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ABSTRACT 

Cancer is the second leading cause of mortality worldwide, and melanoma represents the 

most aggressive and deadliest form of skin cancer. Despite the various therapeutic 

approaches, metastatic melanoma is a disease with a poor prognosis. Recently, the evolution 

of immune checkpoint inhibitors (ICIs) led to a substantial improvement of the overall 

survival of patients. However, the long-term effectiveness of such treatments is restricted by 

the sometimes rapidly emerging resistance to treatment. Several molecular mechanisms 

underlying this resistant phenotype have begun to be elucidated. The Kynurenine pathway 

activity via indoleamine 2, 3-dioxygenase 1 (IDO1), is one such mediator of 

immunosuppression and resistance to ICIs. 

 

Studies included in this thesis, therefore, aim to clarify the role of the kynurenine pathway 

(KP) in metastatic cutaneous melanoma. To this end, we established an in vitro co-culture 

model consisting of CD4 +T cells in culture with different melanoma cell lines (MCLs) to 

investigate the implication of KP modifications on CD4 + T-cell function. We found that in 

addition to IDO1, other KP enzymatic activities such as KMO may regulate CD4 + T-cell 

immunity (Study I). Following this finding, we evaluated the immune-metabolic network 

interactions of KP in CMM patients to explore the link between KP metabolites (KPMs) and 

regulation of the anti-tumour immune response. Our data showed a significant association 

between MAPKIs treatments and alterations of 3-HK and 3HAA concentrations. These 

results suggest that KP is clinically relevant in CMM patients (Study II).  We further aimed 

to identify possible KP-related predictive biomarkers of response to ICIs treatment (Study 

III, IV).  Our findings demonstrate the elevated S100A9+ monocytes among PBMCs of the 

CMM patients who are not responding to the PD-1 inhibition (Study III). Subsequently, by 

using the PBMCs and plasma of CMM patients on ICI therapy, we observed that kynurinase 

(KYNU) and LGALS3 (Galectin-3) expression in protein and RNA levels are negatively 

linked to clinical outcomes. Moreover, we found that the KYNU-LGALS3 network in 

monocytes is connected to the CD74-MYC network in CD4+ T-cells. These results 

suggest that LGALS3, MYC, CD74, and KYNU are biologically connected, and perturbing 

their interaction will possibly modulate ICI efficacy in CMM patients (Study IV). 

 

In summary, this thesis provides insights into the induction of n immune-suppressive 

phenotype by KP activation in CD4+ T-cells and demonstrates the therapeutic potential of 

targeting KP in the treatment of malignant melanoma.  
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PREFACE 

My introduction to the world of tryptophan as essential amino acid and its 

metabolism by kynurenine pathway developed from my wish to find new 

ways to better grasp the biology of melanoma tumours and 

immunosuppression, hoping for finding new treatment strategies. As my 

research continued, I began to search the field of tryptophan for possible 

research collaborators, reagents, and supplies, and I was surprised to note that 

tryptophan catabolism plays an important role not only in health but also in a 

broad spectrum of human diseases. I was astonished to learn that the 

kynurenine pathway was acknowledged as a leading player in various 

diseases, including inflammation, cardiovascular disease, respiratory disease, 

psychiatric disorders, neurodegenerative diseases, and stem cell biology. 

Although investigation of the kynurenine pathway association with 

melanoma is still in its infancy, the picture for the field of tryptophan 

metabolism is quite mature. The research described in my thesis provides a 

link between the basic mechanistic understanding of the kynurenine pathway 

and clinically relevant translational applications. It investigates indications 

that tryptophan metabolism via the kynurenine pathway is a potential 

biomarker for disease activity, may subsidize to local and possibly systemic 

immune suppression in cancer, and is an attractive target in this field. Given 

the large number of people suffering from the disorders listed above, the 

potential clinical efficacy of drugs targeting the enzymes in the kynurenine 

pathway is truly promising. 

This thesis could not have been completed without the contribution of my 

supervisor, professor Tegner, and my co-supervisors, professor Hansson, Dr. 

