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POPULÄRVETENSKAPLIG SAMMANFATTNING (IN SWEDISH) 

 
Malaria är en sjukdom som orsakas av parasiter från släktet Plasmodium och vållar över 
420.000 dödsfall årligen. Malaria är ett globalt problem, men koncentrerat främst till 
afrikanska länder söder om Sahara där majoriteten av dödsfallen sker. Barn är speciellt i fara 
då de ännu inte hunnit utveckla skyddande immunitet mot parasiten. För att framställa nya 
effektiva vacciner behöver man förstå hur immunitet mot malaria utvecklas. Länge har man 
vetat att antikroppar mot parasiten är skyddande. Antikroppar produceras av s.k. B-celler som 
finns i bland annat blod, lymfkörtlar och mjälten. B-celler utgör en viktig del av 
immunförsvaret då de efter att ha träffat på något kroppsfrämmande, t.ex. en parasit, kan 
utvecklas till s.k. ”minnes B-celler” vars uppdrag är att snabbt producera antikroppar vid 
nästa infektion. Mycket tyder på att minnes B-celler är viktiga för immunförsvaret mot 
malaria, men studier har begränsats av det låga antal av dessa celler i blod. För att hitta och 
analysera dessa celler i blod, krävs därför känsliga metoder särskilt då det vid malaria är 
viktigt att kartlägga svaret mot flera olika parasitantigener.  
 
Syftet med denna avhandling var att vidareutveckla metoden ”B-cells FluoroSpot” som 
möjliggör analys av minnes B-celler mot olika kroppsfrämmande proteiner s.k. ”antigen” och 
sedan använda metoden för att få djupare inblick i hur immunitet mot malaria utvecklas. I 
Studie I, utvecklade vi metoden ”reversed B-cell FluoroSpot” och visade med celler från 
möss att den kan användas för att detektera antigen-specifika B-celler mot fyra olika 
antigener samtidigt. I Studie II adapterade vi metoden för studie på minnes B-celler hos 
människa och för att samtidigt detektera minnes B-celler mot antigener från hepatit B 
(gulsot), tetanus toxoid (stelkramp) och cytomegalovirus (ett vanligt förekommande virus 
hos människor). Vi visade också att vi kunde använda metoden för att mäta minnes B-celler 
före och efter hepatit B vaccination. I Studie III adapterade vi metoden för att mäta minnes 
B-celler mot malariaparasitens antigener och använde metoden för att följa hur immunsvaret 
mot parasitantigen utvecklas över tid i personer som infekterats med malaria för första 
gången eller hos de som haft malaria vid flera tillfällen. I Studie IV använde vi metoden för 
att mäta minnes B-celler mot parasit-antigener i barn som bor i malaria-endemiska områden 
i östra Kenya, och identifierade att faktorer så som ålder, och antal kliniska malaria episoder 
påverkade det uppmätta immunsvaret, samt identifierade immunsvar som påverkade risken 
att få malaria vid ett senare tillfälle.  
 
Sammanfattningsvis är den nya B-cell FluoroSpot som vi tagit fram en känslig metod för 
analys av lågfrekventa minnes B-celler mot malaria och andra infektioner/antigen. Studierna 
har också bidragit till kunskapen kring hur minnes B-celler utvecklas och bibehålls efter 
malaria. Metoden har användning för att kartlägga minnessvaret vid infektioner och efter 
vaccination. Denna kunskap kan komma att vara viktig vid framställandet av nya vacciner.  

 
 

 



 

 

ABSTRACT 
Plasmodium falciparum malaria remains one of the world’s deadliest infectious diseases and the 

search for an effective vaccine is highly warranted. Memory B cells (MBCs) and the antibodies 

they produce, once activated, is believed to play an important role in the protective immunity 

against malaria, but the mechanism of acquiring and maintaining these cells is poorly understood. 

New and sensitive tools able of gathering detailed information regarding the development and 

maintenance of antigen-specific MBCs could increase the understanding of protective immunity 

but also be used for the evaluation of new vaccines. In Study I, we developed the reversed B-cell 

FluoroSpot assay, a new assay format based on an established technique for single-cell analysis. 

Using hybridomas and splenocytes from immunized mice together with a tag/anti-tag approach for 

detection, we showed proof-of-principle that the assay could be used for multiplex analysis of 

single B cells specific to four different antigens simultaneously, as well as detecting B cells 

displaying cross-reactivity against antigen variants. In Study II, we adapted the assay for studies 

on humans and measured MBC responses against hepatitis B virus, tetanus toxoid and 

cytomegalovirus. We also measured MBC frequencies before and after vaccination against 

hepatitis B and used new FluoroSpot reader functions to assess spot volume. We showed that the 

assay could be used to detect B cells against all of the antigens simultaneously and also changes in 

MBC frequencies and spot volume before and after vaccination. In Study III, we adapted the 

multiplex assay further for studies on P. falciparum antigen-specific MBCs and used it to study the 

kinetics of MBC responses in primary infected and previously exposed travelers diagnosed with 

malaria in Sweden. We showed that primary infected individuals could acquire and maintain P. 

falciparum-antigen specific MBCs as efficiently as previously exposed individuals during a one 

year follow up period, but that the maintenance and magnitude of antibody levels in plasma were 

higher in the previously exposed individuals. In Study IV, we used the assay developed in Study 

III to analyze P. falciparum antigen-specific MBCs in children living in areas with endemic 

transmission of malaria in Kenya. We identified that high levels of MBCs against certain P. 

falciparum antigens were associated with a reduced risk of a subsequent clinical malaria episode, 

and that proportions of MBCs specific to some, but not all, P. falciparum antigens, increase with 

age, but also some decrease with cumulative number of infections. We conclude that the multiplex 

FluoroSpot method developed in this thesis provide insights towards the acquisition and 

maintenance of P. falciparum malaria-induced MBCs. We believe that the reversed B-cell 

FluoroSpot assay is a sensitive and highly adaptable method to assess MBC responses against 

multiple antigens and will be a powerful tool for future studies on protective immunity to malaria, 

but also other fields of research. 
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1 INTRODUCTION 
 

1.1 THE BURDEN OF MALARIA 

Malaria is a disease caused by parasites belonging to the protozoan genus Plasmodium that 

are spread by Anopheles mosquitoes (1). There are six major species of Plasmodium that 

infect humans and causes malaria: P. falciparum, P. vivax, P. malariae, P. ovale curtisi, P. 

ovale wallikeri and P. knowlesi (2, 3). According to estimates from the World Health 

Organization (WHO), approximately 228 million people were diagnosed with malaria and 

405,000 people died of malaria in 2018 (4). Malaria is a global health problem but is 

concentrated in the Sub-Saharan region of Africa where most of the cases and 93% of deaths 

occur (Figure 1) (4). The parasite species P. falciparum is attributable to a majority of these 

deaths (5) and is the focus of this thesis. 

 

Figure 1. Predicted P. falciparum death count in 2017 in all age groups. Malaria Atlas 
Project. Available from https://malariaatlas.org, and reproduced with permission. 
 

1.1.1 Malaria prevention  

Great efforts have been made to stop the transmission of malaria. The widespread distribution 

of insecticide-treated bed nets, indoor residual spraying, mass drug administrations and 

effective monitoring of parasite transmission have led to a great decline of malaria cases in 

the last 15 years (4). However, parasite drug resistance, more recently also to artemisinin-

based drugs, has been reported in south-east Asia and mosquito insecticide resistance has 

been widely observed (6, 7). An efficacious malaria vaccine is greatly needed, and much 

effort has been made to develop vaccines that are able to provide protection against malaria 

but also to stop the transmission of the disease. In 2019 the first licensed malaria vaccine, 

RTS,S/AS01 (called Mosquirix™) was launched in in Malawi, Ghana and Kenya as a part of 

a pilot vaccination program coordinated by the WHO (4). 
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1.1.2 The life cycle of P. falciparum 
 

The life cycle of P. falciparum in humans begins when a parasite-carrying Anopheles 

mosquito takes a blood meal (Figure 2) (8). This leads to the injection of parasite sporozoites 

residing in the mosquito salivary gland into the human dermis. The sporozoites glide through 

the dermis and penetrate the blood vessels to enter the blood stream (9) where they then then 

migrate to the liver and infect hepatocytes (10). In the hepatocytes, the sporozoite uses the 

nutrients of the cell to differentiate into thousands of merozoites that are released into the 

blood stream upon cell rupture (11). As the merozoite encounters a red blood cell (RBC), it 

attaches using low-affinity receptors on the merozoite surface (12) which is most likely 

mediated by merozoite surface proteins (MSP) such as MSP-1 (13). The bound merozoite 

then undergoes apical re-orientation and express junction-forming proteins, such as apical 

membrane antigen 1 (AMA-1) and other proteins from the merozoite rhoptry that bind to 

receptors on the RBC membrane (14). A tight junction mediated by erythrocyte binding 

antigen (EBA) proteins and reticulocyte binding homolog (RH) proteins is then formed 

between the merozoite and RBC (15). The merozoite then penetrates the membrane of the 

RBC to complete invasion. After entering, the merozoite remodels the cell, feeds on its 

nutrients, and develops through several intermediate trophozoite stages, into a schizont 

containing between 8-32 new merozoites (16). As the infected RBC (iRBC) ruptures, the 

released merozoites infect other RBCs nearby. Merozoites in the iRBC can also go through a 

sexual stage and develop into either male or female gametocytes. These gametocytes can be 

transferred to another mosquito taking a blood meal (17). Male and female gametocytes in 

the mosquito gut develop into gametes that after fertilization become a zygote. This zygote 

later develops into an ookinete that penetrates the gut wall of the mosquito and continues to 

develop into an oocyst (18). In the oocyst, new sporozoites are formed. Upon rupture of the 

oocyst, the sporozoites are released and glide through the wall of the salivary gland where it 

waits for the mosquito to take a new blood meal (1). 
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Figure 2. P. falciparum life cycle in humans and mosquito (Adopted with permission from 
Scherf et al., 2008 (8). 
 

1.1.3 Pathogenesis of P. falciparum malaria 

The clinical manifestations of a P. falciparum infection range from unspecific flu-like 

symptoms such as fever, headache, chills, nausea and muscle aches, to severe and potentially 

fatal presentations such as coma, severe anemia, respiratory distress, multi-organ failure or 

shock (19, 20). The onset of symptoms occurs during the blood-stage of the parasite life cycle 

(21, 22). The incubation time is usually between 1–4 weeks after infection, as demonstrated 

in an experimentally induced malaria challenge of human volunteers, in which the symptoms 

of malaria started 6–23 days after inoculation as the level of parasitemia increased (20). The 

clinical manifestation of disease can be divided into two categories: uncomplicated or severe 

malaria, with a set of criteria defined by WHO (4).  

The severity of disease is dependent on preexisting host immunity, but also parasite factors 

such as the level of parasitemia i.e. the proportion of infected red blood cells (iRBCs) (23). 

High parasitemia in children can lead to severe anemia caused by factors such as hemolysis 

of RBCs, but also parasite-associated damage on the bone marrow which could ultimately 

lead to an ineffective production of new RBCs (24, 25). High parasitemia is also associated 

with liver dysfunctions, for instance jaundice or kidney dysfunctions, such as malaria acute 

renal failure (26). Another important pathogenic factor is cytoadhesion of iRBCs, also called 

sequestration or rosetting depending on the type of cells involved (27). Cytoadhesion occurs 
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when iRBCs express surface proteins (adhesins) such as P. falciparum erythrocyte membrane 

protein 1 (PfEMP1) which bind to epithelial cells or uninfected RBCs in close proximity to 

the iRBC (28). By doing so, iRBCs avoid following the blood stream to areas of highly active 

immune functions, such as the spleen where they would likely be cleared by immune cells 

(29). Cytoadhesion occurs in most organs, and can lead to reduced oxygen delivery to the 

tissues resulting in lactic acidosis or respiratory distress (30). Cytoadhesion in the capillary 

vessels of the brain can lead to obstruction of the vessels and cause cerebral malaria (31). 

Cerebral malaria can lead to coma, cortical blindness and convulsions and has the highest 

fatality rate (19, 32).  

According to treatment guidelines set by the WHO, uncomplicated malaria should be treated 

with artemisinin-based combination therapy to clear the parasite. In severe malaria, treatment 

involves intravenous injection of artesunate followed by a full course of artemisinin-based 

combination therapy (33).  

