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Abstract

Software systems are getting increasingly complex and bigger in size.

When these general trends are coupled with the shortcomings of software

quality assurance techniques and time-to-market pressures, development houses

are forced to release their software with many known and unknown defects,

which inevitably cause failures in the field.

Many approaches have been proposed in the literature to predict the

manifestation of software failures at runtime and proactively take preventive

measures, such as preventing the failures or decreasing their harmful conse-

quences. Runtime prediction of failures is an integral part of such proactive-

preventive frameworks.

One downside of the existing approaches is that they treat software sys-

tems as a black-box and leverage only the profiling data which are directly

observable from outside the programs, such as, CPU, memory, and network

utilizations. Internal execution data is typically not leveraged. This is solely

due to the potential runtime overhead cost that can be imposed by collecting

internal execution data while the programs are running. As the failure predic-

tion approaches target software systems operating in the field, high overhead
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costs are generally not acceptable. Consequently, the existing approaches

mainly target at predicting failures caused by software aging.

In this thesis, we present a lightweight runtime failure prediction ap-

proach that leverages internal execution data. We, furthermore, evaluate the

approach by conducting a series of large-scale experiments, in which three

widely-used software applications were used as subject applications. The re-

sults of our experiments strongly suggest that the proposed approach can

reliably predict software failures at an affordable cost.
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Özet

Yazılım sistemleri gün geçtikçe büyümekte ve karmaşıklaşmaktadır. Bu

genel eğilimlerin üzerine, yazılım kalite güvencesi tekniklerinin yetersizlikleri

ve günümüzdeki market baskıları eklenince, yazılımlar içlerinde bilinen ve

bilinmeyen birçok yanlışlarla sahaya sürülmekte ve bu yanlışlar kaçınılmaz

olarak hatalara sebebiyet vermektedir.

Literatürde, yazılımların sahadaki güvenilirliklerini artırmak için, mey-

dana gelebilecek hataları önceden tahmin etmeyi ve bu hataların oluşumlarını

engellemeyi veya hataların verebilecekleri zararları en aza indirgemeyi amaçlayan

birçok yöntem yer almıştır. Bu yöntemlerin en önemli işlevsel parçası, hata-

ların önceden tahmin edilmesidir.

Literatürde önerilen hata tahmin yöntemlerindeki olumsuz yan, bu yöntemlerin

yazılım sistemlerine kara kutu muamelesi yapması ve işlemci, hafıza ve ağ kul-

lanımı gibi sadece dışarıdan gözlemlenen özellikleri kullanarak telemetri verisi

toplamasıdır. İçsel telemetri verisi genel olarak kullanılmamıştır. Bunun

tek nedeni çalışmakta olan programdan veri toplanması sırasındaki olası

çevirimiçi ek yüktür. Hata tahmin yöntemleri sahadaki yazılımları hedef
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aldığından dolayı, yüksek ek yük harcamaları genelde kabul edilebilir değildir.

Bunun sonucu olarak, var olan hata tahmin yöntemleri ana olarak yazılım

yaşlanmasından kaynaklana hataları hedef almaktadır.

Bu tezde, içsel telemetri verisi kullanarak hafif yüklü çevirimiçi hata tah-

mini yapan bir yöntem sunuyoruz. Buna ek olarak, bir seri geniş kapsamlı

deneyle bu yöntemin değerlendirmesini sunuyoruz. Bu deneylerde üç adet

yaygın kullanımlı yazılım kobay uygulama olarak kullanılmıştır. Deneylerden

elde edilen sonuçlar önerilen yöntemin yazılım hatalarını makul maliyetlerde

ve güvenilir bir şekilde tahmin edebileceğini belirgin bir şekilde göstermiştir.
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1 Introduction

Software systems are getting increasingly complex and bigger in size. When

these general trends are coupled with shortcomings of software quality assur-

ance techniques and time-to-market pressures, development houses are forced

to release their software with many known and unknown defects, which in-

evitably cause failures in the field. Software failures are proved to be costly

in both quantitative and qualitative terms.

One way to prevent software failures in the field, thus to increase software

reliability, is to never release software with any defects. This can be achieved

by identifying and fixing all defects before the system is released. Software

testing and formal verification methods are the widely-used means that can

be used towards achieving this goal. However, limitations of these techniques

are well-known and sometimes severe.

We believe that, to further improve software reliability, one should accept

that software systems do fail in the field. By following the same realistic

line of thought, many approaches have been proposed in the literature to

predict the manifestation of software failures at runtime and proactively take

preventive measures, such as preventing the failures or decreasing the harmful

consequences of failures.

Predicting failures at runtime is an integral part of such proactive-preventive

frameworks. Existing runtime failure prediction approaches operate in a sim-

ilar manner: Behavioral models that abstract program executions are created

by leveraging historical data and then failures are predicted by identifying

and scoring similarities to these models and/or deviations from them.
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One downside of the existing approaches is that they treat software sys-

tems as a black-box and leverage only the profiling data which are directly

observable from outside the programs, such as, CPU, memory, and network

utilizations and the number of active processes in the system. No internal

execution data is collected. Therefore, these approaches mainly target at

predicting failures caused by software aging.

The reason behind why the execution data that could be collected from

inside the programs has not been leveraged in predicting failures is, since

the failure predictions are performed at runtime (while the programs are

running) in production environments, obtrusive nature of collecting internal

execution data has believed to be unaffordable.

In this thesis, we, however, empirically demonstrate that certain types of

internal execution data can be collected from inside program executions at

an affordable cost and these data can help predict failures at runtime.

1.1 Organization of the Thesis

The rest of this thesis is organized as follows; in Section 2, we give background

information for thesis, Section 3 describes the related studies in the literature,

our motivation is given in Section 4, Proposed approach is given in detail on

Section 5 and empirical studies conducted on this approach are explained

with their results in Section 6. Section 7 describes threats to validity of this

thesis. In section 8 we give a conclusion and discuss the probable future

studies in Section 9.
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2 Background Information

In this section, some background information is given on tools and methods

used in this study. For some experiments, we leveraged hardware perfor-

mance counters for a way of collecting inner execution data. Then, these

execution data is modeled by using classification trees. Our subject ap-

plications are gathered from SIR Repository and we used cilly tool for

instrumentation purposes.

