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ABSTRACT 

Background 

Venous thromboembolism is a serious disease comprising both pulmonary embolism and 

deep vein thrombosis. Venous thromboembolism causes considerable mortality and 

morbidity, with residual symptoms such as pulmonary hypertension and post thrombotic 

syndrome. Current assays for venous thromboembolism and the predisposition to develop 

venous thromboembolisms (thrombophilia) can only reflect a fragment of the complicated 

hemostatic processes. This thesis evaluates the usefulness of current and emerging 

hemostatic assays that reflect several aspects of the hemostatic process. Increased 

diagnostic specificity would enable better diagnosis and risk stratification of patients with 

venous thromboembolism. Improved biomarkers for venous thromboembolism and 

thrombophilia have the potential to prevent major morbidity and mortality by guiding 

treatment and prophylaxis to the right patients at the right time. 

Aim 

The aim of this project was to investigate assays that could improve the care for patients 

with suspected venous thromboembolism or thrombophilia. We evaluated the usefulness of 

current and emerging biomarkers for venous thromboembolism, explored the utility of 

emerging biomarkers for thrombophilia and functionally characterized a novel 

prothrombotic genetic variant. 

Methods 

A prospective case-control study of 954 patients with clinically suspected acute deep 

venous thrombosis or pulmonary embolism were recruited from the emergency department 

and analyzed by four D-dimer assays, fibrin monomers, thrombin generation and fibrin 

aggregation assays. The discriminatory accuracy of all assays and of age-adjusted cutoffs 

for D-dimer was evaluated. 

From the special coagulation laboratory, we included 369 patients with clinical criteria for 

thrombophilia testing. Plasma and DNA samples were analyzed by the global hemostatic 

assays Overall Hemostatic Potential (OHP) and Endogenous Thrombin Potential (ETP) as 

well as genotyped for several prothrombotic variants.  

In a separate study, a novel genetic variant with possible prothrombotic effect was 

characterized by the same assays, prothrombin levels, mRNA expression, and scanning 

electron microscopy of fibrin clot structure. 

 



 

 

 

Conclusion 

Use of age-adjusted cutoffs for D-dimer could lead to a >5% decrease in false positivity 

rate and in elderly patients this avoidance of unwarranted radiology could even affect as 

many as 20% of patients with suspected venous thromboembolism. The Overall Hemostatic 

Potential, Endogenous Thrombin Potential and fibrin monomer assay were not superior to 

D-dimer for diagnosis of deep venous thrombosis or pulmonary embolism. Global 

hemostatic assays and extended investigation of prothrombotic genetic variants discretely 

improved the predictive ability of the classical genetic thrombophilia markers and the 

proportion of patients with verifiable hypercoagulability. We could also suggest a 

connection between increased thrombotic risk  and a recently discovered synonymous 

single nucleotide polymorphism.   



 

 

 

SVENSK INTRODUKTION 

Venösa blodproppar drabbar mer än 20 000 personer årligen i Sverige, varav 25% av 

patienterna får kvarstående besvär. Vanligen drabbas benets djupa vener eller venerna i 

lungan, med bensvullnad respektive andnöd som huvudsymtom. Blodpropp i lungan är en 

akut och allvarlig, i vissa fall även livshotande sjukdom. Blodproppar kan bero på yttre 

orsaker som benbrott eller graviditet. De kan också bero på skillnader i blodets 

sammansättning, som gör att vissa har lättare att få blodpropp än andra.  

Läkare som misstänker venösa blodproppar har få användbara biomarkörer till sin hjälp, 

främst mäts D-dimer i blodprov. Tyvärr erhålls opålitliga provsvar om patienten har vissa 

andra sjukdomar eller andra tillstånd samtidigt. Exempelvis störs analysen av infektioner, 

inflammation, cancer och normala tillstånd som graviditet och stigande ålder. På 

akutmottagningen tvingas man därför ofta till att utreda misstänkta venösa blodproppar med 

speciella röntgenundersökningar med långa väntetider och viss risk för patientskada ifrån 

strålning och kontrastmedel.  

Att bedöma risknivån för att få framtida venösa blodproppar är också ett område där det 

saknas optimala biomarkörer. Om riskbedömningen skulle kunna stöttas genom bättre 

markörer för propprisk, så skulle det öka sannolikheten för att rätt patienter skulle ordineras 

blodförtunnande mediciner.  Förhoppningsvis skulle detta kunna minska både onödiga 

blödningsrisker och risken för allvarliga proppar. 

Denna avhandling har undersökt sätt att förbättra biomarkörer för diagnos av blodpropp och 

blodproppsrisk. Vi har gjort det genom att utvärdera utvecklingar av dagens biomarkörer 

och även lovande nya markörer. Vi har också undersökt en nyligen upptäckt mutation, som 

tycks vara kopplad till ökad propprisk, för att klargöra dess verkningsmekanism.  

I den här avhandlingen har vi samarbetat mellan olika kliniker och sjukhus, samt med 

diagnostikaindustri och forskningslaboratorier i Sverige och Europa. I utvärderingen har vi 

utnyttjat den stora mängd blodprover som passerat Stockholms sjukhuslaboratorier och 

använt överblivet provmaterial som annars skulle ha kasserats. Trots att vi haft varierande 

framgång med att hitta bra biomarkörer, är min förhoppning att våra framsteg ska bidra till 

att förbättra människors hälsa i närtid och på sikt. 
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1 BACKGROUND  

1.1 VENOUS THROMBOEMBOLISM  

1.1.1 Morbidity and mortality 

Venous thromboembolism (VTE) is the third most common cardiovascular disease 1 and a 

cause of substantial morbidity and mortality worldwide. VTE is estimated to be the leading 

cause of preventable hospital mortality 2 and causes a considerable health economic cost 3. 

However, even though verified VTE is treatable and most prophylactic treatment options 

are well-tolerated 4, both VTE and thrombophilia are under-diagnosed and under-treated 5-7. 

The problem could be reduced by treatment and selective prophylaxis in adequate time 4, 8. 

 

VTE is constituted primarily by deep 

venous thrombosis (DVT, 2/3) and 

pulmonary embolism (PE, 1/3) 5, Figure 1. 

More uncommon sites are portal vein 

thrombosis, upper extremity deep vein 

thrombosis, mesenteric vein thrombosis, 

renal vein thrombosis and cerebral venous 

sinus thrombosis.  

VTE occurs in 2-3/1000 individuals, with 

an incidence in adolescence of 0.1/1000, 

increasing to 8/1000 above 80 years of age 

9. Women are subject to VTEs earlier in life 

than men, explained by the fact that they 

are provoked by hormone-based 

contraceptives and pregnancy 7, 10, but there 

is no difference in overall incidence 

between men and women. Men have a 75% 

higher risk of a recurrent VTE after a first 

episode 11 and the age-related increase in 

VTE  begins by the age of 50 in men and 

60 in women 7.   

Figure 1. DVT in leg embolizing to the lungs   

and becoming a pulmonary embolism.  

Image: David Gifford, Science photo library 
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The most frequent symptoms at diagnosis of DVT are pain (82.8 %) and swelling of 

extremities (73.3 %). The corresponding symptoms of PE are dyspnea (75.6 %) and chest 

pain (45.5 %) 1. Aside from acute symptoms, VTE causes considerable long-term morbidity 

with 25% of patients developing residual symptoms such as post-thrombotic syndrome with 

ulcerations and chronic swollenness and chronic pulmonary hypertension 3. VTE is 

considered a chronic disease, because of the highly prevalent residual symptoms and the 

permanent increased risk of recurrent venous thrombosis 5, with a cumulative recurrence 

rate after ten years of about 30% 12. VTE is also the major cause of lost disability-adjusted 

life years (DALYs) in both high and low-income countries 13. 

In addition to the considerable morbidity of VTE, the thirty-day all-cause mortality of 

pulmonary embolism is approximately 12% and DVT 6% 10. An estimated 12% of all 

deaths in Europe are caused by PE 5. Fatal PEs are only diagnosed previous to death in 7% 

of cases, the majority of fatal events are PE that have remained undiagnosed and sudden 

fatal PE, with 59% and 34% respectively 5. The morbidity and mortality of VTE could be 

significantly reduced by prevention, early correct diagnosis and appropriate treatment 4, 8.  

1.1.2 Classification of deep venous thrombosis and pulmonary embolism 

PE is divided into segmental PE and subsegmental PE (ssPE), determined by imaging 

techniques. DVT the leg is classified as distal or proximal; where distal DVT is located 

below the popliteal vein. The subset of distal DVTs that are isolated to the muscular veins 

of the calf, and do not extend into the deep venous system (i.e. soleus, gastrocnemius) are 

classified as muscle vein thromboses. Distal DVT if left untreated, can be expected to 

eventually extend into a proximal DVT and possibly further into PE in about 15% of cases4.  

Symptoms of VTE are related to localization and size, distal DVT and ssPEs are to a higher 

extent without symptoms and/or critical clinical complications. Subsequently, whether or 

not to treat smaller VTEs is a challenging decision, given the bleeding risk of anticoagulant 

therapy. In Sweden, isolated distal DVTs are treated for four weeks to six months, primarily 

based on symptoms, VTE size and risk factors for recurrent VTE. However, many 

guidelines maintain that patients with small VTE may have a negative risk-benefit-ratio 

from anticoagulant treatment. The recent CHEST* guidelines for antithrombotic therapy for 

VTE recommend surveillance over treatment in distal DVT and ssPE, unless the patient has 

serious symptoms or risk factors 4.  

* CHEST; the official publication of the American College of Chest Physicians 
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1.2 PATHOGENESIS OF VENOUS THROMBOEMBOLISM 

 
Figure 2. Modern rendition of Virchow’s triad, adapted from Byrnes et al. 14. 

1.2.1 Virchow’s Triad   

Venous thrombosis has classically been described as a combined effect of prothrombotic 

changes in the blood flow, vascular wall and blood composition, i.e. Virchow’s Triad 15, 

Figure 2. The model is as relevant as ever. Blood composition would currently be 

considered to encompass the individual concentrations of pro- and anticoagulant proteins 

and hematologic cells as well as cell derived microvesicles. Reduced blood flow or stasis is 

still highly relevant in VTE, because venous clots are formed under low shear stress in 

contrast to arterial clots 16, 17. Reduced flow or static blood in the valve pocket sinuses 

decreases the inhibiting regulation that wall shear stress normally has on the endothelial 

lining of the blood vessel and leads to initiation of thrombus formation 18. The endothelial 

cells of the vessel walls have been demonstrated as important in formation of both venous 

and arterial thrombi. Although, in venous thrombosis formation, the endothelial lining is 

mainly intact, unlike in arterial thrombosis formation 17.  

Contemporary concepts that complement Virchow’s Triad, are the cell-based model of 

hemostasis, which describes how essential the activated platelets are for the plasma 

coagulation 19 and the intimate interactions of platelets and coagulation factors in VTE 20.  
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1.2.2 Endothelial Cells 

An important initiator of VTE formation is the activation of endothelial cells, primarily 

caused by the hypoxia that may arise in the valve pocket sinuses, or possibly by 

inflammation. Activation leads to expression of adhesion receptors to the cell surfaces, 

facilitating binding of circulating leukocytes and microvesicles. Subsequent activation of 

monocytes induces expression and de-encryption of tissue factor (TF) 21. TF is a potent 

procoagulant surface antigen, constitutively expressed on the cells that form an anti-

hemorrhagic envelope around blood vessels, especially in critical organs such as the brain, 

heart and lungs. Expression of TF can also be induced in activated endothelial cells and 

monocytes. TF is additionally present on monocyte derived microvesicles and possibly on 

neutrophils, eosinophils and T-cells and activated platelets with derived microvesicles, 

although this is controversial 21, Figure 3.   

Activated monocytes with increased expression of TF are most probably an important 

driving factor behind the increased risk for VTE in sepsis, cancer and after surgery 17, 21. 

1.2.3 Coagulation Cascade 

TF in complex with activate Factor VII (FVIIa) initiates coagulation and induces thrombus 

formation. The primary source of FVIIa needed for the initiation of coagulation is thought to 

be the minute amounts of free FVIIa present in the circulation. The complex of TF-FVIIa, 

the extrinsic tenase complex, activates small amounts of Factor X and Factor IX (which is 

the primary substrate of the complex). Activated Factor Xa (FXa), adsorbed on the cell 

surface, can convert some prothrombin into cell-bound meizothrombin, which can activate 

some Factor V (FV), released by activated platelets. Activated FV (FVa)  binds to FXa 

forming the prothrombinase complex, which activates small amounts of prothrombin into 

thrombin. The initiation phase of the coagulation is concluded when thrombin activates the 

cofactors Factor V and Factor VIII as well as Factor XI, Factor VII, Factor XIII and platelets.  

The prothrombinase complex and the intrinsic tenase complex, a complex of FVIIIa-FIXa, 

assemble on the negative surfaces of activated platelets. This increases their enzymatic 

efficiency manifold leading to the generation of large amounts of FXa and thrombin 22. The 

propagation of the coagulation cascade is additionally driven by the activation of FIX by 

FXIa, generated in the initiation phase. Thrombin also initially feed-back stimulates its own 

generation by activating more FVII, although the TF-FVIIa-complex is quickly inhibited by 

Tissue Factor Pathway Inhibitor (TFPI) after the initiation of coagulation 21. 
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Factor XIIa (FXIIa) is another driver of thrombus formation and is considered by some to 

play a part in the formation of pathological VTE associated with immunothrombosis and 

cancer. After activation by negative surfaces, such as extracellular nucleic acids or 

polyphosphates from activated platelets or bacteria 23, FXIIa activates Factor XI and 

thereby the intrinsic path of the coagulation cascade, see Figure 3. 

 

Figure 3. Pathological activation of the extrinsic pathway via Tissue Factor (TF) 

expression in activated monocytes, cell derived micro vesicles (MV) and activated 

endothelial cells. Cellular RNA and polyphosphate (PolyP) released from activated 

platelets or bacteria activate FXIIa in the intrinsic pathway. Mackman 17. 

1.2.4 Platelets 

It is now clear that activated platelets have a role not only in the primary, but also in the 

secondary hemostasis, primarily because they provide the negative cell surfaces where the 

coagulation process is localized, which both enhances the thrombin generation, protects the 

coagulation enzymes from inhibition and regulates that coagulation is not disseminated in 

the circulation. Platelets are activated by the exposure of subendothelial collagen in 

hemostasis, but can also be activated by thrombin via activation of protease-activated 

receptors on the platelet cell membrane, a pathway that is active in both hemostasis and 

VTE formation 20. Activated platelets also contribute activating factors to many steps of the 

coagulation process. Upon activation and degranulation, the content of the α-granules is 
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released, which contains a large amount of different proteins, some of which are 

coagulation factors; fibrinogen (endocytosed from blood), platelet FV, FXIII, Ca2+ (i.e. 

Coagulation Factor IV), von Willebrand factor as well as FVIII, FIX and FXI according to 

some reports 22. Procoagulant platelet polyphosphates are also released at the degranulation 

of the dense granulae of the platelets. The mechanism for their procoagulant activity is still 

controversial, but they have been claimed to directly activate FXII 24-26. As mentioned 

before it is also controversial whether activated platelets and platelet derived microvesicles 

are a source of intravascular, cell membrane bound TF 21. 

1.2.5 Fibrinogen and fibrin degradation products  

Thrombin is the key enzyme in the coagulation because it is a platelet agonist, activates 

several coagulation factors, FV, FVII, FVIII, FXI and FXIII, and not least because it 

converts fibrinogen into fibrin in the final step of the coagulation cascade. The fibrin 

monomers (FM) then self-polymerize into insoluble fibrils. The fibrils are cross-linked into 

fibrin networks by the transglutaminase Factor XIIIa.  