 

1.2 NATURALLY ACQUIRED IMMUNITY TO P. FALCIPARUM MALARIA 
 

Even though a primary P. falciparum infection can give rise to a strong immune response, 

development of clinical immunity takes time and is complex (34). In high transmission areas, 

children under 5 years of age are at particular risk of severe malaria due to the lack of 

immunity (35). With increasing age and exposure to the parasite, clinical immunity, i.e. 

protection from disease, is gradually acquired leading to a higher incidence of mild or 

asymptomatic malaria in older children and adults (34, 36). Even though studies have shown 

that sterilizing immunity can be achieved by inoculation of sporozoites in experimental 

human models (37, 38), the general consensus is that sterile protection, i.e. complete 

clearance of the infecting parasite and protection against new infections, is never truly 

achieved by naturally acquired immunity (39).  

In order to maintain clinical immunity towards malaria, continuous exposure to the parasite 

seems to be required (40, 41). This has been demonstrated in studies showing that antibody 

levels against malaria antigens follow the transmission seasons with high levels during the 

rainy seasons, with high exposure and low levels during the dry season with low exposure 

(21). Similar to this study, another longitudinal study, following a cohort of Kenyan children, 

showed that anti-merozoite antibodies declined rapidly when transmission intensity decreased 

(40).  
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Acquired immunity against clinical malaria declines in the absence of re-infection as 

demonstrated by previous studies of African immigrants moving from endemic to malaria-

free areas (42). Also, in a retrospective medical chart review of over 900 patients treated for 

malaria in Sweden, it was shown that the risk of developing severe malaria for African adults, 

returning to endemic areas, increased with time spent in Sweden (43). Furthermore, loss of 

clinical immunity has also been observed during malaria elimination programs in remote 

islands with extensive vector control and mass drug administration (44). 

The process of acquiring immunity towards malaria is also delayed by the fact that many of 

the P. falciparum antigens display extensive genetic diversity with polymorphisms and allelic 

variation (45). It is therefore widely considered that immunity to malaria is “strain-specific” 

(46, 47), meaning that immunity can differ against parasites with different genotypes. In 

accordance with this, increasing age together with exposure to a multitude of P. falciparum 

parasite variants/clones has been shown to correlate with protective immunity (48, 49). It is 

therefore believed that repeated bouts of malaria gradually lead to clinical immunity as the 

immune system recognizes more variants of malaria antigens, and progressively develops an 

efficient repertoire of protective antibodies (50-52).  

In summary, the process of acquiring clinical immunity to malaria is multi-factorial and 

largely dependent on an experienced immune system with broad recognition of parasite 

antigens and antigen variants.  

 

1.2.1 The humoral immune response against malaria 

There is substantial evidence that B cells and the antibodies they produce upon stimulation 

are highly important for the development and maintenance of immunological protection 

against clinical malaria (34, 51). The protective role of anti-malaria antibodies has been 

known since at least 1961, when Cohen et al., showed that purified immunoglobulin (Ig) G 

antibodies from malaria-immune adults transferred to malaria-infected children reduced 

parasitemia and symptoms of disease (53).  

Antibody responses are mounted to almost every stage of the P. falciparum life cycle (21). At 

the time of a second sporozoite infection, the humoral immune response, with anti-sporozoite 

antibodies in co-operation with CD8+ T cells, gdT-cells and natural killer cells, combat the 

invading sporozoite to prevent infection of hepatocytes or clearance of infected cells (54, 55). 

It has also been suggested that antibodies binding to sporozoite antigens, can alter the 
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morphology of the sporozoite by inducing precipitation of sporozoite surface proteins and 

thereby affecting the migration and entry into hepatocytes (56-58).  

During the blood stage of the P. falciparum life cycle, antibodies directed against surface 

proteins on the merozoite can block merozoite invasion and parasite growth (59, 60). 

Furthermore, the binding of antibodies to merozoites can initiate opsonization and monocyte-

mediated phagocytosis of the merozoite (61, 62). Antibodies having bound to antigens on the 

merozoites can induce complement-mediated lysis of the merozoite by the formation of the 

membrane attack complex (63). Finally, it has also been shown that antibodies play an 

important role in binding to adhesion molecules on the iRBC thereby preventing 

cytoadherence (64, 65).   

 

1.2.2 B-cell differentiation 

B cells develop in the bone marrow and leave into the peripheral blood as immature B cells 

expressing membrane bound IgM and IgD as the B-cell receptor (BCR) (66). The immature 

B cells migrate via the blood stream to secondary lymphoid organs, such as the spleen and 

lymph nodes where they transition into a mature naïve follicular B cell (67, 68), which  are 

the largest subset of B cells and reside in B-cell follicles of the secondary lymphoid organs 

(69). The differentiation of naïve B cells into memory B cells (MBCs) or long-lived plasma 

cells (LLPCs) starts when an antigen is bound by the BCR on the naïve follicular B cell 

(Figure 3). The cells will then become activated and migrate to the border of the B-cell 

follicle and T-cell zone, where they receive co-stimulatory signals from antigen-activated T 

helper (Th)-cells (70). This co-activation leads to extensive proliferation of the B cells and Ig-

class switching of the BCR, supported by follicular Th cells. As the cells proliferate, they will 

take one of three paths (71, 72). 
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Figure 3. T-cell dependent memory B-cell generation. Reprinted by permission from 
Macmillan Publishers Ltd: Memory B cells, Tomohiro Kurosaki, Kohei Kometani, Wataru 
Ise, Nature Reviews Immunology Vol 15, Feb 2015, pages 149-159, copyright (2017). 

 

One path is to exit from the B-cell follicle and differentiate into short-lived plasma cells 

(SLPCs) producing high levels of low-affinity antibodies against the antigen (73). The second 

path is further proliferation and formation of a germinal center (74). The germinal center 

consists of the dark zone and the light zone. In the dark zone, B cells go through somatic 

hypermutation; a process in which mutations occur in the antigen-binding region of the genes 

coding for the BCR. These mutations can either increase or decrease affinity for the antigen 

or even introduce stop codons, removing BCR expression altogether (75). The B cells with a 

retained BCR migrate to the light zone where the affinity of the BCR is tested on follicular 

dendritic cells presenting the cognate antigen (76). The B cells are also tested for their ability 

to process and present antigen-specific peptides to follicular Th cells (77). The mechanisms 

for B-cell peptide presentation and other related processes are largely unknown but 

eventually lead to four different fates of the B cell: 1) apoptosis,  2) return of the B cell to the 

dark zone for further somatic hypermutation, 3) migration of the B cell out of the follicle to 

become a MBC or 4) differentiation into a LLPC (78). MBCs are quiescent cells that upon 

antigen recognition can differentiate into antibody-producing plasma cells that secrete high 
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levels of antibodies with enhanced affinity compared to naïve B cells. In a healthy state, 

MBCs can be found in circulation while LLPCs reside in specialized niches in the bone 

marrow where they produce high-affinity antigen-specific antibodies released into the blood 

stream (73). Antigen-specific MBCs and LLPCs can exist for a very long time. This has for 

instance been demonstrated after smallpox vaccination, where functional antigen-specific 

MBCs were found over 50 years after vaccination (79).  

 

1.3 DEVELOPMENT OF B-CELL MEMORY AGAINST P. FALCIPARUM 
 

P. falciparum is almost as old as the human species (80). Since the parasite has co-evolved 

together with humans, it has been a constant arms race between the parasite and the immune 

system (81). In order to develop immunological memory against an antigen, the immune 

system requires an effective acquisition of antigen-specific MBCs and LLPCs able to produce 

protective amounts of high-affinity antigen-specific antibodies. In general, LLPCs and MBCs 

seem to be generated in a complex manner dependent on both age and parasite exposure. 

Interestingly, several studies have shown that the acquisition and maintenance of P. 

falciparum antigen-specific MBCs are more stable in areas of low transmission (82-84), 

while antigen-specific MBCs and LLPCs have been shown to be ineffectively acquired in 

individuals with recurrent P. falciparum infections, especially children (85, 86). For instance, 

studies on children living in endemic areas have shown that the half-life of antibodies against 

malaria antigens is much shorter than the half-life of antibodies after vaccination against 

tetanus (87, 88) suggesting that a P. falciparum induce the generation of SLPCs rather than 

LLPCs or MBCs in children living in endemic areas (89). However, studies comparing 

antibody half-lives of vaccine antigens and parasite-induced antibodies are challenging in 

endemic areas due to new infections, leading to continuous activation and generation of 

SLPCs producing short-lived antibody responses, whilst vaccines are boosted less frequently. 

 

1.3.1 Parasite-mediated modulation of B-cell memory  

The slow acquisition of MBCs and LLPCs in frequently exposed individuals is believed to be 

linked with a dysregulation of B cells following excess parasite exposure (81). Several 

mechanisms for how P. falciparum affect the development of immunological memory have 

been described (89, 90). For instance, the PfEMP1 domain cysteine-rich interdomain region 

1α (CIDR1α), can cross-link the BCR on B cells, which leads to a T-cell independent 

polyclonal activation of B cells (91). This activation can in turn lead to differentiation of 
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naïve B cells into SLPCs rather than MBCs and LLPCs (91). Furthermore, during a P. 

falciparum infection, activated monocytes have been shown to produce high levels of the 

ligand B-cell activating factor (BAFF) (90). BAFF and its receptors are important for 

maintaining B-cell homeostasis, and enhanced levels of BAFF are associated with the 

induction of regulatory B cells (92). In turn, regulatory B cells along with other cells, have 

been shown to produce the immunoregulatory cytokine interleukin 10 (IL-10) shown to 

suppress B‒T-cell interactions and the activation of B cells (93, 94). 

Malaria has also been associated with the differentiation of B cells into a subset referred to as 

atypical MBCs (95-99). Although highly studied, the immunological role of this B-cell subset 

in malaria remains unclear. Some studies have shown that atypical MBCs have impaired 

effector functions in vitro, such as reduced BCR signaling, cytokine expression, activation 

and IgG production (100). In contrast, others have suggested that both classical and atypical 

MBCs can produce broadly neutralizing antibodies during a P. falciparum infection and that 

an increased proportion of atypical MBCs is associated with protection from malaria (101, 

102). Recently, Aye et al., showed a greater expansion of atypical MBCs in children 

persistently exposed to P. falciparum compared to previously exposed children, but also that 

these atypical MBCs were specific against P. falciparum antigens MSP-1 and AMA-1 (103), 

suggesting that these cells could have an important function in the response against malaria, 

or, in contrast, were diverted away from more important functions, such as becoming 

conventional MBCs and LLPCs. 

 

1.4 MALARIA VACCINES 
 

Although P. falciparum infections can alter the humoral immune response in many ways, 

protective immunity to the parasite can still be achieved. The protective functions of 

antibodies in malaria have led to the belief that a vaccine against malaria is feasible. 

Therefore, efforts to develop a potent vaccine against malaria have been highly prioritized. 

Many types of vaccines have been evaluated and several are currently in clinical trials (104, 

105). The malaria vaccines are usually divided into three types: pre-erythrocytic vaccines, 

sexual stage vaccines and asexual stage vaccines. 

 

 



 

10 

1.4.1 Pre-erythrocytic vaccines 

Vaccines aiming to elicit an immune response against the sporozoite are normally called pre-

erythrocytic vaccines. More than fifty years ago it was shown that irradiated sporozoites from 

the parasite P. berghei injected in mice, provided some degree of protective immunity when 

mice were challenged with viable sporozoites from the same parasite strain (106). More 

recent studies have also shown that with controlled human malaria infections (CHMI) 

inoculation of P. falciparum sporozoites followed by chloroquine treatment, can result in 

long-term protection against new infections (37, 38). 

The first vaccine that was launched in areas of high malaria transmission was RTS,S/AS01. 

