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Abstract: Deep learning is now present in a wide range of services and applications, replacing
and complementing other machine learning algorithms. Performing training and inference of deep
neural networks using the cloud computing model is not viable for applications where low latency is
required. Furthermore, the rapid proliferation of the Internet of Things will generate a large volume
of data to be processed, which will soon overload the capacity of cloud servers. One solution is
to process the data at the edge devices themselves, in order to alleviate cloud server workloads
and improve latency. However, edge devices are less powerful than cloud servers, and many are
subject to energy constraints. Hence, new resource and energy-oriented deep learning models are
required, as well as new computing platforms. This paper reviews the main research directions for
edge computing deep learning algorithms.

Keywords: artificial intelligence; deep learning; deep neural network; edge computing

1. Introduction

Over the last thirty years, Deep Learning (DL) algorithms have evolved very fast and have
become promising algorithms with better results than other previous machine learning approaches [1].
Nonetheless, DL depends on the availability of high-performance computing platforms with a large
amount of storage, required for the data needed to train these models [2]. Cloud computing has been
the preferred computing model for running machine learning models, using data centers where a huge
amount of processing power and storage is available [3,4].

However, the exponential increase of data traffic and low-latency requirements of many deep
learning services are challenging this centralized computing model to guarantee the required quality
of service [5]. The high bandwidth demanded of the communication networks to move such a volume
of data is another important problem. Recent studies [6] report that by 2030, there will be an estimated
50 billion Internet of Things (IoT) connected devices. The traffic generated by all these devices will be
close to 850 Zettabytes (ZB) by 2021, exceeding forty times the traffic generated in data centers [7].

Sending all these data to a central cloud to be processed has many problems. Cloud centers will
soon exhaust the capacity to process such a massive amounts of data, and the communication networks
will soon exhaust the available bandwidth [8,9]. Many DL applications have latency constraints, which,
when not fulfilled, may have catastrophic consequences like, for example, autonomous driving [10].
Additionally, security and privacy matters are important when dealing with user data in a myriad of
applications. Applications associated with smart cities and smart homes are a classical illustration of
the need for privacy and security [11].
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These limitations lead to the adoption of the edge computing paradigm [12], that is running
DL near the edge, close to the source of the data [13]. Edge computing is a distributed computing
paradigm that brings computing resources, memory, and services close to where the data are produced.
This is a way to speed up responses and reduce dependencies on the availability of communication
bandwidth.

A clear definition of the boundaries of the edge computing infrastructure does not exist. For most,
the edge is a layer between the cloud and the user, where by “user”, it is meant a device or a container
of several users [14]. In this paper, the edge layer is assumed to include all processing, storage, and
networks surrounding the end device itself. At the edge, there may be several layers of processing
and storage, including the device, customer premises, and edge servers. In this context, edge devices
include end devices and edge nodes. End devices include all mobile devices, gadgets, and wearables
that collect data and are closest to the user. Edge nodes include routers, switches, base stations, servers,
cloudlets, microdata centers, and all kinds of servers deployed at the edge.

Several applications already benefit from using services and applications running on the edge.
These applications can considerably be improved with DL algorithms, which determines the urgent
necessity to be able to run these algorithms at the edge. Examples include:

1. Smart cities: DL algorithms help improve the data traffic management, the privacy of city data,
the local management, and the speed of response of smart city services [15];

2. Smart homes: home living improvement to help people with personal data analysis and
adaptation of services to different personal behaviors. Once again, personal data privacy is
important and requires data processing services closer to the user [16];

3. Automated driving: Self-driving vehicles like cars and drones require a real-time response
and highly accurate object classification and recognition algorithms. High-performance edge
computing, including DL algorithms, is necessary to guarantee accuracy and real-time response
for self-driving vehicles [10];

4. Industrial applications: accurate DL algorithms are needed to detect failures in production
lines, foment automation in industrial production, and improve industrial management. These
workloads must also be processed locally and in real-time [17].

Distributed computing platforms for edge computing will alleviate the computing and storage
pressure on the cloud and make it easier to guarantee performance constraints [18]. These two
computing paradigms differ in many aspects (see Table 1). They are not mutually exclusive, but, instead,
must collaborate with each other to provide reliable high performance and storage requirements [19].
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Table 1. Comparison of cloud computing versus edge computing.

Metric Cloud Computing Edge Computing

Computing Power Cloud servers are powerful
computing machines, but shared by
many users

Edge servers and devices are
computationally less powerful, but
shared only in a limited area

Latency Services run faster in cloud servers,
but the access to the servers is
done through public communication
networks with a high and variable
latency

The proximity of edge servers
and devices to the source of data
improves the latency between
service request and answer; it allows
real-time services

Bandwidth Since all processing is done
at the cloud, all data need to
be transmitted to the cloud
servers; therefore, it requires
high communication bandwidth

Since some or all of the processing
is done at the edge, close to
the data source, it requires less
communication bandwidth

Cost Cloud usage has a cost and requires
a large costly bandwidth to transfer
data. Both increase with the addition
of new data sources

Local processing with edge servers
and devices reduces communication
costs

Security Transferring sensitive data to
the cloud using public shared
communication links reduces
security and privacy

Edge computing reduces
data-sensitive transfer, which
increases security and keeps data
private

Services Cloud services are offered at the
application level to be generic
enough to satisfy more customers

Distributed and local computing
allows services at the task level
directed to specific needs of a user
or customer

Management Central services are easier to
manage; from the point of view of
the user, it offers a free management
service

Edge services are harder to manage
since they are distributed and closer
to the user

Energy Computing platforms of cloud
centers are not energy-constrained;
the main goal is performance

Edge and end devices are
energy-constrained; performance is
traded off with energy

Edge computing is a paradigm already applied in many areas and services [20] and has recently
been considered a candidate for running DL models [21]. While a good idea, this new DL service
requires high computational and memory resources, which is a problem. Edge servers and end devices
have much less computing and memory resources compared to a cloud data center [22]. Several
research directions have been followed to overcome these limitations: (1) new architectures for edge
servers integrated with cloud servers for an efficient computational coordination [23]; (2) new DL
models with computing, memory, and energy concerns; (3) new hardware-oriented optimizations to
improve performance and energy efficiency; (4) and new computing architectures oriented toward DL
models. This article provides an overview and review of the approaches proposed in each of these
research dimensions.

Previous reviews on the same subject have focused on the deployment of DL methods, such as
Deep Neural Networks (DNN), into edge computing, with an emphasis on how the edge infrastructure
is used for inference and training [13,18,24]. Others focus on hardware architectures for running
DNNs [25]. This paper stresses the importance of considering simultaneously all four dimensions
(edge computing architecture, model design, model optimization, and hardware accelerators) for the
efficient design of DL edge solutions for edge nodes and end devices. The present review focuses
on the migration of DL from the cloud to the very end devices, the final layer of edge computing. It
highlights the increasing importance of the end device for an integrated DL solution, which clears the
way for new user applications.



Algorithms 2020, 13, 125 4 of 33

The paper is organized as follows. Section 2 introduces the methodology employed to do the
review. Section 3 describes the fundamentals and the state-of-the-art on deep learning. Section 4
describes the methods and architectures being used to execute deep learning inference at the edge.
Section 5 describes the methods and architectures proposed to train deep neural networks at the edge.
Section 6 discusses the challenges and open issues about the deployment of deep learning at the edge.
Section 7 concludes the paper.

2. Survey Methodology

In this review, the solutions proposed to deploy deep learning on the edge are identified and
analyzed. Two questions are addressed: (1) Why deep learning should be executed on the edge and
what applications can benefit from this? (2) How can this be achieved efficiently and effectively?

The survey described in this paper was elaborated in two steps. The first step was the collection of
the bibliography associated with the topic. The second step consisted of the analysis and the review of
this bibliography. The search for the bibliography about the design and deployment of deep learning
on the edge was done using one main keyword and a list of secondary keywords. The search was
carried out using several scientific databases like IEEE Xplore, ScienceDirect, Directory of Open Access
Journals (DOAJ), and Scopus and web scientific indexing services, including Google Scholar and Web
of Science.

The search focused on conference papers and journal articles published after 2015 since deep
learning on the edge is a recent topic of research. However, some important works on deep learning are
older than 2015. These works highly referenced in recent papers as fundamental for the development of
deep learning were also included. Some technical reports of known global vendors were also included
since these provide important data that justify some trends in the area of deep learning.

The main keyword used in the search was deep learning. This was followed by one or
two keywords from a group of keywords associated with the organization of the paper: models,
algorithms, application, mobile, edge, inference, training, hardware, device, processor, optimization,
and architecture. Among all papers retrieved by the search process, the review considered only papers
whose main topic was deep learning. These included papers that introduced advances in the design
and development of deep learning models, algorithms, and architectures with emphasis on edge
computing.

