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ABSTRACT 
 
Cystic fibrosis is the most common lethal monogenetic disease in Caucasians. It is caused by 
mutations in the cystic fibrosis transmembrane conductance regulator protein which is 
responsible for appropriate ion and water transport across epithelial cell membranes. The main 
clinical problems in cystic fibrosis are lung disease, pancreatic insufficiency and cystic fibrosis-
related diabetes.  
 
Respiratory virus infections predispose individuals with cystic fibrosis to bacterial infections 
and chronic colonization of the airway which exacerbate lung disease. The mechanisms behind 
this are poorly understood but the immune system is evidently involved.  
 
In this thesis, we studied common cold-causing enteroviruses, the Coxsackieviruses, in cystic 
fibrosis. In Paper I, we showed that a part of adaptive immune response towards 
Coxsackieviruses, namely production of neutralizing antibodies, is impaired in an experimental 
mouse model for cystic fibrosis (carrying the delF508 mutation). In Paper II, we elaborated on 
this finding and studied whether the delF508 mice could be protected from Coxsackievirus 
infection by vaccination and showed that vaccination was safe and efficient. We found that the 
production of virus-neutralizing antibodies upon vaccination in the delF508 mice was initially 
weak but improved upon a booster dose. We studied the frequency of Coxsackievirus infections 
in individuals with cystic fibrosis and found that they are common in this patient group. We 
conclude that common respiratory virus infections in cystic fibrosis can be successfully 
prevented by vaccination, which could potentially contribute to better lung function. 
 
Disease mortality is increased six-fold in individuals with cystic fibrosis-related diabetes, the 
pathogenesis of which is largely unknown. An autopsy study, where pancreatic tissue from 
cystic fibrosis patients was used as control, discovered presence of enterovirus in islets of cystic 
fibrosis patients with diabetes. In Paper III, we studied pancreas autopsy material from another 
cohort of cystic fibrosis patients with diabetes and found that 80% were positive for enterovirus 
in the islets compared to 40% in non-diabetic controls without cystic fibrosis. We also searched 
for serological evidence of a link between previous enterovirus infections and the development 
of cystic fibrosis-related diabetes but found no such relationship. A low-grade infection which 
does not induce antibody response, or a long-term persistent infection might be an explanation 
to this. We conclude that the role for enteroviruses in development of cystic fibrosis-related 
diabetes should not be excluded.  
 
In conclusion, this thesis contributes to the field of cystic fibrosis by revealing a potential 
immune defect in response to viral infections. It also demonstrates that common respiratory 
virus infections can potentially be targets for preventive treatments in cystic fibrosis. In 
addition, the potential role of enterovirus involvement in the pathogenesis of cystic fibrosis-
related diabetes has been presented, motivating for further studies.   
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1. CYSTIC FIBROSIS 
 

1.1 Etiology 
 

Cystic fibrosis (CF), previously known as mucoviscidosis,  is the most common monogenetic 
disease that causes preterm mortality in Caucasian populations (1). It is a complex multi-organ 
disease that affects the airways, the pancreas, the digestive tract, the hepatobiliary system, and 
the reproductive organs as well as metabolism and the immune system. The incidence of CF 
varies across the world and is approximately 1:3.000 – 1:4.000 amongst white Europeans while 
it is significantly less common in other ethnic groups (2). It is estimated that around one in 25-
30 Caucasians carries a disease-causing mutation in the affected gene (2).  
 
CF is caused by mutations in the transmembrane conductance regulator (cftr) gene which 
encodes a chloride and bicarbonate ion channel that is predominantly expressed in epithelial 
cell membranes. By regulating chloride and bicarbonate currents across the cell membrane and 
through interactions with sodium channels, the CFTR protein contributes to the balancing of 
ion concentrations in the liquid at apical cell surfaces (3, 4). CFTR mutations cause an 
imbalance in ion concentrations which leads to accumulation of a thick viscous mucus in many 
organs, hence the original name of the disease - mucoviscidosis. Over 2.000 CFTR mutations 
have been identified to date but not all result in disease (5). The known mutations are now 
classified into seven different classes/types depending on the effect the mutation has on CFTR 
protein production (Figure 1) (6, 7). Most mutations result in non-functional or absent CFTR 
protein leading to the accumulation of chloride ions outside the cell which is pathognomonic 
for classic CF. One of diagnostic criteria is increased sweat chloride concentration which is 
measured by a sweat test. Some mutation classes are associated with more severe disease, where 
the most common mutation, and also the one with the worst prognosis, is the deletion of a 
phenylalanine at position 508 (denoted as delF508) which accounts for nearly 70% of CF 
worldwide. Interestingly, the cftr genotype does not always correlate with the severity of 
disease which has recently introduced the role of environment and the so-called ‘modifier 
genes’ into pathogenesis of CF (8).  
 
 

 
 

               Figure 1. Classes of CFTR mutations. Adopted from I. Fajac,  
               K. De Boeck / Pharmacology & Therapeutics 170 (2017) 205–211. 
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1.2 Clinical manifestations of cystic fibrosis 
 

CF is a complex disease affecting the whole body. Individuals with CF are managed by 
multidisciplinary teams of clinicians and paramedical specialists with appropriate experience, 
that are guided by national and international standards of care. The major cause of morbidity 
and mortality in CF is lung disease characterized by gradual decline in lung function due to 
bacterial infections and lung tissue destruction. Eventually, for many individuals with CF lung 
transplantation becomes inevitable. Pancreatic insufficiency (PI) is another major manifestation 
present in the majority of individuals with CF and is the result of chronic obstructive 
pancreatitis. It results in the replacement of pancreatic tissue with fibrotic tissue and cysts, 
hence the name cystic fibrosis. The hepatobiliary system is also often affected in CF where it 
manifests as cystic fibrosis-associated liver disease (CFALD). Many individuals with CF 
struggle with malnutrition, vitamin deficiencies and osteopenia which in turn are the 
consequence of pancreatic insufficiency and intestinal dysfunction. Infertility is very common 
in men and can be the only symptom of CF. The second major co-morbidity after lung disease 
in over 40% of adults with CF is cystic fibrosis-related diabetes (CFRD) which contributes to 
a worsened overall prognosis. 