Lundqvist, and Dr. Morikawa. I am also incredibly grateful to my colleagues 

and lab-members for their support, assistance, and patience throughout my 

Ph.D. education. I hope that the readers will receive the same appreciation for 

the complexity in the field of kynurenine pathway that I did in the preparation 

of this thesis. 
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 LIST OF ABBREVIATIONS 

  AADAT  Aminoadipate aminotransferase 
  AP-1/AP-2a)   Activating protein 1 and 2α 
  BCR  B-cell receptor 
  CCBL1  KYAT1, kynurenine aminotransferase 1 
  CCBL2  KYAT3, kynurenine aminotransferase 3 
  CD274  Programmed death-ligand 1;B/-H1, PD-L1  
  CMM  Cutaneous malignant melanoma 
  CSF1R  Colony stimulating factor 1 receptor 
  CtBP1  C-terminal-binding protein  
  CTL  Cytotoxic T-lymphocyte 
  CTLA4  Cytotoxic T-lymphocyte-associated protein 4, CD156 
  DAMPs  Damage-associated molecular patterns  
  DTIC  Dacarbazine  
  FasL  Fas ligand  
  GOT2  Glutamic-oxaloacetic transaminase 2 
  HAAO  3-hydroxyanthranilate 3,4-dioxygenase 
  IDH1  Isocitrate dehydrogenase 1 
  IDO1  Indoleamine 2,3-dioxygenase 1 
  IDO2  Indoleamine 2,3-dioxygenase 2 
  ILT4  Leukocyte immunoglobulin-like receptor subfamily B member 2 
  KMO  Kynurenine 3-monooxygenase 
  KP  Kynurenine pathway 
  KYNU  Kynureninase 
  LILRB2  Leukocyte immunoglobulin like receptor B2 
  LRRC23  Leucine rich repeat containing 23 
  MAPK   Mitogen-activated protein kinase 
  MDSCs  Myeloid-derived suppressor cells 
  MHCs  Major histocompatibility complex 
  MITF  Microphthalmia-associated transcription factor  
  MYC  MYC proto-oncogene, bHLH transcription factor 
  NFκB  Nuclear factor-kappa-light-chain enhancer of activated B cells  
  NR  Non-responders 
  OXPHOS   Mitochondrial oxidative phosphorylation  
  PAMPs  Pathogen-associated molecular patterns  
  PBMCs  Peripheral blood mononuclear cells 
  PD-1  Programmed cell death receptor-1, PDCD1, CD279 
  PD-L2  Programmed cell death ligand-2, CD273, B7DC, PDCD1LG2 
  PI3K  Phosphoinositide 3-kinases  

  PIK3CA 
 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 
alfa 

  PIP3  Dephosphorylating phosphatidylinositol (3,4,5)- trisphosphate  
  PRE  Pre treatment  
  PTEN  phosphatase and tensin homolog 
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  PTK  Protein tyrosine kinases  
  R  Responders 
  SARDH  Sarcosine dehydrogenase 
  SDH  Succinate dehydrogenase (SDH) enzyme. 
  SDHB  Succinate dehydrogenase complex iron sulfur subunit B 
  SDS  Serine dehydratase 
  TCRs  T cell receptors  
  TDO2  Tryptophan 2,3-dioxygenase 
  TME  Tumour microenvironment 
  TMZ  Temozolomide  
  TRAIL  TNF-related apoptosis-inducing ligand  
  Treg  Regulatory T cells  
  TRM  During treatment 
  VEGF  Vascular endothelial growth factor 
  VEGFA  Vascular endothelial growth factor A 
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healthy cells express the ‘kill me’ signals, or damage-associated molecular patterns (DAMPs), 

to pledge immune recognitions. APCs receptors specifically bind to PAMPs or DAMPs. Once 

APCs capture the infected cells upon detection of PAMPs or DAMPs, promote further immune 

responses by extracting antigens.  

NK cells also play a pivotal role in the immediate control of invading pathogens, constitute 

approximately 5 to 15% of the human peripheral blood (PBMCs) immune cells. They rapidly 

respond to cells lacking MHC class I surface molecules, which is often caused by viral 

infections (2,3). In addition, the complement system, which includes a variety of circulating or 

membrane-associated proteins with enzymatic activities, plays a rapid defensive role through 

the lysis of microbes. The secondary immunity in many cases will be recruited when rapidly 

responding immunity is not sufficient to eradicate invading pathogens. 

1.1.1.1 The three signals  

1.1.1.1.1 Antigen presentation to lymphocytes  

The unique surface molecules which are called T cell receptors (TCRs) are essential for the 

activation and functions of T lymphocytes. TCRs have specific reactivity to a short peptide 

sequence, which is presented by MHC molecules on the cell surface. Ligation between peptide-

containing MHCs on APCs and TCRs can induce intracellular signal transduction cascades 

required for activation and expansion of T cells. There are two forms of MHCs, MHC Class I 

and II, which are involved in antigen recognition. TCRs on CD8 + cytotoxic T cells (CTL) 

specifically bind to MHC class I peptide complexes, while MHC class II peptide complexes 

are responsible for the presentation of the foreign antigen to CD4 + helper T cells. 

