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Abstract 

This thesis focuses on the research conducted on in situ process monitoring (cure and 

flow) of resin transfer molded glass fiber reinforced polymer composites using Fiber Bragg 

Grating (FBG), etched bare fiber optic sensors and Fresnel refractometers. 

In this direction, a laboratory scale resin transfer molding (RTM) apparatus was used 

with the capability of visually monitoring the resin filling process as well as embedding 

fiber optic sensors. Both FBG and etched fiber sensors are embedded into glass fiber rein-

forcements in the RTM mold, and are used to monitor the flow front during the resin injec-

tion and subsequently the cure cycle. Moreover, the cure cycle of the resin system utilized 

in this work is studied using an in-house developed Fresnel based refractometer. The data 

gathered from corresponding cure monitoring experiments have been compared with the 

results of polymer extraction experiments and excellent correlation between the results was 

observed.  

The embedded FBG sensors also allow the determination of mechanical stresses or 

loads on the in- service composite parts, through interrogating these sensors. This process 

is referred to as Structural Health Monitoring, which is not considered within the scope of 

this thesis work.  
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REÇĠNE ĠLETĠM TEKNĠĞĠ ĠLE ÜRETĠLMĠġ KOMPOZĠT YAPILARIN FĠBER OPTĠK 

SENSÖRLERLE PROSES GÖZETĠMĠ 

Gülsine Özdemir 

MAT, Master Tezi, 2011 

Tez DanıĢmanı: Ass. Prof. Dr. Mehmet Yıldız 
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Özet 

Bu tez, reçine iletim tekniği ile üretilmiĢ cam fiber takviyeli polimer kompozitlerin 

Fiber Bragg Izgara sensörleri, dağlanmıĢ optik sensörler ve Fresnel optik sensörleri 

kullanılarak proses izleme tekniği üzerine odaklanmıĢtır. 

Bu doğrultuda reçine dolum prosesini ve fiber optik sensörlerin kompozit yapıya en-

tegrasyonunu sağlayabilecek laboratuar boyutlarına uygun bir reçine transfer kalıplama 

aparatı kurulmuĢtur. Fiber Bragg ızgara ve dağlanmıĢ fiber optik sensörler RTM 

kalıbındaki cam takviyelerin arasına entegre edilmiĢ ve reçine enjeksiyonu esnasında akıĢ 

önü gözetimi ve bu iĢlemi takiben kürleĢme iĢlemi gözetiminde kullanılmıĢtır. Buna ek 

olarak reçine sisteminin kürleĢme devri Fresnel optik sensörleri ile de doğrulanmıĢtır. Kür 

gözetimi deneylerinden elde edilen veriler polimer ayrıĢtırma deneyleri sonuçları ile mu-

kayese edilmiĢ ve sonuçların kusursuz uyumu gözlenmiĢtir. 

 Bu araĢtırma aynı zamanda kompozit yapıların servis süreleri esnasında maruz 

kaldığı mekanik gerilimlerin sağlık gözetimi ile determinasyonunu da içermektedir fakat 

bu konu bu tezde ele alınmamıĢtır.  
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CHAPTER 1: INTRODUCTION 

Due to their strength-to-weight ratios, stiffness, corrosion resistance, and fatigue 

performance, composite structures offer many advantages over conventional metallic mate-

rials. They are utilized in a variety of load bearing structures such as helicopter rotor 

blades, aircraft fuselage, rib chord, trailing edges, cargo doors and pressure vessel [1]. 

Considering the manufacture of repeatable products, composites have relatively difficult 

processing characteristics in compared to metallic materials. For the reliability and the 

safety of composite components used as primary load carrying structures, it is vital to un-

derstand and control the manufacturing process thoroughly to ensure the high quality of 

manufactured components, which must meet the stringent requirements of relevant stan-

dards and specifications for structural composite members.  

 

A number of processing methods exist for continuous fiber reinforced thermoset 

composite materials. One of the manufacturing processes particularly suitable for manufac-

turing of structural composite components is resin transfer molding. In this process, fiber 

preforms (glass or carbon) are placed in a closed mold and resin is injected into the mold to 

saturate the preform. After the resin cures, the mold is opened and the final composite part 

is de-molded. The RTM method can produce complex, high quality, near net-shape parts in 

series production with high fiber volume fractions, a class-A surface finish and little post 

processing. The two most critical processing steps in RTM are the mold saturation (resin 

injection) and polymerization (cure) stages. Both stages have direct effects on the final 

quality of the parts since the transfer of loads from the resin matrix to reinforcement (glass 

fibers) depends heavily on the extent of successful saturation of fibers by resin, and the 

subsequent cure. Due to a high resistance to resin (a relatively viscous material) flow 

through the preform (a fairly low permeability material), geometry changes throughout the 

mold, and a phenomenon known as race tracking (Figure 1a) which creates an unbalanced 

or uneven resin flow in mold filling process, there might be regions not fully saturated with 

resin resulting in voids of dry-spots (Figure 1b). Such regions have a significant effect on 
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the structural integrity of the composite part since they are essentially a defect in the ma-

terial. The closed nature of the RTM manufacturing process hinders visual access to the 

resin flow since in industry molds are almost always made of non-translucent materials 

such as opaque composites or metals. Therefore, the RTM process must be fully controlled 

in order to ensure the production of high quality composite parts in a repeatable and con-

sistent manner within acceptable tolerances.  

 

 

Figure 1.  Race tracking phenomena (a), resulting in dry spots (b) 

The in-situ cure monitoring is also critically important in processing stages of 

composite materials since the curing behavior of thermosetting materials such as epoxy 

resins determines the processing time. For instance, if the composite part is prematurely 

de-molded, the part may fail to gain its green strength and stiffness and may deform or 

warp during or after the removal from the mold. Taking the part out of the mold belatedly, 

on the other hand, results in unnecessarily extended manufacturing time, and over curing 

of the part, which may adversely affect the desired mechanical performance of the compo-

nent. In other words, the mechanical properties of fiber-reinforced composites are seriously 

dependent on the chemorheological process taking place during the cure stage. Hence, the 

optimum duration of cure cycle is an important processing parameter to optimize the man-

ufacturing process. The term cure for thermosetting polymers refers to complex chemical 

reactions which take place between resin and hardener, which results in the formation of a 

cross linked structure. The cure cycle of a resin system consists of two main parts, namely 

gelation and vitrification. The gelation is an irreversible transition from a viscous material 

into an elastic gel during which the viscosity of the resin increases. It starts due to the exo-

thermic chemical reactions of the reactive groups in the polymer and continues progres-

sively by forming three dimensional dense polymeric network structures. 

