ON IRREDUCIBLE BINARY POLYNOMIALS

by

PINAR ONGAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Master of Science

Sabanci University
Spring 2011



ON IRREDUCIBLE BINARY POLYNOMIALS

APPROVED BY:

Prof. Dr. Henning Stichtenoth Q\—(
(Thesis Supervisor)

Prof. Dr. Alev Topuzoglu

Assoc. Prof. Ilker Birbil

Assoc. Prof. Wilfried Meidl

Asst. Prof. Gékhan Gégiis s

DATE OF APPROVAL: 07/06/2011



(©Pmar Ongan 2011
All Rights Reserved



ON IRREDUCIBLE BINARY POLYNOMIALS

Pinar Ongan
Mathematics, Master Thesis, 2011

Thesis Supervisor: Prof. Dr. Henning Stichtenoth

Keywords: finite fields, irreducible polynomials, group actions, general linear group

of degree two, permutations.

ABSTRACT

In the article [1], Michon and Ravache define a group action of S3 on the set of
irreducible polynomials of degree > 2 over Fy, and seeing that the orbits can have
1, 2, 3, or 6 elements, they give answers to the following two questions: Which
polynomials have i € {1, 2, 3, 6} elements in their orbits? Within the orbits of the
irreducible polynomials of degree n > 2, how many of them consist of i € {1, 2, 3, 6}
elements? After their article, the next step seems to generalize their results to the
[F,-case, however, their definition of the group action is not so suitable for such an
extension. Therefore it is defined in a slightly different approach in this master
thesis so that it can be easily generalized to the IF,-case later. Furthermore, the
results of the article [1] are reacquired using the new definition. Additionally, in the
light of the articles [2] by Meyn and [3] by Michon and Ravache, the construction of
irreducible polynomials of a higher degree which remain invariant under the group

action of a given element forms a part of this thesis.



INDIRGENEMEZ IKILI POLINOMLAR UZERINE
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Tez Danigmani: Prof. Dr. Henning Stichtenoth
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terslenebilir matrisler, permiitasyonlar.

OZET

[F,, ¢ elemanl bir sonlu cisim; GLy[Fs], 6geleri Fy'ye ait 2 x 2 terslenebilir matrisler
grubu ve S3, 3 elemanin permiitasyon grubu olsun.

Michon ve Ravache, makale [1]’de S3’ten Fy|x]'teki (derecesi 1’den biiyiik) in-
dirgenemez polinomlar kiimesi iizerine bir grup etkisi tanimliyor ve bir yoriingenin
1, 2, 3, ya da 6 elemanl olabilecegini gozlemleyerek su sorulari cevapliyor: Hangi
polinomlarin yoriingesinde ¢ € {1, 2, 3, 6} eleman bulunur? Derecesi n > 2 olan
indirgenemez polinomlarin kagiin yoriingesi i € {1, 2, 3, 6} elemanhdir? On-
larin bu makalesinin ardindan bir sonraki adim, sonuclarmin F,’ya genellenmesi
olarak gortinse de, makaledeki grup etkisi tanimi bu tarz bir geniglemeye pek uy-
gun degil. Dolayisiyla, bu yiiksek lisans tezinde grup etkisi bir parca farkli bir
bi¢imde tanimlaniyor ki daha sonra F,’ya kolayca genellenebilsin. Ayrica, makale
[1]’in sonuglar1 da yeni grup etkisi tanimi kullanilarak tekrar elde ediliyor. Dahasi,
Meyn'in yazdigi makale [2] ve yine Michon ve Ravache'in galymasi olan makale [3]’in
1g1ginda; daha yiiksek dereceye sahip ve verilen bir grup elemaninin etkisinde sabit

kalan indirgenemez polinomlarin ingaasi da bu tezin bir pargasini olusturuyor.



ACKNOWLEDGEMENTS

My first and foremost gratitude is to Henning Stichtenoth for his support in
preparation of this master thesis and for his momentous contribution in shaping the

way | do mathematics. It was an honor and a pleasure to be a student of him.

I would like to thank Alev Topuzoglu and Buket Ozkaya for their valuable help and
suggestions in the phase of writing this thesis. 1 would also like to thank Wilfried

Meidl for his comments during the finalization of this work.

I have been very much aided by the instruction and direction of Cem Giineri

throughout my master study, for this I am very much obliged.

I am grateful to Nilgiin Isik for believing in me at the most difficult phase of my
education; and I am indebted to Ender Abadoglu for urging me forward since day

one during my first year in the undergraduate education.

I am deeply thankful to my parents Emine and Ismail Ongan for their self-sacrifice,

help and support.

Finally, it’s a joy to express here my special thanks to Ali Ongan, Volkan Yilmaz,
Burcu Dogan and Sinan Eden for their love and honesty to me. Their existence in

my life made the things easier.



TABLE OF CONTENTS

ABSTRACT

OZET
ACKNOWLEDGEMENTS
1. INTRODUCTION

2. THE DEFINITION OF THE ACTION OF GL;[F,] ON
IRREDUCIBLE POLYNOMIALS

3. ORBITS OF IRREDUCIBLE POLYNOMIALS
3.1. Polynomials of a given orbit length
3.2. The number of orbits of a given degree and orbit length

4. THE CONSTRUCTION OF INVARIANT IRREDUCIBLE
POLYNOMIALS OF A HIGHER DEGREE

4.1. To be invariant under ST or T'S
4.2. To be invariant under S
4.3. To be invariant under 71" or ST'S
4. CONCLUSION
REFERENCES

vii

v

vi

13

23
23
30
34
35
35



1 Introduction

Given a group G and a nonempty set X; G is said to act on X if there exists a

map - : G x X — X defined as (g, z) := g - = satisfying
g2 (g1-7) = (g201) -x and e-x ==z, Yg1,90 € G Vx € X,

where e is the identity of G. One can naturally define an equivalence relation on X
as

r~y & g-x=y, for somege G,

where z, y € X. So, for any x € X, we can talk about the equivalence class of x
according to this relation, which is named the orbit of x and denoted as Orb(z) in
the course of this study. Also, the set of elements in G fixing x is called the stabilizer
of x in G and the notation used for it in this text is Stabg(z). Moreover, this set

is, in fact, a subgroup of GG; and the Orbit-Stabilizer Theorem gives us
|G| = |Orb(x)| |Staba(z)|, for any x € X.

In the next section of this study, using these basic notions, we will define a group
action of GLy[[F3] on the set Z of irreducible polynomials of degree > 2 over Fy. In
fact, in the article [1], Michon and Ravache define a similar group action of S3 on
the same set Z and work on the orbits of irreducible binary polynomials. Although
a generalization of the results of [1] to the F,-case will be a further step, since the
definition of the group action in [1] is not so suitable for such a generalization, it
will be defined in a slightly different approach in this master thesis so that it can be
easily generalized to the F,-case later.

In Section 3, we will first realize several facts about the group GLy[F5] and the
action of this group on the set Z. Then, seeing that an orbit of an irreducible
polynomial of degree > 2 can contain 1, 2, 3 or 6 elements, we will focus on the
following two questions for a given i € {1, 2, 3, 6} and a given integer n > 2:
Which polynomials have i elements in their orbit? Within the orbits of irreducible
polynomials of degree n, how many of them consists of i elements? Indeed, Michon
and Ravache answer these questions in [1] and their results will be reacquired in this
study using our group action defined in Section 2.

Lastly, we will study on the construction of invariant irreducible binary polyno-
mials of a higher degree in Section 4. To be more precise, let an irreducible binary

polynomial f of degree n > 3 and a matrix A € GLy[Fy] be given, we will define



several transformations 7 : Fo[z] — Fy[z] such that deg(7(f)) > n and 7(f) is fixed
by the matrix A; we will and answer the question when 7(f) is irreducible over F.
Intrinsically, the main goal of this section is studied in [3] by Michon and Ravache;

and, basically, the articles [2] by Meyn together with [3] shed light on this section.