1.1.1.1.2 Co-stimulation  

In order to reach full activation capacity for T cells, signal transduction mediated by co-

stimulatory molecules on professional APCs must be engaged. B7 family members, such as 

B7.1 (CD80) and B7.2 (CD86), are an example of co-stimulatory molecules on the membrane 

of APCs and interact with CD28 on T cells. This ligation to co-stimulatory molecules can 

enhance T cell activation by stabilizing immune synapses between APCs and T cells. In 

contrast, co-inhibitory molecules that follow similar principles, negatively regulate T cell 

functions. This mechanism maintains immune homeostasis upon infection and is involved in 

tumour mediated immune suppression. 
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attacks from the immune system. Thus, many believe that disabling immune checkpoints 

would support re-engage the body's immune system to fight cancer. 

One of the well-characterized immune checkpoints is CTLA-4 (16,17), which is expressed 

in high levels on activated T cells. CTLA4 is homologous to the T-cell co-stimulatory protein, 

CD28, and both molecules bind to CD80 and CD86, also called B7-1 and B7-2 respectively, 

on APCs. CTLA-4 binds CD80 and CD86 with higher affinity and avidity than CD28 and 

consequently enabling it to surpass CD28 in competition for its ligands (18,19). PD-1, 

similarly, can down-regulate T cell functions and induce T cell apoptosis by ligation to PD-

L1 (20,21), or PD-L2 (22,23). B7-H3 (CD276), and B7-H4 (VTCN1), members of the B7 

family were also identified; these proteins are expressed on the surface of APCs and interact 

with the ligands CD28 (24). Expression of these immune checkpoints on tumour or 

immunosuppressive cells is known to be critical protective mechanisms that facilitate tumour 

growth (25,26) and has been found to be some of the most promising therapeutic targets for 

the treatment of human cancer (section 3.1). Anti-cytotoxic T lymphocyte antigen 4 (anti-

CTLA-4) and anti-PD1 monoclonal antibodies have already shown anti-tumour activity in 

patients. This finding led to increasing interest in looking into other immune checkpoint 

proteins to find better treatments for cancer. These immune checkpoints are also responsible 

for immune homeostasis and the maintenance of tolerance after eliminating pathogens (27). 

1.2.2.3 Enzymes and metabolic machinery 

Tumour tissues are characterized by high energy consumption levels and altered metabolic 

profiles, and cancer metabolism not only is crucial in cancer signaling for supporting 

tumourigenesis and survival, but it also has broader implications in the regulation of anti-

tumour immune signaling. Lately, much attention has been devoted to the influence of 

tryptophan (TRP) metabolic pathways on both tumour cell growth and the host's immune 

anti-tumour response. Production of various enzymes such as indoleamine 2,3-dioxygenase 

(IDO) catalyzes TRP to N-formyl-kynurenine. IDO is an important regulatory channel for 

APCs to modulate T cell functions during antigen presentation through calibrating TRP levels 

(28,29). Tumour cells and many types of immunosuppressive cells also utilize this pathway 

to sabotage T cell responses (30).  

Besides the direct effects, IDO activity could control other regulatory schemes in the tumour 

micro-environment, including COX-2/PGE2 pathway (31,32), TGF-β, or IL-10 production 

(33,34). IDO has been the target of small-molecule inhibitors in clinical development in 

combination with PD-1 checkpoint inhibitors (35). 
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noted that this observation remains controversial as the expression of PD-L1 expression can 

be impacted by external factors such as IFNγ or by other PD-L1 producing cell types such as 

tumour cells, fibroblasts, endothelial cells, and immune cells (59–62). PD-L2 expression has 

observed on APCs as well as other immune or non-immune cell types (23,63,64). Similar to 

PD-L1, PD-L2 inhibits the proliferation of T cells by PD-1 signaling (23). Existing evidence 

from tumour models confirms utilizing PDL2 blockade as an adjunct to the anti-PD-1/PD-

L1 antibodies (65,66). Although blocking of PD-L2 enhanced the anti-tumour effects of other 

checkpoint blocking agents such as anti-PD-1 / PD-L1 antibodies (67), but, PD-L2 deficient 

mice displayed more aggressive tumour progression (68). Although clinical approaches for 

PD-L2 blockade are currently limited due to unknown biological functions, combining anti-

PD-1 and anti-PD-L1 strategies may be useful in order to obtain an efficient blockage of the 

PD-1 pathway. In summary, ICIs have generated encouraging clinical responses and elicited 

sustainable tumour control in patients with advanced solid tumours. However, current clinical 

studies have focused is on more immunogenic cancers such as melanoma or lung cancer, 

while the clinical efficacy of these agents in other cancers is still under investigation. 