2.1 Hardware Performance Counters

Originally, hardware performance counters were used by CPU producers for

performance analysis of their product. They were used for hot spot analysis.

Later on, these counters are released to common usage, but they are tradi-

tionally used in hardware performance analysis. We on the other hand, use

them for software based purposes.

Hardware performance counters can be used to record various events that

are occurring on a processor. These counters are part of the hardware ar-

chitecture and general purpose computers that are used nowadays involve

such counters. As said before, hardware performance counters can record

several events occurred in a processor, such as the number of instructions ex-

ecuted, the number of branches taken, the number of cache hits and misses

experienced, etc.

By default, these counters are inactive and activation methods can differ

from processor to processor, but in principle procedure to be followed is quite

3



the same. To activate hardware performance counters, the event of interest

has to be linked with the physical counter to be read.

Generally there are a fair amount of hardware performance counters resi-

dent in a CPU, utilizing this property, several events can be counted at once

by assigning each event to a different counter. In addition to that, by us-

ing some additional software, with multiplexing method, more events than

counters can be read at once.

When a counter is activated, it starts to count the assigned event and

stores the count into a set of special purpose registers. These values can

then be read and reset on demand.

2.1.1 Programming Hardware Performance Counters

Hardware performance counters are activated and read by processor com-

mands. There are two instructions are available for reading them;

rdpmc reads the performance counters value.

rmtsc reads the time stamp counter value from a special time counter.

One challenge hardware performance counters introduce is that these

counters are low level and cannot distinguish the issuers of the instructions.

To monitor programs we have to be able to count the events they issued, so

we need this integration.

Also, the registers that store the count values reside in kernel space of the

CPU, and the applications users run and need to be monitored will reside

in the user space of the CPU. Which means, to access the values stored in

the counters, context switches will be required. As known, context switches
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create additional time overhead, since the reason we leveraged hardware per-

formance counters at the first place is to reduce the time cost of monitoring,

this introduced a step-back.

To overcome these problems; we used perfctr -a kernel level driver-

which maps the counter registers in the kernel level to virtual counters in the

user space so that the counter value can be read without the context switch.

Also, these virtual counters can be integrated with processes to count events

from a single process.

Furthermore, hardware performance counters are independent from the

program context, which means they just count the events issued. Collecting

inner execution data from executions require integration of counter values

with program contexts. To handle this, we used software instrumentation.

Following the programing hardware performance counters, a method is

needed to create models from the collected execution data, for this purposes

classification trees were used.

2.2 Classification Trees

Classification is an important data mining problem which is in general the

act of deciding the class of an observed event. In a classification problem,

a dataset called the training set is taken as input. Training set includes

several examples each having a number of attributes. These attributes can

be continuous or categorical [2]. One example of categorical attribute is class

label attribute which is assigning a label to a particular data for deciding

which class it will fall into. Deciding if a test will fail or pass is also such a

classification problem.
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When a classification algorithm inputs a training set, the aim is to build

a model of the class label using the other attributes of the training data

set. Then, this created model can be used to classify previously unseen data

points. In general, the input set is divided into two subsets beforehand;

training set and test set. Training set is used to train a classification model,

and test set is used to evaluate and fine-tune the model.

When dividing the input data set into train and test sets,the ratio on the

number of class labels is preserved. Preserving the ratio of the number of

labels while dividing the sets is called stratified sampling [3].

When a training set includes noise or random error, there is a chance

that the model trained from this data describe the noise in the model, too.

This situation is called overfitting and causes models to fail predicting the

classes of unseen data because the model is adjusted the rare random or noisy

situations [4]. To avoid overfitting n-fold cross-validation technique can be

used. In this method, input data set is randomly -but stratified-divided into

n subsets. In each round of cross-validation; one of the subsets is selected

as test set, and other n-1 subsets are used to create a model. In the same

manner n rounds are performed where each subset is used once as test set.

After k rounds are finished, either the best model is used -this is the general

approach- or average of the models is used as the resulting model. In either

way, overfitting to any training set will be prevented [4].

In classification tree algorithms, the resulting model is a decision tree

whose nodes consist of logical conditions on attributes. In this tree each

leaf has a class label, thus each route from the root node to a leaf node

corresponds to a rule for that class label which consists of only and gates (a

6



conjuction). Therefore this tree model is disjunctions of each rule from root

to leaves, which is a disjunction of conjunctions.

To illustrate the tree model, an example data and resulting decision tree

is given in Table 1 and Figure 1. In the Table 1, there are 4 attributes and

2 classes. This data is simply plotting if the weather conditions are suitable

for a kid to play outside. As seen, attributes can be numerical or binary

valued. This training data can lead to several decision trees, one of the trees

is shown in Figure 1. In this tree, nodes indicate the test to be apllied on

the data point, and arrows indicate the possible results of the test of the

node. For instance, at the root node, outcast attribute is tested, according

to possible outcomes of the attribute (“sunny”, “overcast”, “rain”), there are

three arrows leading to three nodes in the tree. When an unseen data point

needed to be classified, this tree is used to give a label to the data point. To

illustrate, an example data point {“sunny”,“70”,“70”,“true”} can be traced

in the tree in Figure 1. In the node, overcast attribute is used for testing,

our data point has “sunny” as the attribute value, so it goes to the leftmost

child of the node. At this node, humidity is used, if humidity is smaller or

equal to 75 the data point is labeled as “Play”, otherwise it is labeled as

“Don’t Play”. Since example data point’s humidity value is “70”, left child

is selected and data point is labeled as “Play”. As in this illustration, some

attributes may not be checked while deciding the label of a data point. Even

sometimes some attributes may not be included in the decision tree.