Even reducing the focus of deep learning to the edge, the review still has a broad spectrum
of themes, and so, the volume of bibliographical references is enormous. To reduce this set to a
manageable number, we considered the most cited and recent references whenever there were several
references to the same sub-area. This permitted maintaining the flow of reading and considered many
works referenced indirectly from the main references.

The articles collected were then analyzed to determine the evolution trend in the deployment of
deep learning on the edge considering the following research directions

• Evolution of deep learning models from accuracy oriented to edge oriented;
• Application areas of deep learning when executed on the edge;
• Optimization of deep learning models to improve the inference and training;
• Computing devices to execute deep learning models on the edge;
• Edge computing solutions to run deep learning models;
• Methods to train deep learning models on the edge.

The evolution and trends of each of these research directions are reviewed and analyzed in the
following sections.

3. Deep Learning

Deep learning [26] is a machine learning algorithm to teach computing systems to learn by
example. Its computational complexity has delayed its deployment in a vast set of areas, including
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computer vision and language processing, among others [27]. Most deep learning-based approaches
use deep neural networks, which are based on artificial neural networks.

An Artificial Neural Network (ANN) [28] is a computing model consisting of interconnected
neurons organized in a stack of layers: an input layer to receive data to be processed, an output layer
that provides the classification results of the network, and a set of hidden layers. Layers contain
neurons that map all the inputs into an output to be used by the nodes of the next layer. The first
ANN approaches had typically no more than three layers, in part because it was hard to train. Neural
networks with more than three hidden layers are designated deep neural networks [29] to emphasize
the high number of layers.

One of the first deep neural models was developed for handwritten classification [30]. Despite
the high accuracy achieved, it was not largely accepted to replace other traditional machine learning
algorithms because it was hard to train and implement. The better results of deep learning were not so
evident because the application was not that difficult. Furthermore, its applicability to larger models
was somehow limited by the computational capacity available at that time that was unable to train
such large models in acceptable computing times. Only later [31], deep neural networks achieved
popularity on solving several artificial intelligent tasks better than other machine learning algorithms.

Not only the computing platforms have improved considerably (e.g., Graphics Processing Units
(GPU)), but also the training methods [32–34]. Both allowed the design of larger deep neural networks.
The Internet has also contributed to the success of deep learning. The proliferation of the Internet has
increased the availability of data required to train the networks with high accuracy.

The success of a deep neural network comes from the use of many hidden layers. One layer
extracts hidden information from the input maps generated by the previous layer. Complex features
are correlated as the data move forward through the sequence of layers [1,29]. The most common
example of this behavior can be observed in an image classification task with a DNN. While the initial
layers extract simple information about the image, the next layers correlate these simple objects to
identify other more complex features. In the end, an image is associated with the class that has the
closest set of complex features.

A neural network model is first trained to solve a particular problem and then used to classify
new samples in a process known as inference. The training of the network determines its accuracy.
Training a network can be supervised or unsupervised. In supervised training, the model learns from
data manually labeled. The weights are adjusted so that the output of the network for a particular
input matches the correct answer. Unsupervised training does not require labeled data. Instead, the
model extracts patterns from the input by itself.

Supervised training is the process of finding the set of weights, W, that minimizes the error, E,
between the measured outputs, ym, and the expected outputs, tm, for all input samples, xn. The error
is determined with a loss function, E(W), as the sum of the squared error:

E(W) =
N

∑
n−1

M

∑
m−1

(ym(xn, W)− tm)
2

The training process iteratively runs forward propagation of input samples followed by
backpropagation of the error. Starting with a random or a pre-trained set of weights, forward
propagation applies an input to the network and determines its classification. The measured and the
expected outputs are used by the loss function to determine the error between both.

The backpropagation than propagates backward the error found with the loss function; that
is, outputs of neurons become inputs, and inputs become outputs. The weights of all neurons that
contribute to the output are adjusted in proportion to their contribution to reducing the total loss. The
adjustment of weights follows the gradient descent [35] technique:

∆W[i] = −λ(
δEn

δw[i]
)
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where weights are incrementally updated proportionally to the derivative of the loss function.
Even for simple models and problems, one-hundred percent accuracy is not achieved. The process is
not guaranteed to find global minima, but converges to a minimum if iterated multiple times. To avoid
excessive training times, training stops when the accuracy improvement is below a given threshold. A
network can be trained without any initial knowledge or from an already-trained network where the
initial weights are already close to the final values (fine-tuning).

While inference runs a forward propagation of the network only once, training is an iterative
process that runs forward and backward propagation multiple times for multiple training input
instances. Therefore, training is a more intensive computing task.

Different deep neural models are used for different classes of problems. Therefore, different deep
learning models were proposed in the last few decades, and many different networks exist for each type.
The Convolutional Neural Network (CNN) is one of the most applied deep learning models, followed
by the Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Restricted Boltzmann
Machine (RBM), Deep Boltzmann Machine (DBM), Deep Belief Network (DBN), Auto-Encoder (AE),
and several other models that are proposed every year.

The CNN is used for object classification and recognition in images and videos with a vast
set of applications, like video surveillance. Therefore, it is the most studied deep neural network.
One of the first deep neural networks proposed in [36] was a CNN for image classification. What
differentiates a convolutional neural network from a traditional artificial neural network is the existence
of convolutional layers. Convolutional layers take into consideration the correlation between neighbor
pixels of the image and limit the connections between neurons of different layers to only those within
a window of neighbor neurons. The convolution between a window of weights and the inputs of a
neuron generates an activation sent to the neurons of the next layer. Each different kernel (stack of
windows of weights) detects a particular feature of the image. Hence, a convolutional layer considers
many different kernels. Features identified with the convolutional layers are fully correlated with
dense layers. Known also as fully connected layers, these interconnect all neurons of a layer with all
neurons of the previous layer, like in the traditional ANNs. Some convolutional layers are followed
by a pooling layer to reduce the size of the maps and consequently the number of parameters and
computations. Pooling applies an average or max function to a window of neurons (typically 2 × 2 or
3 × 3 windows).

RNNs and LSTM are deep neural networks with memory to be used in applications where the
past events are important to define an output. These are usually considered in the implementation of
systems for natural language processing [37].

The Boltzmann Machine (BM) is an unsupervised model [38] with a structure similar to a Hopfield
network [39], but has only an input layer and hidden layers. While in forward network models, neurons
only connect to neurons of other layers, in a BM, connections between neurons are bidirectional
and may connect to neurons in the same layer. During training, the BM maximizes the product of
probabilities associated with elements of the training samples. Boltzmann machines are applied in
several machine learning problems, like dimensionality reduction and classification.

The DBN [40] is another unsupervised deep learning model used to recognize and generate
images and videos. It follows a hybrid approach with undirected connections in the first two layers
and directed connections between the following layers. This model is no longer in use in favor of other
unsupervised models.

The AE network model is another example of unsupervised learning used for dimensionality
reduction, that is it encodes the input samples with fewer dimensions [41]. The encoded data are then
decoded to recover the original data. Since AE encodes input information using fewer bits, it can
generate compact representations of data.
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3.1. Deep Neural Network Models

The design space of deep neural networks is very large and mostly empirically explored. Many
networks with a particular number of layers, kernels, and activation functions, among other variables,
have been proposed in the last few years with a focus on CNNs. In the following, the structure and
complexity of well-known network models are described to establish a relationship between accuracy
and computing requirements.

One of the first deep neural networks, LeNet, was proposed in [36] with a CNN for hand-digit
classification. LeNet-5, the most accurate version, with two convolutional layers, two fully connected
layers, and a softmax output layer. The input of LeNet-5 is a 32 × 32 grayscale image. The first
convolutional layer processes the input image with six kernels with a window of size five and a stride
of one. The output of the first layer is therefore six maps of size 28 × 28 (there is no padding). Then, an
average pooling layer is applied with a size of 2 × 2 and a stride of two generating six output maps
with a size 14 × 14. A second convolutional layer is applied with 16 kernels with a window size of
5 × 5 producing 16 maps of size 10 × 10. A second identical average pooling is applied to these maps
generating 16 maps of size 5 × 5. Two fully connected layers are then applied: the first with 120 filters
and the second with 84. Finally, a softmax layer is used to classify ten possible output digits. With a
total of 60K parameters and 682K operations, LeNet-5 achieved a classification accuracy above 99%,
higher than the accuracy of any other previous machine learning algorithm.