 
1.2.1 Lung disease  

The central pathological mechanisms of lung function decline in CF are chronic bacterial 
infections and a pro-inflammatory environment (9, 10). Lung disease starts early in life when 
the widening of the airway, or bronchiectasis, occurs and can be radiologically visualized (3). 
Bronchiectasis is believed to result from protease hypersecretion by neutrophils, a cell subset 
which is significantly increased in the airways of individuals with CF (11). As bronchiectasis 
develops, the airways become more susceptible to infections with common pathogenic bacteria 
such as Haemophilus influenzae and Staphylococcus aureus prevalent in children and as they 
age, Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia. 
These recurrent bacterial infections lead to a decline in lung function and therefore require 
aggressive treatment. 
 
The mechanisms behind increased susceptibility to bacterial infections are complex. Airway 
dehydration due to electrolyte imbalance, mucociliary dysfunction and inflammation are 
believed to be the consequences of faulty CFTR function (10, 12, 13). There is evidence 
suggesting that CFTR mutations lead to mucus volume depletion at epithelial surfaces which 
in turn negatively affects the airway cilia movement, thereby inhibiting mucociliary clearance 
of pathogens (13). The resulting milieu is beneficial for bacterial infections and colonization 
which is associated with and driven by high levels of pro-inflammatory markers such as IL-1b, 
IL-6, IL-8 and TNF (reviewed in (14)).  
 
Respiratory viruses are also involved in exacerbating CF lung disease (15-18). Viral infections 
in individuals with CF are as common as in general population but are longer in duration and 
cause more severe symptoms (17, 19). The most common viruses recovered from the 
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symptomatic CF airway are rhinoviruses/enteroviruses (RV/EV), respiratory syncytial virus 
(RSV) and influenza viruses (19-22). Interestingly, one study has shown that individuals with 
CF have higher viral loads both in the upper and in lower airways during a symptomatic 
infection compared to healthy controls (23). This could partly explain why respiratory viral 
infections cause worse symptoms in CF. Moreover, there is significant amount of evidence 
indicating that respiratory virus infections predispose the CF lung to colonization by common 
bacterial pathogens (e.g. Haemophilus species, Moraxella species and Streptococcus 
pneumoniae) that cause serious exacerbations (24, 25).  
 
It has been proposed that there is a link between anti-viral defense and bacterial 
infection/colonization in the CF airway. The immune mechanisms behind this have been 
studied with varying results and still remain largely unknown. Some studies report exaggerated 
immune responses, whilst others report that the effects of the immune system are dampened 
(26, 27). There is evidence that viral clearance is impaired in epithelial cells in CF (15, 27, 28). 
In vitro studies have shown that these cells secrete lower amounts of type I interferon (IFN) in 
response to Pseudomonas aeruginosa which makes them less efficient in the initiation of 
adaptive immune responses (29). In summary, a large gap still exists in our understanding of 
the mechanisms behind the susceptibility of the CF airways to and interactions between viral 
and bacterial infections.  
 
 

1.2.2 Gastrointestinal manifestations  

Gastrointestinal organs are severely affected in CF and account for a large part of CF-related 
morbidity. The main extrapulmonary complications are PI and CFALD. Individuals with CF 
are also at significantly higher risk for gastrointestinal cancers such as colon cancer, cancer of 
the biliary tree and pancreatic cancer, which has recently introduced a view that CF should be 
seen as a gastrointestinal cancer syndrome (30, 31).  
 
PI is the most common gastrointestinal feature of CF. In the majority of individuals with CF 
(80-90%) PI manifests already from birth, or even stages before and is usually associated with  
higher disease burden and worse prognosis (32). The pathological mechanism behind PI is 
chronic inflammation driven by premature activation of digestive proenzymes due to imbalance 
in the constitution of pancreatic secretions which are thick and lack bicarbonate (33). Digestive 
enzymes in the intestine are therefore deficient which leads to poor absorption of 
macronutrients, steatorrhea and growth retardation. Per year, a few newborns are diagnosed by 
presentation with meconium ileus which is an obstruction of the distal ileum. It is caused by a 
thick protein-rich plug and is a strong predictor of CF with PI. In older children and adults with 
PI, the distal intestinal obstruction syndrome (DIOS) is common but it also happens in pancreas 
sufficient patients indicating the complexity of the disease (34).  
 
CFALD is the third most common comorbidity in CF and up to 70% of individuals with CF are 
found to have liver damage upon autopsy (35). The most common pathological findings are 
focal and multilobular biliary cirrhosis which occur due to obstruction and plugging of bile 
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ducts with the thick and harmful bile salt-rich bile (36). Hepatic steatosis is even more common 
but its origin is largely unknown since the CFTR is not expressed in hepatocytes (37). In some 
individuals, CFALD develops into liver failure leading to liver transplantation.  
 
With increasing life expectancy and rapid evolvement of medical care, other CF complications 
have become important. Vitamin D and K deficiencies are common in children with CF and are 
largely the result of the above-mentioned gastrointestinal complications and malnutrition (38). 
As a result of vitamin deficiencies, together with chronic inflammation and frequent infections, 
intermittent corticosteroid therapies and physical inactivity, osteopenia is common (39).  
 
 

1.2.3 Cystic fibrosis-related diabetes 

CFRD is the most common comorbidity after lung disease in CF. With increasing life 
expectancy CFRD is becoming more prevalent, affecting about 50% of people with CF above 
the age of 30 (40). CFRD is associated with severe cftr genotypes (such as the delF508 
mutation) and is more common in females (41). Diagnosis is uncommon in children under the 
age of 10 but has been reported in infants (42, 43). Association with type 1 diabetes (T1D) is 
absent and the presence of autoantibodies and genetic predisposition to T1D in CF patients with 
CFRD is more similar to that seen in the normal population rather than T1D cohorts (44).  
 
Morbidity and mortality risks are both increased when CFRD is present. Mortality risk is six 
times higher in patients with CFRD than in those without CFRD (41). Diabetes is also 
associated with a significant decline in lung function because of an increased frequency of 
exacerbations and a greater reduction in lung function (40, 41, 45). Moreover, such 
deterioration of lung function can be seen years before diabetes diagnosis is made (46, 47). 
Early insulin therapy in CFRD is crucial since it not only improves lung function and reduces 
exacerbation frequency but also improves nutritional state (48). 
 
