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Epidemiological studies showed that chronic caffeine intake decreased the risk of

type 2 diabetes. Previously, we described that chronic caffeine intake prevents and

reverses insulin resistance induced by hypercaloric diets and aging, in rats. Caffeine

has several cellular mechanisms of action, being the antagonism of adenosine receptors

the only attained with human coffee consumption. Here, we investigated the subtypes

of adenosine receptors involved on the effects of chronic caffeine intake on insulin

sensitivity and the mechanisms and sex differences behind this effect. Experiments were

performed in male and female Wistar rats fed either a chow or high-sucrose (HSu) diet

(35% of sucrose in drinking water) during 28 days, to induce insulin resistance. In the

last 15 days of diet the animals were submitted to DPCPX (A1 antagonist, 0.4 mg/kg),

SCH58261 (A2A antagonist, 0.5 mg/kg), or MRS1754 (A2B antagonist, 9.5 µg/kg)

administration. Insulin sensitivity, fasting glycaemia, blood pressure, catecholamines, and

fat depots were assessed. Expression of A1, A2A, A2B adenosine receptors and protein

involved in insulin signaling pathways were evaluated in the liver, skeletal muscle, and

visceral adipose tissue. UCP1 expression was measured in adipose tissue. Paradoxically,

SCH58261 and MRS1754 decreased insulin sensitivity in control animals, whereas they

both improved insulin response in HSu diet animals. DPCPX did not alter significantly

insulin sensitivity in control or HSu animals, but reversed the increase in total and visceral

fat induced by the HSu diet. In skeletal muscle, A1, A2A, and A2B adenosine receptor

expression were increased in HSu group, an effect that was restored by SCH58261

and MRS1754. In the liver, A1, A2A expression was increased in HSu group, while A2B

expression was decreased, being this last effect reversed by administration of MRS1754.

In adipose tissue, A1 and A2A block upregulated the expression of these receptors. A2

adenosine antagonists restored impaired insulin signaling in the skeletal muscle of HSu
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rats, but did not affect liver or adipose insulin signaling. Our results show that adenosine

receptors exert opposite effects on insulin sensitivity, in control and insulin resistant states

and strongly suggest that A2 adenosine receptors in the skeletal muscle are the majors

responsible for whole-body insulin sensitivity.

Keywords: adenosine, adenosine receptors, insulin resistance, insulin signaling, adipose tissue, skeletal muscle,

gender differences

INTRODUCTION

In the past decades the prevalence of lifestyle diseases associated
with metabolic disturbances like insulin resistance and obesity,
core features in type 2 diabetes, has increased. Prediabetes and
type 2 diabetes are characterized by defects in insulin secretion
and insulin resistance, which leads to a decrease in whole-body
glucose disposal (1). These diseases, seen as men’s illness for
decades, presently are more common in women than in men,
and obesity has a higher association to insulin-resistance related
risk factors in women than in men. Females tend to be more
obese than men (2) with more women being overweight or obese
after the age of 45 year, being this correlated with the higher
incidence of insulin resistance and type 2 diabetes in females (2).
Genetic effects and epigenetic mechanisms, nutritional factors,
and sedentary lifestyle affect risk and complications differentially
affect males and females and may be in the origin of sexes
differences regarding metabolic diseases (3). Therefore, the study
of the differential mechanisms on overall insulin sensitivity and
metabolism between sexes may contribute to fill the gap in the
current knowledge on sex-driven mechanisms, with a major
impact for personalized medicine and societal strategies.

Caffeine is the most widely behaviorally active substance
consumed in the world and when consumed chronically appears
to have minor negative consequences on human health (4).
Several epidemiological studies showed that chronic caffeine
intake decreases the risk of type 2 diabetes in men and women
(5–7). Additionally, our group described that chronic caffeine
intake prevents the development of insulin resistance in female
and male rats with prediabetes induced by the hypercaloric diets
(8) and reversed insulin resistance in aged rats (9).

Caffeine has several mechanisms of action at a cellular level,
however the only mechanism achieved with regular human
caffeine consumption is the antagonism of adenosine receptors
(4). Adenosine is a product of ATP catabolism, which can
be recycled to re-synthesize ATP itself and exerts its action
through four different G-protein coupled receptors, A1, A2A,
A2B, and A3 (10). This mediator is involved in key pathways
that regulate glucose homeostasis and insulin sensitivity, however
its role remains controversial. Adenosine has been described to
be associated with insulin sensitivity and glucose tolerance via
action on adenosine A1 receptors (11). In contrast, Figler et al.
(12) showed that adenosine through A2B adenosine receptors
was involved in insulin resistance and inhibited whole body
glucose disposal. In skeletal muscle, in vitro studies described an
inhibitory effect of adenosine on glucose utilization and glucose
transport induced by insulin (13–15), an effect that was shown to
be mediated by A1 adenosine receptors (16). In contrast, other
in vitro studies in skeletal muscle showed that adenosine has

a stimulatory effect of insulin-induced glucose transport via A1

adenosine receptors (17–19).
In isolated rat hepatocytes, activation of A1 adenosine

receptors triggers glycogenolysis, whereas the activation of
adenosine A2A receptors increased gluconeogenesis (20). In
contrast, other studies showed that the stimulation of adenosine
A2B receptors augments glycogenolysis and gluconeogenesis (21,
22). In adipose tissue, it is consensual that adenosine inhibits
lipolysis and stimulates lipogenesis through A1 adenosine
receptors (23–27). This is in agreement with the increase in
lipolysis, fat oxidation, and thermogenesis observed with caffeine
intake and which contribute to its protective role in type 2
diabetes (28–30).

There is accumulating evidences from animal and human
studies showing that central sympathetic overactivity plays
a pivotal role in the etiology and complications of insulin
resistance (31, 32). Activation of sympathetic nerves innervating
the liver produce a rapid and marked production of glucose
following a meal but promotes gluconeogenesis when fasted;
and adrenal medulla activation can also stimulate the release
of catecholamines to promote hepatic glucose production [for
a review see Conde et al. (33)]. Sympathetic nerves innervating
the skeletal muscle can promote glucose uptake independently
of insulin through activation of β-adrenergic receptors, an
effect counteracted by the neuronal stimulation of α-adrenergic
receptors in arterioles, which elicits vasoconstriction (33). Acute
caffeine has been shown to promote an increase in muscle
sympathetic nervous activity (34). However, chronic caffeine
administration has shown to normalize sympathetic activation
and the levels of circulating catecholamines in rats (8), evidencing
opposite roles for acute and chronic caffeine consumption.