This vaccine aims to elicit an immune response against the sporozoite antigen P. falciparum 

circumsporozoite protein (CSP) thereby preventing infection of liver cells. The CSP antigen 

is delivered using a virus-like particle (VLP) platform based on hepatitis B surface antigen 

(HBsAg) that displays repeats of the CSP antigen (107). Randomized clinical trials in African 

children have shown that administration of this vaccine gives rise to a protection efficacy 

between 25-50% (108). Within the RTS,S Phase 3 trial showed that in the 6000 children aged 

5-7 months having received the vaccine, the number of clinical or severe malaria episodes 

were reduced by half during the first year (108, 109). However, a more recent study 

measuring the efficacy of the vaccine in children after seven years, has shown that the 

protection wanes over time to be only 4-7% in moderate transmission areas (110). The 

protection was even lower in children with higher-than-average exposure to malaria (110). 

Attempts have also been made to increase the efficacy of the RTS,S vaccine. For instance, the 

reduction of HBsAg expression in the VLP have been shown to increase magnitude of 

antibodies and also efficacy of the RTS,S vaccine in preclinical studies (111). In addition, 

pre-clinical studies have also been made where RTS,S is administered concomitant with other 

pre-erythrocytic antigens such as the thrombospondin-related adhesion protein (TRAP) (112). 

 

1.4.2 Asexual stage vaccines 

Vaccines based on antigens expressed on the surface of the merozoite or iRBC are usually 

called asexual stage vaccines. Much focus has been on MSP-1 (59, 113), MSP-2 (114, 115), 

MSP-3 (116, 117), AMA-1 (118, 119), EBA-175 (120) as well as RH5 (121). An antibody 

response directed against these antigens has been linked with protection and has shown to be 

associated with blocking the merozoite invasion of the RBC, thereby reducing the severity of 

disease (122). Some of the vaccines candidates contain combinations of these antigens (123). 

Delivery of the recombinant antigen can be performed using a prime-boost strategy with a 
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viral vector, such as the simian adenovirus 63 vector that induce the expression of small 

amounts of the antigens in the host (124). These types of vaccines, e.g. ChAd63/MVA MSP1 

or ChAd63.AMA1/MVA.AMA1, have been highly successful and immunogenic when tested 

in CHMI and are currently in clinical trials (4, 104, 105). 

 

1.4.3 Sexual stage vaccines 

Vaccines targeting the sexual stages of the parasite life cycle i.e. gametocytes, are also called 

“transmission blocking vaccines”. The transmission blocking vaccines aim to elicit an 

immune response able of either blocking the mosquito uptake of the gametocyte or blocking 

the parasite development in the mosquito (125). Three of the most promising candidate 

antigens are PfHAP2, expressed on the surface of the gametocyte (126), Pfs230, expressed 

before zygote formation, and Pfs25, expressed after zygote formation in the mosquito (127, 

128). To date, two vaccines targeting Pf25 are currently in pre-clinical trials (129, 130).  

 

1.5 P. FALCIPARUM ANTIGENS 
 

The genome of P. falciparum encodes for over 5300 proteins (131). The identification of 

protein antigens to which immune responses are linked with protection, or markers of 

exposure, is highly important for vaccine development or epidemiological studies. Several P. 

falciparum antigens such as MSP-1, MSP-2, MSP-3, AMA-1 and CSP have been extensively 

studied in order to understand their function and the effect of antibody responses against them 

(122, 132-137). However, the high degree of polymorphism and allelic variation displayed by 

these antigens are a major challenge for vaccine development (138, 139). If vaccines are to be 

developed targeting these antigens, knowledge regarding antigen structure and diversity is 

important.  

 

1.5.1 MSP-1 

The specific function of the merozoite surface protein 1 (MSP-1) is still unknown, but it is 

believed to have a role in the cytoadhesion to RBCs (15) although studies have yet to confirm 

this. Studies have shown that antibodies directed against MSP-1 can block the entry of the 

merozoite into the erythrocyte (140). MSP-1 is produced as a ~190 kDa precursor protein that 

is attached to the merozoite surface via C-terminal GPI anchor proteins (141). MSP-1 
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undergoes proteolytic cleavage into several fragments on the surface just before rupture of the 

schizont (142). One of the C-terminal fragments, MSP-142, is then further cleaved into the 

fragments MSP-133 and MSP-119 (143). Only MSP-119 remains on the merozoite surface 

during the invasion of erythrocytes. According to the amino acid structure analysis made by 

Tanabe et al. in 1987, MSP-1 can be divided into 17 blocks containing both conserved and 

non-conserved parts (144). Based on differences in the non-conserved regions, the allelic 

variants of MSP-1 block 2 can be divided into three major groups: KI, R033 and MAD20 

(145). 

 

1.5.2 MSP-2 

MSP-2 is expressed as a ~30 kDa glycoprotein and like MSP-1, attached via C-terminal 

anchor proteins to the surface of the merozoite. MSP-2 consists of non-repetitive conserved 

N- and C-terminal regions flanking a highly polymorphic repetitive domain as well as semi-

conserved dimorphic parts that define the two major allelic families 3D7 and FC27 (146). 

MSP-2 is often referred to as an intrinsically unstructured protein that under physiological 

conditions has the conserved N- and C-terminal region close to the merozoite surface, while 

the variable dimorphic and polymorphic parts of the protein protect the conserved part from 

antibody binding (147). A challenge for vaccine development is that MSP-2 has been 

reported to undertake an amyloid like form when expressed recombinantly (147) and have to 

be coupled to a lipid membrane in order to assume its native form (148). Furthermore, due to 

its extensive polymorphism, MSP-2 has frequently been used for genotyping in order to 

assess the types and number of parasite clones in blood during an infection (149-151).        

 

1.5.3 MSP-3 

Unlike MSP-1 and MSP-2, MSP-3 is considered to be a soluble antigen, and believed to be 

attached to the merozoite membrane via protein-protein interactions (152). MSP-3 is 

expressed as a 62 kDa protein but is cleaved at its N-terminal site to its mature 42-44 kDa 

size (153). MSP-3 has an N-terminal region containing three blocks of four tandem-repeated 

heptad motifs (AXXAXXX) and a conserved C-terminal (153). Based on sequence variations 

in the N-terminal heptad motifs, MSP-3 is divided into two major allelic families 3D7 and K1 

(154). In vitro studies have shown that antibodies directed against MSP-3 might be associated 

with inducing antibody-dependent cellular inhibition of the merozoite (155). 
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1.5.4 AMA-1 

AMA-1 is believed to play an important role in the invasion process of the RBC (156). Apart 

from being expressed on the merozoite, studies have also proposed that AMA-1 is expressed 

on the sporozoite surface (157). AMA-1 is expressed as an 83 kDa precursor protein that 

undergoes proteolytic cleavage and is converted into the 42 kDa protein, which is believed to 

mediate merozoite invasion of the RBC (158). The amino acid sequence of AMA-1 is divided 

into three domains, and differs from other malaria antigens, as repetitive parts are absent 

(159). The genetic variation of AMA-1 is instead due to point mutations and deletions in 

domain 1 that define the two major allelic groups 3D7 and K1 (160). 

 

1.5.5 CSP 

CSP is the most abundant protein expressed on the surface of the sporozoites and has several 

functions in the development of the sporozoite but also mediates adhesion and invasion of 

hepatocytes (161). CSP can be divided into three domains: the conserved N-terminal domain 

containing region I, followed by a central repeat domain that contains the NANP repeat 

region which is the major site for antibody- and T-cell recognition after RTS,S vaccination 

(162). The C-terminal domain contains the thrombospondin-like type I repeat but also the 

GPI anchor proteins that mediates linkage to sporozoite membrane (163).  

 

1.6 IMMUNOASSAYS TO MEASURE HUMORAL IMMUNE RESPONSES  
 

Several immunoassays have been used to study antibody reactivity to the malaria antigens 

MSP-1, 2, 3, AMA-1 and CSP (84, 86, 164). For studies on antibody responses and reactivity 

in plasma samples, immunoassays such as Enzyme-linked immunosorbent assay (ELISA) or 

bead based multiplex assays (e.g. Luminex) are most widely used. Studies on cellular 

responses can be also be assessed using assays like flow cytometry, B-cell Enzyme-linked 

Immunospot (ELISpot) assay, and more recently B-cell FluoroSpot. Immunoassays analyzing 

antibody- or cellular responses both have strengths and weaknesses.  
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1.6.1 ELISA 

ELISA is a plate-based immunoassay that allows fast and sensitive detection of an analyte of 

interest in a solution (165). Serological analysis can be performed by coating an antigen in 

protein-binding polystyrene plates, followed by the addition of antibody-containing samples 

such as plasma. The antigen-specific antibodies in the plasma bind to the coated antigen and 

can later be detected using a secondary detection antibody labeled with an enzyme, 

commonly horseradish peroxidase (HRP) or alkaline phosphatase. In a final step of the assay, 

a colorimetric substrate is added to the wells. The enzyme cleaves the substrate and generates 

a substrate product. The level of substrate product can then be measured by an ELISA reader 

and is proportional to the amount of bound enzyme-labeled detection reagent in the well. 

 

1.6.2 B-cell ELISpot 

The B-cell ELISpot assay is performed in 96-well PVDF membrane plates and can be used to 

gain information on single antibody-producing B cells in e.g. PBMC samples (166). ELISpot 

can for example be used to study the frequency of IgG-producing cells as well as the antigen 

specificity and antibody subclass. In contrast to ELISA, ELISpot plate wells contain a 

membrane on which antigens are immobilized (Figure 4). Also, instead of adding an 

antibody-containing sample, cells are directly added to the wells when assessing antigen 

specificity. The added B cells produce antibodies that bind to the antigen nearby the position 

of the cell. The antigen-bound antibodies and the position of the B cell can then be visualized 

using enzyme-labeled detection antibodies and a precipitating substrate, creating a spot on the 

membrane. In the context of malaria, the B-cell ELISpot has been used in malaria research in 

order to determine frequency of MBCs reactive with different malaria antigens (82, 167-171).  

 

1.6.3 Reversed B-cell ELISpot 

In 2009, Dosenovic et al., described the reversed B-cell ELISpot assay from the analysis of 

antibody-producing B cells (172). Instead of using antigen-coated wells, the assay utilizes 

anti-IgG antibody-coated wells (Figure 4). The coated antibody captures the antibodies 

secreted from the added B cells, followed by the addition of soluble biotinylated antigens to 

the wells. Antigen-specific B cells can then be detected using enzyme-labeled streptavidin 

(SA) followed by a precipitating substrate. The benefits of this approach were described as an 

improvement of spot quality, but also a large reduction in the amount of antigen needed 

(172).  
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Figure 4. Variants of the B-cell ELISpot assay for the detection of antigen-specific B cells. 

 

1.6.4 FluoroSpot 

The methodology of the ELISpot is limited to the analysis of only one parameter (e.g. an 

antigen) at a time. The FluoroSpot assay, on the other hand, allows for multiplex analysis of 

several analytes at the single-cell level since it utilizes multiple different fluorescent detection 

systems rather than a precipitating substrate (173).  

 

Figure 5. B-cell FluoroSpot assay for determination of antigen specificity and isotype of 

antibodies produced by B cells. 

 

Multiplex analysis is facilitated by the use of different fluorophores with distinct excitation- 

and emission spectrums. By using a FluoroSpot reader equipped with wavelength specific 

filters, each fluorophore can be analyzed separately (174). As this light exposure causes 

excitation of the selected fluorophore, the fluorophore-emitted light then passes through a 

second filter after which it is detected by a camera revealing the location of the cell as a 
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fluorescent spot. The FluoroSpot assay was first designed to study cytokine-secreting cells, 

but has since then been adapted for studies on B cells (175). The B-cell FluoroSpot has for 

instance been used to simultaneously study the antigen specificity as well as Ig subclass of 

antibodies from single B cells (175-177) (Figure 5). In malaria research, the FluoroSpot assay 

has been used to study cytokine secretion during CHMI following vaccination with live-

attenuated sporozoites (178). However, to our knowledge, no studies had previously been 

reported using the B-cell FluoroSpot assay in malaria research.   

 

1.7 MEASURING HUMORAL IMMUNE RESPONSES TO P. FALCIPARUM 
ANTIGENS 
 

For long, ELISA has been the standard method when studying humoral responses against 

malaria. The pros of ELISA are that it is fast, easy and highly sensitive. However, in recent 

years, this method has been partly replaced by other serological assays offering multiplex 

analysis such as Luminex (179, 180) or protein microarrays (181-183). For instance, one of 

the first proteome arrays contained 2320 P. falciparum peptides (184). However, protein 

microarrays are highly expensive and any analyses of immune responses in plasma will be 

affected by the often reported short-lived antibody responses to P. falciparum antigens (88, 

185). Hence, studies on immunological memory based solely on anti-malaria antibodies in 

circulation carries the risk of drawing inaccurate conclusions regarding previous exposure 

and memory. Also, predicting exposure and protection by the analysis of circulating anti-

malaria antibodies can be challenging due to the transient nature of antibody levels in 

individuals living in endemic areas (87).  