CFRD is classified by WHO as a disease of the exocrine pancreas and the diagnostic criteria 
are identical to the other diabetes types. Screening for CFRD is done by random testing of blood 
glucose or at the annual screening with an oral glucose tolerance test (OGTT) which has the 
highest specificity for detecting CFRD. Measurements of hemoglobin A1c (HbA1c) are not 
recommended for screening purposes but are used as a follow-up tool for guidance regarding 
insulin treatment. Just as with other diabetes patients, individuals with CFRD are recommended 
to undergo surveillance for diabetic complications. 
 
The pathophysiological mechanisms behind CFRD development are not fully understood. 
Although insulin resistance can be present due to frequent corticosteroid use, the main feature 
of CFRD is insulin deficiency. Historically, it has been accepted that insulin deficiency is the 
result of destruction and fibrosis of pancreatic exocrine tissue with the consequent loss of 
pancreatic islets and insulin-producing b-cells. However, CF patients without PI are still at 
higher risk for developing diabetes than the general population (41). This and the fact that 
diabetes development occurs over decades (although PI is established during the first year of 
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life), indicates that the mechanisms behind diabetes development in CF are more complex. 
Moreover, autopsy studies show that the degree of b-cell loss seen in individuals with CFRD is 
similar to that seen in those without CFRD and furthermore, that islet architecture is generally 
altered in CF with a decrease in both a- and b-cells and an increase in s-cells (reviewed in 
(49)). These findings imply that intrinsic islet-cell mechanisms involving CFTR could 
contribute to the development of CFRD. As a matter of fact, two recent independent findings 
regarding CFTR involvement in insulin secretion by the insulin-producing b-cells point towards 
such intrinsic pathophysiological mechanisms in CFRD (50, 51). Furthermore, improvement of 
first-phase insulin secretion upon treatment with one of the CFTR modulator drugs is consistent 
with the hypothesis that there is an intrinsic b-cell defect in CF (52, 53).  
 
CFRD also shares common features with type 2 diabetes (T2D) such as the correlation with the 
presence of amyloid in the islets of CF patients with diabetes but not in the islets of those 
without diabetes (54). Interestingly, family history of T2D is a risk factor for developing CFRD 
(55). Moreover, the finding that there is an impaired first-phase insulin secretion is also shared 
between T2D and CFRD, making the pathogenesis puzzle of CFRD even more complex (56). 
In summary, there is evidence that both structural and functional mechanisms are involved in 
the development of CFRD.   
 
Insulin deficiency is the main feature of both T1D and CFRD, whilst there are otherwise no 
strong associations between the two diabetes types. Environmental factors, such as viruses, 
have been associated with T1D development. One of the strongest associations is with a group 
of EVs, the Coxsackieviruses (CVBs). There is both direct and indirect evidence of the CVBs’ 
role in pathogenesis of T1D, where the most impressive is the significantly more common 
detection of virus in the pancreatic islets of T1D patients than in non-diabetic controls (57). 
Interestingly, a cohort of individuals with CF was used as control in the aforementioned study, 
where enterovirus was detected in the islets of patients with CFRD but not in patients without 
CFRD (57). The authors suggest that enteroviruses could be involved in the pathogenesis of 
CFRD in a similar manner to T1D. To current knowledge, potential associations between CFRD 
and enteroviruses have not been studied elsewhere.  
 
 

1.3 Treatment of cystic fibrosis 
 

CF is a multi-organ disease and clinical presentation may vary greatly from patient to patient. 
There has been an enormous breakthrough in the treatment of the underlying genetic defects 
during the past year. Nevertheless, the golden standard of CF treatment originates from early 
1960s with the main principle being intensive symptomatic treatment.  
 
The main clinical presentations of CF are respiratory and gastrointestinal symptoms. Treatment 
of lung symptoms is directed towards airway clearance by physiotherapy and infection control. 
Aggressive management of bacterial lung infections is utilized from early childhood with the 
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use of oral, intravenous and inhaled antibiotics aimed at eradicating infection and restoring lung 
function. When pulmonary exacerbations occur, either bacterial or viral, they should be treated 
with antibiotics and airway clearance therapy should be intensified. Chronic bacterial infections 
lead to progressive lung damage and lung function decline which, if terminal and irreversible, 
results in lung transplantation. The gastrointestinal symptoms, most commonly steatorrhea and 
poor weight/weight loss, are managed with enzyme replacement therapy, vitamin supplements, 
calorie-rich nutrition and insulin treatment when diabetes is present.  
 
During the past decade, new types of treatment, the so-called CFTR modulators, have become 
available. Studies are ongoing all over the world to show their short- and long-term effects in 
people with CF. CFTR modulators are taken orally and aim to correct the underlying CFTR 
defect. Ivacaftor, which targets the G551A mutation, was the first drug developed for 
individualized CF therapy. Its effects on disease improvement have been significant, although 
there is the major drawback that it can only be used in a small fraction (5%) of people with CF 
(58, 59). When Lumacaftor, which is specific for the most common delF508 mutation, became 
available it was combined with Ivacaftor and showed enhanced efficiency in patients 
homozygous for the delF508 mutation, meaning that an individualized treatment became 
available for about 40-50% of the CF patients worldwide (58). In 2018, another combination 
treatment with Ivacaftor was approved in the US for use in patients with homozygous delF508 
mutation which represents almost 90% of CF population. Recently, a triple combination drug 
that is even more superior became available for individuals with homozygous delF508 mutation 
(60). In general, these novel drugs improve lung function and lower the amount of pulmonary 
exacerbations but other effects such as improved glucose control are also anticipated (58, 61). 
Furthermore, there are several drug candidates in clinical phase 1 and 2 trials as well as in the 
preclinical pipeline which should lead to dramatic improvement of CF management (60).      
 