Due to the contradictory findings regarding the role of
adenosine receptors and the beneficial role of chronic caffeine on
insulin sensitivity and glucose metabolism, herein, we explored
the effect of 15 days administration of DPCPX, SCH58261, and
MRS1754, an A1, A2A, and A2B adenosine receptor antagonists,
in a rodent model of insulin resistance. Additionally, we
investigated sex differences in the effects of these adenosine
receptor antagonists on insulin sensitivity and signaling in
insulin-sensitive tissues and on UCP1 expression in the visceral
adipose tissue.

MATERIALS AND METHODS

Animals and Experimental Procedures
Experiments were performed in Wistar rats (200–420 g) of
both sexes, aged 3 months obtained from the vivarium of the
NOVA Medical School|Faculdade de Ciências Médicas of the
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Universidade Nova de Lisboa, Lisboa, Portugal. Animals were
kept under temperature and humidity control (21 ± 1◦C; 55
± 10% humidity) and a regular light (08.00–20.00 h) and dark
(20.00–08.00 h) cycle, with food and water ad libitum. Animals
were assigned to two groups: the control group that fed a
standard diet (14.53% protein, 10% fat, 55.06% carbohydrates;
RM3, SDS - Special Diet Services, UK) and the high-sucrose diet-
fed (HSu) group, that fed the standard diet plus 35% (wt/vol.)
sucrose (PanReac, Madrid, Spain) in drinking water for 28 days,
representing a lean model of combined insulin resistance and
hypertension (35, 36). In the last 15 days of the diet the animals
were divided in 3 groups and submitted to the intraperitoneal
administration of DPCPX (A1 antagonist, 0.4 mg/kg; Sigma,
Madrid, Spain), SCH58261 (A2A antagonist, 0.5 mg/kg; Tocris
Bioscience, UK), or MRS1754 (A2B antagonist, 9.5 µg/kg;
Sigma, Madrid, Spain). All adenosine receptors antagonists were
soluble in dimethyl sulfoxide (DMSO), and therefore to take
into account the effects of DMSO on insulin sensitivity and
glucose metabolism, a group of control and HSu rats was also
submitted in the last 15 days of the diet to an intraperitoneal
administration of DMSO (Vehicle, dilution 1:3). All test groups
included males and females. Body weight, energy and liquid
intake were monitored two times per week. At the end of 28
days of diet, animals were tested for insulin sensitivity through an
insulin tolerance test (ITT) (8, 36). After the ITT,meaning 15min
post insulin administration, a heart puncture was performed
to collect blood, the fat depots were collected and weighted,
as well as the insulin sensitive tissues, the liver and skeletal
muscle. The tissues were placed on liquid nitrogen and saved at
−80◦C, until posterior use. Laboratory care was in accordance
with the European Union Directive for Protection of Vertebrates
Used for Experimental and Other Scientific Ends (2010/63/ EU).
Experimental protocols were approved by the NOVA Medical
School|Faculdade de Ciências Médicas Ethics Committee.

Measurement of Insulin Sensitivity
The insulin sensitivity was evaluated by the ITT in animals under
sodium pentobarbital (60 mg/kg, i.p.) anesthesia as previously
described (8, 36). The ITT consists in the administration of
an intravenous insulin (Humulin, 100 IU/ml, Lilly, Lisboa,
Portugal) bolus of 0.1 U/kg body weight in the tail vein after
an overnight fast, followed by measuring the decline in plasma
glucose concentration over 15min. The constant rate for glucose
disappearance (KITT) was calculated using the formula 0.693/t1/2.
Glucose half-time (t1/2) was calculated from the slope of the
least square analysis of plasma glucose concentrations during
the linear decay phase (8, 37). Blood samples were collected
by tail snip tecnique and glucose levels were measured with
a glucometer (Precision Xtra Meter, Abbott Diabetes Care,
Portugal) and test strips (Abbott Diabetes Care, Portugal).

Measurement of Plasma Catecholamines
Levels and Adenal Medulla Catecholamine
Content
To quantify plasma catecholamines, 500 µl of plasma samples
were purified and catecholamines were extracted using 30mg

OASIS Hlb Wat cartridges (Waters, Milford, MA, USA) and
eluted in 500 µl of mobile phase as previously described
(38). For quantification of catecholamine content in adrenal
medulla, the organs previously frozen were homogenized in 0.6N
perchloric acid, centrifuged at 13,000 g at 4◦C and collected
the supernatant. One hundred microliters of the samples were
directly injected into a high-performance liquid chromatography
system composed of a Waters 600 controller pump, a Waters
C18 (particle size 4µm) column, a Waters 717 plus autosampler,
a Bioanalytical Systems LC-4A electrochemical detector (set at
a holding potential of 0.65mV and a sensitivity of 1 nA). An
isocratic elution was used: the mobile phase consisted of a
solution of Na2HP4 (25mM) with 6% of methanol (pH 3.55),
running at a flux of 1 ml/min. The signal coming out of the
detector was fed to an analog to digital converter controlled by
Peak Sample Chromatography System Software (Buck Scientific,
East Norwalk, CT, USA). Identification and quantification of
catecholamines were done against external standards.

Western Blot Analysis of Adenosine A1,
A2A, and A2B Receptors, Insulin Receptor
(IR), Protein Kinase B (Akt), Glucose
Transporter Type 4 (GLUT4) or 2 (GLUT2),
and Uncoupling Protein 1 (UCP1) in
Skeletal Muscle, Liver, and Visceral
Adipose Tissue
Skeletal muscle (50mg), liver (50mg), and visceral adipose tissue
(100mg) were homogenized in Zurich medium containing a
cocktail of protease inhibitors (39). Samples were centrifuged
(Eppendorf, Madrid, Spain) at 13,000 g for 20min and the
supernatant was collected and frozen at −80◦C until further
use. The evaluation of adenosine receptors A1, A2A, and
A2B, UCP1, GLUT4, GLUT2, insulin receptor, insulin receptor
phosphorylated at Tyr1361, Akt, and Akt phosphorylated at
Ser473 was performed according to Sacramento et al. (39)
and Matafome et al. (40). Briefly, after blocking for 1 h at
room temperature with 5% non-fat milk in Tris-buffered saline
(TBS), pH 7.4 containing 0.1% Tween 20 (TTBS) (BioRad,
Spain), the membranes were incubated overnight at 4◦C with
the primary antibodies against A1 (1:200), A2A (1:200), A2B