(a) 

(b) 
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 When the network density has reached a critical value, the resin becomes a rub-

ber. In the vitrification stage, the resin system undergoes a transition from a rubbery state 

to solid state where the resin system can no longer flow as a result of the increased cros-

slink density due to the successive cross-linking polymerization reaction. The cure moni-

toring process relies on monitoring changes in the various physical or chemical properties 

of thermoset resin during its transition from liquid state into solid state. More often, com-

posite materials manufacturers rely on the recommendation of resin manufacturers for the 

cure schedule despite the shape and thickness of material. Therefore, reliable cure sensors 

are required. In this direction, there are substantial amount of work devoted to the devel-

opment of techniques required for characterizing the solidification transitions [2]. 

 

Towards this end, in literature, various forms of cure sensors have been suggested 

and developed. Some of them are based on conductometric [3, 4, 5, 6, 7], dielectrometric 

[8, 9, 10, 11] and ultrasonic [12, 13] techniques. In conductometric or resistive cure moni-

toring methods, conductor probes (point, lineal or junctions of weaved wires) are used as 

sensors. Cure monitoring relies on the monitoring of the conductivity change of the resin. 

In general, the conductivity of resin decreases as it cures. These probes can also be used to 

determine the resin arrival since electrical resistance between the probes decreases signifi-

cantly when the resin reaches probes. This method has a significant limitation in that the 

voltage change between the probes might be rather small and may not be distinguished 

from electrical noise. Ultrasonic cure monitoring methods are based on monitoring the 

changes in the characteristics of propagating ultrasound (time of flight and damping of the 

sound wave both in through-transmission and pulse-echo modes) due to the variation in the 

physical properties of the curing resin. Nevertheless, they also have some drawbacks asso-

ciated with the complex device requirements, low signal-to-noise ratio and temperature 

dependency. Dielectrometric sensors measure the capacitance of the media between the 

sensor plates. However, they are expensive, sensitive to electrically noisy environment and 

invasive to the structure. A summary of the currently utilized sensor technologies and me-

thodologies for flow and cure monitoring in composite manufacturing process is provided 

in [2].  
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However, these approaches have not received significant acceptance as cure sen-

sors for integration in composite manufacturing processes. In an attempt to find alternative 

and efficient flow and cure monitoring sensors for composite materials processing, fiber 

optic sensors have also been considered and studied by various research groups. Fiber optic 

sensors may be based on the absorption, reflection, refraction or emission of light. Quite a 

lot of different fiber optic sensor based methodologies have been attempted for cure cycle 

monitoring of polymeric resins such as transmission spectroscopy [14], evanescent wave 

spectroscopy [14, 15, 16], refractive index monitoring [14, 17, 18, 19], long period gratings 

[20], tilted fiber Bragg gratings [20] and Fresnel based refractometer [20, 21, 22, 23]. The 

main advantages that fiber optic sensors offer in comparison to their previously cited coun-

terparts are increased sensitivity, reduced weight and size, less intrusive in the host struc-

tures, immunity to electromagnetic interference, and the multiplexing ability that enables 

for sensing spatially distributed quantities. The fiber optic based cure sensors proposed in 

the literature for cure monitoring are not limited to those listed, a concise summary of fiber 

optic sensors for curing of thermosetting polymers are provided in [24].  

 

The present work distinguishes itself from earlier relevant work reported in litera-

ture in the following aspects. Most of the previous works which utilized fiber optic sensors 

for cure monitoring of thermosetting polymers have focused on showing the capabilities of 

one or two different sensors for a simple cure monitoring of polymeric resin in a container 

without considering process monitoring of operational composite manufacturing. Here, an 

integrated and systematic experimental study has been carried out to determine the effec-

tive usability of FBG optic sensors, etched fiber sensors for process monitoring of RTM 

composite manufacturing system and Fresnel based refractometer sensors for cure monitor-

ing of a polymeric resin system.  

 

             Fiber Bragg gratings (FBGs) have attracted attention within the last decade as 

sensing devices due to their lightweight, small size (less intrusive to host body) and im-

munity to electromagnetic interference [1, 25, 26]. An FBG sensor is a segment of a single 

mode optical fiber core with a small portion of periodically varying refractive index in the 

axial direction.  
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The grating segment acts as an optical filter by reflecting a specific wavelength 

back in the direction of the optical source or interrogator, while transmitting other wave-

lengths. The center wavelength of the reflected spectrum known as the Bragg wavelength, 

shifts if the FBG is subjected to the strain or temperature variation, thereby making it poss-

ible to measure these external effects [27]. They have been used to measure properties such 

as displacement, strain, temperature, pressure, humidity [27]. Within the scope of this the-

sis work the critical issue was simultaneously sensing of strain and temperature data in 

RTM experiments. The corresponding data could be identified with different methods. The 

simplest method involves bonding one half of a FBG to its host structure and leaving the 

other half free of mechanical strain (Figure 2). The section of the FBG that is bonded expe-

riences both strain and temperature changes while the free section experiences only tem-

perature changes. This way strain and temperature data could be analyzed simultaneously 

within the same experiment. 

 

 

 

 

 

 

Figure2. Temperature compensated FBG strain sensor in which half of the FBG is strain 

free and responds only to the local temperature. 

 

Embedded FBGs can be used for three distinct purposes during the life of a resin 

transfer  molded  part. An array of multiplexed FBGs in a mold can monitor the mold fill-

ing process and can ensure that the mold is completely filled with resin [28]. As stated be-

fore, once injected the resin must go through a specific time-temperature cure cycle. In 

complicated 3-D parts with varying thicknesses and surface areas, different regions of resin 

cure at different rates and  to varying degrees across the part. FBGs have been used to 

monitor the cure throughout the part [29, 30, 31]. Once in service, the embedded FBGs can 

be used in a variety of ways to monitor the health of the part thereby reducing maintenance 

costs and time while at the same time increasing safety.  