Implementation of aggressive multidisciplinary treatments in specialized centers around the 
world has increased the life expectancy of people with CF to almost 50 years (62). Most 
European countries have also introduced newborn screening which will benefit the societies at 
both individual and socioeconomical level. Additionally, it is apparent that a new era of 
evolving gene-guided therapy will further increase life quality and survival in CF.
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2. THE IMMUNE SYSTEM 
 
The collection of cells and mechanisms that protects an organism against infectious disease-
causing pathogens and non-infectious substances is referred to as the immune system.  The 
main role of the immune system is to protect from and eradicate microbial invaders without 
causing harm to the host. Moreover, the immune system is able to discriminate between self 
and non-self, protect against tumors and cancer and repair damaged tissues. There various 
elements of the immune system have been successfully utilized in treatment of and protection 
against many diseases. 
 
 

2.1 Innate and adaptive immunity 
 

The immune system consists of two arms, a natural/native immunity (innate) and acquired 
immunity (adaptive). Innate immunity is present in utero (e.g. before birth) and is the first line 
of defense against pathogens. It consists of outer and inner epithelial barriers, the specialized 
cells that reside in or near these barriers (monocytes, macrophages, neutrophils, dendritic cells 
(DCs), mast cells, innate lymphoid cells (ILCs) and natural killer (NK) cells) and the molecules 
produced by these cells. The innate responses are rapid and universal but do not develop any 
memory, and as such, they need to be repeated every time a pathogen is encountered. The cells 
of the innate immune system recognize patterns present on microbes by specialized receptors 
(e.g. Toll-like receptors, TLRs) and react by producing factors (such as complement proteins, 
cytokines and chemokines) which amplify defense mechanisms in order to prevent microbial 
spread. Inflammation and tissue repair are also initiated by the innate immune system. Upon 
encountering a microbe, the innate immune responses are activated and relay signals (antigens) 
to the adaptive immunity compartment. The adaptive immune system consists of T and B 
lymphocytes which are initially naïve but upon activation, they proliferate and differentiate into 
T-helper (Th) cells, cytotoxic killer T-cells or antigen specific T-effector cells or in the case of 
B lymphocytes, antibody-producing cells. Due to the vast variation of antigens that the adaptive 
immunity encounters, long-lived and specific memory (both cellular and humoral) is developed 
to allow for rapid response after repeated exposure and invasion of a particular pathogen.  
 
 

2.2 Evidence of an impaired immunity in cystic fibrosis 
 

There is substantial amount of evidence showing that CFTR mutations play role in the function 
of both innate and adaptive immune system in CF. For a long time, the CF airways have been 
recognized as having a pro-inflammatory milieu with favorable conditions for bacterial 
colonization. Airway epithelium plays an important role in the initial defense against microbes 
and CFTR mutations have been associated with exaggerated inflammatory responses. These 
responses start early in childhood and in the long run damage the tissue (10, 27, 63). Although 
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required for tissue repair, inflammation in the CF airways becomes persistent which does not 
favor efficient bacterial clearance and results in chronic infections.  
 
In order to protect the body from infection, the airway epithelium functions as an innate barrier 
which 1) removes pathogens/particles by mucociliary transport; 2) activates innate immune 
mechanisms to try and limit the spread of the pathogen; and 3) enables activation of the adaptive 
immunity for an efficient elimination of the pathogen. It has been shown that CF lung epithelial 
cells have dysregulated production of mucins making airway clearance from mucus, an thereby 
foreign particles and pathogens, difficult (13, 64). Such alternations in mucus composition are 
associated with infections caused by more aggressive antibiotic-resistance bacteria (65). The 
cell composition of the CF airway is also altered  and dominated by overactive neutrophils and 
inefficient macrophages (66). Neutrophil elastase, TNF and IL-8, all strong proinflammatory 
mediators, are increased at a young age in the CF airways, even in the absence of infection (67, 
68). Moreover, there is also evidence of impaired IFN production in CF airway epithelial cells 
which can result in dysfunctional defense against bacteria and viruses (26, 29, 69). In summary, 
there is quite a bit of evidence documenting dysregulated innate immune mechanisms in the CF 
epithelium that promote inflammation and favor bacterial growth.  
 
As with many other chronic diseases, the severity of CF is associated with certain gene clusters 
which are responsible for the adaptive immune responses (70, 71), implying that adaptive 
immunity is involved in the pathogenesis of CF. Indeed, there is sufficient amount of evidence 
of dysfunctional adaptive immunity in CF. First, expression of the major histocompatibility 
complex (MHC) class II molecule, a key molecule on peripheral DCs that links innate and 
adaptive immune responses, is lower in individuals with CF compared to healthy controls (72). 
In addition, it has been observed that T cells have impaired functions. For instance, the function 
and numbers of the anti-inflammatory regulatory T cells (T regs) tend to decrease with age and 
with the acquisition of chronic bacterial infections that drive disease progression (73). Second, 
the proinflammatory Th17 cell responses are stronger in the airway of CF patients, supporting 
the concept that CF is a chronic inflammatory disease (74). Third, CFTR seems to be involved 
in the enhancement of B cell responses, notably in the lung, which is in line with the persistent 
increase in levels of total IgG and IgA in CF patients (75). Another cell type that is possibly 
dysregulated in CF is the invariant NKT (iNKT) cells which are upregulated in the absence of 
CFTR, causing excessive cell death and consequently inflammation (76). Clearly, quantitative 
and qualitative defects in leukocytes are involved in pathogenesis of the CF lung disease. 
 
A defective anti-viral response has also been suggested to contribute to pulmonary 
exacerbations in the CF lung, but the evidence is insufficient. One of the anti-viral mechanism 
studied is the IFN signaling, and the evidence of its dysregulation is contradictory and some of 
it could be explained by the viral evasion mechanism and not by a CF-specific dysfunction (23, 
26, 69, 77, 78). Studies examining pro-inflammatory cytokine levels after viral infection in 
either cell culture or in patients have been indefinite but conclusions are difficult to draw due 
to the variability of viruses and cell cultures used in such studies (reviewed in (22)). Altogether, 
existing evidence suggests that mutations in CFTR contribute to defects in both innate and 
adaptive immune system but significant gaps in our understanding exist. In addition to these 
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defects, the complex bacteria-virus interactions play a part, further magnifying the need for 
more research. 
 