(1:200), GLUT4 (1:200), GLUT2 (1:200), insulin receptor (1:200)
(Sta Cruz Biotechnology, USA), insulin receptor phosphorylated
(phospho-Tyr1361, 1:500; Abcam, UK), Akt (1:1,000, Cell
Signaling, USA), Akt phophorylated (phospho-Ser473, 1:1,000,
Cell Signaling, USA), and UCP1 (1:1,000, Abcam, USA). The
membranes were washed with Tris-buffered saline with 0.1%
TBST and incubated with donkey anti-goat (1:2,000, Sta Cruz
Biotechnology, USA) or goat anti-mouse (1:2,000, Sta Cruz
Biotechnology, USA) or goat anti-rabbit (1:5,000, Rockland,
USA) in TTBS for 2 h at room temperature and developed
with enhanced chemiluminescence reagents according to the
manufacturer’s instructions (ClarityTM Western ECL substrate,
BioRad, United States). Intensity of the signals was detected
in a Chemidoc Molecular Imager (Chemidoc; BioRad, Madrid,
Spain) and quantified using the Quantity-One software (BioRad,
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Madrid). We tested the expression of UCP1 in brown adipose
tissue (BAT) as positive controls. Themembranes were re-probed
and tested for Calnexin (1:1,000, SicGen, Portugal), α-Tubulin
(1:1,000, Sta Cruz Biotechnology, USA), or GAPDH (1:250, Sta
Cruz Biotechnology, USA) immunoreactivity (bands in the 90,
55, and 37 kDa region, respectively) to compare and normalize
the expression of proteins with the amount of protein loaded.
Different loading proteins were used in accordance with the
molecular weight of the protein to be studied or with the tissue
in where protein expression was analyzed.

Data Analysis
Data were analyzed using GraphPad Prism Software, version
6 (GraphPad Software Inc., San Diego, CA, EUA) and were
presented as mean ± SD. The significance of the differences
between the means was calculated by One and Two-Way
Analysis of Variance (ANOVA) with Dunnett’s and Bonferroni
multicomparison test, respectively. p-values of 0.05 or less were
considered to represent significant differences.

RESULTS

Liquid intake (milliliters/day) was similar in all groups of animals
tested and the administration of the vehicle, DPCPX, SCH58261,
and MRS1754 during 15 days did not modify liquid intake or
animal behavior within groups (data not shown).

Effect of Chronic Administration of A1, A2A,

and A2B Adenosine Receptor Antagonists
on Insulin Sensitivity and Fasting
Glycaemia
Figure 1 depicts the effect of chronic adenosine receptor
antagonist administration on insulin sensitivity in control and
HSu animals. Chronic blockade of A2A adenosine receptor by
SCH58261 and A2B adenosine receptor by MRS1754 decreased
significantly insulin sensitivity in control animals from a control
value of 4.16 ± 0.83 to 3.31 ± 0.91% glucose/min and to 2.52 ±

0.47% glucose/min, respectively (Figure 1A). Administration of
DPCPX, a selective A1 adenosine receptor antagonist, in control
animals was unable to change insulin sensitivity (Figure 1A).
As previously described by Conde et al. (8), ingestion of HSu
diet during 28 days induced insulin resistance (KITT HSu =

2.41± 0.54% glucose/min) (Figure 1A). Chronic administration
of DPCPX and SCH58261 improved insulin sensitivity by
23.24 and 36.93%, respectively (Figure 1A) in HSu animals.
Moreover, blockade of A2B receptors almost restored insulin
sensitivity induced by HSu diet (KITT HSu+MRS1754 = 3.84
± 0.70% glucose/min). These effects of adenosine antagonists
on insulin sensitivity in control and HSu groups followed the
same pattern if animals were separated by sexes: females and
males (Figures 1B,C). In control animals, chronic blockade of
A1 receptors increased significantly by 16.25% fasting glycaemia
(Table 1), whereas the blockade of A2A and A2B receptors did not
produced any alteration. Chronic administration of HSu diet or
of the different adenosine receptor antagonists did not modify
significantly fasting glycaemia in HSu animals (Table 1).

Effect of Chronic Administration of A1, A2A,

and A2B Adenosine Receptor Antagonists
on Weight Gain and Fat Depots
HSu diet promoted an increase in weight gain (Figure 2),
being the increase higher in males than in females (females
= 2.27 ± 0.55 g/day; males = 3.96 ± 1.21 g/day). None of
the adenosine antagonists tested altered weight gain in control
or HSu animals, except the A2B antagonist, that increased by
211.90 and 244.19% weight gain in control female and male,
respectively (Figure 2A).

The effect of chronic administration of adenosine receptor
antagonists on total, perienteric/visceral, genital, and perinephric
fat in control and HSu males and females is shown in
Table 2. Male control rats exhibit a higher total fat content
than control females (Table 2). Administration of A1 and
A2B blockers did not modify significantly nor the total fat
amount neither the deposition of fat in the distinct fat depots,

FIGURE 1 | Effect of chronic administration of A1, A2A, and A2B adenosine receptor antagonists on insulin sensitivity in control and high-sucrose (HSu) animals. (A)

Insulin sensitivity in animals of both sexes; (B,C) Gender differences in insulin sensitivity in control and HSu animals, respectively. Insulin sensitivity was determined by

the insulin tolerance test (ITT) and expressed as constant for glucose disappearance (KITT ). Vehicle (DMSO, dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg),

SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist, 9.5 µg/kg) were administered i.p. during 15 days. Values represent mean±SD of 8–11

animals of both sexes. One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: ****p < 0.0001 vs. vehicle (control); #p < 0.05,

##p < 0.01 and ###p < 0.001 comparing values with vehicle in the same group.
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TABLE 1 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on fasting glycemia, in male and female rats submitted to a standard diet and

to a high sucrose (HSu) diet.

Treatment Vehicle DPCPX SCH58261 MRS1754

Control All animals 86.66 ± 10.90 100.75 ± 10.05* 82.29 ± 4.39 84.13 ± 4.61

Females 87.00 ± 12.35 102.75 ± 10.90 82.00 ± 4.56 83.25 ± 4.19

Males 86.25 ± 10.63 99.50 ± 10.72 82.50 ± 4.57 85.00 ± 5.48

HSu All animals 100.00 ± 20.82 108.25 ± 7.76 91.64 ± 9.87 93.77 ± 10.27

Females 105.00 ± 35.66 105.50 ± 7.04 89.75 ± 9.98 97.25 ± 9.43

Males 97.50 ± 13.81 111.00 ± 8.40 92.71 ± 10.44 91.00 ± 11.09

Values represent mean±SD of 8–11 animals of both sexes. Vehicle (DMSO, dilution 1:3); DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754

(A2B antagonist, 9.5 µg/kg). One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: *p < 0.05 vs. vehicle.