 

FBG Glued 

Section 

Structure Body 

FBG Free 

Section 
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The second type of optical fiber sensor used in this work is the etched fiber sensor 

(EFS). This type of sensor is quite simple; a small section of optical fiber is etched to ex-

pose the core of the fiber to the environment. When this etched region is surrounded by the 

resin flowing through the mold, the light power transmitted through the optical fiber 

changes, thus enabling the sensor to detect fluid. Since both EFS and FBG sensors allow 

light to pass there is potential for them to be multiplexed on one single fiber. Etched fiber 

optic sensors can be embedded in geometrically complex regions of composite where resin 

arrival is a concern. Additionally, with the help of many etched fiber sensors embedded 

throughout the mold the operator can understand where the resin has reached. Etched sen-

sors can also be used for the cure monitoring process as described in the following sec-

tions.  

During the life time of a composite structure, the etched sensors may also be used 

for structural heath monitoring qualitatively such that when interrogated, if there is a dis-

ruption or weakening in the transmitted light signal, one can conclude that the sensor loca-

tion is either excessively loaded or cracked. The third sensor is a Fresnel probe which is 

also used for cure monitoring through recording refractive index variation of the curing 

resin. 
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CHAPTER 2: EXPERIMENTAL SETUP AND PROCEDURES 

Resin transfer molding is a subcategory of liquid composite molding. The RTM 

process involves loading a two sided, fully enclosed mold with a fiber perform usually 

carbon or glass fiber, closing and clamping the mold, injecting resin into the mold until 

fully saturated, allowing the resin to cure and removing the molded part. The in-house 

RTM apparatus used within the scope of the present work has the flexibility of accommo-

dating different mold designs and mold thicknesses, with the feature of a glass viewing 

window to allow for visual monitoring of resin flow through fiber perform during the in-

jection process and thus to ensure that all dry spots become saturated. Figure 3 shows a 

schematic of the RTM process together with the lab scale in-house built RTM system.  

 

 

 

 

 

 
Figure 3. Schematic of the RTM composite manufacturing process (left), and the RTM 

apparatus together with optical equipments (right).  

 

The RTM apparatus in Figure 3 is a modular clamshell system with the flexibility 

of accommodating different mold designs and thicknesses. It has one inlet port, two outlet 

ports, two o-rings around the perimeter to contain the resin (one primary and one aux-

iliary), locating pins to ensure alignment with the upper half of the mold and nine remova-

ble sensors (six pressure, three temperature).  
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This mold produces a 305mm X 610mm X 3mm panel. In all experiments pre-

sented, biaxial glass fiber reinforcements (X 800 E05 800g/m
2
) manufactured by Metyx 

composite are used. In passing, we would like to note that all the techniques proposed and 

implemented in this work are also applicable to carbon fiber reinforcements. The epoxy 

resin system used is the mixture of ARALDITE LY 564 resin and XB 3403 hardener, 

mixed with the ratio of 100 and 36 parts by weight. After mixing the resin and hardener, 

the mixture is degassed for several minutes inside the pressure pot which is used to inject 

the resin system into already vacuumed and preheated mold.  

The ingress/egress of fiber optics is one of the important issues for embedding fi-

ber optic sensors into composite structures in a repeatable and consistent manner because 

the optical fiber is fragile at the ingress/egress location, and does not tolerate a sharp bend-

ing radius. Connector systems developed by the optical fiber communications industry are 

available, but they are too bulky for embedding into the composite structures without caus-

ing deterioration of the structural strength, or endangering the structural integrity. The 

closed nature of the RTM process as well as the very fragile nature of fiber optics makes 

the ingress/egress of FBG sensors into the mold challenging without breaking the sensors. 

In the literature, most of the studies have considered embedding fiber optic sensors into the 

composite plate structures produced with hand lay-up, and used the in-plane ingress/egress 

method. In the in-plane ingress/egress method, the ingress/egress point of an optical fiber 

is located at the edge of a composite laminate. However, this method can only be applied 

in the case of an open mold or hand lay-up. To remove a composite part from a mold it 

must be removed normal to the mold, therefore the embedded fibers must enter and exit 

through the mold in such a way that upon removal, the fibers are not severed. Towards this 

end, in the early works of our composite group, a novel through thickness ingress/egress 

method has been developed, which can overcome the limitations of the in-plane method 

and be applicable to closed mold processes such as RTM [32]. To protect the fiber with 

minimal disturbance to the composite material a thin hypodermic tube is placed around the 

fiber. This protects the fiber through the radius of the bend as well as reinforces the fiber at 

the ingress/egress point once the part is removed form the mold. A tapered silicone stopper 

was used to seal around the hypodermic tube. A custom fitting is used to keep the stopper 

and fiber in place. 
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Figure 4 shows the visualization of resin flow through a fiber glass reinforcement 

in RTM, the manufactured composite plates with embedded fiber optics sensors (FBG and 

etched) by using capillary tubes for ingress and egress, and three loop etched sensors for 

flow and cure monitoring.   

 

  

 
 

 

 

 

 

Figure 4. The visualization of resin flow through a fiber glass reinforcement in RTM, the 

manufactured composite plates with embedded fiber optic sensors (FBG and etched) by 

using capillary tubes for ingress and egress, and three loop etched sensors for flow and 

cure monitoring. 
 

As stated in the introduction section, an FBG sensor is a segment of a single mode 

optical fiber core with a periodically modulated refractive index in the direction of fiber 

length. The grating segment acts as an optical filter by reflecting a specific wavelength 

back while transmitting others as schematized in figure 5.  The periodic modulation of the 

refractive index at the grating location will scatter the light traveling inside the fiber core. 