 

2.3 Vaccine use in cystic fibrosis 

 
Morbidity and mortality rates caused by infectious diseases can be decreased by vaccination. 
The detrimental effects of bacterial and viral respiratory infections on lung function in CF could 
also be prevented by efficient vaccines. There are currently no uniform European immunization 
schedules for individuals with CF and they are recommended to follow national programs in 
order to obtain general protection. Immunization coverage amongst both children and adults is 
generally high and continues to rise but they are still not optimal considering the number of 
vaccine-preventable diseases that continue to occur. Moreover, there is evidence showing that 
children with chronic diseases are at risk for delayed completion of vaccination schedules and 
that adults are at risk for low vaccination coverage because of lack of access to vaccinations 
(79, 80). It is also well-known that vaccine-induced immunity to some pathogens wanes over 
time (81, 82). Given these facts and the rising problem of opponents to vaccines, there is a risk 
that the rates of vaccine-preventable diseases continue to increase.  
 
Vaccines are a safe method to provide immunity to large populations. They rely on a strong 
humoral and memory response by B cells. The most efficient vaccines available are those 
against viruses and are composed of live-attenuated or inactivated viruses. Another type of 
vaccines produced, the subunit vaccines, are developed mostly against bacteria. Both vaccine 
types induce highly pathogen-specific neutralizing antibody responses which are rapidly 
initiated upon pathogen encounter. Additionally, there is evidence of so-called heterologous 
vaccine effects which implies that some vaccines can further benefit the immune system by 
additional stimulation of both innate and adaptive immunity inducing partial protection against 
other infections, which for instance is observed with the measles vaccine (83). In conclusion, 
there is no doubt that the use of vaccines is fundamental for both individual and herd immunity.   
 
There is little to no data regarding vaccine coverage among individuals with CF. Besides the 
routine vaccines against measles, mumps, rubella, polio, diphtheria, tetanus and pertussis, 
individuals with CF should also be immunized against influenza, hepatitis, varicella and RSV 
as most of these infections can be severe in individuals with CF and some can also be 
detrimental for transplantation. It is therefore especially important to prevent these potentially 
life-threatening infections.  
 
Individuals with CF are particularly at risk for pulmonary deterioration upon infections with 
respiratory viruses as well as with pathogenic bacteria. Pseudomonas aeruginosa causes a 
significant increase in morbidity and mortality due to its high virulence but an efficient vaccine 
has yet to be identified in clinical trials (84). Efficacy of pneumococcal vaccines’ use in CF is 
lacking evidence which has unfortunately broadly halted its use (85). Development of new and 
potent vaccines, such as for instance the vaccine against Haemophilus influenzae, is therefore 
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crucial for preventive care in CF. Several efficacious vaccines against respiratory viruses, such 
as influenza and varicella, and soon RSV, are available, and it seems reasonable that they are 
employed in CF because these viruses can cause serious pulmonary disease. In summary, 
vaccine use is a potentially powerful strategy for preventive therapy in CF. 
 
Immunogenicity of common vaccines in CF has been scarcely studied. There is evidence that 
individuals with CF have a lower immune response to intramuscular pandemic influenza 
vaccination which can be bettered by addition of an adjuvant (86). On the contrary, children 
with CF generally respond well to oral polio vaccine despite their gastrointestinal disease status 
(87). Moreover, there are reports describing reduced vaccine responses in other chronic 
diseases. As such, children with chronic liver disease, who are at risk for worse outcomes if 
infected with hepatitis A virus (HAV), show an inadequate protection many years after initial 
immunization (88). In conclusion, immunogenicity of vaccines seems to depend on the type 
and administration route. Although individuals with CF are not considered as immunodeficient, 
there is extensive evidence of specific immune dysfunctions in CF. In the light of this fact, a 
concern should be raised regarding whether vaccine responses in individuals with CF are 
sufficient.  
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3 AIMS OF THE THESIS 
 
The overall aim of this thesis was to explore the possibility that there is a defect in the immune 
defense against common cold viruses in CF and if one such common virus infection in CF can 
be prevent by vaccination. 
 
Specific aims: 

• to study the antiviral immune response towards a common cold virus, an enterovirus, in 
an experimental mouse model for CF (Paper I); 
 

• to examine how common infections with one family of enteroviruses are in individuals 
with CF (Paper II); 
 

• to  study whether a vaccine against these enteroviruses is safe and can protect against an 
acute infection in a mouse model for CF (Paper II); 

 
• to examine the state of immunity towards a common enterovirus vaccine in individuals 

with CF (Paper II); 
 

• to investigate whether there is temporal relationship between enterovirus infections and 
the onset of CFRD (Paper III). 
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4 METHODOLOGICAL CONSIDERATIONS 
 
The following section is an overview of the main methodology utilized in this thesis. A detailed 
description of materials and methods may be found in the respective papers included (Paper I, 
II and III).  
 
 

4.1 Virus strains and virus infections 

In Paper I and II, the CVB3 (Nancy strain) was used for all infection experiments in mice. The 
virus was propagated in HeLa cells. Mice were injected with CVB3 intraperitoneally in a total 
volume of 200 µl PBS or RPMI-1640 medium. Animal health state was monitored and mice 
that showed signs of illbeing were sacrificed.  
 
In Paper II and III, CVB1-6 as well as polioviruses 1 and 3 (the Sabin strains) were used for 
determination of neutralizing antibody titers against these viruses. We did not study immunity 
towards polio 2 because the eradication of this virus was announced a few years ago.  
 
 

4.2 Vaccine 

In Paper II, mice were vaccinated by interscapular injection of 1.8 µg of a monovalent CVB3 
vaccine. It was produced by our collaborators at the University of Tampere, Finland. CVB3 
was propagated in Vero cells and purified by sucrose pelleting and gelatin affinity 
chromatography resin (89). The virus was inactivated in 0.01% (v/v) formalin for 5 days at 
37°C and diluted in vaccine buffer (M199 medium with 0.1% Tween 80, 1.8µg dose). 
 
 

4.3 Cell lines 

In Paper I and Paper II, HeLa cell monolayers were used for measuring CVB3 titers in the 
blood and organs of CVB3 infected mice and CVB3 neutralizing antibody titers in serum of 
vaccinated animals. Neutralizing antibody titers in human serum towards CVB1-6 and polio 1 
and 3 were studied using Green monkey kidney (GMK) cells monolayers.  
 