FIGURE 2 | Effect of chronic A1, A2A and A2B adenosine receptor antagonist administration on body-weight increment, calculated as total weight variation during the

experiment period. (A) Gender differences in weight increment in control and HSu female and male animals. (B) Weight gain in animals of both sexes. Vehicle (DMSO,

dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist, 9.5 µg/kg) were administered i.p. during 15

days. Values represent mean±SD of 8–12 animals of both sexes. One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: **p <

0.01, ***p < 0.001 and ****p < 0.0001 vs. vehicle (control); ###p < 0.001 comparing values with vehicle in the same group.

genital, perienteric, or perinephric in control males or females.
Chronic administration of A2A blocker increased by 50.39%
and decreased by 18.41% total fat amount, in control female
and male animals, respectively (Table 2). These effects might
be due to the 111.98% increase in the genital fat of female
rats and to the 27.80% decrease in the perienephric fat of
control males (Table 2). Interestingly, female HSu rats exhibit
a higher total fat content than HSu males (Table 2). In HSu
females, chronic A1 blockade decreased by 29.61, 22.10, 24.38,
and 43.55% the total, perienteric, genital, and perinephric fat,
respectively, while A2B blockade increased by 20.75% the total
fat (Table 2). In male HSu animals, chronic administration of
A2A and A2B antagonists increased by 24.19 and 20.10% the
total fat, respectively, and by 25.32 and 22.59% the perinephric

fat, respectively (Table 2). Concluding, male control rats exhibit
higher total fat content than females, in contrast to what
happens in HSu diet in which females exhibit more fat

content than males. A1 receptor blockade in insulin resistant
states lead to fat loss in female rats while the blockade of

A2 receptors lead to an increase in total fat both in males
and females.

Effect of Chronic Administration of A1, A2A,

and A2B Adenosine Receptor Antagonists
on Plasma and Adrenal Medulla
Catecholamines
To evaluate the effect of chronic administration of A1,
A2A, and A2B adenosine receptor antagonists on sympathetic
nervous system activity, we measured both circulating and
adrenal medulla catecholamines content in control and HSu
animals (Table 3 and Figure 3). Values are presented in Table 3

separated by sexes and in Figure 3 plotted together. As
expected and previously described (36) HSu diet increased
plasma catecholamines and adrenal medulla Epi content
(Figures 3A–C). Chronic administration of adenosine receptor
antagonists did notmodify circulatingNE and Epi in both control
and HSu animals (Figures 3A,B). Control animals submitted
to chronic A1 and A2B adenosine receptor blockade exhibited
significant increases of 252.07 and 209.68% in adrenal medulla
NE, respectively, and of 172.22 and 128.30% in adrenal medulla
Epi content, respectively, compared with the control animals (NE
control vehicle= 2.17± 0.78 nmol/mg tissue; Epi control vehicle
= 9.54 ± 2.76 nmol/mg tissue) (Figures 3C,D). Chronic A1
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TABLE 2 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on total, visceral/perienteric, genital, and perinephric fat in control and

high-sucrose (HSu) female and male animals.

Treatment Vehicle DPCPX SCH58261 MRS1754

Female CTL Total 31.83 ± 8.93 25.78 ± 9.47 47.87 ± 9.59## 49.59 ± 33.22

Perienteric 7.75 ± 3.15 4.63 ± 2.33 8.12 ± 1.78 26.48 ± 22.27

Genital 12.85 ± 1.72 13.92 ± 3.09 27.24 ± 6.92## 48.13 ± 11.50

Perinephric 11.23 ± 6.03 7.22 ± 5.50 12.51 ± 1.64 13.26 ± 4.64

HSu Total 72.71 ± 13.85***,§§ 50.34 ± 7.47### 83.68 ± 8.45 87.80 ± 5.65#

Perienteric 9.57 ± 2.46 6.74 ± 1.56 13.46 ± 1.32 12.44 ± 1.57

Genital 37.15 ± 7.75 28.94 ± 4.19 44.82 ± 8.56 45.98 ± 4.11

Perinephric 25.99 ± 5.29 14.67 ± 2.98## 25.40 ± 1.44 29.38 ± 3.72

Male CTL Total 44.27 ± 1.18§ 46.71 ± 4.81 36.12 ± 1.72## 47.43 ± 4.03

Perienteric 6.59 ± 0.23 7.22 ± 0.89 6.06 ± 0.25 7.17 ± 0.30

Genital 16.96 ± 0.69 18.37 ± 2.27 15.08 ± 0.59 19.00 ± 1.15

Perinephric 20.72 ± 1.29 21.11 ± 2.05 14.96 ± 1.07# 21.26 ± 1.15

HSu Total 51.64 ± 5.92 47.02 ± 1.32 64.13 ± 5.51#### 62.02 ± 8.25###

Perienteric 8.49 ± 1.06 7.82 ± 0.68 9.95 ± 1.49 8.40 ± 1.36

Genital 18.98 ± 2.11 16.57 ± 2.98 23.88 ± 1.84 21.87 ± 3.69

Perinephric 24.17 ± 3.21 22.63 ± 1.96 30.29 ± 3.66# 29.63 ± 3.01#

Values represent mean±SD of 4–8 animals. Vehicle (DMSO, dilution 1:3); DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist,

9.5 µg/kg). One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: ***p < 0.001 vs. control values in the same sex; #p < 0.05, ##p < 0.01,

###p < 0.001, and ####p < 0.0001 comparing values with vehicle in the same group; §p < 0.05; §§p < 0.01 comparing female with male animals.

TABLE 3 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on circulating and adrenal medulla catecholamines, norepinephrine and

epinephrine, in male and female rats submitted to a standard diet and to a high sucrose diet.

Treatment Vehicle DPCPX SCH58261 MRS1754

Plasma CTL NE Females 20.74 ± 16.99 43.15 ± 15.77 10.72 ± 4.80 49.59 ± 33.22

Males 13.63 ± 13.64 9.7 ± 7.65 17.76 ± 9.76 26.48 ± 22.27

Epi Females 53.69 ± 28.38 60.61 ± 17.83 48.63 ± 22.21 48.13 ± 11.50

Males 40.50 ± 27.70 26.46 ± 21.15 34.33 ± 18.95 55.97 ± 20.82

HSu NE Females 36.32 ± 0.36 46.21 ± 34.58 22.19 ± 21.98 32.47 ± 29.13

Males 38.49 ± 11.48 98.41 ± 26.49 14.42 ± 11.83 45.90 ± 25.10

Epi Females 84.73 ± 24.87 63.52 ± 35.71 42.57 ± 7.15 52.49 ± 32.29

Males 44.36 ± 42.42 72.93 ± 9.39 28.64 ± 19.39 69.56 ± 21.30

Adrenal medulla CTL NE Females 1.89 ± 0.82 6.30 ± 4.18 3.25 ± 1.74 5.27 ± 2.98

Males 2.45 ± 0.74 9.00 ± 3.12## 3.05 ± 0.46 8.65 ± 2.10#

Epi Females 9.30 ± 3.47 22.12 ± 2.85## 14.03 ± 3.48 18.80 ± 9.43#

Males 9.79 ± 2.35 29.81 ± 0.88#### 10.38 ± 2.03 25.75 ± 3.68###

HSu NE Females 1.70 ± 0.95 5.53 ± 1.60### 3.97 ± 1.02# 5.06 ± 1.49##

Males 2.87 ± 1.34 6.65 ± 0.44## 3.54 ± 0.76 8.30 ± 1.23####

Epi Females 11.92 ± 7.07 21.95 ± 5.80### 12.10 ± 0.14# 18.84 ± 6.07##

Males 12.92 ± 3.92 24.54 ± 9.63 16.26 ± 2.93 25.72 ± 5.63##

Values represent mean±SD of 4–8 animals. Vehicle (DMSO, dilution 1:3); DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist,