1.2.3.2 Adoptive cell transfer  

Since immune responses can control tumour growth, it is reasonable to assume that the 

adoptive infusion of highly functional tumour-reactive immune cells may be useful as a 

therapeutic method. Many investigations have been conducted and have shown fantastic anti-

tumour effects. This section is devoted to treatment strategies with activated T cells or NK 

cells in human solid and hematological malignancies. 

1.2.3.3 Tumour-infiltrating lymphocytes (TILs)  

T lymphocytes often infiltrate into solid tumour tissues, which is an independent prognostic 

factor for clinical outcome in various cancer types. Furthermore, it is commonly believed that 

the recruitment of T cells in tumour tissues is due to their tumour-targeting properties. TILs 

recovered from surgically removed tumour tissues treated by high-dose IL-2 have become an 

attractive treatment option in melanoma patients (69,70). Furthermore, lymphodepletion 

followed by transfusion of CD4 + and CD8 + T cells positive TILs were shown to be critical 

factors for clinical efficacy (71–73). Furthermore, melanoma patients treated with TIL 

achieved survival for longer than three years (74,75). Nevertheless, the major limitation of 

this approach is the generation of sufficient autologous TILs from individual patients. 

Therefore, alternative strategies for using genetically engineered T cells were developed to 

overcome this shortage. 
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1.2.3.4 Creating anti-tumour T cells through genetic modifications  

Recognition of tumour-associated antigens (TAA) by TCR is required for their specific 

killing of tumour cells (76–78). Shrinkage of tumour burden in various cancer types has 

reported upon infusion of T cells with TAA-specific TCR (76,79,80).  

T cells alternatively can be engineered to express chimeric antigen receptors (CAR-T). 

Typically, in this structure, the recognition domain of antigen specificity of a monoclonal 

antibody coupled to intracellular T cell-activating signaling domain with transmembrane 

spacer molecules. Since the first investigations, several improvements have been introduced, 

mainly by calibrating the content of intracellular signal domains (81,82). In contrary to TAA-

specific T cell, MHC-peptide complexes on tumour cells are not required for the cytolytic 

function of CAR-T cells. The superior efficacy of CAR T cell therapy has been demonstrated 

when anti-CD19 CAR T cell treatments in B cell cancers have accomplished striking 

successes (83–86). Currently, CAR-T cell therapy is developing rapidly, and many ongoing 

clinical studies are investigating the therapeutic potential of CAR-expressing T cells as a 

treatment for solid and hematological malignancies (87). 

1.3 CUTANEOUS MALIGNANT MELANOMA 

Melanoma, a tumour originating from the melanocyte (the pigment producing cells), continues 

to be highly fatal. Although the majority of melanoma is cutaneous, it can also begin as ocular, 

mucosal or with unknown primary (88). 

 Cutaneous malignant melanoma (CMM) maintains a long-standing trend of rapidly uprising 

incidence and with a comparable trend between males and females (89,90). Figure 1 shows the 

incidence and mortality rate of skin melanoma in the Nordic countries. CMM is highly curable 

if discovered early (91), and most risk factors display a small augmented risk alone (box 1) 

except for genetic syndromes, such as familial malignant melanoma (germ-line mutations in 

the CDKN2A gene) (92,93). 
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antigen receptor; DC, dendritic cell; F1,6BP, fructose 1,6-bisphosphate; F6P, fructose 6-
phosphate; G3P, glyceraldehyde 3-phosphate; IDO, indoleamine 2,3-dioxygenase; MDSC, 
myeloid-derived suppressor cell; ROS, reactive oxygen species; TCA, tricarboxylic acid. 
 

However, broadly targeting metabolic pathways could be argued that targeting them in 

tumour cells may impair the anti-tumour activity of the immune cells due to the complex 

interconnectivity of the metabolism of the tumour and immune cells. Interventions intended 

to redirecting tumour metabolism rather than just killing the cancer cell or repairing 

metabolite homeostasis could be one strategy to limit the adverse effects on the immune 

compartment.  

Nutrient availability in TME shapes the composition of infiltrated immune cells into tumours 

(155,156). Infiltrating of the immune cells themselves can decrease the nutritional level in 

TME, which can potentially contribute to an immunosuppressive milieu. Glucose is an 

example which is widely used by human tolerogenic DCs, MDSCs, and tumour endothelial 

cells (157–159), which have been part of the immune-suppressive environment that is 

allowed for tumour growth and metastasis.  