Since methods are found for collecting the execution data and creating

behavioral models from them, subject applications need to be found for ex-

periments.
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Outlook Temp(F) Humidity(%) Windy? Class

sunny 75 70 true Play

sunny 80 90 true Dont’t Play

sunny 85 85 false Dont’t Play

sunny 72 95 false Dont’t Play

sunny 69 70 false Play

overcast 72 90 true Play

overcast 83 78 false Play

overcast 64 65 true Play

overcast 81 75 false Play

rain 71 80 true Don’t Play

rain 65 70 true Don’t Play

rain 75 80 false Play

rain 68 80 false Play

rain 70 96 false Play

Table 1: Sample Training Set [1]

2.3 SIR Repository

An experimental study’s success lies on the reliability of the results, and

results’ reliability highly depends on the subject applications used in the

experiments. Being used in similar studies and representativeness of the

subject application is important in the sense of generalizing the results of

the experiment.
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Figure 1: Decision Tree of Table 1

In addition, this study has other expectations from subject applications.

First of all, these subject applications should include some defects which will

cause failures. These defects has to be known and easily locatable for exam-

ining the results of failure prediction method. Also; this subject applications

should have test suites that can include both failing and passing tests in it.

In the search of subject applications, under the light of these expectations

we decided to leverage SIR repository. SIR ( Software-artifact Infrastructure

Repository ) is a bug repository that provides users several software systems,

in multiple versions with their known defects and test suites. Each one of the

set defects that SIR repository provided for applications is identified with a

unique defect identifier, and these defects could be activated individually as

needed.
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2.4 Cilly

Since automating the instrumentation phase is quite important in terms of

usability of the method, several options are visited for this purpose such as

gcc function handlers or wrappers. However the most beneficial tool for our

needs was CIL.

CIL (C Intermediate Language) is a high-level C analysis and transforma-

tion tool [5]. CIL, creates an intermediate source code from C source codes

by removing ambiguities and redundant constructs while maintaining types

and a close relationship with the source program [6]. CIL makes a source-to-

source transformation and create a representation of the original code which

is easy to manipulate and analyze [6].

To create CIL output, cilly script is used. cilly is a perl script which

works like a C compiler, can be used with existing Makefiles and compiler

options. In addition, cilly has its own options, so that users can turn on

CIL’s options. We utilized CIL with several options, each of these options

are explained in brief detail below.

--dooneRet: This option, provides every function has at most one return

statement. In the functions with several return statements, uses jumps

to one return point that it added to the end of the function.

--dologcalls: This option, inserts print commands to the code, so that it

will print the name of the functions when they are called.

--save-temps: This option is used to preserve the temporary files created.

Integration of monitoring tools and program context done by leveraging

cilly tool to insert monitoring and prediction codes into the software.
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3 Related Works

In this work, we combined two different research areas for purpose of failure

prediction. As a result of this interdisciplinary structure of the work, the

related works are divided in to two sub sections; related works on hardware

performance counters and related work on failure prediction.

3.1 Related Works on Hardware Performance Coun-

ters

Hardware performance counters are mostly used for performance analysis and

finding the performance problems of software systems. These kind of studies

are categorized as “hot spot” analysis. Primary purpose of hot spot analysis

is to find components causing bottleneck in the system. These information is

than used to improve performance of these components in order to improve

overall performance.

Hardware performance counters are used in different hot spot analysis

like; performance analysis of standalone programs [7, 8], performance anal-

ysis of distributed and parallel software systems [9, 10, 11], and dynamic

improvement of system performance [12, 13, 14]. It is easy to increase the

number of such studies.

As hardware performance counters are proved to be successful for perfor-

mance analysis, to improve the usability of such counters different tools and

libraries, both open source [15, 16].
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3.2 Related Works on Failure Prediction

Today, encountering failures of software system in the field is very com-

mon [17, 18]. There are two main methods for minimizing the cost caused

by the software failures and for increasing software reliability by eliminat-

ing these failures. These methods are classified as proactive and preventive

methods. Proactive methods aim to recover from failures in software sys-

tems effectively and quickly by simply returning to the state before the fail-

ure [19, 20]. We can give operating systems’ automatic restart mechanism

as an example to proactive methods. The important thing that shouldn’t be

missed is that these methods become active after failure. On the other hand

preventive methods aims to predict and prevent failures before they occur.

In this spectrum, preventive methods have better potential on increasing

software reliablity [21]. In this work, we designed a preventive method for

failure prediction.

All the previous studies conducted in this area uses black box approach

for collecting data from software. Which means these studies collect the data

only can be observed from outside of the executions, such as memory usage,

network usage, number of processes working, error logs and response time.

In [21], Lin used creation times of the failure log files for showing that

failure prediction beforehand is possible and developed a method called “Dis-

persion Frame” for this purpose. The method uses the statistical difference

between error distribution reports that are created before failure occurs and

doesn’t occur.

Likewise in [22, 23], Vilalta again used failure log files but rather than

look for the creation times, he used fault types for failure prediction with
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“Event Set” technique. Vilalta’s studies showed us that there are statistical

differences not only on the number of the files created but also in the types

of the failure log files. He also studied algorithms to be used for failure

prediction and their success on doing so [24].

In [25], Salfner used both failure log file creation time and fault types for

developing “Similar Events Prediction” method. Later, he proposed another

method, which uses “Hidden Markov Models” in order to lower the cost of

behavioral model creation, for the same purpose [26]. These studies show

that using both fault type information and fault occurance time gives better

results than using them separately.

4 Motivation

In today’s world software systems are not only a subject of the computer

engineering, but also it resides in almost every aspect of daily life. It is

almost inevitable to have defects in software systems since user behavior may

not be known and tested completely. Thus, software systems are released to

users with bugs and they lead to failures. These failures are costly in both

quantitative and qualitative terms. Under these circumstances to increase

the reliability of the software in the field; proactive-preventive methods are

proposed and used in the literature. These methods aim to predict the

failures beforehand and try to minimize the harmful consequences of failures.

