tissue protection – a complex network that we are only beginning to 

understand69–71.  

At this point, it is important to distinguish between the similar, and somewhat 

confusing, terminologies of immunological tolerance and disease tolerance. 

Immunological tolerance is an old concept to explain the lack of reactivity of T 

and B cells towards self antigens72. While there are some common mechanisms 

between immunological tolerance and disease tolerance, these are two distinct 

concepts, with the latter referring exclusively to the context of infectious stimuli.  

 

Disease tolerance and stress responses 

Globally, disease tolerance mechanisms encompass any host response that 1) 

reduces damage caused by an infectious agent; 2) limits an excessive immune 

response; and/or 3) reduces immunopathology69. As seen by the examples 

above, tolerance mechanisms are tightly connected to stress responses, 
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meaning that any compensatory response that restores host homeostasis, for 

example, by controlling tissue damage73, accelerating tissue repair74, or 

reprogramming metabolism75 could potentially be part of a tolerance program. 

At the cellular level, several stress responses have been associated with 

activation of disease tolerance programs71,73.  

Protein misfolding is a common feature of infection-induced tissue damage. As 

a consequence, activation of proteotoxic stress responses from the 

endoplasmic reticulum (unfolded protein response, UPR)68 or cytosol (regulated 

by heat shock factor 1, HSF-1)76 have been proven essential to tolerate 

bacterial infections. Other cellular stress responses required for tissue 

homeostasis during infection include the antioxidant response (coordinated by 

the transcription NRF2)77, and the hypoxia response (regulated by the HIF 

family of transcription factors)78.  

Pharmacological activation of DNA damage responses by anthracyclines, a 

class of anticancer drugs that cause double-stranded DNA breaks, constitutes a 

promising strategy to induce disease tolerance against polymicrobial sepsis in 

mice79. The proposed mechanisms for this protective effect include the 

activation of the ATM kinase and transcriptional repression of inflammatory 

genes79,80.  

Another intriguing aspect of stress-induced disease tolerance relates to 

metabolic sensing and reprogramming in parenchymal cells. In a mouse model 

of sepsis, pharmacological activation of the cellular energy sensor AMPK results 

in reduced inflammation and tissue damage, although a mechanistic connection 

with the metabolic functions of AMPK is still missing81. Likewise, reprogramming 

of glucose metabolism has been shown to promote disease tolerance to 

sepsis38,82 and malaria83.  

At an organismal level, centrally regulated stress responses seem to provide 

another level of activation of less understood tolerance programs. Changes in 

body temperature are a hallmark of systemic inflammation – which can be 

reflected in either fever or hypothermia, depending on the host and the causal 

agent – and have been proposed to play an adaptive role in tissue 
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homeostasis84. Only very recently, a study by Chawla and co-workers started to 

bring some mechanistic insight into this idea. By exposing mice to different 

temperatures and performing transcriptional and metabolic tissue profiling upon 

LPS injection, the authors concluded that inflammation-induced metabolic 

changes lead to energetic trade-offs that result in hypothermia85. Remarkably, 

this hypometabolic, hypothermal state confers disease tolerance during 

bacterial infections, as shown by the fact that mice housed at thermoneutral 

(30ºC) conditions show worse disease outcomes for similar pathogen loads 

when compared to conventional housing (22ºC)85. 

 

Consequences of disease tolerance mechanisms 

The general principles of disease tolerance described above entail two 

important implications:  

1) The activation of the appropriate stress responses is context-dependent, as 

different pathogens as well as different affected tissues may have very diverse 

patterns of tissue damage, immunopathology, and metabolic needs. As a 

consequence, tolerance mechanisms need to be as diverse as the underlying 

pathologies – for example, an effective anti-oxidant defense may be essential to 

tolerate infections that course with hemolysis (such as malaria)65, whereas 

mechanisms of programmed cell death may be more important to contain tissue 

damage associated with viral infections86. Not surprisingly, a beneficial stress 

response on a given infection may have a neutral, or even detrimental, effect in 

a different context – as exemplified by the impact of nutrition and metabolism 

during bacterial and viral infections38. 

 

2) Tolerance programs that act on immune cells may have a negative impact on 

resistance mechanisms67. Examples include the metabolic reprogramming of 

macrophages87 and TH cells88 into anti-inflammatory phenotypes that dampen an 

otherwise excessive inflammatory response. This highlights the need for a fine 

balance between conflicting tolerance and resistance programs, as excessive 

immunosuppression may delay pathogen clearance and predispose to 
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secondary infections69. It is worth noting, however, that tolerance and resistance 

are not necessarily mutually exclusive and can be used together to improve 

host fitness. Such is the case of ibuprofen treatment in a mouse model of 

tuberculosis, which simultaneously leads to anti-inflammatory effects (via 

inhibition of leukotriene synthesis) and a decrease in bacterial loads in the 

lung89. 

 

Perspectives in disease tolerance research 

As made clear from some of the examples above, pharmacological activation of 

disease tolerance pathways presents a novel, promising way to promote host 

fitness during infection. In many cases, this is achieved by drug-induced 

perturbations of homeostasis, which activate adaptive stress responses that 

help limiting tissue damage during infection – a phenomenon known as 

hormesis or preconditioning90. While a much deeper understanding of the 

molecular mechanisms that explain these drug-induced protective stress 

responses is required before considering them for clinical application, it is 

undeniable that research on new therapies for infection can no longer rely on 

resistance mechanisms alone. Combining resistance and tolerance approaches 

to treat infectious diseases would tremendously expand the available 

therapeutic options, especially in face of the increasing problems with antibiotic 

resistance, as well as in cases where antimicrobials are not enough to 

guarantee recovery from infection. 

 

This approach presents a few challenges for future studies. First, it involves a 

paradigm shift from an immune cell-centered mindset to a holistic perspective 

that combines tissue-specific pathology, inter-organ communication, 

metabolism, and immunity69. Another challenge regarding experimental design 

and interpretation is the intricate connection between resistance and tolerance – 

the two can have additive or antagonistic effects on pathogen load, as 

discussed – making it difficult to disentangle the contribution of each to host 

fitness. Strategies to circumvent this problem include the control of pathogen 
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loads with antimicrobial treatments, or the careful quantification of pathogens 

along with indicators of host fitness throughout the course of infection71. These 

monitored parameters can be used to plot ‘health curves’ that can help to 

predict disease susceptibility and the relative contributions of resistance and 

disease tolerance for survival and recovery91. 

 

1.3 Mitochondria as signaling and metabolic hubs  

1.3.1 History, structure, and function of mitochondria 
 

Mitochondria are intriguing organelles. The first observation of mitochondria on 

the microscope dates from the 1840s and they were first associated with energy 

production by Kingsbury in 191292. After that, mitochondria proceeded to 

dominate the eukaryote bioenergetics field for most of the 20th century. Early 

studies with electron microscopy revealed the famous rod-shaped structure 

bound by an outer mitochondrial membrane (OMM), which regulates ion and 

metabolite transport; and a large, convoluted inner mitochondrial membrane 

(IMM), which regulates energy production and encloses the mitochondrial 

matrix, where most biochemical reactions occur92. Yet, the most intriguing 

aspect of mitochondria to this day is probably how their bacterial origin shaped 

their current function.  

It is now clear from mitochondrial DNA (mtDNA) analysis that mitochondria 

originated from α-proteobacteria, a single phylum of ancestral bacteria93. The 

original mtDNA suffered massive reduction throughout evolution, with most of its 

functions being taken over by the nucleus94; yet the exact processes that 

dictated the emergence of this endosymbiont interaction remain elusive93. The 

immediate implication of this interaction is that it requires an intricate 

communication between the nucleus and mitochondria to ensure maintenance 

of homeostasis. 
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The human mitochondrial genome encodes for 2 mitochondrial rRNAs, 22 

tRNAs and 13 proteins95. Mitochondrial-encoded rRNAs are assembled together 

with nuclear-encoded rRNAs and proteins to form the mitochondrial ribosome 

(or mitoribosome) consisting of a large (39S) and a small (28S) subunit96. 

Transcripts encoded by the mitochondrial DNA are translated by the 

mitoribosome and subsequently integrated with nuclear-encoded proteins to 

form functional complexes of the electron transport chain (ETC)97. 

The mammalian mitochondrial proteome comprises over 1000 proteins98,99, only 

1% of which are mitochondrial encoded. The remaining 99% are synthesized in 

the cytosolic ribosome and need to be processed and imported into the 

mitochondria in a highly regulated process100. Not surprisingly, a large portion of 

mitochondrial proteins still have unknown function, and the study of such 

complex interactions using high-end technologies has just begun101. 

 

Decades of research following Kingsbury’s description of the role of 

mitochondria in “reducing substances concerned in cellular respiration”92 

allowed for a very complete picture of mitochondrial energy generation, which 

was awarded the Nobel prize on three different occasions102. By the early 

1990’s, most of the mitochondrial biology seemed to have been uncovered, yet 

this idea would be challenged by the observation that release of cytochrome C 

from mitochondria induces apoptosis103. This finding triggered the ‘comeback’ of 

mitochondria in research102,104 and eventually led to the realization that 

mitochondrial functions go way beyond ATP production.  

Intermediate metabolites of mitochondrial function provide the building blocks 

for most cellular biosynthetic pathways, such as nucleotides, amino acids, 

cholesterol, or heme105. Many of these metabolites, together with calcium, ROS 

and other molecules originated at the mitochondrial matrix provide vital signals 

to regulate cellular function106. Mitochondrial function orchestrates the decision 

between catabolic (energy saving) and anabolic (energy consuming) programs, 

which in turn impacts cell fate, proliferation, and differentiation107 with immense 
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implications for organismal fitness108. This is highlighted by the role of 

mitochondria in the regulation of immunity109, aging110, or cancer progression111, 

just to name a few examples. Indeed, mitochondria remain as intriguing as they 

were a century ago, and will likely occupy a central role in our future 

understanding of homeostasis regulation. 

 

1.3.2 Overview of mitochondrial bioenergetics 
 

Popularly known as the ‘powerhouses of the cell’, mitochondria are the single 

most important component of eukaryotic cells regarding energy generation. This 

section briefly reviews how the major carbon sources of the cell are oxidized in 

aerobic conditions in the mitochondrial matrix to produce ATP (Figure 1-3) 

 

 
Figure 1-3 – Overview of mitochondrial bioenergetics (taken from105).  

REVIEW ARTICLE | FOCUS NATURE CELL BIOLOGY

the factors that dictate the choice for pyruvate-flux between PC 
and PDC are little studied27,29,30. Therefore, these enzymes may have 
important functions beyond TCA-cycle-flux for bioenergetics.

Glutamine and branched-chain amino acids. Catabolism of glu-
tamine, the most abundant amino acid in plasma, often starts in 
the mitochondria, and its carbon and nitrogen atoms are distributed 
into macromolecules (DNA, RNA, protein and lipids) and other 
metabolites, such as TCA cycle intermediates (important in bioen-
ergetics), amino acids, nucleotides and glutathione31.

In mitochondria, glutaminase (GLS) converts glutamine into glu-
tamate and ammonia. Either transaminase or glutamate dehydro-
genase (GDH) converts glutamate into α -ketoglutarate (α -KG)32,33.  
Glutamine anaplerosis sustains TCA cycle intermediates in condi-
tions of limited glucose and MPC inhibition, demonstrating the 
potential flexibility of these metabolic nodes34,35. Glutamine anaple-
rosis is critical for meeting the energetic requirements of prolifera-
tive cells, such as T cells during the transition from quiescent naïve 
T cells to effector cells, and in cancers, particularly those with MYC 

elevation32,36,37. GLS inhibition suppresses proliferation, and GLS 
inhibitors are being evaluated in clinical studies for a number of 
cancers31,38,39. However, sensitivity to GLS inhibition in vitro is not 
always consistent in vivo, and is dependent on extracellular cystine 
levels40. This emphasizes the need for investigators to study the 
effect of the microenvironment on metabolic dependencies and to 
validate experiments in vivo.

Although glutamine transporters at the plasma membrane have 
been identified41, the mitochondrial glutamine transporter has not 
been fully characterized42,43. This critical area of research is chal-
lenging to address because there are likely multiple mechanisms for 
glutamine import.

The branched-chain amino acids (BCAAs) leucine, isoleucine 
and valine are major sources of cellular energy through generation 
of acetyl CoA and succinyl CoA (ref. 44). The tissue of origin dictates 
dependency on BCAA catabolism in normal physiology and in can-
cer45. In normal physiology, myocytes and adipocytes activate mito-
chondrial BCAA catabolic enzymes to support ATP production 
during exercise or fasting, and during differentiation, respectively46,47.  
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The major carbon sources pyruvate (originated from glucose) and fatty acyl-CoA (from lipids) 
enter the mitochondria through specialized transport systems. This is followed by a series of 

oxidation steps, which originate the electron-rich molecules NADH and FADH2. Electrons are 
then transferred along the respiratory chain complexes and protons are pumped to the 

intermembrane space. This proton gradient is ultimately used to generate ATP. 
 

1.3.2.1 TCA cycle and oxidative phosphorylation  

Under normal oxygen and nutrient availability, oxidation of glucose to carbon 

dioxide (CO2) is the major driver for ATP production. Each 6-carbon glucose 

molecule is initially oxidized in the cytosol to two pyruvate molecules (3 carbons 

each) with the production of 2 ATP molecules, in a process called glycolysis112. 

Pyruvate is then shuttled into the mitochondria by the mitochondria pyruvate 

carrier (MPC). Once in the mitochondrial matrix, pyruvate can either be 

carboxylated to yield oxaloacetate by pyruvate carboxylase (PC), or 

decarboxylated and conjugated with coenzyme A (CoA) to yield acetyl CoA via 

the pyruvate dehydrogenase complex (PDC)113. Both oxaloacetate and acetyl 

CoA enter the tricarboxylic acid (TCA) cycle (or Krebs cycle)114 for further 

oxidation steps.  

From a strictly bioenergetic point of view, the purpose of the TCA cycle is to 

generate GTP (or ATP), NADH, and FADH2, which will feed the ETC for ATP 

production112. However, most of the TCA intermediates have other roles in 

biosynthetic pathways. Succinyl-CoA, for example, can be used for porphyrin 

synthesis, which will then be used to produce heme, while α-ketoglutarate can 

be used for glutamate production, and oxaloacetate for aspartate production105. 

Citrate has an important role in anabolic reactions, such as fatty acid, 

cholesterol and ketone bodies synthesis. This happens in the cytosol, upon 

export from the mitochondria via the malate-citrate antiporter105.  

While most of the TCA cycle reactions are bi-directional, substrate availability 

drives the equilibrium towards citrate consumption and oxaloacetate production 

in the majority of cases. Overall, one 6-carbon citrate molecule suffers two 

sequential decarboxylation steps resulting in the production of two molecules of 
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CO2. At the end of the cycle, the 4-carbon oxaloacetate molecule is regenerated 

and restarts the cycle (Figure 1-3). The net effect of the oxidation of one citrate 

molecule is the production of one GTP (or ATP), one FADH2, and three NADH 

molecules112.   

 

The NADH and FADH2 molecules generated by the TCA cycle are then used as 

electron donors for the redox reactions of the ETC, ultimately driving ATP 

synthesis. The ETC consists of four multiprotein complexes (CI, CII, CIII, CIV) 

inserted in the IMM, which use redox cofactors and electron transfer reactions 

to drive proton translocation to the intermembrane space (Figure 1-4). This 

proton gradient is then dissipated via the F1FO-ATP synthase (or complex V) 

and the associated electrochemical energy used to synthesize ATP from ADP 

and inorganic phosphate (Pi). Structure and organization of the respiratory chain 

complexes follow a strict balance of nuclear and mitochondrial encoded proteins 

and also include higher-order structures combining multiple complexes, named 

supercomplexes or respirasome115,116. 

 

Figure 1-4 – The mammalian mitochondrial ETC (taken from117). 
 

In the first step of the respiratory chain, electrons are transferred from NADH to 

ubiquinone in CI (NADH-ubiquinone oxidoreductase)118 and protons are 

translocated to the intermembrane space. CI is the largest and more elaborate 
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Definitive confirmation of respiratory SCs came recently with the 
elucidation of their structures at subnanometer resolution using cryo-
EM34–37. The earlier structures38,39, at resolutions around 20 Å, did 
not allow the specific interactions between the individual complexes 
to be resolved. The new structures, together with high-resolution 
structures of the individual complexes10,11,40–43, demonstrate that 
the SCs form via specific interactions involving conserved residues 
from both the core subunits, present from bacteria to mammals, and 
supernumerary subunits34,36,37, not generally present in bacteria.

Proteins from three different species have been used for cryo-EM 
analyses, producing structures of bovine SCs at ~9-Å resolution36, 
ovine SCs at ~5.8-Å resolution34 and porcine SCs at 5.4-Å and ~4-Å  
resolution35,37. Unfortunately, the porcine structures suffer from sev-
eral drawbacks. The density for CIV in the deposited porcine maps 
(EMDB-9534 or EMDB-9539) is very weak, and transmembrane (TM) 
helices are not visible, severely limiting the reliability of its position-
ing and any inferred contacts. The porcine maps refined by focusing 
on CI or CIII2 are well resolved; however, in the overall SC map, the 
contacts between those two complexes are not resolved at the level of 
the side chains. Furthermore, most maps describing the intermediate 
states of processing are of the wrong hand (mirror image)35,37, and the 
CI model (PDB 5GUP) has several limitations: the iron–sulfur cluster 
geometry and environment are incorrect, the flavin mononucleotide 
(FMN) isoalloxazine ring is flipped, the B factors are not refined, the 
10-kDa subunit is misassigned and model statistics were not reported.  
Finally, the mechanism of electron transfer between CI and CIII2 
proposed based on the porcine data37 is inconsistent with established 
knowledge on CIII2 (refs. 44–46), as also pointed out in a recent 
review47. Thus, here we will mainly use the ovine and bovine SC 
structures to discuss what we have learned from the structures in the 
context of recent work on the assembly and function of OXPHOS-
ETC SCs and the implications for the role of SC formation.

Assembly and  stability of the respirasome
As mentioned, recent studies have shed light on the assembly of the 
SCs48,49 and the specific role of SCAF1, the putative assembly factor32,33.  

It had previously been suggested that SC assembly may occur before 
complete assembly of the individual complexes20; however, a compre-
hensive proteomic complexome profiling study that followed nearly 
all CI subunits through the entire assembly process indicates that, 
as originally proposed17, SC formation only occurs after complete 
assembly of the individual complexes48,49. This is likely the normal 
order of events, except in mutant strains lacking specific subunits or 
assembly factors50,51.

A controversy developed when SCAF1 was proposed to be required 
for the formation of SCs28. That proposal was based on the identifi-
cation of two SCAF1 genes in different mouse lines: the full-length 
113-amino-acid SCAF1 in 129S2/SvPasCrlf and CD1 mice and a 
short 111-amino-acid form (SCAF1short) in C57BL/6J and C57BL/
6N mice28,31. Mitochondria from the heart and liver of mice with 
SCAF1short lacked SC III2+IV and the respirasome but maintained 
SC I+III2, thus leading to the conclusion that full-length SCAF1 was 
required for the assembly all of SCs containing CIV28. However, these 
findings were in direct conflict with previous observations of SCs in 
heart mitochondria of C57BL/6N and C57BL/6J mice52–54, and SCs 
have since been observed in liver mitochondria of these mice55,56.  
A mouse SCAF1-knockout study30 indicated that SCAF1 was important  
for muscular activity and heat production and that SCAF1 supported, 
but was not required for, the formation of the respirasome in skeletal 
muscle mitochondria, with no substantial effects on SC III2+IV for-
mation. A more detailed investigation of heart mitochondria from 
C57BL/6N and C57BL/6J mice31 demonstrated that SCAF1short 
does not affect respirasome assembly but results in a reduction of 
SC III2+IV. Taken together, these results indicate that in heart mito-
chondria, SCAF1 is important for SC III2+IV formation; however, 
SCAF1 is still found within the respirasome28,32,55.

The first clues about the precise role of SCAF1 came from the struc-
ture of the respirasome34 and knowledge of tissue-specific isoforms 
of CIV subunits57–59. In the 5.8-Å-resolution structure of the respira-
some, density for the TM helices of each complex was clearly visible, 
and all density could be accounted for by the known structures of the 
individual isolated complexes34. Therefore, there was no additional  
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of the ETC complexes, in which electron transfer and proton translocation are 

physically separated and mediated by a series of conformational changes118. 

CII (succinate–quinone oxidoreductase)119 is the smallest complex and the only 

one comprised only of nuclear encoded proteins. It provides a unique link 

between the ETC and the TCA cycle. Oxidation of succinate to fumarate in the 

mitochondrial matrix (TCA cycle) generates FADH2, which is then used to 

reduce ubiquinone to ubiquinol. Although this reaction does not result in proton 

translocation across the membrane, complex II contributes to the ETC gradient 

by providing an additional entry point of electrons and increasing the ubiquinol 

pool, which is essential for CIII activity119. 

Ubiquinol resulting from reduction of ubiquinone in CI and CII is then used in 

CIII (cytochrome bc1)120 to reduce cytochrome C with direct translocation of 

protons to the intermembrane space, through heme and iron-sulfur 

clusters120,121. 

In CIV (cytochrome C oxidase)122, reduced cytochrome C originated in CIII is 

finally oxidized by transferring electrons to O2 with production of H2O. Similar to 

CIII, proton translocation in CIV is coupled to electron transfer, in this case 

mediated by heme-copper centers121,122. 

The protons accumulated in the intermembrane space are finally transported to 

the matrix through the FO unit of the ATP synthase123. This flux drives rotation of 

one of the FO subunits and the generated energy is used by the F1 unit to 

synthesize ATP at an estimated rate of 1 ATP molecule per 2.7 translocated 

protons123,124.  

As made clear above, the pools of ubiquinone/ubiquinol and reduced/oxidized 

cytochrome C are regulated within the ETC and depend mostly on the crosstalk 

between different complexes. Therefore, the main exogenous regulators of the 

ETC activity are NADH and O2. In addition, the respiratory capacity of the cell 

can be adjusted and optimized by the dynamic formation of supercomplexes, in 

a process still far from understood117. 
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1.3.2.2 Fatty acid oxidation 

Most of the fat reserves in the body are stored in adipocytes in the form of 

triglycerides, consisting of three fatty acid moieties linked to a glycerol molecule 

by ester bonds. Under stress or starving conditions, epinephrine, glucagon, and 

glucocorticoids activate lipases, which sequentially cleave the triglyceride ester 

bonds to release free fatty acids (FFAs) and glycerol125. FFAs are taken up by 

cells through specialized transporters and conjugated with CoA to form fatty 

acyl CoAs, which can then be used for membrane synthesis and a variety of 

signaling functions126. Alternatively, the high energy levels contained in FFAs 

can be made available to the cell through β-oxidation in the mitochondria127. 

 

Small and medium chain fatty acids are thought to diffuse freely across the 

double membrane of mitochondria, while long chain fatty acids (>10C) – which 

constitute the majority of lipids derived from diet – require a dedicated transport 

system, known as the acylcarnitine shuttle128,129 (Figure 1-3). To this end, fatty-

acyl CoAs are conjugated with the amino acid carnitine at the cytosolic face of 

the OMM by palmitoylcarnitine transferase 1 (CPT1), originating acylcarnitines. 

These are then transported across the OMM by the carnitine-acylcarnitine 

translocase (CACT, coded by the gene Slc25a20) in exchange for a carnitine 

molecule. At the IMM, CPT2 catalyzes the reverse reaction of CPT1, releasing 

acyl CoAs into the matrix130. Conjugation with carnitine by CPT1 is considered 

to be the rate-limiting step in β-oxidation as it commits fatty acids to oxidation. 

As a result, perturbations in downstream steps of β-oxidation, which result in 

slower rates of oxidation, are often reflected in the accumulation of 

acylcarnitines in the cytosol131. 

 

Once in the mitochondrial matrix, acyl CoAs undergo a series of oxidation steps, 

each consisting of the cleavage of the β carbon (i.e., the carbon adjacent to the 

carboxyl group) with release of an acetyl CoA molecule. This is done by a series 

of dehydrogenases that show preference for carbon chains of a specific size 
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(short, medium, long and very long-chain acyl CoA dehydrogenases)127. The β-

oxidation process is repeated until only two or three carbons are left, for even 

and odd chain fatty acids, respectively. The resulting acetyl CoA can be further 

oxidized in the mitochondria through the TCA cycle or converted to ketone 

bodies in the mitochondria or cholesterol in the cytosol. Propionyl CoA 

generated from the oxidation of odd chain FA can be converted in succinyl CoA 

that enters the TCA cycle132. Each round of β-oxidation also generates NADH 

and FADH2 that will work as electron donors for the ETC, thus highlighting the 

extremely high energetic potential of lipids.  

 

Regulation of lipid metabolism involves an intricate crosstalk between glucose 

and fatty acid catabolism to guarantee maintenance of energetic supplies in a 

tissue- and context-specific manner133. Transcriptional control of β-oxidation is 

driven by the peroxisome proliferator–activated receptor (PPAR) family of 

transcription factors, which translocate to the nucleus upon binding to FFAs, 

and regulate the expression of genes involved in all aspects of lipid transport, 

uptake, storage, and oxidation134.  

PPARα is the most widely studied member of this family and plays an essential 

role in regulating liver β-oxidation upon fasting135. Besides regulating lipid and 

glucose metabolism136, PPARα has wider implications in organismal function, as 

highlighted by its negative role in inflammation137,138. PPARβ/δ has similar roles 

to PPARα and an important function in β-oxidation in skeletal muscle and 

heart139, while PPARγ regulates adipocyte differentiation and fatty acid uptake 

in peripheral tissues140.  

At the post-transcriptional level, β-oxidation is mainly regulated at the level of 

CPT1 activity, consistent with its rate-limiting effect in FAO141. Malonyl CoA, the 

first metabolite in the fatty acid synthesis pathway, binds CPT1 and inhibits its 

activity, thus providing a negative feedback loop that links lipid catabolism and 

anabolism. The de novo synthesis of fatty acids is in turn regulated by the 

cellular energy sensor AMPK. When cellular ATP levels drop, AMPK detects 

increased levels of AMP and inhibits the first step of fatty acid synthesis, thus 
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lowering malonyl CoA levels and increasing CPT1 activity (Figure 1-3). 

Simultaneously, AMPK activation promotes glycolysis in a concerted attempt to 

restore ATP levels during nutrient deprivation142. 

 

1.3.2.3 Alternative sources for ATP production  

Under hypoxia conditions, reduced ETC activity leads to accumulation of NADH, 

which inhibits NADH-producing enzymes of the TCA cycle. Simultaneously, the 

hypoxia sensor HIF1α transcriptionally up-regulates glycolytic enzymes while 

repressing the activity of PDC143. As a result, pyruvate is diverted from 

mitochondrial oxidative metabolism and reduced to lactate in the cytosol, by 

lactate dehydrogenase (LDH). The reductive activity of LDH replenishes NAD+ 

that is essential to sustain ATP production in the upstream steps of glycolysis.  

 

When the major carbon sources glucose and FFA are depleted, amino acid 

catabolism helps sustaining cellular energy demands. Glutamine, the most 

abundant amino acid in serum, can be converted to glutamate in the 

mitochondria, which is then converted to α-ketoglutarate to feed the TCA 

cycle144. Likewise, the branched chain amino acids leucine, isoleucine, and 

valine can be converted into succinyl CoA or acetyl CoA in starving 

conditions145. Alanine can be used to produce pyruvate by alanine transaminase 

(ALT), while aspartate is used to generate oxaloacetate by aspartate 

transaminase (AST)146 (Figure 1-5).  

 

In starving conditions, acetyl CoA (produced either by FAO or amino acid 

catabolism) is used to produce ketone bodies in the mitochondria of 

hepatocytes147. The ketone bodies acetoacetate, β-hydroxybutyrate, and 

acetone freely diffuse from the liver to the blood and travel to target tissues 

(most notably the brain), where they can be oxidized back to acetyl CoA, thus 

providing a key source of energy when glucose is not readily available148. 
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Since low glucose levels in the blood are a major threat for survival, energy-

generating pathways need to be balanced with de novo glucose production in 

starved cells. The major catabolic pathway for glucose production is called 

gluconeogenesis and takes place in the liver, kidney, and muscle. 

 

 
Figure 1-5 – Integration of the major cellular carbon sources (taken from113). 

