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ABSTRACT 

 

DNA in the eukaryotic nucleus is organized into histone-DNA complex, so-called chromatin, 

through forming an array of nucleosomes. Each nucleosome consists of a 147bp DNA wrapped 

around a histone octamer harboring two of each H2A-H2B and H3-H4. Chromatin is orderly 

packed several times forming a chromosome structure. Active euchromatin and repressive 

heterochromatin are defined according to the degree of DNA compaction, of which 

euchromatin is open, and heterochromatin is condensed. Chromatin organization and its 

regulation always affect downstream gene transcriptions through different mechanisms, which 

consequently play crucial roles in many cellular and biological processes.   

 

In this thesis, we explored mechanisms of chromatin organization and its associated regulatory 

factors by using Schizosaccharomyces pombe. We identified an uncovered role of Abo1 in 

different heterochromatin locus. We demonstrated that Abo1 is involved in Clr4 mediated 

heterochromatin assembly through regulating H3K9me2 to H3K9me3 transition, related to 

distinct silencing machinery.  

 

 We also performed multiple in vitro experiments to investigate the functional role of the 

chromatin remodeler Hrp3, which is the orthologue of human CHD1. We generated several 

mutant strains where the non-catalytic domains were individually deleted. Our result suggested 

non-catalytic domains could further affect ATP hydrolyzing activity, and may further affect 

the chromatin remodeling function.  

 

In this thesis, we also investigated the outcomes of epigenetic and transcriptional regulation in 

hematopoietic development. We performed analysis on CAGE libraries in various primary cell 

types from the Fantom 5 project to study the usage of alternative transcriptional start site (TSS). 

Through mapping the TSS to Refseq, we identified alternative TSS that can lead protein 

domain loss. The alternative TSSs were shown to be expressed at different levels in different 

cell types or developmental stages, particularly in blood cells. We further investigated the 

functional consequence of alternative TSSs usage for KDM2B in Jurkat T-cells.   

 

To identify critical novel epigenetic regulators for myeloid differentiation, we performed a 

CRISPR-cas9 screen. We identified the chromatin remodeler CHD2 as a crucial regulator for 

megakaryocyte differentiation in the PMA inducible K-562 cell model. 
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1. Introduction  

1.1 Chromatin organization 

Eukaryotic genomes consist of chromosomes, each of which is packaged from a 

single linear DNA. Although the genome sizes are diverse, the basic chromosome 

structure is the same in all eukaryotic spices (Alberts, Johnson et al. 2002). A double-

stranded helical DNA, tightly wrapped around a histone octamer composed of H2A-

H2B dimers and H3-H4 tetramer constitute the nucleosome. Each nucleosome consists 

of a 147bp DNA formed nucleosome core particle (NCP), with additional a linker DNA 

and a histone protein H1 (Cooper 2000). This DNA-histone proteins interacted complex 

is called chromatin. To be compressed into a nucleus, chromatin is hierarchically 

packed into 30-nm fiber and 300-nm fiber, which is finally folded into a chromosome 

(Figure 1) (Alberts, Johnson et al. 2002, Annunziato 2008). The packaging of chromatin 

is regulated mainly through biochemically modified histones and remodeling enzymes, 

which cause remodeled chromatin structures and consequently affect downstream 

transcription of genes (Hubner, Eckersley-Maslin et al. 2013). 

 

 

 

Figure 1. View of chromatin organization and orderly compaction. Linear DNA is compacted into a 

chromosome hierarchically form string containing 11-nm nucleosomes. The nucleosome string then coils 

into 30-nm fiber that forms loops around 300-nm. The 300-nm fiber subsequently is folded to produce 

250nm-fiber, which finalize to coil into a chromosome. © 2013 Nature Education. All rights reserved. 

Figure reprinted with the permission from publisher. 
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1.1.1 Chromatin types 

In 1928, Heitz distinguished two types of chromatin according to the cytological 

difference detected through staining the nucleus of moss with nuclei dye. The chromatin 

regions with light staining were defined as euchromatin, while the regions with intense 

staining were defined as heterochromatin (Heitz 1928). Later, studies identified that the 

different intensity of staining in the two chromatin regions comes from the distinct 

compacted DNA density (Babu and Verma 1987). Nowadays, we know that 

euchromatin is featured by its less packed open structure and enrichment of genes. 