Out of phase scattered waves will form destructive interference thereby canceling each 

other and in phase light waves will add up constructively forming a back reflected spec-

trum with a center wavelength known as the Bragg wavelength.  
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The Bragg wavelength satisfies the Bragg condition as  

 

 nB 2                        (1) 

 

where B  is the Bragg wavelength, effn is the effective refractive index of the fiber mode 

and   is the pitch of the gratings. The spacing of periodic refractive index modulation is a 

function of strain and temperature. If an FBG sensor is under a mechanical or thermal load 

(temperature variation), the spacing between gratings and effective refractive index of the 

fiber mode will change due to the strain, and thermal expansion, respectively. Since the 

Bragg wavelength B  is a function of the average refractive index and grating pitch, any 

change in these variables will cause the Bragg wavelength to shift, meaning that the center 

wavelength of the reflected spectrum changes. Expanding Eq. (1)  into a Taylor series 

yields the differential change in the Bragg wavelength resulting from applied strain and 

temperature variations as     
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where l is the change in the length of the grating section. Here, the terms  l/  and 

 l/n   correspond to a change in the grating spacing  due to strain, and the strain-optic 

induced change in the refractive index, respectively.  The terms  T/   and  T/n   

represent the change in the grating spacing due to the thermal expansion and the termo-

optic induced change in the refractive index, in the given order. Defining thermal expan-

sion and thermo-optic coefficients for an optical fiber as   T//   1  

and   T/nn/n  1 , respectively, one may write the shift in Bragg wavelength due to 

temperature and strain changes respectively as  

 

  TnBB    ,   xeBB p   1                              (3) 

 

where ep is the so-called effective photoelastic coefficient and defined as 

   2

12 11 12/ 2ep n p p p      and x  is the axial strain. Here, 11p  and 12p are the com-

ponents of strain-optic tensor, and   is the Poisson’s ratio [33].  
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Figure 5.  Schematic describing an FBG sensor 

 

Since the center wavelength of Bragg Grating sensors are sensitive to both tem-

perature variations and strain, in sensing applications where only temperature or strain 

measurement is of interest, the effect of temperature or strain on grating has to be compen-

sated to be able measure only one of these effects. Multiple Fiber Bragg gratings sensors 

can be easily multiplexed (written) onto a single strand of fiber, thereby forming an array 

of FBG sensors for sensing spatially distributed quantities over a large distance. The array 

of FBG sensors minimizes the number of ingress/egress locations during the embedding 

process in the smart structures.  

 

FBG sensors can be compatibly embedded in fiber-glass reinforced composite 

structures due to their small size and light weight without compromising the host’s struc-

tural integrity. In the case of structural strain monitoring, the load on the host is directly 

transferred onto the grating region through the shear action, hence causing the change in 

the length of the grating region. As a result, the grating spacing and the refractive index of 

the grating change, allowing the determination of mechanical properties of the structure 

through measuring the shift of the Bragg wavelength with respect to a reference value. The 

presence of the damage or defect formation in a composite structure alters the local strain 

distribution under structural load.  
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Hence, damage can be detected when the measured strain deviates appreciably 

from the value expected of a healthy structure at the sensor location. This allows one to be 

able to monitor the structural health of composite components under service conditions.  

 

In this work, we have used FBG sensors for both cure and flow monitoring. Since 

the curing process of polymeric fluid is exothermic in nature, and residual stresses build up 

inevitably in curing composites, recording the change in the Bragg wavelength due to 

thermal and  mechanical effects reveals the gelation and vitrification behaviors of the com-

posites. Also, injecting the resin into the RTM mold preheated to curing temperature 

enables one to monitor the resin front in that room temperature resin when reached to sen-

sor location will change the Bragg wavelength. The details of relevant experiments are 

provided in section 3. In this work, we have shown the promising potentials of FBGs to 

monitor flow front as well as composite cure mechanism in the RTM system. Since the 

embedded sensors become an integral part of the final structure after the curing process, 

these sensors can be used to gather data about mechanical changes that will affect the per-

formance of the structures. 

 

The second type of optic sensors utilized in this work are etched fiber sensors 

used to monitor both resin flow front, as well as cure behavior of thermosetting polymeric 

resin. This sensor operates in the transmission mode such that a light source sends light 

into one end of the fiber optic and an optical spectrum analyzer (OSA) measures the 

transmitted light intensity at the other end. Etched fiber sensor is a bare optical fiber with 

discrete 3-4 mm etched regions where the cladding thickness is reduced. In this etched 

area, the external medium essentially becomes a part of the fiber waveguide. If the refrac-

tive index of the external medium is smaller than the core of the fiber, there will only be a 

small perturbation to the fiber mode, and a low loss single mode will still be supported. On 

the other hand, if the refractive index of the external medium is larger than that of the fiber, 

the propagating mode will be a leaky mode. This leaky mode can be viewed as a decaying 

mode due to optical leakage into the higher refractive index medium. Since the refractive 

index of the resin is larger than the fiber core, there will be a significant power drop as the 

resin reaches the etched area, and this property can be employed to monitor resin flow.  
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The amount of optical leakage (loss) depends on the cladding thickness, etched 

portion length, and more importantly the refractive index of the external medium. The 

etched fiber can be modeled using equations in [34], and it was shown that the amount of 

loss will increase as the refractive index of the external medium approaches the cladding 

refractive index. Since the refractive index of curing resin changes during the curing cycle, 

we have demonstrated that it is also possible to monitor the curing of the RTM manufac-

tured composites with the same etched sensors effectively. As a third methodology utilized 

for cure monitoring, we have designed and implemented fiber optic Fresnel based refrac-

tometer whose working principle and experimental configuration are described in coming 

section.   
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CHAPTER 3: EXPERIMENTAL IMPLEMENTATIONS AND RESULTS 

3.1. Flow and cure monitoring with FBG sensors 

 
 

Several experiments for cure monitoring of RTM manufactured composite plates 

by using polyamide coated FBG sensors with an outer diameter of 148 µm were per-

formed. The Bragg wavelength shift of the FBG sensor was monitored by a Micron Optics 

interrogator of the model sm230. Results of three of these experiments are summarized in 

Figure 6.     

 

In all three experiments, nine layers of biaxial glass fiber reinforcements are used. 

FBG sensors are positioned on the fifth ply and fourth ply for the first and the second expe-

riments, and on the seventh ply for the third experiment. In the third experiment three FBG 

sensors are multiplexed on a single fiber. The center wavelength of FBG sensors are 

1549.76, 1549.905, and 1545-1555-1565 nanometers for the first, second and third experi-

ments, respectively. In the first experiment, room temperature resin is injected into the pre-

heated RTM mold (roughly 30 Celsius to remove the moisture). The first sudden drop in 

Bragg wavelength in figure 6a is due to the arrival of room temperature resin on the FBG 

sensor, which proves the effectiveness of FBG sensors for resin flow front monitoring. 