The structure of the fibrin clot 

will determine the resistance to 

fibrinolysis 27; tight fibrin 

structures with thin fibers, 

increased number of branch 

points and small pores result in a 

slower fibrinolysis rate than a 

loose structure of thick and 

unbranched fibers. Clot structure 

is affected by thrombin 

concentration, and to a lesser 

extent by pH, ionic strength, 

Ca2+, fibrinogen concentration 

and FXIII 28. In fibrinolysis, 

degradation products are released 

into plasma, some carrying the 

epitope of two adjacent               

D moieties of cross-linked fibrin, 

known as D-dimers.  

Figure 4. Blood clot visualized by SEM.                 

Red; erythrocytes, white; fibrin, pink; platelets. 

Image: Susumu Nishinaga, Science photo library. 
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1.3 DIAGNOSIS OF VENOUS THROMBOEMBOLISM  

1.3.1 Clinical prediction rules for venous thromboembolism 

DVT and PE can present with very discrete symptoms, or with symptoms similar to other 

conditions. A definite diagnosis of DVT and/or PE can generally not be achieved by only 

clinical examination of the patient, and the quality of laboratory assays and imaging 

techniques are of utmost importance. Diagnosis of VTE is based on a sequential approach 

following a clinical pre-test probability assessment (Figure 5). In patients with low pre-test 

probability for VTE, D-dimer is analyzed in plasma to potentially exclude VTE, if negative. 

Mid/high pre-test probability leads to imaging that can verify or rule out DVT or PE 29. 

Clinical pre-test probability assessment is most often done by the Wells clinical prediction 

rule for DVT and by the Wells rule for PE 29 or the Geneva rule. The Wells and Geneva 

rules for PE have similar accuracy, based on a systematic meta-analysis 30 and a direct 

prospective comparison 31. 

Figure 5. Diagnostic algorithm for DVT and Pulmonary Embolism in the emergency department, 

Socialstyrelsen 32. 

1.3.2 Diagnosis of deep venous thrombosis in the leg 

DVT can be verified by venography of the lower extremity or whole-leg echo-color-

doppler ultrasonography. Venous 2-point compression ultrasonography (CUS), with 

compression at the inguinal and the popliteal vein can also be used to verify DVT. The 

Gold Standard is venography, which is however associated with exposure to radiation and 

intravenous contrast, both of which can have adverse iatrogenic effects 33, 34.  

Clinical 
assessment

Low clinical
probability

D-dimer
Negative         
D-dimer

Positive          
D-dimer

High clinical
probability

Imaging

Exclude VTE

Verify VTE
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Many guidelines recommend the two-point CUS, the CHEST* guidelines even discourage 

the use of whole leg examination 4. There are practical and economical motives to these 

recommendations, based on the increased simplicity and repeatability of the 2-point CUS. 

The clinical importance of diagnosing distal DVT and muscle vein thrombosis is also 

highly debatable, as discussed in section 1.2.2. A meta-analysis of the accuracy of non-

invasive diagnosis of DVT calculated the weighted mean sensitivity of CUS to detect 

symptomatic proximal DVT to 94% [95% confidence interval (CI) 92–95%] with a 

specificity of 98% [95% CI 97-98%]. The sensitivity for detecting distal proximal DVTs 

was 91% [ 95% CI 82-96%] and the specificity 99% [95% CI 97-100%] 35. CUS has also 

been shown in one randomized controlled trial (RCT) to be clinically equivalent to whole 

leg ECD, when used for the management of symptomatic outpatients with suspected DVT  

of the lower extremities 36. This has been interpreted by many in the field as corroborating 

the theory that distal DVTs are clinically irrelevant, as distal DVTs can only be visualized 

by venography or Duplex-doppler ultrasonography 36.  

1.3.3 Verifying pulmonary embolism 

Computed tomography pulmonary angiography (CTPA) is the preferred technique for 

verifying PE, although it is associated with radiation and intravenous contrast medium with 

risk for adverse effects 33, 34. Patients that cannot be exposed to this risk, are referred to 

pulmonary ventilation-perfusion scintigraphy, however associated with the risk of 

intravenous isotopes 35.  

Since the introduction of CTPA for diagnosing PE, the frequency of ssPE has increased 

from approximately 5% to more than 10% of PEs 1. The apparent incidence of PE has also 

increased by 80% during the same period, without a significant decrease in mortality 

following the supposed increased proportion of patients that received anticoagulant 

treatment 37. This notable dissonance is another argument for the stance that ssPE are 

clinically irrelevant and should generally not receive anticoagulation.  

1.3.4 D-dimer as a biomarker of venous thromboembolism 

While imaging techniques are important to verify VTE, the use of biomarkers in selected 

cases has the advantage of reduced cost, time and iatrogenic complications. D-dimer in 

plasma reflects the recent activation of both hemostasis and fibrinolysis, because they are 

the degradation products of cross-linked polymerized fibrin. D-dimer assays are 

immunochemical, using antibodies directed against the epitope of two interconnected 

terminal D-subunits of fibrinogen, Figure 6.  

* CHEST; the official publication of the American College of Chest Physicians 
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Figure 6. Formation and measurement of D-dimer, adapted from Lippi et al 38. 

Initially, D-dimer was analyzed by ELISA methods, but high-throughput nephelometry or 

particle-enhanced turbidimetry are now standard. The quantitative results cannot easily be 

related between assays. The poor analytical comparability is due to size heterogeneity of 

the D-Dimer fragments, and that assays have different reactivity for the various fragment 

lengths 39, 40. There is presently no international reference calibrator for D-dimer because 

the balance of different fragment sizes varies inter-individually as well as with clinical 

conditions 41. Conditions with an interrupted blood flow, such as thromboembolism, tend to 

produce shorter fragments whereas conditions with a maintained flow such as disseminated 

intravascular coagulation (DIC) generally produces longer fragments 39. To improve the 

comparability of D-dimer, results are preferably reported in mg/L Fibrinogen Equivalent 

Units (FEU) or mg/L D-dimer Equivalent Units (D-DU) 38.  

D-dimer assays generally have a high diagnostic sensitivity for VTE, but specificity for 

VTE is low due to other causes of fibrin strand formation. D-dimer is formed in several 

other conditions than fibrin aggregation in thrombosis42, such as pregnancy, cancer, trauma, 

inflammation, infection and advanced age 43. Many of these conditions are associated with 

an increased risk of venous thrombosis and they are frequently encountered in VTE-

patients. The clinical implications are extensive, particularly in patients with comorbidities 

or advanced age. Despite the low specificity, D-dimer is the only biomarker in common 

clinical use for diagnosis of VTE 38.  
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Since false positive results are so common, D-dimer has been determined to be clinically 

valuable only in cases with low pre-test probability. The recommendation is to exclusively 

use D-dimer to rule out PE and DVT of the lower extremities in patients with a low clinical 

probability 29, 38. To optimize this functionality, D-dimer cutoffs are set at a level where 

sensitivity is maximal. The Clinical and Laboratory Standards Institute (CLSI) recommends 

that cutoff be set so that sensitivity is ≥ 97%, with lower limit of 95% confidence interval 

[95% CI] of ≥ 90% and negative predictive value (NPV) ≥ 98% with lower limit of 95% CI 

of ≥ 95%). The recommendation regards D-dimer analysis to rule out VTE in a clinical 

population with low or intermediate pretest probability of VTE 44. It is not defined whether 

the high sensitivity includes exclusion of distal DVT and ssPE, which are associated with 

lower D-dimer concentrations and a higher degree of false negative results 45. 

Both the prevalence of VTE and the plasma concentration of D-dimer increase with age. 

Even in a healthy population of ≥70-year old’s, 50% have a D-dimer concentration above 

the cut-off 46. Some advocate that D-dimer testing should be entirely avoided in the elderly 

46, 47, but the effect of this approach would be that patients had to undergo imaging 

techniques instead, even when the probability of VTE was low. Age-adjusted cutoffs have 

been validated and recommended in DVT and PE, to increase specificity and markedly 

decrease the rate of false positive results in older patients while preserving sensitivity 48-52. 

Some clinical guidelines already recommend the use of age-adjusted cut-off values 37, 53, 54, 

using the formula originally suggested by Douma et al. in 2010 55. However the opinion has 

been questioned 56-58, and a recent Cochrane review of D-Dimer to rule out pulmonary 

embolism did not find enough evidence to recommend age-adjusted cutoffs 59. 

1.3.5 Fibrin monomers and additional biomarkers of venous thromboembolism 

Another marker of activated coagulation which can be of use in acute thrombosis is fibrin 

that has not yet polymerized, as measured in the assays Fibrin Monomers (FM) and Soluble 

Fibrin 60, 61. The latter is comprised of different lengths of still soluble oligomerized fibrin, 

whereas FM is a more homogenous measurand. Both assays are immunochemical analyses 

by ELISA or particle enhanced turbidimetry.  

Concentrations are demonstrably low in normal plasma, and increase faster than D-dimer in 

thrombotic disease 62. However, it is important to bear in mind that anticoagulant therapy 

rapidly normalizes the amount of circulating FM 63. Soluble fibrin and FM could be 

alternatives to D-dimer to determine acute VTE, if the diagnostic sensitivity was also 

sufficient. FM or soluble fibrin could therwisepossibly improve diagnosis if used together 
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with D-dimer for the exclusion of VTE 64. To date, the high variability between assays has 

been part of retarding the broad clinical implementation of these assays. Possibly, an 

alternative would be to analyze FM together with D-Dimer to counteract the lower 

sensitivity of FM 63.  

Another marker of venous thrombosis, but also of ongoing thrombin generation in vivo, is 

the prothrombin fragment 1+2 (F1+2) analyzed in plasma or urine. F1+2 is a fragment of 

the prothrombin molecule with a half-life of approximately 90 minutes, that is discharged 

when prothrombin is cleaved into thrombin by the prothrombinase complex. F1+2 has been 

utilized to assess thrombotic risk and monitor anticoagulant therapy but is also elevated in 

acute VTE and in the same common conditions that increase the D-dimer. In comparisons 

with D-dimer, F1+2 has displayed less diagnostic sensitivity and inferior diagnostic ability 

by receiver operating characteristic (ROC) 65. Another thrombin related marker that has 

gone out of vogue is the thrombin-antithrombin complex, which could also be used as a less 

sensitive than D-dimer marker of acute VTE. The complex is formed when the coagulation 

cascade is inhibited as thrombin cleaves antithrombin and forms a covalent 1:1 thrombin-

antithrombin complex, that is rapidly cleared from circulation, with a half-life of 15 min 65. 

Both F1+2 and the thrombin-antithrombin complex are now primarily biomarkers of in vivo 

thrombin generation and neither was established as a clinical routine marker.  

Several other biomarkers have been investigated for the diagnosis of acute VTE, for 

example CRP, neutrophil-lymphocyte ratio 66, mean platelet volume 66, p-selectin 67, 

Protein S, APC-PC inhibitor complex, coagulation Factor VIII, von Willebrand factor, 

platelet derived TF-bearing microvesicles 68 and markers of neutrophil extracellular traps 69.  

1.3.6 Clinical risk factors for venous thromboembolism 

Patients with increased risk for a first or recurrent VTE event may be indefinitely treated 

with prophylactic anticoagulants. Individual risk prediction is challenging and risks of both 

recurrent thrombosis and bleeding differ substantially between individuals. The effects of 

anticoagulant prophylaxis compared to placebo in patients with high-risk of VTE has been 

evaluated in several meta-analyses. The data on bleeding risks have been inconsistent, but 

because both risks continue indefinitely, the cumulative probability of either a bleeding or a 

thrombotic event is high The collective conclusion is that prophylaxis is effective for 

preventing VTE and individual assessments must determine if patients have sufficient risk 

to justify the risk-benefit trade-off 8.   
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Strong risk factors (OR >10) Moderate risk factors (OR 2–9) 

Fracture of leg Arthroscopic knee surgery 

Hip or knee replacement Autoimmune diseases 

Hospitalization for chronic heart failure Blood transfusion 

Myocardial infarction (3 months) Central venous lines 

Major trauma Intravenous catheters and leads 

Spinal cord injury Chemotherapy 

Prior VTE Congestive heart failure or respiratory failure 

Weak risk factors (OR <2)  Erythropoiesis-stimulating agents 

Bed rest >3 days Hormone replacement therapy (formulation) 

Diabetes mellitus In vitro fertilization 

Arterial hypertension Oral contraceptive therapy 

Immobility due to sitting (e.g. air travel) Post-partum period 

Increasing age Infection (specifically pneumonia, UTI, HIV) 

Laparoscopic surgery Inflammatory bowel disease 

Obesity Cancer (highest risk in metastatic disease) 

Pregnancy Paralytic stroke 

Table 1. Transient and persistent risk factors predisposing for venous thromboembolism, 

adapted from 2019 ESC Guidelines for pulmonary embolism 37. 

Evaluation of known and possible risk factors for VTE is crucial in order to weigh bleeding 

risk against risk for first and recurrent VTE. Risk factors for VTE are classified as acquired 

or inherent and are also divided into transient or persistent risk factors. VTE that is 

ostensibly unprovoked, has historically been labelled as idiopathic VTE and can constitute 

as many as 25% of events 70. These patients are presumably burdened with one or more 

persistent, inherent risk factor. Clinical risk factors other than thrombophilia are 

demonstrated in Table 1 37. 

1.3.7 Thrombophilia investigation 

Most permanent risk factors for VTE are known to the patient, but patients with idiopathic 

VTE may have a previously undiagnosed thrombophilia. Thrombophilia is a term for 

inherited or acquired hemostatic disorders with an increased coagulation tendency and with 

a risk of thrombotic conditions. It is associated with a moderately increased risk for VTE 71, 

72 and some obstetric complications 73, 74. Testing for thrombophilia has the potential to 

limit first-time VTE by indicating increased need for prophylaxis with anticoagulants, and 

possibly also recurrent VTE by secondary prophylaxis. The routine inherited thrombophilia 

panel consists of the Factor V Leiden mutation (FVL), the Prothrombin G20210A mutation 

(FII c.20210G>A ), deficiencies of antithrombin, protein C and protein S, lupus 

anticoagulant and antiphospholipid antibodies.   
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The clinical indications for performing thrombophilia testing are a matter of debate because 

broad testing in various conditions has become increasingly common. Often with little 

guiding effect on treatment decisions. There are also potential negative effects of testing for 

thrombophilia, such as anxiety in the tested subjects, that the testing panel is expensive and 

that patients with a mild increase in the risk for VTE can encounter insurance 

discrimination 75. A Cochrane review on thrombophilia testing for prevention of recurrent 

venous thrombosis concluded that it is unknown whether thrombophilia testing can actually 

reduce recurrence of VTE after a first episode, because there have been no prospective 

controlled clinical trials with thrombophilia testing as the intervention and recurrent VTE as 

the outcome measure 76. There are however numerous retrospective studies on 

thrombophilia outcome, e.g. one large case-control study that concluded that recurrence of 

VTE was not reduced by testing for inherited thrombophilia in a retrospective setting 77. 

There are also prospective cohort studies showing that unselected testing for heritable 

thrombophilia does not decrease recurrence of thrombosis 78. The conclusion of the 

Cochrane review was that the assessment of whether a person should be tested or not 

should be completely individualized and depend on how plausible it is that testing would 

lead to risk reduction. Many clinical guidelines have adopted a similar approach, with 

recommendations of testing in limited groups of patients, primarily after early unprovoked 

VTE and in patients who would otherwise not receive prophylaxis 75.  