9.5 µg/kg). Two-Way ANOVA with Bonferroni multicomparison tests, respectively: #p < 0.05, ##p < 0.01, ###p < 0.001, and ####p < 0.0001 comparing values with vehicle in the

same group.

and A2B adenosine receptor blockade also increased significantly
the adrenal medulla NE and Epi content in HSu animals
(Figures 3C,D). SCH58261 chronic administration induced an

increase of 37.52% in adrenal medulla Epi content in control
animals (Figure 3D) and of 47.47% in adrenal medulla NE
content in HSu animals (Figure 3C).
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FIGURE 3 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on circulating catecholamines, norepinephrine and epinephrine, and on

adrenal medulla norepinephrine and epinephrine content. (A,B) Shows respectively the impact of 15 days of A1, A2A, and A2B adenosine receptor antagonist

administration on circulating catecholamines, norepinephrine, and epinephrine. (C,D) Shows respectively the impact of 15 days of A1, A2A, and A2B adenosine

receptor antagonist administration on adrenal medulla norepinephrine and epinephrine content. Vehicle (DMSO, dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg),

SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist, 9.5 µg/kg) were administrated i.p. during 15 days. Values represent mean±SD of 6–11

animals. One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001

comparing values with vehicle in the same group.

Effect of Chronic Administration of A1, A2A,

and A2B Adenosine Receptor Antagonists
on A1, A2A, and A2B Expression
No significant changes were observed for the effect of chronic
DPCPX, SCH58261, and MRS1754 administration on the
expression of A1, A2A, and A2B in insulin sensitive tissues
expressed by sex (data not shown), thereby the results of female
and male animals were plotted together (Figure 4). DMSO
can interfere with various cellular processes (41), but herein
DMSO did not modify the expression of A1, A2A, and A2B in
skeletal muscle, liver, and adipose tissue (Figures 4A1,B1,C1).
Chronic DPCPX and SCH58261 increased significantly by 44.72
and 65.82% the expression of A1, respectively, in the skeletal
muscle from control animals (Figure 4A2). Additionally, chronic
SCH58261 administration increased by 34.85% the expression
of A2A receptors, but MRS1754 did not alter the expression of
the different adenosine receptors in skeletal muscle (Figure 4A2).
HSu diet itself caused a significant increase of 78.57 and 18.18% in
the expression of A2A and A2B adenosine receptors, respectively,
an effect that was restored by the chronic administration

of SCH58261 and MRS1754, respectively (Figure 4A2). The
expression of A1 adenosine receptors was also increased by
36.33% with the HSu diet, but chronic DPCPX administration
did not altered A1 receptor expression in skeletal muscle
(Figure 4A2).

In the liver, chronic administration of DPCPX, SCH58261,
and MRS1754 in control animals did not modify the expression
of A1, A2A, and A2B adenosine receptors, respectively

(Figure 4B2). HSu diet increased by 73.64 and 16.47% (p
= 0.091) the expression of A1 and A2A adenosine receptors,

respectively (Figure 4B2), but decreased by 23.17% the

expression of adenosine A2B receptors, being this last effect
restored by chronic MRS1754 administration (Figure 4B2).

Following the same profile than the skeletal muscle, in the

adipose tissue from control animals, chronic administration of
DPCPX and SCH58261 increased by 60.44 and 37.54% the

expression of A1 and A2A adenosine receptors, respectively.

Although in this tissue the administration of MRS1754
decreased by 22.80% the expression of A2B adenosine receptors
(Figure 4C2). HSu diet or the administration of DPCPX,
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FIGURE 4 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on the expression of its receptors on the insulin sensitivity tissues, skeletal

muscle, liver, and visceral fat. (A1,B1,C1) Shows respectively the impact of vehicle administration on the expression of the adenosine tested in the skeletal muscle,

(Continued)

Frontiers in Endocrinology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 262

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Sacramento et al. Adenosine Receptors and Insulin Sensitivity

FIGURE 4 | liver, and visceral fat of control animals. (A2,B2,C2) Shows respectively the impact of 15 days of A1, A2A, and A2B adenosine receptor antagonist

administration on adenosine receptor expression in the skeletal muscle, liver, and visceral fat of control and HSu animals in relation to the expression of the loading

protein. Vehicle (DMSO, dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist, 9.5 µg/kg) were

administrated i.p. during 15 days. Values represent mean±SD of 5–10 animals. One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests,

respectively: *p < 0.05, **p < 0.01, and ***p < 0.001, vs. vehicle (control); #p < 0.05, ##p < 0.01, and ###p < 0.001 comparing values with vehicle in the same

group.

FIGURE 5 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on insulin signaling pathways in the skeletal muscle. (A) Effect of the

vehicle, DMSO, on insulin signaling pathways in control animals. Average relative (B) insulin receptor levels (97 kDa band), (C) insulin receptor phosphorylation (97 kDa

band), (D) Akt levels (60 kDa band), (E) Akt phosphorylation (60 kDa band), and (F) GLUT4 (54 kDa band) immunoreactivity in skeletal muscle from control and HSu

animals with or without chronic A1, A2A, and A2B adenosine receptor antagonist administration in relation to the expression of the loading protein. Representative

western blots for each protein studied are depicted above the respective graphs. Vehicle (DMSO, dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A

antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist, 9.5 µg/kg) were administrated i.p. during 15 days. Values represent mean±SD of 5–10 animals. One- and

Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: **p < 0.01 and ***p < 0.001 vs. vehicle (control); #p < 0.05, ##p < 0.01, and

###p < 0.001 comparing values with vehicle in the same group.