Subsequently, the mold is heated to cure temperature of 50 Celsius, which results in an 

increase of the Bragg wavelength. The fluctuations in figure 6a correspond to a region 

where the temperature of the mold was set to the cure temperature. Since the cure process 

is exothermic in nature, the released heat further increases the center wavelength of the 

FBG sensors. As the strength of exothermic process diminishes, the water cooling system 

under the RTM mold attempts to bring the temperature of the curing plate to the preset 

cure temperature, which is observed in all subfigures of figure 6 as a decrease in the center 

wavelength of the FBG sensor.  
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However, given the presence of the residual stress built-up (due to various effects 

such as thermal gradients, shrinkage, and differentials in thermal expansion coefficients) in 

the curing composite plate, the Bragg wavelength does not return to level which corres-

ponds to the value observed at the preset mold temperature. This case is much more ob-

vious in figure 6c since the FBG sensor was positioned on the seventh ply (off-neutral 

axis) while in the first two experiments FBG sensors were placed close to the neutral axis. 

As the polymerization reaction nears completion, the center Bragg wavelength levels off. 

The region marked with two vertical lines then corresponds to the curing of the epoxy resin 

system. The closer the sensor is to the neutral axis, the less strain effect it experiences. 

Since the strain induced on the structure during the curing process is quite complex in na-

ture, not to preclude the ability of FBG sensors for cure monitoring, FBG sensors should 

be placed in structures such that it should experience minimum level of residual strain. In 

the second and third experiments, the resin is injected into a mold heated to 50 degrees 

Celsius. On the arrival of the room temperature resin to the FBG sensor (at mold tempera-

ture), a drop in the wavelength is observed. As the resin gradually reaches the preset cure 

temperature, the center wavelength of the FBG sensors increases. The horizontal line in 

figure 6b indicates the preset mold temperature. Regardless of experimental conditions, in 

all experiments, the tendency of wavelength versus processing time is identical, thereby 

implying the effectiveness of FBG sensors for cure monitoring for RTM composites. 

 

Flow monitoring is achieved with three FBG sensors multiplexed on a fiber optic 

cable. The arrival of resin is sensed due to the contact of resin at room temperature with 

FBG sensors at mold temperature. The first FBG was positioned near the inlet the second 

one towards the middle of the mold, and the last one near the outlet port. Figure 6d indi-

cates the flow front monitoring in RTM system with FBG sensors. To be able to present 

the changes in the Bragg wavelength of three FBG sensors on the same plot, Bragg wave-

length λB values recorded during the resin injection process are subtracted from those val-

ues λB,o recorded before the injection. The sudden decreases in the normalized Bragg wa-

velength values (λB-λB,o) indicate the times when epoxy resin reaches the sensor. 
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(b) 

Fluctuations in Bragg wavelength (λ) correspond to the attempts of 

setting the mold temperature exactly to 50o Celsius cure tempera-

ture. 

The mold is being heated up to the cure temperature of 50o Celsius       

The resin injection process starts, and the drop in Bragg wavelength 

is due to the arrival of resin onto the FBG sensor.     

Cure (a) 

Cure 

Due to the residual strain effect, the Bragg wave-

length does not come back to the value which cor-

responds to the preset mold temperature. 

The obvious increase in the Bragg wave-

length is due to the residual stress. 

The resin injection process starts, and the drop in Bragg wavelength is 

due to the arrival of resin at room temperature onto the FBG sensor.     

(c) 

Cure 
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Figure 6. Experimental data for Bragg wavelength versus processing time for cure and 

flow monitoring by FBG sensors, a-) experiment-1, b-) experiment-2, c-) experiment-3 for 

cure monitoring, d-) experiment-3 for flow front monitoring with three multiplexed FBG 

sensor array, e-) Positions of the FBG sensors for the 1
st
 2

nd
 and 3

rd
 experiments in 9 plies ( 

Red : 5
th

 , Black : 4
th

 , Blue : 7
th

 experiment ), positions of the FBG sensors in the mould 

 

2nd FBG 

sensor 

1st FBG 

sensor 
3rd FBG 

sensor 

 

The resin injection has started   

(d) 

Plies increasing in number 

1 9 

(e) 
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3.2. Flow and cure monitoring with EFS: Fabrication and Characterization 

  

For process monitoring, it is preferable to use a polyamide coated fiber as an 

etched sensor due to its smaller outer diameter of 148 µm than acrylate coated fiber since it 

is less intrusive to the composite structure. However, it is more difficult to strip the polya-

mide coating compared to acrylate. Therefore, for the sake of experimental simplicity in 

the fabrication of etched sensors, acrylate coated single mode optical fibers (SM-G652D 

by fujikura, and optomagic) with the coating and cladding diameters of 250 and 125 µm 

respectively are used. In order to optimize the etched sensor preparation process and cha-

racterize the performance of the etched sensors, a number of optical fibers were etched for 

different time durations. Their remaining thickness and corresponding drop in the transmit-

ted light intensity level when put in contact with the epoxy resin system was measured. 

Hereafter, the term “resin system” is used to refer to the resin-hardener mixture.  

 

The optical fiber is stripped at sensor locations of interest by 3-4 mm with a me-

chanical optical fiber stripper. In order to trap light core of the optical fiber(silica) must be 

surrounded with a smaller refractive index cladding(silica with different ingredients). 

Generally core of an optical fiber has a refractive index of 1.457 whereas the cladding has 

a refractive index of 1.455.This difference helps the light travel across the fiber without 

any loss.When the cladding thickness decreases light can escape from  these portions when 

surrounded by a higher refractive index environment such as resin.This sudden intensity 

drop can be observed by the optical spectrum and so flow front can  be exactly determined. 