 

4.4 Animals 

Two strains of mice were used in studies of immune response towards CVB3: 
 
The delF508 mouse model, which is homozygous for the Cftrtm1EUR mutation (90), the most 
common CF mutation in humans, was used to study the immune response to either CVB3 
infection in Paper I or to CVB3 vaccination followed by CVB3 infection in Paper II.  
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The TCRa-knock out mouse model was used in Paper II to study the role of T cells in the 
neutralizing antibody response to CVB3 vaccination. These mice are homozygous for the 
Tcratm1Mom mutation which causes a loss of the alpha beta T-cell receptor and results in the 
absence of functional T-cells.  
 
 

4.5 Patients 

The serological patient data presented in Paper II and II comes from a retrospective analysis 
of a cohort of individuals with CF (n=65), monitored monthly/yearly at the Stockholm CF 
Center, Karolinska University Hospital Huddinge.  
 
We performed a nested case-control study where we looked at whether any new CVB infections 
during the year preceding CFRD diagnosis were correlated with CFRD onset. The nested case-
control study consisted of nine case-control groups of CF patients from our initial CF patient 
cohort. We collected serum samples from cases at the time of diabetes diagnosis and one year 
prior to their diagnosis. Sampling was performed in an identical manner for the controls that 
were matched by age, gender and genotype.  
 
In Paper II, we present results of histopathological studies of autopsy material from a cohort 
of deceased CF patients with CFRD. These studies were performed by our collaborators in 
Exeter, England. 
 
The serological studies on serum from Swedish CF patients were approved be the regional 
ethical board in Stockholm, Sweden. The study of autopsy material from individuals with 
CFRD were approved by The West of Scotland Research Ethics Committee. Both studies 
complied with the Declaration of Helsinki. 
 
 

4.6 Enterovirus PCR 

In Paper III we analyzed presence of entero- and rhinovirus RNA as indicator of an acute 
infection by using real time PCR.  
 
 

4.7 Plaque assay and plaque neutralization (reduction) assay 

In Paper I and II, virus titers were measured by standard plaque assay and quantified as PFU/ml 
or PFU/g tissue. 
 
Both in Paper I, II and III, titers of neutralizing antibodies against CVB3, CVB1-6 and polio 
1 and 3 respectively were measured by plaque neutralization (reduction) assay (Figure 2). This 
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method is commonly used for quantification of highly specific neutralizing antibodies against 
a virus of interest and it enables to look directly at the ability of a sample to inhibit viral 
infection. In short, (1) a sample is incubated with virus in order for receptor binding of the 
neutralizing antibodies to occur, thereafter (2) the sample-virus mixtures are applied to cell 
monolayers and incubated allowing for infection of the cells. If the sample is neutralizing 
antibody negative (Figure2, 3A) the virus is capable of infecting the cells and plaques (a small 
round area of killed by virus cells) are formed. If the sample is neutralizing antibody positive 
(Figure 2, 3B) no plaques are formed because the neutralizing antibodies bind to the virus and 
inhibit infection of the cells. 
 
Neutralizing antibody titer measurements of serum from mice were performed at Center for 
Infectious Medicine, Karolinska University Hospital Huddinge, Sweden. Measurements of 
neutralizing antibody titers towards CVB1-6 and polioviruses in human serum were performed 
at the Department of Virology at Tampere University, Finland.  

 

 
 
 

Figure 2. Plaque neutralization (reduction) assay for  
determination of neutralizing antibody titers against a virus.  

 
 

4.8 ELISA 

In Paper I, anti-CVB3 IgM and IgG antibodies were measured by ELISA that was established 
using CVB3 virus-like particles (VLPs) obtained from our collaborators in Tampere, Finland 
(91). This method enabled comparison of anti-CVB3 IgM and IgG antibody titers to the virus-
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specific neutralizing antibody titers. The total IgM and IgG in mouse serum was measured using 
a commercial ELISA (Mabtech).  
 
 

4.9 Histology 

In Paper I and II mouse tissue sections was routinely processed and embedded in paraffin for 
histological evaluation of signs of infection or disease. 
 
 

4.10 Immunohistochemistry  

In Paper I and II, paraffin-embedded mouse tissue was stained with hematoxylin and eosin for 
histological examination. 
 
In Paper III, pancreatic tissue from diseased individuals with CF obtained from Network for 
Pancreatic Organ Donors with Diabetes (nPOD) program was studied for the presence of 
enterovirus-specific protein. These analyses were performed by our collaborators’ lab in 
University of Exeter Medical School, England. In short, paraffin-embedded section of pancreas 
tissue was stained for the enterovirus-specific viral protein 1 (VP-1).  
 
 

4.11 FACS 

In Paper II, FACS analysis was performed on purified mouse splenocytes in order to confirm 
the absence of functional T cell in the TCRa-knock out mouse model. The cells were stained for 
anti-CD4, anti-CD8a, anti-TCRb or anti-B220 antibodies (Biolegend). 
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5 RESULTS AND DISCUSSION 
 

5.1 PAPER I 

A Link Between a Common Mutation in CFTR and Impaired Innate and Adaptive 
Viral Defense 
 
There is evidence that respiratory virus infections predispose individuals with CF to chronic 
bacterial colonization of the airways thereby contributing to greater morbidity (17, 19, 20, 22). 
Moreover, the duration of upper respiratory illness is prolonged while the frequencies of 
infections do not seem to differ from the healthy population (17-19). To investigate why the 
above is observed, in Paper I we studied the immune response to a common respiratory virus, 
CVB3, in an experimental mouse model for CF. In this paper we present new evidence of an 
immune defect in these animals.  
 
The mouse model used in Paper I harbors the most common homozygotic cftr mutation in 
humans, the delF508 mutation. Our first striking finding in the delF508 mice was that they have 
significantly lower survival rates upon CVB3 infection with both a high and a low virus dose 
compared to wt mice when exposed both a higher and a lower virus dose (Paper I, Figure 1A 
and 1B respectively). The amount of virus found in blood on days 3 to 5 after infection in the 
delF508 mice was however similar to that detected in wt mice (Paper I, Figure 2A), indicating 
that the virus initially spread at the same speed in both wt and the delF508 mice. However, 
measurements of the viral titers in the different organs showed that the delF508 mice had 
significantly higher viral titers, compared to wt mice, and they also had a delay in virus 
clearance on day 7 post infection (Paper I, Figure 2B and 2C). At the same time, histological 
evaluation of the infected delF508 mice organs showed no differences in the severity of 
infection in the affected organs compared to wt mice (Paper I, Supplementary Figure 1).  
 