The limitation of glutamine in TME might also support the buildup of Treg cells (160,161). 

Cytotoxic cells, for example, CD8 + T cells and NK cells, are also susceptible to limitation 

of amino acid and under conditions of glutamine, serine or glycine deprivation exhibit 

impaired function (162–165). Essential amino acid TRP depletion in cancer is increasingly 

being identified as an essential microenvironmental factor that suppresses anti-tumour 

immune responses. It has been reported that the TRP is catabolized in the tumour tissue by 

IDO which is expressed in tumour cells or APCs. Depletion of TRP and accumulation of 

downstream metabolites mediate the immunosuppressive milieu in tumours and tumour-

draining lymph nodes by stimulating T-cell anergy and apoptosis (166), and impaired 

priming capacity of DCs (167). Besides, variations in systemic metabolite concentrations in 

patients plasma may display metabolic alterations urged by tumours (140) and could present 

clinically related information. For example, depletion of TRP and elevation of the kynurenine 

(KYN) level in plasma was detected in various cancer types (168).   

Following identification of the kynurenine pathway (KP) as a critical metabolic pathway 

contributing to immune escape and the central role of IDO in this pathway, an active effort 

both clinically and preclinically was devoted to the strategies of inhibiting 

immunosuppressive mechanisms mediated by IDO. Despite promising results in early phase 

clinical trials in a range of tumour types, a recent clinical trials on investigating the IDO-

selective inhibitor epacadostat in combination with pembrolizumab displayed no difference 

between the epacadostat-treated groups versus placebo in patients with metastatic melanoma 









 

 31 

� To explore  possible KP-related predictive biomarkers of response to ICIs treatment in 

CMM patients 

3 MATERIALS AND METHODS 

Below is a summary of the main methods were employed to reach the aims described earlier.  

Please refer to the individual articles Of note, for a more detailed description. 

3.1 CD4+ AND CANCER CELL CO-CULTURE ASSAYS, AND TREATMENT 

To study the implication of KP alteration on CD4+ T-cell function, we established an in vitro 

co-culture model consisting of CD4+CD25- T-cells obtained from healthy volunteers in 

culture with four different MCLs (BRAF wt and BRAF V600E). 

 In short, freshly isolated T-cells (CD4+ CD25-) primed overnight with cross-linked anti-

CD3/anti-CD28 antibodies. The cellular interactions in vitro were assessed by co-culture 

models using melanoma cell lines (MCLs: BE, DFB, A375, and SK-MEL-28). MCLs were 

first incubated for 24 hours, and on the following day, MCLs cultured with activated CD4+ 

T-cells for up to 5 days, in the presence or absence of IFNγ cytokine and IFNγ blocking 

antibody or Epacadostat (INCB024360: an IDO1 inhibitor). Following quick magnetic, 

CD4+ T-cells and MCLs were processed for further downstream analysis. For the functional 

assay, responder T cells were labeled with CFSE and stimulated alone or with pre-

conditioned T-cells for 3-5 days, and proliferation was measured by flow cytometry.  Specific 

details regarding stimulations and co-cultures are specifically given in each publication 

(Paper I).  

Furthermore, to facilitate the study of KP metabolic fluctuation and acquired resistance to 

MAPKIs, parental A375 BRAF V600E-mutated human melanoma cell line and daughter cell 

line with induced BRAFi resistance [vemurafenibR4 resistant subline (A375R)] were 

cultured for a short time (48 h) to measure the kynurenine pathway metabolites in the 

presence or absence of IFNγ (and TNFα (Paper-II). 

3.2  PLASMA SAMPLING AND SAMPLE COLLECTION 

To explore the role of KP alteration in CMM patients, plasma samples of CMM patients were 

collected at two-time points (before and during the first treatment with MAPKIs (n=5, paper 

I) and with ICIs (n=24, paper II). Furthermore, plasma samples of healthy volunteers (n=5) 

were included as controls (Paper-II).  
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recorded on the Bio-Plex-200 platform and  analyzed using the Bioplex Manager® software 

(version 6.1; Bio-Rad) with a 5-parameter logistic regression algorithm. 