Larger convolutional neural networks for image classification were proposed a decade latter with
AlexNet [42]. While LeNet-5 was designed for small images of size 32 × 32, AlexNet was designed
for image classification of images of size 227 × 227. The network has five convolutional layers, three
fully connected, and three max pooling layers. The first convolutional layer applies 96 kernels of size
11× 11× 3 to the input image with a stride of four. The first max pooling is applied to the output of this
first convolutional layer. The second convolutional layer applies 256 kernels of size 5× 5× 48 followed
by another overlapping max pooling with size 3 × 3 and a stride of two. The next three convolutional
layers apply 384, 384, and 256 kernels of size 3 × 3 × 256, 3 × 3 × 192, and 3 × 3 × 192, respectively. A
final max pooling is applied to the last convolutional layer. The first two fully connected layers have
4096 neurons each, and the last is a softmax layer that generates the probability distributions over 1000
classes. A large proportion of the computing operations are spent on the convolutional layers, while
most of the parameters are in the fully connected layers. The number of weights and operations rose
to 61 million and 1448 million operations.

AlexNet design and tuning is en empirical method without sustained design guidance. In 2013, a
multilayer deconvolutional neural network was proposed, known as ZfNet [43]. The model consisted
of a deconvolution process to monitor the activity of neurons. When applied to AlexNet, this process
permitted identifying active and inactive neurons. From this analysis, the convolutional layers were
modified to improve the accuracy. ZfNet permitted fine-tuning AlexNet to achieve a top five error rate
of 11.7%.

AlexNet was followed by deeper networks as a way to improve accuracy. VGG-16 [44] is a CNN
with 16 layers. Three of them are fully connected. The first two layers apply 64 filters of size 3 × 3
followed by max pooling. The next two convolutional layers apply 128 filters with the same window
size followed by max pooling. The next three convolutional layers apply 256 filters of size 3 × 3 and
1 × 1 followed by max pooling. Then, we have two identical sets of three convolutional layers with
512 filters, each followed by a max pooling layer. The last fully connected layers are identical to those
of AlexNet with 4096 filters in the first two and a softmax layer with 1000 classes. The increase in the
depth of the network is followed by an increase in the number of weights and operations. To balance
this increase, a few techniques have been considered. Filters with homogeneous window size, 3 × 3,
and replacement of large filters by a sequence of small filters were considered. The network is more
accurate than AlexNet, but requires 138 million parameters and 31G operations.

One year later, GoogLeNet [45] increased the depth and introduced an aggregate layer (Inception)
that runs convolutional layers in parallel over the same input maps (see Figure 1).
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1x1 Convolution 1x1 Convolution 3x3 Max pooling1x1 Convolution

5x5 Convolution 1x1 Convolution3x3 Convolution

Input Feature Map

Concatenation

Output Feature Map

Figure 1. Architecture of the inception module of GoogLeNet.

The inception module has two levels of convolutions. The first level applies 1 × 1 convolutions
and max pooling to reduce the complexity of the map. The second level applies three convolutions
with different window sizes to process the input at different scales. The outputs of four convolutions
are then concatenated in a single feature map. GoogLeNet has three initial convolutional layers and
two max pooling layers. These are followed by nine inception layers and a final fully connected layer in
a total of 22 layers with 6.8 million weights and 2.86 GOPs. Later, GoogLeNet was extended with more
layers, and new inception modules were introduced: Inception-v2, Inception-v3, and Inception-v4 [46],
to balance the increase of the number of layers.

Generically, the inception module was modified to reduce the number of weights and operations
replacing large filters with a sequence of two filters (see Inception-v2 in Figure 2). It is basically a small
network inside a large network.

1x1 Convolution 1x1 Convolution 3x3 Max pooling1x1 Convolution

nx1 Convolution

1x1 Convolution

Input Feature Map

Concatenation

Output Feature Map

1xn Convolution

nx1 Convolution

1xn Convolution

nx1 Convolution

1xn Convolution

3x3

3x3

3x3

Figure 2. Architecture of the Inception-v2 module of GoogLeNet.

A filter of 5 × 5 is replaced by two filters of size 3 × 3. Each 3 × 3 filter is replaced by a sequence
of two filters: 1 × n and n × 1. This reduces the number of weights and maintains the accuracy.

The idea of using local modules of convolutions was adopted by the following DNN models.
ResNet [47] increased the number of layers. It introduced the residual module that has a shortcut path
with an identity connection to skip over two or three convolutional layers. One of the reasons for
using this identity connection is because of the backpropagation vanishing problem of the gradients



Algorithms 2020, 13, 125 9 of 33

since the gradient has to propagate through many layers. The identity connection is a short cut that
reduces the vanishing of gradients. Different versions of ResNet were developed with a number of
layers from 50 to 152. ResNet-152 uses a residual module with three convolutional layers with m, m
and 4 × m filters of size 1 × 1, 3 × 3, and 1 × 1, respectively, where m varies along the network. The
network has a first convolutional layer followed by max pooling, both with stride two. Then comes a
sequence of residual modules: 3 modules with m = 64, 8 modules with m = 128, 36 modules with
m = 256, 3 modules with m = 512, and a final average pooling layer. The complete network has 60
million parameters and requires 22.6 GOPs to run a single inference.

The residual model of ResNet was modified by recent deep neural network proposals. ResNeXt
[48] splits the residual block multiple times without increasing the complexity. A cardinality parameter
determines the number of paths independent of the ResNeXt building block. Considering the
three-layer ResNet module and a cardinality of 32, the first and second layers are split into 32 layers
with four filters each. The last layer completes the independent convolutional paths with 256 filters.
The outputs of all paths are added before being added to the input of the module. The complete
structure of RexNeXt is identical to the structure of ResNet with the residual module substituted by
the new RexNeXt module. The new architecture improves the accuracy of ResNet from one to almost
two percentage points.

DenseNet [49] proposes a modified residual block where layers receive and concatenate data
from all preceding layers within the block. Between dense blocks, there is a transition layer with a
1 × 1 convolutional layer and an average pooling layer. Different configurations were proposed for
DenseNet with a different number of layers. For example, DenseNet-201 has an initial convolutional
layer with a window of size of 7 × 7 followed by a 3 × 3 max pooling, then a sequence of 6, 12, 48, and
32 dense blocks and three transition layers in between. There is a final global 7 × 7 average pool and
softmax function with 1000 classes.

The Squeeze and Excitation network, SENet [50], introduced the squeeze and excitation block that
can be added to inception or residual blocks. SENet includes a content-aware mechanism to remove or
emphasize input channels dynamically. To implement the idea, the input maps are first squeezed to a
single value using pooling followed by two fully connected layers. This results in a numeric value for
each input channel. These weights are then used together with the original feature maps to scale the
importance of each channel. This has a high impact on the size of the network. For example, ResNet-50
with the ResNet modules replaced by the squeeze and excitation blocks achieves the same accuracy as
ResNet-101 with half the number of operations.

The models described above are summarized in Table 2.

Table 2. Summary of popular accuracy-oriented DNN models.

Depth Parameters (M) Operations (G) Top 5 Error (%) Top- 1 Error (%)

AlexNet 8 61 1.45 15.4 36.7
ZfNet 8 60 1.47 — 36.0

VGG16 16 138 31.0 8.1 25.6
Inception-v1 22 5 2.86 10.1 30.2
Inception-v2 42 11 4.0 7.8 25.2
Inception-v3 48 24 11.4 5.6 21.2
Inception-v4 76 35 24.5 4.9 19.9
ResNet-152 152 60 22.6 4.5 19.4

ResNeXt 50 68 8.4 4.4 19.1
DenseNet-201 201 20 8.4 6.4 23.6

The major goal of the networks described above is to improve accuracy as much as possible. The
trend is to increase the depth as a way to enhance accuracy. To balance the inevitable increase in the
number of weights, layers are grouped into blocks and large convolutions are replaced by a series
of smaller convolutions. Dense layers require many weights, and therefore, recent networks have at
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most one fully connected layer. Therefore, in CNN, most of the parameters and operations are now
associated with the convolutional layers.

3.2. Deep Learning Applications

Deep learning is applied in a vast set of fields. With the migration of deep learning to the edge, a
new set of applications with latency constraints are now possible:

• Image and video: Most deep neural networks are associated with image classification [51,52] and
object detection [53,54]. These are used for image and video analysis in a vast set of applications,
like video surveillance, obstacle detection and face recognition. Many of these applications
require real-time analysis and therefore must be executed at the edge. Wireless cameras are
frequently used to detect objects and people [55,56]. Considering the computational limitations
of edge platforms, some solutions propose an integrated solution between edge and cloud
computing [57] that can guarantee high accuracy with low latency. Some commercial solutions
[58] adopt this integrated solution, where the local edge device only forwards images to the
cloud if it is classified locally as important.

• Natural language: Natural language processing [59,60] and machine translation [61,62] have
also adopted DNNs to improve the accuracy. Applications like query and answer require low
latency between the query and the answer to avoid unwanted idle times. Well-known examples
of natural language processing are the voice assistants Alexa from Amazon [63] and Siri from
Apple [64], [65]. These voice assistants have an integrated solution with a local simple network
at the edge to detect wake words. When detected, the systems record the voice and sends it to
the cloud to process and generate a response.