2 The Definition of the Action of GL;[Fs] on

Irreducible Polynomials

Let G := GLy[Fs] and M be the set of polynomials f over Fy of degree > 2 such
that f has no root in Fy. Define a group action of G on the set M as:

(A- f)() = (ba + d)”f(z;vi;), (2.1)
where A= | * b € G and f(x) € M with deg(f) =n.
c

Lemma 1. Let A,B € G and f € M. Then
a. deg(A- f)=deg(f) and A- f € M.
b. A-(B-f)=(AB)- f.
c. I-f=f, wherel is the identity matrix of G.
Proof. A,B € G and f € M.
a. Let f(z) =" a;xz". Then
(A- f)(z) = Y ai(ax +c)'(bx + d)" ",
i=0

implying that the coefficient of 2" in (A - f)(x) is
aoh” + a1ab™ t + ..+ a,_1a" b+ a,a”.

If b = 0, then this coefficient is a,a"™. Since ad — bc # 0, by assumption on the
matrix A; we already have a # 0. Furthermore, deg(f) = n implies a,, # 0.
So deg(A - f) = n in this case. On the other hand, if b = 1, assume that the
coefficient of 2" in (A - f)(x) is equal to 0. This implies



which is a contradiction since f has no root in Fy, by assumption. Hence
deg(A-f)=n

in any case.

Now, assume k € Fy is a root of A- f. If bk + d = 0, then

0=(A-f)(k) = ai(ak +c)'(bk + d)"™" = an(ak + c)"

1=0

will imply ak + ¢ = 0. So we obtain
0 = a(bk + d) = b(ak) + ad = bc + ad

which is a contradiction since A € G.

If bk +d =1, then

0= (- £)0) = Ok ar £ (ot ).

i.e. f has a root ij:; € [F5 which contradicts with the assumption f € M.

Hence A - f has no root in Fs.

b. On one hand,

A~<B-f>=[jj Z](

= ((ak + bh)x + (ck + dh))”f(

e k
g h

DN ECTX =)

(ae + bg)x + (ce + dg) )
(ak + bh)x + (ck +dh) )

On the other hand,

ae 4+ bg ak + bh

(4B) - fle) = ce +dg ck+dh

- f(x)

= ((ak + bh)z + (ck + dh))”f( (ae 4+ bg)x + (ce + dg) ) |

(ak + bh)x + (ck + dh)

c. By definition.



Hence, we know that G acts on M by definition (2.1).
Lemma 2. For all A€ G and f,g € M, we have A- (fg) = (A- f)(A-g).

Proof. Let f(x) = > 71" a;x" and g(x) = 3 '_; b;z7. Then, on one hand,

A= (X X et ) = e e art S 3 ) ()

k=0 i+j=Fk k=0 i+j=k

On the other hand, the right side of the equation is

(b + d)™+ f axr +c ar +c — (b —i—d)””nZH Z( b)) ax +c\"
! br+d)\br+d) ~ " Wil\br+d)

k=0 i+j=Fk

Corollary 3. For A€ G and f € M, we have
A - fis irreducible over Fy < f 1s irreducible over Fs.

Proof. =: If f is reducible over Fy, then f = gh, for some g and h in M. So A - f

must also be reducible since
A-f=A-(gh)= (A g)(A-h).

&: Obvious by a similar approach to the converse part, since A is invertible. O]

Now, define the set Z := {f(x) € M | f is irreducible over Fy}. Then, using the
previous corollary, one can restrict the definition of the group action in (2.1) to an

action of G on Z. (In this paper, we’re mainly interested in this group action of G
onZ.)

3 Orbits of Irreducible Polynomials

Proposition 4. G is isomorphic to Ss.

Proof. Let A € G, then, by definition of the general linear group G, A maps the
elements of the vector space Fs? to the elements in the same vector space and fixes

the zero element of Fy2. Take the subset

J :={e1 :=(1,0), ex:=(0,1), e3:=(1,1)}



of Fy? and consider w : G — S defined as

w(A) := o4, where o4(e;) == Ae;, Vi € {1, 2, 3}.
For A, BeGand1<i<3,

oap(e;) = AB(e;) = A(Be;) = Aop(e;) = oa(op(e;))

implies that w is an injective homomorphism since the matrices in G act nontrivially
on the basis vectors e; and e;. Furthermore, the number of elements in G is 6 proves
that w is an isomorphism. On the other hand, the set J consists of 3 elements,
which implies §7 = S3. Hence G = 5. O

Let f be a polynomial in Z, then, since Stabg(f) is a subgroup of G, |Stabs(f)|
must divide 6, by Lagrange’s Theorem. Also, since S3 is a non-commutative group
that has

e one subgroup of order 1,

e three cyclic subgroups of order 2,
e one cyclic subgroup of order 3,

e one subgroup of order 6

and no other subgroup, we can say
|Stabg(f)| # 6 = Staba(f) is cyclic.
Furthermore, Orbit-Stabilizer Theorem gives us the following result:
|Orb(f)| =1, 2, 3or6, VfeT.

Definition 5. For a polynomial f in I, the number of elements in the orbit of f is
called the length of Orb(f).

Also, since every polynomial in an orbit must have the same degree, the following

definition makes sense:

Definition 6. For a polynomial f € I, the degree of Orb(f) is defined as the
degree of f.

So, for a given i € {1, 2, 3, 6} and n > 2, one can ask the following two questions:

5



e Which polynomials have orbit length 7
e How many orbits of degree n have orbit length 7

The rest of this section is dedicated to answer these questions in sequel, but before

that, we need a proposition to use later:

0 1 10
Proposition 7. G is generated by the matrices S = [ Lo ] and T = - ]
Proof. We have
S?=1="T% ie. ords(S) = orda(T) = 2.
Moreover,
1 1 1 11 1
TS = 0 , TST = , (TS)? = , (TS)’T = 0
11 01 1 10

and (T'S)? = 1. i.e. ordg(TS) = 3, which completes the proof since |G| = 6. O

3.1 Polynomials of a given orbit length

Knowing that an orbit length may be 1, 2, 3 or 6, we are looking for an answer
to the question: “Which polynomials have orbit length ¢7?” for ¢ taking the values
1, 2, 3 and 6 in this subsection. First of all, let’s look at the polynomials in Z of
orbit length 1:

Proposition 8. f € Z has orbit length 1 if and only if f(z) = 2> +z + 1.

Proof. For the sufficiency, let f be a polynomial in Z of degree n satisfying |Orb(f)| =
1. Then, by Orbit-Stabilizer Theorem, |Stabs(f)| = 6, and since Stabg(f) is a sub-
group of G, we have Stabs(f) = G. So, by Proposition 7,

f=5-f=T-F.
And the definition of the action gives that
nefll
flz) =2a"f - = f(z+1).

Now, let a be a root of f, then all the roots of f in Fy are a, o2, T

and

0= f(a) = oz”f(é) = fla+1).

6



Since a # 0, « + 1 and é must also be roots of f:

a+l=0a and o' = o, for some 0 < k,s < n. (3.1)

On one hand, by taking the (2¥)" power of the first equation, we get

22k

=@ =+ ) =" +1=(a+1)+1=0

So 2k = 0 mod n. On the other hand, by taking the (2°)* power of the second

equation in (3.1), we obtain
O./22S _ (a25)25 _ ((){_1)25 _ (a25)—1 _ (Oé_l)_l — .