In order to overcome this constraint, a few studies have combined the analysis of plasma 

antibody responses with the assessment of MBCs in circulation (83, 84, 171). The B-cell 

ELISpot assay has been used for studies on P. falciparum MBCs (167, 168, 170, 186) and 

proven to be an important complement to studies on circulating antibodies. This was for 

instance suggested by a five-year follow-up study of two cohorts of Kenyan children, where 

antigen-specific MBCs were detected in the absence of antibody levels (83). Similarly, in 

another study on travelers diagnosed with malaria in Sweden, ELISA and B-cell ELISpot 

were used to study P. falciparum antigen-specific antibodies and MBC responses several 

years after an acute infection (82). The results showed that even if the P. falciparum antigen-

specific antibody levels had waned, MBCs could be found up to 16 years after infection (82). 
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In addition to ELISpot, flow cytometry has also been used to assess MBC responses to P. 

falciparum antigens (187, 188). Flow cytometry has the advantage over ELISpot that it 

enables the possibility to phenotype cells based on surface markers, but also potentially the 

opportunity to isolate cells for further transcriptomic or antibody sequence analysis. 

Nevertheless, the ELISpot has been described to be more robust and less laborious compared 

to flow cytometry (189), and to a higher extent, allow high throughput analysis of MBC 

responses for screening studies involving multiple individuals.   

Several techniques have been described for expression of P. falciparum antigens used for 

immunoassays. Some of the most commonly used expression systems have been E. coli (184, 

190), a wheat germ cell-free system (191), or mammalian cell lines such as human embryonic 

kidney cells (HEK) (192). Even though techniques have successfully been used to express a 

variety of P. falciparum antigens, the major challenge when expressing recombinant proteins 

for use in immunoassays, as well as for vaccines, is to secure the structure and functionality 

of the expressed protein. However, securing structure can prove challenging due to the 

complexity of many extracellular P. falciparum antigens in regard to highly repetitive amino 

acid sequences, as well as unclear structural domains (131). This has favored the use of 

mammalian expression systems that, unlike bacterial systems, can add disulfide bonds,  does 

not require protein refolding after expression, and can add post-translational modifications of 

the expressed protein (192, 193).  

In order to study individual MBCs and their role in P. falciparum, robust and sensitive tools 

are needed in order to get a broad and detailed understanding of the fine specificity of 

individual MBCs towards a multitude of P. falciparum antigens and variations of these. The 

reversed approach for the B-cell ELISpot assay allows for new possibilities with the B-cell 

FluoroSpot assay. By combining the reversed approach together with fluorescent detection 

systems, it would be possible to detect B cells specific for different antigens simultaneously. 

The information gained by studying individual cells in terms of specificity and cross-

reactivity during the acquisition of immunity to P. falciparum, could potentially provide 

important knowledge for vaccine development.     
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2 AIM 
The overall aim of this project was to develop a new multiplex FluoroSpot assay for the 

analysis of antigen-specific B cells at a single cell level. The aim was further to use this new 

methodology to increase the understanding of factors influencing the acquisition and 

maintenance of P. falciparum MBCs, as well as their role in protection against malaria.  

Specific aims:  

The specific aims of the papers presented in this thesis were:  

 

I. To develop the FluoroSpot methodology for multiplex-based enumeration of 

antigen-specific B cells utilizing a tag/anti-tag approach for detection and then 

investigate the potential of this assay.  

 

II. To adapt the FluoroSpot technology for multiplex analysis of human MBCs 

specific against multiple different antigens, and then evaluate the functionality 

of the assay by assessing MBC responses to common virus- and vaccine 

antigens. 

 

III. To further develop the multiplex B-cell FluoroSpot assay to detect and analyze 

antigen-specific MBCs against multiple different P. falciparum antigens in 

terms of frequency and specificity. Then to use the assay to study the kinetics of 

P. falciparum antigen-specific MBCs in travelers treated for malaria in Sweden, 

and with different history of exposure. 

 

IV. To assess MBC responses against P. falciparum antigens in Kenyan children 

living in malaria endemic areas in order to understand factors influencing the 

acquisition of P. falciparum antigen-specific MBCs, but also investigate the 

association between MBCs and the risk of subsequent clinical malaria. 
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3 MATERIALS AND METHODS 
 

3.1 STUDY POPULATIONS 

 

3.1.1 Swedish blood donors (Study II)    

This study was conducted on 23 anonymized Buffy coats received from the Blood bank at the 

Karolinska University Hospital, Stockholm, Sweden. The study also included six individuals 

scheduled for a hepatitis B vaccination (Engerix®-B, GlaxoSmithKlein, Rixenart, Belgium). 

These individuals were all students at the Karolinska Institutet who were enrolled to the study 

and were asked to donate venous blood samples before and 18-21 days after planned 

vaccination. Individuals were also asked to fill in a form regarding vaccination history and 

current health status. 

 

3.1.2 Cohort of travelers diagnosed with P. falciparum malaria in Sweden 
(Study III) 

Study III was conducted on 20 P. falciparum infected travelers followed in a longitudinal 

cohort in Sweden. These individuals were asked to participate in this study at the time of 

diagnosis of a P. falciparum malaria infection at the Karolinska University Hospital in 

Stockholm. Venous blood samples were collected before treatment, and then at follow-up 

visits after ten days, one, three, six and finally twelve months after treatment. Ten selected 

individuals were born in Sweden and were treated for a primary infection whereas the 

remaining ten individuals originated from Sub-Saharan Africa and reported previous malaria 

episodes and residency in areas with endemic malaria transmission (Figure 6). The median 

time since last infection for these individuals were nine (range 2-32) years. The selected 

individuals were all infected during travels to African countries. This study also included five 

individuals with no previous travel to malaria endemic areas and thus no exposure to P. 

falciparum malaria as controls.  
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Figure 6. The cohort of travelers in Study III and their origin as well as history of exposure. 

Peripheral blood mononuclear cells (PBMC) and plasma were collected at time of diagnosis 

(acute), and then at the 10 days, 1-, 3-, 6- and 12-month follow-up visits. 

 

3.1.3 Kenya (Study IV)  

Study IV was performed in Kenya on 116 samples collected from children living in two 

longitudinal cohorts within the regions Junju and Ngerenya. The regions are located within 

20 kilometers from each other and separated by an Indian Ocean creek on the coast of Kenya 

(Figure 7).  

 

Figure 7. Geographical location and study design of Study IV.  

Since 1998, children in the Junju region have been longitudinally monitored with weekly 

home visits for malaria surveillance and treatment upon infection. Children living in the 

Ngerenya region were actively monitored from 1998 until 2005 when transmission of malaria 

declined to zero. In contrast, the region of Junju experiences stable malaria transmission with 

a parasite prevalence of approximately 30% during the rainy season. Each year in March-

April before the start of the rainy season, a baseline blood sample is taken from each child. 

For our study, baseline samples collected in 2016 were used from 96 children from the Junju 



 

22 

region and 20 children from Ngerenya. From these samples, PBMCs and plasma samples 

were used (Figure 7). The inclusion criteria for Junju children were age (1-12 years old) and 

at least one confirmed clinical malaria episode before baseline 2016. The inclusion criteria for 

Ngerenya children were age (1-6 years old) and no documented malaria episodes since birth. 

The median cumulative number of clinical infections in Junju children were 8 (range 1-28). 

Study IV involved all accumulated clinical data collected during the active monitoring and 

annual blood sampling.     

 

3.2 ETHICAL CONSIDERATIONS 
 

The animal Study I was performed in accordance with the guidelines of the Swedish 

Ethical Committee for Animal Protection. For the immunization of mice, ethical approval 

was given by Stockholms Norra Djurförsöksetiska nämnd. Study II and III were approved 

by the Regional Ethical Review Board in Stockholm, Sweden. Informed consent was given 

from participants in Study III when responses after vaccination was analyzed. Study IV 

was ethically approved by the Kenya Medical Research Institute National Ethics 

Committee and the Regional Ethical Review Board in Stockholm, Sweden. 

 

3.3 DEVELOPMENT OF ANTI-TAG DETECTION SYSTEMS 
 

3.3.1 Monoclonal antibody development (Study I) 

The monoclonal antibody directed against a synthetic peptide CPDYRPYDWASPDYRD 

(designated WASP) was developed and used in Study I, and also used in Study III and IV. 

The synthetic peptide tag was first conjugated to keyhole limpet hemocyanin (KLH) using 

the ImjectTM Maleimide-Activated mcKLH kit (Thermo Fisher Scientific Waltham, MS, 

USA) according to the manufacturer. Development of anti-WASP monoclonal antibody 

(mAb) was performed by immunizing a female BALB/c mouse housed at Karolinska 

Institutet, Stockholm, Sweden on three occasions with two weeks interval using purified 

100 μg/mL WASP-KLH and 60 μg/mL AbISCO-100 adjuvant (Novavax, Uppsala, 

Sweden) in 200 μL PBS. Three days before splenectomy, the mouse was boosted with 100 

μg/mL WASP-KLH in PBS only. Hybridomas were then developed by fusing splenocytes 

with the myeloma cell line Sp2/0 (194) and supernatants recovered after cultivation were 
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for screening in ELISA against WASP-conjugated bovine serum albumin (BSA) by 

ImjectTM Maleimide-Activated BSA system (Thermo Fisher Scientific). Hybridomas 

producing antibodies with strongest reactivity against the peptide were subcloned in order 

to secure monoclonality. Hybridomas were then cultivated before harvest of supernatant 

followed by affinity purification of monoclonal antibody using Protein G sepharose 

columns (GE Healthcare, Uppsala, Sweden). The tag-specific mAbs anti-BAM and anti-

GAL, also used in Study I (Table 1) had previously been developed by Mabtech, Nacka 

Strand, Sweden in same way as mAb anti-WASP. In Study II, fluorescently labeled SA 

was used to detect biotinylated TT. In Study III and IV, StrepTactinXT (IBA Lifescience, 

Goettingen, Germany) was also used to detect the peptide tag TWIN-Strep-tag (IBA 

Lifescience).  

 

3.4 ANTIGEN EXPRESSION  
 

3.4.1 Development of recombinant peptide tagged antigens 

The addition of peptide tags to antigens enables the subsequent detection of the antigen in 

immunoassays by using tag-specific detection systems.  

The recombinant antigens tagged with a peptide tag, were expressed using transient 

transfection of HEK293/T17 cells (used for Study I), or the Expi293F expression system 

(Thermo Fisher Scientific) according to a previously described protocol (195). Briefly, the 

genes coding for the protein sequence of antigen, together with tag sequence (Table 1) 

placed recombinantly either C- or N-terminally of the protein sequence, were synthesized 

and cloned into a pcDNA3.1/Zeo(-) plasmid (Life technologies Carlsbad, CA, USA). In 

addition, the mouse IgG kappa leader sequence (METDTLLLWVLLLWVPGSTGD) was 

also inserted to facilitate protein secretion. Synthesizing and cloning of the protein 

sequences in to a pcDNA3.1/Zeo(-) plasmid were made by GeneScript (Piscataway, NJ, 

USA). HEK293/T17 and Expi293F transfected with plasmids were cultivated for six days 

before supernatant was harvested, centrifuged and then treated with 0.1% sodium azide and 

stored in 4 Cº until use.  