• Smart home and smart city: The smart home is a solution that collects and processes data from
home devices and human activity and provides a set of services to improve home living. Some
examples are indoor localization [66], home robotics [67], and human activity monitoring [68].
This smart concept was extended to cities to improve many aspects of city living [69], like traffic
flow management [70]. Data relative to the traffic state from different roads can be used to predict
the flow of roads and suggest some alternative roads [71]. Object detection is also used to track
incidents on the roads and warn the drivers about alternatives to avoid an incident [72].

• Medical: Medical is another field were DNNs are being applied successfully to predict diseases
and to analyze images. In the genetics area, DNN has been successful to extract hidden features
from genetic information that allows us to predict diseases, like autism [73], [74]. Medical imaging
analysis with DNN can detect different kinds of cancer [75–78] and also extract information from
an image that is difficult to detect by a human.

• Agriculture: Smart agriculture is a new approach to improve the productivity in agriculture [79]
to provide food for an increasing population. Deep learning is applied in several agriculture
areas [80]. These include fruit counting [81], identification and recognition of plants [82], land
analysis and classification [83,84], identification of diseases [85], and crop-type classification [86].

• Gaming: Game playing systems with deep learning achieve a playing level above human playing
accuracy. Recent examples are chess [87] and go [88].

• Others: Several other areas are benefiting from deep learning: credit risk predictions [89,90], solar
power forecasting and analysis [91,92], manufacturing [17], customer service [93], autonomous
driving [10], digital marketing [94], and fraud detection [95].

4. Deep Learning Inference on Edge Devices

Deep neural networks are very compute-intensive, while edge computing platforms are limited
in computational capacity compared to cloud centers. Within the edge devices, there are different
computing platforms with different computing capacities from edge servers to end user devices.

Edge servers or nodes offer a considerable centralized or distributed computing power and
memory, but serve many requests, and therefore, the available resources are shared by many clients.
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Furthermore, they were designed mostly for batch processing and not for stream processing. Therefore,
several solutions have been proposed to enhance the execution of deep learning on edge nodes.

On the other side, end devices have the lowest computing and memory resources, but are usually
used by a single user only. Therefore, as we move from the end devices to the edge nodes and servers,
the computational capacity and memory increase, but the computational requests also increase. The
migration of deep learning inference to the edge introduces a new service on edge devices. Deep neural
networks are more computational and memory demanding than other machine learning algorithms.
Therefore, straightforward integration of deep learning models on the edge would create inefficient
solutions. Several approaches have been followed to find solutions to reduce the computing time,
memory storage, and energy consumption of DNN.

One research direction is at the algorithmic level looking for new network models that, besides
accuracy, also consider computing, memory, and energy aspects. The execution of these networks
can be further improved with methods to reduce the number of parameters and computations of the
model. Another direction is to design dedicated architectures for deep learning with high performance
and energy efficiencies. A fourth dimension is relative to the design of edge computing architectures.

The design of deep learning solutions considering these four design dimensions will generate the
most efficient solutions to run deep learning on the edge. The tradeoffs created by these four design
dimensions vary with the type of edge device. Edge servers must be more generic since they offer
services to a large set of clients. Therefore, in this case, deep learning models and architectures must
be more generic. Furthermore, DNN may be more elaborate with higher accuracy since the computing
platforms have a higher capacity. As we move to the end devices, the services are more specific, and
the model must be optimized for specific applications. However, since the computing platforms have
a lower capacity, the network models tradeoff accuracy for computation, memory, and energy.

In the following sections, each of these design dimensions is reviewed.

4.1. Edge-Oriented Deep Neural Networks

The deep neural networks described in Section 4 are all accuracy oriented. Less accurate networks
are considered worst and therefore not subject to further analysis. However, when metrics like
performance, cost, hardware area, and energy are considered, more accurate networks are not
necessarily better. Tolerating a small reduction in accuracy can sometimes reduce considerably the
number of parameters and operations of a model. Several of these models are described in this section.

Edge nodes and servers have enough power to run the inference of large networks. The challenge
here is how to accommodate multiple requests from multiple end devices with real-time or best-time
responses. Lightweight DNN can be considered on edge servers, but it will generically reduce the
accuracy of a service that may be used by a large spectrum of applications.

As we move to the end of the edge, the resources are more limited, but the number of requests
also reduces. For example, in an autonomous car, there is enough energy to run one or more
high-performance computing devices. In this case, the models must be accurate enough for specific
tasks like pedestrian detection, so highly accurate DNN models are preferred [96].

On mobile and end devices, the effort to run large networks is high, and in these cases, the
direction has been to tradeoff device resource utilization for network accuracy. Therefore, several
network models have been proposed oriented for mobile and end devices.

MobileNet [97] is an edge-oriented network that reduces the number of weights and computations
at the cost of a small accuracy reduction. Input size reduction and single kernel computation with
pointwise convolutions are some of the optimizations. Each convolutional layer is split into a depthwise
convolution followed by a pointwise convolution. Together, they form the so-called depthwise
separable convolution block. The network has an initial convolutional layer followed by 13 depthwise
separable convolution blocks. Some depthwise layers run with a stride of two to reduce the spatial
dimension of maps. All convolutional layers are followed by batch normalization and the activation
function ReLU6 (ReLU function limited by six). Convolutional layers are followed by an average
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pooling layer and a final fully connected layer, followed by a softmax classifier. The window sizes
of the filters are 1 × 1 and 3 × 3, and the pooling layer has a window size of 7 × 7. The network is
configurable with some hyperparameters. The most important is the depth multiplier, which changes
the number of channels in each layer. Different trade-offs between accuracy and complexity were
tested by changing the hyperparameters. Model networks with 0.5 to 4.2 million parameters and a
computational effort from 41 to 559 million MACs (Multiply-Accumulate) operations were tested.

MobileNet was latter improved to MobileNetV2 [98] with shortcut connections and encoding of
intermediate data to reduce the number of weights and operations. The main building block is now the
bottleneck residual block. The new block has three convolutional layers. The last two are taken from
the depthwise separable convolution block of Version 1. However, the pointwise convolutional layer
of the new module reduces the number of channels, like a projection operation. The first layer of the
new module is a 1 × 1 convolutional layer to expand the number of channels, whose expansion scale
is configurable. Another modification of the original module from Version 1 is a residual connection,
similar to that used in ResNet. MobileNetV2 reduces by about 30% the number of parameters and by
about 50% the number of operations and improves the accuracy of MobileNet.

MobileNetV3 was recently released [99] in two versions: MobileNetV3-Large and
MobileNetV3-Small. The new versions tune the previous one using two algorithms to explore the
model space: the Neural Architecture Search (NAS) algorithm [100], which constructs the whole model
iteratively by adding sub-modules, and the NetAdapt algorithm [101] to determine the number of
filters in each layer. The difference between the large and the small versions is that the first has four
more bottleneck modules. The large version is 25% faster than MobileNetV2 with similar accuracy, but
larger. The small version is comparable in size and delay to MobileNetV2, but 6.6% more accurate.

SqueezeNet [102] is a network with approximately the same accuracy as AlexNet, but with 50×
fewer parameters. Several strategies were followed to achieve this high reduction of parameters: (1)
replace 3 × 3 filters by 1 × 1 filters; (2) reduce the number of inputs of 3 × 3 filters; and (3) downsample
with pooling layers late in the network. The inputs to larger filters are first squeezed with 1 × 1 filters.
Then, they are expanded with a mix of parallel convolutional layers of size 1 × 1 and 3 × 3. Together,
these operations form a block designated fire module. SqueezeNet has an initial convolutional layer
followed by eight fire modules and a final global average pool.

SqueezeNext [103] proposes a different block to replace the fire module of SqueezeNet. It uses a
two-stage bottleneck module to reduce the number of input channels entering the 3 × 3 convolution.
This 3 × 3 convolution is further replaced by separable convolutions followed by a 1 × 1 expansion
module. The final model has 112× fewer parameters than AlexNet and better accuracy.

A novel model optimization method proposed in [104] applies different convolutions to different
parts of the input maps, instead of applying each convolution to the whole image. This reduces the
number of parameters and operations of the model. Since different convolutions extract different
features of the image, the outputs of the convolutions are then shuffled. The ShuffleNet unit replaces
1 × 1 convolutions of the bottleneck module by group convolutions and places a channel shuffle
operation after the first convolution. A second version of the ShuffleNet unit implements the 3 × 3
convolution with a stride of two, adds an average pooling layer in the shortcut path, and replaces the
element-wise addition with a channel concatenation. The complete model has an initial convolutional
and pooling layers followed by three stages of ShuffleNet units. A hyperparameter, s, is considered
to scale the number of channels. The model is therefore designated as ShuffleNet s×. The network
improves by about 3% the accuracy of MobileNetV1 with similar computational complexity.