So 2s =0 mod n, and since 0 < k,s < n, we have k = § = s implying that k = s.
Thus o + 1 = o~ !, which gives us the equation a? + o + 1 = 0. Therefore « is a
root of the polynomial 22 + x + 1, and so f(x) must divide x? + x + 1 since f is
the minimal polynomial of o over Fy. However, this means f(x) = 22 + x + 1 since
deg(f) > 2.

For the necessity, consider the polynomial f(x) = 22+ x+ 1 € Z. To show that it
has orbit length 1, it’s enough to show that f is fixed by every element of . Since

1 1
S-(x2+x+1):x2<—2+—+1> =r’+z+1
x x
and
T -(@+r+1)=@+1)*+@+1)+1=2+2+1,
by Proposition 7, the proof is complete. O

In the analysis of the polynomials in Z of orbit length # 1, the following two

theorems will be crucial:

Theorem 9. If f € T of degree n > 3, A € G such that ordg(A) = m > 2 and
A-f=f, thenn=0 mod m.

a

b
Theorem 10. If f € T such that deg(f) > 3 and [ d] € Stabg(f), then f(x)

must divide the polynomial bx* *1 + ax® + dx + ¢, for some 0 < s <n — 1.

C

However, the proofs of these theorems will require some additional work. First,



define a group action of G' on F, \ Fy as follows:

_doz+c

Ao =
@ ba +a’

(3.2)

a b

C

where A = € G and a € Fy \ Fs.

Lemma 11. Let A, B € G and o € Fo \ Fy. Then
a. A-a € Fy\Fy.
b. A-(B-a)=(AB) - «.
c. I-a=a, where I is the identity matriz of G.
Proof. A,B € G and o € Fy \ Fy.

a. Assume A-a =k € Fy. Using (2.2),
do + ¢ = bka + ak

i.e. (bk+d)a = ak + c.

Thus, if bk = d, then ak = ¢, and so
ad + be = a(bk) + b(ak) =0

which gives a contradiction since A € G. Hence bk # d. However, at that

time,
ak + ¢
= F
T rd S

which contradicts to the definition of «.

b. On one hand,

A-(B-a)ZIZ Z]([; ”O‘):[Z Z

On the other hand,

ha+g  (cf +dh)a+ ce+dg
fa+e  (af +bh)a + (ae+bg)’

ae +bg af + bh
ce+dg cf +dh

(cf +dh)a+ (ce + dg)

(AB)-a = (af +bh)a + (ae + bg)”




c. By definition.
O

By Lemma 11, we know that the group G acts on the set Fy \ Fy. Now, let us

investigate the connection between the definitions (2.1) and (3.2):
Lemma 12. If « is a root of f, then A -« must be a root of A- f.
Proof. f(«) =0 implies that

axr + c

b +d) (A-a) = (b(4-a) + d)”f(m
“(Gae) v ) (i) = (fss) o =o

Now, we are ready to prove the theorems stated above.

(A F)(A-a) = (b + d)"f(

Proof of Theorem 9. Let o be a root of f. Assume that A - f = f, then
A f=A-(A-(A-..(A-f).) =T,
for all 7 € N by Lemma 1. Also, using Lemma 12,
F(AT ) = (A7 F)(AT-a) = 0.

So the group < A > generated by A acts on the roots of f in F,.
Claim: This action is without fixed points.
Assume A* - = A" - a, for some 0 < i < k <m — 1. Then

Ao =a,

b
where [ = k —i and 0 < [ < m. Say A'is equal to the matrix [ a dl ] , then
G

. dle + ¢

a=A"a=
blC(+al

which implies
bl()ég + (al + dl)a +c¢ =0.



If b; = 0, then this equation turns into
(a; + dy)a = ¢.
In this case, either a;+d; = 0 or o € [Fy gives a contradiction. So take a; = d;. Then
0# aidy +bie; = ()* +0 =

implies A' = I. However, that is impossible since [ < m. So b; cannot be 0, i.e. a
is a root of a second degree nontrivial equation over [F5 which is contradictory since
f is the minimal polynomial of a of degree > 3, by assumption.
Thus the group < A > acts without fixed points on the set of roots of f and the
list
A-a, A a, . A"«

consists of m distinct roots of f. Say o is a root of f which is not in the list. Then
the list

A-a, A2 a, . A" -a, A-o*, A2 %, . A"
consists of 2m distinct roots of f. By continuing this argument, we conclude that

there exist n = mk roots of f in total, for some k € N.
O

Proof of Theorem 10. Let A- f = f and a be a root of f in Fy \ Fy. Then all the
roots of f are a, a2, o2°, ..., o '. By Lemma 12, A-aisaroot of A- f = f. So

one can find 0 < s < n — 1 satisfying

_da—i—c

o =A-a=
ba+ a

which is equal to
b ™+ ao® 4+ da+c=0.

Thus « is a root of 22! + ax?” + dx + ¢, for some 0 < s < n — 1. On the other
hand, by definition of Z, we know that f is the minimal polynomial of a over Fs.
So f has to divide bz**! + ax®” + dx + ¢, for some 0 < s < n — 1.

O

For the polynomials in Z of orbit length 2, the proposition below is a direct

consequence of the Orbit-Stabilizer Theorem.

Proposition 13. |Orb(f(z))| =2 if and only if (ST)-f=f and S-f # f.

10



Proof. Let f be a polynomial in Z such that |Orb(f)| = 2. We know this is possible
only if |Stabg(f)| = 3. So Stabs(f) =< A >, for some A € G satistying ordg(A) =
3. By definition of GG, A can be T'S or ST. And, in both cases, we must have

(ST)-f=1F
since T'S € Stabg(f) implies
ST f=ST-(TS-f)=f.

If, moreover, S-f = f, then f = S-f = T- f which is a contradiction by Proposition
7. Hence
S-f#[

O
Corollary 14. If a polynomial f € T has orbit length 2, then deg(f) =0 mod 3.

Proof. Since the matrix ST has order 3 in G, this corollary is a direct consequence

of Proposition 13 and Theorem 9. O

Theorem 15. ST s in the stabilizer of the polynomial f € I of degree n if and
only if f(x) is an irreducible factor of the polynomial

Bi(z) =2tz + 1, (3.3)

for some k € N satisfying 0 < k <n —1.

Proof. If f € T of degree n is fixed by ST, then by Theorem 10, f(x) must divide
By (z), for some k € N satisfying 0 < k <n — 1.

For the converse, let f be an irreducible factor of By, for some 0 < k < n.
Casel: If f is a factor of By, then f(x) = 2* + x + 1 = By(z), by definition of Bj.
So f is fixed by every element in G.

Case 2: If f is an irreducible factor of By, for some 1 < k < n, then any root
of f must also be a root of By. Let a be a root of f, then all the roots of f are
o, o2, o, .., o', where deg(f) = n. Also, since o has to be a root of By, we
have o2t + o +1 =0 implying that o =1+ i So 1+ é is a root of f, too.

Moreover,
1
(ST - f)(a) = a”f(l + a) = 0.
Thus, for any root a of f, a must also be a root of ST - f. [

11



Let f € Z be a polynomial of degree n fixed by the matrix ST. If n = 2, then
f(x) = 2 + 2 + 1 and |Orb(f)| = 1, by Proposition 8. Otherwise, since S will
not be in the stabilizer of f, the orbit length of f will be equal to 2. Thus, the
previous theorem implies that, for some k£ € N, every irreducible factor of By other
than 22 + 2 + 1 must be a polynomial in Z of orbit length 2. In fact, one can use
MAGMA to calculate these factors. For example, the table below consisting of the
irreducible factors of By (0 < k < 7) is obtained using this program, and we can say
that all the polynomials appearing on the right column other than z? + z + 1 must

be a polynomial of orbit length 2.

|75

all irreducible factors of Bj,

2?4+ x+1.

3+ + 1.

22 +r+1, 23+ 22+ 1.

4+ x+ 1.