 

Initiation of gluconeogenesis includes the conversion of lactate, alanine, or 

glycerol to pyruvate, which is then imported to the mitochondria. Pyruvate is 

converted to oxaloacetate by PC and reduced to malate, which is exported back 

to the cytosol where it can be converted in phosphoenolpyruvate (PEP) by the 

enzyme PEPCK. PEP is then metabolized to glucose in a series of ATP-

consuming steps that revert the glycolysis reactions149. 
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Fig. 2   Pyruvate and citric acid cycle carbon flux. Pyruvate is the 
master carbon fuel input supporting overall citric acid cycle carbon 
flux. Pyruvate transits the inner mitochondrial membrane (IMM) 
through the mitochondrial pyruvate carrier (MPC) to reach the mito-
chondrial matrix. In the matrix, pyruvate carbon enters the citric acid 
cycle as citrate or oxaloacetate, depending on the need to replenish 

oxaloacetate. Numerous metabolic pathways intersect the citric acid 
cycle. The modulation of mitochondrial pyruvate flux balances for 
anaplerotic carbon entrance and cataplerotic carbon exit to ensure 
continued cycle flux. Disruption of mitochondrial pyruvate flux may 
subsequently disrupt carbon flux through any of the pathways inter-
secting the citric acid cycle

Table 1   Overview of enzymes involved in proximal pyruvate metabolism

This table summarizes the reactions catalyzed by the enzymes involved in proximal pyruvate metabolism as well as the symptoms and inci-
dences, where known, of the metabolic deficiencies characterized by their misregulation, mutation, or loss in human patients

Enzyme Reaction Metabolic deficiency symptoms Incidence

Pyruvate dehydrogenase (PDH) Pyruvate +NAD → CO2  
+ Acetyl-CoA + NADH

Neurodegeneration, lactic acidosis, hyper-
pyruvicemia, psychomotor retardation/
developmental delay

Rare (350 + cases) [89, 90]

Lactate dehydrogenase (LDH) Pyruvate + NADH  
↔ lactate + NAD+

Myoglobinuria, elevate pyruvate levels, 
low endurance/exercise intolerance

1:1,000,000 [34, 294]

Pyruvate carboxylase (PC) Pyruvate + ATP + CO2  
→ Oxaloacetate + ADP

Highly variable, depends upon classifica-
tion (Types A, B, or C) May include 
lactic acidosis, developmental delay, and 
elevated proline and alanine levels

1:250,000 [127]

Pyruvate kinase (PK) Phosphoenolpyruvate + ADP  
→ Pyruvate + ATP

Hemolytic anemia, hyperbilirubinemia 1:20,000 [15]

Alanine aminotransferase (ALT) Pyruvate + glutamate ↔  
Alanine + α-ketoglutarate

Unknown (mild) 2.5:1,000 [48]

Mitochondrial pyruvate carrier 
(MPC)

PyruvateIMS ↔ pyruvateMatrix Neurodegeneration, lactic acidosis, hyper-
pyruvicemia, psychomotor retardation

Very rare (2 cases) [1, 68]

Pyruvate dehydrogenase phos-
phatase (PDP)

P-PDH → PDH + Pi Lactic acidosis, elevated pyruvate and 
alanine levels, exercise intolerance, 
hypotonia

Very rare (2 cases) [113, 114]

Pyruvate dehydrogenase kinase 
(PDK)

PDH + ATP → P-PDH  
+ ADP

N/A N/A
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1.3.3 Mitochondria as signaling organelles 

1.3.3.1 Signaling molecules 

Reactive oxygen species 

ROS are an interesting example of the emerging concept of signaling functions 

associated with mitochondrial-derived molecules. For a long time, these were 

considered toxic species involved in aging and numerous diseases, which led to 

the rise in antioxidant therapies and supplements. As these approaches started 

to fail150, new lines of research began to identify adaptive signaling roles 

associated with controlled levels of ROS151. 

Mitochondrial ROS are a natural consequence of the electron trafficking in the 

ETC and are produced when single electrons are transferred to O2 resulting in 

the formation of the highly reactive species superoxide, hydrogen peroxide, and 

hydroxyl radical. Production of mitochondrial ROS occurs at the CI152, CII153 and 

CIII154 of the ETC and depends on oxygen availability, the redox state of the 

ETC complexes, membrane potential, and the availability of ETC 

substrates106,153.  

Mitochondrial ROS were first associated with signaling functions in the context 

of hypoxia. ROS generated in CIII during oxygen deprivation result in 

stabilization of the hypoxia factor HIF1α and consequent up-regulation of genes 

involved in adaptation to hypoxia155,156. Other signaling roles of ROS include the 

oxidation of cysteine residues that participate in transduction pathways, such as 

the activation of the stress-responsive kinase JNK157 or the autophagy regulator 

ATG4158. ROS have also been found to provide important signals for cell 

differentiation159,160, migration and survival161. Very recently, a study showed 

that a transient increase in ROS levels during C. elegans development 

modulates epigenetic signaling, leading to increased stress resistance and 

prolonged life span162.  
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Calcium 

Mitochondria are the gatekeepers of intracellular calcium pools and a tight 

control of calcium trafficking into the mitochondria is essential for numerous 

cellular functions163. Similar to ROS, perturbations in mitochondrial function lead 

to calcium-mediated adaptive stress responses164 and have an impact in cell 

fate165,166. 

 

Metabolites 

Due to their overwhelming importance in bioenergetic and biosynthetic 

processes, the signaling role of metabolites, in particular the TCA cycle 

intermediates, has only very recently become the focus of research groups. 

Acetyl CoA has a fundamental role in epigenetics by providing the substrate for 

histone acetylation, which regulates gene expression167. In fact, acetyl CoA 

levels have been associated with cell growth and proliferation signaling168 as 

well as epigenetic control of the synthesis of metabolic enzymes169. 

Furthermore, many histone deacetylases are dependent on NAD, thus imposing 

another layer of gene expression regulation that depends on the metabolic and 

redox status of the cell (expressed in this case as the ratio NADH/NAD+)170. 

Very recently, lactate production, otherwise considered a toxic waste product of 

glycolysis, has been shown to modify histones (in a process called histone 

lactylation) and induce the expression of genes involved in homeostatic 

processes such as wound healing171. 

Metabolic signaling seems to be particularly relevant when it comes to the 

activation of immune responses, as highlighted by studies linking lipid signaling 

and defense against pathogens in C. elegans172,173. In mammals, signaling 

through TCA intermediates has been recently brought to stage due to its role in 

inflammation174. Accumulation on succinate in macrophages leads to pro-

inflammatory signaling mediated both by HIF1α stabilization175 and generation 

of ROS176. An opposing role has been attributed to itaconate, a derivative of the 

TCA cycle metabolite aconitate174. Production of itaconate in macrophages has 

an anti-inflammatory effect, which has been mechanistically linked to decreased 
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succinate oxidation177 and activation of the NRF1-induced antioxidant 

reponse178.  

The field of metabolic signaling in the context of immunity has exploded in the 

past few years and provided advances in our understanding of how immune 

cells shift fuel usage to regulate effector responses109,179. It should be noted, 

however, that many of these studies are conducted in vitro, very far from 

physiological conditions180. This has been recently illustrated by the dramatically 

different metabolic needs and effector responses of T cells isolated from mice 

when compared to cultured cells181. Our mechanistic insight on the intricate 

regulation of metabolism and immunity at the organismal level is still limited and 

will require intense research efforts that take into account complex interactions 

of organismal homeostasis. 

 

1.3.3.2 Transcriptional control of mitochondrial stress responses 

As mentioned before, the dual origin of the mitochondrial proteome requires a 

tightly controlled communication between the nucleus and the mitochondria to 

maintain homeostasis. This communication serves two main purposes: 1) to 

maintain the adequate balance between nuclear and mitochondrial encoded 

proteins; and 2) to ensure that mitochondria meet the required metabolic needs 

(e.g. substrate availability and protein function) before the cell commits to a new 

biological process. To this end, the nucleus instructs mitochondrial function 

(anterograde signaling) and the mitochondria respond by sending signals back 

to the nucleus, causing changes in nuclear gene expression that influence 

cellular function (retrograde signaling)182. The examples below illustrate how 

mitochondrial stress impacts on nuclear transcriptional programs.  

 

Energetic stress 

As previously discussed, AMPK is the major sensor of metabolic stress, as it 

detects ATP depletion and triggers adaptive changes to correct it. Activated 
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AMPK phosphorylates the master regulator of mitochondrial biogenesis 

PGC1α183. This results in the up-regulation of nuclear-encoded genes of the 

ETC, as well as genes involved in mitochondrial transcription and translation, in 

an attempt to increase respiratory capacity of the mitochondria183,184. Activated 

PGC1α also interacts with PPARα to promote transcription of FAO genes185. 

Depending on the severity of metabolic stress and on the integration of several 

signals, AMPK may promote autophagy to ensure recycling of cellular 

components into energy substrates186,187. Furthermore, AMPK negatively 

regulates mTORC resulting in decreased protein synthesis and cell 

proliferation188 as well as increased ketogenesis189. 

 

Proteostasis stress 

Proteotoxic stress in the mitochondria can be caused by accumulation of 

misfolded proteins (for example, due to heat stress), protein damaging by ROS, 

or an imbalance between nuclear and mitochondrial-encoded proteins of the 

respiratory chain. All of these promote retrograde signaling and activate a 

transcriptional program known as mitochondrial unfolded protein response 

(UPRmt), which aims at increasing the expression of nuclear-encoded 

mitochondrial proteostasis genes190,191.  

The induction of UPRmt was first observed in mammalian cells depleted of 

mtDNA. Upon treatment of hepatoma cells with ethidium bromide, the authors 

noticed an up-regulation of the mitochondrial chaperones HSP10 and HSP60, 

indicating a nuclear-orchestrated attempt to restore mitochondrial 

proteostasis192. In the following years, the molecular mechanisms of UPR were 

intensely studied in C. elegans by the use of genetic or pharmacological 

perturbations to the ETC function9,193, the mitochondrial folding capacity194,195, or 

by generation of mitochondrial ROS196. 

In nematodes, UPRmt is regulated by ATFS, a protein that includes both 

mitochondrial and nuclear targeting sequences. In normal conditions, ATFS is 

directed to the mitochondria and constantly degraded by mitochondrial 

proteases. When proteostasis stress surpasses the capacity of mitochondrial 
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proteases, ATFS accumulates and gets shuttled to the nucleus, where it acts as 

a transcription factor to induce stress responsive genes (including chaperones, 

proteases, and antioxidants)197.  

 

In mammals, UPRmt is mediated by the C/EBPβ and CHOP transcription factors, 

which have been also implicated in ER stress responses198,199. Mitochondrial 

protein misfolding in human cells has been shown to up-regulate nuclear-

encoding mitochondrial chaperones and proteases, while slowing down 

mitochondrial transcription and translation, therefore restoring folding capacity 

specifically at the mitochondrial matrix200.  

However, the mechanisms that regulate mammalian UPRmt are still poorly 

understood and how mitochondrial stress is communicated to the nucleus in 

mammals is still a matter of debate. A recent study proposed a central role for 

ATF5 in mediating mitonuclear communication (similar to ATFS in C. 

elegans)201, while a large multi-omics screen identified ATF4 as the master 

regulator of UPRmt 202.  

The fact that most regulators of mammalian UPRmt are also activated upon ER 

stress points to a network of cellular stress responses that link different 

organelles. In fact, UPRmt is increasingly recognized as part of a broader 

integrated stress response (ISR)203. The ISR relies on sensors for diverse 

perturbations such as ER stress, amino acid deprivation, or heme deficiency, all 

of which regulate cytosolic translation through phosphorylation of eIF2α. 

Increased protein levels of ATF4 resulting from eIF2α activation lead to 

transcriptional up-regulation of stress response genes such as CHOP and 

ATF5203 (Figure 1-6). The tight link between UPRmt and ISR has become 

apparent as different studies found increased eIF2α phosphorylation upon 

genetic or drug-induced mitochondrial stress204,205.  

In recent years, more intricate forms of communication between mitochondria 

and cytosol following proteotoxic stress have been identified – these include the 

lipid-mediated mitochondrial-to-cytosolic stress response (MCSR) in C. 

elegans206 and the UPR activated by mistargeting of proteins (UPRam) in 
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yeast207 – suggesting that we are still far from fully understanding the integration 

of different stress responses in mammals. 

 

 
Figure 1-6 – Mitochondrial stress signaling: UPRmt and the ISR (taken from191). 

 

At the end of the spectrum of mitochondrial proteostasis stress, we find cases 

where stress responses are not sufficient to restore homeostasis. In this case, 

UPRmt may activate mitophagy to remove severely damaged mitochondria, 

although the mechanisms of coordination between the two are still unclear208.  

 

Over the past twenty years, the idea that mild perturbations in mitochondrial 

function induce protective stress responses – including, but not limited to UPRmt 

– which promote organismal fitness, has been gaining increasing popularity. 

The first observation resulted from a genetic screen in C. elegans, in which a 

mutation in the iron sulfur protein 1 (isp-1) subunit of complex III was associated 

with increased longevity209. At the time, this beneficial effect was attributed to 

decreased oxygen consumption and increased resistance to ROS209. In the 

following years, this concept would be further explored by the pioneer work of 

Dillin and co-workers, who eventually established a causal link between UPRmt 

and prolonged lifespan9,210,211. In recent years, hormetic mitochondrial 

responses – also known as mitohormesis212 – have been intensely studied in 

the context of longevity across all model organisms110,191.  

Our current understanding of how perturbations in mitochondrial function 

improve fitness is now expanding beyond the classical activation of UPRmt 

markers. Future studies will need to integrate a complex network of signals that 

is highly context-dependent and includes not only mitokines, but also ROS213 

and calcium214 signaling, together with metabolic reprogramming215,216 and other 
Integrated stress response
(ISR). A stress response 
initiated by kinases responsive 
to endoplasmic reticulum 
stress, amino acid depletion, 
haem depletion or viral 
infection that leads to 
phosphorylation of eukaryotic 
translation initiation factor 2 
subunit 1 (eIF2α), ultimately 
resulting in reduced protein 
synthesis and increased 
translation of mRNAs 
harbouring upstream open 
reading frames.

Owing to the pleiotropic nature of these mitochon-
drial defects, it is difficult to determine the precise events 
that lead to UPRmt activation, but they all impair mito-
chondrial protein import, consistent with the regula-
tion of ATFS-1 by mitochondrial protein import (FIG. 1). 
These observations suggest that ATFS-1 is activated by 
mitochondrial dysfunction that ultimately feeds back 
on mitochon drial protein import efficiency owing 
to damage in the system. Consistent with this model, 
it was recently shown that in Saccharomyces cerevisiae, 
many mitochondrial proteins mislocalize to the cytosol 
when mitochondrial proteostasis and protein import 
are impaired. Interestingly, the mislocalized mito-
chondrial proteins are extremely toxic if they are not 
quickly degraded by cytosolic proteasomes48,49. These 
data suggest that mitochondrial import is impaired 
by multiple forms of  mitochondrial dysfunction and 
that multiple pathways are activated in response to 
such dysfunction.

Mitochondrial network assessment and nuclear com-
munication in mammals. Although the mechanisms of 
the UPRmt have been elucidated in C. elegans, the UPRmt 
was discovered in mammalian cells with the obser-
vation that mitochondrial chaperones and proteases 
are induced in response to mtDNA depletion or the 
accumulation of misfolded proteins in the mitochon-
drial matrix17,20. More recently, a UPRmt was found to 
be induced in mice and cultured mammalian cells by 
various mitochondrial perturbations, such as deletion 
of the mitochondrial aspartyl-tRNA synthetase DARS2 
(REF. 50), skeletal- muscle-specific deficiency in CRIF1, 
which is an integral protein of the large mitochondrial 
ribosomal subunit (39S)51, and inhibition of the mito-
chondrial ribosome, the mitochondrial protease LON 
and the mitochondrial chaperone tumour necrosis factor 
type 1 receptor- associated protein (TRAP1; also known 
as HSP75)15,52 (TABLE 1).

Although the resulting transcriptional response to 
mitochondrial dysfunction is similar in mammals and 
C. elegans, regulation is probably more complicated. 
Data obtained over the past 5 years suggest the involve-
ment of three bZIP transcription factors, CHOP (also 
known as DDIT3), ATF4 and ATF5, associated with the 

integrated stress response (ISR)53–56. The expression of 
CHOP, ATF4 and ATF5 requires the phosphorylation 
of the eukaryotic translation initiation factor 2 subunit 1 
(eIF2α), which is catalysed by four kinases responsive to 
diverse cellular stresses (FIG. 2). Some eIF2α molecules 
are constitutively phosphorylated, but the amount of 
phosphorylated eIF2α increases when the eIF2α kinases 
GCN2 and PERK (also known as EIF2AK3) are activ-
ated by amino acid depletion and endoplasmic reticu lum 
dysfunction30,57–59, respectively. Increased eIF2α phos-
phorylation results in reduced global protein synthesis 
and preferential translation of mRNAs with open read-
ing frames in the 5ʹ untranslated regions, such as those 
encoding CHOP, ATF4 and ATF5 (REFS 60–62).

Multiple studies have demonstrated that diverse forms 
of mitochondrial stress induce the expression of CHOP, 
ATF4 and ATF5 as well as that of genes involved in the 
UPRmt, such as mitochondrial proteostasis and metabolic 
remodelling genes30,51,52,63–66. For example, mitochondrial 
chaperones and proteases, as well as CHOP, ATF4 and 
ATF5, were induced in mice deficient in DARS2 (REF. 50). 
Multiple studies have also demonstrated that CHOP, 
ATF4 or ATF5 are required for the induction of UPRmt 
genes during mitochondrial dysfunction, consistent with 
a model in which these transcription factors regulate the 
mammalian UPRmt (REFS 30,51,64,66). Combined, these 
studies have  rediscovered the ISR, but in the context of 
mitochondrial dysfunction. Almost 15 years ago, ATF4 
and PERK were shown to mediate the transcriptional 
induction of mitochondrial proteostasis genes as well as 
genes involved in metabolic remodelling53. However, it is 
not yet clear how each ISR kinase and transcription factor 
is regulated during mitochondrial dysfunction to achieve 
a specific mitochondrial stress response, as expression of 
all three transcription factors can be activated during a 
variety of conditions, including endoplasmic reticulum 
stress, amino acid depletion and viral infection, which 
also increase eIF2α phosphorylation60,61,67–71.

A recent study suggested that ATF5 is a mammalian 
orthologue of ATFS-1, as ATF5 rescued UPRmt activ-
ation in worms lacking ATFS-1 (REF. 64). This study also 
indicated that ATF5 can respond directly to mitochon-
drial stress because like ATFS-1, ATF5 activity seems 
to be regulated via mitochondrial import efficiency64. 
During mitochondrial stress, ATF5 was required for the 
induction of several mitochondrial chaperone and pro-
tease genes, consistent with an essential role of ATF5 in 
cell growth during mitochondrial stress64. Interestingly, 
ATF4 was also shown to protect against mitochondrial 
stress when cells were depleted of mtDNA72 or treated 
with either paraquat or a mitochondrial protease 
inhib itor66. Protection was mediated by induction of 
 metabolic genes associated with the ISR3,66 (TABLE 2).

It is not clear how the functions of CHOP, ATF4 and 
ATF5 are coordinated during mitochondrial dysfunc-
tion. All three are bZIP proteins, but CHOP and ATF4 
do not contain an MTS like ATFS-1 or ATF5 (REF. 64), 
suggesting that they are regulated at the level of expres-
sion, which requires the induction of eIF2α phosphoryl-
ation56. One simple hypothesis is that CHOP, ATF4 and 
eIF2α phosphorylation are sufficient to induce ATF5 

Figure 2 | Signalling the mammalian mitochondrial unfolded protein response. 
Activation of the mammalian mitochondrial unfolded protein response (UPRmt) requires 
the phosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α) by the 
eIF2α kinases GCN2 and PERK (also known as EIF2AK3), which are activated by amino 
acid depletion, excessive reactive oxygen species (ROS) or endoplasmic reticulum (ER) 
stress. Phosphorylation of eIF2α results in reduced protein synthesis and the preferential 
translation of mRNAs harbouring open reading frames in the 5ʹ untranslated region, such 
as the mRNAs encoding the transcription factors CHOP, ATF4 and ATF5. All three seem to 
be involved in the UPRmt, although it remains to be determined how their activity is 
regulated during mitochondrial dysfunction.
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still unknown factors that promote organismal homeostasis upon mitochondrial 

dysfunction.  

 

1.4 Sepsis: a challenge for healthcare and biology 

1.4.1 Definition and clinical importance of sepsis 
 

Sepsis is characterized by a heterogeneous set of signs and symptoms that has 

complicated its definition, diagnosis and clinical management. The first 

international consensus on sepsis dates from the early 1990’s and defined 

sepsis as a systemic inflammatory response syndrome (SIRS) in the presence 

of an infection217 (Table 1-1). Patients in which SIRS was accompanied by 

organ dysfunction were diagnosed with severe sepsis, whereas cases including 

persistent hypotension were qualified as septic shock217.  

Over the following decades, it became apparent that this definition does not fully 

grasp the complexity and heterogeneity sepsis. In 2016, the third international 

consensus (Sepsis 3) defined sepsis as a ‘life-threatening organ dysfunction 

caused by a dysregulated host response to infection’218. Of note, the classical 

signs of inflammation (fever and leukocyte counts) are no longer required for 

diagnosis and organ dysfunction became the major defining feature of sepsis – 

in fact, tissue damage accounts for most of the mortality and long term morbidity 

of sepsis, even after infection has been cleared. According to the new definition, 

the terms SIRS and severe sepsis were replaced by the single term ‘sepsis’, 

while maintaining the term septic shock to define persistent hypotension that 

requires administration of vasopressors218 (Table 1-1). 

 

Sepsis constitutes a major healthcare problem and socio-economical burden 

worldwide. In the USA, incidence of sepsis is estimated to range between 

894,013 and 3,110,630 cases per year (0.3-1% population)219, although precise 
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numbers are difficult to obtain due to the variety of definitions and case 

registration methods. The worldwide incidence is even more difficult to 

calculate, due to the lack of data for low-income countries. Still, a recent 

estimate based on the extrapolation of data from high-income countries pointed 

to 19-34 million cases annually, with 5 million potential deaths220. 

 

Although most large-scale studies in developed countries indicate a decrease in 

mortality of sepsis patients in recent years219,221, the total number of cases is 

instead increasing222. This can be attributed to increased awareness and more 

accurate diagnosis, but also to the aging of the population and consequent 

increase in co-morbidities219,222.  

 

1991 consensus conference217 
Diagnosis Signs and symptoms 
Systemic 

inflammatory 
response 

syndrome 
(SIRS) 

Patients experiencing at least two of the following symptoms: 
• Body temperature >38ºC or <36ºC 

• Heart rate >90 beats per minute 
• Respiratory rate >20 breaths per minute or arterial CO2 <32 mmHg  

• White blood cell count >12 × 109 L–1 or <4 × 109 L–1, or >10% immature 
forms 

Sepsis Systemic inflammatory response syndrome and proven or suspected infection 
Severe sepsis Sepsis and acute organ dysfunction 
Septic shock Sepsis and persistent hypotension after fluid resuscitation 

2016 Sepsis-3218 
Diagnosis Signs 

Sepsis • Life-threatening organ dysfunction caused by a dysregulated host response 
to infection 

• Organ dysfunction can be identified as an acute change in total SOFA score 
of ≥2 points 

Septic shock • Sepsis in which the underlying circulatory and cellular and/or metabolic 
abnormalities are marked enough to substantially increase mortality 

• Clinically defined as sepsis with persisting hypotension that requires 
vasopressors to maintain the mean arterial pressure at ≥65 mmHg and with a 

serum lactate concentration >2 mmol.L–1 
Table 1-1 Evolution of the definitions of sepsis (adapted from223).  

SOFA – sequential organ failure assessment score, based on six different scores for disease 
severity (respiratory, cardiovascular, hepatic, coagulation, renal and neurological systems). 

 

In addition to its economic burden – it has been considered the most expensive 

condition for USA hospitals224 – sepsis has a devastating social impact, due to 



	36 

its high incidence in the pediatric population, the lengthy recovery and the long-

term physical and cognitive impairment of survivors225.  

The need for initiatives to prevent and fight sepsis has been increasingly 

recognized worldwide. In 2017, the World Health Organization issued a 

resolution urging for policy makers, research funding agencies, healthcare 

professionals, and all involved parties to improve the diagnosis and 

management of sepsis226. In the meantime, international guidelines have been 

published providing recommendations for evidence-based clinical management 

of septic patients227, while several public health initiatives strive to raise public 

awareness about sepsis and implement preventive measures228.  

 

1.4.2 Sepsis pathophysiology 

1.4.2.1 Etiology 

Sepsis is a syndrome, not a disease. This means that any microbial agent –

bacterial, fungal, viral, or protozoan – can trigger a dysregulated response to 

infection that courses with systemic inflammation, metabolic dysfunction, and 

epithelial barrier failure, which are hallmarks of sepsis. Likewise, the initial focus 

of infection varies among patients, with respiratory infections being the most 

prevalent, followed by abdominal, bloodstream, and genitourinary229.  

The factors that determine the risk of developing sepsis from an infection are 

complex and include microbial pathogenesis, host genetic susceptibility to 

develop acute organ dysfunction, as well as environmental factors. It is well 

established that infants and the elderly are more likely to develop sepsis, as are 

immunosuppressed patients and people with chronic diseases such as cancer, 

chronic obstructive pulmonary disease, or cirrhosis230,231.  
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1.4.2.2 Immunopathology 

As discussed in section 1.2.2, pathogen invasion triggers an acute inflammatory 

response, which needs to be tightly balanced with repair and anti-inflammatory 

mechanisms to allow return to homeostasis. Sepsis is one of the most 

prominent cases of dysregulation of this balance, leading to severe 

immunopathology. Upon the discovery that TNF-blocking antibodies increased 

survival in a model of septic shock in baboons232, the initial pro-inflammatory 

response became the cornerstone of sepsis research and a major promise for 

therapies. However, it is becoming clearer that organismal dysfunction is much 

more complex and involves dramatic reprogramming in cellular functions. This 

is reflected in simultaneous inflammation and immunosuppression, metabolic 

collapse, and failure to return to homeostasis223.  

 

Excessive inflammation 

Initial stimulation of PRR in leukocytes (in particular macrophages and 

neutrophils) triggers a fast and abundant secretion of cytokines, including TNFα, 

IL-1β, IL-6, IL-12, IL-17, and IL-18 – a phenomenon known as ‘cytokine 

storm’233,234. In humans, injection of endotoxin results in a peak of cytokine and 

chemokine secretion within 2 to 4 hours235. In addition, colony-stimulating 

factors (CSFs) play a role in the cytokine storm by promoting leucocyte 

differentiation and stimulating pro-inflammatory functions in mature immune 

cells236. Other less well-known players of immunopathology include the IL-3-

producing innate response activator B cells. IL-3 works as a cytokine and a 

myeloid growth factor that mediates an aberrant inflammatory response and has 

been associated with worsened sepsis prognosis in humans237.  

The cytokine storm is a self-propagating state, in which more leukocyte 

recruitment will further aggravate the inflammatory response. Moreover, high 

cytokine levels cause damage to bystander cells, leading to the release of 

DAMPs, which will further activate PRRs and propagate this vicious cycle233. 
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In addition to leukocyte-derived cytokines, chemokines and growth factors, 

other components contribute to the initial exacerbation of inflammation. 

Endothelial cells, which play a key role in activating and trafficking leukocytes 

during inflammation, also become highly dysfunctional in sepsis. High levels of 

cytokines, metalloproteinases, and DAMPS (especially HMGB1) contribute to 

disrupt the endothelial barrier, causing leakage of serum and proteins out of the 

vascular compartment. This leads to widespread edema and impaired 

perfusion, which are particularly serious when affecting the brain238,239.  

Vascular problems during sepsis are further aggravated by an excessive 

activation of the coagulation system. Platelet activation by inflammatory 

mediators, together with circulating neutrophil extracellular traps (NETs), 

contributes to disseminated intravascular coagulation, which can lead to 

vascular occlusion and ischemia. Paradoxically, excessive coagulation can also 

be the cause of hemorrhage, resulting from the exhaustion of platelets and 

coagulation factors240,241.  

 

Immunosuppression 

The initial hyper-inflammatory phase of sepsis is followed by an 

immunosuppressive state that poses additional threats to the host. The 

immunosuppressive phase can be explained by the emergence of a 

compensatory anti-inflammatory program and an exhaustion of immune cell 

function. The former is now recognized as a highly dynamic crosstalk between 

pro- and anti-inflammatory programs, rather than a simple temporal activation of 

the two. In fact, anti-inflammatory genes (such as Il10) are transcribed within the 

first few hours of infection, in close proximity with pro-inflammatory ones235,242. 

The exhaustion and apoptosis of lymphocytes, in turn, occur at later stages of 

unresolved infections: massive apoptosis occurring in lymphoid tissues causes 

depletion of CD4+, CD8+ and B cells243, while surviving leukocytes dramatically 

reduce production of cytokines244. This results in a prolonged 

immunosuppressive state that predisposes patients to secondary infections and 

is ultimately responsible for large rates of late mortality after sepsis244.  
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1.4.2.3 Metabolic dysfunction 

Catabolism and anabolism in sepsis 

As previously discussed, metabolic regulation of immune cells shapes their 

effector functions, and often dictates the balance between pro- and anti-

inflammatory phenotypes. The initial inflammatory response in sepsis is 

associated with a shift towards glycolysis in human peripheral blood 

mononuclear cells (PBMCs). This serves not only as a source of ATP but also 

of intermediate metabolites (such as NAPDH and glucose 6-phosphate), which 

are essential for anabolic pathways including lipid, protein, and nucleotide 

synthesis to support rapid proliferation of leukocytes245. In contrast, the late 

immunosuppressive stage of sepsis is characterized by defects in both 

glycolysis and oxidative phosphorylation, which help to explain paralysis of 

immune functions246.  

 

Outside of the hematopoietic compartment, sepsis causes dramatic changes in 

fuel utilization that result in a global decrease in ATP levels and a consequent 

up-regulation of catabolic pathways247. The energetic collapse associated with 

sepsis has been increasingly recognized as a driver of pathology and organ 

failure, as well as a promise for new therapies248. 

Since the initial observation, more than half a century ago, that sepsis causes 

morphological abnormalities in mitochondria249, several studies have linked 

impaired mitochondrial function to sepsis pathophysiology250. Despite normal (or 

even increased) oxygen delivery to tissues, cells are unable to use oxidative 

metabolism to produce ATP – a phenomenon known as cytopathic hypoxia251. 

Increased levels of ROS and nitric oxide produced during the inflammatory 

response inhibit the activity of all ETC complexes252,253, while PDC activity is 

repressed, resulting in decreased mitochondrial oxidation of pyruvate254. As a 

consequence, ATP production is sustained by glycolysis, a less efficient 
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process that leads to overall depletion of ATP in parenchymal tissues. A study 

in recently admitted intensive care unit (ICU) patients revealed a correlation 

between low ATP levels in skeletal muscle and mortality253.  

As a result of impaired oxidative phosphorylation, pyruvate produced in 

glycolysis is ultimately reduced to lactate in the cytosol. Accumulation of lactate 

is in turn deleterious and can lead to metabolic acidosis, arrhythmia, and coma 

– in fact, high levels of lactate in the blood are a well-known indicator of bad 

prognosis in patients255. 

In summary, maintenance of mitochondrial structure and function has been long 

recognized as an essential component of recovery from sepsis. For example, 

increased levels of mitochondrial biogenesis genes at early stages of infection 

have been associated with higher chances of survival256. These findings 

encourage the search for new therapeutic strategies that restore the lost 

balance in mitochondrial biology during infection, a challenging mission that 

remains unsolved to this day257,258. 

 

Glucose metabolism 

Another well-established component of energetic failure in sepsis is the 

disturbed distribution and metabolism of the major energy-generating nutrients – 

glucose, fatty acids, and amino acids.  