Grouped convolutions have proven to be useful to improve accuracy. CondenseNet [105] also
applies grouped convolutions, but instead of randomly shuffling the channels, it learns which channels
should be grouped during training. Before training, the output maps are split into G groups of
the same size. The method also integrates pruning with another hyperparameter, C. At the end of
each condensing stage, 1/C parameters are pruned. An extra optimization stage is applied after the
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condensing stage that removes less important feature maps. CondenseNet achieves an accuracy similar
to ShuffleNet, but with about 50% of the parameters.

Instead of training a predefined network, NASNet [106] starts with an overall architecture
with a sequence of blocks that are not predefined. The structure of the blocks is determined with
a reinforcement learning search method. There are two types of blocks: normal block (whose
convolutional layers keep the size of feature maps) and reduction block (whose convolutional layers
reduce by 4× the size of feature maps). Three different versions were generated and identified
as NASNet-A, -B, and -C. The models improve MobileNet by about 3% with a similar number of
parameters. PNASNet[107] considers the same model optimization problem, but uses a Sequential
Model-Based Optimization (SMBO) algorithm instead of reinforcement learning. AmoebaNet [108]
uses a modified version of the tournament selection evolutionary algorithm to search the model
design space. The algorithm is faster than previous approaches, and the model generated achieves
a top five accuracy over ImageNet of 96.6 %. Another approach to this search problem considers a
method based on the continuous relaxation of the architecture representation. The method allows an
efficient search of the architecture using gradient descent [109]. Recently, another tool was proposed to
explore and generate a deep neural network for a particular problem automatically, MNASNet[110]. A
reinforcement learning method explores a predefined search space to find the network architecture
with the best tradeoff between accuracy and performance for mobile devices.

A new neural network block was proposed in [111], ANTNets, to reduce the computational cost
and the number of parameters of a convolutional neural network for mobile devices. The model
uses group convolutions and optimizes the number of channels, outperforming other lightweight
models. The authors reported 0.8% accuracy improvement compared to MobileNetV2 with 6% fewer
parameters and 10% fewer operations and 20% better performance when running on a mobile device.

The models described above are summarized in Table 3.

Table 3. Summary of lightweight DNN models.

Model Parameters (M) Operations (G) Top 5 Error (%) Top 1 Error (%)

SqueezeNet 1.2 1.72 19.7 —
SqueezeNext 3.2 1.42 11.8 32.5
ShuffleNet x2 5.4 1.05 10.2 29.1
MobileNetV1 4.2 1.15 10.5 29.4
MobileNetV2 3.4 0.60 9.0 28.0

MobileNetV3-Large 5.4 0.44 7.8 24.8
MobileNetV3-Small 2.9 0.11 12.3 32.5
CondenseNet G=C=4 2.9 0.55 10.0 29.0
CondenseNet G=C=8 4.8 1.06 8.3 26.2

NASNet-A 5.3 1.13 8.4 26.0
NASNet-B 5.3 0.98 8.7 27.2
NASNet-C 4.9 1.12 9.0 27.5
PNASNet 5.1 1.18 8.1 25.7

MNASNet-A1 3.9 0.62 7.5 24.8
MNASNet-small 2.0 0.14 — 34.0

AmoebaNet-A 5.1 1.11 8.0 25.5
AmoebaNet-C 6.4 1.14 7.6 24.3

ANTNets 3.7 0.64 8.8 26.8
DARTS 4.9 1.19 9.0 26.9

The network models described in Table 3 are oriented by model complexity. When compared to
previous models, they reduce the number of parameters and operations with a similar accuracy or
reduce the accuracy with a similar number of parameters and operations. We also observe that recently,
several approaches considered algorithms and methods to automatically determine the structure of
the network. All networks explore different configurations of the main modules to reduce the number
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of parameters and operations. Compared to accuracy-oriented DNN, the lightweight network models
have around ten times fewer parameters and computations, but a lower accuracy.

4.2. Hardware-Oriented Deep Neural Network Optimizations

Different simplifications and optimizations were proposed to reduce the implementation
complexity of deep learning models. The objective of the simplifications is to reduce the memory
footprint and the computational complexity to run a network inference. There are two main classes of
optimizations: (1) data quantization and (2) data reduction. Some optimizations reduce the complexity
of the model with some accuracy reduction. Others can reduce the memory and computation footprints
without accuracy degradation. All methods have been considered on resource-limited end devices,
but only a few are considered on edge nodes, typically those that do not affect the accuracy.

Data quantization methods reduce the complexity of arithmetic operators and the number of bits
(bitwidth) to represent parameters and activations. The complexity of hardware implementations of
arithmetic operations depends on the type of data [112]. Operators for floating-point arithmetic are
more complex than for fixed-point or integer arithmetic. The number of bits used to represent data also
determines the complexity of the operators. Custom floating-point representations with 16 bits [113]
and eight bits [114] considerably reduce the complexity of operators and achieve similar accuracies of
networks implemented with single-precision floating-points.

In [115], the authors used 8 bit fixed-point data representations for parameters and activations.
They concluded that the model achieved an accuracy close to that obtained with the same model using
32 bit floating-points. The same conclusion was found in [116–118]. All works showed that parameters
and activations could be represented in fixed-points and with fewer bits with negligible accuracy
reduction. Less than 8 bit quantizations were proposed in [119,120].

Previous works considered a fixed quantization for all layers, but customized representations for
different layers reduced further the complexity without incurring an accuracy reduction [121–123].
Studies with this hybrid quantization concluded that the first and last layers were the most sensitive
to the size of data among all layers. Furthermore, different sizes could be adopted for weights and
activations. In [122], the authors concluded that activations were more sensitive to data size reduction.

Data quantization can be taken to the limit with Binary Neural Networks (BNN). These represent
parameters and/or activations with a single bit to reduce memory footprint and the complexity of
operations [124–127]. The problem of BNNs is that to balance the accuracy reduction due to binary
representations, a larger network with two to 11× more parameters and operations [124] is required.
Furthermore, as already noted above, the first and last layers are the most sensible to quantization
and therefore require a higher precision. This data heterogeneity increases the complexity of the
computing platform whose arithmetic units must support different operator sizes. Binarized networks
with 1 bit weights have an accuracy drop that can be over 10%. In a fully binarized network with both
weights and activations represented with a single bit, the accuracy drop can go up to 30%. Therefore,
some works consider two bits instead of a single bit to represent the weights of hidden feature maps
[128–130].

Data reduction optimizations are used to reduce the number of parameters as a way to reduce
memory storage, memory bandwidth requirements, and the number of computations. The first data
reduction approach proposed in [131] consisted of pruning and compression using Huffman coding.
Pruning is the process of removing network connections. The authors showed that when applied to
the dense layers of AlexNet, it reduced the number of weights by 91% with a minimal effect over the
accuracy. Different training techniques have been proposed to apply pruning to a pre-trained network
[132–134]. The main disadvantage of pruning is that it introduces sparsity into the matrix of weights.
This generates unbalanced parallelism in the computation of output maps and irregular accesses to
on-chip memory. A few approaches have followed to reduce the effects of sparsity [135,136]. In these
works, pruning was guided by the datapath of the target computing processor so that it could take
advantage of the available computing parallelism.
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Pruning introduces zeros in the matrix of weights, and some activation functions zero the
activations. Considering this, some authors proposed a zero-skipping technique [137,138] to avoid
multiplications by zero. The zero-skipping technique requires a large on-chip memory to explore the
available parallelism of the hardware accelerators. Therefore, some coarse-grained skipping techniques
were considered to permit zero-skipping in devices with scarce on-chip memory [139]. Some authors
[140] overcame the on-chip memory limit by considering that the matrix was stored in a dense format,
requiring that all weights, including zeros, be loaded. In [141], an architecture was proposed that could
skip zeros in both weights and activations. However, the solution had reduced performance efficiency.

A commonly used technique to balance the heavy transfer of weights in fully connected layers is
map batching, where several feature maps of the last convolutional layer are saved before running
the fully connected layers [142–144]. This technique permits reusing the kernels in dense layers,
amortizing the transfer time of parameters from external memory.

Since convolutional neural networks are based on convolutions, some authors have used the
Winograd filtering [145] technique to calculate convolutions [146]. Winograd filtering is a known
technique to reduce the number of multiplications of a convolution. The technique was efficiently
implemented on FPGA [147–150].

The main data quantization and data reduction techniques are summarized in Table 4.

Table 4. Summary of the most used data quantization and data reduction techniques.