224+, 3+, 22t 202 a4 a4t o+ 1

Ul WIND |~ O

242?41, 2P+ 04t 21,

6 22 +r+1, 27+ 2841,
e+t B a2t 2" 2 a5 2t 2?4+ 1
218 1T g5 gl 18 g9 LT a6 8
$18+x17+$16+$15+$12+I11+$9+$5+$4+$3+$2+$+1.

7 a4 a+l, 2 a4l p a3 12 210 g9 T a6 g 1
' 4o a4 e et At 4 e
2?20 et a4t a® et
.7321—|—.’L’20+£U18+x17—|—1‘16—|—$15+$14+l’12+.’l§'11+l’9—|—$8+l’6+$5+$3+1,
ZL“21+I20+l‘19+$15+$10+ZL‘9+$8+IL‘7+1‘6+5L‘5+1‘3+ZL‘2+1,
e+ e B T a4 P 4 a0 e T+ 2t 2 + 1

Now, let us consider the polynomials f € Z of orbit length 3. We already know
that its stabilizer consists of 2 elements, and Stabg(f) is generated by a matrix
B € G, by Proposition 4. Because of this, the order of B in G must be equal to 2
and all the matrices in G satisfying this condition are S, T, and ST'S. Therefore

we have the following proposition:

Proposition 16. f € T has orbit length 3 if and only if Stabg(f) is generated by
either S orT' or STS.

12



Moreover, since ordgS = ordgT = ordgSTS = 2, by Theorem 9, the following

corollary is obvious:
Corollary 17. If f € T has orbit length 3, then the degree of f must be even.

Also, using Theorem 10, one can conclude additional results for the polynomials

fixed by either S, or T or ST'S:
Corollary 18. Let f € Z be a polynomial of degree n.

o If S f = f, then f must divide the polynomial z**** + 1, for some k € N
satisfying 0 < k < n — 1.

o [fT-f=Ff, then f must divide the polynomial 2t 41, for some k € N
satisfying 0 < k < n — 1.

o [fSTS - f=f, then f must divide the polynomial TR s S for some
k € N satisfying 0 < k <n — 1.

Finally, let f € Z be a polynomial of orbit length 6. Then the order of Stabs(f)
must be equal to 1, meaning that Stabg(f) = {[} since Stabg(f) is a subgroup of
G. So we get:

Proposition 19. f € 7 has orbit length 6 if and only if A-f # f, for all A € G\{I}.

3.2 The number of orbits of a given degree and orbit length

In this subsection, for i taking the values 1, 2, 3 and 6, we look for an answer to
the question “How many orbits of length ¢ and degree n exist according to the group
action definition (2.1)?”. Let N@(n) denote the number of the orbits of degree n

and orbit length 7. So the total number of orbits of degree n is equal to
N (n) + NB(n) + NO(n) + NO(n)

and, we are trying to find the numbers N)(n), N®(n), N®(n) and N©(n).
First, as a direct consequence of Proposition 8, we already have the following

result for the number of orbits of degree n and orbit length 1:

Corollary 20.
1 ifn=2
0 ifn>3.

NW(p) =
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Secondly, Proposition 13 and Theorem 15 will be useful in finding the number
N®(n). By these two results of the previous subsection, counting the number of
irreducible factors of degree n of By’s will be enough to calculate the number of
orbits of degree n > 3 and orbit length 2. To continue, let us observe some results

on the polynomial By.

Proposition 21. If a polynomial f € T is of degree 3m and orbit length 2, then it

must divide exactly one of B,, and Ba,,.

Proof. Let o be a root of f. Since f divides By, for some 0 < k < n, we already
have a2 =1 + 1. By taking the (2¥)"" power of this equation, we get

1\ 1 1
22k ok ok (0%
“ (™) ( +04> +0z2k +oc+1 I+a

Again, by taking the (2¥)"" power of this equation, we see

2k
Oé23k = (052%)2k = ( 1 ) 1 = ]1_ = .

l+a) —14a® 1+(L

So 3k =0 mod n, and k is equal to § = m or %" = 2m since 0 < k < n. Therefore

f must divide B,, or Bs,,. Now, assume f divides both B,, and Bs,,. Then,
Bom(a)=®" ' 4 a+1=0

and
Bpu(a) =" +a+1=0

1

imply a?"*! = . However, this means o € Fym,; which is a contradiction since

2™+ 1 is odd. [
Definition 22. Let f € T such that (ST) - f = f and deg(f) = 3m. f is said to be
o of type 1 if f divides B,,.
o of type 2 if f divides Bs,,.
Proposition 23. f and S - f have distinct types.

Proof. Let f be of type 1 such that deg(f) = 3m and « be a root of f. Then since

f divides B,,, we have o®"*! + a + 1 = 0 implying that o®" =1+ 1.

On the other hand, « is a root of f implies that i is a root of f(%), and so a root

of S f=a"f(1). Say =1, s0isarootof S- f.

14



= = =1+1 =140
2m 2m 1
=07 =1+08)" =5

- /6227% _ (ﬁ2m)2m — (ﬁ)Qm _ W =1+ %
= " L 341 =0.
= S - f divides By, i.e. S - f is of type 2. m

Corollary 24. Among all polynomials f € T of degree 3m satisfying (ST) - f = f,
half of them divides B,, while the other half divides Bo,y,.

Proposition 25. B has no multiple roots.

Proof. Since By, (z) = 22" +1 = (z+1)?", the unique root of By, is 1 with multiplicity

2% However, 1 is not a root of By, so By and Bk, have no common roots. O
Proposition 26. 22 + x + 1 divides By, if and only if k is even.

Proof. Let o be aroot of 22+ + 1, then a® =a? +a =1, and so o = a1,

Since By(a) = a® t' + a+ 1 =aV"* 4 o 4 1, we conclude that:
e if k is even, then By(a) =a®> +a+1=0;

e if k is odd, then Bi(a) =’ +a+1 = qa.

Now, we are ready to prove the following theorem on the factors of Bj:

Theorem 27. Let f be a polynomial in I of degree 3m. Then f divides By if and
only if f satisfies the following three conditions:
o m divides k;

e £ mod 3 is equal to the type of f.

Proof. Let f be a polynomial in Z of degree 3m.
&: Say k=ml and [ =t mod 3 with f is of type t. Let a be a root of f. Since f

divides By, = 22"+ + 2 + 1, we have « is a root of By,. So

implying that



i.e. ais a root of By. Thus f divides Bj.

=: Let f divide By, then (ST) - f = f. Also, if a is a root of f, as seen in the
proof of Theorem 21, a2 = a, and so a € Fyar. Thus Fy C Fosm C Fosr since
deg(f) = 3m and « is a root of f. Hence m divides k.

Now, let kK = ml, for some [ € Z. Then Theorem 21 implies that f divides B,, or
Bap,.

If f divides B,,, then any root a of f has to be a root of B,,, so o*" !+ a+1 =0,
ie. ¥ =141

Furthermore, since f divides By, we also have o =1+ i implying that

m ]. k ml (m+m(l—1)) m\om(l—1)
=1+ —=a* =a¥ =0a? = (a*")? :
a
. . 2 3m—1
On the other hand, f has 3m distinct roots: «, o2, o, ..., o®"

=m(l—1)=0 mod (3m).

= 3m divides m(l — 1), i.e. [=1 mod 3.

= % =1 mod 3.