 

 The stripped section of the optical fiber is looped for two purposes: first, to facili-

tate the handling process of already fragile optical fiber and second, to increase the bend 

loss so that light intensity drop due to resin arrival is greater and more easily separated 

from the noise due to the movement of the sensor . Both ends of the looped sensor are fu-

sion spliced to connectorized pig-tails. The connectorized sensor is connected to a broad-

band light source at one end and to the optical spectrum analyzer (OSA) (Yokogawa 

AQ6370B model) at the other end.  
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TEFLON 

A software interface is written to transfer the data from the OSA to a data acquisi-

tion computer. The interface is able to record data continuously at a desired time interval 

throughout experiments as both the maximum light intensity and total light power. The 

etching process is conducted on a teflon-jig by forming a small droplet of hydrofluoric acid 

(38 % HF) on the stripped regions. The teflon-jig has a 3mm diameter spot face that is 

roughly 5mm deep to contain the HF droplet (Figure 7c). For the quality of the sensor, it 

should be ensured that the HF droplet encloses the entire volume of stripped sections. Dur-

ing the etching process, the optical fiber is connected to the broad band light source and 

OSA. Etching process is terminated through washing off the HF with methanol. 

 
(a)                                                                           (b) 

 

   

(c) 

 

(d) 

Figure 7. a-) remaining thickness of the fiber optic cable as a function of etching time, b-) 

the drop in the light intensity of etched sensors as a function of etching time, c,d-) optical 

fiber etching setup 

DROP OF HF 
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The results of our sensor fabrication and characterization experiments are summa-

rized in figure 7. Figure 7a presents the remaining thickness of the etched fiber as a func-

tion of etching time, while Figure 7b shows the drop in the light intensity as a function of 

etching time. Note that the drop in the light intensity is measured when the etched fiber is 

inside the epoxy resin system. We have experienced that handling optical fibers without 

breaking becomes almost impossible if excessive etching is utilized. Therefore, consider-

ing figure 7a and 7b together, one can conclude that the remaining fiber thickness of 

roughly 65-67 µm corresponding to the etching period of 50-55 minutes, which yields an 

intensity drop of roughly 8-12 dBms is sufficiently large for sensing the resin arrival while 

still providing handleability. As a result of our experiments to optimize the sensor prepara-

tion process as well as characterize the performance of the etched sensors, we have con-

cluded that 50-55 minutes etching time is appropriate. Several etched sensors can be 

formed (multiplexed) on a length of a single mode optical fiber. There is no restriction on 

the number of etched sensor that can be created on an optical fiber if the light source is 

powerful enough. Otherwise, due to the excessive leakage of the light power at sensor lo-

cations, the intensity drop might be indistinguishable for each etched sensor out of experi-

mental noise.  

 

To validate the ability of etched sensors for cure monitoring and show that it is a 

repeatable and reliable process, several hot plate experiments were conducted. The results 

of four of these experiments are summarized in figure 8. In this direction, several etched 

sensors are prepared and characterized. In each experiment a single etched sensor is used.  

The sensor is dipped into resin system in aluminum container at room temperature, and 

subsequently the resin system is heated to curing temperature of 50 Celsius by the hot 

plate. The temperature of hot plate is continuously monitored with a thermometer dipped 

inside the water which is also heated simultaneously on the same hot plate. In one of these 

experiments, along with monitoring the variation of transmitted light intensity, the thermal 

history of the curing process is also recorded with a pyrometer as shown in figure 8d.   

 

 



32 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 8. a-d) the variation of transmitted light intensity (TLI) as function of processing 

time. The regions denoted by numbers in above figures correspond to following stages: 1-) 

transmitted light intensity that is recorded when the sensor is in the air.  2-) the drop in the 

transmitted light intensity on immersing the etched sensor into the resin-hardener mixture. 

3-) due to the heating of resin to cure temperature, the temperature of the resin system rises 

up, decreasing the resin refractive index, hence leading to a sustained decrease in the light 

intensity. 4-) when the exothermic reaction in curing process starts, the refractive index of 

the resin mixture starts increasing, hence causing a continuous increase in the transmitted 

light intensity. 5-) The transmitted light through the optical fiber decreases gradually be-

cause of an increase in the bulk optical loss of the polymerizing resin, which spreads over 

longer time periods.  

 

As can be seen from figure 8-a, on dipping the etched sensor into a heated resin 

system by the hot plate, the first intensity drop in the transmitted light is observed due the 

fact that the etched sensor was put in contact with an environment with a higher refractive 

index than the core and cladding. Therefore, more light escapes from the etched region. 

Due to the heating of resin to cure temperature, the temperature of the resin system rises, 

thereby decreasing the resin refractive index leading to a sustained decrease in the light 

intensity. It is known that the refractive index of a polymerizing resin changes as the mole-

cular density increases and as the molecular bond number involved in the polymerization 

processes are altered.   
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With the initiation of the exothermic curing process, the transmitted light intensity 

starts increasing due to the increase in refractive index of the resin mixture. As can be 

clearly seen from figure 8b, the transmitted light through the optical fiber gradually de-

creases because of an increase in the bulk optical loss of the polymerizing resin, and levels 

out after roughly 9-12 hours, indicating that cure process is near completion. This cure 

time is in very good agreement with that observed using FBG sensors. All experimental 

results support each other. The slight variations between experimental results can be attri-

buted to etched length and thickness of the sensors, and the position of the sensors inside 

the resin container. The temperature sensitivity of the etched sensors can be noted by look-

ing at the oscillatory behavior of the recorded data. Given that the hot plate used in our 

experiments has an on and off controller to maintain the preset temperature, these fluctua-

tions in measured data are due to the attempts of the hot plate to adjust the heating power 

to approach to the preset temperature value. This nature of the hot plate is also confirmed 

by looking at the pyrometer data in figure 6d which presents the recorded thermal history 

of the curing process.     