1.4 POTENTIAL BIOMARKERS FOR VTE AND THROMBOPHILIA 

Clinical biomarkers for a hypercoagulable state are limited to a panel of specific factors for 

thrombophilia and D-dimer for acute thrombosis. We need biomarkers with better 

specificity for acute thrombosis and increased clinical value for thrombophilia.  

1.4.1 Genetical biomarkers of thrombophilia 

A group of biomarkers that are already being used to some extent in the investigation of 

thrombophilia are the prothrombotic genetic variants, primarily single nucleotide 

polymorphisms (SNPs). Patients often report family histories of VTE 79 and the heritability 

of the disease is estimated at around 50 % in family studies 80 and 35% in GWAS. 

However, only ~5% can be explained by the common prothrombotic variants 81.  

To date  there are more than 88 known prothrombotic variants 82. The first described 

genetic thrombophilia was antithrombin deficiency, described by Egeberg in 1965 83. 

Subsequently thrombophilias with strong phenotypes were discovered by hypothesis driven 

research and sanger sequencing 84. The field later accelerated with the introduction of 
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genome wide association studies (GWAS) for first 85, 86 and recurrent VTE 87, and more 

recently, massive parallel sequencing 88, 89. But despite the numerous new thrombophilia 

variants, the panel for inherited thrombophilia has remained unchanged since 1996, when 

prothrombin c.20210G>A was added 90 and the clinical value of expanded genetic panels 

have not been thoroughly investigated.  

Amidst the controversy of thrombophilia testing, researchers of inherited thrombophilia are 

moving in two diametrically opposed directions. On the one hand, advocates of increased 

genetic thrombophilia testing see unlimited possibilities in evolution toward personalized 

medicine and possibly even massive parallel sequencing for risk stratification of venous 

thrombosis 91. On the other hand, international bodies with perspectives that are more 

connected to health economy, promote a more prudent view of limiting testing to a select 

few individuals. No clinical guideline has yet recommended analysis of any of the 

emerging SNPs 92. De Haan et al. 93 made an insert in the debate regarding which genetic 

variants would be of use in the clinical risk prediction of VTE, when they concluded that no 

additional value was added to heritable thrombophilia investigation beyond analysis of the 

five SNPs with the highest odds ratio (OR) for first time VTE. The study sequentially 

added 31 risk variants with decreasing ORs and evaluated diagnostic ability by ROC 

analysis, where the area under the ROC-curve (ROC AUC) increased from 0.77 for only 

Figure 7. Odds ratios for first venous thrombosis were calculated relative to the median 

number of risk alleles among control subjects, de Haan et al 93.  

clinical risk factors to 0.82 for analysis of five SNPs, with knowledge of clinical risk 

factors. SNPs were added in order of the OR as found in the literature, starting with FVL in 

the score based on only one SNP, and then adding F2, ABO, FGG and F11 in the order 

O
R

 (
9

5
%

 
C

I)
 



 

15 

 

presented below, and so on. OR for first-time VTE ranged from <1-1 for 0-2 risk alleles up 

to OR 7.48 (95 % CI, 4.49 - 12.46) for ≥ 6 risk alleles, Figure 7.   

1. Factor V Leiden c.1691G>A (rs6025) inhibits the proteolytic inactivation of Factor V 

by active protein C (APC), i.e. APC-resistance 94. It also impairs the slow activation of 

Factor V to the ACP-cofactor Factor V anticoagulant, resulting in inefficient FVIIIa 

inactivation 95. The SNP is common in caucasians, where the prevalence is 2-10% 95. The 

literature average OR for VTE is 3.79 in heterozygotes 93.  

2. Prothrombin, FII c.20210G>A (rs1799963) located at the 3’ end of the F2 gene 96 is 

associated with increased but very variable prothrombin activity levels 97 The variant is 

present only in caucasians, with a frequency of ~2% 90. 

3. Non-O blood group (rs8176719) is the most common genetic risk factor for VTE, with 

an OR of 1.85 93. The thrombotic risk is especially increased for pregnancy-related VTE 

and in women under treatment with combined oral contraceptive 98. The thrombotic 

mechanism is related to the blood group structures A, B, and H(O) in the oligosaccharides 

of von Willebrand factor (vWF). The extensive glycosylation of vWF in blood group A and 

B leads to longer half-life and higher concentrations of vWF and Factor VIII in plasma 99. 

In addition, ABO status has a synergistic role with other thrombophilia genetic risk factors 

such as Factor V Leiden and the FII c.20210G>A mutation 100. 

4. Fibrinogen c.10034C>T mutation (rs2066865) leads to alternative splicing of the 

fibrinogen γ-chain, thereby reducing plasma fibrinogen γ’. Low levels of γ’ is associated 

with an increased risk of thrombosis, because fibrin containing γ’ binds thrombin more 

effectively (“Antithrombin 1”) 101. The SNP increases the risk of VTE in Caucasians where 

the prevalence is close to 25%, and the literature average OR for VTE is 1.56 93.  

5. Factor XI, c.56-282T>C (rs2036914) a variant in intron 2 of F11 is common but only a 

mild thrombophilia factor, with OR 1.32 93. The increased risk of VTE is most probably 

caused by increased plasma levels of Factor XI. The SNP remains associated with DVT 

after adjustment for FXI levels, but this may be because of a closer association with 

average intra-individual FXI levels than with one single sample. 102.  

Summation of risk alleles in the five SNPs were proposed for prediction of both first 93 and 

recurrent VTE 87, 103. Other genetic panels for hereditary thrombophilia have been proposed 

by other groups. Soria et al. defined a clinical genetic risk algorithm for VTE risk 

assessment called ThromboInCode® (TiC), comprising a genetic risk score (GRS) of 
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twelve prothrombotic variants combined with clinical risk factors of VTE. The scores 

predictive capability for VTE was compared with Factor V Leiden and FII c.20210G>A, 

and TiC showed a discrete increase in AUC (0.68 versus 0.58, p<0.001). The addition of 

the FXI and FGG variants from the de Haan study did not improve the risk assessment 

compared to analysis by only TiC 104. The variants in TiC are a combination of low-

frequency variants with high ORs for VTE and globally common variants with low ORs. 

The variants included in the TiC GRS are:  

1. Factor V Leiden, FV c.1691G>A mutation (rs6025) described above. 

2. FV Cambridge, FV c.1091G>C (rs118203905) gives mild APC-resistance 95. 

3. FV Hong-Kong, FV c.1090A>G (rs118203906) the A allele is associated with mild 

APC-resistance, although not unequivocally 95. 

4. Prothrombin, FII c.20210G>A (rs1799963) described above. 

5-8. ABO haplotype A1, ABO (rs8176719, rs7853989, rs8176743 and rs8176750) are 

variants in the ABO gene that predispose for haplotype A1. While group O is 

associated with the lowest VTE-risk, A1 is associated with the highest risk and an 

incidence rate ratio of 1.88 – 2.61 98.  

9. Factor XII, FXII c.46C>T (rs1801020), a variant identified through a GWAS, giving 

increased plasma concentrations of Factor XII and susceptibility to thrombotic events 

105. Confirmed in case-control association studies as a risk factor for venous thrombosis 

and a thrombosis risk factor during first pregnancy. The OR of thromboembolic events 

is 5 times higher in homozygotic carriers than in non-carriers.  

10. Factor XIII, FXIII c.226G>T (rs5985), a variant with a protective effect against the 

risk of thromboembolism (39).The stabilization of the molecules of fibrin by the 

activated Factor XIII is an essential process for the formation of the clot and the V34L 

amino acid exchange in F XIII leads to changes in the fibrin clot structure (38).  

11. AT Cambridge II, SERPINC1 c.36232A>G (rs121909548) a variant causing 

antithrombin deficiency, type II with a decreased function in the heparin-binding 

domain. The variant is common and has classically been regarded as a very mild 

thrombotic risk factor 106, a stance which has been challenged 107. 
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12. Protein Z-dependent protease inhibitor, SERPINA10 c.7928C>T (rs2232698)     

The ZPI (Protein Z-dependent protease inhibitor) is a serpin inhibiting Factor Xa in the 

presence of protein Z, calcium and phospholipid and the Factor XIa without cofactor. 

Decreased levels of ZPI seem to be a mild risk factor for VTE, but some studies have 

reported a synergistic prothrombotic effect when combined with additional variants 

such as the FVL or FII c.20210G>A  108. The nonsense variant (R67X) in ZPI that is 

included in TiC is associated with decreased levels of ZPI 109, but has not decisively 

confirmed as a risk factor for VTE 110. 

A weakness of pre-assembled GRS is that the magnitude and direction of allelic effects can 

differ between populations. Epidemiological and genetic studies have also elucidated that 

there are significant ethnical differences regarding genetic etiology and incidence of VTE 

across populations that should also be addressed 111.Not all of the variants have been 

thoroughly evaluated, and based on current knowledge it is uncertain if they can be 

recommended for clinical thrombophilia testing 112.  

Prothrombotic variants in non-coding DNA regions are very rare 90 as are synonymous 

variants (synonymous single nucleotide polymorphism, sSNP). Synonymous variants have 

long been considered silent and phenotypically neutral, since they do not impact the amino 

acid sequence of the protein. But several studies during the last decade have demonstrated 

contribution of sSNPs to disease pathology through epigenetic changes 113 and a few 

prothrombotic sSNPs have been reported with change in protein expression as the main 

mechanism 114. Synonymous polymorphisms can in fact influence gene function in several 

ways including mRNA folding and stability 115. Increased knowledge of epigenetic 

mechanisms will hopefully enable a better understanding of sSNP disease mechanisms. 

Prothrombin Belgrade (FII c.1824C>T, rs3136532) is one such novel sSNP, which was 

described in a pilot study as a potential risk factor for recurrent pregnancy loss 116 and 

possibly VTE.  

1.4.2 Thrombin generation assays  

Other biomarkers that could be of use in both thrombophilia and acute VTE are the global 

hemostatic assay. In thrombophilia, the global hemostatic assays can potentially be used as 

screening tests. Conventional screening tests such as aPTT and PT (INR) are only useful in 

bleeding investigations, so routine thrombophilia screening is limited to analyzing a panel 

of specific risk factors. These factors can only explain up to 50% of unprovoked VTE 76, 

indicatin that other causes of hypercoagulability likely contribute to clinical idiopathic 
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VTE. A dependable screening test for the hypercoagulable state could revolutionize risk 

prediction, since an exhaustive exploration of every coagulation component would be both 

unfeasible and lack the global perspective on hemostasis. Global hemostatic assays may 

also be in better agreement with the hypercoagulable phenotype of patients. Still, the global 

hemostatic assays have had a hard time establishing their clinical value as screening tests. 

The global hemostatic assays are a class of assays that examine the combined effect of pro- 

and anticoagulant processes in plasma, because they register the complete coagulation 

process. Screening assays based on coagulation time, such as aPTT and PT (INR) are halted 

when only 3–5% of the total thrombin is formed 117, 118. The vast majority of the thrombin 

production with subsequent coagulation reactions, can therefore not be observed. Hemker et 

al. 119 introduced the first global hemostatic assay in 1993, when they continuously 

measured the generation of thrombin in plasma for a prolonged time. The assay was 

developed into the Calibrated Automated Thrombogram (CAT), Thrombinoscope 

(Maastricht, the Netherlands).  

Thrombin generation assays (TGA) have since shown elevated thrombin generation in 

intermediate and serious thrombophilic phenotypes 120, 121. Elevated thrombin generation 

has also been associated with an increased risk of VTE in several studies 122-124 and 

unprovoked recurrent VTE in some studies 125, however not in all studies 126. Some studies 

have demonstrated that thrombin generation measured in the presence of thrombomodulin 

allows for better appreciation of risk of recurrent VTE compared to measurement 

performed in the absence of thrombomodulin 127.  

A few studies have evaluated the use of TGA as a complement to D-dimer in the exclusion 

of venous thromboembolism 128, 129, these show promising results of increased specificity 

combined with solid sensitivity. Theoretically, the use of TGA in acute settings may 

however be prone to acute phase effects which have not been extensively evaluated yet. 

Of note is that the TGA still have poor interlaboratory reproducibility, due in part to non-

standardized calibrators, origin of TF and phospholipids, differences in substrates, and 

equipment 130, 131 and sensitivity to preanalytical conditions 132. External quality control 

programs are available and different standardization efforts have been made 133. Platelet 

poor plasma is recommended over platelet rich plasma in automated assays, because it 

requires addition of tissue factor (TF) and phospholipids in defined concentrations, which 

facilitates standardization 132. Normalization of results by external reference plasma has 

also been proposed 131, 134. In assays with low concentrations of triggering TF (≤ 1pM), corn 
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trypsin inhibitor is needed to reduce random effects of contact activation 132, 133, 135. 

However, the need to add corn trypsin inhibitor is somewhat controversial, mainly because 

of cost and because addition before blood sampling may be impractical. Despite 

standardization efforts reproducibility is a prevailing issue 133, 134.  

There are several automated and semi-automated assays 133, measuring thrombin generation 

continuously using fluorogenic or chromogenic thrombin substrates. The use of a 

chromogenic substrate necessitates use of platelet poor plasma without fibrin 119. The 

Innovance Endogenous Thrombin Potential (ETP) is a chromogenic TGA, automated on 

the BCS instrument from Siemens Healthcare (Erlangen, Germany) 136, 137. The ETP uses 

citrated platelet poor plasma with addition of recombinant TF in a high concentration, 

CaCl2, a non-defined fibrin aggregation inhibitor, a stabilizing buffer and the slow reacting 

chromogenic substrate H-β-Ala-Gly-Arg-paranitroaniline. Absorbance is continuously 

registered spectroscopically at 405 nm. The assay is calibrated using a proprietary 

calibration standard. The fact that the ETP is performed in platelet poor plasma and after 

the addition of a fibrin aggregation inhibitor is important for standardization, but also limits 

the global nature of the assay. High TF is also a key component to the reliable performance 

and acceptable variability in the ETP assay, but restricts thrombin generation to the 

extrinsic coagulation 137.  

 

Figure 8. Thrombogram of the Innovance ETP assay (BCS instrument) with parameters in red and 

the CAT assay with parameters in light blue. Illustrated reaction curve outlining the major 

thrombin generation parameters, Kintigh et al.130. 
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The thrombin generation parameters are calculated from the thrombin generation curve: the 

endogenous thrombin potential [ETP AUC], which is area under the curve, peak thrombin 

concentration [CMax], time required to reach Cmax [TMax] and the time to start of thrombin 

generation [TLag], Figure 8 and Table 4. 

The ETP parameter has been systematically validated as a hemostatic screening assay, 

reflecting both risk of thrombosis and bleeding. Specific thrombophilias have been shown 

to increase the ETP, with deficiency of protein S and protein C or factor V Leiden leading 

to an increased ETP of about 10% 120, 138, 139. ETP can also be used to monitor bleeding 

tendency, and an ETP below 20% of normal predicts an increased risk of bleeding 28.   

An issue that impacts the accuracy of the TGA is the existence of α-2-macroglobulin 

(α2M)-thrombin complexes in plasma. Thrombin inhibited by this unspecific antiprotease, 

is still able to cleave synthetic thrombin substrates < 8 kDa in thrombin generation assays, 

leading to a falsely elevated thrombin generation. The ETP mathematically corrects for the 

presence of α2M-trombin via calculations based on the assumption of normal α2M levels. 

However, concentrations differ significantly, related to age and conditions such as hepatitis 

C, pancreatitis or acute ischemic heart disease 130, introducing an interindividual variation 

in the physiological relevance of the TGA related to how extreme the α2M levels are. 