If f divides Ba,,, then for any root o of f, a2+ + o 4+ 1 = 0 which gives

a22m _ 1 + l _ a2k _ a2ml _ Oé22m+m(l—2).
o
And similarly this equality implies [ = 2 mod 3. Hence % =2 mod 3. [

At last, we can have a result on the number N (n):

Lemma 28. For any k > 1:

2 —(—1)F = ) (B)NP(3d).

dlk
£#0 mod 3
Proof. Let EB, :={f €Z : deg(f) >3 N f|Bx}.
= EB,={f €T : deg(f)=0 mod 3 A f|B}.
If deg(f) = 3d, then f is of type 1 or type 2, by Proposition 21; and (ST) - f = f,
d|k, s mod 3 is equal to the type of f, by Theorem 27. So

EB, = U {feT :deg(f)=3d A (ST)-f=f A fIBi} U

dlk, £=1(mod3)

U  {fez :deg(f)=3d A (ST)-f=f A f:Bi}.

dlk, £=2(mod3)

16



Let E;(3d) := {f€Z : deg(f)y=3d N (ST)-f=f N fI|Bx N fisof type i}
for i =1, 2. Then

EB, = U BB)Hu | EBd)
dlk, £=1(mod3) dlk, £=2(mod3)

By multiplying all elements in the sets of both sides and taking the degrees, the
right hand side of the equation gives

> Adeg(f) : fFEEBA} + > A{deg(f) : f € Ex(3d)}

dlk, £=1(mod3) dlk, £=2(mod3)

= Bd) [ExBd)] + > (3d)[Ex(3d)]
dlk, £=1(mod3) dlk, £=2(mod3)

= (3d)N®(3d) + (3d)N®(3d)
dlk, £=1(mod3) dk, £=2(mod3)

dlk, £3£0(mod3)

while, using Proposition 26, the left hand side becomes

k
3 deg(“””i&:—:ﬁrl) =2F — 1if k is even, since (2% + x + 1)|By, in this case.

o deg(z® ' + 1 4+1) =2+ 1if k is odd.

Theorem 29.

) =Y am p@ET —(-1)%) ifn=3m,
N )(n) = d#0 mod 3

0 if 3 does not divide n.

Proof. By Corollary 14, we know that if f € Z such that |Orb(f)| = 2, then deg(f)
0 mod 3. So N®(n) =0 for n #0 mod 3.

Now, let n = 0 mod 3, say n = 3m. Defining H(m) := 2™ — (—=1)" and h(m) :=
3mN®@(3m), for all m € NT, Theorem 28 gives the equality

H(m)= Y h(d), Ym>1.
d|m, d#0(mod3)

17



Thus, by Moebius Inversion Formula, we have

which is .
NO(m) = - Elj u(@)@F — (~1)%), vm > 1
d#0(mod3)

O
Next, we want to calculate the number of orbits in Z of degree n and length 3.

Proposition 30. Each orbit of length 3 contains a polynomial h € I satisfying
S-h=h.

Proof. Let f be a polynomial in Z such that |Orb(f)| = 3, then |Stabs(f)| = 2. Say
I # A € Stabg(f). Then we must have A- f = f, A# [ and A*> = I. Since

S = BAB™!', for some B € GLy(Fs),
for h = B - f, we obtain
S-h=(BAB™)-(B-f)=B-(A-f)=B-f=h.

O

Clearly, by the previous proposition, finding the number N (n) is the same as
counting the number of polynomials h € 7 satisfying S - h = h. And, the following
theorem of Meyn in the article [2] makes possible to count the number of polynomials
of this kind:

Theorem 31.

a. Fach polynomial f € T of degree 2n (n > 1) satisfying S - f = f is a factor of
the polynomaial
H,(z) = 2% 4+ 1.

b. FEach irreducible factor of degree > 2 of H,, is a polynomial f € T of degree 2d
satisfying S - f = f, where d divides n and % is odd.

Proof.

18



a. Let f € 7 be a polynomial of degree 2n which is fixed by S. Say « is a root
of f. Then Theorem 10 implies that f has to divide the polynomial x> *! +1,
for some 0 < s < 2n — 1. So o must be a root of 22" *! + 1, too, which can be

stated as a~! = a?". Then
o?? — (a25)25 _ (Ofl>2s _ (a25)71 _ (afl)fl = a,
gives us a € Fy2s. Therefore, we conclude
Fazn = Fa(a) C Foes,

so 2n must divide 2s, i.e. n = s.

b. Let g € Z be of degree > 2 such that g|H,. Say « is a root of g. Then

1

n . — n — .
ot +1=0,ie a!=a?". So for every root a of g, we have a~! is a root

of g. Moreover,
S g(a) = a®™Dg(a!) =0

implies that g divides S - g. Similarly, for any root 3 of S - g, we can write

0= S g(8) = B g(37)

Therefore 571 is root of g, and (871)™! = 3 is also a root of g. Hence g is
fixed by S, and by Theorem 9, deg(g) must be even. Say deg(g) = 2d, for
some d € N. Then by Part a, g has to be a factor of Hy. Also,

a22n _ (azn)zn _ (0471)271 _ (062”>71 _ (Oéfl)fl —

since g|H,, so a € Fyn. But, since g is an irreducible polynomial over Fy of

degree 2d, we already have Fy2a = Fo(a). So
]F22(i = Fg(a) g IFQQn,

gives us that d|n. Moreover,

d

o = (. ((0¥)*) )",

where there exist 4 -many 2¢ powers on the right hand side since n = 2d.

n
d

19



Hence
e -
on Q if % is even,
o' if 2 s odd.

However, since we already have o' = o, we conclude that 2 cannot be even.

]

Again, one can use MAGMA to compute the factors of H,’s. For instance, the
table below is obtained using this program for 1 < n < 7.

n all irreducible factors of H,,

1 x4+ 1, 224+ + 1.

2 r+1, 2+ 3+ o+ 1

3 v+ 1, 22 +x+1, 2%+ 2%+ 1.

4 e+l 28+t 2+, 8+ a2t o+ L
5

e+l 224+, 20 +2" + 2P+ 234+ 1, 20+ 2 2t 41,
2O a4’ S+t 2+ L
6 o+l 2422 +22+2+1, 22428427+ 25+t +1,
2124 10 4 g7 f b4t 4],
2124 210 4 g 4 a6 4 gt ad g 41
224 g f T S a1,
.7312+3:11+l’10+$9+$8+x7+$6+$5+$4+x3+$2+x+1.
7 r+1l, 22 +ao+1, s+ 2" a5+ 1,
o+ 0 42 T a2t 41
l.14_+_l,11+x10+x9+x8+x7+x6+x5+x4+x3+1’
R A e R L o A NF A S
x14+x12+$10+$7+x4+$2+1’
$14+x13+x10+$8+x7+$6+x4+w+1’
e+t T+t e+ 1,
e e e al E  E T S A o
i S e e e A B L S e B Al B el S o

Here, notice that the only irreducible factor of H,, over Fy of odd degree is x + 1.

In fact, every root 3 of the polynomial H,, satisfies the equation
0=p""+1=p"3+1=F+1=(6+1)%
So we conclude that x + 1 divides the polynomial H,,, for all n.
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Now, before going further, it is good to emphasize that Theorem 31 can be
reformalized in a similar way to Theorem 27:
Let f € T be of degree 2n, where n > 1. Then f divides H,, if and only if f satisfies

the following three conditions:
«S-f=1:
e d divides n;

° % 18 odd.

It would be more useful to recall this formalization when we refer to Theorem 31

for the rest of this subsection.

Lemma 32. For anyn > 1;

"= > (2d)N¥(2d).
dln

%El mod 2

Proof. Let EH, :=={f€Z : deg(f)>2 N f|H,}. Then
EH,={f€Z : deg(f)=0 mod2 A f|H,}.