SCH58261, and MRS1754 in this insulin-resistant animal model

did not modify the expression of A1, A2A, and A2B receptors
in adipose tissue (Figure 4C2). Generally and as expected, the
selective blockade of the different adenosine receptors produced
an upregulation of these receptors in insulin sensitive tissues.

HSu diet increased A1, A2A, and A2B receptor expression
in the skeletal muscle, increased A1 receptor expression and
decreased A2B in the liver, and increased A1 in the adipose
tissue, effects that were rescued by the blockade of the respective
adenosine receptors.
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FIGURE 6 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on insulin signaling pathways in the liver. (A) Effect of the vehicle, DMSO,

on insulin signaling pathways in control animals. Average relative (B) insulin receptor levels (97 kDa band), (C) insulin receptor phosphorylation (97 kDa band), (D) Akt

levels (60 kDa band), (E) Akt phosphorylation (60 kDa band), and (F) GLUT2 (62 kDa band) immunoreactivity in the liver from control and HSu animals with or without

chronic A1, A2A, and A2B adenosine receptor antagonist administration in relation to the expression of the loading protein. Representative western blots for each

protein studied are depicted above the respective graphs. Vehicle (DMSO, dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg), SCH58261 (A2A antagonist, 0.5 mg/kg),

and MRS1754 (A2B antagonist, 9.5 µg/kg) were administrated i.p. during 15 days. Values represent mean±SD of 5–10 animals. One- and Two-Way ANOVA with

Dunnett’s and Bonferroni multicomparison tests, respectively: **p < 0.01 vs. vehicle (control); #p < 0.05 and ##p < 0.01 comparing values with vehicle in the same

group.

Effect of Chronic A1, A2A, and A2B

Adenosine Receptor Antagonist
Administration on Insulin Signaling
Pathways
No sex differences were seen for effect of chronic DPCPX,

SCH58261, and MRS1754 administration on insulin signaling
pathways, and therefore results were expressed together

(Figures 5–7). DMSO, the vehicle used in this study, did not

modify the levels and activity of insulin receptor, Akt and
GLUT4 levels in the skeletal muscle, liver, and adipose tissue
(Figures 5–7A). In the skeletal muscle from control animals,
chronic administration of SCH58261 and MRS1754 decreased
significantly by 26.27 and 23.21% insulin receptor levels
(Figure 5B). Insulin receptor phosphorylation, Akt levels and
phosphorylation did not change with chronic administration of
the different adenosine receptor antagonists in control animals
(Figures 5C–E). GLUT4 levels in control animals decreased
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FIGURE 7 | Effect of chronic A1, A2A, and A2B adenosine receptor antagonist administration on insulin signaling pathway and UCP1 expression in the

visceral/perienteric adipose tissue. (A) Effect of the vehicle, DMSO, on insulin signaling pathways in control animals. Average relative (B) insulin receptor levels (97 kDa

band), (C) insulin receptor phosphorylation (97 kDa band), (D) Akt levels (60 kDa band), (E) Akt phosphorylation (60 kDa band), (F) GLUT4 (54 kDa band), and (G)

UCP1 (33 kDa band) immunoreactivity in white visceral adipose tissue (WAT) from control and HSu animals with or without chronic A1, A2A, and A2B adenosine

receptor antagonist administration in relation to the expression of the loading protein. Representative western blots for each protein studied are depicted above the

respective graphs. A positive control for UCP1 in brown adipose tissue (BAT) was used (G). Vehicle (DMSO, dilution 1:3), DPCPX (A1 antagonist, 0.4 mg/kg),

SCH58261 (A2A antagonist, 0.5 mg/kg), and MRS1754 (A2B antagonist, 9.5 µg/kg) were administrated i.p. during 15 days. Values represent mean±SD of 5–10

animals. One- and Two-Way ANOVA with Dunnett’s and Bonferroni multicomparison tests, respectively: #p < 0.05, ##p < 0.01, and ###p < 0.001, comparing values

with vehicle in the same group.

by 20.68, 17.29, and 16.40% with chronic DPCPX, SCH58261,
and MRS1754 administration, respectively (Figure 5F). As
expected and consistent with the development of insulin
resistance, HSu diet decreased insulin receptor expression and
GLUT4 levels by 23.89 and by 27.00%, respectively, without
any effect on insulin receptor and Akt phosphorylation. In HSu
animals, chronic administration of DPCPX, SCH58261, and
MRS1754 increased by 40.81 (p = 0.066), 49.52 and 58.68%
insulin receptor levels (Figure 5B). Chronic administration
of the different adenosine receptor antagonists did not
modify insulin receptor and Akt phosphorylation and GLUT4
levels (Figures 5C,E,F).

In the liver in control animals, chronic administration
of DPCPX and SCH58261 did not modify insulin receptor,
Akt levels and their phosphorylation, whereas MRS1754
administration decreased by 30.31 and 29.66% Akt and GLUT2
levels, respectively (Figures 6B–F). HSu diet ingestion during 4
weeks did not alter levels and phosphorylation of insulin receptor
and Akt, while decreased GLUT2 levels by 52.27% in liver, an
effect restored with the chronic administration of DPCPX (p =

0.060) (Figures 6B–F).

In the visceral/perienteric adipose tissue, chronic
administration of DPCPX in control animals increased
insulin receptor levels and its phosphorylation, Akt levels and its
phosphorylation by 36.81, 36.00, 28.86, and 36.10%, respectively,
without altering Glut4 levels (Figures 7B–F). In contrast, chronic
MRS1754 administration decreased by 17.92 and 28.28% insulin
receptor values and Akt levels, respectively (Figures 7B,D).
Moreover, chronic SCH58261 administration decreased by
26.60% Akt levels (Figure 7D). HSu diet per se was unable to
alter the levels and activity of insulin receptor, Akt and GLUT4
levels (Figures 7B–F). In HSu animals, insulin receptor levels
and its phosphorylation decreased by 36.91 and 26.31% with
chronic administration of SCH58261 and DPCPX, respectively
(Figures 7B,C). Chronic DPCPX and SCH58261 administration
decreased by 30.71 and 36.55% Akt levels and by 64.83 and
33.48% Akt phosphorylation, respectively, although this last
effect of SCH58261 on Akt phosphorylation was non–significant
(Figures 7D,E). MRS1754 only decreased Akt values by 38.43%
(Figures 7D,E). Also, in the adipose tissue from HSu animals,
chronic DPCPX administration decreased by 23.56% GLUT4
levels (Figure 7F).
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Effect of Selective Adenosine Receptor
Blockade on UCP1 Expression in the
Visceral Adipose Tissue
One of the mechanisms described to be associated with the
beneficial caffeine consumption on metabolism is the increase in
thermogenesis (29). The innervation of the brown adipose tissue
by the sympathetic nervous system function as the principal
stimulator of brown adipose tissue thermogenesis, being the
activation of the sympathetic nervous system known also as one
of themain triggers for the browning/beiging of the white adipose
tissue (42). The beiging of the visceral white adipose tissue was
evaluated as the expression of UCP1. From the observation of
Figure 7G in the representative western blots and as expected,
it is clear that the levels of UCP1 expression in the visceral
adipose tissue are quite small in comparison with the levels of
expression in brown adipose tissue. Also, HSu diet did notmodify
UCP1 expression in the visceral adipose tissue (p = 0.400) as
well as none of the adenosine receptor antagonists changed the
expression of UCP1 (Figure 7G).