Hyperglycemia is commonly found in sepsis patients, presumably due to insulin 

resistance induced by catecholamines, cytokines, and glucocorticoids259. 

Whether this is an adaptive or maladaptive response is not clear – mild 

hyperglycemia may be advantageous to fuel neurons and leukocytes, while 

severe hyperglycemia is life threatening260. As a result, after years of debate on 

clinical management of glucose levels, the most recent guidelines advocate for 

a less strict control compared to the past227,248.  

In contrast to humans, sepsis models in laboratory mice are characterized by 

persistent hypoglycemia38,82. The differences in glucose utilization between mice 

are humans are poorly understood and may include thermoregulation 

programs85, and infection-induced anorexia in mice38 (which is counteracted in 
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humans by parenteral feeding in the ICU). As in humans, the benefits of 

controlling glucose levels in mice are unclear and seem to be highly context 

dependent. A recent study reported that glucose supplementation is beneficial 

in viral infections and detrimental in bacterial sepsis38, while a different study 

showed a protective effect for glucose supplementation and induction of hepatic 

gluconeogenesis in avoiding lethal hypoglycemia during bacterial infection82. 

 

Lipid metabolism  

Upon the action of stress hormones (catecholamines and glucocorticoids) 

during infection, triglycerides stored in adipocytes are mobilized and broken 

down, resulting in high levels of FFAs in circulation261. FFAs then serve as 

important sources of ATP production and also as intermediates for lipid 

inflammatory signals, such as arachidonic acid260.  

In sepsis patients, however, it has become apparent that oxidation of fatty acids 

is compromised, and may contribute to energetic failure. Decreased expression 

of Ppara (the gene coding for PPARα)262 and accumulation of acylcarnitines263 

have been observed in patients and correlated with disease severity, thus 

highlighting the importance of β-oxidation in sepsis pathophysiology. The same 

principles seem to apply in mice, as seen in two recent studies exploring 

mechanisms of liver fatty acid metabolism during sepsis. Impaired liver β-

oxidation was shown by the accumulation of acylcarnitines in mouse liver and 

blood upon LPS treatment85, while hepatic PPARα was proven essential for 

survival to E. coli-induced sepsis264. Inhibition of β-oxidation during sepsis is 

problematic not only because it aggravates the deficit in ATP production, but 

also because it leads to accumulation of toxic lipid species, which cause 

mitochondrial dysfunction and tissue damage248,265. 

 

Amino acid metabolism 

In line with changes in glucose and lipid metabolism, sepsis is characterized by 

increased protein catabolism. This is particularly evident in the skeletal muscle 

and explains muscle wasting observed in patients266. Amino acids resulting from 
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muscle protein catabolism can be shuttled to immune cells, to support 

proliferation and production of inflammatory mediators, or to the liver, where 

they can be used for energy production259.  

Several amino acids, most importantly glutamine, glutamate, and alanine, can 

enter the TCA cycle and be used for ATP production (unlikely, since 

mitochondrial function is impaired), or enter the gluconeogenesis pathway248. 

Alternatively, amino acids such as lysine or leucine can be used for the 

synthesis of ketone bodies85. Ketones are important sources of energy during 

starvation and have been deemed essential for survival to sepsis38. In face of 

defective glucose and fatty acid oxidation during sepsis, muscle-derived amino 

acids have been proposed to partially sustain energy production through 

ketogenesis85. 

 

 
Figure 1-7 – Metabolic dysregulation in sepsis (taken from248). 

 

In summary, catabolic programs are an adaptive response to stress conditions 

that support tissue function during starvation or hibernation, for example75. In 

sepsis, the correlation between these metabolic alterations and disease 

tolerance mechanisms that limit tissue damage has just begun to be 

investigated. In mouse models of bacterial sepsis, it is now clear that both Conclusion

In a healthy organism, energy expenditure and energy income are in

balance. During extensive exercise, the consumption of O2 by the

TCA cycle exceeds the available amounts, and the resulting hypoxia

leads to a mainly HIF-1a coordinated closure of the mitochondrial

import of pyruvate, and an increased production of lactate, which

can be consumed elsewhere in the body. The toxic lactate causes

muscle cramps, enforcing the end of the exercise. During starvation,

that is, when no or limited amounts of food enters the system, a

prolonged imbalance of the energy homeostasis is created and in

essence two systems are initiated to cause rearrangements of the

metabolism. First, hormones (glucagon, epinephrine, nore-

pinephrine, glucocorticoids), sensing low metabolic concentrations,

coordinate a starvation response, leading to the release of energy-

rich molecules from the resources, for example, glucose from glyco-

gen, AAs from protein and FFAs and glycerol from TGs. The AAs

will lead to glucose via gluconeogenesis in the liver, a process

strongly coordinated by glucocorticoids and the GR, while several of

the FFAs act as ligands for another nuclear receptor PPAR-a. These
receptors are transcription factors and induce genes that are essen-

tial in the gluconeogenesis and b-oxidation processes, respectively.

This is a system of high efficiency and strongly stimulated by the

transcriptional co-factor PGC1-a. Second, the amounts of mitochon-

dria, well-known as the organelles where TCA cycle and FFA b-
oxidation occur, are increased by a process of mitochondrial biogen-

esis, again by the stimulating action of PGC1-a.
In sepsis, the energy balance is clearly disturbed. There is energy

needed, but patients are unwilling or incapable to eat and a starva-

tion response develops. Due to the infection, an inflammation and

immune response develop, and as a consequence a HIF-1a signature

is seen (Fig 6). This leads to a limited mitochondrial function, which

may serve several goals. First, inflammation leads to mitochondrial

damage, so limiting the importance of these organelles in ATP

production seems logical. Second, the metabolism of glucose shifts

to aerobic glycolysis, which may be of interest for a more efficient

function of white blood cells. Third, some authors suggest that the

reduction in mitochondrial respiration under such conditions is a

conserved pathway of limiting energy expenditure, leading to a meta-

bolic reprogramming, as is observed during hibernation in several

mammalian taxa. Of course, neither humans nor mice are hibernating

species, so the importance of these pathways may be questioned.

Nevertheless, the danger of a reduced mitochondrial activity is obvi-

ous: Most of the energy-rich molecules produced from the energy

stores need active mitochondria to be properly consumed by cells. It

is likely that the systemic aspect of sepsis forms the major hurdle of

this strategy, because mitochondrial function in sepsis seems to be

failing in all tissues, and as a consequence, lactate, FFAs, and other

catabolic products accumulate and cause tissue damage and death.

Although it is clear that there is very significant metabolic repro-

gramming in sepsis, besides the activation of other complex systems

(inflammation, coagulation, complement activation, hypoxia

response), and given the fact that these pathways all influence one

another, it is hard to conclude how, where, and when the metabolic

pathways that are calling for therapeutic modulation have to be

addressed in a safe and effective way. Based on this overview of the

literature, it is our opinion that three early pathways deserve special

attention, namely (i) the generation of lactate by the increased HIF-

stimulated glycolysis, (ii) the accumulation of free fatty acids in the

blood, by the decreased ability of tissues to oxidize them via beta-

oxidation, and (iii) the decreased generation of ketone bodies by the

liver. Since the liver also appears to be undergoing these metabolic

rearrangements, and based on the availability of liver-targeting

approaches in today’s pharmacology, this organ could be the best

option to study in preclinical models of sepsis.
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Figure 6. The toxic consequences of metabolic reprogramming in sepsis.

Infection is the start of sepsis. It leads to direct tissue damage and to
inflammation, which in turn leads to hypoxia, which is essential to allow white
blood cells (WBCs) to produce fast ATP from glucose and act fast on the
infectious agents. The hypoxic response also leads to mobilization of energy-rich
molecules such as lactate and fatty acids, which however can also lead to
toxicity, when over abundant.

Pending issues
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heterogeneity: stratification is the key.

(ii) Studies directed toward the ideal sepsis animal model.
(iii) Studies elucidating sepsis as an inflammatory versus metabolic

disorder and identification of key target organs.
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anorexia38 and hypothermia85 support beneficial metabolic changes that are 

reflected, for example, in increased ketogenesis.  

Paradoxically, while catabolic pathways release high-energy molecules, cellular 

oxidative metabolism is impaired during sepsis. This leads not only to energetic 

failure but also to accumulation of toxic species such as lactate and FFAs, 

which further aggravate inflammation-induced tissue damage248 (Figure 1-7).  

 

1.4.2.4 Organ failure  

A small fraction of sepsis patients develop a fulminant, TNF-driven septic shock 

characterized by hypotension, cardiac failure and ischemic necrosis. In most 

patients, however, sepsis develops as a more progressive and persistent organ 

failure condition267 (Figure 1-8). Remarkably, organ failure is characterized by 

low levels of cell death and rather seems to be a consequence of cellular 

reprogramming that impairs communication and tissue function239. 

 

As previously discussed, inflammation causes an increase in endothelial 

permeability, resulting in widespread edema and loss of barrier functions in all 

tissues. In the lung, interstitial edema in the alveoli perturbs gaseous exchanges 

and leads to acute respiratory distress syndrome (ARDS), a common 

complication of sepsis268.  

Loss of intestinal barrier results in bacterial translocation that further aggravates 

the infection; while in the liver, altered transport of lipids and bilirubin leads to 

cholestasis230. In the kidney, a combination of vascular and energetic defects 

results in loss of ion gradients across tubules, leading to acute kidney injury269. 

The central nervous system is particularly sensitive to edema, ischemia, and 

hemorrhage caused by vascular defects, which very commonly results in 

encephalopathy that leads to long-term cognitive problems230. 
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Figure 1-8 – Organ failure in sepsis patients (taken from230).  

ARDS – acute respiratory distress syndrome. 
 

More generally, multiple organ failure in sepsis has been described as a 

syndrome in which cellular processes become restricted to the minimum that 

supports survival. As low-priority functions like cell-to-cell and inter-organ 
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Fig 3 |  Organ failure in a critically ill patient with septic shock from pneumococcal pneumonia. ARDS=acute respiratory distress syndrome
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communication start to fail, tissue functions that require coordination are lost, 

and organismal homeostasis crumbles239,267. 

 

1.4.3 Therapeutic approaches and failures 

1.4.3.1 Current support measures 

There are currently no specific treatments for sepsis. Standard management of 

patients includes the administration of antimicrobials to treat the underlying 

infection, together with lung ventilation, intravenous fluids, and vasopressors in 

the case of septic shock230,267. While these organ support measures allowed for 

a significant reduction in mortality over the past decades, no therapy has 

successfully addressed all of the dysfunctional features of sepsis, despite 

intense research efforts and decades of clinical trials270. While disappointing, 

this is a hardly surprising result, considering the heterogeneity of the population 

and the complex interplay of immunity, metabolism, and organ communication. 

 

1.4.3.2 Targeting inflammation and immunosuppression  

The long-standing view of sepsis as a primarily hyper-inflammatory condition led 

to numerous attempts to block the initial cytokine storm. Several clinical trials 

using blocking antibodies for TNFα showed no convincing improvement in 

survival230. Other blocking antibodies are still being investigated and may be 

useful in dampening immune activation in particular cases – these include anti-

IL1β receptor271 and anti-CD28 (which blocks T-cell activation)272.  

Glucocorticoids are another well-studied tool, due to their potent anti-

inflammatory effect and their role in metabolic adaptation (namely by increasing 

gluconeogenesis and β-oxidation). However, a recent, large-scale study in 

septic shock patients failed to show improvement in any of the analyzed 

parameters after treatment with hydrocortisone273. This can be partly explained 
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by glucocorticoid resistance – high levels of endogenous corticoids produced 

during sepsis eventually cause patients to stop responding to glucocorticoid 

administration274. 

A number of therapeutic approaches to improve endothelial function and inhibit 

disseminated intravascular coagulation have also shown limited protective 

effect, although new clinical trials are ongoing223,267. More recent strategies that 

are starting to be evaluated in the clinics include the technologies to filter 

bacterial toxins from the blood275; and the injection of mesenchymal stromal 

cells, which have immunomodulatory, antimicrobial, and barrier-preserving 

effects276. 

 

The failure of anti-inflammatory therapies led to a more recent focus on 

approaches that correct the immunosuppressive phase of sepsis, with the aim 

to reduce the incidence of secondary infections. Treatment with the colony-

stimulating factors G-CSF and GM-CSF, which increase the production and 

maturation of neutrophils and macrophages, yielded some initial promising 

results but ultimately failed to demonstrate reproducible clinical improvement of 

patients277.  

Other targets under investigation include the use of immune-stimulating 

cytokines, such as IL-7, IL-15, and IFNγ223. A recent clinical trial using 

recombinant IL-7 showed beneficial effects in reversing sepsis-induced loss of T 

cells, although the long-term effect in survival and incidence of infections still 

needs investigation278.  

Immune checkpoint blockers, namely PD1 and PDL1 blocking antibodies, which 

have been successfully used to boost T cell function against cancers, have 

shown promising results in pre-clinical studies and are currently being tested in 

clinical trials223,244.  

 

In summary, modulating the immune response during sepsis presents a 

challenging balance between the control of acute inflammatory response and 

the risk of immunosuppression – a conflict that decades of research failed to 
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resolve279.  While there is still hope for new adjuvant therapies in this area, 

future clinical trials need to include careful stratification of patients and the use 

of treatments that are tailored to individual needs223. 

 

1.4.3.3 Targeting metabolism 

Metabolism in sepsis has been increasingly acknowledged as a driver of 

pathology and a regulator of the immune response. While this has resulted in a 

profusion of recent studies using animal models of sepsis, the clinical translation 

of metabolic therapies is still lagging far behind their immune-centered 

counterparts248. 

Sepsis-induced mitochondrial dysfunction is characterized by increased 

production of ROS, which turned them into attractive therapeutic targets in the 

past. However, clinical trials using supplementation of antioxidants such as 

vitamins C and E, or the ROS scavenger N-acetylcysteine failed completely280. 

This is not surprising in light of the current knowledge on the critical role of ROS 

as signaling molecules, as previously discussed. In line with this idea, NRF2, a 

transcription factor activated in conditions of oxidative stress, has been 

associated with beneficial effects in sepsis. In a group of pediatric septic shock 

patients, increased expression of NRF2-linked genes was associated with 

metabolic benefits and improved disease outcomes281, while in a mouse model 

of pneumonia NRF2-induced mitochondrial biogenesis was associated with 

improved lung pathology77. 

 

Lactate accumulation as a result of oxidative metabolism impairment is one of 

the most prominent features of sepsis. In mice, targeted deletion of HIF-1α, one 

of the main transcriptional drivers of glycolysis, results in protection against 

endotoxin shock282,283. Likewise, administration of 2-deoxyglucose (2-DG), a 

glycolysis inhibitor, decreases lactate production and inflammation in mouse 

models of sepsis and septic shock38,284. 
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Promoting β-oxidation, in particular through the master regulator PPARα, poses 

another promising strategy by counteracting energetic failure and lipotoxicity. 

Genetic up-regulation of PPARα expression improved metabolic profile and 

cardiac function upon LPS injection in mice285; whereas the PPARα agonist 

fenofibrate increased survival in bacterial sepsis, although the proposed 

mechanism was related to reduced inflammation rather than improved 

metabolism286. Supplementation with ketone bodies, which represent readily 

available alternative sources of ATP, may also have a beneficial effect. A recent 

study reported improved muscle function and regeneration in a mouse model of 

polymicrobial sepsis upon treatment with the ketone body β-hydroxybutyrate, 

although no differences were found in survival287. 

 

In spite of the encouraging results with reprogramming of metabolic dysfunction 

in sepsis, these are still the early days of this field and more detailed 

mechanistic knowledge is required before any therapies are translated into 

clinical practice. Of note, drugs that target metabolic function need to overcome 

the dynamic, and sometimes opposing, tissue-specificity of metabolism. For 

example, metabolic changes that increase the fitness of parenchymal tissues 

may reflect negatively in immune cell function and aggravate infection outcomes 

– such is the case of metformin treatment in a model of Candida albicans 

infection, which increases pathogen load and mortality246. 

 

1.4.4 Sepsis and fundamental research 

1.4.4.1 Animal models of sepsis 

The extensive use of animal models of sepsis has allowed for a deep 

understanding of host responses to severe, systemic infection, as well as 

providing valuable therapeutic targets to be translated to clinical practice. 



	 49 

The vast majority of sepsis models are performed in laboratory mice and rats, 

due to their small size and easy, inexpensive maintenance. In addition, the use 

of inbred strains and the possibility to generate knockout and transgenic strains 

has been of paramount importance to uncover genetic determinants of disease 

outcomes288. Larger mammals, such as sheep and pigs, are preferred for more 

advanced pre-clinical studies, as they more closely replicate the clinical features 

of multi-organ failure occurring in human sepsis. The larger size of these 

animals facilitates monitoring of clinical parameters – such as cardiac output 

and biochemical parameters obtained from repeated blood sampling. Moreover, 

their genetic heterogeneity more closely represents the diversity of human 

patients289. 

 

Endotoxemia models of sterile sepsis are easy to perform and widely used to 

study the initial inflammatory response. A single intraperitoneal or intravenous 

injection of LPS (the most common), CpG DNA, or zymosan causes an acute 

and amplified cytokine response, accompanied by hypotension, decreased 

cardiac output, and hypothermia288.  These somewhat resemble the features of 

fulminant septic shock in humans, although mice show higher cytokine levels 

and a faster progression of the disease compared to humans, with high 

mortality levels within 24h290. 

 

For a more accurate reproduction of human sepsis, live bacterial models are 

preferred. Cecal ligation and puncture (CLP), a surgical model of polymicrobial 

peritonitis, is considered the ‘gold standard’ of sepsis research. In this model, 

the cecum is ligated, perforated with a needle, and placed back in the abdomen, 

causing peritonitis that gradually progresses to systemic organ dyfunction291. 

Limitations of this model include technical variations that can influence 

reproducibility, and animal welfare issues, due to its highly invasive nature289. 

Moreover, differences in intestinal microbiota between mice can have a 

dramatic effect in disease outcome. A viable alternative to circumvent this issue 

is the use of cecal slurry models, in which the cecal contents of donor mice are 
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intraperitoneally injected in recipient mice, thus providing a more standardized 

source of infection292. 

Other models of infection with live microorganisms involve the administration of 

pure cultures of a single species of bacteria or fungi. This allows for a more 

controlled and flexible experimental design, as different strains with varying 

degrees of pathogenicity can be tested. Furthermore, a variety of infection 

routes can be used – the most common being the lung, peritoneal cavity, and 

blood – all with distinct features of disease progression and outcome288,289. The 

major criticism towards these models is the fact that a rapid inoculation with a 

single pathogen does not reflect the slow development of human sepsis. In 

addition, injected bacteria may be rapidly lysed by complement, which can 

result in an endotoxemia model rather than a live infection model289. 

 

1.4.4.2 Pre-clinical research in sepsis: lessons and perspectives 

There has been an intense debate on the validity and usefulness of animal 

models of sepsis. Not only are they a major cause of concern for animal 

welfare, but also the applicability of basic research findings to the clinical 

practice has been rather limited. Countless therapies failed to show benefits in 

clinical trials despite robust validation in pre-clinical animal models, supporting 

the idea that even the best controlled experimental settings fail to reproduce the 

complexity of human disease288. Reasons for this include the fact that sepsis in 

animal models tends to progress very rapidly, relying mostly on the hyper-

inflammatory phase and ignoring late-stage immunosuppression, incidence of 

secondary infections, and long-term organ failure. Furthermore, experiments are 

typically performed in inbred, young, and healthy animals that are very far from 

patients with co-morbidities and extensive genetic variability. Finally, laboratory 

animals have intrinsic differences in physiology compared to humans (e.g. mice 

tolerate LPS doses more than 1000-fold higher than humans), which are 

aggravated by the lack of supportive interventions in animal models – patients 
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receive pharmacological, nutritional, and other forms of support at the 

ICU230,290,293.  

All these differences make it very hard to extrapolate results obtained in pre-

clinical models directly to humans. While this should not compromise the 

existence of pre-clinical studies, there is room for improvement in the future294. 

Promising new therapies may be tested in outbred strains, using multiple 

models of infection, and sequentially validated in large mammals using 

experimental settings that resemble the ICU293,294.  

 

Looking further than clinical translation, basic research in sepsis has brought 

outstanding contributions to biology. Being at the far end of the spectrum of 

homeostasis failure, sepsis provides a window to better understand complex 

whole-body interactions. This is illustrated by the recent discovery of disease 

tolerance programs, which, through a myriad of still poorly understood 

mechanisms, help restoring the lost balance of biological functions295. Recent 

studies have helped to understand how cellular stress responses79, metabolic 

programs82, or neuro-metabolic interactions38,85 help maintaining fitness in face 

of the extreme challenge of sepsis. 

Earlier in this chapter, we discussed how cellular surveillance programs 

communicate and resolve homeostasis perturbations. Initially uncovered in C. 

elegans8, these mechanisms are gradually being acknowledged in mammals, 

especially in the context of severe inflammation296. A deeper understanding of 

such mechanisms will likely have an impact not only on the field of sepsis, but 

also in aging, metabolic disorders, and virtually any disruption of homeostasis. 

 

1.5 Thesis aims and outline 
 

An increasing number of studies have described how cellular surveillance 

mechanisms correct deviations in homeostasis. How these protective programs 
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can be harnessed to improve organismal fitness in extreme disruptions of 

homeostasis, such as sepsis, is still unknown.  

Following the observation that low doses of anthracyclines trigger a DNA 

damage response that confers disease tolerance in a mouse model of sepsis79, 

we hypothesized that drugs that perturb core functions of specific organelles will 

activate a stress response that is protective against infection. In particular, we 

focused on perturbations of mitochondrial function, due to the pivotal role of 

these organelles in signaling, metabolism, and cell fate determination. The aims 

of this study were: 

 

- To identify drugs that improve sepsis outcomes in mice through 

organelle-specific perturbations. 

- To explore the multifaceted mechanisms of protection induced by these 

drugs, including tissue-specific and organismal effects. 

- To establish a link between mitochondrial function, metabolism and 

disease tolerance mechanisms in mouse models of sepsis. 

 

Several aspects of the protective role of homeostasis perturbations are 

addressed throughout this thesis: 

Chapter 2 presents a model of innate immune activation driven by perturbations 

of homeostasis. Here, we gather recent evidence from the literature linking 

stress responses and the activation of immune functions. We argue that cellular 

surveillance systems perceive pathogen invasion not only by classical PRR 

activation but also by detecting pathogen-induced changes in cellular functions.  

In Chapter 3 we tested the hypothesis that drug-induced perturbations in 

organelle homeostasis can trigger compensatory responses that induce disease 

tolerance in sepsis. In particular, we show how the mitoribosome-targeting 

drugs doxycycline and chloramphenicol increase survival and induce tissue 

protection in infected mice independently of their antibiotic effect. The protective 

effect of doxycycline is associated with transient perturbations in mitochondrial 
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ETC activity, therefore supporting the hypothesis of hormetic organelle 

perturbations. 

Chapter 4 focuses on the role of mitochondrial function and metabolism in 

sepsis. We show that infected mice present with severe metabolic dysfunction 

in the liver during sepsis, namely impaired fatty acid transport and oxidation in 

the mitochondria and defective glucocorticoid signaling. Both of these defects 

are improved by doxycycline treatment, thus providing mechanistic insight into 

the protective effect of mild perturbations in mitochondrial function. Notably, this 

effect can be replicated by phenformin, a non-antibiotic drug that inhibits ETC 

complex I activity, and by mild genetic perturbations in ETC function. 

Chapter 5 presents a different aspect of doxycycline-induced tissue protection, 

which relates to lung physiology. We report a surprising role of doxycycline in 

promoting lung repair, which may explain faster recovery from infection. 

A specific discussion of the findings is included throughout the thesis along with 

the data of each chapter. Chapter 6 presents a more general discussion and 

unified framework of this thesis, including perspectives and suggestions for 

future studies in the topic. 
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2.1 Abstract 
 

Pathogen recognition, signaling transduction pathways, and effector 

mechanisms are necessary steps of innate immune responses that play key 

roles in the early phase of defense and in the stimulation of the later specific 

response of adaptive immunity. Here, we argue that in addition to the direct 

recognition of conserved common structural and functional molecular signatures 

of microorganisms using pattern recognition receptors, hosts can mount an 

immune response following the sensing of disruption in homeostasis as 

proximal reporters for infections. Surveillance of disruption of core cellular 

activities leading to defense responses is a flexible strategy that requires few 

additional components and that can effectively detect relevant threats. It is likely 

to be evolutionarily very conserved and ancient because it is operational in 

organisms that lack pattern recognition triggered immunity. A homeostasis 

disruption model of immune response initiation and modulation has broad 

implications for pathophysiology and treatment of disease and might constitute 

an often overlooked but central component of a comprehensive conceptual 

framework for innate immunity. 

 

2.2 Introduction 
 

Innate immunity refers to first-line host defense mechanisms that limit damage 

in the early stages of homeostatic disruption, more often caused by exposure to 

microorganisms. In addition to its early role in containment of disease, innate 

immunity is central for the initiation and orchestration of the later but specific, 

diverse, memory enabled, and nonself-reactive adaptive immunity of 

vertebrates1. 

Innate immunity relies on physical and chemical barriers, cellular effectors (e.g., 

neutrophils, macrophages, dendritic, and natural killer cells), protein effectors 
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(including complement), and regulators of cellular activity like cytokines and 

chemokines. Innate immunity has evolved to recognize signature patterns of 

targets rather than specific components that distinguish related molecules or 

structures. 

Innate immune responses can be shaped by anatomic and compartment 

information. The anatomic location informs on the presence and level of threat 

posed by pathogens to the host. For example, microorganisms on the gut lumen 

are less likely to be pathogenic and therefore do not usually trigger 

inflammation, contrary to those that have crossed the epithelial layer and 

characteristically induce an inflammatory response. Accordingly, innate sensors 

are strategically positioned in the baso-lateral but not on apical cell surface of 

gut epithelial cells. Additional information can be generated by the presence of 

tissue-specific cell and molecular sensors either in the cell surface or subcellular 

compartments. Microorganisms that reach the bloodstream are identified by 

multiple molecular and cellular sensors and signal a higher level of threat that 

triggers a more vigorous response that often leads to an over-response like in 

the case of sepsis. At a subcellular level, a strong immune response can be 

initiated against agents that invade the cytosol, where the host cell expects no 

microbial products. This has come to be known as the patterns-of-pathogenesis 

hypothesis2 and is exemplified by the strongest immune responses against 

cyto-invasive pathogens like Listeria spp3. 

The pioneering and insightful work of Metchnikoff4 proposed that one of the 

primary functions of the immune system was to preserve homeostasis in 

addition to protect from infection. After him, and for many decades, the study of 

immune responses was largely focused on the adaptive arm of the immune 

system and innate responses were thought to consist mostly of physical 

barriers, cellular phagocytic effectors, and soluble factors with a dominating role 

for complement. It was only in the mid-1990s that the field of innate immunity 

took center stage, after the paradigm shift proposed by Janeway5. This novel 

conceptual framework was inspired by the need to address the then limitations 

of clonal selection theory and formalized the already generally perceived 
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requirement for additional signals for lymphocyte activation as earlier suggested 

by the work of Coutinho and others6,7. The now standard model of how the 

innate immune system detects microbial infections to immediately initiate a 

defense and later generate long-lasting adaptive immunity predicted that 

microorganism-associated molecular patterns (MAMPs) representative of 

different groups of pathogens are recognized by pattern recognition receptors 

(PRRs). Their engagement leads to the activation of immune signaling 

pathways, immediate effector mechanisms tailored to each pathogen group, 

and to the generation of long-lasting adaptive immunity5. This model is now 

overwhelmingly supported by data collected by a growing number of research 

laboratories in the last two decades but fails to explain how the host can 

respond to pathogens with which it has no evolutionary history, as the repertoire 

of PRRs is limited in chemical specificity, even for those with chemical 

promiscuity8. Critically, it is insufficient to describe the interaction with 

commensal organisms that populate epithelial barrier surfaces (e.g., lung, skin, 

and gut) and how vertebrate hosts discriminate between avirulent and virulent 

microorganisms that display overlapping MAMPs8. 

A complementary hypothesis, proposed and popularized by Matzinger, widely 

known as the danger model, originally predicted that contextual cues to the 

innate immune response were provided by molecular components that resulted 

from pathogen-induced cell lysis leading to damage-associated molecular 

patterns (DAMPs) that could activate cellular receptors and their downstream 

signaling pathways9. The underlying message was that the immune system 

recognizes the damage caused by pathogens, not the pathogens that cause it9. 

While this model is clearly useful in the context of sterile inflammation, doubts 

remain as to the relevance of immune activation by DAMPs in a context of an 

infection, especially for its initiation step. 

A related hypothesis, limited to the case of pathogenic microorganisms, has 

been referred to as effector- triggered immunity (ETI), and originally defined in 

plants as a protective immune response induced by the detection of microbial 

effectors10,11. In vertebrates, this form of activation of innate immunity covers the 
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ability of the immune system to recognize pathogens not through their structural 

features using PRRs to detect their group-specific ligands, but through the 

sensing of their virulence factors. This is best exemplified by the activation of 

the inflammasome by pore- forming exotoxins. This is an additional attractive 

concept to explain innate immune sensing as it can inform the host on the 

presence of a threat because PPRs that detect typical signatures of groups of 

microorganisms are insufficient to distinguish between commensals and 

pathogens. However, not all substantial cellular physiological perturbations 

caused by pathogens are due to the direct or indirect effects of their virulence 

factors or effectors that have intracellular targets, a central assumption of this 

hypothesis12. Instead, the deviations can also be the result of a foreign 

microorganism that stresses the host by taking advantage of the host 

physiological processes and resources to complete the different steps of its life 

cycle. In addition, contrary to the case of plants, there is no evidence for the 

direct sensing of virulence factors in vertebrates12; an impossibility for most 

given their number and lack of common signature molecular motifs, which would 

require a very large number of additional molecules, incompatible with a 

germline-encoded repertoire. By contrast, many microorganism effectors have 

been shown to have immune-inhibitory activity13, rather than to boost an 

immune response. In fact, pathogens that lack one or several virulence factors 

are more likely to be effectively eliminated by the host. While ETI is certainly 

operational and is an important form of immune detection in vertebrates, it might 

be a special case of detection of pathogens based on the direct sensing of 

disruptions of homeostasis induced by virulence factors. 