In addition, in Study I and II, purified antigens were biotinylated using long-chain biotinyl-

N-hydroxysuccinimide ester sulfonic acid (Thermo Fisher Scientific) according to the 

manufacturer's instructions. 
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Table 1. Peptide tags used for recombinant expression of antigens 

 

 

3.4.2 Recombinant antigens used in different studies 

The tagged antigens used for the different studies and the Uniprot accession number, 

expression system and tag for respective antigens are described in Table 2. In Study I, we 

recombinantly expressed the cytokines bovine, woodchuck and dog interferon gamma 

(IFN-g), as well as sooty mangabey and rhesus macaque IL-2. In addition, we used purified 

biotinylated human IFN-g (Peprotech, Rocky Hill, NJ, USA), cat IFN-g (RnD Systems, 

Minneapolis, MN, USA), bovine IFN-g (Thermo Fisher Scientific) as well as human IL-2 

(Peprotech). For Study II, we expressed the HBsAg which is the major protein for the 

hepatitis B VLP formation. We also expressed the abundant tegument protein pp65 of 

cytomegalovirus (CMV.pp65). Furthermore, biotinylated purified tetanus toxoid (TT) 

(Statens Serum institut, Copenhagen, Denmark) was also used. In Study III and IV, we 

expressed the P. falciparum merozoite surface proteins MSP-1 (the 19kDa fragment), MSP-

2 (isolate 3D7), MSP-2 (isolate FC27), MSP-3 (isolate 3D7) and AMA-1 (isolate 3D7) as 

well as the sporozoite antigen CSP. To enable secretion, all P. falciparum antigens were 

expressed without the amino acid sequence for GPI anchor proteins. Also, amino acids 

thyrosines and serines of potential N-linked glycosylation sequons (NXT/S) were replaced 

by alanines in order to avoid glycosylation of P. falciparum antigens when expressed in 

human cells. For all studies, expressed antigens were codon optimized for expression in 

human cells.  

 

 

 

 

Tag Amino acid sequence Detected by 

BAM DAEFRHDSGY mAb anti-BAM 

GAL YPGQAPPGAYPGQAPPGA mAb anti-GAL 

WASP CPDYRPYDWASPDYRD mAb anti-WASP 

TWIN-Strep® WSHPQFEKGGGSGGGSGGSAWSHPQFEK Strep-Tactin®
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Table 2. Tagged antigens used in studies   

 

* Purified antigens were obtained commercially. 

3.5 CELL HANDLING 
 

3.5.1 Cultivation of cells 

In Study I, hybridomas recovered from liquid nitrogen were thawed, washed and cultivated in 

DMEM supplemented with 10% fetal bovine serum (FBS) and 100 U/mL penicillin, and 100 

μg/mL streptomycin (all from Life technologies). Cells were then cultivated at 500,000 

cells/mL before use in the FluoroSpot assay. Splenocytes from immunized mice were isolated 

by passing spleen through a cell strainer (BD/Falcon, Becton Drive Franklin Lakes, NJ, 

USA). Isolated splenocytes were then washed in DMEM supplemented with 100 U/mL 

Antigens Uniprot acc.nr Expression system Peptide tag FluoroSpot Peptide tag ELISA

Study I Bovine IFN-g P07353 HEK293/T17 BAM -
Woodchuck IFN-g O35735 HEK293/T17 GAL -
Dog IFN-g P42161 HEK293/T17 WASP -
Sooty Mangabey IL-2 P46649 HEK293/T17 BAM -
Rhesus macaque IL-2 P68291 HEK293/T17 BAM -
Human IFN-g - purified* Biotin -
Cat IFN-g - purified* Biotin -
Human IL-2 - purified* Biotin -

Study II HBsAg Q773S4 Expi293F BAM -
CMV.pp65 P06725 Expi293F GAL -
Tetanus toxoid - purified* Biotin -

Tag control Bovine IFN-g P07353 Expi293F BAM -
Tag control Woodchuck IFN-g O35735 Expi293F GAL -
Tag control Cat IFN-g - purified* Biotin -

Study III MSP-119 Q8I0U8 Expi293F BAM TWIN-Strep®
MSP-2 (3D7) P50498 Expi293F GAL TWIN-Strep®
MSP-2 (FC27) P19599 Expi293F GAL TWIN-Strep®
MSP-3 Q8IJ55 Expi293F WASP TWIN-Strep®
AMA-1 Q7KQK5 Expi293F TWIN-Strep® TWIN-Strep®

Tag control Bovine IFN-g P07353 Expi293F BAM -
Tag control Woodchuck IFN-g O35735 Expi293F GAL -
Tag control Dog IFN-g P42161 Expi293F WASP -
Tag control Horse IFN-g P42160 Expi293F TWIN-Strep® TWIN-Strep®

Study IV MSP-119 Q8I0U8 Expi293F BAM TWIN-Strep®
MSP-2 (3D7) P50498 Expi293F GAL TWIN-Strep®
MSP-2 (FC27) P19599 Expi293F TWIN-Strep® TWIN-Strep®
MSP-3 Q8IJ55 Expi293F WASP TWIN-Strep®
AMA-1 Q7KQK5 Expi293F TWIN-Strep® TWIN-Strep®
CSP P19597 Expi293F WASP TWIN-Strep®

Tag control Bovine IFN-g P07353 Expi293F BAM -
Tag control Woodchuck IFN-g O35735 Expi293F GAL -
Tag control Dog IFN-g P42161 Expi293F WASP -
Tag control Horse IFN-g P42160 Expi293F TWIN-Strep® TWIN-Strep®
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penicillin and 100 μg/mL streptomycin (all from Life Technologies) before use or storage. In 

Study II, III and IV, Buffy coats or blood samples collected in EDTA tubes were processed 

into PBMCs and plasma using Ficoll-Paque Plus density gradient centrifugation according to 

manufacturer’s instructions (GE Healthcare, Uppsala, Sweden) before storage.  

 

3.5.2 Storage of cells 

In Study I, hybridomas and splenocytes were reconstituted in 20% FBS (Life technologies) 

10% dimethyl sulfoxide (Sigma-Aldrich, Saint Louis, MO, USA), 100 U/mL penicillin, and 

100 μg/mL streptomycin (both from Life technologies) and frozen in cryogenic vials at −80 

°C and then stored in liquid nitrogen until use. 

 

3.5.3 Determination of viability and concentration of cells.  

Before use in the FluoroSpot, cells were counted and analyzed for viability. In Study I, 

concentration and viability of hybridomas and splenocytes were measured using a Guava 

ViaCount® assay (Guava Technologies, Hayward, CA, USA). In Study II and III, a Muse® 

Cell Analyzer (Merck, Darmstadt, Germany) was used to analyze PBMCs, whereas for Study 

IV, concentration and viability were assessed using a Countess® Automated Cell Counter 

(Merck Millipore, Burlington MA, USA). 

 

3.5.4 Stimulation of cells 

In Study II, III and IV, frozen PBMCs were recovered from liquid nitrogen, thawed and then 

washed twice in RPMI, 100 U/mL penicillin, and 100 μg/mL streptomycin (all from Life 

technologies). After the cells had been rested for 1 hour, cells were stimulated by adding 1 

µg/mL R848 and 10ng/mL recombinant IL-2 (both from Mabtech) in 20% FBS, 100 U/mL 

penicillin, and 100 μg/mL streptomycin (all from Life technologies) before cultivation for 5 

days in 37 °C and 5% CO2. 
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3.6 ANTIBODY ASSAYS 
 

3.6.1 Indirect ELISA (Study I, II and III) 

In Study I, two anti-human IL-2 mAbs; MT2A91 and MT8G10 (both from Mabtech) were 

tested against human IL-2, sooty mangabey IL-2 as well as rhesus macaque IL-2 according 

to a previously described protocol (195). Briefly, mAbs were separately coated to microtiter 

plate wells and allowed to bind recombinant human IL-2–biotin, sooty mangabey IL-2–

BAM, or rhesus macaque IL-2–BAM, and then detected with SA–HRP or biotinylated 

mAb anti-BAM followed by SA–HRP and Tetramethylbenzidine (TMB) substrate (all from 

Mabtech). 

In Study II, sandwich ELISA was used to investigate whether the recombinantly expressed 

HBsAg had assumed a VLP formation. In short; mAb anti-BAM (Mabtech) was coated to 

microtiter plate wells and was allowed to bind BAM-tagged HBsAg in serial dilutions and 

then detected subsequently by biotinylated mAb anti-BAM followed by SA–HRP and TMB 

substrate (all from Mabtech). 

In Study III, IgG reactivity of semi-immune plasma to E.coli-derived P. falciparum 

antigens MSP-119, MSP-2 (isolate 3D7), MSP-2 (isolate FC27), MSP-3 (isolate 3D7) and 

AMA-1 (isolate 3D7) (196) was measured. Antigens were coated to microtiter plate wells 

followed by the addition of serially diluted plasma. P. falciparum antigen-specific IgG were 

subsequently detected by anti-human IgG-HRP and TMB substrate (both from Mabtech).  

 

3.6.2 Peptide tag-based ELISA (Study III and IV) 

In Study III, a new ELISA format named Peptide tag-based ELISA was developed. In this 

assay, microtiter plates were coated with StrepTactinXTÒ (IBA Lifesciences) and 

incubated overnight. After blocking and washing of plates, TWIN-StrepÒ tagged antigens 

diluted 1:5 were added and the plates were incubated for 1 hr in RT. Following another 

washing step, diluted plasma samples were added to wells and incubated for 1 hr. After a 

last wash of plate, antigen-specific IgG were subsequently detected by anti-human IgG-

HRP and TMB substrate (both from Mabtech). In Study III the reactivity of plasma 

samples against TWIN-StrepÒ tagged P. falciparum antigens MSP-119, MSP-2 (isolate 

3D7), MSP-2 (isolate FC27), MSP-3 (isolate 3D7) and AMA-1 (isolate 3D7) were 

measured. 
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3.6.3 Reversed B-cell FluoroSpot  

In Study I, reversed B-cell FluoroSpot assay was used to detect antibody-producing 

hybridomas against human IFN-γ, dog IFN-γ, woodchuck IFN-γ and cow IFN-γ. 

Hybridomas was also used in the assay to detect B-cell cross-reactivity against human IL-2 

and sooty mangabey IL-2 or rhesus macaque IL-2. Splenocytes from a hyperimmunized 

mouse were also used to detect B cells displaying cross-reactivity against dog IFN-γ and cat 

IFN-γ. In Study II, the assay was used to enumerate the frequency of MBCs in PBMC 

samples to recombinant expressed antigens HBsAg, CMV.pp65 or purified TT. In Study 

III and IV, PBMCs were used to enumerate the frequency of MBCs specific to 

recombinant expressed P. falciparum MSP-119, MSP-2 (isolate 3D7), MSP-2 (isolate 

FC27), MSP-3 and AMA-1. In addition, in Study IV, the assay was also used to detect 

MBCs against P. falciparum CSP.  

In order to capture IgG secreted by antibody-secreting cells, low fluorescent PVDF plates 

(Merck Millipore, Burlington, MS, USA) were coated with a polyclonal goat anti-mouse 

IgG antibody (Mabtech) for Study I, whereas for the remaining studies, a mouse-anti-

human IgG mAb (Mabtech) was used. The concentration of cells, antigens and detection 

systems were then defined for each of the studies.   

 

3.6.4 Analysis of FluoroSpot plates 

The analysis of FluoroSpot plates requires readers equipped with wavelength specific filters 

for excitation and emission of light in order to analyze each fluorophore separately. For 

Study I and II, plates were analyzed using an ELISpot/FluoroSpot reader system (iSpot 

Spectrum, AID, Strassberg, Germany), with software version 7.0 (build 14,790). In Study 

II, III and IV, plates were analyzed using Mabtech IRIS™ with Apex™ software version 

1. Both readers were equipped with filters equivalent for DAPI, FITC, Cy3 and Cy5 to 

detect fluorophores absorbing and emitting light at 350/470, 490/520, 550/ 570 and 640/660 

nm, respectively.  
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3.6.5 Assessment of relative spot volume (RSV) 

The relative spot volume (RSV) is a new type of data provided by the Apex™ software in the 

Mabtech IRIS™ FluoroSpot reader (Mabtech). The value provides additional information on 

the size and intensity of single spots in the well and corresponds to the amount of analyte 

secreted by the cell. In Study II the mean RSV value of spots from HBsAg-specific MBCs 

was assessed before and after vaccination with Engerix®-B (GlaxoSmithKlein). In Study III, 

we assessed the kinetics of median RSV of spots from MBCs specific for P. falciparum 

MSP-119, MSP-2, MSP-3 and AMA-1 up to one year after treatment of acute malaria in 

travelers. In Study IV the mean RSV values of spots from MBCs specific for P. falciparum 

MSP-119, MSP-2 (3D7), MSP-2 (FC27), MSP-3, AMA-1 and CSP were assessed in children 

living in malaria-endemic areas. 