Transcription in euchromatin is usually active. On the contrary, heterochromatin is 

featured by its tightly packed structure with condensed DNA. Transcription in 

heterochromatin is usually repressed, but not always. Within the eukaryotic nucleus, 

cytogenetic studies also revealed that euchromatin is found in the inner body, while 

heterochromatin is more located in the inner face of the periphery (Oberdoerffer and 

Sinclair 2007, Kalverda, Röling et al. 2008). 

 

    Besides these two main classified categories, there are also multiple chromatin 

types reported. For instance, a study in Drosophila melanogaster revealed five principal 

chromatin types, which provided a global view and potential possibility of chromatin 

diversity in metazoan cells (Filion, van Bemmel et al. 2010).     

 

 

1.1.1.1 Euchromatin 

Most actively transcribed genes are located in the euchromatin, such as the 

housekeeping genes. The unfolded structure of euchromatin relies on the high level of 

histone acetylation and the absence of linker histone H1. Methylation on H3K4 and 

H3K79 are also present in euchromatin. Keeping the chromatin structure open allows 

for the recruitment of transcriptional regulatory proteins and RNA polymerase, and 

consequently initiate the transcription of genes (Hubner, Eckersley-Maslin et al. 2013).     

 

 

1.1.1.2 Heterochromatin 

Heterochromatin is a key chromatin feature of the eukaryotic genome. One crucial 

role of heterochromatin is to maintain the stability of the chromosome. It virtually 

participates in many cellular processes, from gene regulation to chromosome 

replication. The coverage of the genome for heterochromatin is quite diverse through 

eukaryotic organisms. Typical heterochromatin domains situate in particular positions 

on a chromosome, such as in the middle (centromere), at the ends 

(subtelomere/telomere) (Allshire and Madhani 2018, Janssen, Colmenares et al. 2018). 

In the 1960s, researchers performed a kinetic analysis of DNA renaturation and 
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characterized that heterochromatin contains more highly repeated DNA sequences 

compared to euchromatin (Britten and Kohne 1968, Vanrobays, Thomas et al. 2018). 

These highly repetitive sequences are required for the genome integrity during 

replication, such as repeats in centromere and telomere (discussed later). Besides the 

repetitive sequences, heterochromatin regions also comprise repressive genes that can 

only be transcribed in certain conditions/processes, such as cell cycling, environmental 

stress response, and development. Therefore, depending on the formation and strength 

of silencing, heterochromatin can be classically subdivided into constitutive and 

facultative heterochromatin (Brown 1966, Vanrobays, Thomas et al. 2018). 

Additionally, researchers reported a distinct repressive chromatin type (so-called black 

chromatin in the article) that is prevalent in Drosophila’s genome (~50%) (Filion, van 

Bemmel et al. 2010). 

 

Constitutive heterochromatin is always associated with permanent silent regions 

throughout the cell cycle. It is mostly composed of tandem repeats (so-called satellite 

repeats), but poor of genes. In most eukaryotic organisms, bulk constitutive 

heterochromatin situates at the pericentromeric region of centromere and at telomere 

on a chromosome (Saksouk, Simboeck et al. 2015). In humans, it is significantly more 

found on chromosome 1, 9, 16 19, and chromosome Y (Strachan and Read 2003). 

 

The centromere is a conserved structure on a eukaryotic chromosome where the 

kinetochore is constituted during mitotic segregation. It is essential for equal 

distribution of genetic information from mother to daughter cell during mitosis. Typical 

centromere chromatin contains two sub-domains: a centromere core flanked by 

pericentromeric regions. The nucleosomes in centromere core are specialized by the 

composition of H3-variant CENP-A, which is essential for kinetochore assembly. The 

length of centromere core varies in spices, from around 120bp occupying single 

nucleosome in budding yeast Saccharomyces cerevisiae to megabases-long satellite 

repeats array occupying hundreds of nucleosomes in humans (Black, Jansen et al. 2007, 

Aldrup-Macdonald and Sullivan 2014). Pericentromeric region also comprises non-

conserved repetitive sequences, from dg-dh in Schizosaccharomyces pombe to higher 

ordered tandem repeats (HOR) in human. Heterochromatin formation in the 

pericentromeric region depends on hypoacetylation and methylation of H3 lysine 9 and 

associated heterochromatin protein 1 (HP1). This heterochromatin structure is also 

essential for pericentromeric recruitment and stabilization of cohesin to construct sister 

chromatid cohesion (Nakayama, Rice et al. 2001, Nonaka, Kitajima et al. 2002, Volpe, 