 

2.3 Homeostasis perturbation-induced immune response  
 

In this assay, we focus on an emerging conceptual framework pointing to a 

critical role for substantial deviations in homeostasis in the initiation and 
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direction of innate immune responses. Disruption of homeostasis is for many 

groups of pathogens, contrary to commensals, a necessary consequence of the 

pathogen’s invasion and it might be (a) necessary for the completion of one of 

the steps of the pathogen’s life cycle, (b) due to collateral changes to cellular 

physiology caused by the abnormal presence of a pathogen and competition for 

the limited resources of the host, or (c) the result of the direct and purposeful 

targeting of core cellular functions to inhibit a host effective immune response 

(ETI). Caenorhabditis elegans, which lacks bona fide pattern recognition 

receptors, has evolved to detect the presence of pathogenic bacteria by sensing 

changes in core cellular functions triggered by their presence8, which might 

point to the possibility that this sensing component of innate immunity is 

evolutionarily older than PRR-triggered immunity. It has been shown in C. 

elegans that disruption of core cellular activities by toxins and virulence factors 

might enable organisms to detect invading pathogens and to trigger avoidance 

behaviors, detoxification pathways and innate immune responses of different 

categories8,14,15. Avoidance is one of the three key defense strategies, 

collectively known as ART16, in addition to the classic and more thoroughly 

studied resistance mechanisms and the emerging tolerance mechanisms that 

limit the negative impact of infection on the host without affecting the pathogen 

load17. 

Interestingly and significantly, substantial and continued deviations to 

homeostasis have been proposed to be a root cause of chronic debilitating 

conditions that invariably are accompanied by inflammation, including obesity, 

type 2 diabetes, and atherosclerosis. This tight connection is underscored by 

the long implication of macrophages as sensors of homeostasis deviations18,19. 

This theme has been elegantly conceptualized and described by Ruslan 

Medzhitov and will not be extensively discussed here20,21. Below we describe 

and explore the main processes and mechanisms for which there are currently 

data for a role of homeostasis disruption leading to the initiation of an immune 

response. 
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2.4 Translation inhibition  
 

Viruses need to use the host translation machinery to complete their life cycle. 

Host translation inhibition is a critical component of antiviral responses. It is 

therefore not surprising that sensing of host translation inhibition can signal for 

the initiation of an innate immune response. While this would be expected in the 

case of viruses, it is perhaps less intuitive for other groups of pathogens with 

their own translation machineries but data are now accumulating, especially in 

the case of bacteria22. At least in specific cases, like C. elegans infection by S. 

aureus, translation inhibition is sufficient to trigger the expression of immune 

effectors, 80% of which can be transcribed by a single transcription factor (HLH-

30)8,23. This expression signature is conserved in vertebrate macrophages, 

where there is considerable functional synergy with PRR activation23.  

Inhibition of host translation and elongation has been proposed to be a 

virulence mechanism used by pathogens to prevent the expression of 

antimicrobial peptides. The evolutionary arms race between host and microbe 

dictated that translation inhibition would be a signal of pathogen invasion. In C. 

elegans, infection with P. aeruginosa results in translation inhibition by the 

bacterial exotoxin A. Paradoxically, translation of the transcription factor ZIP-2 is 

enhanced, leading to the activation of downstream genes that are crucial for the 

animal’s immune response24. Notably, such defense mechanism proved to be a 

response to translation inhibition rather than the toxin itself25, suggesting a role 

as a surveillance system for a wide range of toxins and microbes. In fact, a 

recent study by Ruvkun and coworkers26 corroborated this hypothesis by 

showing that hygromycin and G418, two bacterial toxins with translation 

inhibitory activity, activate genes involved in immune and detoxification 

responses that are also activated in translation-defective mutant worms. In this 

study, the systemic response to local damage was found to rely on lipid 

signaling pathways, namely bile acid synthesis26. Therefore, it is likely that bile 

acids function as messengers that mediate immune response as well as the 

metabolic adaptation required to cope with insult caused by infection. In 
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mammals, a similar line of evidence has arisen from studies in mice 

macrophages infected with Legionella pneumophila. A subset of toxins that 

inhibit host translation was found to be essential for the activation of the MAP 

kinase signaling pathways that mediate innate immunity27. Moreover, these 

effectors mediate NF-κB signaling, as translation inhibition prevents synthesis of 

IκB, a short-lived NF-κB inhibitor, whereas the long-lived NF-κB remains 

active28.  

 

2.5 DNA stress and damage 
 

DNA is the key molecule to store genetic information, therefore its accurate 

replication and repair is critical for the survival of the organism. Many factors 

can contribute to its change or damage, including errors during replication and 

direct damage through chemical or physical factors. Additional sources of DNA 

damage to consider are the lesions caused to DNA either resulting from 

collateral effects of cellular defense mechanisms against intracellular 

pathogens, like the generation of ROS to kill phagocytized bacteria, or the 

lesions induced by bacteria29,30 and viruses31, that in some cases are required 

for their life cycle32,33.  

DNA damage responses are critical for the preservation and accuracy of the 

structure and information of DNA, a fact underscored by a large, complex, and 

accurate machinery of components and signaling pathways present in all 

eukaryotic life forms34. Ataxia telangiectasia mutated (ATM) kinase is a central 

component of the DNA damage response machinery required for the repair of 

double-strand breaks34. Loss-of-function mutations in ATM are the causal 

mechanism of the ataxia telangiectasia (AT) syndrome characterized by neuro-

degeneration and substantial increased risk of (mostly hematologic) cancer35. 

Interestingly, while AT patients are known to be more susceptible to some 

respiratory bacterial infections36–38 and chronic herpes virus infections39,40, which 
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presumably result from defects in the adaptive arm of the immune response 

pointing to a role of ATM in the biology of B cells and antibody generation, these 

patients are also known to be remarkably resistant to several and severe 

systemic viral infections36–38. It has also been appreciated that type I interferons 

(IFNs) required for viral control can be produced constitutively in wild-type mice, 

in the absence of an ongoing infection41. Through the combined analysis of AT 

patients and ATM-deficient mice, Gekara et al.42 have recently shown that in 

both cases, there was an accumulation of unrepaired DNA lesions that triggered 

the induction of type I IFNs leading to increased antiviral and antibacterial 

responses42. In addition to ATM, other DNA damage responsive factors such as 

p53 have been shown to regulate inflammatory responses43,44 and another DNA 

damage sensor, MRE11, can recognize cytosolic double-strand DNA to induce 

type I interferon by the regulation of STING trafficking. The spontaneous 

production of type I IFNs by ATM-deficient cells was due to the release of 

altered DNA species to the cytoplasm, where they were sensed by the STING-

mediated pathway42. The same researchers also found that ATM defects prime 

cells to mount a stronger response to other PRR engagement, including TLR-

induced type I IFN induction42. This work shows that disruptions in homeostasis 

leading to DNA lesions caused by sterile factors, including chemical, physical, 

and metabolic stressors, or defects in the DNA damage response machinery 

can lead to spontaneous IFN responses. Because at least bacteria and virus 

are known to cause DNA damage, not necessarily through the use of virulence 

factors, this work also supports the hypothesis that a response to infection can 

be initiated by sensing DNA damage, which might provide information on the 

subcellular localization and type of pathogen in addition to the detection of the 

presence of a pathogen. This work is also an indication that pathogen detection 

via PRRs likely synergizes with homeostasis disruption sensing to optimize an 

innate immune response based on the perceived level of threat. DDR-initiated 

immune responses can potentially be explored therapeutically, including for the 

induction of tolerance to tissue damage like that caused by severe infections, 

such as sepsis45.  
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In addition to the ability of nuclear DNA damage to initiate an immune response, 

mitochondrial DNA (mtDNA) has also been shown to constitute a cell- intrinsic 

trigger of antiviral signaling46. For example, herpesvirus can cause mtDNA 

stress and lesion leading to ISG expression and antiviral priming46. The 

monitoring of mtDNA homeostasis is likely to constitute an important 

surveillance mechanism capable of signaling the presence of a viral infection 

and to trigger an antiviral response required to cooperate with other classical 

sensing mechanisms for a full-blown antiviral response.  

 

2.6 Unfolded protein response  

2.6.1 Mitochondria 
 

As autonomous organelles with a transcriptional program, mitochondria must 

tightly regulate their protein homeostasis. In particular, the balance of 

mitochondrial- and nuclear-encoded proteins that form the electron transport 

chain complexes needs to be maintained. Therefore, perturbations in protein 

folding, import, or function trigger a transcriptional adaptation, which was named 

mitochondrial unfolded protein response (UPRmt). In C. elegans, the model 

organism used for most studies, a major mechanism of UPRmt activation has 

been proposed, which involves a sensor of cytosol-to-mitochondria traffic 

efficiency. The transcription factor ATFS, which is normally imported into the 

mitochondria and degraded, accumulates in the cytosol in case of mitochondrial 

dysfunction that alters the import efficiency. In such cases, ATFS is transported 

to the nucleus, where it binds to the promoters of several genes involved in 

mitochondrial chaperone production and antioxidant defense, which constitute 

the UPRmt machinery47. In mammals, however, no ‘mitochondrial stress sensor’ 

has been identified, and very little is known about how UPRmt is induced and 

regulated. Perturbations of mitochondrial function, such as accumulation of 
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ROS or respiratory chain inhibition, cause mitochondrial signaling to the nucleus 

through a process not completely understood. This process culminates in the 

activation of the transcription factor CHOP, which regulates expression of genes 

with protective function48.  

Activation of the UPRmt has been proposed to have a beneficial role in aging49, 

xenobiotic detoxification, and stress resistance in general50. Both the 

endoplasmic reticulum (ER) and UPRmt are surveillance systems that contribute 

to restore homeostasis in stress conditions51. Therefore, it is tempting to 

speculate that mitochondrial stress could have a role in triggering an immune 

response. Infection is a well- known source of mitochondrial stress, mostly due 

to accumulation of ROS. Accordingly, a recent study showed that C. elegans 

activates the UPRmt when exposed to H2O2-treated E. coli, revealing a new role 

for mitochondria in sensing oxidative stress in the environment in anticipation of 

changes in cellular homeostasis52. The first report on the activation of immune 

response involving mitochondrial stress, by Pellegrino et al.53, showed that 

pathogen exposure in C. elegans results in ATFS1-mediated UPRmt leading to 

the activation of not only mitochondrial protective genes but also of antimicrobial 

peptides and lysozyme, which culminates in improved resistance to P. 

aeruginosa infection. Very recently, two other studies extended this role to 

mammalian innate immunity. Mitochondrial DNA damage was found to result in 

mtDNA escape to the cytosol, where it activates the STING-IRF3 signaling that 

results in type I IFN production and increased resistance to viruses46. Bronner et 

al.54 reported that infection-induced ER stress involves crosstalk with the 

mitochondria to allow inflammasome activation. Interestingly, integrators of 

cytosolic antiviral signaling, such as MAVS, are known to co-localize with the 

mitochondrial membrane and are functional links between the mitochondria and 

the mitochondria-associated endoplasmic reticulum membrane55. Although the 

signaling pathways that connect ER and mitochondria were not yet identified, 

this unprecedented observation highlights the importance of these two 

organelles in an integrated model of response to infection based on surveillance 

of cellular homeostasis. 
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2.6.2 Endoplasmic reticulum 
 

Protein homeostasis is tightly regulated in the ER. Deviations from steady-state 

protein synthesis and folding levels trigger signaling cascades that mediate an 

unfolded protein response (UPR). In basal conditions, the three ER lumen 

sensors IRE-1, PERK, and ATF6 are bound in an inactive state to the master 

regulator of UPR BiP (GRP78). When unfolded proteins accumulate in the ER 

lumen, the binding equilibrium causes IRE-1, PERK, and ATF6 to be released 

and activated. IRE-1 phosphorylation activates its endonuclease domain, which 

cleaves the XBP-1 mRNA to produce its active form, sXPB-1. The active sXBP-

1 protein is a transcription factor that activates a number of cytoprotective 

genes, such as chaperones. Activation of the kinase PERK causes the 

cytoplasmic eukaryotic initiation factor (eIF2a) to be phosphorylated, leading to 

translation inhibition and hence reduction in the unfolded protein overload in the 

cell. Phosphorylated eIF2a also regulates the transcription factor ATF4, involved 

in oxidative stress resistance and apoptosis. Finally, upon dissociation from BiP, 

ATF6 is transported to the Golgi, where it is cleaved and processed to its 

transcription factor form. Mature ATF6 then moves to the nucleus and regulates 

lipid synthesis and the expression of chaperones.  

The interaction between pathogens and the ER has been extensively studied, 

especially in the context of viral infections. By hijacking the protein synthesis 

and folding machineries of the host cell, viruses perturb the folding capacity of 

the ER, leading to UPR activation56,57. Such host protective mechanisms may in 

turn be exploited by the pathogens to their own advantage: the activation of 

UPR not only increases the production of chaperones, which facilitate folding of 

viral proteins but it also leads to overall host cell survival, thus supporting 

pathogen subsistence. However, a new hypothesis is emerging in the field 

suggesting that virus-induced perturbations in the ER function as an alarm 

signal. This places the ER at the core of a complex surveillance system that 

detects invasion by pathogens and activates the appropriate immune 

responses56,58. Evidence to support this view is growing and expanding to other 
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intracellular pathogens and, more interestingly, to toxins secreted by 

extracellular bacteria. Listeria monocytogenes, a facultative intracellular 

pathogen, has been shown to trigger ER stress prior to invading the host cell by 

means of the toxin listeriolysin, which activates the three branches of UPR59. 

Although a direct link between UPR and innate immunity is missing in this study, 

the authors showed that ER stress induced by thapsigargin or tunicamycin 

decreases the intracellular pathogen load. Cho et al.60 provided more 

compelling evidence of ER-mediated innate immunity by showing that a portion 

of the cholera toxin is able to bind IRE1a and induce endogenous mRNA 

degradation (RIDD). The resulting RNA fragments subsequently activate the 

virus detection system RIG-I, leading to the production of interferon and NF-κB.  

Other independent studies suggested several links between one or more arms 

of the UPR and inflammation. For instance, upon activation of the IRE-1a 

branch, spliced XBP-1 binds to the IL-6 and TNFα promoters, and is essential 

for sustained cytokine production61. Interestingly, IRE-1a phosphorylation is 

enhanced upon TLR activation, showing interplay between PRR- and UPR-

dependent immunity.  

All these data support a model of integrated surveillance in which both PRR and 

UPR systems cooperate to achieve a fast and effective immune response, as 

well as to activate cytoprotective mechanisms (such as translation inhibition, 

chaperone production, and antioxidant defense) that improve infection outcome.  

2.6.3 Cell non-autonomous activation of the UPR  
 

While most studies discussed so far focus on the cell autonomous activation of 

the UPR, the idea of an immune activation mediated by stress responses 

across distant tissues is particularly appealing. There is now evidence that 

mitochondrial and ER stress can autonomously be perceived and activated by 

cells located far away from the original stress focus. Upon the finding that 

mitochondrial stress in C. elegans neurons can be perceived by intestinal cells, 
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the term ‘mitokine’ was proposed to describe a putative molecule responsible 

for this cell non-autonomous signal62. The identity of such molecules and their 

role in the systemic regulation of protein homeostasis and innate immunity is 

still a matter for debate and intense research efforts63.  

 

2.7 Additional homeostasis perturbations leading to initiation of 
immune responses  

2.7.1 Barrier disruption  
 

The lung, skin, and intestine constitute key and extensive surfaces that are not 

only in constant contact with a wide array of commensal microorganisms but are 

also the first barrier faced by pathogens. They are first-responders to 

pathogenic invasion, which requires constant sensing and decision on what is a 

commensal and what is a pathogen. Standard immune recognition using PRRs 

is insufficient to provide this decision as these sensors will identify broad 

classes of microorganisms but not if they are beneficial, neutral, or likely to 

cause disease. Disruption of epithelial cell core physiology pathways and 

functions is therefore likely to play a central role informing on this decision. 

Evidence for this principle is exemplified in C. elegans, where pathogen-caused 

structural damage to epithelial cells can be sensed through hemidesmosomes 

that regulate AMP transcription through association with STAT proteins64. 

Interestingly, hemidesmosome disruption in HEKa cells induces β-defensin 

antimicrobial peptides transcription64.  

2.7.2 Metabolic and signaling pathways  
 

Immune cells reprogram their metabolism to activate their responses to fight 

pathogens65,66. Lipid metabolism seems to have a particular important role67. 
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Bensinger and coworkers68 have identified a metabolic-inflammatory circuit 

linking perturbations of cholesterol biosynthesis with initiation of antiviral 

immunity in macrophages. This coordination allows for the adjustment of 

metabolic requirements to immune activation. Interestingly, perturbing 

cholesterol synthesis initiates type I IFN signaling through a STING/TBK1 

pathway making mice more resistant to a viral challenge when the circuit is 

reprogrammed in macrophages in vivo68. More generally, we can expect the 

composition of the plasma membrane to be changed when the viral production 

is very high, not only in terms of cholesterol content but also due to 

modifications in the concentration and aggregation capacity of signaling 

complexes. This will predictably have massive implications for cell physiology. 

Perhaps, it will produce plasma membrane patterns that can be sensed and 

trigger a cell autonomous response or be sensed by innate immune patrolling 

cells.  

In addition to cholesterol biosynthesis, it is conceivable that substantial 

deviations in other controlled metabolic flows can be sensed and serve as 

indicators of a particular group of pathogens as they are known to have 

particular requirements that vary according to their groups and type of life cycle. 

A pathogen-induced shift toward glycolysis69–72, causing substantial changes in 

the profile of metabolic intermediates, has been reported and is sure to have a 

profound impact on cellular physiology. In addition, both bacteria and viruses 

have been shown to cause amino acid depletion that can be sensed and 

interpreted by the host as the presence of a pathogen 73,74. The case where 

dendritic cells can be reprogrammed by the viral-dependent activation of the 

general control nonderepressible 2 kinase (GCN2), a sensor of amino acid 

starvation in mammals, to initiate autophagy and enhance antigen presentation 

to CD4+ and CD8+ T cells is particularly striking74.  

2.7.3 Rho-GTPases  
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Rho-GTPases constitute frequent targets for pathogens. Recent elegant 

examples include the modulation of mitochondrial dynamics by Vibrio cholerae 

T3SS effector VopE through Miro GTPases75 and triggering protective immunity 

via activation of Rac2 and IMD or Rip kinase signaling pathway of D. 

melanogaster, by the cytotoxic necrotizing factor 1 of E. coli76.  

 

2.8 Conclusions and perspectives  
 

The sensing of pathogen-induced disruption of homeostasis is likely to be a key 

component for detecting the presence of a disease-causing microorganism 

(Figure 2-1).  

 

 
Figure 2-1 - Major groups of pathogens, including viruses, bacteria, protozoan parasites, 

and fungi can induce homeostasis disruption of mitochondria, endoplasmic reticulum, protein 
translation, DNA, or other core cellular functions in addition to the activation of pattern 

recognition receptors such as Toll-like receptors, RIG-I-like receptors, NLR-like receptors, and 
C-type lectin-like receptors. Signaling pathways triggered by both events synergize in the 

production of immune effectors leading to resistance mechanisms tailored to specific classes of 
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pathogens and of homeostasis promoting factors that not only restore homeostasis but also limit 
tissue damage caused by infection and initiate tissue repair.   

 

These pathways should synergize with the sensing capability of PRRs not only 

to potentiate the resulting feed-forward mechanisms that contribute to the 

initiation of innate immunity and inflammation but also to inform the host on the 

level of threat posed by specific challenges. The early events triggered by 

disruption of homeostasis might also have a fundamental role in the counter-

regulatory mechanisms aimed at the later negative-feedback pathways to 

effectively terminate the inflammatory response and, critically, to activate tissue 

damage repair, without which tissues cannot return to steady state. Disease 

tolerance, the defense strategy that limits the negative impact of infection on the 

host without affecting the pathogen load17, is likely to be closely dependent on 

the mechanisms induced by homeostasis disruption45,77. While in this assay we 

have focused predominantly on the consequences of disruption of homeostasis 

by pathogens, this conceptual framework might also be relevant in the context 

of innate immune responses to tumors.  

 

The mechanisms of homeostasis perturbation-induced immune responses are 

still considerably unexplored but their characterization is likely to open a 

complete new field of opportunity to molecularly understand core surveillance 

mechanisms of basic cellular processes with a critical role in the regulation of 

organ function and explain how organisms deal with stress, age, and set limits 

to their lifespan. Their activation can ultimately promote health and expand 

longevity. The exploration of this theme also raises the possibility of 

pharmacologically targeting the pathways involved, which predictably might be 

useful to more effectively fight infections not only by increasing resistance to 

pathogens but also by increasing disease tolerance and tissue damage 

control16. This last effect is likely to be particularly important in the specific case 

of sepsis78, but more generally in dealing with multiple causes leading to 
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multiple organ failure, which carries a very high mortality rate and for which 

novel and effective strategies are urgently needed.  
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3.1 Abstract 
 

Sepsis is a life-threatening organ dysfunction condition caused by a 

dysregulated host response to infection, which still lacks specific therapeutic 

interventions. It has been proposed that in addition to the current standard 

therapies, strategies that induce disease tolerance might constitute the 

necessary missing treatment complement. 

Following the observation that drug-induced DNA damage elicits a protective 

response that confers tolerance to sepsis, we hypothesized that 

pharmacologically targeting core functions of the cell might unveil new 

therapeutic options for sepsis and other inflammatory conditions. 

Here, we used a mouse model of bacterial sepsis to test the protective effect of 

clinically approved drugs known to perturb cellular functions. We found that 

doxycycline and chloramphenicol, two drugs that inhibit mitochondrial protein 

synthesis, increase survival independently of their antibiotic effect. 

Doxycycline treatment improves tissue pathology during sepsis without an 

impact on pathogen load. This is associated with changes in mitochondrial 

function, namely decreased mitochondrial respiration in vivo, without 

compromising mitochondrial viability. Our findings provide new insights into 

disease tolerance mechanisms induced by homeostasis perturbations. 

 

3.2 Introduction 
 

Infection presents an immense challenge to host physiology that demands a 

concerted response to limit disease severity. Dysregulation of host homeostasis 

is particularly evident in the case of sepsis, a major healthcare problem defined 

as a life-threatening organ dysfunction caused by the host response to 

infection1. Hallmarks of sepsis include an acute burst in pro-inflammatory 

cytokine production2 and metabolic failure3, both leading to severe tissue 
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damage and high mortality rates. Current management of critically-ill patients is 

limited to control of infection with antibiotics and organ support measures, with 

most attempts to modulate immune response resulting in failure4. This is in line 

with the idea that host resistance mechanisms – which rely on the immune 

response to clear pathogens – are not enough to guarantee recovery from 

infection. Indeed, a number of strategies have been recently proposed to 

promote disease tolerance – a host defense strategy that limits the negative 

impact of an infection without affecting pathogen load5 – thus opening 

perspectives for new therapies based on tissue damage control during sepsis6–

8. 

All eukaryotic organisms are equipped with surveillance mechanisms to detect 

and correct perturbations in homeostasis. Organelle dysfunction caused by 

pathogens, toxins, drugs, physical insults or nutritional changes can be rapidly 

communicated to the nucleus, where a compensatory transcriptional response 

will be generated9. Activation of such stress responses is associated with 

numerous beneficial effects, such as the initiation of an effective immune 

response10 and lifespan extension11. Remarkably, locally induced cytoprotective 

stress responses can be communicated to distant organs, therefore generating 

whole-body beneficial effects12,13. 

Mitochondria, having a pivotal role in bioenergetics, metabolism, and cell 

signaling are strictly surveyed organelles notably associated with stress-induced 

cytoprotection14. Pioneer work in C. elegans revealed that mild perturbations in 

mitochondrial function induced both by genetic defects in the ETC15 or by 

inhibition of mitochondrial translation16 resulted in extended lifespan. In mice, 

several studies have pointed to metabolic benefits arising from inhibition of ETC 

activity in the context of obesity and insulin resistance17–19 with no significant 

effects in longevity20. While the molecular mechanisms of mitochondrial stress 

responses remain poorly understood in mammals, it is generally accepted that 

perturbations in mitochondrial function involve: 1) retrograde signaling to the 

nucleus, which activates a transcriptional program known as the mitochondrial 
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unfolded protein response (UPRmt)16,21, and 2) metabolic adaptation, which may 

increase fitness in adverse conditions18.  

Besides mitochondria, perturbation in other core cellular functions such as 

insulin/insulin growth-factor signaling22, mRNA translation23, and ER protein 

homeostasis24 have shown beneficial effects in numerous experimental models. 

In the context of sepsis, we have previously reported that the activation of DNA 

damage responses by the DNA damaging drugs anthracyclines promotes 

disease tolerance6.  

In this study, we set out to identify novel drug-induced stress responses that 

confer protection in mouse models of sepsis. Our data indicate that doxycycline 

and chloramphenicol, two antibiotics previously reported to affect mitochondrial 

function, increase survival in a model of bacterial sepsis. Doxycycline-treated 

mice present reduced tissue damage, in spite of similar bacterial loads in blood 

and organs, suggesting a link between mitochondrial stress responses and 

disease tolerance.  

  

3.3 Methods 

3.3.1 Experimental Models 

3.3.1.1 Mice 

All animal studies were performed in accordance with Portuguese regulations 

and approved by the Instituto Gulbenkian de Ciência ethics committee 

(reference A002.2015) and DGAV. C57BL/6J mice were obtained from Instituto 

Gulbenkian de Ciência or Charles River Laboratories (France). Male mice, 8 to 

12 weeks old were used, except if otherwise stated. Mice were maintained 

under specific pathogen-free (SPF) or germ-free (GF) conditions with 12h 

light/12h dark cycle, humidity 50–60%, ambient temperature 22 ± 2°C and food 
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and water ad libitum. For all experiments, age-matched mice were randomly 

assigned to experimental groups. 

 

3.3.1.2 Primary cell cultures 

Bone marrow-derived macrophages (BMDMs) were differentiated from adult 

(typically 8 week-old) C57BL/6J male mice. After euthanasia by CO2 inhalation, 

the mouse skin was sterilized with ethanol and femurs and tibia of hind limbs 

were removed, stripped of muscle and rinsed in RPMI medium. Bone marrow 

cells were flushed from cut bones using an insulin syringe with a 30G needle 

into 10 mL of RPMI medium. Cells were then pelleted by centrifugation at 450 

xg for 5 min and the cell pellet resuspended in 10 mL of RPMI supplemented 

with 10% (v/v) FBS and 0.2 % (v/v) penicillin/streptomycin. Cells were counted 

and plated at a density of 3 x 106 cells (including red blood cells) per 10 mL of 

RPMI medium supplemented with 10% FBS and 0.2 % penicillin/streptomycin, 

with 30% of L929-conditioned medium. After three days, an equal volume of 

fresh medium with 30% (v/v) of L929-supernatant was added to the cells. After 

four additional incubation days, the medium was replaced by 10 mL of fresh 

medium with 30% of L929-supernatant. 24h-48h afterwards, cells were scraped 

from plates, counted and seeded in C10 medium. 

L929-conditioned medium: L929 cells were cultured in T175 flasks, in 40 mL of 

DMEM medium with 10% (v/v) FBS and 1% (v/v) Penicillin/Streptomycin and 

grown to confluency. The culture medium was left unchanged for 5 days, for 

good production of M-CSF. Cells were then centrifuged at 290 xg for 5 min and 

the supernatant was collected and filter-sterilized. C10: RPMI medium 1640 

supplemented with: 10% (v/v) Fetal Bovine Serum (FBS), 1% (v/v) Penicillin-

Streptomycin, 1% (v/v) Pyruvate, 1% (v/v) L-Glutamine, 1% (v/v) Non-essential 

amino acids, 1% (v/v) Hepes buffer, 0.05 M of 2-Mercaptoethanol. 
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3.3.1.3 Cell lines 

HepG2 (male) human hepatocellular carcinoma cells were cultured in DMEM 

supplemented with 10% (v/v) FBS and 1% (v/v) Penicillin-Streptomycin at 37ºC 

with 5% CO2. Three to five days before experiments, medium was changed to 

DMEM with 10% FBS with no addition of antibiotics. 

 

3.3.1.4 Bacterial cultures 

Escherichia coli K12 MG1655 carrying resistance to chloramphenicol was made 

resistant to tetracyclines by P1 phage transduction (P1 phage lysate was a gift 

of Roberto Balbontín from the Evolutionary Biology group at the IGC). All 

bacterial cultures were carried out in Luria-Bertani broth supplemented with 10 

µg/mL doxycycline (LB+doxy), except for survival studies in chloramphenicol-

treated mice, in which bacterial cultures were made in LB + 50 µg/mL 

chloramphenicol.  

 

3.3.1.5 Fungal cultures 

Candida albicans (Robin) Berkhout25 were cultured in yeast culture medium 

(YPD) for 16-20h at 30°C, 180 rpm. 

 

3.3.2 Method details 

3.3.2.1 E. coli-induced sepsis model and drug treatments 

A starter culture from a single E. coli colony was incubated overnight (12-16h) at 

37°C, 200 rpm. The next morning, the culture was diluted 1:50 in LB+doxy and 

incubated for 2.5h until late exponential phase was reached (OD600nm = 0.8-1.0). 
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The culture was then centrifuged at 4400 xg for 5 min at room temperature, 

washed with PBS and resuspended in PBS to obtain an OD600nm = 4.5-5.0, 

corresponding to 1-2x109 CFU/mL. This bacterial suspension was immediately 

injected intraperitoneally (200 µL/mouse) in mice using a 27G-needle. Infections 

were always performed in the morning. The concentration of the inoculum was 

determined by plating 10-6 and 10-7 dilutions in LB+doxy agar plates and 

incubating overnight at 37°C. 

Doxycycline hyclate was dissolved in PBS and injected intraperitoneally (200 

µL/mouse) at 1.75 µg/g body weight 0, 24 and 48h after infection. The following 

drugs were dissolved in PBS, except if otherwise stated, and injected 

intraperitoneally (200 µL/mouse) at the time of infection and at the indicated 

concentrations: chloramphenicol (vehicle: 5% cyclodextrin, dose 50 µg/g); 

metformin hydrochloride (100 µg/g body weight), menadione sodium bisulfite 

(20 µg/g), trifluoperazine dihydrochloride (5 µg/g), bortezomib (10 ng/g), 

nicotinamide adenine dinucleotide (NR) (16 µg/g and 80 µg/g). 