_ U {feT :deg(f)y=2d N S-f=f A flH,},

dn, 5=1(mod2)

by Theorem 31. Let E(2d) :={f €Z : deg(f)=2d N S-f=f AN f|H,}, then

EH, = U  E@a).

dn, Z=1(mod2)

By multiplying all elements in the sets of both sides and taking the degrees, the
right hand side of the equation gives

Yo Adeg(f) s feEQDY= Y (2d)|E(2d)]

dln, % =1(mod2) dn, 2=1(mod2)

= ) (2dN9(24)
dn, Z=1(mod2)
while, using Theorem 31, the left hand side becomes

x2n+1+1 "
deg( H f) :deg(x—ﬂ) = 2"

feEH,

21



Hence the proof is complete. O

Theorem 33.

ﬁ > djm u(d)2% if n = 2m,

0 if 2 does not divide n.

Proof. Define H(m) := 2™ and h(m) := 2mN®)(2m), for all m € N*. Then Lemma
32 gives the equality

H(m) = h(d), Vm > 1,

d|m, 7 =1(mod2)

and; using Moebius Inversion Formula,

which is .
(3) - ¥
N (2m) = — dz w(d)2%, Ym > 1
Z=1 mod 2
The other case is trivial by Corollary 17. O]

Finally, to compute the number of orbits of degree n and orbit length 6, one can

use the following corollary.
Corollary 34. N©(n) = %G 5 24— NO(n) — 2N (n) — 3NG) (n)) |

Proof. On one hand, if Ny(n) denotes the number of irreducible polynomials over

[Fy of degree n, then it can be calculated using the techniques in [5] as

Na(n) = %223.

d|n

And, on the other hand, one can count this number Ny(n) in the following way

Ny(n) = NH(n) + 2N (n) + 3N (n) + 6N (n).
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4 The Construction of Invariant Irreducible

Polynomials of a Higher Degree

Let f be a polynomial in Z of degree n. In [3], Michon and Ravache study on

finding several transformations 7 : Fo[z] — Fo[z] satisfying

e T(f) el

o deg(7(f)) > deg(f)
o [Orb(r(f))| =1

at the same time, where ¢ € {1, 2, 3, 6}. In fact, we can formalize their problem
in the following way:
Consider a matrix A € . Then f remains invariant under A if and only if
A € Stabg(f). Therefore, if we have a transformation 7 : Fo[z] — Fy[x] such that
7(f) is irreducible and deg(Orb(7(f))) > n, then |Orb(7(f))| will be equal to the
number ¢, where k = ordg(A).
In this section, we will see several examples of transformations satisfying the three

properties given above.

4.1 To be invariant under ST or T'S
Consider the following transformation defined in the article [3].

Definition 35. For f € Fs[z]| of degree n > 3, define 1 : Fo[z] — Fa[z] as

W(f () = (x2+x)”f<x+i+%+1>. (4.1)

Clearly, for any polynomial f € Fylx] of degree n, ¥(f) will be a polynomial of
degree 3n. Also, ¢(f) remains invariant under ST, by the following proposition.

Proposition 36. (ST) - ¢¥(f) =¥(f).

0 1 11 0 1 ng (2.1)
= , using (2.1),
10 0 1 11 &

srevg) = () + o) (o et 1 )

Proof. Since ST =
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The main question at this point is, for f € Z, when (f) is irreducible over F.

Let f € Z\{2* + = + 1} be any irreducible polynomial of degree n. Consider
the irreducible polynomial 2% + = + 1 over Fy, say ¢ is a root of it, i.e. €2 = ¢+ 1.
Then all the roots of z* + z + 1 are ¢ and 2. Moreover, if f(¢) = 0, then ¢ will be
a root of an irreducible polynomial of degree n > 2 which is a contradiction since
e € Fy(e) =Fype. Hence f(e)€{ 1, ¢, e =c+1}.

In fact, for a given f € Z, a necessary and sufficient condition for ¢(f) to be
irreducible over Fy is that f(e) # 1. However, this task requires some work which
we pursue below.

Since f is irreducible, we know that the splitting field of f over Fy is K := Fon.
Let 6 be a root of ¢(f), then o := 0 + 3 + ﬁ must be a root of f. Moreover, all
the roots of f are o, a2, @2, ...,a*" '; and so, K C K(6).

Define a polynomial T, € K[x] as
To(2) :==2° + (1 + o)z’ + az + 1, (4.2)

then ¢ will also be a root of T,.
Proposition 37. The roots of the polynomial T, are

a>4+a+1

Si=l+a+cw+ .
e'w

Y

with i € {0, 1, 2} where w is a cubic root of (¢ + (e + a?). Moreover, they satisfy
the relations §; = (0o +1)7" and 0y = 14+ 65"

Proof. Set y =1+ a + z, then
To(z) = (I+aty)+(1+a)(I+aty)* +a(l+aty)+1 = y’+(1+ata?)y+(1+a+a?).
Let b =a? +a+ 1 and u, v be two variables such that y = u + v, then
To(z) = (u+v)>?* +bu+v) +b=(u®+v*) + (uv +b)(u+v) +b.
By choosing uv = b, we get
To(z) = (u® 4+ v*) + b,

so solving T, (z) = 0 is the same thing with solving the system of equations: uv = b

and u® + v® = b.
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3

Writing 2z = u°, we obtain

b =u® = 20° = 2(u® +b) = 2% + bz, de. 22+ bz + b =0,

and by letting ¢ = 7,

1
0:b—2(22+bz—|—b3):t2+t+b:(t+a)2+(t—|—a)—|—1

since b = a?+ a + 1. Then a + €2 is a solution for t. And
(a+eHb=(a+e)(1+a+a?)=(a+e*)(ate)a+e?)=(a®+e)(a+e)

3 b

is a solution for z = u? since € = 1. So, for © = w and v = -

b
xzy—ka—i—lz(u—l—u)—l—a—l—lz1+a—|—w+;:(50

is a root of T,,. This implies

1 1
Ta(1+5_):F(5og+(1+a)(502+a50~|—1):0 (4.3)

0 0

and . .
T, = 50> + (1 50> +ady +1) = 0. 4.4
(1+50> 1+503(° + (14 a)d” +ad+1) (44)

Moreover, T, (dp) = 0 means
(50(502 +(1+a)f+a)=1

implying that

1 b\’ b
1+5—:502+(1+a)50+a+1: (1+0‘+w+5) +(1+a)(1+oz+w+a)+a+1,
0

by definition of §g. Then

1 b? b(1+ «
1+6—:1+a2+w2+ﬁ+(1+a)+a+a2+(1+a)w+¥+a+l
0
bw b w b
=+ ="+ (l+awt+(1+a)—+a+1l
bw  w?w w

b? w3 b
= (—3+1+a)w+(—+1+a>—+a+1.
w b w
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And, since w® = (e +a)(e+a?) and b=+ a+ 1= (¢ + a)(e? + a), we get

b (e + a)?(e® + a)? g2 +a? e2+e+ta+ae
—+tl+a= +1l+a= +14+a=
w3 (e +a)(e+a?) e+a e+a

1
_eleta)+(Eet+a)  (e+o)(e+ ):54—1:52,
Eta eta

using the equation €2 + ¢ + 1 = 0; while, on the other hand, we have

w3 (e + a)(e + a?) e+al+e+a+as®+o?
—+1l4+a= +1+a=
b (e +a)(e?+ a) 2 + o
e+t a+ta? e l4etatas (I4oaeg)(l4e) e
B e2 + « €2 € + ag? T e(l4ag) e'e ¥
Thus we conclude .
o =1+ —
+y

is a root of T, using (4.3). By several similar calculations, one can easily conclude

1
144

51:

is a root of T,, using (4.4). O

Lemma 38. If f € T of degree n > 2, then ¥(f)(x) must be equal to

T o ()
0<k<n—1
where o € K is a root of f.
Proof. For any root § of ¥(f), we have
IR S S S SR
S+1 7 75 S+l 41 § 8 6+1
and
THE IR SIS S DU S R S D P
) (1+3) (1+3)+1 § 6+1 § S+1
So we can say that for any root § of ¥(f), 3 and 6+1 are also roots of ¥ (f). Fur-

thermore, using the previous proposition and the fact that any root of ¥(f) is also
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a root of T,,, we can write the following equalities in Fs.