To predict failures in programs, profiling data is collected from the ex-

ecutions of the software and environmental elements. Then, this execution

data is used to create behavioral models of the software. Thereafter, when
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software is being used by end users, dynamically collected execution data

is compared to this created model and similarities and/or differences from

the model is scored. In case of any of these similarities or differences are

considered as ‘suspicious’, prediction is made about an upcoming failure and

preventive mechanisms step in.

In this method, the important part to focus on is the type and the quality

of the execution data, because the accuracy of the behavioral model depends

on the execution data. Typically the more detailed and inclusive the execu-

tion data is, the more reliable the models are. However, collecting more data

means more overhead both in term of time and space. Since this approach is

targeted at software systems running in the field, keeping the overhead low

is an important factor. At this point, a trade off problem comes into the

picture. If collected data is too extensive, overhead is expected to be too

high; otherwise overhead will be kept at a low level but this time created

behavioral model may not be reliable. So, one of the main limitations in this

area is finding a low cost monitoring method. The main drawback of the

previously proposed methods is this trade-off between data efficiency versus

overhead efficiency.

First of all, most of the proposed methods in the literature apply failure

prediction on the level of systems rather than the level of programs. I.e.

failure prediction mechanism on a server that provides hosting for an online

application, uses the data that are related to the server machine such as

memory, network and disc usage, etc. These approaches have no awareness

of the software that is running on the server machine. Since failures generally
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originated from software, it is expected that being able to look into the

software will produce a higher success rate on failure prediction.

Second, the techniques which are collecting execution data from the soft-

ware, generally collect data that can be observed from outside of the software

such as latency and throughput. These methods do not gather any informa-

tion about the inner state of the application. Hence, these methods can make

predictions on the level of software systems but the models created and pre-

dictions made are limited to the data that can only be observed from outside

of the software. This limitation makes these approach perform poorly in

failure prediction.

Collecting inner execution data is not a topic that has not been visited

before, but the cost of collecting the data would be too high to make the

method feasible. The most important motivation of this study is the hy-

pothesis that inner execution data can be collected with a minimal cost and

this data collected can be used to create reliable models of the executions.

5 Approach

In this study, our aim is to dynamically predict failures at runtime while the

program is running. The proposed method requires dynamic data collection

in the field, so monitoring cost has to be as low as possible. To overcome

this, monitoring phase is pushed onto the hardware as much as possible. For

that purpose, we leverage hardware performance counters to collect hardware

level monitoring data. Since hardware performance counters do not have

information about the issuer process of the event they count, we used virtual
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counters to make hardware performance counters collect data from a single

process.

To conduct the study, we created a two step approach. First step consists

of using execution data to create behavioral models of executions and creating

a prediction model from them. Second step covers instrumenting software to

be deployed in the field for failure prediction.

In Figure 2 overall structure of the proposed method can be viewed. The

rest of this section will explain each step of this flow in detail in two main

subsections; Training Phase (5.1) and Deployment Phase (5.2).
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Figure 2: Flowchart of the Proposed Method
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5.1 Training Phase

This section describes the steps of training phase of the approach in detail.

5.1.1 Instrumentation

For percieving the relationship between monitoring event and the source

code or its context, we need instrumentation of the source code to collect

execution data. When connecting monitoring tools to software contexts, it

can be done in several levels. The instrumentation can be on the level of

systems, sub-systems, components, functions, and code blocks.

Each level of integration to software results in a different program pro-

filing data. In this study, as monitoring level, we selected function level

monitoring. Each function in the execution carry out a subtask in the ex-

ecution. Therefore function level monitoring will allow us to monitor the

tasks carried out in the execution on the basis of subtasks and they have well

defined boundaries in the program execution.

To create the integration between hardware performance counters and

functions, a simple procedure is followed.

1. At the beginning of the execution, hardware performance counter is

activated with the desired event to count.

2. Counter value is read at the beginning and at the end of each func-

tion. The difference between these two values are associated with the

invocation.

3. At the end of the execution, hardware performance counter is deacti-

vated.
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Figure 3: Calltree Example

Once the execution data is collected from an execution, it is used to create

an annotated calltree. In this calltree, each function invocation associated

with the number of hardware events monitored during the invocation. A call-

tree example can be seen in Figure 3. In this calltree, each line corresponds

to a function invocation and indentation on each line depicts the depth of the

invocation. At each line, a function invocation is proceded with the number

of events counted. Additionally, using this tree, caller - callee relations can

be seen easily.

In our study, functions are modeled on the basis of their callee functions.

Each sub-function carry out a functionality of its callee function, therefore,

to itemize the counter values by sub-functions gives us information about the

effort made for each functionality. The suspicious changes in the effort made
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to complete a functionality could point out that something went wrong in

the execution [27].

5.1.2 Modeling Function Behaviors

After creating annotated call trees, as a preliminary step to creating behav-

ior models, call tables created for each function by using all call trees of a

program. A function table, stores information of all the invocations of that

function within all tests. Each table stores the number of events monitored,

on the basis of the body and the callee functions of that function. Each

function invocation is represented with a separate line in the table.

test depth body f10 f24 f41 f109 f128 pass/fail

71 1 2401 2600 7632 -1 63831 85284 P

443 1 1846 2605 7631 -1 35000 74528 F

206 1 1876 2600 7632 -1 63830 40000 P

206 3 1849 2610 7623 -1 63830 77928 F

Table 2: Function Table Example

Table 2 presents an example function table for function foo. In the ta-

ble, first column gives the test and second column gives the depth at the

call tree where the data of the row is taken. Third column gives the num-

ber of monitored events inside the body of the function except the events

monitored inside callee functions. The columns after third one, shows the

callee functions and the number of events monitored inside these functions.

Therefore the columns after third column may vary for every function table.
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The last column of the table depicts if the test was passed or failed; P stands

for passing and F stands for failing. If a value is ‘-1’ in a cell, it means that

the callee function was not called within that invocation.