Body weight and rectal temperature were determined 0, 24 and 48h after 

infection. For survival experiments, mice were closely monitored during one 

week for survival and health status. Moribund animals (i.e. shivering or unable 

to maintain upright position) were euthanized. For tissue analysis, mice were 

sacrificed at the indicated time-points by CO2 inhalation, blood was collected by 

cardiac puncture and organs were harvested, immediately frozen in liquid 

nitrogen and stored at -80°C. Blood was centrifuged at 1600 xg for 5 min and 

serum collected and stored at -80°C. 

 

3.3.2.2 Other infection models 

Infection with GFP-transgenic Plasmodium berghei ANKA was performed as 

described26. Briefly, female mice 8-12 weeks old were given an intraperitoneal 

injection containing 1x105 infected red blood cells from a previously infected 

mouse. Doxycycline (1.75 µg/g body weight) was injected daily starting at the 
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time of infection. Blood samples were taken from the tail vein and analyzed in 

FACSCalibur to determine parasitemia (expressed as % of GFP-positive red 

blood cells). 

C. albicans cultures were grown to exponential phase, washed and 

resuspended in PBS to obtain an OD600nm = 0.5, corresponding to 5x106 

CFU/mL. Female mice 8-12 weeks old were infected by an intravenous injection 

of 100 µL in the tail vein. Mice were treated with 1.75 µg/g body weight 

doxycycline at 0, 24 and 48h after infection. 

 

3.3.2.3 Colony Forming Units assay 

Freshly collected samples of liver, lung and kidney were homogenized in 1 mL 

sterile PBS using TissueLyser II (Qiagen). Colony forming units (CFU) were 

determined in blood and organs by serially diluting in sterile PBS and plating in 

LB+doxy agar plates. At least three dilutions were plated per condition. CFU 

were counted after incubating plates at 37 °C for 16h. 

 

3.3.2.4 Biochemical assays in mouse serum and supernatant from BMDMs 

Cytokine levels were determined using the following ELISA kits, according to 

the manufacturer’s instructions: mouse TNF-α (#430902, Biolegend), mouse IL-

6 (#431302, Biolegend). Serological makers of organ damage were determined 

using the following colorimetric assays, according to the manufacturer’s 

instructions: QuantiChrom Creatinine (#DICT, Bioassay Systems), QuantiChrom 

Lactate Dehydrogenase (#D2DH, Bioassay Systems), EnzyChrom Creatine 

Kinase (#ECPK, Bioassay Systems), EnzyChrom Alanine Transaminase 

(#EALT, Bioassay Systems), EnzyChrom Aspartate Transaminase (#EASTR, 

Bioassay Systems). All absorbance readings were performed in 96-well plates 

using an Infinite M200 plate reader (Tecan). Glucose and lactate levels were 
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measured in freshly collected heparinized whole blood using the GEM Premier 

3000 system (Instrumentation Laboratory). 

 

3.3.2.5 Histopathology 

Mouse liver, lung, and kidney were collected 30h after infection and immediately 

fixed in 10% (v/v) buffered formalin. Samples were then embedded in paraffin, 

sectioned (3 µm) and stained for hematoxylin and eosin according to standard 

procedures. Blind histopathology analysis was performed by a trained 

pathologist at the Instituto Gulbenkian de Ciência Histopathology Unit. Tissues 

were scored for damage, namely necrosis and leukocyte infiltration. 

 

3.3.2.6 Transmission Electron microscopy 

Mice were euthanized 24h after doxycycline treatment, perfused with 10 mL 

cold PBS through the left ventricle, followed by perfusion with 10 mL 2% 

formaldehyde. The gastrocnemius muscle was excised, cut in small pieces and 

fixated for 1h in 2% formaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate 

buffer pH 7.4. Secondary fixation was performed with 1% osmium tetroxide for 

30 min, followed by staining with 1% tannic acid for 20 min and 0.5% uranyl 

acetate for 1h. Samples were then dehydrated in a graded series of ethanol 

dilutions and embedded in Embed-812 epoxy resin. Sections (70 nm) were 

made using a Leica UC7 ultramicrotome and picked on slot grids coated with 

1% formvar in chloroform. Samples were then post-stained with 1% uranyl 

acetate for 7 min and Reynolds lead citrate for 5 min. Transmission electron 

microscopy images were acquired on a Hitachi H-7650 microscope operating at 

100 KeV and equipped with a XR41M mid mount AMT digital camera. 
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3.3.2.7 Immunoblotting 

Cultured cells were rinsed with PBS and lysed with RIPA buffer containing 

protease and phosphatase inhibitor cocktails. Homogenates were centrifuged at 

20000 xg for 10 min at 4°C, the supernatant was collected and proteins 

quantified by the Bradford method. SDS-PAGE was performed by loading 20 µg 

total protein onto 12% polyacrylamide gels. Proteins were then transferred onto 

nitrocellulose membranes, blocked with 5% low-fat milk and incubated with 

primary antibodies for 16h at 4°C. HRP-conjugated secondary antibodies were 

incubated for 1h at room temperature and developed with ECL Prime. 

Chemiluminescence was acquired with GE Amersham Imager 680. Band 

density was analyzed with Fiji version 1.52n. 

 

3.3.2.8 Gene expression analyses 

Liver samples (~50 mg) were homogenized in 500 µL Trizol using a 

TissueLyser II (Qiagen). Homogenates centrifuged at 20000 xg for 3 min at 4°C 

and 500 µL supernatant were used for RNA extraction. Extraction was 

performed with 100 µL chloroform and the aqueous layer was transferred to an 

RNeasy Mini spin column. RNA purification was performed according to the 

manufacturer’s protocol including one step of in-column DNase treatment. RNA 

was quantified in Nanodrop and 1 µg total RNA was used to synthesize cDNA 

using SuperScript II and Oligo dT. Real-time quantitative PCR was performed 

using Sybr Green reagent and ABI QuantStudio 7 equipment. Relative gene 

expression is reported as 2-ΔΔCt relative to a control gene (Actb or Gapdh). 

 

3.3.2.9 Electron transport chain (ETC) complex activity 

Enzymatic activity of ETC complexes in mouse liver was performed as 

previously described27. Briefly, frozen liver samples (50-100 mg) were 

homogenized in 1 mL homogenization buffer containing 8 mM Tris, 16 mM KCl, 



	106 

0.8 mM EGTA and 250 mM sucrose using TissueLyser II. Lysates were 

centrifuged at 20000 xg for 10 min at 4°C, the supernatant collected and 

proteins quantified by the Bradford method. Samples were then diluted in 

homogenization buffer for a final concentration of 1 mg/mL. Complex I 

(NADH:ubiquinone oxidoreductase) activity was determined by following 

oxidation of 100 µM NADH at 340 nm in the presence of 50 mM KPi pH 7.5, 60 

µM ubiquinone, 3 mg/mL BSA, 300 µM  potassium cyanide (KCN), and 20 µg 

total protein. Complex II (succinate dehydrogenase) activity was determined by 

measuring the reduction of 80 µM dichloroindophenol sodium salt hydrate 

(DCPIP) at 600 nm in a reaction mixture containing 25 mM KPi pH 7.5, 20 mM 

succinate, 50 µM decylubiquinone, 1 mg/mL BSA, 300 µM KCN, and 10 µg total 

protein. Complex III (ubiquinol:cytochrome C oxidoreductase) activity was 

determined by measuring reduction of 75 µM cytochrome C at 550 nm in the 

presence of 25 mM KPi pH 7.5, 100 µM decylubiquinol (obtained by reduction of 

decylubiquinone with potassium borohydride), 0.025% (v/v) tween-20, 100 µM 

EDTA, 500 µM KCN, and 1.5 µg total protein. Complex IV (cytochrome C 

oxidase) activity was determined by measuring oxidation of 60 µM cytochrome 

C (previously reduced with sodium dithionite) in the presence of 50 mM KPi pH 

7.0 and 1.0 µg total protein. Citrate synthase (CS) activity was determined by 

following reduction of 100 µM 5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB) at 412 

nm in a reaction mixture containing 100 mM Tris-HCl pH 8.0, 300 µM acetyl 

CoA, 0.1% (v/v) Triton X-100, 300 µM oxaloacetic acid, and 3 µg total protein. 

All reactions were performed at 37ºC in 96-well plates (maximum of 12 

simultaneous reactions) and absorbance was recorded using an Infinite M200 

plate reader (Tecan). Unspecific activity of each complex was determined by 

performing a reaction in the presence of an appropriate inhibitor (rotenone for 

complex I, malonate for complex II, antimycin for complex III, and KCN for 

complex IV), which was then subtracted from the total activity of each sample. 

Enzymatic activity was calculated in nmol.min.1.mg protein-1, normalized for CS 

activity and expressed as percentage of the control.  
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3.3.2.10 Flow cytometry 

HepG2 cells were incubated with doxycycline for 24h, tripsinyzed and 

centrifuged at 200 xg for 5 min at room temperature. Cells were then stained 

with 50 nM Mitotracker Green FM (for total mitochondrial content) for 30 min at 

37ºC, or with 5 µM MitoSOX Red (for mitochondrial ROS) for 10 min at 37ºC in 

PBS supplemented with 2% FBS and 10 mM EDTA. Cells stained with MitoSOX 

were centrifuged, washed and resuspended in buffer, while cells stained with 

Mitotracker Green were centrifuged and resuspended without washing. Flow 

cytometry data were acquired on FACSCalibur (Becton Dickinson) and 

analyzed using the FlowJo software package (version 887). 

 

3.3.2.11 Quantification and statistical analysis 

Mantel-Cox test was used for survival curve analysis. For infections with E. coli, 

mice with no changes in body temperature and weight within the first 24h 

(temperature >35ºC and body weight >95%) were excluded from the analysis.  

Mann-Whitney test was used for pairwise comparisons. Statistical analysis was 

performed with GraphPad Prism 6.0 (GraphPad Software). The number of 

subjects used in each experiment is defined in figure legends. The following 

symbols were used in figures to indicate statistical significance: p <0.05 (*); 

p<0.01 (**); p<0.001 (***); p<0.0001 (****). 

 

3.4 Results 

3.4.1 Mitochondrial ribosome-targeting drugs confer 
protection against bacterial sepsis 
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To explore the role of drug-induced organelle perturbations in sepsis, we began 

by selecting a panel of clinically approved drugs previously reported to impose 

stress to cellular processes. These drugs were intraperitoneally injected in male 

C57BL/6J mice at the time of infection with an E. coli strain carrying resistance 

to tetracyclines (TetR) and chloramphenicol (CamR). This model of bacterial 

sepsis was chosen to circumvent the direct antibiotic effect of some of the 

tested drugs on the infection agent, thus focusing on host-dependent effects. 

From the panel of tested drugs, treatment with low-dose doxycycline, a 

tetracycline antibiotic known to bind to the mitochondrial ribosome and block 

translation of mitochondrial-encoded mRNA28, revealed a robust increase in 

survival (Figure 3-1A).  

 

 
Figure 3-1 - Doxycycline confers protection in a mouse model of bacterial sepsis.  
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Survival (A), rectal temperature (B) and % initial body weight (C) after infection of male 
C57BL/6J mice with 3x108 CFU/mouse TetR CamR E. coli and treatment with 1.75 µg/g body 

weight doxycycline (or PBS as a control) at 0, 24 and 48h. Rectal temperature (D), % body 
weight (E), and food intake (expressed as average food consumption in 24h) (F) recorded in non-

infected, doxycycline-treated mice. Glucose (G) and lactate (H) levels determined 24h after 
infection in freshly collected blood. (A) represents pooled data from 12 independent 

experiments. (B) and (C) represent mean±SD pooled from six independent experiments. (D), (E), 
and (F) represent mean±SD from a single experiment. In (G) and (H), squares represent 

individual mice, bars represent the mean obtained from a single experiment. 
 

We then used rectal temperature and body weight measurements to assess 

disease severity and found that doxycycline-treated mice present less severe 

hypothermia than PBS-treated controls and increase body temperature close to 

normal levels within 48h of infection (Figure 3-1B). Only marginal differences in 

body weight were found between groups, with doxycycline-treated mice 

presenting slightly lower body weight at 48h (Figure 3-1C).  

While these results suggest a role for doxycycline in thermal regulation and 

nutritional and metabolic status, this seems to be a specific adaptive response 

to infection, as no changes were found in temperature, body weigh, and food 

consumption in non-infected, doxycycline-treated mice (Figure 3-1D, 3-1E, 3-

1F). Additionally, no differences were found in glucose or lactate levels 24h after 

infection with E. coli (Figure 3-1G, 3-1H). 

Notably, treatment with a single dose of chloramphenicol, an antibiotic 

structurally unrelated to doxycycline but with similar effect on mitochondrial 

mRNA translation inhibition, results in a similar effect in sepsis outcome (Figure 

3-2). 

 

 
Figure 3-2 Chloramphenicol confers protection in a mouse model of bacterial sepsis.  
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Survival (A), rectal temperature (B) and % initial body weight (C) after infection of male 
C57BL/6J mice with 3x108 CFU/mouse TetR CamR E. coli and treatment with 50 µg/g body 
weight chloramphenicol (or 5% cyclodextrin as a control) at the time of infection. (B) and (C) 

indicate mean±SD. Graphs represent pooled data from three independent experiments.  
 

Other tested drugs included menadione, which generates ROS in the 

mitochondria (Figure 3-3A); metformin, which activates AMPK signaling (Figure 

3-3B); bortezomib, a proteasome inhibitor that causes proteotoxic stress in the 

ER (Figure 3-3C); trifluoperazine, an antagonist of calcium-mediated 

intracellular trafficking (Figure 3-3D); and nicotinamide adenine dinucleotide 

(NR), which increases NAD+ levels (Figure 3-3E), none of which led to 

significant improvement in survival at the tested doses. 

 

 
Figure 3-3 - Survival curves of male mice treated with a panel of cellular stress-inducing 

drugs. 
Male mice were infected with 3x108 CFU/mouse TetR CamR E. coli and treated with 20 µg/g 

body weight menadione (A), 100 µg/g body weight metformin (B), 10 ng/g body weight 
bortezomib (C), and 5 µg/g body weight trifluoperazine (D) at the time of infection, or 16 µg/g 

and 80 µg/g body weight nicotinamide adenine dinucleotide (NR) (E) at 0, 24 and 48h. Data 
were obtained from a single experiment. 
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3.4.2 Doxycycline treatment affords tissue protection in 
sepsis independently of pathogen load 
 

Upon intraperitoneal injection of 3x108 CFU E. coli/mouse, we were able to 

recover high levels of viable bacteria from blood, liver, lung, and kidney of 

infected mice for at least 30h (Figure 3-4A). By plating samples collected at 6, 

12, and 30h after infection and determining the number of CFU, we found no 

differences in the bacterial loads of doxycycline-treated mice, except for a 

modest reduction in kidney CFU at 30h (Figure 3-4A). These results rule out a 

direct antibiotic effect of doxycycline on the TetR E. coli strain used for this 

study, also indicating no impact of doxycycline on host resistance mechanisms 

that act to clear the infection. Instead, doxycycline induces disease tolerance by 

limiting disease severity without affecting pathogen load5.  

Remarkably, despite similar bacterial burden between groups, doxycycline-

treated mice show reduced levels of tissue damage in the major target organs 

of sepsis (Figure 3-4B, 3-4C, 3-4D).  

Serum levels of the liver damage markers aspartate transaminase (AST) and 

alanine transaminase (ALT) determined at different time-points after infection 

revealed significantly reduced AST levels at 12h, with no significant differences 

in ALT levels (Figure 3-4B). The kidney damage marker creatinine was 

markedly reduced at 30h, whereas the muscle damage marker creatine kinase 

(CK) showed slight, non-statistically significant differences (Figure 3-4B). 

Lactate dehydrogenase, an unspecific damage marker, showed markedly 

reduced levels at 12h (Figure 3-4B). Reduced tissue damage was also 

observed in a blind histopathology analysis of liver, lung, and kidney, in which 

tissues were scored for the presence and dimension of necrotic areas as well as 

leukocyte infiltration (Figure 3-4C, 3-4D). In all analyzed tissues, doxycycline-

treated mice globally showed lower scores of damage and a higher number of 

animals with no visible damage (score 0) (Figure 3-4D). These changes were 

more pronounced in the liver, where necrotic areas of doxycycline-treated mice 
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were markedly reduced; and in the lung, in which we observed reduced 

neutrophil infiltration, hemorrhage, and thickening of the alveolar wall upon 

doxycycline treatment (Figure 3-4C). 

  

 
Figure 3-4 - Doxycycline treatment affords tissue protection in sepsis independently of 

pathogen load. 
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(A) Bacterial load in mouse blood, liver, lung, and kidney at the indicated time-points after 
infection. (B) Levels of the organ damage markers Aspartate Transaminase (AST), Alanine 

Transaminase (ALT), Creatinine, Creatine Kinase (CK), and Lactate Dehydrogenase (LDH) at 
the indicated time-points after infection. (C) Representative images (n=12-14 mice/group) of 

Hematoxylin-Eosin stained liver and lung 30h after infection. (D) Organ damage score in 
Hematoxylin-Eosin stained slides from liver, lung, and kidney 30h after infection  (n=12-14 

mice/group). Score 0 = no lesions; 1 = very mild; 2 = mild; 3 = moderate; 4 = severe lesions. (A), 
(B), and (D) represent pooled data from at least two independent experiments; squares represent 

individual mice and gray bars indicate the mean.  
 

Finally, we analyzed levels of the pro-inflammatory cytokines tumor necrosis 

factor α (TNFα) and interleukin 6 (IL-6), which are quickly and strongly 

increased during sepsis. In serum of E. coli-infected mice, TNFα levels were 

found significantly reduced at 12h, while IL-6 levels showed slight, non-

statistically significant reduction (Figure 3-5A). In mouse BMDMs treated with 

doxycycline and stimulated with E. coli, no differences were found in cytokine 

levels (Figure 3-5B), suggesting that doxycycline does not directly modulate the 

inflammatory response during sepsis, but point instead to the role of the drug in 

tissue protection mechanisms that induce disease tolerance. 

 

 
Figure 3-5 - Effect of doxycycline treatment on pro-inflammatory cytokine secretion. 

(A) TNFα and IL-6 levels in mouse serum at the indicated time-points after infection. (B) TNFα 
and IL-6 levels in supernatant of bone marrow-derived macrophages incubated with doxycycline 
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for 1 h followed by stimulation with PFA-fixed E. coli (MOI=20) for 4 h. (A) represents pooled 
data from at least two independent experiments; squares represent individual mice and gray bars 

indicate the mean. (B) represents mean±SD from a single experiment assayed in triplicate.  
 

3.4.3 Protective role of doxycycline is independent of its 
effect on host microbiota 
 

The role of microbiota in host physiology has been increasingly acknowledged, 

with extensive research focusing on its therapeutic potential in sepsis29 

including its role in disease tolerance30. As an antibiotic, doxycycline likely 

induces changes in microbiome composition that may affect host fitness. To 

address the contribution of microbiota in doxycycline-induced protection against 

sepsis, we applied the TetR E. coli sepsis model and doxycycline treatment in 

C57BL/6J mice raised and maintained in germ-free conditions. Both survival 

(Figure 3-6A) and body temperature (Figure 3-6B) were significantly improved in 

doxycycline-treated mice whereas no differences were found in body weight 

(Figure 3-6C). These results largely phenocopy the protective effect obtained on 

conventionally raised, specific pathogen-free mice (Figure 3-1A, 3-1B, 3-1C), 

thus demonstrating a host-dependent disease tolerance mechanism. 

 

 
Figure 3-6 - Protective role of doxycycline is independent of its effect on host microbiota.  
Survival (A), temperature (B), and % body weight (C) after infection of germ-free mice with 

TetR CamR E. coli and treatment with 1.75 µg/g body weight doxycycline (or PBS as a control) 
at 0, 24 and 48h. Graphs represent pooled data from four independent experiments.  
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3.4.4 Effect of doxycycline treatment in non-bacterial infection 
models 
 

Encouraged by the salutary effects of doxycycline in a model of bacterial sepsis, 

we next tested its effect in non-bacterial infection models. In a mouse model of 

cerebral malaria induced by Plasmodium berghei Anka, no differences were 

found in survival rates despite reduced percentage of infected red blood cells 

upon doxycycline treatment (Figure 3-7A), in line with previously reported anti-

malarial effects of the drug31.   

 

 
Figure 3-7 - Doxycycline treatment shows no effect in non-bacterial infection models.  

(A) Survival and parasitemia levels (% infected red blood cells, iRBC) in female mice infected 
with 1x105/mouse Plamodium berghei Anka and treated with 1.75 µg/g body weight doxycycline 
(or PBS as a control) daily from days 0 to 8 post-infection. (B) Survival of female mice infected 
with 5x105CFU/mouse Candida albicans and treated with 1.75 µg/g body weight doxycycline 

(or PBS as a control) at 0, 24, and 48h. Data were obtained from a single experiment. 
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In addition, no survival advantage was found in a model of systemic fungal 

infection induced by intravenous injection of Candida albicans (Figure 3-7B). 

These results suggest doxycycline-induced mechanisms of disease tolerance 

that are specific for bacterial infections. 

 

 
Figure 3-8 - Low-dose doxycycline affects mitochondrial function in vivo. 

(A) Immunoblot of HepG2 cells incubated with varying concentrations of doxycycline for 24 or 
48h and probed for nuclear (ATP5a) or mitochondrial (MTCO1)-encoded proteins of the ETC. 

(B) MT-CO1/ATP5a ratio determined by densitometry in (A). (C) Enzymatic activity of the ETC 
complexes I, II, III, and IV in mouse liver collected 12h after doxycycline treatment. Enzymatic 
activity is expressed as % of PBS-treated control, normalized for citrate synthase (CS) activity. 

(D) CS activity (expressed as % of control) in mouse liver collected 12h after PBS or 
doxycycline treatment. (E) Representative images (n=3-4 mice/group) of transmission electron 
microscopy in mouse skeletal muscle 24h after PBS or doxycycline treatment. Scale bar = 500 
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nm. Data in (C) and (D) represent mean±SD of 12 mice/group from two independent 
experiments. 

 

3.4.5 Doxycycline decreases ETC activity  
 

Doxycycline has been reported to block synthesis of mitochondrial-encoded 

proteins at relatively high doses across several model organisms, including 

mammalian cells32,33. We used the human hepatocellular carcinoma cell line 

HepG2 to examine the abundance of proteins of the ETC encoded by the 

nucleus (ATP5a) or by the mitochondrial DNA (MT-CO1) upon incubation with 

doxycycline. Even low concentrations of the drug (1.25 to 5 µg/mL) revealed 

decreased MT-CO1 levels, while ATP5a levels remain unchanged (Figure 3-8A, 

3-8B), showing that physiologically relevant doses of doxycycline have an 

impact in mitochondria.  

 

Remarkably, doxycycline treatment also results in changes in mitochondrial 

function in vivo. By measuring the enzymatic activity of the mitochondrial ETC 

complexes in mouse liver collected 12h after doxycycline treatment, we found 

strongly reduced activity of complexes III and IV (54% and 60% of the control, 

respectively) and a slight activation of complexes I and II (115% and 118% of 

the control, respectively) (Figure 3-8C). These changes in function were, 

however, not reflected in impaired mitochondrial integrity as judged by citrate 

synthase (CS) activity (Figure 3-8D), or in morphology, analyzed by 

transmission electron microscopy (Figure 3-8E).  

 

We then measured the expression of the major UPRmt markers Hspd1, Atf5, 

Atf4, and Clpp by qPCR in mouse liver 8h after doxycycline treatment (Figure 3-

9A). We found no significant differences in mRNA levels of doxycycline-treated 

mice, except for an up-regulation (1.8x) of Atf4 (Figure 3-9A). In HepG2 cells, a 

24h-incubation with doxycycline followed by staining with mitochondrial specific 
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probes Mitotracker green and MitoSOX red revealed no differences in the 

number of mitochondria and a very mild increase in mitochondrial ROS levels, 

respectively (Figure 3-9B). 

 

 
Figure 3-9 - Characterization of the effect of doxycycline treatment in mouse liver and 

human liver cells. 
(A) Expression of the UPRmt genes Hspd1, Atf5, Atf4, and Clpp by qPCR analysis in mouse liver 
collected 8h after injection of 1.75 µg/g body weight doxycycline. Data represent mean±SD of 5 

mice/group assayed in triplicate. (B), (C) Mitochondrial content (Mitotracker green, B) and 
mitochondrial peroxide levels (MitoSOX red, C) in HepG2 cells after incubation for 24h with the 
indicated concentrations of doxycycline. Representative graphs of two independent experiments. 
	

Taken together, our data indicate that low-dose doxycycline triggers changes in 

mitochondrial ETC function without compromising mitochondrial integrity, 

consequently activating disease tolerance mechanisms in a mouse model of 

bacterial sepsis. 
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3.5 Discussion 
 

Many drugs have been repurposed for clinical uses that differ from their original 

application. Some antibiotics, in particular, have been proposed not only to 

target microorganisms but also to exert immunomodulatory effects of the host, 

through still poorly defined mechanisms34.  Very recently, a study brought some 

mechanistic insight into this idea by showing that administration of 

aminoglycosides confers protection to viral infections in mice by inducing the 

expression of antiviral immunity genes35.  

Here, we report increased survival in a mouse model of sepsis upon treatment 

with doxycycline (Figure 3-1) and chloramphenicol (Figure 3-2), two antibiotics 

which, despite being structurally unrelated, exert their antimicrobial activity by 

binding the bacterial ribosome and inhibiting protein translation36. Mitochondrial 

ribosomes are structurally similar to their bacterial counterparts, as explained by 

the endosymbiont origin of mitochondria, which means that these antibiotics can 

impact mitochondrial translation and exert effects on the host. In fact, 

doxycycline and chloramphenicol treatment in C. elegans results in an 

imbalance of the nuclear and mitochondrial-encoded proteins of the ETC, which 

in turn triggers the UPRmt and results in increased lifespan16. In mammals, the 

mechanistic details and physiological consequences of the administration of 

these antibiotics are much less clear. Incubation of mammalian cell lines with 

doxycycline has been shown to induce mitonuclear protein imbalance and up-

regulation of UPRmt and ISR markers16,32,33,37. In mice, long-term, high-dose 

doxycycline treatment also inhibits mitochondrial translation with concomitant 

decrease in oxygen consumption and ATP production32 – whether these 

changes have an impact on host fitness has not been addressed so far.  

As with other antibiotics, tetracyclines have been attributed anti-inflammatory 

effects for a long time38. These relate mostly with inhibition of metalloproteinase 

(MMP) activity, as tetracyclines chelate zinc ions essential for enzyme function. 

In animal models of ischemia-reperfusion, doxycycline-induced MMP inhibition 

has been associated with improved tissue function39. In human sepsis patients, 
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however, a study using a sub-antimicrobial dose of doxycycline (comparable to 

the one used in our study) revealed no effect in MMP activity40.  While the drug 

was well tolerated in patients, the effect of this treatment in sepsis outcome was 

not reported40. 

In this study, we propose that tetracyclines, chloramphenicol, and possibly other 

drugs targeting mitochondrial function have protective roles that go beyond their 

previously described anti-inflammatory effects. In spite of the well-known role of 

mitochondria in defining pro- or anti-inflammatory programs in immune cells41, 

we found no effect in cytokine secretion after treating BMDMs with doxycycline 

(Figure 3-5). Instead, doxycycline seems to act through mechanisms that 

preserve viability and function of parenchymal cells, as judged by the lower 

levels of damage in liver, lung, and kidney, despite similar pathogen loads 

(Figure 3-4). 

 

In an attempt to link drug-induced mitochondrial perturbations and disease 

tolerance, we focused on the liver – due to its importance in metabolic control of 

disease progression – and carried out a series of in vivo and in vitro assays 

(Figures 3-8 and 3-9). Low-dose doxycycline treatment has no effect in 

mitochondrial morphology or proliferation within the first 24h of treatment, and 

causes a marginal increasing in ROS levels. We found little evidence for the 

induction of the transcriptional programs UPRmt and ISR, supported only by a 

mild up-regulation of Atf4, in line with previous studies37. Nevertheless, we 

noticed a severe reduction in the activity of the ETC complexes III and IV in 

mouse liver. Inhibition of the ETC activity has been found beneficial in the 

context of type II diabetes and obesity, an effect attributed to an optimized fuel 

usage and changes in energy expenditure and thermoregulation19,42. These 

changes are likely advantageous in the context of sepsis, where mitochondrial 

dysfunction and metabolic reprogramming account for severe tissue damage3. 

More detailed molecular mechanisms are required, however, to fully understand 

how changes in mitochondrial function can be harnessed for therapeutic use in 

sepsis. 
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We have tested the effect of doxycycline in fungal and protozoan infection 

models and found no substantial improvement under the tested conditions 

(Figure 3-7). This is not completely surprising in light of the effects of the drug in 

mitochondrial function. Invasion by different pathogens requires different 

immune responses and result in a multitude of tissue damage patterns and 

metabolic changes. Considering the importance of mitochondria in determining 

infection outcomes, the protective effect of doxycycline is likely context-

dependent. This is illustrated by a recent study reporting dramatic differences in 

glucose metabolism when comparing viral and bacterial infections43. In this 

study, a therapeutic intervention that optimizes glucose usage and confers 

disease tolerance to viral infections, results in decreased survival in bacterial 

infections43. 

 

In summary, our work suggests that mitoribosome-targeting drugs constitute a 

valuable tool to induce disease tolerance to bacterial infections, by minimizing 

tissue damage independently of the pathogen load. Not only does this open 

new therapeutic perspectives in promoting tissue function during sepsis, it also 

provides a window to explore the beneficial effects of mild perturbations in core 

cellular functions. Our laboratory has previously reported a protective effect of 

DNA damage responses in sepsis6, which we now extend to mitochondrial 

stress responses. Other organelles and cellular functions can potentially be 

harnessed for similar therapeutic interventions, and while we could not find 

benefits in other organelle-targeting drugs (which can be attributed to 

inadequate dosage or unexpected side effects), our results encourage the 

pursuit of such benefits in future studies. 