@ = I @-9= ]I <x—5><x—§)(f‘1‘1—ia>

Y(£)(9)=0 £+ 14 521)=0

Lemma 39. Let f(g) = 1. Then (¢ + 1)(e + a®) has cubic roots in
o K ifn is even,
o K(e) if n is odd.

Proof. 1f n is even, then there will be an integer m such that n = 2m. Let « be a
root of f, then

fle)=(+a)e+a)(e+a®). (e +a¥" ).
Usinge! = (e +1)2 =2+ 1=¢,
fe) = e+ a)e+ [ + ") + ). [+ ) + )]

22777.72

= [(e+ a)(e +aD)][(e + @) (e + aD)]*...[(e + a) (e + a?)]

2™ -1

= [l +a)(e+0?)

since 1 +4 + ...+ 4™t = &=L = Z=1 Let w be a cubic root of (¢ + @) (e + o?) in

some extension of Fy, then

2" -1 2" —1

W = ()T =lleta)e+a)] T = fe) =1,

by assumption. So w is a (2" — 1) root of unity implying that w € Fon = K.

If n is odd, then there will be an integer k such that n = 2k + 1, and for a root «

of f, we will have

fe) = (e 4+ a)(e + a®)(e + ab)...(e + ™). (4.5)
Since a € Fyn, by Fermat’s Little Theorem, we have o = 2™ and so
&)=+ N e+a™) (e + ™) e+ 2. (4.6)
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By multiplying the equations (4.5) and (4.6), we obtain

[FF = [(e + a)(e + a”)l(e + a)(e + )" [(e + a)(e + a®) T

22n_q

=[(e+a)(e+a?)] 3

since 1 +4 + ... + 4% = 42Z+_11_1 = 227;_1. Thus

22n_q 92n_q

=TT (e a)e+ )T = [fEP = L.

So w is a (22" — 1) root of unity, i.e. w € Fa2n. On the other hand,
(K(e) : Fo] = [K(e) : K|[K : Fy] = 2n

gives us K(g) = Fazn, s0 w € K(e).
[

Now, by combining the results of the previous two lemmas, one can conclude the

following corollary:
Corollary 40. If f € T of degree n is such that f(g) = 1, then ¥(f) is reducible.

Proof. If n is even, then w € K, by Lemma 39. Since we already have a € K
and € € Fy: C Fyn = K, by Proposition 37, all the roots of T, are in K. And,
by definition of T, we conclude all the roots of i(f) are in K = Fy.. However,
deg(¥(f)) = 3n # n. So ¢(f) cannot be irreducible over Fs.

If n is odd, then w € K(g), by Lemma 39, and since K(g) = Faon(g) = Fa2n, by a
similar argumentation to the previous part, we have all the roots of ¥ (f) are in Fy2x.

However, deg(1(f)) = 3n # 2n. Thus, ¢(f) must be reducible over Fs. O

Proposition 41. If f € T of degree n > 2 satisfies that () is reducible over Fa[z],
then (f) = g(ST - g)(T'S - g), for some g € T of degree n such that ST - g # g.

Proof. Let ¢ be a root of ¥(f). Say g(x) € Fy[x] be the minimal polynomial of 4.
Then n|deg(g) since K C K, and n < deg(g) < 3n since ¢(f) is assumed to be
reducible over Fy. Also any irreducible factor of ¥(f) in Fy[z] has to be of degree

> n since ¢ is the minimal polynomial of 4. So
Y(f)(x) = g(x)h(x), for some g €L : deg(g) =n and h € Fy[z] deg(h) = 2n.

Consider ST - g(x) = (z + 1)"g($+r1) and TS - g(z) = a"g(*:L). Since the roots

of ST - g and TS - g are ﬁ and 1 + ¢ which are the roots of #(f), we conclude
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ST gl(f) and TS - gl (f).
It ST - g # g. then (/) (x) = g(a)(ST - )(x)(TS - g)(x).

Let ST - g = g, then 6, ﬁ, 1+ % will be distinct roots of ST -g =g =TS - g;

and so, we get T,(z) divides g(z) for @ = § + 5 + 57 Since all roots of g are
8, 62, 0%, ..., 07", we get T .« divides g for all k. However, this means g(z) has 3n
distinct roots 62k, ﬁ, 1+ 5% for 0 < k < n — 1, by the previous lemma, which
is a contradiction. So ST - g # g. i.e.

1 1
o) =sala 1 g oo (14 1)
with g € T\ {2? + 2 + 1} such that ST - g # g. So

s =gte) e+ 17 )] [ra ()| = e

We already know g(g) # 0 and one can see that [g(¢)] = 1, for all g(¢) € {1, &, &%}.
On the other hand,

1
e+1

vnE = s erf(et 1o g ) = £E

So f(?) = 1. Furthermore,

() = ap + a1e? + ax(e®)® + ... + a, (%) = ap® + a1’e® + a*(e?)* + ... + a, % ()"

= (ap + a1 + age? + ... + an5n>2 = [f(5>]2>

where f(x) := ag + a1 + apx® + ... + a,x™, since the characteristic of the field is 2.
So f(e) = 1. O

Theorem 42. Let f € T be of degree n > 3. If f() # 1, then ¥(f) is an irreducible
polynomial such that ST - (f) = ¥(f).

Proof. Let f € Z be of degree n > 2 such that f(g) # 1. Then (f) is irreducible,
by the contrapositive of the previous proposition; and Proposition 21 completes the
proof.

O

Corollary 43. For f € Z, i(f) is irreducible if and only if f(e) # 1.
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Proof. 1t’s a direct conclusion of the previous theorem and Proposition 36. O

Thus, if f € 7 of degree n > 3 satisfies f(¢) # 1, we can use the transformation
1 to get an irreducible polynomial of a greater degree which is invariant under ST
Now, let f € Z be a polynomial invariant under the action of ST. Then it must

be invariant under 7S since
TS~f:TS~(ST‘f):T-(SQ)~T'f:T2~f:f.

Therefore, the way described above is valid to obtain an irreducible polynomial of

a greater degree which is invariant under 7'S, too.

4.2 To be invariant under S

The study of Meyn in [2] carries a great importance for the polynomials f € 7
fixed by S, and the following transformation is defined in this study of Meyn.

Definition 44. Define a transformation ¢ : Fy[x] — Fa[z] as

(@) =" (241 ). ¥ € Fal] 5 deg() =n. (47)

Proposition 45. For any polynomial f € Fa[x], we have S-¢(f) = ¢(f). Moreover,
o(f), T-o(f) and ST - ¢(f) are all distinct polynomials.

Proof. Let f be given in Fy[z]. Then

5. =(-as (w4 1)) =a (1) s (o D) =arr (o0 ) = o)

using (2.1) and (4.9). Also, one can easily obtain

T-¢(f):(x+1)"f(x+1+L) _ (a:+1)”f<w)

r+1 r+1
and
ST 6(f) =5 (x4 1)f Phet1\ el ”f (32 +5+1
N . rz+1 - T %+1
2

9 nefT+x+1

— (),
which complete the proof. O
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So the question is when ¢(f) is irreducible over Fy.