To further investigate the finding that there was a delay in viral clearance in the delF508 mice, 
we studied the key innate immune factors that are important for an effective antiviral defense. 
IFNs are crucial signaling molecules in the induction of immune responses against 
enteroviruses (92). We therefore started by looking at IFN production in mice. To address if the 
delF508 mice had a generalized defect in producing IFNs upon virus infection, we first exposed 
the animals to stimulation with the double stranded RNA homopolymer polyI:C. PolyI:C is 
known to mimic viral induced IFN production in mice (93, 94) and is recognized by the same 
pattern recognition receptors as enteroviruses (TLR3 and MDA5) (95, 96). Upon polyI:C 
injection, the delF508 mice had a slower induction of IFNa than wt mice (Paper I, figure 3B), 
while production of IFNb and IFNl did not differ between between the delF508 and wt animals 
(Paper I, Supplementary Figure 3 and 4). We also looked at the expression of two other genes 
important for antiviral defense, namely iNOS and OAS, and found that they were both induced 
upon stimulation with polyI:C but their expression did not differ between the delF508 and wt 
mice (Paper I, Supplementary Figure 5A and 5B).  
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The finding that the delF508 mice had an impairment in their ability to clear virus led us to 
consider whether any impairments existed in a crucial part of the adaptive immune response 
involved in the control of infections, namely the production of virus neutralizing antibodies. 
We first measured the levels of serum IgM and IgG antibodies after CVB3 infection and 
discovered that the delF508 mice had detectable levels of both antibody isotypes, but these were 
significantly lower than those found in wt mice (Paper I, Figure 4A). To further evaluate 
whether these antibodies had neutralizing capacity, we performed neutralization assays and 
found that the delF508 mice had a delayed neutralizing antibody response to CVB3 infection 
and, moreover, significantly lower titers of neutralizing antibodies against the virus compared 
to wt mice (Paper I, Figure 4B and 4C respectively). These striking findings demonstrated that 
the delF508 mice have a defect in their antibody production against CVB3.  
 
Passive immunization studies were performed in order to see whether the delF508 mice could 
be protected from CVB3 infection by the transfer of antibodies (serum) generated in infected 
wt mice. The results showed that passive immunization is a potentially efficient strategy to 
prevent such infections in our CF mouse model (Paper I, Figure 5).  
 
We next moved on to study the different immune cell populations and mechanisms that could 
be involved in the defective antibody production in the delF508 mice. We found no major 
differences in cell counts of B-, T- and NK-cells between the delF508 and wt mice (Paper I, 
Supplementary Figure 6A-I). Using TNP-Ficoll stimulation, which induces T cell-idependent 
antibody production (T cell-independent antigens account mostly for bacterial products), we 
found no differences in IgM and IgG levels (Paper I, Figure 6A). In contrast, injection of a T 
cell-dependent antigen (T cell-dependent antigens are generally proteins), using rSFV-bGal, 
resulted in significantly lower levels of both IgM and IgG in the delF508 mice on day 7 post 
injection (Paper I, Figure 6B). However, the antibody levels in the delF508 mice successfully 
rose to the levels seen in the wt mice on day 12 post injection (Paper I, Figure 6B), suggesting 
that only the initial antibody production stage is impaired in the delF508 mice.  
 
In conclusion, the main finding in Paper I is that mice harboring the most common cftr 
mutation have a delayed in their initial production of neutralizing antibodies towards a common 
cold virus.  
 
It has been shown that CFTR is expressed in lymphocytes including B cells and there is 
increasing evidence of CFTR dysfunction in immune cells in CF (75, 97, 98). Production of 
neutralizing antibodies is a result of B cell activation, clonal expansion and differentiation into 
plasma cells. One activated B cell can produce several thousands of plasma cells, which enables 
rapid amplification of an antibody response towards a proliferating microbe. Both T cell-
dependent and T cell-independent B cell responses are driven by the same activation processes 
involving BCR signaling and activation of transcription factors needed for proliferation, 
maturation and antibody secretion. Our findings in Paper I indicate that there is a problem in 
the T cell-dependent antibody production in mice homozygous for the delF508 mutation, 
whereas the T cell-independent response seems to function properly. This suggests that the 
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problem is unlikely to lie within the B cells’ activation, maturation or antibody secretion. We 
hypothesize that the defect could lie somewhere prior to the involvement of the B cells: for 
instance, from antigen recognition by innate cells up to the contact between T and B cells.  
 
T cells in particular along with antigen presenting cells (APCs) are essential for T cell-
dependent B cell responses (as the name implies). It has been reported that both cell counts and 
the function of T helper cells, cytotoxic T cells and DCs are decreased in individuals with CF 
and in the delF508 mouse model (99-102). One of the crucial factors required for the induction 
of an efficient anti-viral defense by these cell types are IFNs. Interestingly, one of the main 
antigen-presenting cell types, the plasmacytoid DCs (pDCs) are also the major source of IFNa 
(103). The initial delay in IFNa production that we saw in the delF508 mice could possibly be 
explained by decreased counts or functions of DCs, which in turn could be the link to the defect 
T cell-dependent antibody response we observed. Given the above, a defect in innate immunity 
could lead to a defect in the adaptive immunity in CF. It can be concluded that studies 
examining the mechanisms and kinetics of T cell-dependent antibody production in CF against 
both viruses and bacteria are highly warranted. 
 