Kidner et al. 2002, Smurova and De Wulf 2018). The silencing of the pericentromeric 

region, which is well established in S.pombe, provides a typical model of RNA 

interference (RNAi) silencing machinery in constitutive heterochromatin regions 
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(Volpe, Kidner et al. 2002). Repetitive sequences, dg-dh repeats (Outer repeats/otr) in 

S.pombe, is transcribed as long non-coding RNA and turned into dsRNA molecules by 

RNA-directed RNA polymerase complex (RDRC). This RDRC contains an RNA-

mediated RNA polymerase Rdp1, a helicase Hrr1, and a poly (A) RNA polymerase 

Cid12 (Motamedi, Verdel et al. 2004). The Dicer enzyme then cleaves the dsRNA into 

siRNA, which is captured by Ago1, the orthologue of the human PIWI family, and 

consequently constitutes transcriptional gene silencing (RITS) complex together with 

chromodomain containing protein 1 (Chp1) and Tas3 (Verdel, Jia et al. 2004). siRNA 

induced RITS complex helps to recruit and promote the RDRC complex to further 

establish a siRNA circular enhance system (Motamedi, Verdel et al. 2004, Sugiyama, 

Cam et al. 2005). Meanwhile, siRNA induced RITS is also associated with gathering 

and activating cryptic loci regulator complex (CLRC). Clr4 in CLRC, the orthologue 

of human methyltransferase SUV39H, can methylate lysine 9 of H3 and consequently 

engage the binding of the HP1 orthologue Swi6 and the Snf2/Hdac repressive complex 

(SHREC), which finally result in the establishment and spreading of repressive 

heterochromatin (Volpe, Kidner et al. 2002, Locke and Martienssen 2009). The SHREC 

complex, which consists of histone deacetylases Clr1, Clr2, Clr3, and chromatin 

remodeler Mit1, can accumulate to most types of heterochromatin region via Swi6 to 

generate transcriptional gene silencing (TGS) (Figure2) (Job, Brugger et al. 2016). 

 

 
 

Figure 2. RNAi silencing machinery in S.pombe. Long non-coding RNA is transcribed to produce 

siRNA via the function of the RDRC complex with components, as illustrated. siRNA interacted Ago1 

induces the recruitment of the RITS complex, which goes back to help to produce the second strand of 

lncRNA. Meanwhile, the activated RITS complex recruit CLRC to methylated H3K9. The binding of 

associated factors, such as Swi6, SHREC finalizes the chromatin compaction and transcriptional 

silencing (Biscotti, Canapa et al. 2015). Reprinted by permission from Springer Nature Customer Service 

Centre GmbH. 
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In mammalian cells, the silencing of the pericentromeric region relies on ncRNA 

(eg. HOR sequences) induced enrichment of H3K9me3 and the recruitment of HP1. 

Additional histone mark H4K20me3 also present via SUV4-20H. However, in Suv39h 

knockout mice, the H3K9me3 mark is abolished in the pericentromeric region. Instead, 

the Polycomb Repressive Complex 2 (PRC2) for H3K27me3 and the BEND3-NuRD 

complex-mediated pathway facilitate forming the heterochromatin (Saksouk, Simboeck 

et al. 2015, Nishibuchi and Déjardin 2017).  

 

The telomere is a heterochromatin region located at the end of the eukaryotic 

chromosome. It is composed of G-rich DNA repetitive sequences and binding of 

specific proteins. In mammalian cells, this tandem array is formed by numbers of 

TTAGGG repeats (O'Sullivan and Karlseder 2010). In eukaryotic cells, the telomere is 

shortened by the “end replication problem” in each cell division process, which leads 

to the 3’ end single-strand overhang and triggers the DNA damage response (Wynford-

Thomas and Kipling 1997). Therefore, the main function of the telomere complex is to 

prevent the loss of genetic information and chromosome fusion during replication. The 

enzyme telomerase helps to elongate the telomeric region to heal the shortening. It is 

not usually active in somatic cells, but active in germs cells, stem cells, and many cancer 

cells (Collins and Mitchell 2002). The telomere binding proteins (also called “shelterin”) 

in human is similar to S.pombe Among them, telomere binding protein Rap1 is recruited 

to the telomeric region through double-stranded telomeric repeats binding protein Taz1 

in S.pombe or TRF1/2 in human to inhibit the double-stranded DNA repairing pathway. 