1.4.3 Overall Hemostasis Potential  

A theoretical drawback of the TGAs is that they do not measure the final step of the 

coagulation process, i.e. fibrin formation and susceptibility to fibrinolysis. However, the 

Overall Hemostasis Potential (OHP) provides additional information concerning the rate of 

fibrin aggregation and fibrinolysis. The OHP is a global hemostatic assay based on repeated 

turbidimetric determination of fibrin aggregation after the activation of clotting 140. The 

assay originally measured the coagulation phase but has been modified to also reflect the 

fibrinolytic phase with the addition of tissue-type plasminogen activator (tPA). This means 

it reflects the integrated effect of procoagulant, anticoagulant, and fibrinolytic factors. The 

fibrin aggregation and lysis time parameters can also be used to calculate a proxy to fibrin 

clot liquid permeability 141, 142. A similar turbidimetric global fibrin assay is the clot 

formation and lysis (CloFAL) assay 143. 

The OHP assay has not been widely studied in thrombosis but can potentially be used as a 

screening assay of both hypo- and hypercoagulable conditions 144-146. In smaller studies 

global fibrin generation assays have been shown to characterize the hypercoagulability after 
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a previous VTE 147, acute coronary syndrome 148, 149, acute stroke 150, antiphospholipid 

syndrome 151, diabetes 152, normal pregnancy 143, orthopedic trauma 153 and obstructive 

sleep apnea 154 as well as in various hypocoagulable states and anticoagulant treatment 155, 

156. In women with a history of pregnancy-provoked VTE, OHP showed hypercoagulability 

that could be attributed to increased fibrin generation and reduced fibrinolysis 157. 

Prolonged CLT have been associated with a mild increase in of first, but not recurrent DVT 

158, 159. Prolonged CLT has also been described in patients with acute ischemic or 

hemorrhagic stroke, along with decreased clot permeability and increased maximum clot 

turbidity 160. 

The assay uses a spectrophotometer (ELISA plate reader) to repeatedly register turbidity by 

absorbance at 405 nm, which reflects the amount of aggregated fibrin in the sample at each 

timepoint. In the short OHP protocol (2001), absorbance is measured every minute for 40 

min 161. The shorter protocol was optimized for use in clinical care and can sometimes be 

terminated before hypercoagulable samples have finished the reaction. In the longer 

protocol (2019), absorbance is measured every 12 seconds for 60 minutes. The longer 

protocol is less suited for acute settings but enables the calculation of parameters of clot 

formation and lysis times as a proxy for fibrin clot permeability 

Coagulation is activated by addition of CaCl2 and minute amounts of exogenous thrombin 

to platelet poor citrated plasma. In a second well on the microtiter plate, small amounts of 

tPA is also added to initiate fibrinolysis in parallel with coagulation. Two separate fibrin 

aggregation curves are therefore generated; the overall coagulation potential (OCP) and the 

overall hemostasis potential, OHP, Figure 9.  

The fibrinolytic system is assessed by the overall fibrinolysis potential (OFP); the 

difference between the OCP and OHP areas as well as the clot lysis time (CLT), i.e. the 

time from 50% of maximal clotting to 50% lysis 162. The parameters of the OHP and ETP 

are presented in Table 4. 

 

Figure 9. Graphical presentation of the fibrin aggregation curves and the OHP parameters 163, 

Figure used with the kind permission of Iva Pruner. 
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ETP AUC Area under the curve (%): Corresponds to the total amount 

of generated thrombin. 

 Cmax Peak height (%): Corresponds to the maximal simultaneous 

thrombin generation. 

 Tlag Lag time (sec): Time from the start of measurement until the 

initiation of thrombin generation. 

 Tmax Time to peak (sec): Time from the start of measurement until 

the time of maximal thrombin generation. 

OHP 
OCP 

Overall Coagulation Potential (abs sum): Area under the 

fibrin generation curve, without fibrinolysis. 

OHP 

Overall Hemostatic Potential: Area under the fibrin 

generation curve expressed by a summation of the 

absorbance values, with fibrinolysis (addition of tPA). 

OFP 

Overall Fibinolysis Potential (%): The difference between 

the OCP – OHP curves. Determined by the fibrinolytic 

system and the density and thickness of the fibres; thin 

fibres give a denser fibrin network and hence a slower 

degradation rate 164. 

Clot 

turbidity 

assay 

Lag time time point when exponential growth of the absorbance 

occurs 

Max abs the median absorbance value of three consecutive points 

where the curve reached a plateau less the lag turbidity 

Clotting rate the slope of line fitted from the point at the start of the 

exponential growth curve to the point reaching the plateau 

Max abs time the time to the plateau (without t-PA) or peak (with t-PA) 

Slope time the duration of the exponential growth curve 

 CLT clot lysis time; time from Max abs time and return to baseline 

Table 4. Parameters of the ETP and OHP, clot turbidity calculated from the  OHP. 
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1.4.4 Additional markers of hypercoagulability 

The aspects of coagulation which is reflected neither in the thrombin nor the fibrin 

generation assay, are the procoagulant and fibrinolytic activities related to blood flow 

characteristics and cellular elements. Namely because vascular components, hematologic 

cells and to varying extent also microvesicles are absent in plasma. Whole blood global 

hemostatic methods such as thromboelastography could potentially be one step closer to the 

in vivo coagulation, although these whole blood assays have very poor reproducibility and 

must be performed on fresh samples within a few hours of sampling 165.  

Another alternative, to capture at least one feature of the cellular aspect of hemostasis is 

measurement of cell derived microvesicles, which has the advantage of being possible in 

plasma. One additional aspect that is not reflected in any global hemostatic assay is the 

fibrin clot structure which can be assessed by liquid permeability, light scattering 

(turbidimetry), confocal microscopy and scanning electron microscopy. The visualization 

of fibrin clot networks allows for measurement of such variables as the fiber thickness and 

length, network density and porosity and the number of branch points.  
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2 AIMS 

The aim of this thesis was to improve laboratory diagnostics of venous thromboembolism 

and thrombophilia in close collaboration between research and clinical laboratories. 

The specific objectives of the studies were:  

Study I 

• Verify that age-adjusted D-dimer cut-offs for suspect acute venous thromboembolism 

(VTE) increased the specificity and reduced the rate of false-positive D-dimer results 

for older patients, without compromising the sensitivity 

• Compare four D-dimer assays common in Sweden, in order to facilitate the nation-

wide implementation of age-adjusted D-dimer cut-offs for VTE 

Study II 

• Compare the discriminatory accuracy of global plasma-based hemostatic assays, fibrin 

monomers and D-dimer, in the assessment of suspected acute VTE  

Study III 

• Assess the prevalence of hypercoagulable profiles in patients with a clinical indication 

for thrombophilia investigation, using plasma based global hemostatic assays 

• Assess the prevalence of hypercoagulable profiles in patients with conventionally 

verifiable thrombophilia  

Study IV 

• Investigate the frequency of the Factor II Belgrade variant in a Serbian population of 

patients with previous venous or arterial thromboembolism  

• Functionally characterize Factor II Belgrade to substantiate if the synonymous variant 

is associated with an increased thrombotic risk  

Study V 

• Validate the applicability of a Spanish genetic risk score (TiC) in Swedish patients  

• Evaluate the discriminatory accuracy of a new genetic risk score compared to current 

genetic analysis in patients investigated for thrombophilia 
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3 METHODS 

3.1 STUDY POPULATION AND STUDY DESIGN 

3.1.1 Acute Venous Thromboembolism (Study I and II) 

Study I and II formed a prospective case-control study investigating new approaches to 

laboratory diagnosis of suspect acute pulmonary embolism or deep venous thrombosis in a 

lower limb. Between April 2014 and May 2015, 954 consecutive out-patients were 

recruited from the emergency department of Karolinska University Hospital in Huddinge. 

The patients were included regardless of clinical probability of VTE and were sampled at 

the emergency department before initiation of any treatment. Study I evaluated age adjusted 

cutoffs in four D-dimer assays in 940 patients remaining after exclusions. Study II 

compared plasma-based global hemostatic assays to FM and D-dimer in a subset of 158 

patients, which corresponded to all available patients with VTE (n = 60) and patients 

without VTE as controls (n = 98), randomly selected after age- and sex-stratification 

(Figure 10). Clinical data was retrospectively collected from patients’ medical records, 

blinded for assay results.  

 

 

 

 

 

 

Figure 10. Flow chart of samples in study II. 

VTE was radiologically verified (n = 125) or, in patients without VTE, excluded 

radiologically (n = 391) or by a three month follow up of medical records (n = 424). 

Isolated thrombophlebitis was present in 9 cases and was classified as negative for VTE. 

Radiology was accredited according to ISO/IEC 17025 by the Swedish Board for 

Accreditation and Conformity Assessment and was performed on the day of sampling in 83 

patients, the following day in 15 patients, three days after sampling in three patients and 

after seven days in two patients. Radiology consisted of CTPA or ventilation/perfusion lung 
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scintigraphy for PE and doppler ultrasonography for suspected DVT. In 10 patients with 

suspected DVT, the only radiography consisted of lower-limb vein compression 

ultrasonography (CUS), performed at the emergency department 

3.1.2 Thrombophilia (Study III and V) 

Study III and V compounded the KUL thrombophilia study, a cross-sectional descriptive 

study. All adult patients that were subject to thrombophilia investigation at the special 

coagulation lab between 2014-2016 were invited to participate. Inclusion criteria were 

chosen to represent patients with a clinically robust indication for thrombophilia testing. 

After exclusions there were 369 patients, which were 166 with the inclusion criteria of 

personal history of VTE < 50 years of age, 153 with at least one first grade relative with 

VTE < 50 years of age and 50 with both of those inclusion criteria. A flow chart of the 

plasma samples that were included in study III is presented in Figure 11. Medical history 

was obtained from standardized forms filled out by the patient at the time of the written 

consent. The forms included gender, age, smoking, diabetes, pregnancy, BMI, family 

history of VTE and use of prothrombotic hormonal contraceptives or anticoagulant 

medication. Additional data and data verification were retrospectively assembled from 

electronical medical records, including details of any VTE, detailed family history of VTE, 

acquired risk factors for VTE, medication and results of thrombophilia investigation.  

 

 

 

 

 

 

 

 

 

2188 
invited

1085
consent

195 
no plasma available

180
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Figure 11. Flow chart of samples in study III 
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Study III was an evaluation of global hemostatic assays in patients investigated for 

thrombophilia. Result of the thrombophilia investigation were collected from the laboratory 

information system. The samples were additionally analyzed for the previously described 

variants in FGG, F11 and ABO (non-O), Table 3. 

Verifiable conventional thrombophilia was divided into; moderate thrombotic risk: protein 

C < 0.6 kIU/L, protein S < 0.5 kIU/L, antithrombin < 0.7 kIU/L, lupus anticoagulant >1.4 

in normalized dRVVT- or aPTT-quote or homozygous FVL or FII c.20210G>A . Mild 

thrombotic risk: heterozygous FVL and/or FII c.20210G>A  90. In the expanded genetic 

panel (FVL, F2, FGG, F11 and ABO), thrombophilia was defined as ≥ 3 risk alleles 93.  

Study V was an evaluation of a commercial clinical genetical risk algorithm (CGRA), TiC 

104. The CGRA includes 12 variants (Table 2) together with the clinical parameters; age, 

gender, BMI, smoking, diabetes and family history of VTE. In women, it incorporates 

pregnancy and treatment with prothrombotic hormonal contraceptives. A global risk value 

is calculated with the use of risk coefficients assigned to each risk factor in the algorithm, 

with adjustment for certain combinations. The risk coefficients are based on published 

information and meta-analyses (supplemental material of 104). TiC was also compared to 

purely genetic risk scores (GRS) and other CGRA. 

Variant  SNP 
TiC risk 

coefficient  
OR 

F5 (Leiden, G/A) rs6025 1.589 (htz) 3.79 

F2 (20210 G/A) rs1799963 0.293 (htz) 2.78 

ABO non-O (G/del) rs8176719  1.85 

FGG (C/T) rs2066865 0.344 (hmz) 1.56 

F11 (C/T) rs2036914 0.293 (htz) 1.32 

F5 (Hong Kong A/G) rs118203905 1.589 (htz) - 

F5 (Cambridge G/C) rs118203906 1.589 (htz) - 

F12 (C/T) rs1801020 1.633 (hmz) 5.12 

F13 (G/T) rs5985 0.198 (hmz) 0.82 

AT (Cambridge II G/T) rs121909548 2.277 (htz) 1.20 

Prot Z dependent inh (C/T) rs2232698 1.358 (htz) 3.98 

 

ABO A1 

rs7853989 

0.956 1.88 – 2.61 rs8176743 

rs8176750 

Table 2. Comprehensive summary of analyzed SNPs, adapted from Hinds et al 86, Vasan et 

al 98, Soria et al. 104 and Croles et al 106. Risk alleles in bold letters. 
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3.1.3 Mixed venous and arterial thrombosis cohort (Study IV) 

Study IV was an investigation of a novel 

prothrombotic genetic variant, FII c.1824C>T 

(rs3136532). The study was planned to also 

include a confirmation study in the KUL 

thrombophilia cohort, but the confirmation 

study is instead being performed separately and 

is not included in this thesis. Hence, the cohort 

in study IV is the Belgrade cohort which was 

assembled by I. Pruner. The 489 cases were 

included from a database of 4500 patients 

referred for routine thrombophilia screening 

(2002–2016), Figure 12. Inclusion criteria were 

personal history objectively documented DVT, 

pulmonary embolism or cerebrovascular insult. 

Cases and healthy controls were genotyped for 

FII c.1824C>T . Phenotype characterization 

was then performed in six cases with 

heterozygous FII c.1824C>T , six with 

heterozygous FII c.20210G>A  and 11 controls 

without FII c.20210G>A  or FII c.1824C>T . 

Characterization consisted of routine 

coagulation assays, prothrombin levels, global 

hemostatic assays and fibrin clot 

characterization.  

3.1.4 Healthy controls 

Healthy medical students were enrolled for analysis of ETP (n = 38), OHP (n = 42) and 

fibrinogen (n = 42). The controls were used to verify the observation that both cases and 

controls included from the emergency department displayed hypercoagulable profiles. They 

were also used to calculate 95th percentile ranges for the 2019 modification of the OHP for  

study III 166. Healthy blood donors were also collected for study IV and V. For study IV, 

432 Serbian donors, with no thrombotic disorder, family history or known thrombophilia. 

For study V, 100 Swedish donors, with no thrombotic disorder, family history or 

anticoagulant medication, age- and sex-matched to the KUL thrombophilia cohort.  

Figure 12. Flow chart of samples in study IV. 
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3.2 PREANALYTICAL PROCEDURES 

D-dimer, FM and PT (INR) were analyzed in fresh platelet poor plasma (PPP) (0.109 mol/L 

(3.2%) Na-Citrate), whereas ETP, OHP, fibrinogen, PT(INR), aPTT, antithrombin were 

analyzed after storage of the same samples at -70ᵒ C and thawing in a 37° C water-bath. 

Plasma for the thrombin generation assay was not separately collected and, accordingly, no 

Corn Trypsin Inhibitor was added at sampling 133, as per the proprietary instructions for the 

ETP 130, 136.  

DNA was extracted from leukocytes in EDTA blood by digestion and selective 

precipitation with ethanol on an automated QiaCube system using the QIAamp DNA-blood 

mini kit (Qiagen, Düsseldorf, Germany) and stored at -20°C. 