Data Quantization

16 bit floating-point [113]
8 bit floating-point [114]

8 bit fixed-point [115–118]
< 8 bit fixed-point [119,120]
Hybrid fixed-point [121–123]

Binary [124–127]
Ternary [128–130]

Data and Operation Reduction
Pruning [131–136]

Zero skipping [137,139–141]
Batch [142–144]

Winograd [146–150]

Data reduction techniques are normally applied together with data quantization. Together, they
generate very efficient solutions with a small accuracy reduction when compared to solutions without
optimizations. Which techniques can or should be applied depends on the target application. Accuracy
reduction may be a problem for applications where accuracy is critical. In these cases, optimization
techniques must be carefully applied or even limited to those that do not modify the accuracy.

4.3. Computing Devices for Deep Neural Networks at the Edge

Computing devices to run deep neural networks on the edge range from high-performance
computing platforms and devices to general-purpose processors. Available computing power, memory,
and energy decrease as we move to end devices. To help migrate DL to end devices, there have been
several proposals of chips and cores with high computing power and energy efficiency dedicated to
DNN. The Application-Specific Integrated Circuit (ASIC) is the most efficient technology to design
dedicated architectures for a particular type of network. However, a hardwired architecture cannot
be modified to dynamically consider new models and/or optimizations of the network. Hardware
flexibility traded off with performance is possible with reconfigurable computing technology. A
reconfigurable device allows the hardware reconfiguration to account for model modifications and can
be designed faster than ASICs.

Graphics Processing Units (GPU) are flexible and programmable high-performance computing
platforms. Software programmable devices allow easy modification to run new or modified network
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models. The disadvantage of general-purpose devices is low energy efficiency. Therefore, their
utilization depends on the available power and energy of the target edge device. Embedded GPUs,
like Jetson TX2, are an alternative to run inference at the edge, but still requiring up to 15 W.

ASIC-based systems for deep learning exist in the form of an IP (Intellectual Property) core for
DNN processing to be integrated into a processing chip or as a full computing solution integrated or
not with a microprocessor.

A hardware architecture for CNN acceleration and other audio and video applications was
proposed in [151] to be used in edge or cloud platforms. The architecture accelerates matrix
multiplication with an array of processing elements. The processing element has local memory
and a multiply-accumulate unit. The chip delivers 16.8 TOPs at 300 MHz with only 700 mW with an
energy efficiency of 24 TOPs/W, ideal for edge computing.

Instead of a chip for edge computing, a neural network processor IP core was proposed in [152]
for machine learning with applications in advanced driver-assistance systems, drones, etc. The core
has a vector processor and an accelerator of CNNs. The core is configurable in the number of MACs,
and the MACs can be configured to execute operations of eight or 16 bits. Other modules specific
for deep learning are also configurable, including the module to execute the activation function, the
window size, and the type of pooling (average or maximum). The performance of the core ranges from
2 to 12.5 TOPs, depending on the number and configuration of cores.

DesignWare EV6x [153] is a processor designed for embedded vision tasks. It is a system-on-chip
core with a Digital Signal Processor (DSP) and an optional hardware engine for convolutional neural
networks. The CNN core supports regular (AlexNet, VGG16) and irregular CNN (GoogLeNet, YOLO,
R-CNN, SqueezeNet, and ResNet). The arithmetic cores support data quantizations of eight and 12
bits. The configuration with the best performance delivers 4.5 TMACs at 2 TMACs/W.

Tensilica DNA [154] is a processor for deep neural network acceleration for IoT, smart homes,
drones, surveillance, and autonomous vehicles. The architecture supports pruned models and
implements zero-skipping. To reduce the data movement of weights between the processor and
external memory, the architecture includes a processor for data compression/decompression. The
cores support 8 and 16 bit quantization, but with different throughput. The maximum throughput is
achieved with 8 bit integer operations and reduces to half when running 16 bit integer and half-float
operations. The processor has an energy efficiency of 3.4 TMACs/W with 850 mW.

Movidius Myriad X [155] is a System-on-Chip (SoC) for deep learning on the edge with a processor
and a dedicated engine for deep neural network inference. The MAC units support 16 bit floating-point
and 8 bit and 16 bit fixed-point.

A hybrid processor was proposed in [156] to execute convolutional and recurrent neural networks.
The architecture has one dedicated hardware engine for each type of network. The engine for the
convolutional layers has an array of processing elements with local memory and multiply-accumulation
units. The engine for dense layers has an array of multiply-accumulate units to execute inner products.
The multipliers are reconfigurable for different operator sizes (4, 8, and 16 bits), but with different
levels of parallelism. The configuration with 4 bit multipliers has an energy efficiency of 3.9 TOPs/W
with 279 mW.

Snapdragon Series 6 [157] is a chip with an engine for deep learning acceleration of mobile devices.
With a 64 bit octa-core processor, a GPU, and a dedicated engine to accelerate scalar, vector, and tensor
operations, it has a peak performance of 15 TOPs with an energy efficiency of 3 TOPs/W.

Kirin 900 series [158] is a 64 bit octa-core SoC for mobile devices. It has a dedicated neural
processing unit for the fast execution of vector and matrix operations dedicated to the acceleration of
deep learning and a GPU. The chip has a peak performance of 8 TOPs.

Ascend 910 [159] is a processor for artificial intelligence for both inference and training. It supports
8 bit integer and 16 bit floating-point operations. With a total of 512 TOPs with an 8 bit integer, it has
higher performance than previous chips, but with lower energy efficiency around 1.7 TOPs/W.
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All architectures consider data quantization with a flexible MAC that can be configured with
different data sizes and so adaptable to particular accuracy, performance, and energy constraints.
Most architectures are oriented toward the execution of vision processing algorithms in general and
then include a dedicated engine to run the inference of deep neural networks. Some engines support
different types of DNNs. A few solutions also consider data reduction with support for pruning and
data compression.

The rapid evolution of DNNs requires a rapid design and deployment of accelerator chips, which
is not always possible to achieve with ASIC technology due to the long design cycles. Reconfigurable
hardware technology is an alternative solution that can follow the evolution of DNNs, but with lower
energy efficiency [160].

Eyeriss [161] is a reconfigurable engine to accelerate convolutional neural networks. The
architecture has an array of processing elements interconnected with a network-on-chip (NoC). The
NoC is configured to match the dataflow of each layer of the neural network model. To reduce data
transfers between the on-chip and external memory, it has a run-length compression decoder and
encoder. A four-level memory hierarchy is used to permit weights and activations to reuse on-chip
cache memory. The accelerator executes one layer at a time, and the architecture is reconfigured for
each different layer. The authors reported a measured energy efficiency of 166 GOPs/W with 278 mW.

Thinker chip [162] is a reconfigurable chip for machine learning with three levels of
reconfigurability. The computing unit of each processing element can be configured with 8 or 16
bit multipliers. The processing elements support zero-skipping. The on-chip memory bandwidth is
configured for different AI algorithms to improve bandwidth distribution. Since fully connected layers
do not exhibit the same parallelism of convolutional layers, multiple batches of images are stored
and computed in parallel. Each batch image is processed by a row of processing elements to keep
the performance efficiency, that is to avoid idle processing elements. The 16 bit configuration has an
energy efficiency of 580 GOPs/W and consumes 335 mW.

DRP[163] is a dynamically reconfigurable engine to accelerate deep learning applications. It
has a dynamically reconfigurable array of coarse-grained processing elements. The computing units
handle 16 bit fixed-point, 16 bit floating-point, and binary representations of weights and binary
representations for both weights and activations. The architecture is reconfigured for each layer. The
chip configured for the 16 bit mode has a performance of 960 GOPs.

FPGAs are fine-grained reconfigurable architectures that can be reconfigured to implement
a particular deep learning model with good performance and energy efficiency [164], [25]. Some
solutions implement a general dedicated engine for convolutional layers [121], [165], while others
propose a pipelined architecture where all layers are implemented in a pipelined fashion [166], [143].
Initial implementations of DNN with FPGA considered high-density FPGAs. With the migration
of deep learning to the edge, low-density FPGAs are also considered as target devices. In [167], a
small ZYNQ XC7Z020 FPGA was used to implement a small CNN quantized with a 16 bit fixed-point,
achieving a performance of only 13 GOPs (Giga-Operations). In [168], the authors implemented VGG16
in the same FPGA device. With a quantization of 8 bits, the architecture achieved a performance of 84
GOPs.

Recently, a configurable accelerator was proposed to implement large CNNs in a ZYNQ XC7Z020
FPGA [169]. With activations and weights represented with an 8 bit fixed-point, the architecture has a
peak performance of 408 GOPs and an energy efficiency of 33 GOPs/W.

Table 5 summarizes the list of representative chips dedicated to deep learning processing.



Algorithms 2020, 13, 125 18 of 33

Table 5. Summary of hardware accelerators for deep learning on the edge.