DISCUSSION

In the present study, we demonstrated that adenosine receptors
exhibit opposite effects on insulin sensitivity, as chronic
adenosine antagonists in control animals promote insulin
resistance meaning that adenosine is an insulin-sensitizer
and that in insulin-resistant conditions, in HSu animals,
chronic antagonists rescue the insulin-resistance phenotype.
Additionally, we showed that the role of adenosine receptors in
whole-body insulin sensitivity is manly mediated by adenosine
A2 receptors, with a contribution from adenosine A1 receptors,
an effect similar between female and male animals. Consistent
with these findings, A2A and A2B adenosine receptors antagonists
rescued impaired insulin signaling pathways in the skeletal
muscle. In contrast, the antagonists tested herein did not
alter significantly insulin signaling in the liver, except the A2B

antagonist that decreased Akt and GLUT2 expression in control
animals, and contribute for the deregulation of insulin signaling
pathways in the adipose tissue in HSu animals. In agreement
with the improvement of insulin signaling pathways in the
skeletal muscle of HSu animals, these animals showed increased
expression of A2A and A2B receptor expression that was restored
with the chronic blocking of these receptors.

We also show that the effect of chronic adenosine blockade
on fat depots was different between females and males, with
fat depots accumulation being decreased in female HSu animals
submitted to the inhibition of A1 adenosine receptors, while
increased with the inhibition of A2A and A2B adenosine receptors
in male HSu animals. HSu hypercaloric diet promoted the
overexpression of A1 receptors in the adipose tissue, an, effect
rescued by A1 receptors blockade. Chronic A1 and A2B adenosine
blocking induced an increase in sympatho-adrenal activity that
did not correlate with the activation of the thermogenesis in the
white adipose tissue.

All together, the results herein described strongly suggest that
A2 adenosine receptors in the skeletal muscle and A1 receptors

in the adipose tissue are majors contributors for the whole-
body insulin sensitivity and that in the context of lean insulin
resistance, as the HSu hypercaloric diet, the effect of adenosine on
insulin action on skeletal muscle is more relevant than the effect
of adenosine on adipose tissue.

Role of Adenosine Receptors on
Whole-Body Insulin Sensitivity and Action
The present study was focused on adenosine A1, A2A, and A2B

receptors, since the role of A3 adenosine receptors on insulin
sensitivity and glucose homeostasis is not completely elucidated
(43). Paradoxically, while in control animals, chronic blockade of
A2A and A2B receptor induced insulin resistance in HSu animals,
a model of insulin resistance, administration of these antagonists
almost prevented insulin resistance, an effect similar between
females andmales. These results suggest that the beneficial effects
of chronic caffeine consumption, a non-selective adenosine
receptor antagonist, in lowering the risk of develop type 2
diabetes (5–7), might be mediated by adenosine A2 receptors,
with a minor contribution from A1 adenosine receptors.

In control animals, chronic blockade of A1 receptor, showed
a tendency to increase fasting glycaemia, which might suggest
that in control animals, adenosine acting on A1 receptors might
contribute to improve glucose metabolism. This is in agreement
with the findings of Faulhaber-Walter et al. (11) evidencing that
A1 receptor deletion impair glucose metabolism and with our
results that show that blockade of A1 receptors worse insulin
signaling dysfunction in the adipose tissue in HSu animals
(Figure 7), but differ from the increase in insulin signaling
pathways in control animals (Figure 7), reflecting once more the
opposite effects in control vs. disease conditions. In contrast,
blockade of A2A andA2B receptors showed a tendency to decrease
the heightened levels of glucose induced by the HSu diet, which
may be an indirect consequence of improved peripheral insulin
sensitivity (Figure 1). We can conclude that adenosine receptors
exert opposite actions inmodulating insulin action in control and
insulin resistant animals, with A2 chronic adenosine receptors
antagonists promoting insulin resistance in control animals and
rescuing this phenotype in insulin-resistance states.

Role of Adenosine Receptors in Weight,
Fat Deposition, and Metabolism
The effect of adenosine and its receptors in weight and body
fat deposition are not consensual, with some studies showing
that the loss of adenosine A1 and A2B receptors promote an
increase in weight gain and fat deposition (11, 44) and that
long-term caffeine consumption is associated with weight loss
in rodents and humans (45), effects that are not observed in
other studies [e.g., Astrup et al. (29)]. Here, we show that in
control animals, chronic blockade of A2B receptors increased
weight gain with a higher impact in male animals (Figure 2),
an effect that cannot be attributed to an increase in fat mass
(Table 2). This effect is in agreement with the study by Csóka et al.
(44), in where mice lacking A2B receptors increased weight gain,
however due to an increase in retroperitoneal and epididymal
fat mass. Surprisingly, chronic A2A blockade, increased total
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fat in female, while decreased total fat mass in male, which
contrasts with the lack of effects of the deletion of A2A receptors
in mice in body weight (46). As previously described, 4 weeks
of HSu diet were unable to promote significant changes in
weight gain (8, 47), being this effect also observed with the
blockade of the adenosine receptors. However, even without
any change in weight gain, chronic blockade of A1 receptors
in HSu female animals decreased total fat mass, which was
associated with a decrease in perienteric, genital, and perinephric
fat mass, suggesting a redistribution of fat depots or an altered
ratio lean/fat mass. This decrease in fat mass mediated by A1

adenosine receptors may be due to an increase in lipolysis or
fat oxidation, effects that were described with chronic caffeine
intake (45), but not to thermogenesis, since UCP1 expression in
the adipose tissue was unaltered in these animals (Figure 7G).
In male animals, blockade of A2A and A2B receptors increased
total fat, which is associated with an increased in perinephric fat
mass. These different effects of the adenosine receptor on weight
gain and fat mass in female and male animals may be associated
with hormonal and sex differences in body fat distribution and
to a female higher lipolysis capacity (48, 49). Therefore, we
can conclude that A2B receptors are involved in the control of
weight, since the blockade of these receptors increases weigh
gain, especially in males, an effect that is not correlated with an
increase in fat mass. We can also conclude that A1 receptors
are involved in fat metabolism in females and A2 receptors in
males, as blockade of A1 receptors decreases fat mass deposition
in females and A2A and A2B blockade increase fat deposition
in males.