Pot1 binds the single-strand end and links to the double-stranded region through the 

bridge of Ccq1- Tpz1-Poz1 in S.pombe and TPP1-TIN2 in human (Kanoh and Ishikawa 

2001, Diotti and Loayza 2011, Audry and Runge 2019). In S.pombe, the establishment 

of heterochromatin proteins and H3K9 methylation enrichment in telomeric ends is 

dependent on Taz1 (Kanoh, Sadaie et al. 2005, Deng, Norseen et al. 2009, Bandaria, 

Qin et al. 2016).  

 

Taz1, coupled with Ccq1, helps to recruit Clr3 of SHREC complex in the 

telomeric region. However, Clr3 enrichment is still retained in deletions of Taz1 and 

Ccq1. It is eliminated in the deletions of Chp1 and Taz1, suggesting an indirect role of 

RNAi machinery in the silencing of the telomere (Sugiyama, Cam et al. 2007). 

Epigenetic histone marks are diverse in human telomeric region because of the various 

subtypes in different cell types. In many human cell lines, the staining of H3K9me3 and 

HP1 is lowly co-localized with the staining of TRF1 or TRF2, which is further 

confirmed by ChIP studies, revealing the less enriched heterochromatin mark 

H3K9me3 in the telomeric region (Cubiles, Barroso et al. 2018).  
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Another example of constitutive heterochromatin is located in subtelomeric 

heterochromatin, where dg-dh repeats are also present. The silencing at this cen-like 

loci is also associated with pericentromeric-like RNAi silencing machinery (Chikashige, 

Kinoshita et al. 1989, Kanoh, Sadaie et al. 2005).  

 

Facultative heterochromatin, as discussed above, is transcriptional silent 

regions containing genes that can still potentially be converted into euchromatin. In 

mammalian cells, facultative heterochromatin includes regions such as inactive X 

chromosome, autosomal imprinted genomic loci, long-range silencing, local gene 

silencing (Trojer and Reinberg 2007). The molecular features of these silent regions are 

modifications like DNA methylation, H3K9 methylation, H3K27 methylation, 

H2AK119 ubiquitination, and related chromatin factors of SUV39H1/2, HP1, 

Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2) that we will discuss in a later 

section. Here we want to introduce the silencing machinery in the subtelomeric region 

and heterochromatin islands as examples, especially in S.pombe. 

 

Subtelomere situates on a chromosome adjacent to the telomere ends. The length 

of the subtelomere region varies in different organisms, which is around ~50kb in 

S.pombe and 100~300kb in human. The composition is also highly variable. In budding 

yeast, subtelomere encompasses of X and Y elements. In human, subtelomere is even 

more polymorphic for the mixing of multiple types of segments containing different 

ORFs. In S.pombe, subtelomeric heterochromatin features by the enrichment of H3K9 

methylation. It is located between constitutive telomere ends and highly condensed 

“knob”. In “knob” region, both repressive and active histone modification levels are 

shallow (compare to bulk heterochromatin and euchromatin) (Buchanan, Durand-

Dubief et al. 2009, Matsuda, Chikashige et al. 2015). Deletion of subtelomeric 

heterochromatin sequences causes silence inbreak from telomere end to knob region, 

but does not affect the process of mitosis or meiosis. It is suggested that subtelomeric 

heterochromatin functions as a “buffer area” to prevent heterochromatin spreading from 

the telomere (Tashiro, Nishihara et al. 2017). Both repressive genes and dg-dh repeats 

present in the subtelomeric heterochromatin region. Telomeric associated sequence 

(TAS) is also found in subtelomere within around 6kb to the telomere with a low 

nucleosome occupancy. The silencing here is controlled by telomeric Ccq1 (van Emden, 

Forn et al. 2019). Therefore the silencing in subtelomeric heterochromatin is based on 

several types of machinery. The silencing for the repressive genes in subtelomeric 

regions requires hypoacetylation via deacetylase, such as Clr3, Sir2. It is also essential 

for the recruitment of CLRC (especially Clr4) and related methylation on H3K9 in order 

to recruit Swi6. The assembly of Swi6 and methylated H3K9 steadies the gathering of 

Clr4, which builds the platform of the heterochromatin structure through interacting 
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with other heterochromatin components to develop transcriptional gene silencing (TGS) 

(Buscaino 2019).  