Our aim is to create models for functions so that these models can be

used for classifying unseen runs as failing or passing. For this purpose, we

leverage classification trees.

After the function tables are created, for each function we run a classi-

fication tree algorithm. Tables of each function are fed to the algorithm, to

produce a decision tree for each function. When tables are given as input,

test name and depth columns are eliminated. 10 fold cross validation was

used for fine-tuning the results.

By creating a decision tree for each function, we obtained a behavioral

model for each function. The resulting tree can predict if an execution is

going to fail by using the monitoring events inside the callee and body of

the function. A possible classification tree created from Table 2 is shown in

Figure 4.

Once models are created, they can easily be converted to a C code, so

that it can be used in instrumentation. Each node in the tree corresponds

to an if statement, each child of a node is either corresponds to its then or

else part. Therefore, a decision tree can be represented as an if - then -

else statement. From now on this code is referred as prediction code. An

example prediction code of Figure 4 can be viewed in Example 1.
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Figure 4: Decision Tree Obtained From Table 2
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Example 1 Example prediction code

if (body <= 1876)

{

if ( f109 <= 3500)

{

//Failing;

}

else

{

if(f128 <= 40000)

{

//Passing;

}

else

{

//Failing;

}

}

}

else

{

//Passing;

}
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5.1.3 Identifying Agents

When behavioral models of the functions are evaluated with test sets, we saw

that not all models are reliable, i.e., some functions are more successful in

distinguishing failing executions from successful executions, and some func-

tions are in no way related to the failures in the execution, so they could not

distinguish between failing and successful executions.

In the light of this observation and similar observations made in previous

works, instead of monitoring every function in the execution, we monitored

only the ones that are successful in distinguishing failed runs from successful

runs. We conjecture that this approach can increase the success rate on

failure prediction and decrease the overhead cost of the method. After this

point, these functions are going to be referred as agent functions.

To find the functions that are successful in predicting failing executions,

we calculated the success of each function model. For this calculation, we

used F-measure parameter. F-measure parameter combines precision and

recall to give a score to the performance of the model. Precision calculates

the fraction of instances that are failing in the instances that are labeled as

failing by the model and recall calculates the fraction of instances that are

failing and correctly labeled. Using a threshold value of 0.8, agent functions

are determined. Figure 5 illustrates the agent selection process.

After filtering the functions according to their accuracy in failure predic-

tion, some statistics about these agent functions are given in Table 3. As

explained before, each software under test (sut) in this study have several

versions and for each version there are several defects identified. Each time

a defect activated, it will become a different program and we find agents for
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Figure 5: Flowchart of Agent Selection Process

them separately. In the table, the statistical values are averaged over each

version.

Two important observations can be done at this point. First one is, there

are functions that are capable of predicting failures with a 0.8 or higher

accuracy. Second, these functions are generally a small percentage of the all

functions in the program. These observations are important and encouraging

for the future steps of the study.
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sut version # of functions # of agents agent percentage(%)

flex v1 603 22,2 4

v2 480 9,8 2

v3 461 27,8 6

v4 1033 9 0,9

grep v1 48 34 70

v2 132 13,5 10

v3 145 15 10

v4 72 27 38

sed v2 295 18,5 6

v3 221 8,75 4

v5 67 6,3 9

v6 460 18,75 4

v7 405 10,6 3

Table 3: Statistics on Agent Functions

5.1.4 Creating Prediction Models

We have so far identified reliable agents. Now, we need to develop a prediction

mechanism. Once agents are instrumented with their prediction codes, they

will make predictions about the future failures while execution is proceeding.

Hence, when an agent is called in the execution it will create a prediction ‘F’

(failing) or ‘P’ (passing) according to its prediction code. Consequently we

will have a string consists of ‘P’s and ‘F’s, and this string is going to grow

longer as the execution proceeds since each time an agent is invoked, it will
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add a prediction to the string. This evolving sequence of prediction is called

health index. Using this health sequence, two approaches proposed.

Point Prediction (PP): First approach that comes to mind is to de-

termine that there will be a failure, whenever a ‘F’ is seen in the sequence.

We will call this method PP method.

However this method only considers one agents opinion, and just looks

for the decision of the agent. Also in general, there is a pattern for fault

formation in systems. First a problem occurs in a state, then the current

program state is defected. This defected state affects next state and makes

next state defected, too. These successive events pile up over time to create

a failure. Which means, failure occurs over a time window. Therefore, it is

coherent with this fault model to make the prediction of the failure, using

the decisions of the agents over a window.

Moreover, PP method does not take into account the accuracy scores of

the agents. So another method that can address these needs is developed.

Sliding Windows Prediction (SWP): This method processes the

health sequence over a window. At each window it looks for the ‘F’ val-

ues, if there are any, it checks for the accuracy score of the agent that gave

the ‘F’ decision. All the accuracy scores of the ‘F’ values within the window

is added up.

These windows are found with sliding window method, i.e. at every step

window is shifted one character right. This process is represented in Figure 6.

In this figure, time is passing from left to right, and as new agents are run,

the sequence grows in time. For the example, window size is selected 3.
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Figure 6: Sliding Window Method

At each step of this approach a sum is calculated for the window, so,

this process outputs a string of numbers. For each subject application, these

score strings are gathered from each test. Afterwards, these sequences are

fed to classification algorithm which will output a threshold value for each

tuple. This threshold value indicates that whenever a window’s score passed

this threshold value, the execution will be faulty.

The size of the sliding window plays an important role on this methods

success. To find optimal values for window sizes, for each subject application

we tried window sizes changing from 1 - 10. Then F-measure parameters (see

Section 6.2 for details) are compared to find the window that generates most

accurate results.

At the end of this step, for each software - version - defect tuple

• agents,

• prediction codes for agents,

• window sizes and

• window thresholds
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are known. In other words, everything needed for instrumentation are

known. Next step is using this information, instrumenting the software that

is going to be deployed in field.

5.2 Deployment Phase

When instrumenting the systems, only agent functions are instrumented.