 

3.6 Acknowledgements  
 



	122 

I would like to thank Roberto Balbontín Soria for providing the TetR phage 

lysate; Miguel Soares and Susana Ramos for the Plasmodium strain and 

assistance with the mouse model of malaria; Salomé LeibundGut-Landmann for 

the C. albicans strain; and Marta Alenquer, Maria João Amorim, Lisa Bergman, 

and Jocelyne Demengeot for refinement to the methods text. I would also like to 

acknowledge technical support from the Rodent and Gnotobiology facilities at 

the IGC Animal House, as well as the IGC Histopathology Unit (in particular 

Pedro Faísca for performing the blind histopathology analysis of mouse tissues) 

and Electron Microscopy Facility (in particular Sara Bonucci for assisting with 

sample preparation and analysis for electron microscopy). This work received 

financial support from the European Community Horizon 2020 (ERC-2014-CoG 

647888-iPROTECTION) and Fundação para a Ciência e Tecnologia (FCT: 

PTDC/BIM-MEC/4665/2014). 

 

3.7 References 
 
1. Singer, M. et al. The Third International Consensus Definitions for Sepsis 

and Septic Shock (Sepsis-3). JAMA 315, 801 (2016). 
2. Wiersinga, W. J., Leopold, S. J., Cranendonk, D. R. & van der Poll, T. 

Host innate immune responses to sepsis. Virulence 5, 36–44 (2014). 
3. Van Wyngene, L., Vandewalle, J. & Libert, C. Reprogramming of basic 

metabolic pathways in microbial sepsis: therapeutic targets at last? 
EMBO Mol. Med. 10, e8712 (2018). 

4. Cohen, J. et al. Sepsis: a roadmap for future research. Lancet Infect. Dis. 
15, 581–614 (2015). 

5. Soares, M. P., Teixeira, L. & Moita, L. F. Disease tolerance and immunity 
in host protection against infection. Nat. Rev. Immunol. 17, 83–96 (2017). 

6. Figueiredo, N. et al. Anthracyclines induce DNA damage response-
mediated protection against severe sepsis. Immunity 39, 874–884 
(2013). 

7. Weis, S. et al. Metabolic Adaptation Establishes Disease Tolerance to 
Sepsis. Cell 169, 1263-1275.e14 (2017). 

8. Ganeshan, K. et al. Energetic Trade-Offs and Hypometabolic States 
Promote Disease Tolerance. Cell 177, 399-413.e12 (2019). 

9. Sawa, T., Naito, Y., Kato, H. & Amaya, F. Cellular Stress Responses and 
Monitored Cellular Activities. Shock 46, 113–21 (2016). 



	 123 

10. Colaço, H. G. & Moita, L. F. Initiation of innate immune responses by 
surveillance of homeostasis perturbations. FEBS J. 283, 2448–2457 
(2016). 

11. Shore, D. E. & Ruvkun, G. A cytoprotective perspective on longevity 
regulation. Trends Cell Biol. 23, 409–420 (2013). 

12. Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of 
electron transport chain-mediated longevity. Cell 144, 79–91 (2011). 

13. Owusu-Ansah, E., Song, W. & Perrimon, N. Muscle mitohormesis 
promotes longevity via systemic repression of insulin signaling. Cell 155, 
699–712 (2013). 

14. Yun, J. & Finkel, T. Mitohormesis. Cell Metab. 19, 757–766 (2014). 
15. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial 

function during development. Science (80-. ). 298, 2398–2401 (2002). 
16. Houtkooper, R. H. et al. Mitonuclear protein imbalance as a conserved 

longevity mechanism. Nature 497, 451–457 (2013). 
17. Chung, H. K. et al. Growth differentiation factor 15 is a myomitokine 

governing systemic energy homeostasis. J. Cell Biol. 216, 149–165 
(2017). 

18. Masand, R. et al. Proteome Imbalance of Mitochondrial Electron 
Transport Chain in Brown Adipocytes Leads to Metabolic Benefits. Cell 
Metab. 27, 616-629.e4 (2018). 

19. Pospisilik, J. A. et al. Targeted Deletion of AIF Decreases Mitochondrial 
Oxidative Phosphorylation and Protects from Obesity and Diabetes. Cell 
131, 476–491 (2007). 

20. Deepa, S. S. et al. Lifelong reduction in complex IV induces tissue-
specific metabolic effects but does not reduce lifespan or healthspan in 
mice. Aging Cell 17, e12769 (2018). 

21. Fiorese, C. J. et al. The Transcription Factor ATF5 Mediates a 
Mammalian Mitochondrial UPR. Curr. Biol. 26, 2037–2043 (2016). 

22. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. 
elegans mutant that lives twice as long as wild type. Nature 366, 461–
464 (1993). 

23. Govindan, J. A. et al. Lipid signalling couples translational surveillance to 
systemic detoxification in Caenorhabditis elegans. Nat. Cell Biol. 17, 
1294–1303 (2015). 

24. Fouillet, A. et al. ER stress inhibits neuronal death by promoting 
autophagy. Autophagy 8, 915–26 (2012). 

25. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. Isolation of the Candida 
albicans gene for orotidine-5’-phosphate decarboxylase by 
complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. 
Gen. Genet. 198, 179–82 (1984). 

26. Pamplona, A. et al. Heme oxygenase-1 and carbon monoxide suppress 
the pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–
710 (2007). 

27. Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. 
Assessment of mitochondrial respiratory chain enzymatic activities on 



	124 

tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012). 
28. Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. 

Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of 
Resistance, and Implications for Drug Design. Annu. Rev. Biochem. 87, 
451–478 (2018). 

29. Haak, B. W., Prescott, H. C. & Wiersinga, W. J. Therapeutic Potential of 
the Gut Microbiota in the Prevention and Treatment of Sepsis. Front. 
Immunol. 9, 2042 (2018). 

30. Schieber, A. M. P. et al. Disease tolerance mediated by microbiome E. 
coli involves inflammasome and IGF-1 signaling. Science (80-. ). 350, 
558–563 (2015). 

31. Gaillard, T., Madamet, M. & Pradines, B. Tetracyclines in malaria. Malar. 
J. 14, 445 (2015). 

32. Moullan, N. et al. Tetracyclines Disturb Mitochondrial Function across 
Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep. 
10, 1681–1691 (2015). 

33. Michel, S., Canonne, M., Arnould, T. & Renard, P. Inhibition of 
mitochondrial genome expression triggers the activation of CHOP-10 by 
a cell signaling dependent on the integrated stress response but not the 
mitochondrial unfolded protein response. Mitochondrion 21, 58–68 
(2015). 

34. Tauber, S. C. & Nau, R. Immunomodulatory properties of antibiotics. 
Curr. Mol. Pharmacol. 1, 68–79 (2008). 

35. Gopinath, S. et al. Topical application of aminoglycoside antibiotics 
enhances host resistance to viral infections in a microbiota-independent 
manner. Nat. Microbiol. 3, 611–621 (2018). 

36. Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of 
bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014). 

37. Quirós, P. M. et al. Multi-omics analysis identifies ATF4 as a key 
regulator of the mitochondrial stress response in mammals. J. Cell Biol. 
(2017). 

38. Bahrami, F., Morris, D. L. & Pourgholami, M. H. Tetracyclines: drugs with 
huge therapeutic potential. Mini Rev. Med. Chem. 12, 44–52 (2012). 

39. Labossiere, J. R. et al. Doxycycline Attenuates Renal Injury In A Swine 
Model Of Neonatal Hypoxia-Reoxygenation. Shock 43, 99–105 (2015). 

40. Nukarinen, E. et al. Targeting matrix metalloproteinases with intravenous 
doxycycline in severe sepsis - A randomised placebo-controlled pilot trial. 
Pharmacol. Res. 99, 44–51 (2015). 

41. Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses 
of immunity. Nat. Immunol. 18, 488–498 (2017). 

42. Masand, R. et al. Proteome Imbalance of Mitochondrial Electron 
Transport Chain in Brown Adipocytes Leads to Metabolic Benefits. Cell 
Metab. 27, 616-629.e4 (2018). 

43. Wang, A. et al. Opposing Effects of Fasting Metabolism on Tissue 
Tolerance in Bacterial and Viral Inflammation. Cell 166, 1512-1525.e12 
(2016).



	 125 

 
 
 

Chapter 4 
	
	
	
	
	

 
The role of liver metabolism in the 

pathophysiology and outcomes of sepsis  

	
	
	
	
	
	
	
	
 
 
Parts of this chapter have been submitted for publication: 
 
Colaço, HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho TR, 
Willmann K, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. Host-
dependent induction of disease tolerance to infection by tetracycline 
antibiotics. 
Pre-print available at bioRxiv. Doi: https://doi.org/10.1101/833269  



	126 

Author contributions 
 

I was responsible for planning, executing and analyzing data from all 

experiments in this chapter. André Barros and Elsa Seixas provided assistance 

in the in vivo work. Liver RNA-Seq was performed at Genecore (EMBL 

Genomics Core Facilities), under the supervision of Vladimir Benes. André 

Barros performed the analysis of RNA-Seq data. Liver metabolomics was 

executed at the Metabolomics Facility from the Vienna Biocenter Core Facilities 

under the supervision of Thomas Köcher. Hyon-Seung Yi and Minho Shong 

provided the Crif1lox/lox mouse strain. Luís Ferreira Moita supervised the project 

and reviewed this chapter.  

  



	 127 

4.1 Abstract 
 

Sepsis is characterized by a dysregulated host response to infection, which 

encompasses excessive inflammation and perturbed metabolic function. The 

liver plays a key role in integrating several metabolic pathways and controlling 

organismal bioenergetics. However, the contribution of this organ for sepsis 

pathology is still poorly understood.  

Here, we used a combination of transcriptomics, metabolomics, and 

pharmacological studies to better characterize liver function in a mouse model 

of bacterial sepsis. We found that both fatty acid oxidation and response to 

glucocorticoids are impaired in mouse liver from early time-points of infection. 

Maintenance of either pathway is essential but not sufficient for survival to 

infection. 

We further demonstrate that doxycycline, a drug that impairs mitochondrial 

respiration, improves both lipid metabolism and glucocorticoid signaling. This 

result can be replicated by other mild perturbations in the electron transport 

chain, namely treatment with phenformin and partial depletion of the 

mitochondrial protein CRIF1. 

 

4.2 Introduction 
 

Infections inflict profound changes in host metabolism. In immune cells, 

induction of glycolysis provides both ATP and substrates to be used in anabolic 

pathways. These in turn support the synthesis of lipids, proteins, and 

nucleotides necessary for cell proliferation and effector immune responses1. 

Parenchymal cells, in contrast, undergo metabolic rewiring that favors catabolic, 

energy-saving programs2.  

Sepsis, in particular, is characterized by severe perturbations in cellular function 

and inter-organ communication, together with dramatic metabolic alterations in 
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all organs3. The action of stress hormones, such as catecholamines and 

glucocorticoids, as well as cytokines, such as TNFα, increases lipolysis in 

adipocytes, flooding the blood with energy-rich free fatty acids (FFA)4,5. In the 

skeletal muscle, increased protein catabolism provides amino acids to support 

immune cell proliferation, while providing an alternative source of energy6.  

The liver integrates several metabolic pathways and suffers dramatic functional 

changes during sepsis, which have been the focus of recent attention and 

controversy. In mice, sepsis progresses with severe hypoglycemia, posing an 

important threat to host survival. As a consequence, maintenance of hepatic 

gluconeogenesis has been deemed essential to avoid lethal hypoglycemia7. In 

parallel, production of ketone bodies in the liver provides a valuable source of 

energy when glucose is not readily available8.  

Fatty acid oxidation (FAO) in the mitochondria constitutes a major source of 

cellular energy, by providing substrates both for ketogenesis and oxidative 

phosphorylation. FAO is regulated by the transcription factor PPARα, which, 

upon binding of FFAs, translocates to the nucleus and induces the expression 

of genes involved in lipid transport and oxidation in the mitochondria9. The role 

of hepatic lipid metabolism in sepsis has only very recently begun to be 

addressed8,10,11, and the molecular mechanisms that regulate metabolic 

adaptation during infection and prevent energetic failure remain elusive. 

We have previously shown that doxycycline, a drug that induces an imbalance 

between nuclear and mitochondrial-encoded proteins of the mitochondrial ETC, 

increases survival in a mouse model of sepsis. Doxycycline-treated mice have 

lower levels of tissue damage, especially in the liver. This is accompanied by 

changes in ETC activity in the liver, thus raising the hypothesis that transient 

changes in mitochondrial function promote metabolic adaptation that induces 

tissue tolerance. 

Herein, we used a combination of transcriptomics, metabolomics, and 

pharmacological studies to better understand liver pathophysiology during 

bacterial sepsis in mice. We found that deficient FAO and response to 

glucocorticoids are hallmarks of sepsis pathology and correlate with poor 
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infection outcomes. In addition, we observed improved FAO and glucocorticoid 

signaling in livers of doxycycline-treated mice. Remarkably, different strategies 

to reduce ETC activity, namely phenformin treatment and conditional, liver-

specific knockdown of Crif1 are also capable of inducing disease tolerance 

against bacterial sepsis.  

 

4.3 Methods 

4.3.1 Experimental Models 

4.3.1.1 Mice 

All animal studies were performed in accordance with Portuguese regulations 

and approved by the Instituto Gulbenkian de Ciência ethics committee 

(reference A002.2015) and DGAV. C57BL/6J mice were obtained from Instituto 

Gulbenkian de Ciência. Male mice, 8 to 12 weeks old were used, except if 

otherwise stated. Crif1lox/lox mice12 were obtained from M. Shong (Chungnam 

National University School of Medicine, Daejeon, South Korea). Mice were 

maintained under specific pathogen-free (SPF) conditions with 12 h light/12 h 

dark cycle, humidity 50–60%, ambient temperature 22 ± 2°C and food and 

water ad libitum. For all experiments, age-matched mice were randomly 

assigned to experimental groups. 

 

4.3.1.2 Bacterial cultures 

See section 3.3.1.4. 
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4.3.2 Method details 

4.3.2.1 E. coli-induced sepsis model and drug treatments 

See section 3.3.2.1 for details on E. coli infection model and doxycycline 

treatment. 

The following drugs were dissolved in the indicated vehicles and injected 

intraperitoneally (200 µL/mouse, except mifepristone: 50 µL/mouse) at the time 

of infection and at the indicated concentrations: phenformin (vehicle: PBS, dose 

100 µg/g); etomoxir (vehicle: PBS, dose 15 µg/g); mifepristone (vehicle: 100% 

DMSO, dose 30 µg/g); CP868388 (vehicle: 7% DMSO, dose 3 µg/g), 

dexamethasone (vehicle: PBS, dose 5 µg/g). Octanoic acid was dispersed in 

0.5% methylcellulose and supplemented by oral gavage (200 µL/mouse) at 2, 8, 

24, and 48h post-infection. 

 

4.3.2.2 Liver-specific gene editing with adeno-associated virus (AAV) 

AAV serotype 8 constructs (details in the Appendix) were diluted in sterile PBS 

and 5x1011 gc/mouse were delivered by retro-orbital injection. All subsequent 

experiments were performed 7 days after AAV injection.  

 

4.3.2.3 Colony Forming Units assay 

See section 3.3.2.3. 

 

4.3.2.4 Biochemical assays in mouse serum  

See section 3.3.2.4. 
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4.3.2.5 Histopathology 

See section 3.3.2.5. 

 

4.3.2.6 Immunoblotting 

See section 3.3.2.7. 

 

4.3.2.7 RNA extraction and qPCR 

See section 3.3.2.8. 

 

4.3.2.8 Liver RNA-Seq 

Total RNA samples were checked for quality using AATI Fragment Analyzer. 

Only samples with RNA Quality Number (RQN) >7 and clearly defined 28S and 

18S peaks were considered for downstream analysis.  

mRNA libraries were prepared, pooled and sequenced (75 bp, single end) using 

NextSeq500. 

 

Quality Assessment and Alignment 

Prior to alignment, quality of the sequences was assessed using FASTQC and 

MultiQC13. Sequences were then aligned against the Mus musculus genome 

version 97, with the annotation file for the genome version 97, both obtained 

through the website of Ensembl. The alignment was performed using STAR14, 

with default parameters and with the option of GeneCounts. 

 

Data analysis 

The files obtained from GeneCounts were imported to R (version 3.5.3), taking 

into account the strandness inherent to the sequencing protocol. Downstream 
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analysis was performed using DESeq2 (version 1.22.2)15. Data from raw counts 

were normalized through a Regularized Log Transformation (rlog) to create the 

Principal Component Analysis plot and Heatmaps15. The log2FC provided by 

the standard DESeq2 model was shrunk using the ‘ashr’ algorithm16. Gene 

information was obtained using the package org.Mm.eg.db. For the purposes of 

this study, genes were considered differentially expressed when the p-value, 

adjusted using false discovery rate (FDR), was below 0.05.  

 

4.3.2.9 Liver metabolomics 

Sample preparation 

Liver samples (30-80 mg) were weighed and homogenized in 500 µL ice-cold 

methanol:acetonitrile:H2O (2:2:1, v/v) using a TissueLyser II. Homogenates 

were incubated at -80 °C for 4h and centrifuged at 20000 xg for 10 min at 4°C. 

The supernatant containing soluble fractions was stored at -80°C. The pellet 

was resuspended in 400 µL ice-cold 80% (v/v) methanol by vortexing for 1 min 

at 4°C. Samples were then incubated for 30 min at -80°C and centrifuged at 

20000 xg for 10 min at 4°C. Supernatant was collected and combined with the 

previously obtained supernatant containing soluble fractions. Samples were 

centrifuged again and the supernatant stored at -80°C until analysis. 

 

Untargeted metabolomics 

Extracted samples were thawed on ice, centrifuged for 2 min at 15,000 xg, and 

diluted according to the different sample weight with 0.1% formic acid (RP, 

reversed phase) or 50% acetonitrile (ACN) (HILIC, hydrophilic interaction 

chromatography). 2.5 µL of each diluted sample were pooled and used as a 

quality control (QC) sample. Samples were randomly assigned into the 

autosampler and metabolites were separated on a SeQuant ZIC-pHILIC HPLC 

column (Merck, 100 x 2.1 mm; 5 µm) or an RP-column (Waters, ACQUITY 

UPLC HSS T3 150 x 2.1; 1.8 µm) with a flow rate of 100 µL/min delivered 
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through an Ultimate 3000 HPLC system (Thermo Fisher Scientific). The 

gradient ramp up time takes 21 min to 60% B followed by 5 min hold at 80% B 

in HILIC (25 mM ABC) and 90% B in RP (0.1% FA in ACN). Metabolites were 

ionized via electrospray ionization in polarity switching mode after HILIC 

separation and in positive polarity mode after RP separation. Sample spectra 

were acquired by data-dependent high-resolution tandem mass spectrometry on 

a Q-Exactive Focus (Thermo Fisher Scientific). Ionization potential was set to 

+3.5/-3.0 kV, the sheet gas flow was set to 20, and an auxiliary gas flow of 5 

was used. Samples were analyzed in a randomized fashion and QC samples 

were additionally measured in confirmation mode to obtain additional MS/MS 

spectra for identification. Obtained data sets were processed by compound 

discoverer 3.0 (Thermo Fisher Scientific). Compound annotation was conducted 

by searching the mzCloud database with a mass accuracy of 3 ppm for 

precursor masses and 10 ppm for fragment ion masses as well as ChemSpider 

with a mass accuracy of 3 ppm using BioCyc, Human Metabolome Database, 

KEGG, MassBank and MetaboLights as databases. 

 

Targeted metabolomics 

Each sample was injected onto a SeQuant ZIC-pHILIC HPLC column (Merck, 

100 x 2.1 mm; 5 µm) operated with an Ultimate 3000 HPLC system (Dionex, 

Thermo Fisher Scientific) at a flow rate of 100 µL/min and directly coupled to a 

TSQ Quantiva mass spectrometer (Thermo Fisher Scientific). 

For all transitions, the optimal collision energy was defined by analyzing pure 

metabolite standards. Chromatograms were manually interpreted using 

TraceFinder (Thermo Fisher Scientific), validating experimental retention times 

with the respective quality controls of the pure substances. In HILIC, a 15 min 

gradient (A: 95% ACN, 5% 10 mM aqueous ammonium acetate; B: 50% ACN 

50% 10 mM aqueous ammonium acetate) was used for separation. The 

following transitions have been used for quantitation in the negative ion mode 

(2.8 kV): stearic acid 283.1 m/z → 265.1 m/z and palmitic acid  255.1 m/z → 

227.1 and in the positive ion mode (3.2 kV): stearoylcarnitine 428.1 m/z → 85 
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m/z,  palmitoylcarnitine 400.1 m/z → 85 m/z, myristoylcarnitine 372.1 m/z → 85 

m/z and lauroylcarnitine  344.1 m/z → 85 m/z.  

 

4.3.2.10 Electron transport chain (ETC) complex activity 

See section 3.3.2.9. 

4.3.2.11 Quantification and statistical analysis 

Mantel-Cox test was used for survival curve analysis. For infections with E. coli, 

mice with no changes in body temperature and weight within the first 24h 

(temperature >35ºC and body weight >95%) were excluded from the analysis.  

Mann-Whitney test was used for pairwise comparisons and two-way ANOVA 

with Tukey test was used for multiple comparisons. Statistical analysis was 

performed with Graphpad Prism 6.0 (GraphPad Software). The number of 

subjects used in each experiment is defined in figure legends. The following 

symbols were used in figures to indicate statistical significance: p <0.05 (*); 

p<0.01 (**); p<0.001 (***); p<0.0001 (****). 

 

4.4 Results 

4.4.1 Fatty acid oxidation and response to glucocorticoids are 
essential for sepsis outcomes 
 

To begin the characterization of liver physiology during sepsis and assess 

possible liver-specific disease tolerance programs, we performed bulk RNA-Seq 

in mouse liver 8h after E. coli infection with and without doxycycline treatment. 

By comparing infected and non-infected, PBS-treated mice, we observed the 
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expected up-regulation of a high number of genes associated with an 

inflammatory response (Figure 4-1A, 4-1C).  

 

 
Figure 4-1 - Bulk RNA-Seq in mouse liver 8h after infection and doxycycline treatment.   

(A) Volcano plot with differential expression of genes in infected and non-infected, PBS-treated 
mice from RNA-Seq analysis in the liver. Numbers indicate genes with log2 fold change <-5 or 
>5 and p<0.05. (B) Scatter plot of genes affected by doxycycline treatment in infected versus 

non-infected groups. Yellow dots indicate genes differentially expressed in infected mice 
(p<0.05); gray dots indicate non-statistically significant genes (p≥0.05). (C) Top GO_BP 

annotation of genes up-regulated during infection (PBS-treated mice), log2 fold change>5; 
p<0.05. (D) Gene functional clustering of down-regulated genes upon doxycycline treatment 

(infected groups), log2 fold change <-1, p<0.05. 
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Surprisingly, when comparing PBS and doxycycline treated mice in the absence 

of infection we found no statistically significant differential gene expression 

(Figure 4-1B). In E. coli-infected mice, doxycycline treatment results in a 

discrete number of up- and down-regulated genes compared to PBS-treated 

controls (Figure 4-1B). We then used the DAVID bioinformatics database17,18 to 

perform a gene functional classification of differentially expressed genes in 

infected, doxycycline treated mice. We found a single significant cluster, which 

relates to decreased production of collagen upon doxycycline treatment (Figure 

4-1D). Collagen is a well-known marker of liver fibrosis and changes in collagen 

metabolism have been associated with disease severity in sepsis19. These 

findings, together with serology and pathology data (described in Chapter 3) 

further support the notion that doxycycline helps limiting liver damage from very 

early time-points of infection.  

 

As we did not find substantial doxycycline-induced transcriptional changes that 

could sufficiently explain the protective effects of the drug, we then investigated 

the liver metabolic profiles in the presence of doxycycline and infection, given 

the centrality of liver function and metabolic changes during sepsis. To this end, 

we used an untargeted metabolomics approach to study metabolic changes in 

the liver 8h after infection. 

Analysis of the top up- and down-regulated metabolites showed a very 

pronounced accumulation of acylcarnitines and glucocorticoids in the liver of 

infected mice (Figure 4-2).  

While glucocorticoids have an important role in modulating both inflammation 

and metabolism during infection, the abnormal acylcarnitine profile is indicative 

of a defective import and oxidation of fatty acids in mitochondria, which may be 

a cause of liver failure and metabolic collapse during sepsis.  
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Figure 4-2 - Untargeted metabolomics analysis in mouse liver 8h after infection. 

Top up-regulated metabolites in liver of infected mice (p<0.05). Glucocorticoids are highlighted 
in gray and metabolites involved in fatty acid oxidation are highlighted in yellow. 

 

To further validate and investigate the identified FAO signature, we then 

measured mRNA levels of Ppara, a master regulator of fatty acid oxidation 

(FAO), and several of its transcriptional targets, including Cpt1, Cpt2 and 

Slc25a20, responsible for free fatty acid (FFA) import into the mitochondria, at 8 

and 24h after infection. We found a decreased expression of all of the analyzed 

targets upon infection, which was maintained at least for the first 24h (Figure 4-

3A), thus highlighting lipid metabolic dysfunction as a hallmark of sepsis 

pathophysiology. To causally test the importance of FAO for sepsis progression 

and survival, we treated mice with etomoxir20, a frequently used inhibitor of 

CPT1a – the enzyme that catalyzes the conversion of free fatty acids to 
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acylcarnitines before their import across the outer mitochondrial membrane. We 

observed a significant increase in mortality as compared to non-treated controls 

(Figure 4-3B).  

 

 
Figure 4-3 - Fatty acid oxidation and response to glucocorticoids are essential for survival 

to sepsis. 
(A) Expression of Ppara and several of its targets by qPCR in mouse liver at 8h and 24h post-

infection. Data represent mean±SD of 5 mice assayed in triplicate. (B) Survival after infection of 
C57BL/6J mice with 3x108 CFU/mouse TetR CamR E. coli and treatment with 15 µg/g body 
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weight etomoxir. (C) Survival of Cpt2-depleted mice upon infection with E. coli. Mice were 
injected with AAV8 expressing Cpt2 shRNA (or scramble shRNA as a control) 7 days before 
infection. (D) Cpt2 mRNA levels in mouse liver 7 days after injection of AAV8 Cpt2 shRNA. 

(E) Survival of E. coli-infected mice treated with 30 µg/g body weight mifepristone. (B) and (E) 
represent pooled data from two independent experiments. (C) and (D) represent a single 

experiment. 
 

We also attempted to reduce the expression of Cpt2, another gene involved in 

the mitochondrial carnitine shuttle, by injecting a liver-specific adeno-associated 

virus (AAV) serotype 8 encoding Cpt2 shRNA. We observed a slight, non-

statistically significant increase in mortality (Figure 4-3C), which might be 

explained by the modest decrease in Cpt2 mRNA levels following Cpt2 shRNA 

treatment (Figure 4-3D). 

 

Finally, we tested the contribution of glucocorticoid response to the outcomes of 

sepsis by treating mice with mifepristone, a glucocorticoid receptor (GR) 

antagonist. Mifepristone-treated mice succumbed to infection remarkably faster 

than the controls (Figure 4-3E), suggesting that glucocorticoid response is 

essential to maintain tissue function in face of the excessive inflammation and 

metabolic dysregulation that characterize the initial stages of sepsis. 

Taken together, these results demonstrate that both FAO and response to 

glucocorticoids are necessary for recovery from sepsis, and that impairment of 

these pathways correlates with worse infection outcomes.  

 

4.4.2 Doxycycline improves both FAO and response to 
glucocorticoids 
 

Having identified FAO and response to glucocorticoids as necessary for survival 

in sepsis, we next investigated the role of doxycycline on these pathways. 

Considering the lack of transcriptional signatures in mouse liver upon 

doxycycline treatment (Figure 4-1B), we turned to an HPLC-MS analysis to 

identify several acylcarnitine and FFA species in mouse liver 8h after infection 
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with or without doxycycline treatment. We found that doxycycline partially 

corrects the accumulation of acylcarnitines and FFA upon infection (Figure 4-4), 

suggesting that the drug might be facilitating fatty acid transport into the 

mitochondria and/or boosting FAO. Levels of the ketone body β-hydroxybutyric 

acid are also slightly elevated in infected, doxycycline-treated mice, suggesting 

that improved FAO may result in higher production of ketone bodies to support 

energy generation. 

 

 
Figure 4-4 - Doxycycline improves fatty acid oxidation in the liver. 

HPLC-MS analysis of FAO metabolites and β-hydroxybutyric acid in mouse liver 8h after 
infection and/or doxycycline treatment. Each square represents one mouse.  

 

Remarkably, several attempts to correct mitochondrial FFA transport in liver by 

overexpressing several genes involved in this pathway, alone or in combination, 

using an AAV8 construct driven by liver thyroid hormone-binding globulin (TBG) 

promoter, conferred no survival advantage during infection (Figure 4-5A, 4-5B, 

4-5C).  

 

Additionally, an attempt to bypass the carnitine shuttle by orally supplementing 

mice with octanoic acid, a medium-chain FFA (C8:0) that freely diffuses into the 

mitochondria without the need for conjugation with carnitine, also did not 

consistently increase survival in mice (Figure 4-5D). Likewise, treatment with 
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the PPARα agonist CP868388 at the time of infection was not enough to 

improve survival (Figure 4-5E). 

 

 
Figure 4-5 - Fatty acid oxidation gain-of-function experiments. 