 

To further investigate the ability and effectiveness of etched sensors for resin flow 

front and cure monitoring in the operational RTM composite manufacturing system, expe-

riments were conducted with 9 layers of biaxial glass fiber reinforcement. Three etched 

sensors multiplexed on a length of bare optical fiber were located between the fifth and 

sixth plies in the RTM mold. The sensors are monitored during the resin injection process 

to detect the presence of resin and possible dry spots. All etched sensors were prepared 

with the etching time of 50-55 minutes, and each of them is fully characterized during their 

preparation in terms of the light intensity drop. The first etched sensor is placed near the 

mold inlet, the second one in the middle of the mold, while the last one was positioned 

towards the outlet port. For etched sensors, the maximum light intensity was continuously 

monitored. In the same experiment, an FBG sensor was placed between the same fiber lay-

ers in the middle of the mold (see figure 6a). 
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Figure 9a and 9b indicate the segment of entire the RTM process history recorded 

by etched optical sensors as given in figure 9c. Recall that the RTM mold in our experi-

mental set-up has a glass window for visual flow monitoring, which is placed on the bot-

tom surface of the top lid of the mold and fixed therein by means of a room temperature 

vulcanizing aerospace grade silicon. Due to the flexibility of the silicon, when the mold 

under vacuum, the glass window is sucked towards the mold cavity exerting more force on 

the etched sensors at their mold ingress and egress points, hence causing a significant drop 

in the intensity of the light passing through the optical fiber. This situation corresponds to 

the first drop in transmitted light intensity as shown in figure 9a. At that point, to be able to 

release forces on the sensors, the vacuuming process is terminated and the air inlet to the 

mold cavity is allowed. As a result, the transmitted light intensity returns back to its initial 

level. It should be noted that when the mold is closed after the sensors have been posi-

tioned within the mold, the intensity of the transmitted light also drops due to the clamping 

force which over-bends the optical fiber at its ingress and egress points. On launching the 

resin injection process, the clamping force that causes a drop in transmitted light intensity 

is counter-balanced by the positive pressure of the injected resin so that the transmitted 

light intensity tends to increase slightly.  

 

Once the resin has reached the first etched sensor, the transmitted light intensity 

drops. As the resin injection proceeds, the clamping force on the optical fiber is further 

balanced by the pressure of the injected resin, and therefore, the optical fibers are bent less 

and less at the ingress and egress points. This reflects itself as a slight increase in the 

transmitted light intensity. When the resin has reached to the second and third sensors, the 

transmitted light intensity drops again, and then starts increasing again due to the counter-

acting pressure effect of the resin. Figure 9a clearly shows that it is possible to record the 

flow process entirely in terms of resin arrival. To be able to create an entire map of the 

flow process, a number of discrete etched sensors should be used. Having completed the 

infusion process at room temperature, the curing cycle is launched by heating-up the mold 

to the curing temperature of 50 Celsius. As concluded from figure 9c, with the data acqui-

sition interface developed, we are able to monitor the composite manufacturing process 

until it is terminated.  
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Figure 9. a-) The entire history of the RTM process recorded with etched sensors as a light 

intensity versus processing time, b-) and c-) the close-up view for a segment of a light in-

tensity drop versus processing time curve. It should be noted that the drop in the light in-

tensity is sum of those due to three multiplexed etched sensor.    

  

 

3.3. Cure monitoring with Fresnel Probe 

 

To characterize the refractive index change of resin, hardener, and resin-hardener 

mixture as a function of temperature as well as monitor the curing of the resin system with 

a Fresnel probe, a Fresnel reflection based refractometer (FRR) [35] was built. The FRR 

optic circuit constitutes a broad band light source, an optical circulator and an OSA. A sin-

gle mode optical fiber connectorized at one end is cleaved at its free end to form a Fresnel 

probe. The connectorized end is coupled to the second port of an optical circulator with the 

first and third ports connected to a broad band light source, and OSA, respectively. After 

inserting the Fresnel probe into the resin-hardener mixture, the mixture is heated to the 

preset temperature value of nearly 50 degrees Celsius with a simple hot plate without uti-

This section corresponds to curing of epoxy resin system, which 

lasts roughly 10-12 hours. This result is consistent with those 

obtained by using FBG sensors as well as hot-plate experiments 

with etched sensors.  

(a) 

Start of resin injection 
(b) 

Sensor-1 

Sensor-2 
Sensor-3 

Sensor-1 

Sensor-2 

Sensor-3 

(c) 
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lizing any specific or constant heating rate. Figure 8 indicates the reflected power as a 

function of time for two independent experiments. In the experiment given in figure 10b, 

temperature data was collected concurrently with a pyrometer. 

 

Assuming that the free end of the fiber is cleaved such that the light is at a near-

normal incidence to the interface, the reflection coefficient R is given by the Fresnel equa-

tion as    
2 2

/ /s

r i s f s fR P P n n n n    , where s

rP  and iP  are powers of the reflected 

light from the sample ( s a  for air, s l  for resin) and the incident light, respectively, 

and sn  and 
fn are the refractive index of sample and fiber in the given order. The refrac-

tive index of the liquid medium (resin, hardener, or resin-hardener mixture) can be deter-

mined with the above described FRR optic circuit through measuring reflected powers a

rP , 

l

rP  when the Fresnel probe is in the air and then in the liquid medium. On writing Fresnel 

relation for air and liquid medium, and then dividing them to each other, one can write 

       
2 2 2 2

/ /l a

r r l f a f l f a fP P n n n n n n n n     . Taking the refractive index of the air 

and fiber as 1 and 1.45, respectively, one can compute the refractive index of the sample 

through the above given relation using measured reflected powers from air and liquid. The 

experiments revealed that at room temperature refractive index of resin and hardener alone 

are 1.54 and 1.48 correspondingly while the refractive index of resin and hardener mixture 

is 1.52 before curing process.  

 

In accordance with the Fresnel relation and taking the refractive index of the fiber 

as roughly 1.45, when immersing the Fresnel probe into the resin-hardener mixture at room 

temperature, the reflected power drops significantly from the value measured when the 

Fresnel probe is in contact with the air to the value in figures 10a and 10b   at time zero 

since l an n . When heating the resin-hardener mixture with a hot plate, the reflected 

power gradually decreases. This drop is due to the temperature dependent decrease in the 

refractive index as the resin system is heated up since at this point the resin and hardener 

have not mixed thermochemically. Due to the exothermic heating of the resin system, the 

temperature of the resin system increases more, hence causing additional drop in reflected 

power. 
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(a) 

 

 
 

(b) 

 
 

(c) 
 

Figure 10. a-) and b-) the record of reflected light power (RLP) and temperature (T) as a 

function of time. To demonstrate the repeatability of experimental procedure, this experi-

ment was performed several times. Except negligible differences due to experimental ori-

gins, results are satisfactorily repeatable. It is to be noted that since we are interested in the 

tendency of refractive index change due to temperature variation and cross-linking poly-

merization, measurements are given in terms of reflected power not in terms of real values 

of the refractive index of the liquid, c-) temperature and Bragg wavelength variations as 

function of time recorded by a pyrometer and an FBG sensor, respectively. 
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Subsequent to the decrease in the reflected power, there is a rapid increase in the 

reflected power since the resin system starts experiencing transition from liquid to a rub-

bery state (gelation). Thus, the sudden increase at the reflected power corresponds to the 

initiation of exothermic cure reaction. As the exothermic reaction loses its strength, the 

temperature of the resin system tends to drop down to the preset experimental temperature. 