Gene silencing and Immonobloting: GenElute Plasmid Miniprep Kit prepared empty vector 

pcDNA3.1 and wild-type BRAF expression plasmid. SK-MEL-28 and DFB cell lines 

transfected for 72 h with vectors expressing wild type BRAF or empty control vectors 

following the standard protocol from Lipofectamine. The whole protein lysates were extracted 

and used to validate the candidate proteins’ expression. The protein concentration was 

measured using the Pierce™ BCA Protein Assay Kit (Thermo Fischer Scientific). The same 

concentration of the samples was loaded on NuPAGE Novex Bis-Tris Gel (Life Technologies, 

Carlsbad, CA) and then transferred to PVDF membranes (Thermo Scientific, Rockford), 

according to the manufacturer’s standard protocol. Finally, the Chemiluminescent method was 

used to visualize protein expression. 

4 RESULT AND DISCUSSION  
In order to achieve the aim described in the earlier section, the role of the kynurenine pathway 

in the immunobiology of CMM was characterized using the public databases as well as an 

experimental set-up (paper I). Furthermore, the immune-metabolic network interactions of 

the Kynurenine Pathway in CMM patients were evaluated to validate the clinical relevance 

of immune tolerance, which is mediated by KP fluctuation. In this respect, first, this 

metabolic pathway activity was targeted in CMM patients undergoing MAPKIs therapy 

(paper II). Next, this evaluation extended into a group of CMM patients with ICIs therapy 

(paper III and IV). Below is a summary of the main results. Of note, for a more detailed 

description, please refer to the individual articles. 

4.1 EXHAUSTION OF CD4+ T-CELLS MEDIATED BY THE KYNURENINE 

PATHWAY IN MELANOMA (PAPER I) 

In recent years, complementary immune metabolism targeting IDO has been used to expand 

the response rate of ICIs. However, the blockade of IDO1 and treatment with PD-1 inhibitors 

in metastatic melanoma have displayed no benefit in survival compared to treatment with a 

single PD-1 inhibitor. Therefore, it is of interest to investigate an alternative regulatory path 

in KP, which contributes to the regulation of the CD4+T-cell subset. 

In this study, we identified the link between KP with T-cell status in the TME. The TCGA 

cohort of cutaneous skin melanoma patients (SKCM) gene expression data have been 

utilized. Based on the observed correlations, KYN, 3-HK, and KYNA production in vitro 

were characterized using melanoma-derived BRAF wild type (wt) and BRAF V600E mutant 
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proteins and KPMs in PRE and TRM groups. Our result indicates the distinct characteristics 

of the PRE and TRM networks. 

Moreover, therapeutic intervention with MAPKIs led to considerable changes in 3-HK levels 

in CMM plasma samples. Additionally, 3-HK and KYNA in PRE network interacted with a 

group of proteins that were enriched in the angiopoietin receptor Tie2 and tyrosine 

phosphatase SHP2 signaling, which negatively regulate Th1 differentiation. 

On the other hand, The TRM network identified a set of proteins which mainly enriched in 

processes involved in Th1/Th2 differentiation, IL12-mediated signaling events, and TLR 

signaling.   

Besides, analyses of mass spectrometry-based proteome analysis, which was performed on 

parental A375 and MAPKI-resistant sublines (A375R), displayed that the KYNU expression 

was higher in the A375 cell line. KYNU was also correlated with a group of proteins that is 

enriched in the activation of the mTORC1 signaling pathway in these data sets. It has 

previously reported that TRP depletion can suppress the mTORC1 pathway and, therefore, 

cell cycle arrest and T-cell energy (206,207). Thus, we suggested that KYNU expression in 

A375R may contribute to the acquisition of resistance to MAPKIs. Taken together, these 

results support that therapeutic intervention of MAPKIs leads to different KP metabolic 

trajectories in PRE and TRM CMM groups. 

Discussion:  

Collectively, Correlation network analyses of data resulting from PEA and LC/MS-MS 

characterized a group of proteins that modify the differentiation of Th1 cells, which is related 

to 3-HK levels. Besides, MAPKIs treatments and alteration of 3-HK and 3HAA 

concentrations which linked T and NK cell activation. These results suggest that KP is 

pathologically relevant in CMM patients. 

4.3 THE IMMUNE CELL COMPOSITION OF PBMCS IN MELANOMA 

PATIENTS AND THEIR ASSOCIATION WITH RESPONSE TO 

NIVOLUMAB (PAPER III) 

Despite these encouraging results, the clinical outcomes remain very variable; only a small 

fraction of patients show sustainable responses. Therefore, there is a need for predictive 

biomarkers and a more in-depth mechanistic examination of the cellular populations is 

required in clinical response. Here, PBMCs of patients diagnosed with CMM were collected 

before and during the treatment to examine immune signatures associated with clinical 

response to anti-PD-1 immunotherapy. We then conducted single-cell RNA seq analysis 

together with an interactive bioinformatics pipeline to produce a thorough analysis of 
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according to progression-free survival (PFS) in patients either shorter (n = 9) or longer than 

six months (n = 11). No differences were found between patient groups with long and short 

PFS in the frequency of monocytes. After determining a cut-off value of 20.1%, there are no 

differences in survival between groups with high or low frequencies of monocytes. 