Accelerator Year Model GOPs GOPs/W

ASIC Technology
Gyrfalcon [151] 2018 CNN 16.8 TOPs 24 TOP/W

LinleyGroup [152] 2018 CNN 12.5 TOPs —
EV6x [153] 2017 DNN 9.0 TOPs 4 TOPs/W

Tensilica DNA [154] 2017 DNN 24 TOPs 6.8 TOPs/W
Myriad X [155] 2017 DNN 4 TOPs —

[156] 2017 CNN — 3.9 TOPs/W
Snapdragon 6 [157] 2019 DNN 15 TOPs 3 TOPs/W

Kirin 900 [158] 2019 DNN 8 TOPs —
Ascend 910 [159] 2019 DBB 512 TOPs 1.7 TOPs/W

Reconfigurable Computing Technology
Eyeriss [161] 2018 CNN 46.2 GOPs 166 GOPs/W

Thinker chip [162] 2018 CNN 368 GOPs 1 TOPs/W
DRP[163] 2018 CNN 960 GOPs —

[167] 2018 CNN 13 GOPs —
[168] 2018 CNN 84 GOPs —
[169] 2018 CNN 363 GOPs 33 GOPs/W

As expected, the energy efficiency of reconfigurable architectures is lower than that of ASICs.
However, coarse-grained architectures permit an optimized datapath configuration, and fine-grained
solutions based on FPGA allow the design of dedicated architectures for specific model types and all
kinds of model and architecture optimizations.

4.4. Edge Computing Architectures for Deep Learning

Hardware solutions exist to run deep learning services at edge servers. However, running large
deep learning models on end devices can be cumbersome because they have to cope with the intensive
computation of full deep learning models [170]. One possible solution is to use an edge computing
platform with the possibility to access cloud computing platforms if needed. Different approaches for
deep learning execution on the edge can be identified depending on how the task load is distributed
among end devices, the edge, and the cloud.

A simple approach is to send the complete task to be executed on the edge or the cloud. The
end device decides to offload or not the task and to where it should be offloaded. This approach
was followed in [171]. The framework decides if the inference of a deep learning model should be
executed in the end device or offloaded to an edge server. The decision depends on the state of the end
device (battery) and the network conditions. The edge is also resource limited compared to the cloud,
and therefore, different deep learning models with different accuracy and complexity are available.
Depending on the application, a smaller model may be enough to achieve the required accuracy.

A broader distributed solution permits the partial offloading of the inference to the edge or the
cloud. A few solutions already exist to deploy partial offloading of tasks to edge servers. In [172],
task partition can be done statically or dynamically, where the partition depends on the network and
device conditions. Other partial offloading solutions exist specifically for deep learning. In [173], the
model was partitioned and uploaded in pieces. The edge incrementally builds the model and can start
the execution of the model before the whole deep learning model is loaded. The objective is to reduce
the latency response by overlapping communication and computation. The solution also allows some
layers to be executed in the end device whenever the computational complexity associated with a layer
does not justify the communication of the layer.

The edge server of an edge computing platform is also memory- and resource-limited. When
multiple end devices ask for a specific DL service, the edge may not be able to process them on time.
In these cases, the edge uses cloud services. The decision to offload the model to the edge or the cloud
can be made by the end device. In [23], the end device had a performance model to determine the
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expected execution times of each part of the model in each computing platform (end device, edge,
and cloud). Based on the estimated performance, the network state, and the energy level, the device
decides how the model should be partitioned among the different computing platforms. Another
solution [174] considers an iterative inference process, where initially, a simple DL model is used and
the accuracy is assessed. If the accuracy is considered sufficient, the process is over; otherwise, a better
model is executed at the next computing level (edge or cloud).

The computing collaboration can be done among end devices or edge servers. Collaborative
computation among end devices [175] executes a DL model in a distributed mobile computing network
of devices. It reduces the energy consumption of the end device and accelerates the inference. The
same applies to a distributed computation among edge devices [176].

5. Deep Learning Training on Edge Devices

Most works on DL implementation on the edge are for inference. All these assume that a model
was already trained in a high-performance computing platform and was available for inference. Any
modification of the model implied a new offline training.

With the proliferation of data produced by end devices on which a DL model must be trained,
edge training solutions are required. These avoid large bandwidth consumption to communicate data,
reduce undesired data privacy violations, and leverage personalized models in almost real-time.
Different solutions can be considered with different levels of participation of each of the three
computing entities: cloud, edge nodes, and end devices.

Edge training following a data parallelism approach considers an edge server to coordinate
the training process with multiple end devices training on subsets of the complete dataset [24]. In
distributed training, different nodes train the same model with a subset of the training set. Periodically,
each device sends an update of the trained parameters and synchronizes with the trained parameters
of the other devices. The update can be synchronous or asynchronous. In a synchronous solution, all
devices update their parameters to the central edge coordinator at the same time. In the asynchronous
approach, the devices update their parameters independently of the coordinator. Usually, the
asynchronous method converges faster, but obtains worse solutions. The update frequency determines
the required communication bandwidth and the convergence rate. Solutions exist to reduce the update
frequency [177] with more local training between each update.

Federated learning [178,179] has been emerging as a training approach that allows an unbalanced
distribution of workload to different computing platforms: cloud, edge, and end device. Any of these
entities can perform different tasks of the training process, contributing to the whole training process
[180]. The basic flow of federated learning to train a model starts with a global deep learning model.
The model is read from the cloud or an edge server by each device that will participate in the training
process. This global model is then trained locally on each device with local data. Each local updated
model is then uploaded to the server and combined to update the global model. The approach has
several advantages over a centralized training method. It keeps all training data local to the associated
end device, and only model updates are transmitted. Model uploads do not occur at the same time for
all devices, permitting balancing traffic flow with the server and tolerating communication problems.
Finally, it allows an unbalanced distribution of training workload.

Model updates have been extensively studied since they determine the requirements for the
communication links between the devices and the servers. Updates can be periodical [181], structured
[182], or compressed [183] to reduce update bandwidth occupation. Other approaches consider the
possibility for model updates locally on the end device. In [184], an algorithm was proposed to
determine if the update should be performed locally or on the edge aggregator depending on the
availability of resources. The aggregation of update information determined the convergence of the
model. In [185], an algorithm was proposed to improve the efficiency of model aggregation managing
and selecting clients according to their resource availability and the condition of the communication
channel.
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One problem associated with distributed training is that a large communication bandwidth is
needed to update parameters. The more nodes are used to train, the more bandwidth is needed, which
may also create a communication bottleneck at the edge server. To reduce the load size of gradient
communication, data quantization and data reduction can be applied to the gradients. The former
does gradient quantization from a 32 bit floating-point to smaller data width representations [186].
Gradient reduction methods discard gradients whose value is lower than a specified threshold [187].

Data privacy is an important aspect of any training solution. Federated learning keeps data local,
but any problem with a device participating in the training process can ruin the model accuracy. To
improve the tolerance of the training process, robust federated learning [188] filters unusual parameter
updates. Still, distributed training with many end devices raises a privacy issue since there is a share
of information associated with private data. One solution is to add noise to the transmitted gradients
[189] and noise to the training data [190]. A different approach to protect data is to transmit only partial
data. This is achieved by splitting the global model between the end device and the edge node. The
process increases the workload on the end device since one partition of the model must be trained on
the device. Different model splitting solutions have been proposed. Some reduce the model partition
to run on the device [191]. Others consider cloud computing to speed up the training process knowing
that the model split reduces the risk of data privacy violation [192].

A different solution was proposed in [193] based on knowledge distillation [194]. In this approach,
a device trains and updates the network with its data subset and with the training predictions from
the other devices using knowledge distillation. The method permits reducing the update frequency.

Given the computational complexity to train a large deep learning model, all previous approaches
considered distributed solutions among edge devices and an aggregator edge server. In this approach,
many end devices participate in the training process. However, cases exist where data are local to a
single end device and cannot be simply transferred to other devices and edge servers for distributed
training. Training locally in an end device would be preferable. The high computing requirements
of training prevent a model from being trained in a single device. This is true for batch training
where the whole model must be trained with new data. Incremental learning [195–198] plays a critical
role in alleviating these issues. It ensures continuity in the learning process through regular model
updates based only on the newly available data. Incremental learning also reduces the computational
complexity of training to a level feasible for an edge or end device. This new approach for DNN
deployment on the edge opens new perspectives in many areas, including healthcare, smart homes,
and personal care. In these fields, a DNN model with pre-acquired knowledge about common tasks
could be supplied to the users, according to their needs. Then, it could be further trained to perform
new tasks. Using existing knowledge from previous and new tasks, the model should quickly grasp
the new task with only limited supervision. Learning a new task is possible locally and without access
to training data for the earlier tasks, which may no longer be available.