Sample aliquotation and storage for study II was performed within one hour after analysis, 

in the acute clinical chemistry lab in parallel with routine operations. More than 2200 

aliquots were stored and a subset of these were used for study II. Because sample collection 

was performed in a routine clinical chemistry laboratory where storage of research samples 

could not be the main priority, only a subset of samples from study I could be saved for 

analysis by FM in fresh plasma and stored for study II. In study II we included all samples 

with VTE and randomly selected age- and sex-matched samples without VTE. All included 

samples that were available (that had been stored) were analyzed by ETP and OHP (n=174; 

62 VTE and 112 without VTE). After exclusions 158 samples remained. 

Samples for the KUL thrombophilia cohort were initially collected and handled in the 

routine preanalytical pathway of the Karolinska University Laboratory, accredited 

according to ISO15189 by the Swedish Board for Accreditation and Conformity 

Assessment. After written informed consent was obtained, the 250 patients who fulfilled 

the inclusion criteria were stored in the study biobank if their blood samples were not yet 

discarded (i.e. within two months of arrival to the clinical lab).  

Samples for study V were collected specifically for the study. All subjects were without 

anticoagulant therapy and without thrombotic events within 6 months prior to sampling. 
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3.3 ASSAYS  

D-Dimer, FM and PT (INR) were analyzed on a Sysmex CS-2100i (Siemens Healthcare 

Diagnostics, Erlangen, Germany), except Stagos STA®-Liatest® D-Di Plus which was 

analyzed on the Stago CompactMax (Diagnostica Stago, Asnières-sur-Seine, France). ETP, 

Protein C, protein S, lupus anticoagulant and Factor II activity was analyzed on the BCS® 

XP instrument (Siemens). Fibrinogen, antithrombin and aPTT were analyzed on the 

Sysmex CS-5100 (Siemens) and CRP was analyzed on the Cobas 6000 instrument (Roche 

Diagnostics, Basel, Switzerland). All assays were calibrated with proprietary calibrators. 

3.3.1 Fibrin degradation products (Study I-III) 

D-dimer and FM were analyzed by rapid particle-enhanced immunoturbidimetric assays; 

Roche Tina-quant D-dimer (Roche Diagnostics), Siemens INNOVANCE® D-dimer 

(Siemens), Medirox MRX D-dimer (MRX143) (Medirox, Nyköping, Sweden) and STA®-

Liatest® D-Di Plus and STA®-Liatest® FM (Diagnostica Stago). Cutoffs and number of 

samples tested are presented in Table 3.  

3.3.2 Routine coagulation and chemistry assays (Study I - IV) 

PT (INR) was analyzed by MRX Owrens PT  (Medirox). Fibrinogen was analyzed using 

the Dade® Thrombin Reagent (Siemens) which is a modified Clauss assay. Antithrombin 

was analyzed with the Factor II-based Berichrom® Antithrombin III (Siemens) in study II 

and IV and by the Factor Xa-based Innovance® Antithrombin assay (Siemens) in study III. 

Activated partial thromboplastin time (aPTT) by PTT-Automate (Diagnostica Stago) and 

CRP by the immunoturbidimetric CRPL3, C-Reactive Protein Gen. 3 assay. 

3.3.3 Thrombophilia assays (Study I - IV) 

Protein C was analyzed using the enzymatic Berichrom® Protein C assay (Siemens), free 

protein S was analyzed using the Innovance Free PS Ag (Siemens) and lupus anticoagulant 

was analyzed according to the ISTH guidelines 167 using the following reagents: diluted 

 Samples Cutoff 
Age adjusted    

cutoff 

Tina-quant D-Di 939 <0.50 mg/L FEU Age x 0.01 

Innovance D-Di 871 <0.50 mg/L FEU Age x 0.01 

MRX D-Di 819 <0.20 mg/L Age x 0.004 

STA-Liatest D-Di 170 <0.50 mg/L FEU Age x 0.01 

STA-Liatest FM 119 <6 mg/L - 

Table 3. Details of D-dimer assay cutoffs. 
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Russel viper venom time (dRVVT) by LA Screen and LA confirm (Life Diagnostics, West 

Chester, Pennsylvania, USA), PTT-LA (Diagnostica Stago, Asnières-sur-Seine, France) 

and Actin FS PTT (Siemens).  

To avoid false positive thrombophilia classification, results were excluded in case of low 

protein C or S from subjects on warfarin medication, protein S from pregnant patients, low 

antithrombin from patients on direct oral F Xa-inhibitors or positive lupus anticoagulant 

from patients on anticoagulant, if they had not been verified after 12 weeks in a sample 

without medication.   

3.3.4 Prothrombin in plasma (Study IV) 

Prothrombin (FII) activity was determined using the Dade® Innovin® Reagent with factor 

II-deficient plasma (Siemens) and FII protein concentration was determined using the 

Human Prothrombin ELISA kit (Nordic BioSite, Täby, Sweden).  

Relative plasma FII levels were also quantified by western blot in triplicate in three 

separate experiments. The samples were separated on 12% SDS–PAGE and transferred to a 

polyvinylidene fluoride membrane (PVDF, Millipore®, Sigma Aldrich, St. Louis, Missouri, 

United States). Thrombin K-20 goat polyclonal was used as the primary antibody (Santa 

Cruz Biotechnology, Dallas, Texas, United States) and anti-goat IgG conjugated with 

peroxidase (Sigma Aldrich) as the secondary antibody. Immunoreactive bands dyed with 

chemiluminescent ECL blotting reagents (Millipore®). The signal was relatively quantified 

by densinometry in the Image Studio Lite (LI-COR Biosciences, Lincoln, Nebraska, United 

States) and normalized against standard human plasma.  

3.3.5 Global hemostatic assays (Study II, III and IV) 

Thrombin generation was analyzed using the automated Innovance® ETP assay with the 

proprietary B-settings for hypercoagulable patients, where thrombin generation is restricted 

to the extrinsic coagulation by using Tissue Factor in high concentration (300 pM) as an 

activator 137. The assay includes an unnamed fibrin aggregation inhibitor and a slow 

reacting chromogenic thrombin substrate (H-β-Ala-Gly-Arg-pNA).  

The OHP was analyzed with CaCl2, 0.04 U/mL thrombin and 300 ng/mL t-PA and the two 

separate protocols for clinical laboratories. The 2001 protocol 161 was used in study II and 

the OCP, OHP and OFP in study IV. The 2019 protocol 166 was used in III and for the 

turbidity times in study IV. The ETP results and OHP results from study III were 
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normalized against standard human plasma, giving results in %. Intra-assay and inter-assay 

CV% for the ETP were 3.3% and 2.7% respectively. Intra-assay and inter-assay variation 

coefficient (CV%) for the OHP were 9.3% and 12.3%. 

3.3.6 Fibrin clot characterization (Study I-IV) 

Samples from study IV were analyzed by SEM to visualize the structure of fibrin networks 

in FII c.1824C>T . Patient plasma was mixed with CaCl2 (1 mol/L) and 0.05U/mL of 

thrombin and transferred to plastic tubes before incubation in a humidity chamber. The 

clots were washed for 30 min in PBS, fixed in 2% glutaraldehyde for 60 min at room 

temperature and then stored at 4°C. The specimens were rinsed in distilled water and placed 

in 70% ethanol/10 min, 95% ethanol/10 min, absolute ethanol/15 min, pure acetone/10 min 

and then transferred to tetramethylsilane (Merck) for 10 min and air-dried. After drying, the 

specimens were mounted on an aluminum stub, coated with carbon (Bal-Tec MED 010) 

and analyzed in an Ultra 55 field emission scanning electron microscope (Carl Zeiss) at 3 

kV. For each sample, 50 individual fibers were randomly selected for measurement of 

thickness using SIS iTEM software (FEI Company, Hillsboro, Oregon, United States).  

Samples from the VTE and thrombophilia cohorts were prepared for analysis of fibrin 

networks by confocal microscopy and SEM. A subset of samples from the VTE-cohort 

were investigated by fibrin clot permeability, but fibrin clot characterization of these 

cohorts was removed from the doctoral project and will be presented separately.   

3.3.7 Genotyping Prothrombotic variants (Study III, IV and V) 

Genotyping of the variants FVL (rs6025), FII c.20210G>A  (rs1799963), ABO non-O 

(rs8176719), FGG (rs2066865) and F11 (rs2036914) were performed by TaqMan SNP 

Genotyping Assays in the ABI 7500 Fast Real-Time System (Applied Biosystems, Foster 

City, California, United States)  Genotyping of the variants included in the TiC panel were 

performed at the genetics lab of Sant Pau Hospital (Barcelona, Spain) using KASPar, 

Competitive Allele Specific PCR SNP genotyping system (KBiosciences, Hoddesdon, 

United Kingdom). Cases and controls from study IV were tested for FII c.1824C>T 

(rs3136532), FVL and FII c.20210G>A  restriction fragment length polymorphism (RFLP) 

to determine the EAF. FII c.1824C>T was additionally genotyped by sanger sequencing. 
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3.3.8 Gene expression in transfected cell cultures (Study IV) 

Wild-type full-length F2 cDNA was cloned in the pCI-neoΔSV40 vector, which promotes 

constitutive expression of cloned DNA inserts. For stable expression of the genes, the 

vector was co-transfected with an expression vector and the neomycin resistance gene was 

employed as a reference gene. The FII 20210A and FII 1824T  variants were introduced by 

site-directed mutagenesis, also resulting in stable expression. The Cos-7 cells were 

cultivated for 4 weeks in conditioning medium with G418 (1 mg/mL) and stored in liquid 

nitrogen after harvest. 

The level of prothrombin mRNA was determined by reverse transcription - real time PCR 

(RT-qPCR), using the TaqMan allelic discrimination method in the Applied Biosystems 

7500 Real-Time PCR system. Total mRNA was isolated using the Qiagen RNeasy Plus 

Mini Kit (Qiagen) and reverse transcribed to cDNA with a High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems). Results were analyzed by software provided with 

the ABI Prism 7500 Sequence Detection System (Applied Biosystems). The relative 

mRNA concentration was compared between transfected and wild-type cells.  

Effects of Prothrombin Belgrade on the mRNA secondary structure were predicted in silico  

3.4 ETHICAL AND LEGAL ASPECTS 

All studies were conducted in accordance with the Declaration of Helsinki and all 

participants provided a written informed consent at enrolment. Studies I-III and V were 

approved by the regional ethics review board in Stockholm (DNR 2013/2143-31 and 

2014/987-31).  Study IV was approved by the local ethics committee at the Institute of 

Molecular Genetics and Genetic Engineering, University of Belgrade (O-EO-004/2015/2). 

The Swedish samples were registered as sample collections in the Stockholm Medical 

Biobank. The personal data processing databases were registered at Karolinska University 

Hospital. When the pseudonymized database was shared with the Spanish diagnostics 

company of FerrerInCode for analysis in study IV, the data was pseudonymized a second 

time. The transfer of data and genetic material was detailed in a Material Transfer 

Agreement (MTA) and a Personal Data Processors Agreement (PDPA) that was drafted 

between Karolinska Institutet, Stockholm Medical Biobank and FerrerInCode. All samples 

were discarded after analysis in Spain, as specified in the MTA and a separate attestation of 

sample destruction.  
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4 RESULTS  

4.1 PATIENTS WITH SUSPECTED ACUTE VTE (STUDY I AND II) 

4.1.1 Evaluation of age-adjusted D-dimer cutoffs 

All D-dimer assays had AUCs ≥0.9, the diagnostic performance is displayed in Table 5 and 

Figure 13. The sensitivities of all assays were high, with only six cases falsely classified as 

negative by any assay. When age adjusted cutoffs were applied, all assays maintained their 

sensitivities and the specificities increased by 6-7%.  

 

 AUC 

(95% CI) 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 
NPV % Neg % FP 

Tina-quant 

D-Di 

0.93 (0.91-0.95) 

- 

0.98 (0.95-1.00) 

0.98 (0.95-1.00) 

0.63 (0.59-0.66) 

0.69 (0.66-0.72) 

0.99 

0.99 

55% 

60% 

32% 

27% 

Innovance 

D-Di 

0.92 (0.89-0.95) 

- 

0.96 (0.93-1.00) 

0.96 (0.93-1.00) 

0.61 (0.58-0.65) 

0.68 (0.64-0.71) 

0.99 

0.99 

53% 

59% 

34% 

28% 

MediRox    

D-Di 

0.90 (0.87-0.94) 

- 

0.94 (0.90-0.99) 

0.94 (0.90-0.99) 

0.66 (0.62-0.69) 

0.72 (0.69-0.76) 

0.99 

0.99 

58% 

64% 

30% 

24% 

STA-Liatest 

D-Di  

0.89 (0.82-0.96) 

- 

0.96 (0.89-1.00) 

0.96 (0.89-1.00) 

0.51 (0.43-0.59) 

0.58 (0.50-0.66) 

0.99 

0.99 

43% 

49% 

41% 

35% 

Table 5. Diagnostic performance of the four D-dimer assays, comparison of proprietary 

cutoffs and age-adjusted cutoffs for each assay in 954 patients.  

Figure 13. Cumulative data analysis of Tina-quant D-dimer, similar curves for all assays. 

  

Cutoff                             

[<0.50 mg/L FEU]

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2

S
en

si
ti

v
it

y
/s

p
ec

if
ic

it
y

D-dimer level [mg/L FEU] 

Sens

Spec



 

35 

 

The decrease in number needed to test was also modest; 0.15-0.27 for the respective assays. 

The false positive results decreased by 5-6 percent units, with a corresponding increase in 

negative results for all assays as those false positives became true negatives. The decrease 

in % FP increased by age, in patients ≥ 80 years it decreased by up to 20%, see Figure 14. 

In patients < 50 years, no adjustment of the proprietary cutoff was applied. D-dimer 

analyzed by Tina-quant displayed a sensitivity of 0.91 (0.82-1.01, 95% CI) and specificity 

0.82 (0.78 – 0.86) in patients < 50 years (n = 346). 

Figure 14. Difference between proprietary and age-adjusted cutoff, presented as a 

percentage of the total VTE occurrence and percentage of positive results in each age 

group. For each age group, n is designated in parenthesis. 

4.1.2 Global hemostatic assays in patients with venous thromboembolism 

All OHP and ETP parameters as well as fibrinogen demonstrated hypercoagulable profiles, 

with significant differences in medians compared to healthy controls, see Figure 15 . 

Significant differences between patients with and without VTE were found in D-dimer and 

FM (p < 0.005), ETP Tlag (p = 0.031) and for ETP AUC (p = 0.001), where the mean for 

VTE was 99% and non VTE 107%. Assessment of the relationship between ETP AUC and 

OHP levels in these clinical subgroups showed no trends in relation to VTE status.           

  

Figure 15. Global hemostatic parameters in patients with no VTE [white], VTE [grey] and 

healthy controls [light grey]. Reference lines at 95th percentile reference ranges.  
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The diagnostic performance of the parameters of the OHP and ETP assays compared to 

Tina-quant D-dimer and FM is presented in Figure 16 and Table 6. The parameters of OHP 

and ETP had ROC AUCs ≤0.65. The specificities ranged from 0.0-0.2 at the respective 

cutoff where the sensitivity of each parameter was in accordance with CLSI H59-A and 

equal to the sensitivity of D-dimer (0.97 at the cutoff 0.5 mg/L FEU). 