  

3.7 STATISTICAL ANALYSIS  
 

Statistical analysis was carried out using STATA MP (version16.0), R (version 3.6.1) and 

GraphPad Prism (version 8.3) (GraphPad Software, La Jolla, CA). In Study III, Mann-

Whitney U-test was used to compare reproducibility between tests, duplicates and singleplex 

vs multiplex analysis and differences in MBC and antibody responses between specific 

timepoints. Spearman correlation was used to analyse association between proportion of 

MBC, RSV and antibody levels throughout the study period, as well as variability between 

replicate wells. A mixed-effects linear regression model was used to compare differences 

between groups regarding MBC and antibody responses. In Study IV, Kruskal-Wallis test 

with Dunn’s correction for multiple comparisons was used to compare MBC and antibody 

responses between two age groups. Spearman correlation was used to determine association 

between MBC and antibody responses, whereas Partial Spearman correlation was used to 

determine the association of MBC and antibody responses with age, number of clinical 

malaria episodes since birth and parasite density at baseline in separate multivariate analysis. 

A Cox-regression model was used to investigate the risk of subsequent clinical malaria after 

baseline (date of sample collection in March 2016) until 365 days later, and similarly for time 

since last clinical infection until baseline. Proportional hazards were tested using 

Schoenfeld’s residuals. A hazard ratio (HR) with 95% confidence interval (CI) not passing 1 

as well as a p-value below 0.05, were considered significant.  
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4  RESULTS 
 

4.1 STUDY I 

In Study I, we developed the reversed B-cell FluoroSpot assay and demonstrated the use of 

this assay for various applications. We used capture antibodies to trap antibodies from 

hybridomas producing mAbs with known specificities as well as splenocytes from a 

hyperimmunized mouse, followed by detection with biotinylated or peptide-tagged 

recombinant antigens as well as fluorescently labeled SA and anti-tag mAbs, respectively 

(Figure 8). 

 

Figure 8. Overview of the different FluoroSpot assay formats described in Study I.  

We showed proof of principle that the assay could be used for multiplex analysis of single 

antibody-producing cells specific against different antigens. This was possible by combining 

hybridomas producing mAbs to four different species of IFN-γ as well their respective IFN-γ 

antigen either tagged with a peptide tag or biotin (Figure 8). By using anti-tag specific mAbs 

or SA labeled with fluorophores with dissimilar emission/excitation spectrums, and a reader 

equipped with wavelength specific filters, the position of the four different hybridomas was 

detected on the membrane as a spot. The assay was validated by demonstrating functionality 

also with other combinations of hybridomas and antigens.   

We also showed that the assay could be used to study cross-reactivity of single antibody-

producing cells. For this, we used two separate hybridomas (MT8G10 and MT2A91) 

producing mAbs against human IL-2 but with dissimilar cross-reactivity with IL-2 from non-

human primates sooty mangabey and rhesus macaque. While hybridoma MT8G10 cross-

reacted with both species of non-human primates, MT2A91 only recognized rhesus macaque 

IL-2. Detection of cross-reactive hybridoma mAbs could be demonstrated by combing the 

two hybridomas together with human IL-2 and either of the non-human primate IL-2. The 

combination of human and sooty mangabey IL-2 resulted in single positive spots (likely from 

Anti-mouse IgG

anti-tag detection systems
Fluorescently labeled

Captured IgG from B cells

 Antigens with different tags

Detection of B cells with multiple 
different antigen-specificities Cross-reactivity analysis Antigen and Ig subclass 

analysis
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hybridoma MT2A91) and co-positioned/double positive spots (likely from hybridoma 

MT8G10), while the combination of human and rhesus macaque IL-2 resulted in only double 

positive spots. The possibility of cross-reactivity analysis using the assay was further 

demonstrated by using splenocytes from a mouse immunized with cat IFN-γ and tested 

against a combination of cat and dog IFN-γ homology 87%) (Figure 8). The analysis resulted 

in 15% double positive spots for both antigens whereas the remaining 85% spots were 

positive for cat IFN-γ. When the test was repeated, the analysis resulted in 14% double 

positive spots.  

Lastly, we showed that the assay could be used to simultaneous analyze the specificity of 

antibodies secreted by antibody secreting cell as well as isotype/subclass of the antibodies 

(Figure 8). For this, we used two separate hybridomas producing mAbs with known 

dissimilar antigen-specificities and IgG subclass. Next, corresponding antigens tagged with 

peptide tag as well as fluorescently labeled anti-subclass and anti-tag mAbs were used. Co-

positioned/double-positive spots were obtained for the respective antigens and their 

corresponding IgG subclass.   

 

4.2 STUDY II 

In Study II, we adapted and optimized the assay for detection of human MBCs. For this, we 

expressed recombinant tagged antigens based on amino acid sequences for HBsAg and 

CMV.pp65. We also included a third antigen, TT, which was used biotinylated (Figure 9). 

 

Figure 9. Schematic presentation of FluoroSpot layout for Study II. The image to the right 

represents a well from an individual with spots detected for all antigens tested (197). 
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The expression of tagged HBsAg and CMV.pp65 was verified using Western Blot and 

ELISA. While the concentration of TT was already known, the concentration of HBsAg was 

measured to 18900 IU/mL by electrochemiluminescence method whereas the concentration 

of CMV.pp65 was estimated to 19 μg/mL in a semiquantitative Western Blot. The optimal 

concentration of each antigen for use in the FluoroSpot assay was established by titrating 

each antigen in serial dilutions and set to 1890 IU/mL of HBsAg, 5 μg/mL for CMV.pp65 

and 1 µg/mL for TT.    

The functionality of the assay was demonstrated by screening PBMC samples from 23 

healthy anonymized blood donors. Median proportion of MBC/total IgG for TT was 0.14% 

with a range of 0–2.25%, for CMV.pp65 0.03% with a range of 0–0.91%, and for HBsAg 

0.07% with a range of 0–0.38% (Figure 10).  

 

 

Figure 10. Proportion of antigen-specific B cells against HBsAg, CMV.pp65, TT as well as 

irrelevant control antigens in 23 donors with unknown vaccination history (197).  

 

Since history of exposure or vaccination were unknown in the 23 anonymized blood donors, 

a small study was conducted where the assay was also used to assess frequencies of MBCs 

before and after planned vaccination. For this, PBMC samples from six individuals were 

collected before and 18–21 days after vaccination with HBsAg (Engerix®-B, 

GlaxoSmithKlein) and analyzed in the FluoroSpot assay. Before vaccination, one previously 

vaccinated individual had 0.24% HBsAg-specific MBC/total IgG while the remaining five 

individuals with no prior hepatitis B vaccination had proportions similar to irrelevant controls 
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ranging from 0–0.03% MBC/total IgG. No individuals were considered seropositive before 

vaccination when anti-HBsAg antibodies were measured in plasma determined by 

electrochemiluminescence method. After vaccination, the proportion of MBCs increased 3-

fold in the individual with detectable levels of MBCs before vaccination, while no change 

was measured for the remaining individuals. Three individuals seroconverted after 

vaccination. 

In addition, we also measured the RSV of spots before and after vaccination and observed 

tendencies of an increase of the mean RSV of spots in three individuals despite that frequency 

of spots did not increase. 

 

4.3 STUDY III 

In Study III, we adapted the reversed B-cell FluoroSpot assay for the detection of human 

MBCs specific for P. falciparum antigens (Figure 11). We then studied the kinetics of P. 

falciparum antigen-specific MBC and antibody responses in Swedish travelers treated for an 

acute P. falciparum malaria episode at Karolinska University Hospital and then followed 

prospectively over the course of one year. In total, 20 individuals were included, where ten 

individuals were primary infected, and ten individuals had lived in malaria endemic areas 

under an extended period of time and reported previously exposure to P. falciparum malaria. 

We also included five healthy malaria unexposed individuals as negative controls and five 

individuals previously exposed to P. falciparum that had displayed strong antibody responses 

towards the P. falciparum antigens in previous studies to be used for optimization of the 

assay.     

 

Figure 11. Schematic presentation of FluoroSpot layup for Study III. The image to the right 

represents a well from an individual with spots detected for all antigens tested.  
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P. falciparum antigens MSP-119, MSP-2 (allelic variant 3D7 as well as FC27), MSP-3 and 

AMA-1 were recombinantly expressed with peptide tags, and antigen expression was 

confirmed by Western Blot and ELISA. The reactivity of P. falciparum semi-immune plasma 

with the expressed tagged antigens was fully comparable with the reactivity to corresponding 

E.coli-derived antigens used for previous studies, verifying the quality and antigenicity of the 

expressed peptide-tagged antigens. Optimization of the FluoroSpot assay included 

establishing optimal number of cells as well as optimal dilution of supernatant antigens 

needed for analysis. The optimization was performed using PBMCs from the five P. 

falciparum-exposed individuals having displayed strong reactivity to antigens in previous 

studies. We established that 250,000 cells per well were optimal for analysis and that the 

optimal dilution of antigen supernatant was 1:50 for all antigens with the exception of AMA-

1 where the optimal dilution was 1:500.   

A linear mixed effects model adjusted for time was used to compare antigen-specific 

responses between primary infected and previously exposed individuals throughout the study 

period. Proportions of MBCs or median RSV of spots were not different between the groups 

to any P. falciparum antigen throughout the study period. In both groups, proportion of 

MBCs peaked at the 10 day follow-up and showed tendencies of increasing with time for 

MSP-119 and AMA-1 whilst more stable for MSP-2 and MSP-3 (Figure 12). 

 

  

Figure 12. Proportion of MBCs to P. falciparum antigens over time in primary infected and 

previously exposed individuals.  

 

For the primary infected group, proportions of antigen-specific MBC were significant 

increase between 10 day and 1 month follow-up for MSP-119 (Mann-Whitney U-test p=0.03), 

and from the acute time point until the 12 month follow-up for AMA-1 (Mann-Whitney U-

test p=0.003). In the previously exposed group proportions of MBCs against MSP-3 (Mann-
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Whitney U-test p=0.02) and AMA-1 (Mann-Whitney U-test p=0.04) significantly increased 

from the acute time point until the 10 day follow-up. 

Furthermore, for the primary infected group, there was a significant increased in median RSV 

against AMA-1 between the 10 day until the 1 month follow-up (Mann-Whitney U-test p= 

0.03) as well as between the acute time point until the 12 month follow-up (Mann-Whitney 

U-test p=0.005).  

We also developed a new type of ELISA format to analyze antibody reactivity to peptide 

tagged antigens. In this assay, plates were coated with StrepTactinXT® (IBA Lifesciences) 

followed by the addition of recombinant P. falciparum antigens tagged with TWIN-Strep®-

tag (IBA Lifesciences) that subsequently will be captured by StrepTactinXT®. By then 

adding an antibody containing sample, such as plasma, followed by enzyme-conjugated anti-

antibodies, reactivity of the antibody containing sample could be measured.  

Using this assay, plasma antibody levels to P. falciparum antigens could be measured in 

groups throughout the study period. In both groups, antibody levels to all antigens peaked at 

the 10 day follow-up followed by declined over the study period. However, the magnitude as 

well as maintenance of response were significantly higher for MSP-2 (FC27), MSP-3 and 

AMA-1 in the previously exposed group compared to the primary infected group. While 

median RSV and proportion of MBC were often correlated, limited relationship was observed 

for antibody levels and proportion of MBC or RSV.    

In addition, during the optimization of the FluoroSpot assay for detection of MBCs specific 

against P. falciparum antigens, we also investigated the possibility of detecting MBCs 

displaying cross-reactivity to variants of a polymorphic P. falciparum antigen. For this, we 

extracted DNA from parasites isolated from patients. We then amplified and sequenced the 

gene coding for the polymorphic region of MSP-2. The sequence was then used to 

recombinantly express patient specific MSP-2 with a peptide tag. Combinations of tagged 

MSP-2 variants were then tested with PBMCs from patients in the FluoroSpot assay for 

homologous and heterologous responses. Preliminary results showed that cross-reactivity 

displayed by single B cells to different MSP-2 antigens was detected in variants within the 

two respective allelic families FC27 and 3D7, but not between allelic families. Although 

interesting, these results were preliminary and were therefore not included in any of the 

papers (Figure 13).  
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Figure 13. Detection of B cells displaying cross-reactivity against variants of the 

polymorphic P. falciparum antigen MSP-2 using the reversed B-cell FluoroSpot assay.    