(A, B, C) Survival of C57BL/6J mice after infection with E. coli. Mice were injected with 
AAV8-TBG expressing SLC25A20 (A), CPT1a (B) or a combination of 

CPT1a+CPT2+SLC25A20 (1:1:1) (C) one week before infection. (D) Survival of mice after 
infection with E. coli and treatment with octanoic acid by oral gavage at 2, 8, 24, and 48h after 

infection. (E) Survival of mice after infection with E. coli and treatment with CP868388 (PPARα 
agonist) by IP injection at the time of infection. (A) and (D)  represent pooled data from three 

independent experiments. (B) and (F) represent pooled data from two independent experiments. 
(C) represents data from a single experiment.  
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We then addressed the impact of doxycycline treatment in glucocorticoid 

response. Levels of glucocorticoids were sharply elevated in the liver in 

response to infection (Figure 4-6A). We found similar levels of the major 

glucocorticoids in the liver of PBS and doxycycline-treated mice, with marginal 

increase of some species (such as corticosterone and 18-

hydroxycorticosterone) in doxycycline-treated groups (Figure 4-6A). Sepsis is 

characterized by resistance to glucocorticoids, which means that even high 

levels of these species, both endogenously produced and therapeutically 

administered, fail to produce anti-inflammatory and metabolic modulator 

effects21. In fact, pre-treatment of mice with the synthetic glucocorticoid 

dexamethasone before infection with E. coli failed to increase survival (Figure 4-

6B).  

To explore glucocorticoid signaling in this context, we probed liver extracts 

collected 8h after infection with or without doxycycline treatment for total 

glucocorticoid receptor (GR) and two markers of GR activation: Ser226 and 

Ser211. Infected, PBS-treated mice showed markedly reduced levels of all 

analyzed forms, supporting the idea of glucocorticoid resistance (Figure 4-6C). 

Interestingly, doxycycline treatment increases phospo-Ser226 and, to a lesser 

extent, phospho-Ser211, both in the presence and absence of infection, while 

total GR levels are also moderately increased in doxycycline-treated, E. coli-

infected mice (Figure 4-6C). These observations indicate that doxycycline 

substantially increases the activation of the GR in response to glucocorticoids, 

which is normally blunted in sepsis22. 

Taken together, our data indicate that, while FAO and glucocorticoid signaling 

are necessary for survival in sepsis, independently rescuing these pathways is 

not sufficient to guarantee recovery from infection. Notably, doxycycline 

treatment is able to correct both FAO and glucocorticoid signaling, which may 

contribute substantially for tissue function maintenance and metabolism during 

sepsis. 
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Figure 4-6 - Glucocorticoid signaling in sepsis pathology. 

(A) HPLC-MS analysis of glucocorticoids in mouse liver 8h after infection and/or doxycycline 
treatment. Each square represents one mouse. (B) Survival of mice after infection with E. coli 

and treatment with dexamethasone (GR agonist). Pooled data from two independent 
experiments. (C) Protein levels of total and phosphorylated glucocorticoid receptor (GR) in 
mouse liver at 8h after infection or doxycycline treatment. Each lane represents one mouse.  

 

4.4.3 Mild, transient perturbations in mitochondrial function 
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As discussed in Chapter 3, doxycycline-induced disease tolerance is associated 

with a perturbation in mitochondrial function, namely decreased activity of 

mitochondrial ETC complexes III and IV. To address the question of whether the 
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of ETC complexes, we next focused on the biguanide antidiabetic drug 
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Figure 4-7 - Phenformin, a complex I inhibitor, induces disease tolerance in sepsis. 

Survival (A), rectal temperature (B) and % initial body weight (C) after infection of mice with E. 
coli and treatment with a single injection of 100 µg/g body weight phenformin at the time of 
infection. (D) Survival after infection of mice with E. coli and treatment with 100 µg/g body 
weight phenformin at 0 and 24 h (E) Bacterial loads in blood of PBS and phenformin-treated 

mice, 24 h after E. coli infection. (F) Enzymatic activity of the ETC complexes and CS in mouse 
liver collected 12h after PBS or phenformin treatment. ETC activity is expressed as % of PBS-
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treated control, normalized for CS activity. (G) HPLC-MS analysis of FAO metabolites in mouse 
liver 8h after infection and/or phenformin treatment. Each square represents one mouse.  

 (A, B, C) represent pooled data from four independent experiments. (D) represents data from a 
single experiment. (E) represents pooled data from two independent experiments. Squares 

represent individual mice; bars indicate the mean. (F) represents mean±SD of 5 mice/group from 
a single experiment.  

  

We found that injection of a single dose of phenformin at the time of E. coli 

infection resulted in remarkable survival advantage (Figure 4-7A) and 

improvement in body temperature control (Figure 4-7B), with modest effects in 

body weight (Figure 4-7C). Interestingly, administration of two doses of 

phenformin, separated by 24h, lead to increase mortality (Figure 4-7D) in 

striking contrast to a single administration. 

Similarly to doxycycline, phenformin confers protection to sepsis by inducing 

disease tolerance mechanisms, as bacterial load in mouse blood collected 24h 

after infection shows no difference between PBS- and phenformin-treated mice 

(Figure 4-7E).  

 

 
Figure 4-8 - Phenformin treatment reduces inflammation and tissue damage in sepsis. 
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(A) TNFα, IL-6, IL-10, and IL-12/IL23(p40) levels in mouse serum at the indicated time-points 
after infection. Squares represent individual mice and bars indicate the mean; data obtained from 
a single experiment. (B, C) Organ damage score (B) and representative images of Hematoxylin-
Eosin stained slides (C) from tissues collected 24 h after infection. Score 0 = no lesions; 1 = very 

mild; 2 = mild lesions (n=4-5 mice/group).  
 

We then evaluated the enzymatic activity of ETC complexes in mouse liver 

collected 12h after phenformin treatment and concluded that complex I activity 

is dramatically decreased (61% of the control), while complexes II, III and IV, as 

well as CS show little to no changes (Figure 4-7F). Phenformin treatment also 

results in decreased accumulation of acylcarnitines and FFAs in mouse liver 8h 

after infection (Figure 4-7G).  

Additionally, phenformin-treated mice present lower levels of the major pro-

inflammatory cytokines at 24h, but not at 8h post-infection; and decreased IL-10 

levels at 8h (Figure 4-8A). Phenformin treatment also results in lower scores of 

tissue damage 24h after infection (Figure 4-8B, 4-8C). 

 

As we observed a protective effect of phenformin treatment in a single injection, 

but not in repeated administrations, we hypothesized that mild, but not stringent, 

perturbations in mitochondrial function could be mechanistically linked to 

disease tolerance. To causally prove this hypothesis, we next used a genetic 

system to induce transient perturbations in mitochondrial function. CRIF1 is a 

mitoribosomal protein with an important role in the assembly and function of 

ETC complexes24. A previous study linked tissue-specific Crif1 knockout with 

reduced ETC activity, resulting in systemic metabolic benefits25. Prompted by 

the doxycycline-induced improvement in liver pathology and metabolism during 

sepsis, we decided to test the impact of targeted liver deletion of CRIF1 in 

sepsis. To this end, we took advantage of the AAV8-TBG strategy to obtain fast 

and efficient gene editing in mouse liver. Intravenous injection of Cre-expressing 

AAV8 in homozygous Crif1lox/lox or heterozygous Crif1lox/- mice led to high protein 

levels of Cre recombinase after 7 days, accompanied by reduced CRIF1 protein 

and mRNA levels (Figure 4-9A). Mice homozygous for the flox allele suffered 

almost full deletion in mRNA (98%) and protein levels, whereas heterozygous 
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mice showed a 30% decrease in mRNA and only modest decrease in protein 

levels (Figure 4-9A).  

 

 
Figure 4-9 - Genetically induced mild perturbation in mitochondrial function is protective 

against sepsis. 
(A) CRIF1 and CRE recombinase protein levels and Crif1 mRNA levels in Crif1lox/lox or Crif1 

lox/- mice 7 days after injection of liver-specific AAV8-TBG expressing Cre recombinase (or GFP 
as a control). (B, C, D) Survival (B), rectal temperature (C), and % initial body weight (D) after 
infection of Crif1lox/lox or Crif1 lox/- mice with TetR CamR E. coli. Mice were previously injected 
with AAV8-TBG expressing Cre recombinase (or GFP as a control). (E) Bacterial loads in Crif1 

lox/- mouse blood 24h after infection. Data in (A) represents mean±SD of 4 mice/group assayed in 
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triplicate. (B, C, D) represent pooled data from three independent experiments. (E) represents 
data from a single experiment. Squares represent individual mice; bars indicate the mean.  

 

Strikingly, E. coli infection performed 7 days after AAV-Cre injection resulted in 

increased survival of Crif1lox/- mice but not of Crif1lox/lox littermates (Figure 4-9B), 

thus supporting the notion of a beneficial role for mild, transient mitochondrial 

perturbations. Crif1lox/- mice showed less severe hypothermia (Figure 4-9C), but 

no differences in body weight when compared to Crif1lox/lox mice and mice 

injected with a control AAV-GFP vector (Figure 4-9D). Bacterial loads in blood 

of Crif1 depleted mice were similar to the controls (Figure 4-9E), supporting the 

notion of disease tolerance induced my mild mitochondrial perturbations.  

In summary, we have proven that mild and transient perturbations in 

mitochondrial function, which may affect the activity of different complexes of 

the ETC, activate disease tolerance mechanisms in a mouse model of bacterial 

sepsis. 

 

4.5 Discussion 
 

Infected animals engage a dormancy state that includes sickness behaviors 

(anorexia, social isolation, loss of libido, among others) and metabolic changes 

that support the energetic costs of immunity. Infection-induced dormant states 

are largely beneficial and have been associated with disease tolerance and 

tissue protection programs2. In sepsis, however, metabolic responses to 

infection are exacerbated and result both in the accumulation of toxic species 

and in energetic failure3. 

In this study, we focused on the role of liver pathophysiology in sepsis and 

found two major pathways that are impaired from early stages of infection: fatty 

acid metabolism and response to glucocorticoids. 

Very recently, two different studies addressed the role of fatty acid oxidation and 

PPARα during sepsis, with somewhat contradictory results10,11. Paumelle et al. 
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reported increased Ppara expression in E. coli-infected mouse liver and 

decreased survival and ketogenesis in liver-specific Ppara-knockout mice10. In 

critically ill patients, however, Ppara levels were found reduced, when compared 

to healthy controls10. A different study, by Ganeshan et al., reported impaired 

PPARα signaling and FAO upon LPS injection in mice, and claimed that 

ketogenesis is primarily sustained by amino acid catabolism11. Our results show 

decreased expression of Ppara and several of its targets, together with 

accumulation of FFAs and acylcarnitines in the liver of infected mice, in 

accordance with the latter study11. Moreover, we demonstrated that FAO is 

essential for survival to sepsis, as shown by the fact that treatment with the 

CPT1 inhibitor etomoxir decreases survival. These findings are corroborated by 

clinical studies showing that high circulating levels of acylcarnitines26 and low 

expression of Ppara27 correlate with poor sepsis prognosis. 

Furthermore, we attempted to correct the deficient transport of fatty acids to the 

mitochondria. Overexpression of genes of the carnitine shuttle conferred no 

survival advantage, nor did supplementation with medium chain fatty acids. 

Even though these FFAs can freely diffuse into the mitochondria without the 

need for a specialized transport, they will most likely accumulate due to defects 

in downstream steps of FAO. This is problematic not only from a bioenergetics 

viewpoint, but also because high levels of lipids may cause steatosis, which 

perturbs tissue function28. 

Another promising approach to correct defects on lipid metabolism in sepsis is 

the stimulation of its master regulator PPARα. In a previous study, the clinically 

available PPARα agonist fenofibrate was reported to increase survival in a 

mouse model of sepsis induced by Salmonella typhimurium29. However, this 

protective effect was attributed to an increased recruitment of neutrophils to the 

site of infection, while the effects of fenofibrate in systemic lipid metabolism 

were not analyzed. In our study, we focused instead on the more potent and 

specific PPARα agonist CP86838830 and found no survival advantage under the 

tested conditions. Together, our data suggest that, although FAO is essential for 
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survival to sepsis, strategies that specifically aim to correct lipid metabolism are 

not sufficient to guarantee recovery from infection. 

 

A different aspect of liver pathophysiology of sepsis arising from our study is an 

impaired glucocorticoid signaling. Infection induces the release of high levels of 

glucocorticoids from the adrenal glands, which dampen the immune response 

and alter metabolism by increasing gluconeogenesis, lipolysis and FAO. Upon 

binding of its ligands, GR undergoes a complex signaling pathway that involves 

dimerization, post-translational modifications, and translocation to the nucleus, 

where it acts as a transcription factor31,32. We noticed decreased protein levels 

of total and phosphorylated GR in the liver, despite extremely high levels of 

glucocorticoids, supporting the idea that glucocorticoid resistance contributes to 

sepsis pathology21. Similarly to the results obtained in FAO, treatment with a GR 

antagonist resulted in worsened infection outcomes, but no improvement was 

found upon treatment with a GR agonist. Interestingly, PPARα has been shown 

to block GR activation33, which may help explaining why therapies that 

individually target one of these pathways are not sufficient to increase survival. 

 

Interestingly, both FAO and GR signaling were found improved during infection 

in doxycycline-treated mice. We have previously discussed that doxycycline-

induced disease tolerance was associated with inhibition of ETC activity in 

mouse liver. These results suggest that perturbations in ETC activity trigger a 

stress response that induces both GR signaling and a metabolic shift from 

glucose oxidation to FAO. In the context of sepsis, improved oxidation of lipid 

species is likely advantageous, as it supports ketone body synthesis, which can 

then be used as a source of energy by a variety of tissues. It is noteworthy, 

however, that oxidation of ketone bodies or acetyl-CoA generated in β-oxidation 

still requires a functional ETC, which partly explains why mild, but not stringent 

ETC perturbations result in tissue protection. 

The link between ETC inhibition and metabolic benefits, namely increased FAO, 

has been established in previous studies, most notably in the context of 
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obesity25,34,35. The exact mechanisms that explain this metabolic shift remain 

elusive, but they are believed to involve the secretion of mitochondrial stress 

response molecules (known as mitokines), such as GDF1525 or FGF2136. While 

our transcriptomics analysis has not identified an up-regulation of any of such 

known molecules in the liver of doxycycline-treated mice, this should be more 

carefully addressed in future studies. In fact, we cannot rule out the presence of 

still unknown mitokines, or the secretion of known factors, including GDF15 and 

FGF21, by other organs, such as the skeletal muscle. 

 

Finally, we provided evidence that mild ETC perturbations, both 

pharmacological and genetically induced, are sufficient to confer disease 

tolerance to bacterial sepsis. Phenformin, an antidiabetic drug with no reported 

antibiotic effect, shows a remarkable protective effect when administered in a 

single dose, which largely overlaps with doxycycline in all analyzed aspects of 

mouse pathology and metabolism. The fact that phenformin and doxycycline 

target different complexes of the ETC – phenformin exclusively inhibits complex 

I activity, whereas doxycycline targets complexes III and IV – suggests that 

induction of disease tolerance is a consequence of the overall output of ETC 

activity rather than the activity of specific complexes. 

The comparison between phenformin and other drugs with a similar mechanism 

of action provides further evidence for the link between ETC inhibition and 

disease tolerance. When compared to metformin, the most widely used member 

of the biguanide family, phenformin shows a much more potent inhibitory effect 

of complex I of the ETC23. Interestingly, metformin treatment resulted in no 

survival advantage (Chapter 3), whereas a similar dose of phenformin is able to 

rescue ~80% of infected mice.  

The results obtained with liver-specific CRIF1 knockdown provide not only a 

causal link between mitochondrial stress and disease tolerance, but also 

insights into tissue-specificity, magnitude and duration of the underlying 

perturbations. As previously discussed, protective perturbations in ETC function 

need to be mild, so as not to completely compromise energy generation – this is 



	152 

likely the case of the full CRIF1 knockout, which showed no survival advantage. 

Partial CRIF1 knockdown, obtained in heterozygous mice, resulted in ~50% 

survival, a more modest effect compared to the one obtained with drug 

treatments. Reasons for this may include the need for systemic, rather than 

liver-specific, perturbations in mitochondrial function – the contribution of other 

organs was not considered in this study. Furthermore, the temporal activation of 

mitochondrial stress responses should be considered. While drug treatments 

provide a transient perturbation of mitochondrial function induced at the time of 

infection, genetic manipulation results in gradual decrease of CRIF1 levels over 

the 7 days that preceded infection – this more prolonged stress condition may 

have effects on organismal physiology that are hard to control37. 

 

Taken together, our results prove that hepatic metabolism – in particular, a 

functional mitochondrial FAO – and stress responses – such as glucocorticoid 

signaling – are essential for survival to sepsis and can be harnessed for 

therapeutic purposes by mild perturbations in ETC activity.  
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5.1 Abstract 
 

Lung dysfunction is not only highly prevalent in sepsis but also a major cause of 

long-term morbidity. Doxycycline treatment increases survival in a mouse model 

of bacterial sepsis, which is accompanied by reduced lung damage. In this 

study, we set out to identify lung-specific tissue protective mechanisms of 

doxycycline. We report that intra-tracheal administration is sufficient to 

reproduce the protective effect of the drug. Doxycycline accelerates infection 

resolution in a model of Influenza, which relies specifically in lung damage. 

Transcriptomics analysis of doxycycline-treated mouse lung shows an infection-

independent reduction in the expression of lung stem cell genes. Our data 

suggests that doxycycline triggers stem cell differentiation and lung remodeling, 

which may help sustain tissue architecture and function during infection. Future 

studies providing more detailed mechanisms on doxycycline-induced lung 

protection may help shed light upon the complex dynamics of progenitor lineage 

expansion and proliferation in the lung in the context of infection. 

5.2 Introduction 
 

Impaired lung function is one of the most prominent consequences of sepsis. 

Endothelial leakage and compromised alveolar barriers lead to accumulation of 

fluid in the alveoli, which in turn impairs gaseous exchanges and decreases 

lung compliance1. This set of symptoms, also known as acute respiratory 

distress syndrome (ARDS), can be further aggravated by mechanical ventilation 

of hospital-admitted patients and constitutes a major cause of multi-organ failure 

and long-term sequelae of sepsis2,3. 

Following the initial inflammatory insult, the respiratory epithelium engages an 

anti-inflammatory and resolving program involving a number of lipid-derived 

molecules, such as resolvins4. In parallel, regeneration of tissue architecture 
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involves cellular expansion and differentiation, in which the lung stem cells – or 

basal cells – play a key role5.  

The airway epithelium is a highly complex and heterogeneous population 

comprising over 40 different cell types6. These cells populate niches that differ 

dramatically from each other. Proximal regions have abundant ciliated and 

secretory (club) cells, while distal alveoli are mainly composed of surfactant 

producing (type I) and gas exchanging (type II) pneumocytes6. In the mouse 

respiratory tract, basal cells are thought to occupy mainly the trachea and 

proximal bronchi, although residual populations of distal stem cells have also 

been described7. In recent years, a few studies addressed the role of basal cells 

in lung remodeling upon chemical injury or viral infection, and found that these 

cells rapidly proliferate and differentiate into ciliated and club cells in proximal 

regions8,9, or alveolar cells in the distal respiratory tract7. 

In this study, we aimed to investigate the effect of doxycycline treatment in 

mouse lung physiology during infection. We have previously described that 

systemic doxycycline treatment induces disease tolerance in a model of 

bacterial sepsis, accompanied by reduced lung damage. Here, we show that 

local administration of doxycycline to the lung recapitulates this protective effect. 

Moreover, transcriptional analysis of doxycycline-treated mouse lung shows 

remarkable changes in markers of epithelium differentiation independently of 

infection. 

Our data suggests an unexpected role for doxycycline in promoting lung 

regeneration through a complex dynamics of cell reprogramming, which 

encourages more detailed mechanistic studies in the future. 
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5.3 Methods 

5.3.1 Experimental models 

5.3.1.1 Mice 

All animal studies were performed in accordance with Portuguese regulations 

and approved by the Instituto Gulbenkian de Ciência ethics committee 

(reference A002.2015) and DGAV. C57BL/6J mice were obtained from Instituto 

Gulbenkian de Ciência. Male mice, 8 to 12 weeks old were used, except if 

otherwise stated. Krt6a-DTR mice7 were obtained from W. Xian and F. McKeon 

(Harvard Medical School, Boston, MA, USA). Mice were maintained under 

specific pathogen-free (SPF) conditions with 12 h light/12 h dark cycle, humidity 

50–60%, ambient temperature 22 ± 2°C and food and water ad libitum. For all 

experiments, age-matched mice were randomly assigned to experimental 

groups. 

 

5.3.1.2 Bacterial cultures 

See section 3.3.1.4. 

 

5.3.2 Method details 

5.3.2.1 E. coli-induced sepsis model and drug treatments 

See section 3.3.2.1 for details on E. coli infection model. 

Doxycycline hyclate was dissolved in PBS and injected intraperitoneally (200 

µL/mouse) at 1.75 µg/g body weight 0, 24 and 48h after infection.  

Intra-tracheal administration of doxycycline was performed as previously 

described10. Briefly, mice were anesthetized with an intraperitoneal injection of 
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450 µg/g avertin, placed on an intubation platform (Labinventions.com), and 

intubated using a 22G, 1-inch catheter. Doxycycline (1.75 µg/g body weight in 

50 µL PBS) was then pipetted into the opening of the catheter and the catheter 

was removed after all volume was inhaled. Mice were allowed to recover from 

anesthesia and infection with E. coli was performed 2h later. 

 

5.3.2.2 Influenza virus infection 

Mice were anesthetized by inhalation of isoflurane and intranasally inoculated 

with a sublethal (100 pfu/mouse) dose of Influenza A PR/811 in 30 µL PBS. 

Infected mice were treated with an intraperitoneal injection of 1.75 µg/g 

doxycycline at days 4, 5 and 6 post-infection. 

 

5.3.2.3 Immunofluorescence 

Mouse lungs were collected at the indicated time-points after doxycycline 

administration and immediately inflated and immersed in 10% buffered formalin. 

Samples were then embedded in paraffin and 3-µm longitudinal sections were 

made, such that the trachea and both lungs were included in a single section. 

Antigen retrieval was performed in 10 mM sodium citrate + 0.5% Tween 20, pH 

6.0 for 5 min at 95ºC. Samples were then blocked in PBS containing 3% BSA + 

2% normal goat serum and 0.025% Triton X100 for 1h at RT. To reduce 

unspecific binding to endogenous mouse antibodies, samples were incubated 

with Goat F(ab) polyclonal Secondary Antibody to Mouse IgG 1:1000 for 1h at 

RT. Sections were then stained with a mouse cytokeratin 6A antibody 1:100, 

overnight at 4ºC followed by Andy Fluor 647 Goat Anti-Mouse IgG 1:1000 for 1h 

at RT. Nuclear staining was made with DAPI. Samples were finally mounted on 

glass coverslips using Fluoromount-G. Tile-scan images of the whole lung were 

acquired using a Nikon High Content Screening microscope based on Nikon Ti, 

equipped with a 20x 0.75 NA objective, Quad DAPI and Quad Cy5 filtersets, 
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coupled with an Andor Zyla 4.2 sCMOS 4.2Mpx camera and controlled through 

Nikon NIS Elements.  

 

5.3.2.4 Ablation of KRT6a+ cells 

Mice hemizygous for the human diphtheria toxin receptor inserted in the Krt6a 

locus (Krt6a-DTR) and wild-type littermates were given an intra-tracheal 

administration of 12 ng/g diphtheria toxin (DT) according to the procedure 

described in 5.3.2.1. Experiments were performed 4 days after DT 

administration. 

 

5.3.2.5 RNA extraction 

For lung RNA-Seq, both lungs were harvested, cleaned from fat and bronchi 

and homogenized in 1 mL Trizol using a TissueLyser II. Homogenates were 

centrifuged at 20000 xg for 3 min at 4°C and 500 µL supernatant were used for 

RNA extraction, according to the procedure described in section 3.3.2.8. 

 

5.3.2.6 Lung RNA-Seq 

See section 4.3.2.8. 

 

5.3.2.7 Quantification and statistical analysis 

Mantel-Cox test was used for survival curve analysis. For infections with E. coli, 

mice with no changes in body temperature and weight within the first 24h 

(temperature >35ºC and body weight >95%) were excluded from the analysis.  

Mann-Whitney test was used for pairwise comparisons. Statistical analysis was 

performed with Graphpad Prism 6.0 (GraphPad Software). The number of 

subjects used in each experiment is defined in figure legends. The following 
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symbols were used in figures to indicate statistical significance: p <0.05 (*); 

p<0.01 (**); p<0.001 (***); p<0.0001 (****). 

 

5.4 Results 

5.4.1 Doxycycline improves lung pathology during infection 
 

As discussed in Chapter 3, doxycycline induces disease tolerance in a mouse 

model of bacterial sepsis, resulting in decreased damage of several tissues, 

most notably the lung and the liver. Guided by the improvement of lung 

pathology upon doxycycline treatment, we decided to explore the effect of local 

administration of the drug to the lung. We found that a single intra-tracheal 

administration of doxycycline 2h before E. coli infection results in significant 

increase in survival (Figure 5-1A), supporting a central role of the lung in sepsis 

outcome. 

 

 
Figure 5-1 - Doxycycline improves lung pathology.  

(A) Survival of mice after intra-tracheal delivery of 1.75 µg/g body weight doxycycline (or PBS 
as a control) followed by infection with E. coli 2h later. Pooled data from two independent 

experiments. (B) Percentage of initial weight in mice infected with a sublethal (100 pfu/mouse) 
dose of Influenza A PR/8 and treated with 1.75 µg/g body weight doxycycline (or PBS as a 

control) at days 4, 5, and 6 post-infection. Data is representative from two independent 
experiments. 
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To further explore the protective role of doxycycline in the lung, we used a 

model of Influenza infection, which causes lung damage and inflammation. To 

that end, mice were intranasally challenged with a sublethal dose (100 

pfu/mouse) of Influenza PR/8 and doxycycline was injected intraperitoneally at 

days 4, 5, and 6 post-infection, the period at which viral loads are higher and 

lung lesions become apparent9.  

We observed that doxycycline-treated mice lose body weight at a similar pace 

to the controls, but recover faster from day 5 post-infection onwards, with a 

significant difference in body weight at day 10 post-infection (Figure 5-1B). 

These results suggest that doxycycline might be triggering tissue repair 

mechanisms at the level of the lung, which result in faster recovery.  

 

 
Figure 5-2 - Bulk RNA-Seq in lungs of E. coli-infected mice. 
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(A) Volcano plot with differential expression of genes in E. coli-infected and non-infected, PBS-
treated mice from bulk RNA-Seq analysis in the lung at 12 h. Numbers indicate genes with log2 

fold change <-5 or >5 and p<0.05. (B) Top GO_BP annotation of genes up-regulated during 
infection (PBS-treated mice), log2 fold change>5; p<0.05. 

 

5.4.2 Doxycycline reprograms lung basal cells 
 

To further investigate possible lung-specific mechanisms leading to epithelial 

repair, we performed bulk RNA-Seq in mouse lung 12h after infection with E. 

coli and intraperitoneal injection of doxycycline, and compared with non-infected 

and PBS-treated controls. As expected, a high number of genes were found up-

regulated upon infection (Figure 5-2A), mostly related to an acute inflammatory 

response (Figure 5-2B). 

 

Doxycycline treatment did not change the expression of the majority of these 

genes, but instead resulted in the strongly reduced expression of a group of 

genes in both infected and non-infected groups (Figure 5-3A, 5-3B), suggesting 

that drug-induced changes are independent of the infection. Functional 

clustering analysis12,13 in non-infected, doxycycline-treated mice showed a 

remarkable similarity in the function of down-regulated genes, with 60% of the 

genes clustering in pathways related to keratinization and epithelium 

differentiation (Figure 5-3C, 5-3D).  

In particular, the basal cell markers Krt6a and Krt6b are severely down-

regulated (Figure 5-3D), suggesting that doxycycline might be driving 

differentiation of lung progenitor cells14, leading to a more effective repair of the 

lung epithelium. 
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Figure 5-3 - Doxycycline reprograms lung basal cells.  

(A) Volcano plots of doxycycline versus PBS-treated mice in the absence or presence of 
infection. Numbers indicate genes with log2 fold change <-5 or >5 and p<0.05. (B) Scatter plot 
of genes affected by doxycycline treatment in infected versus non-infected groups. Yellow dots 

indicate genes differentially expressed in infected mice (p<0.05); blue dots indicate genes 
differentially expressed in non-infected mice (p<0.05); green dots indicate genes differentially 

expressed in both conditions (p<0.05); gray dots indicate non-statistically significant genes 
(p≥0.05). (C) Top GO_BP annotation of genes down-regulated with doxycycline treatment (non-

infected mice), log2 fold change<-5; p<0.05. (D) Heat maps of genes affected by doxycycline 
treatment in non-infected mice (log2 fold change <-5; p<0.05), after clustering with DAVID 

‘Gene Functional Classification’. 
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doxycycline-treated mice. We observed reduced Krt6a and Krt6b expression in 

the trachea at 12h, but not 24h after drug treatment (Figure 5-4A).  

 

 
Figure 5-4 - Basal cells in doxycycline-treated mouse lung. 

Expression of basal and secretory cell markers by qPCR in mouse trachea (A) and lung (B) at the 
indicated time-points after doxycycline administration. Data represent mean±SD of 3-6 mice 

assayed in duplicate. 
  

In the lung, however, mRNA levels of these genes were below detection limit in 

all analyzed samples (Figure 5-4B). We also measured mRNA levels of the club 

cell markers Scgb1a1 and Scgb3a2 and found slightly increased expression in 

the trachea but not in the lung (Figure 5-4A, B).  

 

Immunofluorescence analysis of whole-lung sections revealed abundant KRT6a 

expression in the upper respiratory tract, most notably in the trachea and 

bronchi (Figure 5-5A). Consistent with mRNA levels (Figure 5-4), KRT6a+ cells 

were rare in the lower respiratory tract, showing only discrete clusters in the 

distal areas of lung parenchyma (Figure 5-5A). Abundance and distribution of 

KRT6a+ cells was not significantly altered within 48h of doxycycline treatment 

(Figure 5-5B, C). 
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Figure 5-5 Immunofluorescence of KRT6+ basal cells in mouse lung 

Longitudinal sections of lung and trachea stained for KRT6a in mice treated with vehicle (A) or 
doxycycline (B, C). Right panels show KRT6 staining and left panels show the merge between 

KRT6 and nuclear counterstaining (DAPI). Scale bar = 500 µm. 
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Finally, we used mice in which the human diphtheria toxin receptor was 

introduced into the Krt6a locus to specifically ablate KRT6+ cells7. Four days 

after intra-tracheal administration of diphtheria toxin, mice were infected with E. 

coli and treated with doxycycline. Preliminary results show that KRT6-depleted 

mice still present increased survival when treated with doxycycline (Figure 5-6). 