 

Facultative heterochromatin islands in fission yeast are pinpointed through 

mapping the enrichment of H3K9 methylation in chromosomal euchromatin bodies 

(Zofall, Yamanaka et al. 2012). A subset of facultative heterochromatin islands, known 

as “determinant of selective removal” (DSR) islands, contains meiotic genes that can 

only express during meiosis. DSR islands are silenced through RNA degradation 

machinery by RNA elimination complex, together with heterochromatin Clr4 

associated transcriptional silencing (Zofall, Yamanaka et al. 2012). A recent 3D 

architecture analysis in Drosophila showed that membrane-less pericentromeric 

heterochromatin (PCH) domains interact with heterochromatin islands interspersed in 

euchromatin. It revealed the potential crosstalk between heterochromatin domains in 

space (Lee, Ogiyama et al. 2020). 

 

 

1.1.1.3 Chromatin dynamics  

Euchromatin and heterochromatin enable mutual conversion under the regulation 

of many factors, such as histone modification enzymes, ATP dependent chromatin 

remodelers, transcriptional factors (Figure 3) (Trojer and Reinberg 2007). These 

regulations can also be influenced by each other. According to our interests, we focus 

more on the heterochromatin side. Abolishment on RNAi dependent/ independent 

silencing machinery (detailed as discussed above) and correlated factors, can disrupt 

the assembly and maintaining of heterochromatin structure and turn it into active 

regions. Another way of the transition between heterochromatin to euchromatin is to 

disturb the heterochromatin spreading. 
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Figure 3. Euchromatin and Heterochromatin can mutually convert. The transition of chromatin 

compaction and transcription between these two types of chromatin is regulated by several types of 

factors, as mentioned in the illustration. It is adapted to the figure from Trojer and Reinberg 2007. 

 

In the 1930s, Muller described the position effect variegation (PEV) on eye color 

controlled gene in Drosophila melanogaster: the expression of the white gene located 

in euchromatin leads to the red eyes. Translocation of the gene near pericentromeric 

heterochromatin caused by chromosome rearrangement results in the transcriptional 

silence and the phenotype of mottled eyes (Muller 1930, Elgin and Reuter 2013). 

Another similar phenomenon was later observed in budding yeast Saccharomyces 

cerevisiae, where reporter genes became repressed by being placed in the region near 

telomeres, so-called telomere position effect (TPE) (Gottschling, Aparicio et al. 1990, 

Mondoux and Zakian 2006). Both PEV and TPE have been found in many other 

organisms, from plant to mammal, indicating that constitutive heterochromatin can 

spread its repressive state to the neighbor’s active genes (Dillon and Festenstein 2002, 

Elgin and Reuter 2013). This silencing expansion plays a crucial role in altering the 

transcription of regulatory genes during the cellular developmental process (Lippman, 

Gendrel et al. 2004). The abnormal heterochromatin spreading can also suppress the 

transcription of genes improperly and consequently induce disease (Kleinjan and 

Lettice 2008). 

 

 Consequently, cells have developed the structure of chromatin boundary in order 

to prohibit the expansion of heterochromatin to euchromatin. Generally, the boundary 

consists of particular DNA elements “insulator” flanking at heterochromatin domain 

and relevant proteins (Wei, Liu et al. 2005, Valenzuela and Kamakaka 2006, Wang, 
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Lawry et al. 2014). In S.pombe, transfer RNA (tRNA) gene and IRC element function 

as insulators in centromere (Matsuda, Asakawa et al. 2017). Transcriptional factor 

TFIIIC and Histone demethylase LSD 1 act virtually for the boundary of tRNA genes 

(Lan, Zaratiegui et al. 2007). Negative regulator of subtelomere Epe1 that has the 

histone demethylation JmjC domain and bromodomain protein Bdf2 for histone 

acylation are required to IRC element boundary (Buchanan, Durand-Dubief et al. 2009, 

Wang, Tadeo et al. 2013). 

  

 Inversely, wild type heterochromatin domains should also be protected to 

maintain its natural function. A chromatin remodeler Fun 30 protein Fft3 in S.pombe as 

an example, sits at tRNA and IRC elements boundaries of centromere and LTR element 

boundary of subtelomere to shield the expansion from euchromatin (Steglich, Strålfors 

et al. 2015). 

 

A recent study in S.pombe analyzed the heterochromatin proteins through Swi6-

associated proteome and euchromatin proteins through acetylated histone binding 

Bdf1/2 associated proteome. They revealed that euchromatin and heterochromatin 

proteomes have over-lapped proteins besides the fundamental chromatin component 

like histone proteins, but also unique proteins for each of them. If these shared proteins 

between heterochromatin and euchromatin help the inter-conversion is still unclear 

(Iglesias, Paulo et al. 2020). 