 

4.4 STUDY IV 

In this study, we investigated how factors such as age, cumulative exposure or asymptomatic 

parasitemia influence MBC and antibody responses to P. falciparum antigens in children 

living in an endemic area of Kenya. Furthermore, we also investigated the role of P. 

falciparum antigen-specific MBCs and antibodies in protection against subsequent clincial 

infections. For this, we used samples from children in two longitudinally monitored cohorts, 

Junju and Ngerenya, located in close proximity but experiencing different transmission of 

malaria during rainy seasons. While parasite prevalence during rainy season is appoximately 

30% in Junju, Ngerenya has remained at 0% since 2005 (198). We used blood samples 

collected in 2016 from 96 children from Junju (age 1-12) with at least one documented 

malaria episode since birth, and 20 children from Ngerenya (age 1-6) with no documented 

malaria episodes, to be used as negative controls. MBC and antibody levels were measured 

for P.falciparum antigens expressed in Study III, as well as the sporozoite antigen CSP using 

reversed B-cell FluoroSpot assay and ELISA respectively (Figure 14). 

 

Figure 14. Schematic presentation of FluoroSpot layup for Study IV. The image to the right 

represents a well from child with spots detected for all antigens tested in each combination.  
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When the effect of age was investigated, a positive correlation was found for proportions of 

MBCs to MSP-2 (3D7) and MSP-3 (Spearman correlation coefficient rs 0.258, p=0.015, and 

0.212, p=0.048, respectively) and age, while the breadth of MBC response (i.e. the number of 

antigens an individual was considered positive for) was not associated with age. No 

association was observed between age and mean RSV for any antigen. Similarly, a weak 

positive correlation was also measured for antibody levels and age with regard to MSP-2 

(3D7) (rs 0.24, p=0.025) and MSP-3 (rs 0.23, p=0.031), as well as age and breadth of antibody 

response (rs 0.244 p=0.023). 

High cumulative number of clinical malaria episodes since birth were associated with a low 

proportion of MBCs to MSP-3 (rs -0.252, p=0.018), as well as for antibody levels for MSP-

119 and MSP-3 (rs -0.292, p=0.006 and -0.211, p=0.05, respectively). When the effect of 

asymptomatic parasitemia was investigated, a postive correlation was found for proportions 

of MBCs and parasite density at baseline for AMA-1, as well as breadth of MBC response (rs 

0.561, p=<0.001 and 0.244, p=0.022, respectively) and average RSV for AMA-1, and MSP-2 

(FC27) (rs 0.340 p=<0.001 and 0.228 p=0.033, respectively).  

Children considered positive for MBC responses against MSP-3 had a reduced risk of a 

subsequent malaria episode (HR 0.47, 95%CI 0.24-0.91, p=0.024). When children were sub-

divided into the age groups 1-6 and 7-12 years old, only older children positive for MBC 

responses against MSP-3 had a reduced risk of clinical malaria (HR 0.29, 95%CI 0.11-0.82 

p=0.019). A MBC breadth of ≥3 antigens appeared to be associated with a reduced risk of 

clinical malaria (Figure 15), although this was only borderline significant for children aged 7-

12 years when children were subdivided into age groups (HR 0.32 95% CI 0.1-1.03 p=0.058). 

As for antibody levels, children considered postive for MSP-2 (3D7) and MSP-3 (HR 0.36 

95% CI 0.15-0.86 p=0.021, and HR 0.36 95%CI 0.14-0.92, p=0.033, respectively) were 

associated with a reduced risk of clincial malaria, and predicted a higher level of protection 

compared to MBCs. The protective properties of antibodies were measured for children aged 

7-12 years where children antibody positive for MSP-2 (3D7) (HR 0.33 95%CI 0.11-0.99, 

p=0.048) and AMA-1 (HR 0.27 95%CI 0.09-0.79, p=0.024) had a reduced risk of clinical 

malaria. Furthemore, an antibody breadth of  ≥3 was associated with a reduced risk of clinical 

malaria in a model including all children as well as in the subgrouped analysis with children 

aged 7-12 years with (HR 0.2, 95% CI 0.06-0.67, p=0.009 and HR 0.15, 95% CI 0.03-0.72, 

p=0.018, respectively). 
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Figure 15. Time to next clinical P. falciparum infection based on MBC and antibody breadth 

in different age groups. Kaplan-Meier curves with subgroups of individuals with different 

breadth of response. Breadth was defined by the number of antigens an individual had 

responses above threshold for positivity. 
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5 DISCUSSION 
 

MBCs and the antibodies they produce once activated are believed to be important for 

immunity, but the acquisition and protective role of these cells are poorly understood. The 

development of sensitive and adaptable technologies able to detect and analyse these cells, is 

therefore of great importance if the protective role of MBCs in malaria is to be unravelled.   

Collectively, the four studies presented in this thesis describe the development of novel 

methodology aiming at facilitating new insights towards the acquisition and maintenance of 

MBCs to P. falciparum antigens. In particular, the studies describe the development of the 

reversed B-cell FluoroSpot, and the broad field of application for this assay for multiplex 

analysis of MBC responses after exposure to pathogen or vaccine. Furthermore, the included 

studies describe how the reversed B-cell FluoroSpot assay can be used for clinical as well as 

epidemiological studies. By applying this assay in malaria research, the studies contribute to 

the further understanding of how MBCs are acquired and maintained after acute infection of 

P. falciparum. The studies also provide new insights to the protective role of MBCs specific 

to P. falciparum antigens and identifies factors influencing the frequency and magnitude of 

MBCs specific to P. falciparum antigens in children living in malaria endemic areas. 

When studying MBC responses against malaria, given the large number of antigens presented 

to the immune system during the parasite life cycle (131), there is often a need to study 

responses to a multitude of antigens in order to understand how immunity to malaria 

develops. However, the ELISpot assay, which is commonly used for the analysis of P. 

falciparum antigen-specific MBC responses, do not allow the analysis on MBCs responses to 

a multitude of antigens. 

Within the scope of this thesis, in Study I, we therefore developed a reversed B-cell 

FluoroSpot assay utilizing a tag/anti-tag approach for detection. Compared to the 

conventional B-cell FluoroSpot where antigens are absorbed to the membrane of a well, the 

reversed B-cell FluoroSpot instead uses immobilized anti-IgG antibodies able to capture IgG 

antibodies produced by stimulated B cells. The captured IgG is then exposed to antigens 

tagged with unique peptide tags or biotin followed by secondary anti-tag reagents labeled 

with different fluorophores. We demonstrated that the assay could be used for multiplex 

analysis of up to four different antigen specificities of B cells, detection of B cells displaying 

antigen cross-reactivity, as well as simultaneous detection of B-cell Ig subclass and antigen-

specificity. The tag/anti-tag approach increases the adaptability of the assay since they can be 
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applied on variety of antigens. Therefore, the reversed FluoroSpot assay utilizing tag/anti-tag 

for detection could be a useful tool when assessing MBC responses after vaccination with 

multivalent or multicomponent vaccines. 

Compared to ELISpot assay which relies on an enzymatic reaction for development of spots, 

FluoroSpot utilizes fluorescently labeled detection antibodies thereby facilitates multiplex 

analysis. Other techniques such as, flow cytometry can be used to assess both antigen-

specificity and subpopulations of cells (177, 199). However, while flow cytometry has the 

advantage over FluoroSpot in the sense that cells can be phenotyped and isolated (199), 

analysis of high number of samples in flow cytometry is often laborious. Also compared to 

flow cytometry, the FluoroSpot assay makes it possible to analyse antibody secretion over a 

cumulative time rather at one specific time point (200), potentially increasing the sensitivity 

of the assay. Furthermore, when studying antigen specificity of B cells in flow cytometry, a 

common approach is to use tetramers of the antigen coupled to a SA carrier protein  in order 

to increase sensitivity of the assay (201). However, a common problem with this approach 

has been unspecific binding of B cells to SA (202). The problem with unspecific binding has 

been partly solved by for instance using decoy tetramers (199), but unspecific binding still 

remains an issue that potentially could lead to an increased uncertainty of results. In 

comparison, no carrier protein is necessary to increase sensitivity in the described tag/anti-tag 

approach, and the use of secondary detection gives rise to an amplification of the signal in 

FluoroSpot (203).  

Similar to the use of tetramers in flow cytometry, there are also risks involved when tagging 

antigens with tags for use in the FluoroSpot assay developed here. As an example, the 

addition of peptide tags to antigens could potentially interfere with folding of protein. 

However, studies have shown that addition of small size peptide tags, similar to the tags used 

for our studies, have minimal impact on protein folding (204). In Study III, we verified the 

quality of the expressed P. falciparum antigens, in regard to antigenicity, by comparing the 

reactivity of P. falciparum-reactive plasma to purified E.coli-derived variants of antigens 

used previously for other studies. This demonstrates that the structure and quality of the 

antigens are sustained when expressing antigens recombinantly in a human expression 

system, which has also been reported by other studies expressing tagged P. falciparum 

antigens using similar expression systems (192). 

Recombinant expression of antigens with peptide tags also has other benefits including that 

the number of tags attached to an antigen is known and can be defined and controlled, which 

is challenging when performing e.g. chemical biotinylation of antigens that potentially could 
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lead to steric hindrance when performed on small antigens. Addition of peptide tags also 

enables for semi-quantification of the level of non-purified proteins as seen for CMV.pp65 in 

Study II, further demonstrating the benefits of expressing peptide tagged antigens for use in 

immunoassays such as FluoroSpot.    

During a healthy state, MBCs in circulation are quiescent, but can rapidly proliferate and 

differentiate into antibody-producing plasma cells after stimulation. For the purpose of 

analysing in ELISpot/FluoroSpot assays, resting MBCs require pre-stimulation in order to 

differentiate into antibody-producing cells. This stimulation can be performed in vitro by 

cultivation MBCs in the presence of polyclonal mitogens such as toll-like receptor (TLR) 

agonists (170, 205). For this purpose, in Study II, human PBMCs were cultivated in the 

presence of the TLR7/8 agonist R848 and recombinant IL-2. This combination has previously 

been described to be a more potent activator of MBCs compared to other established 

protocols (206). However, in vitro-stimulation of MBCs has some caveats. For instance, the 

frequency of MBCs or rate of stimulation into plasma blasts could potentially differ between 

samples/individuals, suggesting an inaccurate reflection of the in vivo state. In order to partly 

adjust for this, we displayed results as proportion of antigen-specific spots per total IgG spots, 

instead of spots per number of cells in well which is a common approach to present 

ELISpot/FluoroSpot data. Nevertheless, by cultivation of PBMC in the presence of R848 and 

recombinant IL-2 before use in the reverse FluoroSpot assay, we showed in Study II that 

human MBCs producing antibodies for antigens on hepatitis B (HBsAg), cytomegalovirus 

(CMV.pp65) and tetanus (TT) could be detected simultaneously within a single well.  

The relative spot volume (RSV) assessed by a newly developed FluoroSpot reader (Mabtech 

IRIS™, Mabtech), was used for the first time in Study II to study B-cell responses. The RSV 

value provides additional information on the volume of single spots and is affected by the 

relative amount of analyte secreted (207). Analysis of individual spots in FluoroSpot have 

previously been made by extracting FluoroSpot data into a flow cytometry software in order 

to analyse spots for studying spot size, intensity and circularity (200). Although interesting, 

this strategy is laborious and involves settings defined by the user, which potentially could 

lead to user-to-user variability. In contrast, here the RSV value is defined using a 

mathematical diffusion model performed by the software algorithms to define three 

dimensional spot shape, and RSV is then calculated as the area under curve (207). When the 

RSV value was evaluated in spots from HBsAg-specific MBCs before and after vaccination, 

indications of an increase in average RSV was found in two individuals. Similarly, in Study 

III, we observed tendencies of an increase in RSV over time in spots from MBCs specific to 
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MSP-119 and AMA-1. Given that the spot size and intensity is affected by both amount of 

antibody secreted and possibly also the affinity of the antibody (200), this could propose an 

affinity maturation of MBCs but larger studies have to be performed in order to confirm this.  