Other functions remain untouched. Within the agent functions, only the

sub-functions that are used needed in prediction code are instrumented.

Two types of instrumentation code is inserted to software, monitoring and

prediction codes. Monitoring codes count the events inside the body of the

agent functions and their callee as needed. Prediction code on the other hand

uses the data collected by monitoring codes and gives a prediction about the

execution. An example prediction code was given in Example 1.

When inserting the monitoring codes, they are placed at the entrance

and exit points of the agent function. Also to count the events occurred in

the sub-functions codes inserted into the agent function’s body just before

and just after the calling of the relevant sub-function. After that, prediction

codes inserted at the end of the agent function.

An example of instrumentation over a very simplified function is given

in Figure 7. Figure 7(a) and 7(b) present the function before and after

instrumentation, respectively.

Thanks to CIL’s dooneret and dologcalls options, each function’s en-

trance and return points became apparent and each function call is under-

lined with a print statement in a slightly changed source file with extension

of "cil.c". Our instrumentation tool takes this cil.c file as input, and uses
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(a) Original function (b) Instrumented function

Figure 7: Instrumentation Example

this print and return points as the spots to insert the instrumentation codes

in the functions needed. Before the instrumentation ends, all of the print

statements that CIL inserted are removed since they are unnecessary.

6 Empirical Studies

6.1 Hypothesis

This study depends on two main hypotheses. First one is that that there are

repeatable and identifiable patterns in program executions and deviations

from these patterns and/or similarities to them are highly correlated with

the manifestation of failures. Second one is that program execution data can

be collected from inside executions at an affordable cost and the collected

data can be used for runtime failure prediction.
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6.2 Independent Variables

In the experiments conducted to test these hypotheses several independent

variables were present. These are the variables that are manipulated during

experiments.

First, type of the execution data (metric type) is an important variable

for these experiments. This variable determines the event to be monitored

and used in the modeling.

Our approach design is generically, for it works for any event that can

be counted, but in this study we used six events to collect execution data.

These are;

Visits This execution data covers the number of each function visited within

the execution.

Path This type of execution data includes the path of the execution on the

basis of functions.

Time This execution data simply consists of the time measurements of the

executions, functions, etc.

TOT INS Records the number of machine instructions executed.

BR TKN Counts the number of branches taken.

LST INS Records the number of load and store memory instructions exe-

cuted.

The last four metrics described can be collected using hardware perfor-

mance counters.
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Another variable was the level of integration between performance coun-

ters and the source codes of the program. It could be done on the level of

functions, program components, subs-systems or systems. In this study we

selected function level integration and build our experiments on this basis.

Also, to enhance the prediction or overhead performances, some filters

were applied on our training sets. There are three filter options;

no filter: As the name suggests, in this option no filters applied on the data.

global filter: This filter removes the functions that are globally indicates

functions. Such as functions that are only visited when a failure occurs.

This filter is applied to increase reliability of our results. I.e. selecting

these functions as failure prediction agents would not be useful since

these functions mean that failure is already occurred.

50 filter: This filter removes the functions that are invoked more than 50

times during an execution. The purpose of this filter is to lower the

expected overheads by prevent them to be selected as agents.

6.3 Dependent Variables

In this study, several events were monitored in the basis of functions and

calltrees created from each test’s execution. With this data, several criteria

were calculated.

F-measure We used this criterion for agent selection process. It gives a

balanced value between precision and recall values.
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False Acceptance Rate (FAR) This criterion is used for performance cal-

culation of decision trees. It gives the probability of falsely accepting

instances for a class [28].

False Rejection Rate (FRR) This criterion is again used for performance

calculation of decision trees. It gives the probability of falsely rejected

instances of a class [28].

Half Error Rate (HER) This criterion used to combine false acceptance

rate and false rejection rate in the same calculation. It gives the arith-

metic mean of FAR and FRR.

These explained criteria are used to evaluate the performance of the fail-

ure prediction mechanism. These measurements are widely used in the litera-

ture for similar purposes. For evaluating the method in performance analysis,

following criteria are used;

Runtime Overhead of Monitoring The effect of collecting execution data

on the program performance is calculated by timing the program with-

out any data collection and with data collection. Then the difference

is divided to original timing, which gives the time overhead percentage

of the collection.

Runtime Overhead of Prediction In a similar manner, this cost is cal-

culated by timing the program with and without the prediction codes.

The ratio of the difference of these two timings to the original timing

gives the prediction cost in percentage.
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Warning Point This parameter gives the ratio of time it took to make the

prediction to the time of the failure. It is calculated in the basis of

function invocations.

6.4 Evaluation Framework

When evaluating the experiment results, criteria explained in previous section

was used. For evaluating the success of the behavioral function models, half

error rate is used. Half error rate is calculated over failure class. Which

means failure false acceptance rate and failure false rejection rate is used

when calculating the half error rate. From now on, failure half error rate will

be referred as half error rate for simplicity. In a similar manner, FAR and

FRR are calculated from failure point of view, since our aim is to predict

failing executions.

For FAR, FRR and HER, low values are desirable. They get a value

between 0 to 1, where 0 means perfect accuracy in prediction. Warning

point also takes a value between 0 and 1, 0 indicates that no part of the

execution is seen and 1 indicates that all of the execution is seen. So, low

values are better for this parameter, since it will provide more time to switch

on preventive and protective mechanisms.

For time overhead measurements on the other hand, lower overhead is the

better. When gathering the time measurements multiple time measurement

techniques visited. Since our subject applications are short running algo-

rithms, we placed an extra emphasis on resolution of time measurement. All

the test cases used in the experiments were short-living test cases. Therefore,
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we paid special attention to the way we compute the overheads. There are

four different time measurement techniques we considered;

• Wall Clock Time Measurement (WT): This method is simply measures

the real time passed from the start to the end of the execution.

• Virtual Clock Time Measurement (VT): This method calculates the

time only spent for the tasks of the process of interest.