 

 
Figure 5- 6 Effect of KRT6 depletion in sepsis 

Survival of KRT6a-depleted mice upon infection with E. coli and treatment with doxycycline. 
Krt6a-DTR mice were treated with 12 ng/g diphtheria toxin by intra-tracheal administration 4 

days before infection. Data represents a single experiment 
 

Taken together, our results show that doxycycline induces changes in cell 

populations in the lung. While this suggests an increased potential for 

reprogramming lung architecture, basal cells are the unlikely single target of the 

drug. Therefore, enhanced lung repair capacity induced by doxycycline likely 

depends on the combination of its effect on multiple cell lineages, rather than 

basal cells alone. 
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Recovery from lung injury is essential in sepsis and other infectious conditions, 

and remains poorly understood. Inspired by the protective effect of doxycycline 

in sepsis, we began this study by addressing putative lung-specific mechanisms 

of action of this drug. Indeed, a single intra-tracheal administration of 

doxycycline is sufficient to increase survival to infection, although systemic 

effects derived from absorption of the drug from alveolar capillaries cannot be 

ruled out. 

These tissue-specific effects were then confirmed in an unbiased transcriptional 

approach, which revealed that doxycycline treatment results in a dramatically 

different signature in the lung compared to the liver (Chapter 4). Doxycycline 

treatment has no effect on lung inflammatory and resolving programs during 

infection. Instead, we found surprising changes in lung cell populations, which 

are independent of infection. In particular, we noticed a down-regulation of 

genes of the late cornified envelope (Lce) and keratin (Krt) families, both of 

which are associated with peptide cross-linking in the epithelium and 

keratinocyte differentiation.  

Interestingly, there is abundant evidence in the literature showing that cell 

differentiation programs are highly influenced by mitochondrial function15,16. In 

the intestine, activation of the UPRmt is associated with loss of cell stemness 

and paracrine secretion of WNT17. Specifically in the lung, mitochondrial ROS 

have been associated with degradation of keratin filaments, although the 

consequences for tissue function and structure have not been addressed18. In 

the hematopoietic compartment, a regulatory branch of UPRmt dependent on 

SIRT7 has been found to determine stem cell aging and differentiation19. 

Remarkably, doxycycline has been reported to increase hematopoietic stem cell 

survival and self-renewal, through mechanisms still not completely 

understood20. Given the previously discussed effect of doxycycline in 

mitochondrial function (Chapter 3), it is tempting to speculate that the observed 

drug-induced changes in lung cell populations are mediated by the 

mitochondria, although a specific link between the two has not been 

investigated in this study. 
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Following the RNA-Seq results, we focused specifically on basal cells, a 

population of stem cells of the respiratory tract. Our analysis of mRNA and 

protein levels indicates that in steady state conditions basal cells are most 

abundant in the upper respiratory tract, in accordance with previous studies8,9. 

In the trachea, down-regulation of Krt6 mRNA levels upon doxycycline 

treatment is accompanied by increased expression of secretory (club) cell 

markers21, indicating a drug-induced reprogramming which may help 

maintaining the epithelial architecture and function under stress conditions, such 

as infection. In distal areas of the lung, the picture is much less clear and was 

complicated by low levels of expression of basal cell markers and high 

heterogeneity between mice. While KRT6+ cells have been deemed essential 

for alveolar regeneration upon infection7, this process is still poorly understood 

and may involve a number of different progenitor lineages22. Examples include 

alveolar progenitor cells expressing integrin receptors23, or the recently 

identified Wnt-secreting type II alveolar cells24. 

Moreover, the observed drug-induced changes in gene expression seem to be 

transient, and are dampened or absent at 24h after drug treatment. While basal 

cells are widely known to differentiate into other cell types, is has also been 

reported that mature cells are able to de-differentiate and acquire stem cell 

properties under stress conditions25. This may partly explain why doxycycline-

treated mice show reduced levels of Krt6 at 12h but not at 24h. 

Finally, preliminary results obtained with depletion of KRT6+ cells suggest that 

these cells are dispensable for the protective effect of doxycycline in sepsis. 

While these results need further validation, namely with respect to the efficiency 

of cell depletion, they help to support the notion of intricate spatial and temporal 

patterns of tissue remodeling involving multiple cell populations. These should 

be investigated in more detail, for example by resorting to lineage tracing 

methods, single-cell transcriptomics, or ex-vivo cultures of specific cell lineages. 
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In addition to models of sepsis, we employed a lung-specific viral infection in 

this study. Influenza has been widely used as a model in which acute lung injury 

is followed by active proliferation of stem cells to repopulate depleted niches 

and restore tissue function7,9. Here, we used body weight as an indirect 

measure of recovery from infection and found that doxycycline treatment 

improves infection outcome. Further studies should be conducted – in particular 

the analysis of lung pathology at different time-points of infection – to better 

understand the role of doxycycline in stem cell reprogramming and lung 

regeneration. The influenza model might actually be more advantageous to 

achieve these goals in future studies when compared to sepsis models, as it 

specifically relies on lung damage. Given the broad range of effects of 

doxycycline in host physiology, as discussed in previous chapters, a lung-

specific infection model would facilitate the study of tissue-specific mechanisms 

and avoid confounding factors. 
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All living organisms have evolved mechanisms to detect external insults and 

correct deviations in homeostasis. The activation of stress responses has a 

multifaceted impact on organismal function, integrating immunity, nutrition, and 

behavior. Some of the most elegant examples of this crosstalk have emerged 

from work in nematodes. For example, inactivation of C. elegans core cellular 

genes involved in translation, protein turnover, or respiration have been shown 

to induce aversion behavior towards non-pathogenic bacteria and induction of 

detoxification and immunity programs1. Inspired by this framework of cellular 

surveillance-activated detoxification and defenses (cSADDs)1, this thesis 

explored the idea of cytoprotective stress responses in the context of complex 

host-microbe interactions. We started by gathering evidence from the literature 

that pathogen-induced perturbations in homeostasis can be used by the host to 

detect pathogen invasion and kick-start the appropriate immune responses. 

Then, we used sepsis models in mice as an example of extreme deviation in 

homeostasis to understand whether chemically induced cellular stress 

responses, in particular those originated at the mitochondria, could be used to 

promote compensatory effects that increase survival.  

 

 

For many decades, defects in mitochondrial function were unequivocally 

regarded as detrimental for health, as numerous mutations in genes coding for 

the mitochondrial proteome are associated with embryonic lethality or severe 

illness2. Moreover, some of the most potent known poisons, such as cyanide 

and rotenone, act by inhibiting the ETC activity. Only at the beginning of the 21st 

century this idea was challenged by the surprising observation that mild defects 

in the ETC activity prolong lifespan in nematodes. Exposure of C. elegans 

larvae to RNA interference (RNAi) targeting nuclear encoded subunits of all 

ETC complexes resulted in a decrease in body size and ATP production, 

accompanied by increased lifespan3. An independent RNAi screen confirmed 

the association of attenuated mitochondrial function with increased longevity, 
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while uncoupling this effect from ROS production4. A deeper mechanistic insight 

was brought when knockdown of the complex IV subunit cco-1 was found to 

induce expression of HSP605. This induction of UPRmt is required to sustain the 

effect of cco-1 RNAi in longevity, thus establishing a causal link between 

mitochondrial stress responses and longevity6. Surprisingly, tissue-specific ETC 

defects can be communicated to distal cells to induce cell-non-autonomous 

protective responses mediated by Wnt signaling6,7. 

 

One important aspect that regulates beneficial mitochondrial stress responses is 

the magnitude and duration of stress. Early studies with RNAi targeting ETC 

function in nematodes demonstrated that lifespan extension is only achieved 

when the perturbation is triggered in larval stages and not in adults3,8. Moreover, 

the correlation between the levels of depletion of ETC components and 

longevity is not linear – for certain genes, high levels of depletion seriously 

compromise mitochondrial function and have a negative impact in longevity8. 

This is in line with the long recognized concept of ‘mitochondrial threshold 

effect’, according to which mitochondria are able to tolerate a certain limit of 

respiratory deficiency before cell viability is compromised9. In fact, mitochondria 

have a remarkable capacity to withstand stress, as shown by the fact that in rat 

muscle mitochondria treated with cyanide, 75% inhibition of complex IV activity 

resulted in only 20% decrease in the respiratory capacity10. This ‘safe zone’ of 

mitochondrial dysfunction can thus be harnessed to trigger protective 

phenotypes without risking organismal fitness – an idea that aligns with the 

previously discussed concept of hormesis11.  

 

In flies, muscle-specific ETC inhibition activates UPRmt and increases lifespan 

though a mechanism that involves systemic insulin signaling – thus highlighting 

the cell-non-autonomous effects of mitochondrial stress12. In worms and mice, 

defects in mitochondrial translation induced by knockdown of the mitochondrial 

ribosomal protein S5 (Mrps5) result in mitonuclear protein imbalance that 

triggers UPRmt and prolongs lifespan13. Notably, treatment of worms with 
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doxycycline and chloramphenicol, two drugs that bind to the mitoribosome and 

inhibit protein synthesis, has a similar beneficial effect13. Other long-lived mouse 

models of mitochondrial dysfunction include the deletion of Surf1 (a complex IV 

assembly protein)14, as well as mice heterozygous for Mclk-1 (an essential 

enzyme for ubiquinone biosynthesis)15. 

 

The field of protective mitochondrial stress responses has been gradually 

expanding beyond longevity and providing evidence that these adaptive 

programs can be beneficial in a number of conditions. One paradigmatic 

example is how mitochondrial stress regulates immune responses. In C. 

elegans, the UPRmt regulator ATFS-1 regulates not only the expression of 

stress responsive genes but also innate immune genes16. Exposure of worms to 

pathogens and bacterial toxins activates UPRmt together with detoxification and 

immune gene expression, which suggests that mitochondria play a role in 

surveying the environment and integrating different defense programs17–19. In 

mammals, mild defects in mitochondrial DNA were found to trigger an antiviral 

response based on the expression of interferon-responsive genes20. 

 

A growing body of evidence is highlighting the importance of mild mitochondrial 

stress in improving metabolic dysfunctions. Mice with liver and muscle-specific 

knockout of the mitochondrial flavoprotein AIF2 present disturbed ETC function 

and concomitant improvement in insulin sensitivity in a model of type 2 

diabetes21. Similarly, mitochondrial proteome imbalance in brown adipose tissue 

(BAT) confers protection against diet-induced obesity in mice22. In a mouse 

model of fatty liver disease, UPRmt induced by supplementation of a NAD+ 

precursor increases liver β-oxidation and improves disease outcomes23. 

Another curious example of whole-body beneficial effects of mitochondrial 

stress was found in mice carrying a muscle-specific deletion of Crif1, a 

mitoribosomal protein essential for the correct assembly of ETC complexes. 

These mice are protected against diet-induced obesity and present systemic 

metabolic benefits mediated by GDF1524.  
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Together with GDF15, other mitokines – molecules secreted from cells 

undergoing mitochondrial stress that are released into circulation and promote 

distal beneficial effects – have been recently identified. These include FGF2125 

and mitochondrial-encoded peptides such as MOTS-c26, both of which have 

been associated with anti-obesity effects.  

 

Our study opens new perspectives way beyond the scope of sepsis, spanning 

to areas of research related to inflammation, metabolism, and stress responses. 

Since the early 1990’s, the link between metabolic alterations – namely insulin 

signaling27, mitochondrial respiration3, or mTORC activity28 – and longevity 

generated vast interest. To this day, the search of an ‘anti-aging pill’ has been 

centered in drugs that link metabolic reprogramming with cytoprotection, such 

as metformin or rapamycin29. 

Likewise, research in obesity has been gathering increasing interest, particularly 

in what relates to the crosstalk of inflammation and metabolism30. Our findings 

largely overlap with the previously proposed idea that ETC inhibition results in 

metabolic benefits. Furthermore, we propose additional mechanisms of tissue 

protection, such as changes in glucocorticoid response and tissue regeneration 

mechanisms, which are likely to play a role in many inflammatory conditions. 

A more complete understanding of mechanisms regulating whole-body 

homeostasis is highly desirable as it paves the way for preventive and/or 

therapeutic strategies in conditions characterized by inflammation, metabolic 

dysregulation, and loss of organ function, which afflict modern societies with 

increasing social and economic impact. 

 

 

Recovery from infection requires the combination of resistance mechanisms – 

which have been extensively studied for decades – and disease tolerance – for 

which the molecular mechanisms have only recently began to be addressed31. 

The need for strategies that limit tissue damage has become particularly evident 

in the case of sepsis, a heterogeneous and multifactorial syndrome for which no 



	182 

specific therapies have been found so far. In particular, the role of metabolic 

regulation has been increasingly appreciated in sepsis pathophysiology and 

therapeutics32. Following a very recent stream of articles linking metabolic 

reprogramming and disease tolerance in sepsis33–35, our work uncovers several 

drugs which, by perturbing electron transport chain activity, promote metabolic 

changes and limit tissue damage during infection. Unexpectedly, treatment with 

doxycycline has broader effects on mouse physiology, namely changes in 

glucocorticoid signaling in the liver and epithelial cell reprogramming in the lung. 

Our work highlights complex, tissue-specific mechanisms that link mitochondrial 

stress responses and disease tolerance, and encourages more detailed 

mechanistic studies. Of particular interest is the fact the local perturbations in 

mitochondrial function, such as lung-specific administration of doxycycline, or 

liver-specific CRIF1 depletion result in systemic benefits and increased survival. 

While the mechanisms of inter-organ communication were not addressed in this 

work, these results are reminiscent of previously reported cell-non-autonomous 

effects of mitochondrial stress in flies and nematodes6,12. 

 

Extensive characterization of the action of doxycycline in mouse liver and lung 

allowed for the identification of three major axes that contribute to survival to 

severe infection: metabolic reprogramming, glucocorticoid signaling, and lung 

regeneration. However, the major outstanding question is which of these effects 

are mechanistically linked to perturbations in mitochondrial function. In future 

studies, it would be advantageous to have a more complete picture of these 

pathways in: 1) phenformin or chloramphenicol-treated mice, as well as CRIF1-

depleted mice, to better understand which characteristics are mechanistically 

linked to ETC perturbations, and which are induced by side effects of 

doxycycline; and 2) other target organs (brain, adipose tissue, and adrenal 

glands are particularly attractive).  
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Changes in mitochondrial function have dramatic effects in cell fate and tissue 

function. In the next sections, I will speculate on how doxycycline-induced 

mitochondrial stress can be linked to each of the observed phenotypes. 

 

Metabolism and bioenergetics. We have uncovered one important aspect of 

sepsis pathophysiology related to impaired FAO and accumulation of lipid 

species in the liver, which are partly corrected by doxycycline. The effect of 

doxycycline is advantageous from a bioenergetics viewpoint. Most likely, 

perturbation of ETC activity triggers a cellular adaptation that optimizes fuel 

utilization, in this case by increasing lipid metabolism. Our results indicate that 

the end products of β-oxidation are then diverted to ketone body synthesis, 

which can be used to generate ATP in several organs, most importantly the 

brain, in accordance with previous studies34,35. However, the mechanistic links 

between ETC inhibition and increased FAO are still missing. In future studies, 

this question should be approached in a tissue-specific manner, to avoid the 

confounding effect of inter-organ communication. The use of primary hepatocyte 

cultures, for example, would allow for extracellular flux analysis, carbon tracing, 

and ATP measurements upon ETC inhibition. This would provide a more 

complete idea of the liver-specific energetic adaptations resulting from 

perturbations in the ETC. 

 

Metabolite signaling. Beyond bioenergetics, lipid species play a number of 

signaling and biosynthetic roles in the mitochondria36. Examples include the role 

of cardiolipin in mitophagy37, ceramide in stress responses and apoptosis38,39, or 

long chain fatty acids in ADP/ATP trafficking40. In this thesis, we have shown 

that hepatic mitochondrial transport and oxidation of fatty acids are impaired 

during sepsis and proved that β-oxidation is essential for survival. However, 

supplementation with medium chain fatty acids failed to produce any protective 

phenotype. This result underscores the need for a fully functional lipid import, 

trafficking, and metabolic machinery to maintain cellular viability. 

Supplementation with a single lipid species, even if it is enough to support 
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energy generation through β-oxidation, is likely insufficient to maintain the 

complex network of lipid-mediated cellular functions. Therefore, our results 

encourage a more careful examination of lipid contents in mitochondria during 

infection, and a complete understanding of the pathways affected. Having this 

information, we can then design more rational approaches for nutritional support 

or pharmacological targeting of the affected transport and signaling pathways.  

 

Glucocorticoid signaling. Mitochondrial function and glucocorticoids are tightly 

connected. In fact, the first step in the conversion of cholesterol to steroid 

hormones through the action of cytochrome P450scc takes place at the IMM41. 

Interestingly, cholesterol trafficking to the mitochondria is dependent on the 

steroidogenic acute regulator protein (StAR), whose levels are regulated by 

mitochondrial proteases that respond to mitochondrial stress42. This raises the 

intriguing possibility that perturbations in mitochondrial function, namely 

doxycycline treatment, may indirectly regulate steroid synthesis and transport – 

a possibility that should be more carefully addressed by analyzing the effect of 

doxycycline in steroidogenic tissues, such as the adrenal glands. 

 

Lung regeneration. Remodeling of lung architecture is a complex and dynamic 

process that relies on multiple cell lineages, some of which are rare and poorly 

characterized43,44. Mitochondrial function has been associated with changes in 

cell fate and stem cell function45, raising the possibility that changes in 

mitochondrial bioenergetics and signaling might trigger differentiation of lung 

stem cells. In fact, doxycycline has been proposed to induce self-renewal of 

pluripotent stem cells46. A more detailed metabolic and transcriptional 

characterization of different lung cell lineages would provide more evidence on 

the exact trigger for doxycycline-induced lung regeneration. 

 

In general, future studies trying to pursue more detailed molecular mechanisms 

of disease tolerance will be challenged by the high inter-individual variability 

associated with mouse models of sepsis, as well as the pleiotropic effects of 
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drugs. While the latter can be partially solved by the use of CRIF1-depleted 

mice as a genetic tool to induce tissue-specific perturbations in mitochondrial 

function, the former is an intrinsic challenge of this topic of research. As 

suggested above, many of the tissue-specific mechanisms can be addressed by 

the use of cell cultures, organoids, or purified cell lineages. These studies may 

provide more detailed molecular mechanisms, which can later be confirmed in 

vivo. It is important to keep in mind, however, that sepsis is a multi-organ, multi-

factorial process in which a change in a given cell population can have 

unpredictable effects on organismal physiology.  

 

 

Another major question that emerges from this study is the clinical applicability 

of the treatments described here. Therapeutic strategies that promote disease 

tolerance present a valuable complement to the currently used antimicrobial 

therapies and organ support measures in critically ill patients47. However, the 

success of a drug in pre-clinical models of sepsis is only occasionally replicated 

in the clinical setting. Mouse models of sepsis fail to completely reproduce the 

pathophysiology of human sepsis, which is often complicated by co-morbidities 

and secondary infections48,49. In addition, patient treatment is only possible after 

the onset of severe symptoms, a phase at which systemic inflammation and 

metabolic dysfunction are difficult to revert. In contrast, the experimental setup 

used in this study involves administration of drugs at the time of infection, 

allowing the protective effects to occur from very early stages of the disease. 

Therefore, future attempts to translate mitochondrial-targeting drugs into the 

clinic need to address and succeed in a series of experimental setups of 

increasing complexity. From the tested drugs, doxycycline is best positioned for 

these studies, as it is routinely used in clinical practice and well tolerated, 

including in sepsis patients50. Future studies in mice should focus on different 

mouse strains, or even outbred mice, and a more diverse panel of bacterial 

species (the use of polymicrobial models of infection would be preferred, 

although it would be hard to control for the antibiotic effect of the drug). Finally, 
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encouraging results in mouse models of sepsis should be validated in larger 

mammals, for example pigs, in which the pathophysiology of sepsis more 

closely resembles human patients. 

 

 

As discussed above, cellular surveillance systems are key for restoring 

homeostasis under stress conditions. From the organelle-specific stress 

responses initially addressed in the work, mitochondria rapidly emerged as the 

most promising targets. This is hardly surprising in light of the multifaceted roles 

of mitochondria in cellular energetics, signaling and cell fate decision. Moreover, 

given their endosymbiont origin, mitochondria have evolved complex 

communication strategies with other cellular structures. More surprisingly, 

mitochondria are emerging as central players in host-microbe interactions, as 

they can rapidly perceive and respond to pathogen attack16,39. For example, 

sensing of live, but not heat-killed bacteria by macrophages has been shown to 

reduce complex I assembly and activity, while increasing complex II activity51. 

Conversely, some defense programs are orchestrated by the mitochondria in 

response to infection, such as the recently described mitochondrial-derived 

vesicles carrying antimicrobial compounds52. The fact that the perturbations in 

mitochondrial function described in this thesis show a protective effect against 

bacterial infections, suggests that still-unknown crosstalks between bacteria and 

mitochondria might be favoring host fitness specifically in this context. As tissue 

damage is a universal consequence of infection, it is possible that sensing of 

homeostasis disruption resulting from infection could lead not only to the 

initiation of resistance immune mechanisms by the host, but also to tissue repair 

programs that inevitably will result both from the presence of the pathogen and 

from the collateral damage from the effector resistance mechanisms. In this 

context, a mild stress imposed by doxycycline may mimic an active infection 

and trigger a program to re-establish homeostasis based on tissue repair and 

metabolic reprogramming. 
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The natural implication of this hypothesis is that an intact mitochondrial structure 

and function are essential for pathogen elimination and recovery from infection. 

In fact, a compromised activity of ETC complexes has been described as a 

hallmark of sepsis pathology across several models53. Additionally, sepsis 

patients with increased mitochondrial complex IV activity have been associated 

with higher chances of survival54. To reconcile these findings with the 

observations in this thesis, one must note that protective perturbations in ETC 

need to be mild and transient. These perturbations should not severely 

compromise the overall capacity of generating ATP, and should allow for the 

necessary compensatory responses to take place before infection-associated 

mitochondrial dysfunction appears.   

Around 500 years ago, Paracelsus stated that “all things are poison, and 

nothing is without poison; only the dose permits something not to be 

poisonous”. The need for a right balance between stress and homeostasis 

remains a challenge, as became apparent throughout this thesis. A better 

understanding of the interactions between host physiology and the multiple 

surrounding stimuli will certainly help us in dealing with modern challenges of 

biology and medicine. 
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REAGENT or 
RESOURCE SOURCE IDENTIFIER 

Antibodies 
beta Actin antibody 
[SP124] 

Abcam Cat# ab115777, RRID:AB_10899528 

alpha/beta-Tubulin 
Antibody 

Cell Signaling 
Technology 

Cat# 2148, RRID:AB_2288042 

Cre Recombinase 
(D7L7L) XP® Rabbit 
mAb antibody 

Cell Signaling 
Technology 

Cat# 15036, RRID:AB_2798694 

Anti-rabbit IgG, HRP-
linked Antibody 

Cell Signaling 
Technology 

Cat# 7074, RRID:AB_2099233 

Anti-CRIF1 antibody Abcam Cat# ab226244, RRID:AB_2801538 
Recombinant Anti-
MTCO1 antibody 
[EPR19628] 

Abcam Cat# ab203912, RRID:AB_2801537 

Recombinant Anti-
ATP5A antibody 
[EPR13030(B)] 

Abcam Cat# ab176569, RRID:AB_2801536 

Glucocorticoid 
Receptor (D6H2L) 
XP® Rabbit mAb 
antibody 

Cell Signaling 
Technology 

Cat# 12041, RRID:AB_2631286 

Phospho-
Glucocorticoid 
Receptor (Ser211) 
Antibody 

Cell Signaling 
Technology 

Cat# 4161, RRID:AB_2155797 

Phospho-
Glucocorticoid 
Receptor (Ser226) 
(D9D3V) Rabbit mAb 
antibody 

Cell Signaling 
Technology 

Cat# 97285, RRID:AB_2800276 

Cytokeratin 6A 
Monoclonal Antibody 
(LHK6B) 

ThermoFisher 
Scientific 

Cat# MA5-14127 

Goat F(ab) polyclonal 
Secondary Antibody to 
Mouse IgG - H&L 

Abcam  Cat# ab6668 

Andy Fluor 647 Goat 
Anti-Mouse IgG (H+L) 
Antibody 

Tebu-bio Cat# L125A 

Bacterial and Virus Strains 
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Escherichia coli 
MG1655 TetR CamR 

This thesis  

Influenza A/Puerto 
Rico/8/34 (H1N1) 

Maria João 
Amorim (Instituto 
Gulbenkian de 
Ciência) 

Wit, E. de et al. Efficient generation 
and growth of influenza virus 
A/PR/8/34 from eight cDNA 
fragments. Virus Res. 103, 155–161 
(2004). 

AAV8-TBG-iCre Vector Biolabs Cat# VB1724 
AAV8-TBG-eGFP Vector Biolabs Cat# VB1743 
AAV8-GFP-U6-m-
CPT2-shRNA 

Vector Biolabs Cat # shAAV-256065 

AAV8-GFP-U6-scrmb-
shRNA 

Vector Biolabs Cat # 77777 

AAV8-TBG-m-Cpt1a  Vector Biolabs Cat # AAV-250982 
AAV8-TBG-m-CPT2 Vector Biolabs Cat # AAV-256065 
AAV8-TBG-m-
SLC25A20 

Vector Biolabs Cat # AAV-272202 

Chemicals, Peptides, and Recombinant Proteins 
Doxycycline hyclate  Sigma-Aldrich Cat# D9891 
Phenformin 
Hydrochloride 

Sigma-Aldrich Cat# P7045 

Chloramphenicol Sigma-Aldrich Cat# C0378 
Metformin 
hydrochloride 

Sigma-Aldrich Cat# PHR1084 

Menadione sodium 
bisulfite 

Sigma-Aldrich Cat# M5750 

Trifluoperazine 
dihydrochloride 

Sigma-Aldrich Cat# T8516 

Bortezomib Tebu-bio Cat# 21910-2120 
Nicotinamide adenine 
dinucleotide 

Cayman Cat# 17118 

Ubiquinone Sigma-Aldrich Cat# C7956 
Bovine Serum Albumin 
(fatty acid free) 

Sigma-Aldrich Cat# A6003 

Succinic acid Sigma-Aldrich Cat# S7501 
Decylubiquinone Sigma-Aldrich Cat# D7911 
Malonic acid Sigma-Aldrich Cat# M1296 
Rotenone Santa Cruz 

Biotechnology 
Cat# sc-203242 

Antimycin A Sigma-Aldrich Cat# A8674 
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5,5′-Dithiobis(2-
nitrobenzoic acid) 
(DTNB) 

Sigma-Aldrich Cat# D218200 

Acetyl coenzyme A 
trilithium salt 

Santa Cruz 
Biotechnology 

Cat# sc-214465B 

Potassium cyanide Sigma-Aldrich Cat# 60178 
β-Nicotinamide 
adenine dinucleotide, 
reduced dipotassium 
salt 

Sigma-Aldrich Cat# N4505 

Dichloroindophenol 
sodium salt hydrate 

Sigma-Aldrich Cat# D1878 

Cytochrome c from 
bovine heart  

Sigma-Aldrich Cat# 30398 

Sodium hydrosulfite Sigma-Aldrich Cat#  71699 
Potassium 
borohydride  

Sigma-Aldrich Cat# 438472 

Oxaloacetic acid Sigma-Aldrich Cat# O4126 
SuperScript® II 
Reverse 
Transcriptase  

Invitrogen Cat# 18064014 

Oligo(dT)12-18 Primer Invitrogen Cat# 18418012 
RNaseOUT™ 
Recombinant 
Ribonuclease Inhibitor 

Invitrogen Cat# 10777019 

iTaq Universal SYBR  
Green Supermix 

Bio-rad Cat# 1725125 

RNeasy Mini Kit Qiagen Cat# 50974106 
RNase-Free DNase 
Set 

Qiagen Cat# 50979254 

cOmplete, Mini, 
EDTA-free 

Roche Cat# 11836170001 

PHOSSTOP Roche Cat# 4906837001 
(+)-Etomoxir sodium 
salt hydrate  

Sigma-Aldrich Cat# E1905 

CP-868388  Sigma-Aldrich Cat# PZ0149 
Mifepristone Sigma-Aldrich Cat# M8046 
Dexamethasone Merck Sharp & 

Dohme 
Oradexon 5 mg/mL 

Octnoic acid Sigma-Aldrich Cat# C2875 
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Trizol reagent Ambion Cat# 15596018 
Diphtheria Toxin, 
Unnicked,  
Corynebacterium 
diphtheriae 

Calbiochem Cat# 322326 

Critical Commercial Assays 
Mouse TNF-α ELISA 
MAX™ Standard  

BioLegend Cat# 430902 

Mouse IL-6 ELISA 
MAX™ Standard  

BioLegend Cat# 431302 

QuantiChrom 
Creatinine  

Bioassay Systems Cat# DICT 

QuantiChrom Lactate 
Dehydrogenase 

Bioassay Systems Cat# D2DH 

EnzyChrom Creatine 
Kinase  

Bioassay Systems Cat# ECPK 

EnzyChrom Alanine 
Transaminase 

Bioassay Systems Cat# EALT 

EnzyChrom Aspartate 
Transaminase   

Bioassay Systems Cat# EASTR 

Mouse IL-10 ELISA 
MAX™ Standard  

BioLegend Cat# 431411 

Mouse IL-12/IL-23 
(p40) ELISA MAX™ 
Standard 

BioLegend Cat# 431601 

Experimental Models: Cell Lines 
Bone marrow-derived 
macrophages 

This paper N/A 

Hep G2 ATCC Cat# HB-8065 
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N/A Fw: AACTTTGGCATTGTGGAAGG 
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Mouse Cpt1a qPCR 
primers 

N/A Fw: CTCCGCCTGAGCCATGAAG 
Rv: CACCAGTGATGATGCCATTCT 

Mouse Cpt2 qPCR 
primers 
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TC 
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primers 
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