 

 

 

 

 

 

 

 

 

 

Figure 16. Diagnostic performance in discrimination of acute VTE presented as ROC-

curves for D-Di, FM, ETP and OHP. ETP Tmax is negative because it is the only parameter 

where a smaller test result indicates a more “positive” test  

Parameter 
ROC AUC 

(95% CI) 
Cutoff Sensitivity Specificity 

 

OHP [Abs Sum] 0.50 (0.40 - 0.60) 7 0.97 0.04  

OCP [Abs Sum] 0.55 (0.45 - 0.65) 12 0.97 0.00  

OFP [%] 0.56 (0.47 - 0.65) 17 0.97 0.09  

ETP AUC [%] 0.65 (0.56 - 0.74) 85 0.97 0.20  

ETP Cmax [%] 0.57 (0.48 - 0.67) 90 0.97 0.13  

ETP Tlag [sec] 0.60 (0.51 - 0.70) 15 0.97 0.02  

ETP Tmax [sec] 0.43 (0.33 - 0.52) 42 0.97 0.01  

D-dimer [mg/L FEU] 0.94 (0.90 - 0.97) 0.5 0.97 0.66  

Fibrin Monomers [mg/L] 0.76 (0.68 - 0.85) 
0.9 

6.0 

0.97 

0.57 

0.20 

0.84 

 

 

 

Table 6. Areas under the ROC curve and accuracy parameters at the cutoff fulfilling 

CLSI H59-A. For FM the proprietary cutoff is also presented. 
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Figure 17. Assay result dispersion for a) ETP AUC and ETP Cmax and b) OCP and OFP related 

to type of anticoagulant medication. Reference lines at 95th percentile reference ranges. 

 

  

n = 88      n = 14     n = 26      n = 6        n = 2        n = 34 

n = 88        n = 14      n = 26        n = 6         n = 2         n = 34 
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4.2 PATIENTS INVESTIGATED FOR THROMBOPHILIA (STUDY III AND V) 

4.2.1 Global hemostatic assays in thrombophilia investigation 

Plasma from 174 patients were available for statistical analysis in study III, see Figure 11. 

The FH group had a lower median age, compared to the other groups, with a high 

proportion of females and pregnancies (40% of female participants). Anticoagulant 

medication was present in ≥80% of patients in the VTE groups, but 6% in the FH group. 

Hypercoagulability profiles are presented in Figure 17 and Table 7. There were no 

significant differences between the distributions of the clinical indication groups (VTE, 

VTE+FH, FH). Increased risk of venous thrombosis was demonstrated by GHA in 59 

patients (34%) with 17 patients (10%) that showed increased thrombotic risk in both GHA 

and the conventional thrombophilia panel. Only 3 of the 14 patients with verifiable 

moderate-risk thrombophilia were identified by the global hemostatic assays; two patients 

homozygous for FVL that had  increased thrombin generation and one patient with APS 

and decreased fibrinolysis in the OHP assay. There were no robust correlations between the 

global hemostatic assays and verifiable thrombophilia, although notably there were only 26 

thrombophilia patients without anticoagulant medication.  

The conventional thrombophilia demonstrated increased risk of VTE in 54 (31%), where 14 

patients (8%) were at moderate risk and 40 patients (23%) had only a mildly increased risk 

of VTE. The addition of three more SNPs to the conventional panel increased the number 

of patients with a verifiable increased risk of thrombosis, n = 67. The extended 

thrombophilia panel demonstrated 90 patients (52%) with 3-4 risk alleles, 21 (12%) with 5-

6 risk alleles and 10 (6%) with biochemical markers of thrombophilia.   

In total, 84 patients had anticoagulant medication at the time of sampling and 90 did not. 

Preliminary results show that the median number of days since last VTE was 21 (IQR 4 – 

156 days). We tried to objectify the extent of samples taken in suboptimal preanalytical 

conditions by quantifying the proportion of common preanalytical pitfalls. We found that 

lupus anticoagulant had been ordered in 82% of samples receiving anticoagulant 

medication, antithrombin analyzed by FXa-method had been ordered in 67% of patients 

receiving Factor Xa-inhibiting DOACs, protein C had been ordered in 86% of patients 

receiving warfarin and that protein S had been ordered in 62% of pregnant patients. 

 

 



 

40 

 

 
Total VTE VTE + FH FH 

(n = 174) (n = 83) (n = 19) (n = 72) 

Global hemostatic assays, n positive (p) 
      

ETP AUC (n = 169) 16 (0.09) 8 (0.10) 3 (0.16) 5 (0.07) 

ETP Cmax               (n = 169) 22 (0.13) 11 (0.14) 3 (0.16) 8 (0.11) 

OCP (n = 167) 23 (0.14) 10 (0.13) 2 (0.11) 11 (0.15) 

OHP (n = 166) 22 (0.13) 8 (0.10) 6 (0.33) 8 (0.11) 

OFP (n = 164) 21 (0.13) 14 (0.18) 5 (0.28) 2 (0.03) 

Any GHA (n = 174) 59 (0.34) 30 (0.36) 7 (0.37) 22 (0.31) 

Verified thrombophilia, n positive (p)   

Moderate risk (PC, PS, AT, 

APS, hmz FVL) 
14 (0.08) 6 (0.07) 3 (0.16) 5 (0.07) 

Mild risk (htz FVL and/or 

FII c.20210G>A) 
40 (0.23) 18 (0.22) 7 (0.37) 15 (0.21) 

Five SNPs (≥ 3 risk alleles) 116 (0.67) 54 (0.65) 15 (0.79) 47 (0.65) 

Biochemical markers, n positive (n tested) 
      

Lupus anticoagulant  7 (120) 3 (66) 2 (14) 2 (33) 

Protein C deficiency 1 (167) 0 (79) 0 (17) 1 (71) 

Protein S deficiency 1 (143) 0 (79) 0 (17) 1 (47) 

Antithrombin deficiency  1 (138) 1 (67) 0 (13) 0 (58) 

Genetic analyses, EAF         

Factor V Leiden  0.12 0.11 0.21 0.11 

FII c.20210G>A   0.04 0.06 0.03 0.01 

Factor XI  0.59 0.60 0.55 0.58 

Fibrinogen γ 0.29 0.28 0.32 0.28 

ABO non-O 0.49 0.45 0.53 0.51 

Coagulation lab, median (n) (IQR)        

PT (INR)  0.9 (73) 1.0 - 1.0 1.0 (41) 0.9 - 1.0 1.0 (11) 1.0 - 1.0 0.9 (24) 1.0 - 1.0  

Fibrinogen 2.5 (32) 3.2 - 4.2  3.3 (16) 2.5 - 3.3 4.3 (3) - 3.1 (13) 2.6 - 4.1 

Table 7. Thrombophilia investigations. False positive results due to preanalytical factors 

were excluded. Biochemical results only classified as positive in verified positives (methods)  

 

AT: Antithrombin, EAF: effect allele frequency, FH: Family History of VTE <50               

FVL: Factor V Leiden, LA: Lupus Anticoagulant, n: count, p: proportion, PC: Protein C, 

PS: Protein S, VTE: Venous thromboembolism 
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4.2.2 Diagnostic accuracy of a commercial thrombophilia panel  

In the evaluation of the commercial clinical/genetic risk algorithm (CGRA) TiC, there were 

147 cases (48% female) and 143 controls (73% female), since in the diagnostic accuracy 

evaluation, the patients with no personal history of VTE (n = 43) were counted as controls 

together with healthy controls from the blood bank (n = 100).  

 VTE No VTE  

Variant n = 147 n = 143 p value 

F5 Leiden 35 (23.81) 22 (15.38) 0.0714 

FII c.20210G>A 11 (7.48) 3 (2.10) 0.0329 

F11 120 (81.63) 120 (83.91) 0.6080 

FGG 83 (56.46) 64 (44.75) 0.0465 

F5 Hong Kong 0 0  

F5 Cambridge 0 0  

F12 68 (46.26) 71 (49.65) 0.5641 

F13  58 (39.45) 75 (52.45) 0.0266 

AT (II Cambridge) 4 (2.72) 0 0.0474 

ZPI (p.R67X)  0 0  

ABO A1 haplotype 84 (57.14) 56 (39.16) 0.0022 

Table 8. Presence of effect allele variants (≥1 alleles) in individuals with and without 

previous VTE, N (%). A1 haplotype of ABO blood group; if  ≥1 predisposing allele in 3 SNPs.  

Table 8 shows the frequency of risk polymorphisms. The ABO A1 haplotype alleles were 

significantly more frequent in patients with VTE than without VTE. The presence of at 

least one risk allele in the genes for prothrombin, antithrombin and the fibrinogen γ chain 

were also significantly more frequent in patients with previous VTE. The protective allele 

in the gene for FXIII was significantly less common in patients with VTE. There were no 

significant differences in the frequency of FVL or the risk alleles in the genes for FXI, FXII 

or antithrombin. There were no instances of F5 Hong Kong, F5 Cambridge or the nonsense 

variant in ZPI.  

The prognostic characteristics of all genetic risk scores (GRS) and CGRA are shown in 

Table 9. TiC ® had significantly better discriminative capacity (AUC) than FVL+F2 (0.71 

vs 0.57, p < 0.0001), but non-significance in the comparison of only the genes in TiC and 

FVL+F2 (0.61 vs 0.57, p = 0.290). The AUC of TiC was significantly higher than 

FVL+F2+clinical factors (0.71 vs 0.65, p = 0.012).  

The clinical variables alone had a significantly higher AUC than FVL+F2 (0.660 vs 0.566, 

p=0.0026). The addition of F11 and FGG to did not significantly improve the AUC of the 

TiC GRS (0.63 vs 0.61, p = 0.195) or the TiC CGRA (0.65 vs. 0.71, p=0.054).   
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4.2.3 Characterization of a novel prothrombotic variant 

The characterization of FII c.1824C>T included 489 cases (370 VTE, 119 cerebrovascular 

insult (CVI)) of which 190 had family history of thrombosis. The frequency of FII 

c.1824C>T  was increased in patients with VTE and CVI compared to controls and the 

variant increased the OR for thrombotic events significantly, Table 10. EAF of FV Leiden 

and FII c.20210G>A  were consistent with previous studies in Serbian population 168.  

The predictive modelling indicated a change in the mRNA secondary structure; a bulge in 

the wild-type secondary structure disappeared when a bulge, caused by an unpaired 

adenosine, disappeared after substitution to uracil (C>T in DNA). The levels of mRNA 

expression (FII-c.1824T and FII-c.20210A) in transfected cell culture were determined 

relative to mRNA expression in transfected cells expressing wild-type prothrombin (FII-

wt), Figure 18A. Relative levels of FII mRNA expression were significantly increased 

(p<0.05); 1.65 for FII-c.20210A transfectants and 1.64 for FII-c.1824T.  

The prothrombin activity measured by clot time was unaffected by FII c.1824C>T, and FII 

concentration measured by ELISA showed only a non-significant tendency towards 

increased FII levels. In the sensitive western blot assay, prothrombin levels (detected at 70 

kDa) were significantly increased compared to controls (p<0.05), Figure 18B. Normalized 

to standard normal plasma, FII levels were 1.44 ± 0.25 in FII c.1824C>T and 1.63  ± 0.22 

in FII c.20210G>A .  

Variants 
Controls VTE CVI 

(n = 432) (n = 370) (n = 72) 

FII c.1824 C>T    

Variant carriers, n (EAF) 4 (0.01) 11 (0.03) 5 (0.04) 

p-value (vs. controls)  0.038* 0.026* 

OR (95% CI)  3.28 (1.04 - 10.39) 4.69 (1.24 - 17.76) 

FII c.20210 G>A     

Variant carriers, n (EAF) 28 (0.07) 39 (0.11) 3 (0.03) 

p-value (vs. controls)  0.040* 0.110 

OR (95% CI)  1.70 (1.02 - 2.82) 0.37 (0.11 - 1.25) 

FV Leiden G>A     

Variant carriers, n (EAF) 16 (0.04) 81 (0.22) 12 (0.10) 

p-value (vs. controls)  < 0.0001* 0.007* 

OR (95% CI)  7.3 (4.2 - 12.7) 2.9 (1.3 - 6.3) 

Table 10. Variant frequencies and odds ratios in control patients and patient subgroups 

VTE and CVI. Risk alleles in bold letters. 

*: significance EAF: Effect allele frequency (%), CI: Confidence interval, n: count,               

p-value: probability value, VTE: venous thromboembolism, CVI: cerebrovascular insult 
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Figure 18. (A) mRNA expression in FII wild-type vector, and cells transfected with the FII-

c.1824T and FII-c.20210A vectors.* p < 0.05.(B) Western blot of FII levels in plasma 

(lanes 1-3: triplicate sample, lane 4: negative control. (i) standard human plasma; (ii) 

healthy noncarriers; (iii) FII c.20210G>A  carriers, and (iv) FII c.1824C>T carriers.  

Scanning electron microscopy of 

fibrin clots from c.1824C>T carriers 

revealed denser clots with thinner 

fibers (median 129 nm, IQR 80 nm) 

compared to clots formed in plasma 

of FII c.20210G>A  carriers (median 

152 nm, IQR 59 nm) and healthy 

noncarriers (median 159 nm, IQR 72 

nm) (P<0.05). There were also an 

increased numbers of branch points 

and smaller intrinsic pores than in 

fibrin clots from healthy noncarriers, 

see figure 19. 

Figure 19. Representative SEM of fibrin clots.  

Black scale marker; 6 μm in left image, 1.2 μm in right 

A: Controls, B: FII c.1824C>T , C: FII c.20210G>A . 
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The routine coagulation assays were unaffected by the variant, except for a significantly 

decreased mean aPTT, within the reference range (Δ 4s, P<0.05). The OFP was decreased 

in FII c.1824C>T  and clot lysis time was increased, Table 11. In FII c.20210G>A , it was 

instead the ETP AUC and Cmax that were significantly increased.  

 

 

Healthy 

controls 

n=11 

FII 

c.1824C>T 

carriers 

n=6 

FII 

c.20210G>A  

carriers 

n=6 

Controls vs. 

FII 

c.1824C>T 

carriers 

Controls vs. 

FII 

c.20210G>A  

carriers 

Global hemostatic assays, Mean (SD) P P 

ETP AUC 
87.82 

(10.65) 
93.67 (13.85) 108.67 (6.50) 0.345  0.001 * 

ETP Cmax 88.91 (6.82) 91.50 (10.39) 114.17 (8.33) 0.542 <0.001 * 

OCP 18.98 (5.22) 23.44 (5.68) 21.07 (5.74) 0.123 0.459 

OHP 11.01 (4.33) 15.51 (4.67) 13.05 (5.24) 0.065 0.401 

OFP 43.40 (8.64) 34.53 (6.66) 39.49 (10.18)  0.046 * 0.414 

Coagulation (turbidity), Median (IQR) P P 

Lag time (min) 3.60 (2.00) 4.10 (1.80) 3.60 (1.60) 0.960 0.573 

Max Abs 0.90 (0.36) 1.14 (0.45) 1.00 (0.44) 0.132 1.000 

Clotting rate (slope) 0.08 (0.02) 0.07 (0.02) 0.10 (0.07) 0.615 0.615 

Max Abs time (min) 6.40 (3.00) 7.00 (3.25) 5.80 (2.40) 0.338 0.546 

Slope time (min) 2.20 (1.20) 2.90 (1.35) 2.10 (1.55) 0.069 0.541 

Fibrinolysis (turbidity), Median (IQR) P P 

Lag time (min) 4.40 (1.40) 4.40 (1.30) 3.80 (1.35) 0.723 0.312 

Max Abs 0.92 (0.41) 1.13 (0.45) 1.03 (0.41) 0.512 1.000 

Clotting rate (slope) 0.08 (0.02) 0.08 (0.03) 0.10 (0.06) 0.688 0.421 

Max Abs time (min) 7.20 (2.40) 7.10 (2.95) 6.10 (2.25) 0.512 0.246 

Slope time (min) 2.60 (0.80) 2.70 (1.65) 2.10 (1.50) 0.358 0.266 

Lysis time (min) 23.13 (7.80) 27.40 (7.20) 23.00 (11.85)  s0.044 * 0.687 

 

Table 11. Parameters of thrombin generation, fibrin aggregation, coagulation times and fibrinolysis 

times in controls and carriers of FII c.20210G>A  and FII c.1824C>T .  
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DISCUSSION 

4.3 ACUTE VENOUS THROMBOEMBOLISM 

Our prospective single-center study supported the use of age-adjusted cutoffs for D-dimer 

in patients with suspected acute DVT and PE. Age-adjusted cutoff resulted in improved 

specificity with maintained sensitivity for all evaluated D-dimer assays. We demonstrated 

that this personalized approach to D-dimer cutoffs lead to a significant decrease in the 

proportion of patients with false positive results, especially in the older population.  