6. Discussion

Deployment of deep learning models on the edge is now the focus of many works due to the
importance of having deep learning algorithms running near the source of data. However, despite all
the efforts, there are still many open issues and challenges.

Most deep neural networks are empirically designed to achieve the best possible accuracy. On
the edge, the design of DNNs is also subject to energy, cost, and latency constraints. The model with
the best accuracy may not be the best for edge deep learning. The model design must consider the
ratios between performance and energy over accuracy. This determines the efficiency with which the
resources of the architecture are being used to achieve a specific accuracy. Instead of accuracy-oriented
models, deep learning models for edge computing are oriented by the tradeoff between accuracy and
complexity. Instead of large known models, like ResNeXt or DenseNet, mobile models are the preferred
choice for edge computing. For example, with only around a 4% accuracy reduction, MANSNet-A1
has around 17× fewer parameters and executes around 13× fewer operations than RexNeXt. Part
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of this improvement is achieved by using automatic model exploration algorithms that are difficult
to use with large models due to the necessary large processing times. Another observation from the
analysis of mobile deep learning models is the fact that there are some networks that are better than
the others in terms of all dimensions (parameters, operations, accuracy). These include MANSNet-A1,
MNASNet-Small, MobileNetV2, MobileNetV3-Small, AmoebaNet-C, ANTNets, and CondenseNet
G=C=4. This means that the most recent mobile models are less complex and more accurate.

Model optimizations have been proposed to reduce the computation and memory requirements
of deep learning models. Most of them trade off accuracy for simplicity so that a complex model can fit
in a small device with limited performance and energy. Data quantization with a small data width and
fixed-point representation is the most used optimization since it applies to any layer type. Pruning
and batching were mainly used to reduce the number of weights in fully connected layers. However,
recent models have a single fully connected layer, and so, these techniques are not so effective.

Optimizations reduce the number of parameters and the number of operations. However,
some of them are not hardware friendly, which reduces the efficiency of the solutions. The same
observation applies to the development of DNN models, which usually are developed without
considering the target platform. More efficient solutions can be achieved if both the model and
architecture are designed together. This is a complex task since the design space increases considerably.
Furthermore, most optimizations are driven by performance, but energy should also be considered.
Recent generic high-performance computing devices (e.g., GPU) assume the data quantization benefits
and introduced half-floating point arithmetic units in their architectures. The same happened with
dedicated processing devices (e.g., ASIC accelerators) that include 8 bit arithmetic units.

Edge nodes and end devices need high processing capacity at low cost and low power capable
of providing real-time services. To cope with the processing requirements, several dedicated chips
and IP cores have been proposed for deep learning. In general, DL is not the only service provided
by an edge server or executed in an end device. Therefore, processing architectures must be flexible
enough to support the execution of other algorithms and methods. General-purpose processors
are programmable, but are less energy and performance efficient. GPUs deliver high-performance
computing at the cost of high energy consumption. The most efficient approach is to consider
ASIC-based system-on-chip solutions, with a processor integrated with engines dedicated to machine
learning. The processor is used to control the engines and to run non-DL services. However, the
dedicated engine must also have some flexibility to cope with the evolution of deep learning algorithms.
This flexibility reduces the silicon efficiency. An alternative solution is to use coarse- and fine-grained
reconfigurable architectures that can be tailored to any specific deep learning model. It is expected
that new mobile processors will integrate dedicated units to run deep learning models. ASICs will be
the preferred platform after the establishment of robust deep learning models with a life-cycle that
justifies the ASIC design. Until then and in those cases where an FPGA or a coarse-grained device is
already available, reconfigurable technology is a competitive choice.

A major obstacle to the broad utilization of reconfigurable computing on deep learning is the
hard and complex design process. Several frameworks were already proposed to map deep learning
models on FPGAs. A drawback of automatic mapping is that it normally generates less efficient
solutions than an architecture designed by hand. Since efficiency is a crucial aspect when designing
edge computing platforms for deep learning, new and better mapping frameworks are required to
support the deployment of deep learning on reconfigurable computing devices.

End devices still lack computing architectures that allow them to run an inference with low energy
and low latency. Dedicated engines need to be integrated with the general-purpose processors of end
devices. However, uncertainty about the future of deep learning models has delayed the adoption of a
more aggressive SoC solution with dedicated DL engines.

Integrated and collaborative solutions with several end devices and edge servers must be further
investigated. Edge computing architectures are now faced with a new compute-intensive problem.
Algorithms and protocols already exist to run services in a distributed edge architecture. These
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methods need to be adapted for deep learning algorithms. Performance and energy models of deep
neural networks are important to help the automatic scheduling and dispatching of services.

An integrated design view about the deployment of deep learning on the edge is still lacking.
Deep learning models and optimized hardware accelerators have been previously designed to run the
inference of deep learning on single devices. The migration of inference to the edge simply adopted the
existing distributed solution of the edge infrastructure to run deep learning models designed for single
devices. Previous deep model ideas, techniques, and architectures must be reoriented, redesigned, and
reoptimized to better adapt to a new computing platform target. Furthermore, it is expected that some
of these integrated solutions will consider not only edge computing, but also a broader solution where
the edge and cloud cooperate for a more efficient solution. While inference is a reality, training has
only started the migration to deep learning. Due to its much higher complexity compared to inference,
training is mainly a cloud-based task. However, considering privacy issues and the proliferation of end
devices and new applications, training is also migrating to the edge. Since training has a computing
complexity well over that of inference, the challenge is higher when compared to inference. In some
cases, this complexity is balanced by the fact that training can be done offline, not subject to time
constraints. However, training competes for resources that are used for inference. In other cases, new
training samples are received in a stream-like way or periodically and, due to privacy issues, may
have to be discarded. In these cases, training has to be done as data are received, and batch training is
not acceptable. Training on the edge has just begun and soon will be a hot topic of research.

7. Conclusions and Future Work

This paper reviewed the major contributions to the deployment of deep learning at the edge. The
most popular deep neural models were described and their complexity explained. The migration of
deep learning services to the edge opens the possibility to run many new applications with real-time
constraints, from computer vision to smart cities and homes.

Methods and architectures to accelerate the execution of deep learning on edge devices were
described. Edge-oriented network models trade off accuracy for performance and energy. At the
edge, accuracy is not the only concern, and there are other dimensions to optimize, such as computing
resources, memory capacity, and energy efficiency.

Hardware-oriented optimization methods, which reduce the complexity of the models and
consequently improve performance and energy efficiency, were described. New computing devices
with dedicated engines are being proposed for both ASIC and FPGA technologies. Edge computing
architectures for deep learning were also discussed. The topic of how to run inference on an integrated
environment comprised of end devices and computing platforms, both at the edge and in the cloud,
was given relevance. Training at the edge was also discussed, since the migration of training to the
edge is also an inevitable trend.

Many challenges and issues remain open. Computing platforms must guarantee flexibility, high
performance, and low energy. Model optimization must be integrated with architecture optimization
for maximum efficiency. This increases the complexity of the design space and therefore requires new
methodologies. Models designed to run on distributed computing platforms comprised of end devices
and edge and cloud infrastructure can balance inference and training workloads among these layers
and improve privacy, performance, and energy metrics. Therefore, the design of deep neural networks
should consider the target architecture and distinguish between edge and cloud approaches.

Edge computing is still a rising technology that is under pressure to support AI and machine
learning algorithms such as deep learning, as well as provide the associated services. This is a
self-reinforcing cycle: edge infrastructure has cleared the way for new deep learning applications, not
possible under the cloud computing model, and the requirements for doing so are in turn transforming
the architecture of the edge platforms. The journey of deep learning from the cloud to the end device
has just started. The trend is to move deep learning as close as possible to the data, not only inference,
but also training. This scenario will not exclude cloud data centers from deep learning. On the contrary,
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the cloud provides very accurate models that can be used to train local models or run specific tasks
requested by end devices.
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The following abbreviations are used in this manuscript:

AE Auto-Encoder
AI Artificial Intelligence
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
BM Boltzmann Machine
BNN Binary Neural Network
CNN Convolutional Neural Network
DBM Deep Boltzmann Machine
DBN Deep Belief Network
DL Deep Learning
DNN Deep Neural Network
DRP Dynamically Reconfigurable Processor
DSP Digital Signal Processor
FPGA Field Programmable Gate Array
GOP Giga Operation
GPU Graphics Processing Unit
IoT Internet of Things
IP Intellectual Property
LSTM Long Short-Term Memory
MAC Multiply and Accumulate
NAS Neural Architecture Search
NoC Network-on-Chip
PE Processing Element
PNAS Progressive Neural Architecture Search
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SE Squeeze and Excitation
SMBO Sequential Model-Based Optimization
SoC System-on-Chip
TMAC Tera Multiply and Accumulation
TOP Tera Operations
ZB Zettabytes
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