Interestingly, when analyzing S100A9 + monocytes, we found that their frequencies were 

significantly higher in patients with short PFS. In addition, patients with S100A9 + monocyte 

frequencies higher than 15.3% showed a significantly lower overall survival compared to 

patients with frequencies lower than 15.3%. The relevance of monocyte populations was 

further confirmed when comparing the CD4 + T-cell/monocyte ratio between long and short 

PFS patients. In this case, patients with prolonged PFS showed a significantly higher CD4 + 

T-cell/monocyte ratio, which also resulted in an OS benefit. These differences showed higher 

statistical significance when considering the CD4 + T-cell/S100A9+ monocyte ratio. A 

similar analysis was also done for ratios of all and S100A9 + monocytes with CD8 + T cells, 

but there were no differences. Taken together, while scRNA-seq data indicate that the 

frequency of monocytes is inversely correlated with overall survival, results from multicolor 

cytometric analysis in a more extended patient group indicate that it is the relative size of the 

S100A9+ monocyte subgroup within the total PBMC population that is the strongest 

determinant for survival after anti-PD1 therapy. 

Discussion:  

Our findings demonstrate the elevated monocytes+S100A9 in the PBMCs of the CMM 

patients who are not responding to the PD-1 inhibition and highlights the therapeutic potential 

of S100A9. Moreover, a higher CD4+T-cells/monocyte ratio was associated with a better 

response to this therapy. Detailed knowledge of the functionality of S100A9+ monocytes is 

of high translational relevance. Therefore, the monocytic population play pivotal role in the 

outcome of the PD-1 blockade treatment, and the expression of S100A9 proteins is possible 

predictive biomarkers. 

4.4 KYNURENINE PATHWAY ACTIVITY PREDICT PRIMARY RESISTANCE 

TO IMMUNE CHECKPOINT BLOCKADE IN CUTANEOUS MALIGNANT 

MELANOMA (PAPER IV) 

Despite the tremendous success of ICIs in the treatment of CMM, still the vast majority 

display primary or acquired resistance. Therefore, there is a need for predictive biomarkers 

as well as more in-depth mechanistic insight into a clinical response. The field of immune 

metabolism is an attractive alternative strategy, and several studies have introduced 
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KYNU are biologically connected, and perturbing their interaction will possibly modulate 

ICIs efficacy in CMM patients. 

5 CONCLUSIONS 
(PAPER I) In this study, the association between the KP with T-cell status in the TME was 

first, identified in SKCM- TCGA dataset. We then established an in vitro co-culture set-up 

consisting of CD4+CD25- T-cells in culture with MCLs to investigate the outcome of KP 

alteration on CD4+ T-cell function. We then characterized the production of KYN, 3-HK, 

and KYNA in vitro using MCLs and primary CD4+ CD25− T-cells. We also found that 

frequency of IFNγ producing CD4+ T-cells associated with elevated levels of KYN and 

KYNA. Simultaneously, the proliferation of CD4+ T-cells and KMO expression were 

reduced, while exhaustion markers such as PD-L1, AHR, FOXP3, and CTLA4 were 

augmented. Our results conclude that there is an alternative immune regulatory mechanism 

in addition to IDO1 which is associated with the lower KMO expression and the higher 

KYNA production, which contributes to dysfunctional effector CD4+ T-cell response. 

 

(PAPER II) By following up on the immune regulatory role of KP discussed in paper I, we 

aimed to investigate the KP alteration in CMM patients tumour environment. Therefore, 

plasma samples of the CMM patients were collected before (PRE) and during treatment 

(TRM) with MAPKIs. Proximity extension assay (PEA) and LC/MS-MS were performed on 

these samples. Correlation network analyses of the PRE CMM patients samples revealed that 

lower 3-HK concentration might negatively contribute to the differentiation of Th1 cells. On 

the other hand, CMM patients treated with MAPKIs have shown a higher concentration of 

3-HK and 3HAA as well as higher “CXCL11” and “KLRD1” protein expression in their 

plasma. This result proposes that melanoma patients may have a higher accumulation of KYN 

and a lower concentration of 3-HK and 3HAA in plasma. Therefore, KP holds a different 

trajectory and path in healthy individuals compared with CMM patients. 