5.2 PAPER II 

Coxsackie B Virus Infections Are Common in Cystic Fibrosis and Can Be 
Prevented by Vaccination 
 
In Paper I, we discovered that the delF508 mouse model had an impaired antibody response to 
infection with an enterovirus, which made them more susceptible to infection than the wt mice. 
This finding was in line with our hypothesis and previous indications that individuals with CF 
could also have a defect in their immune system that results in them suffering from prolonged 
and more severe viral infections (17, 19). As a result, these infections could predispose the CF 
lung to bacterial colonization (15, 20, 104-106). Ultimately, viral infections could be potential 
preventive therapy targets by vaccination strategies. Given our finding regarding the poor 
antibody response after viral infection in the delF508 mouse model, we wanted to examine 
whether the response to vaccines was also impaired in CF. In Paper II, we therefore focused 
on examining the immune response towards enterovirus vaccines in CF. 
 
We utilized our existing CF mouse model and an experimental monovalent vaccine against 
CVB3 in order to study neutralizing antibody development after immunization. Being one of 
the most common respiratory pathogens found in CF, the enteroviral immune response 
including immunizations  are  highly interesting to investigate (20, 21, 106). In addition, our 
finding that the delF508 mice have an impaired T cell-dependent antibody response raised the 
question of whether the response to CVB3 vaccination was T cell-dependent or -independent.  
 
First, a knock-out mouse model lacking T cells (TCRa knock-out mice) was established in 
order to study whether antibody production towards the CVB3 vaccine was dependent on T cell 
help. Using the T cell-deficient mice we found that the second phase of antibody response (the 
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IgG response) that occurs after vaccination was T cell-dependent, while the early antibody 
response (the IgM) was not affected by a lack of T cells (Paper II, Figure 2). 
 
Having found that the immune response to the CVB3 vaccine is T cell-dependent, we went on 
to study antibody development in the delF508 mouse model after vaccination. The delF508 
mice showed a good initial antibody response to the vaccine which however, in a different 
manner to the wt mice, waned by the expected time of antibody class-switch (Paper II, Figure 
3, day 14). Nevertheless, after a booster vaccination the neutralizing antibody levels rose to a 
comparable level to that seen in the wt mice (Paper II, Figure 3). Moreover, we confirmed the 
protective effect of the CVB3 vaccine in the delF508 mice by challenging them with the CVB3 
virus after vaccination and the delF508 mice were protected from acute infection (Paper II, 
Figure 4).  
 
In summary, the results of Paper II give a strong indication that immunization against common 
respiratory viruses could be a potent preventive therapy option for individuals with CF. In order 
to stress the importance of our observations, we studied the prevalence of CVB infections in 
individuals with CF. We presented completely novel data showing that these infections are 
frequent but not more common than in healthy individuals. Every third individual with CF had 
experienced at least one infection with at least one of the six known CVB serotypes (Paper II, 
Table 2). Moreover, we analyzed immunity to a common and well-studied enterovirus vaccine, 
namely the highly immunogenic inactivated polio vaccine, and found that all individuals with 
CF had good protective levels of polio-specific neutralizing antibodies (Paper II, Figure 1). 
This indicates that individuals with CF have a good and long-lived immunologic memory after 
vaccination against an enterovirus.  
 
There is scarce but significant evidence regarding the poor response to virus vaccines in 
individuals with CF. Interestingly, the waning of the initial antibody response seen after the 
first immunization in our CF mouse model is in line with the data reported in humans: a 
significant proportion of individuals with CF have a poor response to one dose of adjuvant-free 
influenza vaccine (86). These findings support the existing idea that special immunization 
strategies (for example the use of booster doses or adjuvants) are needed for good protection 
mediated by vaccines in individuals with CF. Collectively, our findings in Paper I and II 
suggest that common respiratory virus infections could be future targets for preventive therapy 
in CF and that vaccination of this patient group might require special immunization strategies.  
 

5.3 PAPER III 

Investigating the Role for Enterovirus Infections in Cystic Fibrosis-Related 
Diabetes 
 
There is a lot of evidence supporting the role of EV in T1D. It is known that the risk for 
developing T1D is increased when EVs, and particularly CVBs, are found in blood (107-113). 
Further strongly convincing evidence is that EV proteins are often found in pancreatic islets of 
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T1D patients to a greater extent than in those without the disease (112, 113). Interestingly, in 
one such study, where a small group of individuals with CF was used as a control group, the 
EV protein was detected in the islets of individuals with CF who also had CFRD but not in 
those without diabetes (57).  
 
In Paper III, we elaborated on the above-mentioned finding and, in collaboration with the 
authors of the original study, performed histological studies examining another cohort of 
individuals with CFRD histologically. We were also interested in whether there could be a 
similar temporal association to that seen in T1D between CVB infections and CFRD onset. 
 
The presence of EV in pancreatic tissue was assessed by immunohistochemistry which enabled 
direct visualization and localization of virus. Four out of five tissue donors with CFRD were 
positive for the virus in the pancreatic islets while most of the non-diabetic control donors did 
not show any positivity for the viral protein. Although no statistical significance was reached, 
the findings strengthen the case for possible EV involvement in the pathogenesis of CFRD (in 
at least a subgroup of individuals). Increasing the number of donors would be a natural 
progression for this study. Moreover, in a similar manner to the recently introduced concept of 
“endotypes” in T1D (114, 115), CFRD could also have a heterogenic etiology which 
emphasizes the need for an even larger study cohort.  
 
The second aim of Paper III was to investigate whether there was a temporal association 
between CFRD onset and a previous CVB infection. For this, we performed a nested case-
control study where we analyzed serum samples for the appearance of new CVB infections 
preceding diagnosis of CFRD. No such relationship was noted, although the small cohort size 
was the major limiting factor of the study. Another important aspect is that EV infection could 
be of a low-grade persistent character and present exclusively in the pancreatic islets thereby 
evading the general immune response, which could explain the absence of neutralizing 
antibodies in serum. By looking at each study subject individually, we identified one patient 
who lost neutralizing antibodies towards two CVB serotypes in one year – a striking finding 
given the fact that CVB immunity, like for other enteroviruses, is generally long-lasting (116). 
One could speculate, that more individuals with CFRD might have lost immunity towards the 
hypothesized diabetogenic CVB serotype years before diabetes diagnosis and looking at earlier 
historical serum samples from these patients could possibly reveal that. 
 
To the best of our knowledge, there is no previously published data to compare with that 
examines the potential involvement of viruses in the pathogenesis in CFRD. Further 
investigations in a larger study cohort would therefore be intriguing.  
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