In Study III, we observed tendencies of a heterogeneity in MBC responses to the selected 

antigens. This heterogeneity of the response demonstrates dissimilarities in the ability of 

MBCs to respond to the selected antigens in the FluoroSpot assay. These differences in MBC 

responses between antigens have also been described by other studies on MBC responses in 

travelers (82). Furthermore, we also observed indications that the kinetics of the MBC 

responses to the included antigens differed over time within individuals after an acute malaria 

episode. A possible reason for this difference in kinetics could be that some merozoite 

antigens, such as AMA-1, are also expressed on the sporozoite (157), or at the liver-stage 

development, such as for MSP-1 (208), suggesting an earlier activation of MBCs to these 

antigens. Collectively, this demonstrates the need of including multiple antigens in the 

analysis, but also the benefits of studying responses at several time points. 

The possibility for multiplex analysis of B-cell responses to multiple antigens is highly 

relevant in many scenarios of malaria research. For instance, several P. falciparum antigens 

have been associated as targets candidates for vaccine and some vaccine candidates contain 

multiple antigens (104). Also, natural acquired immunity to malaria is believed to be 

dependent on the development of a progressively increasing panel of LLPCs and MBCs able 

of producing antibodies against the many antigens expressed on the surface of the parasite 

(51). This highlights the usefulness of the FluoroSpot assay for multiplex analysis of MBCs 

against multiple different antigens. Another benefit of multiplex analysis is the decreased 

need of cells for the analysis which is an important parameter in e.g. studies involving 

children.  

Genetic diversity and polymorphism displayed by the antigens on the parasite is a major 

problem for vaccine development (138, 139, 209). Therefore, the possibility of detecting B 

cells displaying broad cross-reactivity after, e.g. natural exposure or vaccination, could in a 

simple manner be addressed using B-cell FluoroSpot.  

By combining fluorescently labeled subclass-specific antibodies with the tag/anti-tag 

approach, we demonstrated in Study I, that the assay could be used for simultaneous 

detection of B-cell antigen-specificity as well as Ig subclass determination of the secreted 

antibody. In malaria, studies have identified dissimilarities in P. falciparum IgG subclasses 

effector functions (210-212) and half-lives (88, 132). For instance, responses dominated by 
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subclasses IgG1 and IgG3 have been shown to be more protective against P. falciparum 

compared to IgG2 and IgG4 (210). The B-cell FluoroSpot assay described in Study I, could 

thus be used for a simple assessment of antigen-specific B cells to P. falciparum as well as 

their subclass in order to measure the effectiveness of the response after e.g. vaccination.  

When we assessed MBCs specific to HBsAg before and after vaccination in Study II, 

HBsAg-specific MBCs could be detected before vaccination in a seronegative individual 

vaccinated against hepatitis B 12 years earlier. This is in line with other studies demonstrating 

detectable HBsAg-specific MBCs in the absence of cognate antibodies (213) and suggests 

that antigen-specific MBCs in circulation are a more accurate marker of immunological 

memory compared to circulating antibodies. Also, when screening 23 blood donors for MBC 

reactivity against TT, CMV.pp65 and HBsAg, we found that eight of the 23 individuals 

(35%) had no detectable MBCs to CMV.pp65. Given that CMV is a persistent virus, this 

suggests that these individuals had not been exposed to CMV, supporting observations in 

other studies estimating the CMV prevalence in Sweden to approximately 83% (214). 

Several examples have been shown where vaccination can lead to the acquisition of long-

lived MBCs (215-217). For instance, studies have shown that functional MBCs can be found 

over 50 years after smallpox vaccination (79). In contrast, the ability to acquire and maintain 

long-lived MBCs to P. falciparum antigens have been found to be more complex and could 

thus benefit from better understanding. Furthermore, studies on the maintenance of MBCs in 

malaria endemic areas are also challenging because of the risk of re-infection. In Study III, 

we therefore set up a longitudinal cohort of Swedish travelers treated for an acute P. 

falciparum malaria episode and followed prospectively over the course of one year in a 

malaria-free setting. We showed that primary infected individuals could mount and maintain 

MBCs as efficiently as previously exposed individuals, demonstrating that previous exposure 

is not a requirement for eliciting high levels of MBCs in circulation. We also showed a higher 

magnitude and extended maintenance of antibody levels in the previously exposed, 

supporting the findings of previous studies using a larger number of samples from the same 

cohort (132). The higher magnitude in antibody levels suggest that the previously exposed 

individuals had pre-existing LLPCs and MBCs. Upon activation, pre-existing MBCs could 

then rapidly proliferate and differentiate into plasma blast to increase antibody levels in 

circulation, while the antibody levels in primary infected came primarily from newly 

developed SLPCs and LLPCs. Interestingly, at the end of the one–year study period, the 

majority of primary infected individuals had detectable levels of MBCs against MSP-119 and 

AMA-1 while their cognate antibody levels were similar to negative controls. These results 
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support previous studies demonstrating effective generation of MBCs to P. falciparum 

antigens in areas of minimal/low transmission (82-84) but also further demonstrates that 

MBCs may be a more accurate marker of past exposure.  

It is widely recognised that repeated infections lead to the development of a subset of B cells 

termed atypical MBCs (97, 102, 218). Atypical MBCs have been linked with the exhausted 

phenotype of MBCs seen in chronic HIV infected individuals (98), and are believed to be one 

of the reasons for the slow development of immunity to malaria in areas with high 

transmission (95, 100). Other studies have addressed the level of atypical MBCs in the cohort 

of travelers used in Study III, and found that previously exposed individuals have higher 

levels of atypical MBCs compared to primary infected (99). Future studies should therefore 

investigate whether the differences in level of atypical MBCs influenced the MBC response 

in patients included in Study III.  

While some studies have described the development of antigen-specific MBCs to P. 

falciparum in adults, much less is known about the acquisition and of antigen-specific MBCs 

to P. falciparum in children living in endemic areas. The reason for this is partly due to the 

low frequencies of MBCs in circulation but also the limited volume of blood one is allowed 

to take from children. In Study IV, we therefore studied the MBC and plasma antibody 

response a in longitudinal cohort living in an endemic area of eastern Kenyan. Since these 

children have been actively monitored for fever and malaria episodes since birth, we could 

correlate MBC and antibody responses to factors such as age, number of clinical episodes 

since birth but also estimate the risk of subsequent clinical malaria based on time to next 

clinical infection. By using combinations of antigens, multiplex analysis of MBC responses 

to 6 P. falciparum antigens was possible. We observed indications that MBCs and antibodies 

to P. falciparum antigens MSP-2 (3D7), MSP-3 and AMA-1 were associated with a reduced 

risk of infection in older, but not younger children. Similarly, we also showed that MBC and 

antibody levels to MSP-2 (3D7) and MSP-3 were correlated with increasing age, even when 

adjusting for number of clinical episodes. Together, as detected in peripheral blood, this 

suggest that the development of MBCs and LLPCs is inefficiently acquired in younger 

children, potentially leading to lower protection. It is possible to speculate that a reason for 

this could be that younger children compared to older children, humoral responses are 

focused on the induction of SLPCs rather than MBCs and LLPCs, supporting the findings of 

previous studies (87, 88, 219). We also observed indications that increased breadth of MBCs 

and antibody responses were linked with reduced risk of clinical malaria in older children. 

Breadth of response is often characterized as the possession of a broad antibody repertoire 
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able to recognize a variety of antigens (122), and often linked with protection from clinical 

disease (122, 196, 220, 221). While breadth of MBC- and antibody responses have been 

linked with increasing age (171, 222), our data showed that only breadth of antibodies were 

more clearly associated with age.  

Since children included in Study IV had been monitored for clinical malaria episodes since 

birth, we were able to investigate how the immune responses were affected by previous 

cumulative clinical exposure. Surprisingly, we showed indications that high numbers of 

clinical infections had a negative impact on the levels of antigen-specific MBCs and 

antibodies in circulation. This observation is in conflict with the hypothesis that repeated 

infection expands the pool of MBCs and LLPC described by other studies (86) and instead 

implies that children subjected to multiple infections have impaired development of 

immunological memory. Recent studies involving children from the same cohort, have 

identified increased levels of the immunoregulatory cytokine IL-10 in children with high 

number of clinical infections (223). In malaria, IL-10 has been described as a double-edged 

sword since it both reduces immunopathology, but also block the antigen-presentation of T- 

and B cells (94). In the light of our results, it is possible that multiple clinical infections seen 

in children led to an increase in immunoregulatory effects that in turn led to reduced 

interaction between T- and B cells resulting in lower levels of MBCs and LLPCs.   

In summary, the studies included in this thesis have presented the methodological 

development of the reversed B-cell FluoroSpot assay and demonstrated its use for both 

clinical and epidemiological studies on P. falciparum malaria. We have provided insights to 

the acquisition and maintenance of MBCs after acute malaria and the effect of pre-existing 

immunity. We have also highlighted factors affecting the level of MBCs and antibodies in 

children living in malaria-endemic areas and the role of MBCs and antibodies for the 

protection against clinical malaria. We believe that this highly adaptable multiplex B-cell 

FluoroSpot assay can be a powerful tool when assessing MBC responses to a multitude of 

antigens and will contribute to further improving the understanding of the acquisition of 

MBCs to P. falciparum, but also in other fields of research.        
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6 CONCLUSIONS AND FUTURE PERSPECTIVES  
 

• The reversed B-cell FluoroSpot assay can be used for several purposes including: 
detection of antibody-producing cells specific against multiple different antigens, 
cross-reactivity, and simultaneous detection of different B cells with separate antigen 
specificities and Ig subclasses.  
 

• The tag/anti-tag approach for detection increases the adaptability of the assay and 
facilitates analysis of B-cell responses to a variety of antigens and pathogens. 
 

• The reversed B-cell FluoroSpot can detect HBsAg-specific MBCs over a decade after 
vaccination without detectable plasma antibodies. The RSV value, describing the 
volume of spots, increase after vaccination against HBsAg. 
 

• The reversed B-cell FluoroSpot can detect MBCs specific against four different P.  
falciparum antigens simultaneously.  
 

• Primary infected individuals can mount and maintain MBC responses against 
merozoite antigens as efficiently over one year as previously exposed individuals after 
acute malaria, while antibody responses to the same antigens are stronger in 
previously exposed individuals. 
 

• The RSV value shows tendencies of increasing over time after an acute infection of 
P.falciparum malaria. 
 

• MBC responses appear to be less pronounced in children with high cumulative 
number of clinical malaria episodes since birth. 
 

• MBCs and antibody responses to merozoite antigens MSP-2 (3D7), MSP-3 and 
AMA-1 are associated with a somewhat reduced risk of subsequent malaria in older 
children living in a malaria endemic area, whereas MBCs and antibodies to CSP show 
tendencies of increasing risk.  
 

• Breadth of MBC and antibody responses tend to be associated with a reducing risk of 
subsequent malaria in older children, but not younger children. 
 

• The reversed B-cell FluoroSpot is a sensitive and adaptable tool that can be used to 
analyze MBC responses in exploratory, clinical and epidemiological studies.   
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In recent years, technological advancements have made it possible to dissect the immune 

responses after P. falciparum exposure. Knowledge regarding the function of specific cells as 

well as their protective roles have been invested down to the molecular level. Yet, there are 

still vital parts of the immune response that the scientific community not yet fully understand. 

One of the most crucial parts that we need to understand is the mechanisms leading to the 

acquisition of long-lasting protection against the parasite and disease in children. We also 

need to understand why some children develop mild or asymptomatic malaria while others 

develop severe malaria. The development of a vaccine able of inducing long-lasting 

protection in children during the most vulnerable years, would undoubtfully be a game-

changer for the global burden of malaria. In this thesis we have described a robust, sensitive 

and highly adaptable assay, able to acquire detailed information about the B-cell response 

using a low number of cells. The insights gained from these studies contributes to a better 

understanding of the acquisition and maintenance of immunological memory against malaria. 

Given the possibility of cross-reactivity analysis using the reversed B-cell FluoroSpot assay, 

future studies should investigate MBC cross-reactivity to polymorphic antigens or variations 

and the role these cells have for the protection against disease. 
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