Our objective in the cross-sectional study II was to compare the diagnostic value of D-

Dimer to thrombin generation and fibrin aggregation in plasma and FM acute VTE. We 

could confirm previous findings that ETP AUC and ETP Tlag were significantly increased in 

acute VTE. However, the discriminatory ability of D-dimer was superior to both FM and 

the global hemostatic assays. In essence, the global hemostatic assays demonstrated 

differences between patients with and without acute VTE that were insufficient for 

effective discrimination and no useful cutoff could be identified for any of the parameters. 

Moreover, we demonstrated a poor tradeoff between sensitivity and specificity for FM.  

Our results further indicated that a large portion of the emergency patients were in a 

hypercoagulable state, possibly caused by an acute phase reaction, fibrinogen levels were 

significantly increased regardless of final VTE status. We also demonstrated generally 

increased coagulation potential (OCP) and decreased fibrinolytic potential (OFP), 

suggesting that the OHP assay may be unsuitable for exclusion of acute VTE in the 

emergency department. The use of thrombin generation assays in acute settings may also be 

prone to acute phase effects which have not been extensively evaluated yet, such as high 

levels of FVIII in patients with acute phase reactions, which is associated with a true 

increase in hypercoagulability, but might obscure findings related to acute thrombotic 

events. Another such issue that affects the accuracy of the thrombin generation assays is the 

existence of α-2-macroglobulin-thrombin complexes in plasma. It is possible that several of 

the patients in this study had abnormal levels of α2M, related to other pathology, which 

may have influenced the results of the ETP assay.  

4.3.1 Methodological considerations in study I 

The main limitation of the study was the lack of data on clinical pre-test probabilities of 

VTE in the patients. The study plan dictated that these would be retrospectively collected 

from medical records in the form of Wells scores. However, in data collection it became 
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apparent that Wells Scores were documented in a negligible share of the cases and that 

clinical data for a possible retrospective calculation of Wells scores was not widely 

available either. The problem of low comprehension of the study among the emergency 

department personnel including patients for the study could partly be explained by the rapid 

staff turnover at the emergency department. Since clinical pre-test probabilities could not be 

defined, the NPVs/PPVs and efficiencies calculated in this study cannot be individually 

applied as part of a risk algorithm to patients of high or low clinical suspicion This means 

that results have to be interpreted only on a general level. It might be argued that possibly 

the lack of documented clinical stratification could mean that assessments of VTE 

probability were to some extent performed by only clinical gestalt in the emergency 

department. In this case, general accuracy measurements could be of more direct relevance. 

It has also been suggested that D-dimer (<0.75 mg/L FEU) could be used without previous 

assessment of clinical pre-test possibility to exclude PE [33], however this has been 

evaluated in a meta-analysis where it could not be verified [34].  

Even though sensitivity was investigated in a group including patients with  high clinical 

probability, sensitivities were high. Furthermore, the false negative results were minor 

thromboses for all events bar one – i.e. subsegmental PEs and distal DVTs. These minor 

VTEs are classified as VTE negative in many studies, which increases sensitivity outcomes.  

Another key limitation was the fact that only 55% of the patients were investigated by the 

radiological reference methods. Total coverage would not have been feasible in this study 

and we decided to instead actively follow all patients in medical records and instruct the 

patients to return to the ED if symptoms remained. This research practice is not uncommon 

in evaluations of D-dimer but introduces the possibility of missing false negative cases. To 

ensure that no missed VTEs were neglected in the study, due to patients deceasing outside 

of hospital or contacting medical resources not connected to electronic medical records 

system (TakeCare). We extensively discussed and investigated the retrieval of morbidity 

and mortality data from national registries, to verify our excluded VTEs. Ultimately, the 

price and time of such an endeavor were deemed to be too costly. 

The limitation of study size was most pronounced for Stagos STA®-Liatest® D-Dimer, 

resulting in wider confidence intervals for this assay. We chose to include some results 

from Stago in spite of few samples, since it was possible to discern that the assay seemed 

comparable to the other three assays.  



 

49 

 

4.3.2 Methodological considerations of study II 

A strength of the study was that samples were handled exactly as real-life samples. We 

were able to include a large number of patients into the VTE study in just one year, because 

we could arrange for a study-specific analysis that could be electronically ordered from the 

medical information system (TakeCare). However, we still noticed a drastic decrease of 

inclusions to the study from the emergency department when the study had been active for 

one year, possibly caused by inclusion fatigue or staff turnover. A related problem was that 

since so many in the staff at the routine coagulation lab were involved in the preanalytical 

handling, it was very common to forget to aliquot and store samples. Hence, only a limited 

subset of samples could be analyzed with OHP and ETP in study II (Figure 10). We 

attempted to decrease the risk of clinical confounders by a rough matching for age before 

choosing controls at random from the stratified group in order to decrease the risk of 

selection bias by.  

Given our study size it was not possible to stratify patients with PE and proximal or distal 

DVT. Distal DVT was the main pathology in 32% of the patients with VTE, i.e. cases 

where surveillance is often recommended over anticoagulant treatment, though the vast 

majority are treated with anticoagulants 169. However, our results did not change when we 

excluded patients with distal DVT from the analysis. 

4.4 THROMBOPHILIA INVESTIGATION 

In study III, we aimed to explore the hypercoagulable profiles in clinical thrombophilia 

investigations. Despite frequent anticoagulant treatment, the patients investigated for 

thrombophilia had increased thrombin generation, fibrin aggregation or decreased 

fibrinolysis in 34% of cases. This was a discrete increase in hypercoagulable profiles from 

the conventional thrombophilia panel where 31% of patients had at least one pathological 

value, but where the majority of positive results were represented by heterozygous FVL or 

FII c.20210G>A .  

Thrombin generation assays and fibrin aggregation measured by turbidimetric assays have 

been proposed as screening assays for thrombophilia. The secondary aim of study III was to 

assess whether ETP and OHP could precede the conventional panel in thrombophilia 

investigations. Notably, the proportion of hypercoagulable ETP and OHP results were low 

in patients with verifiable thrombophilia and not correlated to the risk level of the 

thrombophilia. However, inherently hypercoagulable phenotypes were likely obscured by 

the high prevalence of anticoagulants. 
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In study V, the recognized problem of thrombotic risk stratification was reflected in the 

poor predictive abilities of the clinical factors and the evaluated GRS and CGRA. In 

accordance with previous studies, the ROC AUC of  the clinical factors was superior to 

FVL+F2, the TiC genes and to TiC+F11+FGG. The complete TiC CGRA had significantly 

better discriminative capacity than FVL+F2, but non-significance in the comparison of the 

genes in TiC vs. FVL+F2, which implied that the difference may be attributed to the 

clinical factors included in the TiC CGRA. In spite of geographic differences in EAF, the 

discriminative ability in our confirmation was similar to that of Soria et al 104, implying that 

TiC CGRA could be transferable to the Swedish population. As the notion of individual 

risk stratification without accounting for clinical factors seems clinically inapplicable, the 

more interesting comparison is that of the CGRA TiC to FVL+F2+ clinical factors. This 

comparison revealed a discrete but statistically significant increase of AUC in favor of TiC.  

In study IV, we could demonstrate a potentially prothrombotic phenotype of the novel 

sSNP FII c.1824C>T . Our in-silico prediction of the RNA secondary structure showed that 

the C>T change at position c.1824 can be expected to lead to a slight local re-organization 

of RNA secondary structure. The change of local structure would lead to an increased 

likelihood of complementary base pairing in the region. Current understanding is that 

increased complementary base pairing can physiologically prolong the half-life and amount 

of persisting mRNA. Although prediction of secondary structure is not necessarily a true 

delineation of intracellular secondary structures, we could demonstrate increased 

expression of FII mRNA in transfected cells as well as slightly increased FII protein levels 

in carriers of FII c.1824C>T. Increased FII levels are an established risk factor for VTE, 

through several mechanisms. Protein expression and concentrations were comparable to the 

levels seen in FII c.20210G>A . But the increased FII levels seem to exert the 

prothrombotic effect on the variants by two distinct mechanisms. Increased FII was 

associated with accelerated and increased thrombin generation in FII c.20210G>A , as well 

as shortened time to peak turbidity and clotting. The hypercoagulable profile was indicative 

of a mechanism where the elevated FII levels were associated with faster clotting and 

increased overall thrombin generation and peak thrombin concentration. In contrast, in FII 

c.1824C>T carriers, the increased FII levels were accompanied by an increased fibrin 

generation (OCP) and densely packed fibrin clots, as indicated by increased maximum 

turbidity 141 and visualized by SEM. We could also demonstrate hypofibrinolysis by 

decreased OFP and prolonged CLT in carriers of FII c.1824C>T. As described in the 

background, increased FII levels have been robustly associated with the formation of denser 
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fibrin clots with thin and highly branched fibers 170, which are in turn associated with 

resistance to fibrinolysis. The phenotypes have been associated with an increased VTE risk 

and identified in patients with acute ischemic and hemorrhagic stroke. In light of this, it is 

very interesting that in our investigation of effect allele frequency, the frequency of FII 

c.1824C>T was significantly increased in patients with both venous thromboembolism and 

cerebrovascular insult. Meanwhile, FVL and FII c.20210G>A  frequencies were only 

increased in VTE, consistent with the fact that they have only been robustly associated with 

venous thrombotic risk. Our findings suggest the possibility that FII c.1824C>T could be a 

risk factor for CVI and VTE through similar prothrombotic mechanism of action in both 

conditions. 

4.4.1 Methodological considerations of study III 

 

The key limitation of study III was the surprising extent of clinical samples that were 

collected in suboptimal preanalytical conditions. We had not anticipated that 49% of 

plasma samples would have been collected while patients were still receiving anticoagulant 

medication (>80% of patients with history of VTE). Nor did we expect that 50% of patients 

with history of VTE would be sampled within three weeks of the thrombotic event or that 

80% of patients in the FH group would be pregnant at sampling. The groups with different 

clinical indication for thrombophilia testing varied greatly regarding frequency of current 

anticoagulant medication 171-173, pregnancy 174, recent VTE 128 and general acute pathology, 

all transient factors that can influence OHP and ETP results. In short, the FH group 

consisted mainly of females with family history of VTE that were not treated with 

anticoagulant medication while the VTE groups, included a large portion of patients 

receiving anticoagulant medication for a recent thrombotic event.  

It seems probable that the low prevalence of hypercoagulable profiles would have been 

higher if they had been tested without anticoagulant medication, since it has been 

demonstrated that both thrombin generation and fibrin aggregation are decreased by 

anticoagulant treatment 171, 172, fibrinolysis has been demonstrated to be slightly increased 

in dabigatran treatment (OFP) 172. Conversely, it can be supposed that the wide range of 

hyper- and hypocoagulable GHA profiles reflected that the patients sampled for 

thrombophilia investigation while on anticoagulants were in different stages of treatment. It 

also seems possible that a second explanation for the heterogenous dispersion of 

coagulation profiles was the high prevalence of patients that were sampled shortly after 

suffering an acute VTE.   
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The overlap between positive results by the GHA and the conventional thrombophilia panel 

was relatively small, given that studies have verified correlations between these two. It 

seems probable that the transient interference of anticoagulant medication resulted in 

decreased GHA profiles in those patients with verifiable thrombophilia. Unfortunately, 

there were not enough samples without anticoagulants to reliably calculate the sensitivity or 

specificity of the global hemostatic assays to detect verified conventional thrombophilias.  

The converse relation, of transient hypercoagulability caused by pregnancy, is a probable 

explanation for the relatively frequent hypercoagulable result in the FH group and in 

patients without verified conventional thrombophilia. It is noteworthy that so many 

interfering factors were present in this descriptive study that was conducted solely in 

samples that have been used for clinical decision making. 

4.4.2 Methodological considerations in study IV 

The major limitation of study IV was the small number of FII c.1824C>T and c.20210G>A 

carriers recruited for the phenotype characterization. This was due to the low frequency of 

FII c.1824C>T in thrombotic patients, and the fact that in order to attain interpretable 

experiment results, we required investigated carriers to be completely without anticoagulant 

therapy. The small sample size may be the cause of some trends not achieving significant 

difference. The issue of insufficient power will be mitigated by the impending confirmation 

study in the KUL thrombophilia cohort. Another limitation which cannot be dismissed, 

considering that thrombosis is a multifactorial disorder, is the possible effect of unattributed 

confounding risk factors. Future studies addressing these limitations will contribute to the 

impact of the findings of this study. 

Despite small number of cases, western blot confirmed that FII c.1824C>T leads to a 

slightly increased concentration of prothrombin in carriers, although we did not detect an 

increase of FII activity. Poor correlation between prothrombin activity and concentration 

has also been demonstrated in carriers of FII c.202010G>A 175 and is likely explained by 

dysfunctional variants of prothrombin and in-vivo modulators of prothrombin activation 

and thrombin function. Coagulation times were not decreased in either of the FII variants, 

which is expected, since the maximal initial thrombin generation rate is attained in normal 

plasma concentrations of prothrombin. 
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4.4.3 Methodological considerations in study V 

The comparison of TiC and F5+F2+clinical factors revealed a discrete but statistically 

significant increase of AUC in favor of TiC. However, notwithstanding the significance of 

the ROC AUC differences, the clinical significance is uncertain. It seems improbable that a 

0.05 increase in AUCs to 0.7 could be translated into clinical value. Perhaps related  to this 

concern, a cost-effectiveness analysis has been published 176. The analysis was based on 

two case-control studies, since there are to date no prospective studies evaluating the effect 

of TiC as an intervention with VTE as the outcome.  

We need to acknowledge that the study was not powered to determine effect allele 

frequencies in the Swedish population, nor were the study participants a representative 

sample of the Swedish population. The frequencies of risk alleles were not a primary 

endpoint of this study, and were, as such, only presented for increased comprehensibility of 

the ROC results. 

The use of ROC in a non-prospective study should be commented. It is frequent in genetic 

diagnostic accuracy studies to calculate discriminatory ability by ROC and sensitivity/ 

specificity using thrombotic occurrences in patient history as though samples were 

prospectively collected. In the ROCs of study V, the different cutoffs represent number of 

variants for the evaluated GRS, with weights as per the TiC risk coefficients (Table 3).  

4.5 STUDY MODEL 

The approach that we used to collect study samples via the clinical chemistry laboratory is a 

compelling model to efficiently power a study. Considerable data can be obtained from 

laboratory information systems and analysis of left-over plasma without additional 

collection of research samples. However, it is important to be aware of the weaknesses of 

this method.  

The model is very sensitive to confounders, since these cannot be effectively managed in 

the inclusion process. A possible way to increase the specificity of inclusions is to form 

close collaborations with clinicians. If inclusions are done prospectively, there is an 

opportunity to gather prospectively collected data (eg. Wells Score). This necessitates a 

strict adhesion to GCP with detailed protocols and comprehensive start up meetings.  