• Wall Clock Cycle Counter (WC): This method counts the clock cycles

passes from the start to the end of the execution.

• Virtual Clock Cycle Counter (VC): This method counts the clock cycles

only when process of interest is working in CPU.

To find the best timer for our experiments, a comparative experiment

was conducted. Using a point from our experiment space (flex v1 with the

defect F HD 1 activated), time overhead calculations are made with original

code in both sides of the comparison. Which means this application’s time

overhead over itself is calculated. In theory, an application’s overhead to

itself is 0, so any difference from 0 in the calculations will show us the error

of the timing tool.

For the subject application, flex v1 with defect F HD 1, all tests are run

for 50 times each and their average is used. Then same process is repeated,

and compared to first time’s results. In Figure 8, results of this comparison

is given. It is clear from the figure that wall clock timers introduce too

much noise into the equation, sometimes as much as 30% time overhead is

calculated from noise, so wall clock timers are ruled out.
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Figure 8: Comparison of Timing Methods

Taking a closer look to just virtual counters, Figure 9, shows that even

though slightly, virtual clock cycle counter performs better than virtual timer.

Therefore virtual clock cycle counter was selected for our time measurements.

All timing and overhead analyses in this study were made using virtual clock

cycle counters.
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Figure 9: Comparison of Virtual Timing Methods

6.5 Subject Applications

For our research; three open source applications selected from SIR repository

as our subject applications; flex, grep, and sed. These applications are all

widely used UNIX/Linux based applications.

flex: This UNIX based application is a lexical scanner which used to gen-

erate fast lexical analyzers.
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grep: This UNIX based application is a command line text search utility

which prints lines matching a pattern or regular expression.

sed: This UNIX based application is a stream editor which filters and trans-

forms texts.

As explained before, SIR provides defects and test suites for each version

of each application. Each subject application selected has its own test suite

and test oracles. Table 4 includes some statistics about the subject applica-

tions used in this study. In the table, number of defects and number of tests

columns give the aggregated numbers over all versions.

software lines of code # of versions # of defects # of tests

flex 10459 5 52 3037

grep 10068 4 20 2440

sed 14427 6 26 2367

Table 4: Subject Applications’ Statistics

6.6 Operational Model

Each application in SIR, comes with a base version and defined faults. Base

version is the fault-free original version and faults can be inserted into base

versions to create new versions. In this study, versions created from subject

applications by inserting one fault at a time.

In Section 5 steps of the method was explained. For finding all values that

needed for instrumentation, two phases of experiments conducted. In first
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phase, reliable functions in failure prediction (agents) are found, in second

phase reliable prediction models are found for agents (sliding window size and

threshold). Since the experiments are two-fold, experiment space is divided

into two phases, too. Furthermore, each phase is divided into training and

testing sets for evaluations. Figure 10 shows this division and the number of

test cases fall into each phase set.

Figure 10: Experiment Space Divided into Two Phases

Function models are created using Phase 1 training set and evaluated on

Phase 1 test set. The results of the evaluation is used to select the agent

functions. Afterwards, for agent functions, PP (Point Prediction) and SWP
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(Sliding Window Prediction) were applied on Phase 2 training set. Then

evaluation of these methods are done by using Phase 2 test set.

Furthermore, all these steps are realized automatically by the framework

developed. This framework inputs the subject application and values for in-

dependent variables and carry out every step from creating behavioral models

to instrumenting the software to be deployed and calculating the evaluation

metrics. By doing so, human factors in the experiments are minimized so

that they will be more reliable and fast.

This study was carried out using CIL’s 1.3.7 version, and papi library’s

3.6.2 version. All experiments conducted on a Pentium D machine with 1

GB of RAM, running on the CentOS 5.2 operating system.

6.7 Data and Analysis

In this section, we present the results of the experiments. To conduct the

experiments, all tests in the test suites for subject applications run, collected

execution data used for modeling function behaviors, agent functions selected

and prediction codes created. Prediction codes generates predictions while

execution is continuing. These generated predictions form health index. Us-

ing the health index failure prediction is made.

Using the health index, two methods of failure prediction was proposed

(see section 5.1.4). These methods’ accuracy results and their comparative

analysis is made mainly on HER and failure warning time.

The results are represented in box&whisker plots for all six profiling met-

rics (BR TKN, LST INS, TOT INS, path, time, visits) in four separate plots

(flex, grep, sed, All Suts) for each method.
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Initially, PP method’s accuracy is tested on all subject applications with-

out any filtering and results are presented in Figures 11, 12, and 13. If we

look at Figure 13(a) to evaluate the method over all subject applications,

we can see that this approach has a half error rate around 12%, which is

promising.

To compare the two methods we proposed, SWP method’s accuracy on

all subject applications without any filtering is shown in Figure 14, 15, and

16. The results in this figure implies that SWP performs better or equal

than PP method. Also hardware performance counter based metrics benefit

more from this method. The results show that, the error rate of methods

TOT INS, LST INS, and BR TKN are down to 4%’s.

Therefore, we moved on analyzing overhead cost of SWP method. Figure

17 shows the overhead costs of each metric performed on SWP method. As

promising the failure predictions as, the overhead costs we observe were up

to 28%, this overhead is unaffordable for an online application.

As mentioned in Section 6.2, for satisfactory results and in the purpose

of having a lower threshold, filter are applied to the data (global filter and

50 filter). In 50 filter the functions that are visited more than 50 times, ex-

cluded from the experiments since they may introduce high overhead results.

Although this exclusion may lead to lower prediction success, it is expected

to create lower overhead costs, and this trade-off may be preferable.

Figures 18(a) and 18(b) illustrates the HER values of the methods under

both filters. When we compare the results in Figure 13 and 16 to the results

in Figure 18, especially in PP results, we see that some metrics performed

better and some performed worse under filtering. We conclude from that the
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Figure 11: FAR Analysis of PP Method
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Figure 12: FRR Analysis of PP Method
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Figure 13: HER Analysis of PP Method
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Figure 14: FAR Analysis of SWP Method
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Figure 15: FRR Analysis of SWP Method
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Figure 16: HER Analysis of SWP Method
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functions filtered may be related to the failures (hence the decline in success)

or may be unrelated to them and causing a noise in the prediction (explains

the increase in the success).