The point where ripples have started is considered to be the time when the mixture has 

nearly reached the 50 degrees Celsius preset temperature. As mentioned previously, these 

ripples are due to the on-off nature of the hot plate controller. As the cure process contin-

ues, the cross-link density of the polymerizing resin increases, resulting in an increase in 

the reflected power and in turn the refractive index. The point where the graph reaches to 

steady state is considered as the completion of the curing process to large extent. In view 

of this, one can see that the steady state has been reached after roughly 9 hours which is in 

agreement with the cure time measured with both FBG and etched sensors. In one of the 

experiments, in addition to recording temperature of curing resin with the pyrometer, we 

have also monitored the temperature variation during curing process with an FBG sensor 

with a center Bragg wavelength of 1540 nm to validate the occurrence of the sudden rise in 

temperature of the resin system due to the exothermic curing reaction as shown in figure 

10c.   

 
 

Figure 11. The variation of reflected power for several heating and cooling cycles. Heater 

is turned off, and the resin is cooling in air (red arrow), then heater is on, resin is heating 

up (blue arrow). This data shows that the polymer has a negative thermo optic coefficient. 

 

 

In additional experiments following the above described procedure, the optical 

behavior of the resin alone has been investigated by measuring reflected power as a func-

tion of time corresponding to increase in the temperature of the liquid medium.  
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Having obtained the significant drop in reflected light power on immersing Fres-

nel probe into the epoxy resin, the heater was turned on. The heater was preset to 75 de-

grees Celsius. As the resin temperature increases the reflected power decrease, implying 

that the refractive index of the resin decreases with an increase in temperature. As shown 

in figure 11, this experiment is repeated for several heating and cooling cycles by turning 

off the heater when the preset temperature of 75 Celsius is reached and subsequently turn-

ing on again as the temperature decreases down to 30 degree Celsius. In figure 11, the 

slope of the reflected power versus time graph is shallow when the reflected power is rec-

orded in the cooling mode in the air since heating rate is much bigger than the cooling rate 

in the air. The refractive index is inversely proportional to temperature for the resin alone. 

    

To validate the cure monitoring abilities of three sensors studied in this work, po-

lymer extraction experiments were performed to determine the degree of cure as a function 

of process time. Therefore, several samples of the epoxy resin system are prepared and cast 

in a Teflon mold. These samples are then cured at 50 degree Celsius for different time du-

rations of 2 to 12 hours. Having removed a sample from the mold, its mass is measured 

and subsequently wrapped with tissue paper, and put into the solution of tetrahydrofuran 

solvent. The solvent removes the uncured epoxy resin over a period of 24 hours, leaving 

the fully cured part behind. After taking the remaining sample out of the extraction ma-

chine, it is dried inside an oven for some time. The final mass of the sample is measured to 

determine the percentage of cure. The results of the extraction experiments are summarized 

in figure 12. From this figure it could be concluded that this specific epoxy resin system 

completes its cure period in almost 9-12 hours. This result is consistent with the data ob-

tained with the optical sensors. 
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Figure 12. The degree of cure as a function of time. 
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CHAPTER 4: Conclusion and Future Work 

4.1. Conclusion 

 

FBG sensors possess several advantages as flow, cure and subsequently structural 

health monitoring sensors in composite structures because of their small size, simple struc-

ture, light weight, corrosion resistivity, immunity to electromagnetic field interference, 

multiplexing capability, and long service life. They can be embedded into the structure and 

act like a part of the system without changing any mechanical characteristics. Etched fiber 

sensors provide data about the resin flow front ensuring that the mold is fully saturated. 

With the help of many etched fiber sensors embedded throughout the mold the operator 

can understand where and where not the resin has reached. In addition to being used for 

resin flow monitoring in the mold filling process, these sensors can be used for determin-

ing the degree of cure, which is required to find out the optimal time for de-molding. In 

this work the systematic experimental studies for process monitoring (cure and flow moni-

toring) for RTM manufactured composite materials is presented. The ability of etched sen-

sors for resin flow front monitoring as well as cure monitoring in operational RTM process 

is demonstrated. Since the refractive index of the resin-hardener mixture is a function of 

temperature, and the degree of cross-linking, the transmitted light intensity through fiber 

with etched sensor varies depending on the environment surrounding the etched segment of 

the fiber, thereby enabling one to monitor the curing process of polymeric resin. This con-

clusion has been correlated with cure monitoring results from FBG sensors as well as a 

Fresnel probe. It has been demonstrated that FBG sensors can also be effectively used for 

tracking resin flow front. In conclusion, etched and Fresnel sensors can be used as a sim-

ple, cost effective alternative to FBG sensors for process monitoring in composite mate-

rials manufacturing. The experimental results presented show the potential and the effi-

ciency of the three optic sensors for providing real time information about the processing 

stages of RTM composite manufacturing systems.    

 



42 

 

4.2 Future Work 

 

In light of the research presented in this thesis work, followings are issues which can be 

addressed as a continuation of the current project.   

 

 The etched fiber sensor preparation should be automatized for better response from 

the sensors 

 The ingress and egress of optical sensors into composite parts produced by closed 

mold process should be improved for industrial level usage. 

 The cost of EFS is quite low when compared to FBG sensors. Hence,  EFS could be 

used in other polymer processing industries such as rubber industry in order to de-

termine the optimal curing time of different polymeric compounds and monitor the 

over all-curing process. 

 Fresnel refractometers could be used to gather data about the refractive indices of 

different materials. Like EFS, they could also be used in industry to monitor curing 

process of polymeric materials. 
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APPENDIX A 

 

RTM EXPERIMENTS 
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