A juxtaposed risk, which is present if patients are invited by letter is that extensive 

exclusions based on only information in the consent form could lead to a risk of small study 

samples. A strategy to prevent this could be to store samples from all consenting patients 
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and save exclusions to a later time-point. Continuous invitations, inclusion assessments and 

bio-banking are also laborious to perform in parallel with routine operations. Finally, if left-

over plasma samples are used, there is an appreciable risk of low sample volumes which the 

necessitates strict prioritizing of investigations in the samples.  
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5 CLINICAL IMPLICATIONS & FUTURE PERSPECTIVES 

5.1.1 Optimizing the use of D-dimer 

D-dimer is the only biomarker in routine clinical use for VTE, and the low specificity 

represents a significant problem. Increasing the effectiveness of the diagnostic process 

would be a clinical and economic breakthrough, especially considering the global disease 

burden of patients suffering from VTE. Study I added to the significant efforts of recent 

years that support age-adjusted cutoffs for D-dimer in DVT and PE. Our evaluation 

demonstrated that an adjusted cutoff resulted in a significant reduction in false positive 

results without decreased sensitivity, which reflects avoidable health risk, prolonged 

emergency department wait times and cost of imaging techniques without any compromise 

of clinical safety. We demonstrated that the unwarranted imaging to rule out VTE could be 

avoided in >5% of all patients with suspected disease, while in elderly patients as many as 

20% could avoid unnecessary imaging.  

The advantages of age adjusted D-dimer cutoffs are not uncontroversial 177 and the concept 

has also been challenged in a few recent studies These studies have shown an equal 

improvement of specificity and proportion of tests with negative results between age 

adjusted cutoffs vs. general increase of cutoffs in a low risk population with a 

corresponding low prevalence of VTE at 6.6 % 57 and 7.8 % 56, 58 for the studies 

respectively. Our investigation of ROC curves demonstrated that the sensitivity of the D-

dimer assays is rather resistant to changes of the cutoff if the cutoff is kept below 1 mg/L 

FEU, displayed in the cumulative data analysis curves (Figure 13). We interpret the 

findings of the mentioned studies as a symptom of this observation. In a population of low 

clinical probability, it is not surprising that the cutoff can be increased within this comfort 

zone without affecting sensitivity if the study population is not large enough. Since all 

utilization of D-dimer rests on the foundation of a reliably high sensitivity, a decrease of the 

robustness of the sensitivity could have negative consequences which would not be 

apparent before such an increase would be tested in a large prospective study. 

Instead the opposite course of action could be pertinent, i.e. a further individualization of 

the D-dimer cut-offs. Using the Tina-quant D-Di we revealed that in patients < 50 years 

(n=346), sensitivity was 0.91 and specificity 0.82. This is considerably lower than the CLSI 

requirements for sensitivity of D-dimer and raises the question whether the general cutoff is 

set too high for patients younger than 50?  Regrettably, our study was not powered to 

determine a suitable cutoff for only patients < 50 years, but the issue was recently 
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addressed in a study demonstrating that the lowest levels of sensitivity of D-dimer were 

found in female patients, unprovoked DVT, low thrombotic burden, and distal DVT 178.  A 

fixed D-dimer cutoff 0.25 mg/L FEU in patients < 60 was suggested. In our cohort, 

applying this cutoff to the D-Di Tina-quant would result in sensitivity 0.97 and specificity 

0.52, which is a comparable to the specificity at 0.50 mg/L FEU in 60–70-year-old patients. 

Increasing the effectivity of the VTE diagnostic process has potentially major beneficial 

clinical and economical effects on the management of VTE. Because of the close 

association between the research group and the Karolinska clinical chemistry laboratory, 

clinical implementation of our findings could be more easily accomplished. Age-adjusted 

D-dimer cutoffs were clinically applied in Stockholm in late 2017 and have since been 

introduced in many parts of Sweden. The aim was that the fewer false positive results 

would enable diagnosis to become faster, cheaper and possibly result in decreased health 

risks from intravenous contrast, radiation and unnecessary hospital admissions and short-

term anticoagulation. A descriptive follow-up study of the clinical outcome of the 

implementation is underway, in collaboration between the PhD student and the Department 

of Medicine at Karolinska Institutet. Preliminary data from a small-scale evaluation of the 

implementation in Region Västmanland, was presented at the annual meeting of clinical 

chemistry in 2019; suggesting safe implementation and decreased false positive results. 

5.1.2 Global hemostatic assays in the diagnosis of venous thromboembolism 

As previously stated, there is significant room for improvement of the biochemical 

diagnosis of venous thromboembolism. However, identifying an assay superior to D-dimer 

has proven to be a challenge. Although some data point to the potential usefulness of the 

global hemostatic assays, a lack of standardization has hampered progress. Moreover, the 

diagnostic accuracy of ETP and OHP for acute VTE had not been assessed. The results of 

our study were in line with recent clinical evaluations of other thrombin generation assays 

for acute VTE. Our results indicated that neither the ETP nor the OHP assay would be 

clinically useful additions as biomarkers for the diagnosis of acute VTE in the emergency 

department. The evaluation of Soluble Fibrin for acute VTE, demonstrated that the 

increased diagnostic specificity of Soluble Fibrin in comparison with D-dimer came at the 

generally unacceptable cost of a decreased sensitivity. The study further implied that OHP 

and ETP were sensitive to hypercoagulability possibly caused by acute phase effects and 

comorbidities that may well be unavoidable in outpatients at the emergency department.  
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During the course of this thesis, the samples have been used in additional evaluations of 

feasible biomarkers of VTE which have also struggled with improving the diagnostic trade-

off of sensitivity and specificity beyond D-dimer. These, still unpublished findings of other 

biomarkers of acute VTE seem to implicate that a limited specificity for thrombotic events 

leads to similar assay difficulties as in D-dimer, ETP and OHP, that is high false positive 

rates in acute VTE. Since fibrin deposition in tissues in the absence of acute thrombotic 

events are common, it would perhaps be more fruitful to pursue highly specific biomarkers 

of VTE in the pathophysiological pathways initiating VTE. It is however operative to keep 

in mind that there are several triggering mechanisms and a possibility could be a 

partitioning between thrombosis and thromboembolism of various origin and the use of 

distinct biomarkers to diagnose acute VTE. 

5.1.3 Global hemostatic assays in the risk stratification of thrombophilia 

Study III was a cross-sectional descriptive study aimed to be a real-world pilot of the 

diagnostic landscape associated with expanding the current thrombophilia panel to include 

global hemostatic assays, which are emerging as general biomarkers of thrombotic risk. 

Knowledge of the diagnostic landscape can be used to strategically optimize 

implementation of the assays, not only from a clinical chemistry perspective.  

Addition of the ETP and OHP to the conventional thrombophilia panel led to an increased 

yield of objectively hypercoagulable results but did not evaluate how they should be 

interpreted in the thrombophilia investigation. The study accentuated that the ETP and OHP 

will only convey a snapshot of the patients’ coagulation profile. This makes proper 

sampling a very important issue if the GHA were to be clinically implemented for risk 

prediction of first or recurrent VTE.  

It is already known that the global hemostatic assays should be taken with the utmost 

attention to preanalytical details, but this study adds gravity to that knowledge. The 

possibility that ETP and OHP can risk false negative results in patients using anticoagulant 

medication and false positive results in patients suffering a recent VTE, may pose an 

obstacle to their correct clinical use as risk markers for recurrent VTE. The investigation of 

risk for first time VTE might be associated with less preanalytical pitfalls.  

In light of these examples, it is reasonable to assume that the global hemostatic assays will 

also risk improper sampling, whether it be due to lack of knowledge or with the expert 

knowledge to interpret results related to preanalytical sources of error. 
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The study highlighted difficulties of result interpretation in samples taken in suboptimal 

preanalytical conditions. Further prospective trials are needed to directly address if, how 

and when the global hemostatic assays could potentially be used as clinical biomarkers of 

thrombotic risk. Special attention should be directed to guiding proper clinical utilization of 

the assays, related to for example influence from anticoagulant medication, recent 

thrombotic events and acute phase reactions. 

A relevant parallel seems to be the correct utilization of the lupus anticoagulant assay, an 

assay that is commonly subject to pre-pre-analytical errors. For example, more than half of 

lupus anticoagulant testing in this cohort had been ordered in patients currently using 

anticoagulant medication. A considerable proportion of thrombophilia investigations was 

also initiated within a few weeks of diagnosis and treatment for acute VTE. The lacking 

adherence to pre-pre-analytical recommendations could well indicate an uncertainty as to 

when and how thrombophilia investigation and lupus anticoagulant are optimally tested. It 

may however instead reflect an informed practical strategy, aimed at shortening the 

turnaround times of investigation. Further research and clinical recommendations on the 

proper utilization of plasma based GHA related to anticoagulant medication and recent 

VTE would be useful.  

If the ETP and OHP were to be useful as part of investigation of the risk of a first or 

recurrent venous thrombosis, diagnostic sensitivity and clinical cut off values would most 

likely need to be further examined instead of using the 95th percentile normal ranges. 

Naturally, the determination of clinical cutoff values would need to be chosen with regard 

to the clinical intentions – whether a sensitivity could be reached, where the ETP or OHP 

could be used for initial screening of hypercoagulability and guidance of further 

thrombophilia investigation. 

Since the GHA parameters reflect somewhat different aspects of coagulation, an interesting 

prospect is that patients with different underlying hypercoagulability could possibly benefit 

from risk assessment by different GHA parameters. Future prospective studies comparing 

thrombin generation and fibrin aggregation assays would be needed to determine if one or 

both of these modalities would give the best clinical value.  

The highest proportion of hypercoagulable results in one parameter was seen in patients 

with a personal history of VTE combined with a family history of VTE, where 28% 

presented hypofibrinolytic profiles with decreased OFP. OFP may for example be the 

parameter most suited to detect thrombotic conditions where impaired fibrinolysis is an 
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important contributor to the hypercoagulable state, such as APS 146, 151, 179 or obstetrical 

patients 143. This study included only two APS patients without anticoagulation and hence 

cannot substantiate such a hypothesis, only hint at tendencies in different subgroups. It is 

worth noting that decreased fibrinolysis was at least as common as increased thrombin 

generation or fibrin aggregation in this study, and most common in patients with personal 

history of VTE in combination with family history of VTE. With this in mind, it would be 

interesting to further investigate clinical conditions related to decreased fibrinolysis. 

Likewise, an investigation of personalizing anticoagulant treatment according to 

hypercoagulability profiles would be of an interesting prospect and a are being investigated 

for at our laboratory adapted to the treatment of hemophilia patients . A possible future 

rationale for analyzing a combination of GHA could perhaps be guidance of individualized 

anticoagulation medication for patients with combined hypercoagulable risk factors but 

with predominantly hypofibrinolytic or hypercoagulable tendencies. Current evidence point 

to DOACs as less suitable for prophylaxis in APS patients 180, 181, in concurrence with the 

data suggesting that APS is partly related to impaired fibrinolysis 151.  

5.1.4 Prothrombotic variants as genetic markers of thrombophilia 

Addition of three additional prothrombotic SNPs in (Fibrinogen γ-chain (FGG), Factor XI 

(FXI) and the ABO blood group gene (ABO)), has been shown to improve the risk 

prediction for first time VTE and for recurrent VTE, with the risk increasing in proportion 

to the number of risk alleles.  

The clinical evaluation of additional prothrombotic polymorphisms in suspect 

thrombophilia, will be implemented into the clinical thrombophilia investigation panel 

within six months if the polymorphisms prove useful. 

Clinical genetic risk algorithms for VTE have the potential to improve the predictive ability 

of the classical genetic thrombophilia markers, but we could only demonstrate a slight 

improvement of ROC which is of uncertain clinical value. However, it should be 

acknowledged that a prospective advantage of TiC is that a CGRA is potentially easier to 

implement correctly, than an individual medical expert assessment, taking into account the 

relative importance of different clinical and genetic risk factors and possible interplays. In 

study III, some worrying indications of pre-pre-analytical difficulties were suggested, it 

might therefore be hypothesized that TiC could present a higher clinical value for the 

unaccustomed thrombophilia investigator. 
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5.1.5 Silent gene variants as attributors of thrombophilia heritability 

We explored a novel prothrombotic sSNP in the gene for prothrombin and found that it 

leads to increased expression and plasma levels of prothrombin, decreased fibrinolysis 

potential, prolonged clot lysis time and the formation of highly stabilized fibrin clots. This 

novel risk factor for thrombosis points to sSNPs as an uncharted component of unexplained 

thrombophilia heredity. We will continue to explore FII c.1824C>T, by further phenotype 

characterization and investigation of variant frequency in the KUL thrombophilia cohort. 

The confidence in FII c.1824C>T  as a prothrombotic SNP would be strengthened if it 

would be identified in GWAS. A recent meta-analysis did not identify FII c.1824C>T as a 

potential risk factor of VTE 182. It has since been elucidated that risk-stratification for 

venous thromboembolism should be treated as two distinct risks; that of first VTE and that 

of second VTE. FII c.1824C>T is only suggested as a risk factor of first VTE.  

An established weakness of GWAS is their low ability to identify relevant variants with an 

EAF <0.01 as well as common variants associated with mild effects. In addition, 

synonymous variants are disregarded in VTE GWAS. Given the evidence that corroborate 

the role of sSNPs in VTE pathophysiology, whole exome sequencing with 

acknowledgement of potential sSNPs would decidedly be preferable in future genetic 

explorations of thrombotic risk. 

5.1.6 Thrombophilia testing  

As discussed earlier, the future of thrombophilia testing is uncertain. Conventional 

thrombophilia investigation has not been shown to improve outcomes in tested patients. 

Indeed, it may be unsurprising that the analysis of two mild genetic risk factors together 

with a handful of very uncommon anticoagulant deficiencies does not give population-scale 

impact on outcomes and that isolated testing of APS is the main thrombophilias testing 

currently recommended by several experts. However, it seems backward to not further 

investigate the potentials of personalized health care for VTE, which is an important global 

cause of morbidity and mortality, just as we are emerging into the digitalized era. It seems 

more probable that we will be able to elucidate complex diseases such as VTE than ever 

before, as machine learning solutions may be required to interpret data from whole exome 

explorations, miRNA, SNP-SNP-interactions and other mechanisms still unknown to us.  
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6 CONCLUSIONS 

6.1 STUDY I  

A prospective single-center study indicating that age-adjusted D-dimer cutoffs can 

eliminate false positive results in more than 5% of all patients with suspected VTE.           

In elderly patients with suspected VTE the decrease in false positive results could even 

affect as many as 20% of patients. Results were valid for four different reagents. 

6.2 STUDY II 

A cross-sectional diagnostic study where the OHP and Innovance® ETP assays did not 

improve the diagnosis of acute VTE in emergency department outpatient.  

The study suggested that many patients are in a hypercoagulable state when contacting the 

emergency department for suspected VTE, due in part to an increased fibrinogen levels.  

6.3 STUDY III 

A cross-sectional descriptive study indicating that at least a slightly increased proportion of 

patients could be given graduated risk assessments based on the analysis of thrombin 

generation and fibrin aggregation.  

The study highlighted some difficulties of result interpretation in samples taken in 

suboptimal preanalytical conditions, present in the samples that had been clinically used for 

laboratory investigation of each patient.  

6.4 STUDY IV 

A translational study, elucidating the functional effects of a newly identified synonymous 

polymorphism. The study could corroborate the FII c.1824C>T variant as a feasible 

contributor to thrombotic risk by functional explorations of coding DNA, via mRNA and 

proteins to a comprehensive overview of the hemostatic profiles in carriers of the sSNP.   

6.5 STUDY V 

A cross-sectional diagnostic study indicating that a clinical-genetic algorithm developed in 

Spain had similar discriminative ability in a nonpregnant Swedish population sample, 

despite significant differences in the allelic frequencies of included genetic variants.  
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