 

(PAPER III) In order to find predictive markers for PD-1 checkpoint -based immunotherapy, 

scRNA-seq's analyses of PBMCs (n=8) as well as an in-depth immune monitoring study 

(n=24) were carried in CMM patients treated with nivolumab. Blood samples were collected 

before treatment and at the time of second doses. A lower ratio of two distinct cellular 

populations, CD4+ T-cells to monocytes and a higher level of monocytes, were inversely 

associated with overall survival. Our results produced by scRNA-seq analysis of PBMC in 

an initial discovery cohort of melanoma patients showed that S100A9 expression by 
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monocytes in cluster 1 was one of the most differentially expressed genes between responders 

and non-responders to anti-PD1 therapy. Most importantly, this revealed that low S100A9 

levels in CD14+ cells were considerably associated with clinical responsiveness to anti-PD1. 

Furthermore, analyzing S100A9+ monocytes indicated that their frequencies were 

significantly higher in patients with short PFS. The relevance of monocytic populations was 

further confirmed when the CD4+ T-cell/monocyte ratio was compared between long and 

short PFS patients. Our result suggests that the frequency of monocytes is inversely correlated 

with survival and clinical benefit. Therefore, the monocytic population can be critical in the 

outcome of the PD-1 blockade treatment and the expression of S100A9 proteins are possible 

predictive biomarkers.  

 

 (PAPER IV) In this study, we found that KYNU and LGALS3 expression in protein and 

mRNA levels negatively linked to clinical outcomes of CMM patients treated with ICIs. 

Additionally, KYNU and LGAlS3 have shown a cell-type-specific pattern in PBMCs, in 

which monocytes have significantly higher expression of KYNU and LGALS3 compared 

with other cell types.  

Moreover, differential network and protein-protein interaction analyses revealed that 

the KYNU-LGALS3 system in monocytes is connected to the CD74-MYC network in CD4+ 

T-cell. These results support that LGALS3, MYC, CD74, and KYNU are biologically 

associated, and perturbing their interaction will possibly modulate ICIs efficacy in CMM 

patients. Our work suggests that the expression of KYNU in monocytes is inversely 

correlated with survival and clinical benefit. Therefore, not only can the monocytic 

population can be crucial in the outcome of the ICIs, but also the KP activity serves as an 

influential factor in the ICIs outcome. 

6 REMARKS AND FUTURE PERSPECTIVES 
 

While the KP is responsible for the production of the necessary cofactor NAD+, many of the 

pathway catabolites play roles in a variety of disease states. The engagement of the KP 

enzymes and catabolites in cancer arises via both immune and nonimmune machinery. Much 

attention has been dedicated to determining the role played by IDO in enabling tumour 

immune escape via TRP depletion. While the role played by other enzymes, such as KYNU, 

KMO, or KATs—which modulate the immune response by producing 3-HAA, 3-HK, and 

KYNA, respectively, is not yet described. Further to this, the involvement of KP downstream 

enzymes and catabolites in tumour progression is not yet well discussed.  
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Here, we have explicitly reported that elevated plasma level of KYNU in CMM patients is 

associated with poor response to the ICIs therapy. This result basically demonstrates the 

clinical relevance of KYNU, the downstream enzymes of KP, which mediate the production 

of AA and eventually 3HAA. Further validation of this observation by scRNA-seq profiling 

of CMM patients immune cell type (PBMCs) treated with ICIs, not only supports that 

elevated KYNU expression is linked to the clinical outcome but also reported that only 

monocytes have shown the differential expression of KYNU. However, we need to develop 

more efficient ways of analyzing and evaluating the role of the KYNU in a clinical setting 

by in-depth metabolic analysis on the KP as a complex system.  

Further efforts must be applied for the implementation of state-of-the-art analytical tools to 

assess the KUNU enzymatic function in the tumour microenvironment.  Finally, additional 

attempts should be made to assess the druggability of KYNU as strategy to enhance the 

treatment response in CMM patients. 

What is clear from this study is that the KP is of great importance in CMM and therefore 

characterizes as a crucial metabolic checkpoint for the development of future cancer 

immunotherapy methods. Therefore, it is likely that we will soon witness not only the 

discovery of additional physiological and pathological roles for KP activity but also an 

increasing interest in drug development based on these roles. Specifically, by targeting the 

KP with novel pharmacological or genetic manipulation, it may be possible to enhance the 

treatment response in CMM patients.
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