Lemma 46. If f € T of degree n, then either S-&(f) = ¢(f) or ¢(f) = g192, where
g1, 92 S

Proof. Let 3 be a root of ¢(f). Then

1
0= (N =1 (5+ )
gives that a = 3 + % is a root of f; and so, the splitting field of f over Fy is

Fyn = Fy(a). If 5 were a root of a polynomial h € Z of degree m where m < n, then
Fgm = FQ(/B) = FQ(Oé) = an

would imply the contradiction: m = n and m < n. So 3 cannot be a root of
a polynomial whose degree is less than n. Since [ is already a root of ¢(f), we
conclude that the irreducible decomposition of ¢(f) cannot contain a polynomial of
degree less than n. Since deg(¢(f)) = 2n, this means that either ¢(f) € Z or there
exist g1, 92 € Z such that ¢(f)(z) = g1(x)ga(x). O

Lemma 47. With the notations fixed in the previous lemma, we have the following
result: ¢(f) € T if and only if g(x) = 2% — ax + 1 € Fou[x] is irreducible.

Proof. (3 is a root of g since

g(ﬁ)zﬁz—aﬁﬂzﬁ—(ﬁ+%)ﬂ+1zﬁ2—ﬁ2—1+1:0.

On the other hand, we know ¢(f) € Z if and only if ordr,(8) = deg(¢(f)) = 2n.

If g is reducible, then 3 will be a root of a polynomial of degree 1 over Fy., and so

ordp, () becomes n. Hence ¢(f) € Z if and only if ¢ is irreducible. O

Proposition 48. There exists a normal basis {v, 7%, .72, ..,7*" '} of Fan over
IFQ with Tngn/]Fg (’)/) =1.

Proof. By Normal Basis Theorem, there exists a normal basis {p, p*, p*, ....p*" '}
of Fon over [Fy. First, we want to show that TrFQn/FQ(ka) # 0, for some 0 < k < n—1.
Assume it is not true, and say Trg,, m,(p*) = 0, for all 0 < s < n — 1. For any

n € Fon, we have n = 20<i<n71 aip?, for some a; € Fy, and

n—1 n—1
Trr,n /k, (1) = Trr,. r, (Z aipzz) = Z a; Trpy /r, (»*) =0,
i=0

=0
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i.e. Trg,,/m,(Fon) = {0}. However, this is a contradiction since the trace map is
onto.

Thus there exists an integer k such that 0 < &k < n — 1 and Try,, /r, (p*") = 1, for
some 0 < k <n — 1. Define v := ka, then

pr = 0<i<k—1

and
2k+j

= Vi 0<j<n—k—1

implies that the set

I G
is a normal basis Fyn over IF,. O
Proposition 49. The quadratic equation x* + x + £ = 0, where & € Fon has
o two roots in Fon if Trp,, m,(§) = 0.
e 10 root in Fon if Trr,, m,(§) = 1.

Proof. First, we will prove the second part of the proposition, by showing the con-
trapositive of the statement is true.

Let {7, 7%, ,7%, ..,7*" '} be a normal basis of Fon over Fy such that Trg,, /r,(7) =
1. Then there exist by, by, ...,b,_1 € Fy and xg, x1, ...,x,_1 € Fy satisfying

E=boy +07 +00” + by T =y 2y e+ wa
and so

4z = (voy* + xlnyQ +3c2723 + ... —i—xn,lfyzn) + (zoy + 2172 —1—3:2722 4+ ...+ xn,lnynfl)

= (Tno1 + 2o)Y + (To + 2V + oo+ Tz + Ta )V
Also, having 0 = 2% + x + £, we get the following equations:

Tp-1+2To=bo; To+ 21 =01, ..., T2+ Tp1="by1
implying that

bo + bl + ...+ bn,1 = (Zlfnfl -+ l‘o) + (LU() -+ Z‘l) + ...+ (I‘n,Q + $n71> =0.
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On the other hand, if we compute Trg,, r, (&), using the representation of £ as a

combination of vectors in the normal basis, easily seen that it is equal to

1

(boy+0172+ oAb 17 ) A (b1 oA bpoy? ) (1Y by 4. Aboy )

= (bo4 b1+ by )Y+ + o+ ) = (o + by + ...byy)

since Trg,, /r,(7) = 1. So we conclude that
0 = bo + bl + ...+ bn,1 = TI‘FQH/]F2(£).

To prove the first part of the proposition, assume that Trg,, /r,(§) = 0. Then it is
easily verified that

o = K, 1‘1:f€+b1, ZEQZKL—I—bl-f-bQ, ...,ZL‘n_l:li+b1+b2+...+bn_1,

where x = 0 or 1. So there are two solutions of the equation z? + x + & = 0. O

Theorem 50. With the notations fixed in the previous two lemmas, we have the
following result: ¢(f) € T if and only if Trg,, /r, () = 1.

Proof. We already know that ¢(f) € Z if and only if g(x) = 22 — az + 1 € Fan[z] is
irreducible, by Lemma 39. To use the previous proposition; multiply the polynomial

g by a2, define y := —Z and § := é:

$2 T

1
—2——+—2=y2+y+£.
a2 a o«

So this polynomial is irreducible if and only if Trg,,/m,(Z) = Trr,./m, () = 1.
Finally,

-1

1 1 1 1 1 l+a?2+a?+ ...+
Trp, r, o) " atmztozt -t = 5

gives us the desired result, using the facts o®" = o and Trpm, (9?) =9, V0 e F. O

Hence, for a given polynomial f € Z of degree n, if Trg,, /r, () = 1, then we can
use the transformation ¢ to obtain an irreducible polynomial of degree 2n, which is

invariant under S.
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4.3 To be invariant under 7 or ST'S

Definition 51. Define transformations ¢ and ¢sr from Fslz] to Fo[x] as ¢pr(f(z)) =
(T ¢(f))(x) and ¢sr(f(x)) := (ST - ¢(f))(x), for all f(x) € Falz].
Proposition 52. For f(z) € Fy[x], we have

a. STS - ¢r(f) = ¢r(f) and T - ¢sr(f) = ¢sr(f)-
b. ¢r(f) and ¢sr(f) are both of degree 2n.
Proof.

a. By Proposition 45, we get

STS - ¢r(f) =TST-(T-¢(f)) =T-(S-¢(f) =T-¢(f) = or(f)

and
T ¢sr(f) =T (ST-o(f)) = ST - (S-o(f) = 5T - &(f) = dsr(f).

b. Clear by Lemma 1, since ¢(f) is of degree 2n.

Proposition 53. For all f € Fy[z]i the following statements are equivalent:

i. ¢(f) is irreducible over Fy.
ii. ¢p(f) is irreducible over TFy.

iii. ¢gr(f) is irreducible over Fsy.

Proof. First, we will prove the statement 7. implies i. by showing the contrapos-
itive of it. Let ¢(f) be reducible over Fy, then ¢(f) = gh, for some nonconstant
polynomials g and h in Fyfz]|. So, we get

or(f)=T-(o(f) =T (gh) = (T -g)(T-g),

where both of the polynomials on the right hand side are nonconstant, by Lemma
1. So the reducibility of ¢(f) implies the reducibility of ¢r(f).

In fact, all other implications can be shown easily using a similar approach. [

So, for a given polynomial f € Z of degree n, if T'rgy/r,() = 1, one can use the
transformation ¢gr to find an irreducible polynomial of degree 2n which is invariant
under 7', and the transformation ¢ to find an irreducible polynomial of degree 2n

which is invariant under ST'S.
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5 Conclusion

Consequently, we defined a group action of the group GLy(Fs) on the set of
irreducible binary polynomials of degree > 2, studied on the orbits of the polynomials
taken from the set and also on the construction of several invariant polynomials of
higher degree, in the light of three articles.

In short, this master thesis can be considered as a half step for the generalization
of the results of Michon and Ravache in [1] and [3] to the F,-case, but it is also
nourished by the article [2] of Meyn. After all, one can extend (2.1) to a definition
of group action of GL;y[F,] on the set of irreducible polynomials of degree n > 2
over [, in a natural way. Then similar results to the [Fo-case will be valid in this

generalization, too.
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