Role of Adenosine Receptors in the
Control of Sympathetic Activity in
Metabolic Diseases
One of the pathophysiological mechanisms described to be
involved in the development of insulin resistance is the
overactivation of the sympathetic nervous system (31). Herein,
no sex differences were observed in the sympatho-adrenal
activity in controls and HSu animals as well as in the effect
of chronic administration of the different adenosine receptor
antagonists in these parameters. We did not observe any
significant change in circulating NE and Epi after the chronic
administration of the different adenosine receptor antagonists,
but the, chronic blockade of adenosine receptors increased
adrenal medulla NE and Epi content in control and HSu
animals (Figure 3). Under basal conditions, adenosine inhibited
adrenal medulla catecholamine secretion, an effect partially
achieved by the inhibitory effect of adenosine on the renin-
angiotensin system and which is increased when sympathetic
system is stimulated (50). Therefore, our results are in agreement
with the data that shows that adenosine inhibits catecholamine
secretion from adrenal medulla contrasting however with the
findings that show that these effects are blunted with chronic
caffeine consumption (50, 51), suggesting that the mechanisms
of adaptation to caffeine are different or develop more faster
than for A1 and A2B adenosine receptor blockers. Additionally,
we can suggest that the increased content of catecholamines

do not mean increased adrenal medulla secretion, as we did
not observe any differences in catecholamines plasma levels
(Figures 3A,B) and that is not key to the maintenance of insulin
resistance, as HSu animals with adenosine receptors blocked
exhibit high Epi/NE adrenal medulla content but normalized
levels of insulin sensitivity.

Effect of Hypercaloric Hsu Diet on Insulin
Sensitivity and Adenosine Receptor
Expression
Herein we described for the first time that insulin resistance
induced by HSu diet is associated with an increased expression
of A1, A2A, and A2B receptors in the skeletal muscle, increased
expression of A1 in the liver and in the adipose tissue and
decreased expression of A2B adenosine receptors in the liver. The
increase in A1 expression in the adipose tissue of HSu rats found
in the present manuscript contrasts with the findings of Dhalla
et al. (52) showing unaltered adenosine A1 receptor mRNA
expression in Zucker diabetic fatty rat, but is consistent with
the described role of A1 receptors in adipose tissue dysfunction
(53). Also, in an obese mice model with insulin resistance
induced by 16 weeks of high-fat diet, the expression of A2B

adenosine receptor is increased in the liver, visceral fat, and
gastrocnemius muscle (54). Based on this, we can postulate that
the differences in the expression of adenosine receptors might
be related with differences in the animal models studied, the
HSu model studied in the present work is a lean model of
insulin resistance (8, 47), or with the degree of insulin resistance
and disease progression, as herein we used a 4 weeks model
of diet and Johnston-Cox et al. (54) submitted the animals
to 16 weeks of high-fat diet. Therefore, different metabolic
disturbances and different stages of disease progression might
contribute differently to the expression of adenosine receptor
in the insulin sensitive tissues. As expected, and consistent
with the application of chronic antagonists to a system, the
chronic administration of DPCPX and SCH58261 increased A1

and A2A adenosine receptors in skeletal muscle and adipose
tissue. Surprisingly, no alterations were found for the effect
of adenosine antagonists in the liver and also for MRS1754,
which decrease adenosine A2B receptor expression in adipose
tissue, without any change in skeletal muscle and liver. In
HSu animals, chronic administration of SCH58261 normalized
the A2A adenosine receptor expression in skeletal muscle and
in liver and the chronic MRS1754 administration normalized
A2B adenosine receptors in skeletal muscle. Interestingly, in
the liver, A2B adenosine receptors decreased with the HSu diet
consumption, an effect that was normalized by the chronic
MRS1754 administration.

We also found that the different insulin-sensitive tissues do
not contribute equally or exhibit the same degree of impairment
in insulin resistant states. In fact, it seems to be a notion that
sometimes, and probably at the early stages of the disease, insulin
resistance can be present in the absence of decreased insulin
signaling [for a review see Fazakerley et al. (55)] with some
authors showing evidences that the impairment in insulin action
is independent of proximal elements of the insulin signaling
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pathway, but rather likely specific to the glucoregulatory branch
of insulin signaling (55). In here, in the HSu model, obtained
with 4 weeks of high-sucrose diet we found alterations in
insulin signaling pathways only in the skeletal muscle, except
for GLUT2 expression in the liver. One could expect also
alterations in insulin signaling in the adipose tissue, but we
can postulate that the mechanisms behind insulin resistance
development might be different depending on the type of diet
consumed and the time of exposure to the diets. In fact, it is
consensual that the time-line for progression of insulin resistance
in mice fed a high-fat diet starts with the development of insulin
resistance in adipose tissue before the muscle (56, 57). However,
the same might not be true for high sucrose diets at least
when administrated during short periods of time. The liver is
also another main insulin-sensitive tissue that is also involved
in the development of insulin resistance (1). As previously
described by our group, HSu diet did not modify extensively
the expression of insulin signaling in the liver (39), since only
decreased GLUT2. However, we cannot exclude possible major
alterations in this tissue, as we know that insulin control of
glycolysis and gluconeogenesis (1). Chronic administration of
A2 adenosine antagonists produced the same effects in insulin
signaling pathways, measured as insulin receptor expression and
Glut4 transporters, in skeletal muscle, than in whole-body insulin
sensitivity. Contrary results were found in the adipose tissue
of control and HSu animals for chronic adenosine receptor
antagonist, where the blockade of A1 receptors improved insulin
signaling in control animals, but worsen insulin signaling in HSu
animals. In contrast, no changes were found for the effect of
adenosine antagonists in the liver in controls and HSu animals,
suggesting that the role of adenosine in insulin action in the liver
do not involve the pathways herein tested. Therefore, we can
conclude that in HSu animals the effect of adenosine on insulin
sensitivity is mainly mediated by A2 adenosine receptors in the
skeletal muscle with a small contribution of A1 receptors in the
adipose tissue.

CONCLUSION

In conclusion, all together, the results herein described suggest
that A2 adenosine receptors in the skeletal muscle are the
main responsibles for the whole-body insulin sensitivity, being
therefore more relevant the effect of adenosine on skeletal muscle
on insulin action than the effect of adenosine on adipose tissue
in a context of lean insulin resistance. We can suggest that the
targeting of A2 adenosine receptors might be useful to rescue
insulin signaling pathways in insulin-resistant conditions.
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