 

 

1.1.2 Histone modifications  

Post-translational modifications (PTM) usually occur at the N terminal tails of 

histone proteins, which play crucial roles in modulating chromatin structure and 

regulating gene expression. PTM on histones was firstly correlated to functional 

outcome in 1964 when Allfrey described his observation that high level of histone 

acetylation was relevant to the less inhibition of RNA synthesis (Allfrey, Faulkner et al. 

1964). Till now, many histone modifications, such as acetylation, methylation, 

ubiquitination, phosphorylation, ADP ribosylation, sumoylation, and even lactylation 

reported last year, have been found at various residues of different histone proteins. 

They are correlated with transcription switch on/off and consequently involved in 

diverse cellular processes (Kouzarides 2007, Zhang, Tang et al. 2019). Most of the 

histone modifications are dynamically regulated by “writer”-enzymes adding the 

modifying groups and “eraser”- enzymes removing the modifying groups (Nicholson, 

Veland et al. 2015). Here I list acetylation and methylation on residues of canonical H3 

and H4, together with their writers, erasers, and proposed function (Table 1). 
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Histone modifications carry out functions with two mechanisms mutually 

dependent or independent. 1) Some histone PTMs influence the chromatin structure 

directly through disturbing the electronegativity of the nucleosome. For instance, 

acetylation and phosphorylation reduce the positive charge through neutralizing the 

histone tail and introducing a negative charge respectively, which may disrupt the 

interaction between DNA and histones. Ubiquitination affects the architecture of 

nucleosome because of the large size of the multi-ubiquitins attachment. 2) Histone 

PTMs influence the chromatin structure indirectly through recruiting other factors 

(Bannister and Kouzarides 2011, Lawrence, Daujat et al. 2016). Some protein domains 

can specifically recognize and bind their target modified histones. For instance, PHD 

domain, chromodomain, tudor domain, and MBT domain bind to methylated lysine, 

while bromodomain binds to acetylated lysine. The proteins embracing these 

recognizing domains play diverse roles in modulating chromatin structure. For instance, 

it can be ATP-dependent chromatin remodelers, such as CHD1 with chromodomain 

targeting H3K4me2/3. It can be interactive chromatin factors, such as heterochromatin 

protein HP1 with chromodomain targeting H3K9me2/3. It can also be histone 

modifying enzyme itself, such as GCN5 of histone acetyltransferase HATs family 

targeting acetylated lysine on H4 (Sanchez and Zhou 2009, Bannister and Kouzarides 

2011, Yun, Wu et al. 2011).    

 

Histone modifications also affect each other (Figure 4). As an example, we have 

mentioned in the previous section that hypoacetylation from HDACs is essential for 

installing H3K9me3 in heterochromatin regions. Another example is H3K27me3 and 

H2AK119ub from the Polycom Repressive Complex (PRC), which we will discuss in 

detail later.    
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Histone 
Modified 

Residuals 
Modification  Writer Eraser Proposed Function 

H3 

Lys4 (S. 

cerevisiae) 
Acetylation Esa1, Hpa2 

Class I :HDAC1,2,3,8 /Rpd3 S. 

cerevisiae  /Clr6 S.pombe                                            

Class IIa :HDAC4,5,7,9 /Had1 S. 

cerevisiae/Clr3 S.pombe                       

Class IIb :HDAC6,10                   

Class III : SIRT1,6,7/Sir2 yeast 

transcriptional activation 

Lys9 Acetylation Gcn5, SRC-1 transcriptional activation, histone deposition 

Lys14  Acetylation 

Gcn5, PCAF, Esal, Tip60, SRC-1, 

Elp3, Hpa2, hTFIIIC90, TAF1, Sas2, 

Sas3, 

histone deposition, transcriptional activation, DNA repair , RNA 

polymerase II & III transcription 

Lys18 Acetylation Gcn5, p300/CBP transcriptional activation, DNA repair and replication 

Lys23 Acetylation unknown, Gcn5, SAs3, p300/CBP histone deposition , transcriptional activation, DNA repair 

Lys27 Acetylation Gcn5 transcriptional activation 

Lys56 (S. 