Then, overhead analysis of the filtered methods are analyzed. Figure 19

shows these results. One thing can be deduced form this plot is that, even

though we observed some decline in failure prediction performance, overhead

cost is really lowered. Also, we can see that under the filters, all six of the

metrics produce a manageable overhead, which was the point of filtering.

As an addition for overhead analyses, we plotted the relation between

prediction and monitoring times of the method. Figure 20(b) and 20(a)

shows these relations for non-filtered and filtered methods respectively.

Another important factor of failure prediction is warning time, so, at this

point warning times of the two methods are analyzed. Figure 21(a) and

21(b) depicts the warning times of these methods. These plots tell us that

even though they all performed successful predictions, hardware performance

counters based models were able to predict failures much more earlier than

normal execution data based models.

54



●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●

●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●

●●
●
●●
●●
●●●●
●●●●●●
●●●●
●●●●●
●●
●●●●
●●●●●●●●●●
●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●
●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●
●
●

●

●

●●
●●●
●

●●
●●●●●●
●●●●
●●●
●●●

●●●●●●
●●
●●●●●●
●●●
●●●●●
●

●●
●●●●●●
●●●●
●●●
●●●

●●●●●●
●●
●●●●●●
●●●
●●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●

●●●●●●
●●●
●●●●
●●●●
●
●●
●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●
●●
●●●●
●●●●●●●●●
●●●
●
●●
●●●

●

●

●●●●●
●
●

●●●●●
●●●●●

●●●●
●●●●●●●●●
●●●
●●●

●●●●●
●●●●●

●●●●
●●●●●●●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●

●●●
●●●●●
●●
●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●
●●●●●●●●
●●●
●
●
●

●

●

●●●

●
●●●

●●●●●
●●
●●

●●●●●●
●●
●●●●●●●●
●●●●
●●●

●●●●●
●●
●●

●●●●●●
●●
●●●●●●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●
●●●●
●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●
●●●●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●
●●●●●●●
●●●●
●●●●
●●●●●
●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●
●●
●●●●●
●●●
●●●●●●
●●●●●
●●

●●●●
●

●●●●●●●●●●●●

●

●●●●●●
●●●●
●●●●●
●●
●●●●●
●●●
●●●●●●
●●●●●
●●

●●●●
●

●●●●●●●●●●●●

●

●●●●●●●●●
●●●●
●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●
●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●

●

●
●●●●
●●●

●●●●●●
●
●●●●●●
●●●●●
●●●●●●●●●●●●

●

●●●●●●
●
●●●●●●
●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

BR_TKN LST_INS TOT_INS Path Time Visits

0
50

10
0

15
0

20
0

25
0

30
0

All Suts

Metrics

O
ve

rh
ea

d 
P

er
ce

nt
ag

e 
(%

)

25.743
14.869

28.630

 1.347  4.429
11.924

●

●

●

● ●
●

Figure 17: Time Overhead of SWP Method
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Figure 18: HER Analysis of PP and SWP Methods After Filtering
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7 Threats to Validity

All empirical studies suffer from threats to their validities, both internal and

external. Hence this work also has some threats to its internal and external

validity.

In this work, our main concern is threats to external validity because they

prevent us to generalize the results of the study. One of the external threats

is the representativeness of the subject applications. These applications are

widely used real life applications nonetheless they are three small software,

therefore they only represent three data points.

Another external threat concerns the representativeness of the defects

used for experiments. Even tough the subject applications and the defects

were taken from an independent repository which was used in similar related

studies, these defects are still hasd-seeded faults. Also, during the experi-

ments, always one defect is activated in the applications.

Regarding the internal threads, the subject applications were quite short

running. Long running test cases or software systems may introduce some

scalability issues. Also since the applications are so short running resolution

of the timing method was quite effective on the experiment results.

8 Conclusion

In this study, we aspired after a lightweight method for failure prediction

using internal execution data collected from software systems. Our aim was

to show that efficient inner execution data can be collected with low overhead

cost.
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To carry out this purpose, we experimented six different metric types

for collecting the execution data. Three of them were traditional metrics;

path, visits, and time. The other three, TOT INS, BR TKN, and LST INS,

were collected by using hardware performance counters. Leveraging hardware

performance counters for collecting inner execution data, is a new approach

in failure prediction.

We collected inner execution data on the basis of functions. After data

collection, behavioral models created for each agent and failure prediction

accuracy evaluations made for each function model. The selected functions

which have high success in failure prediction (i.e. where F-measure is higher

than 0.8) were used for later stages of prediction.

During the executions, each selected function -which we call agents- cre-

ates a prediction about upcoming failures. We proposed two methods for

using the predictions of agents for creating a prediction mechanism; Point

Prediction and Sliding Window Prediction.

We evaluated our methods in three widely used, real life applications.

Conducted experiments showed that, our approaches are effective and feasible

in failure prediction. To be precise, our sliding windows method performed

a failure prediction by seeing 33% of the executions on the average, with less

than a 2% overhead cost and with a half error rate of 4% on mean and 15%

on average.

In conclusion, in this study, we showed that, inner execution data col-

lected from program executions, can be efficiently used for failure prediction.

We also made an inference that, hardware performance counters can be used

to collect such execution data.
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9 Future Work

Further research on this study can be carried out upon long running ap-

plications. All of the subject applications used in the experiment are short

running applications, hence long running experiments may introduce some

unexpected challenges.

Attempting to fine-tune the results we obtained could be another way

to go for future studies. For our main purpose in this study is to evaluate

the usability of inner execution data on failure prediction, we did not try to

optimize some steps of the experiments. To enhance the results, for instance,

one can try other threshold values but 0.8 for agent selection process or

several classification techniques can be considered for the approach.
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