cerevisiae) 
Acetylation Spt10 transcriptional activation, DNA repair 

Lys4 Methylation 
Set1 (S. cerevisiae), MLL, ALL-1, 

SMYD,SET7/9, PRDM9 

Jhd2(S. cerevisiae), LSD, NO66, 

JARID1 
permissive euchromatin (di-Me), transcriptional activation 

Arg8 Methylation PRMT5 JMJD6 transcriptional repression 

Lys9 Methylation 
Suv39h,Clr4(S.pombe), G9a,GLP, 

SETDB1, PRDM family 

Rph1(S. cerevisiae), JHDM2, 

JHDM3, PHF8 

transcriptional silencing (tri-Me), transcriptional repression, genomic 

imprinting, transcriptional activation 

Arg17 Methylation CARM1 PAD4 transcriptional activation 

Lys27 Methylation Ezh2, G9a 
unkown, UTX, JMJD3, KIAA1718, 

PHF8 
transcriptional silencing, X inactivation (tri-Me) 

Lys36 Methylation 
Set2(S. cerevisiae), SET2D, NSD, 

SMYD2, ASH1L, SETD3 
JHDM1 and JHDM2 family transcriptional activation (elongation) 

Lys79 Methylation Dot1 unknown transcriptional activation (elongation), checkpoint response 
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Histone 
Modified 

Residuals 
Modification  Writer Eraser Proposed Function 

H4 

Lys5 Acetylation Hat1, Esal, Tip60, ATF2, Hpa2, p300 HDAC3 histone deposition, transcriptional activation, DNA repair 

Lys8 Acetylation 
Gcn5, PCAF, Esal, Tip60, ATF2, Elp3, 

p300 

Class I :HDAC1,2,3,8 /Rpd3 S. 

cerevisiae  /Clr6 S.pombe            

Class IIa :HDAC4,5,7,9 /Had1 S. 

cerevisiae/Clr3 S.pombe              

Class IIb :HDAC6,10                   

Class III : SIRT1,6,7/Sir2 yeast 

transcriptional activation, DNA repair 

Lys12 Acetylation Hat1, Esal, Tip60, Hpa2, p300 histone deposition, telomeric silencing, transcriptional activation, DNA repair 

Lys91 (S. 

cerevisiae)  
Acetylation Hat1/Hat2 chromatin assembly 

Arg3 Methylation PRMT1  PAD4 transcriptional activation 

Lys20 Methylation PR-Set7, Suv4-20h, Set9 (S. pombe) PHF8,PHF2 
transcriptional silencing (mono-Me), heterochromatin (tri-Me),transcriptional 

activation, checkpoint response 

Lys59 Methylation unknown, CK2 unkown mitosis, chromatin assembly, DNA repair 

 

Table 1.  Acetylation and Methylations on residues of canonical H3 and H4 was conclude in the table, together with the “writer” ,“eraser” and their proposed function. Most 

presented histone modification are conserved from human to yeast. Specie specific modification was labelled as in brackets(Nicholson, Veland et al. 2015, Hyun, Jeon et al. 

2017). 
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Figure 4 Crosstalk between histone modifications. Locations of each histone modification is as labeled 

in the figure. Arrow head represents positive effect, while flat head represents negative effect (Bannister 

and Kouzarides 2011). Reprinted by permission from Springer Nature Customer Service Centre GmbH. 

 

 

1.1.2.1 H3K9me2/3 

   H3K9 can be methylated with attaching 1/2/3 methyl groups. Different levels of 

methylated H3K9, as well as the genomic locations, have distinct functional outcomes. 

H3K9me1 abundant at promoters exert as a transcriptional activator, while H3K9me2 

and me3 enriched in silent region/gene bodies exert as a transcriptional repressor, and 

are proposed as conserved heterochromatin marks(Zhang, Cooper et al. 2015). 

 

   The methylation on H3K9 is loaded step-wise and is dependent on different histone 

methyltransferases (HMTs). In Caenorhabditis elegans, single deletion of MET2, the 

orthologue of human SETB1, results in reduced H3K9me1/2/3 (10~30% left), and 

single deletion of SET-25 results in lack of H3K9me3 but wild type level of 

H3K9me1/2. Deletions of both genes resulted in the elimination of all H3K9 

methylation marks. It indicates that H3K9 is mono-/di- methylated by MET2 and 

subsequently methylated by SET-25 for the third methyl group. This step-wise 

methylation is also involved in the process of a continuous self –reinforcing movement 

to perinuclear landing, suggesting potential alternative roles of H3K9m2 and me3 

(Towbin, González-Aguilera et al. 2012). In S.pombe, Clr4 is the only HMT on H3K9 

methylation. In vitro binding assay has shown the most binding affinities of its 

chromodomain to H3K9me3 compared to unmodified H3, H3K9me1/2 (Zhang, Mosch 

et al. 2008). Point mutations F449Y in the catalytic SET domain of Clr4 dramatically 

increased H3K9me2 level but almost lose H3K9me3 level at pericentromeric of fission 
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yeas. It reduces the enrichment of both me2 and me3, and a consequent silencing defect 

in the subtelomeric heterochromatin region. Surprisingly, the transcription of the 

pericentromeric region is active with enriched H3K9me2. It suggests distinct roles of 

H3K9me2 and me3 in RNAi machinery, and only H3K9me3 provides the real 

transcriptional gene silencing (Jih, Iglesias et al. 2017). However, in the wild type, how 

this step-wise methylation is regulated is still unclear. 

 

Study in human cells revealed that H3K9me2 demethylation is mediated by the 

Jumonji domain-containing 1A (JMJD1A) dimers also via two steps (Goda, Isagawa et 

al. 2013). In fission yeast, a higher rate of histone turnover that replaces modified 

histone by newly synthesized histones, is important for demethylation on H3K9. JimC-

domain protein Epe1 and RNA PolII associated complex PafC promote histone turnover 

in heterochromatin regions (Aygün, Mehta et al. 2013, Oya, Durand-Dubief et al. 2019). 

 

 

1.1.2.2 PRC complex  

Generally, polycomb proteins construct two complexes: Polycom Repressive 

Complex 1 (PRC1) and Polycom Repressive Complex 2 (PRC2). PRC2 complex 

consists of core members, including Embryonic Ectoderm Development factor 2 

(EED2), zinc finger protein SUZ12, histone methyltransferase EZH1/2, and other 

proteins, including histone deacetylase HDAC, histone chaperones RbAp46/48. Both 

EZH1 and EZH2 are responsible for tri-methylation on H3K27 (Margueron and 

Reinberg 2011, Aranda, Mas et al. 2015). Besides the core members, PCL, EPOP, and 

PALI1/2, as additional components, form non-canonical PRC2.1, while Jumonji family 

members associated with histone demethylation JARID2 and zinc finger protein 

AEBP2 constitute the non-canonical PRC2.2. The non-canonical PRC2 cooperate to 

affect global SUZ12 recruitment(Healy, Mucha et al. 2019).  

 

Canonical PRC1 complex is constituted of five subset proteins, including 

RING1A/B, PCGF, PHC, CBX, and SCM. Various non-canonical PRC1 have been 

reported. Beside RINGA/B and alternative PCGF proteins, non-canonical PRC 

complex harbor Ring1B-Yy1 binding protein RYBP or its homolog YAF2 together with 

distinct components (Figure 5) (Aranda, Mas et al. 2015).  

 

Ubiquitination on lysine 119 of H2A is not a conserved HTM in eukaryotes. Mono-

ubiquitinated H2AK119, known as a transcriptionally repressive mark, is accomplished 

by two E3 ubiquitin ligases: 2A-HUB, which is a RING finger protein, and RING1A/B, 

which is the core member of PRC1. However, it is reported that the repression caused 

by these two enzymes targets different genes. 2A-HUB can mono-ubiquitinate H2A 



15 
 

both in vivo and in vitro. Together with the N-Cor complex, 2A-HUB negatively 

regulates the transcription of a specific subset of chemokine genes in macrophages 

(Zhou, Zhu et al. 2008). H2AK119ub at the promoter-proximal regions prevents the 

recruitment of facilitates chromatin transcription (FACT) complex and blocks the RNA 

PolII release at the beginning of elongation (Van Kruijsbergen, Hontelez et al. 2015). 

PRC mediated H2AK119ub enforces an uncommon conformation at silent bivalent 

genes in embryonic stem cells. (Stock, Giadrossi et al. 2007). 

 

 

 

 

Figure 5 Components of canonical PRC1 complex (cPRC1) and non-canonical PRC1 complex 

(ncPRC1). The core complex can associate with distinct PCGF proteins to incorporate with alternative 

members, as illustrated. PCGF2 and PCGF4 in cPCR1/ncPRC1 recruit RYBF/YAF. PCGF3 and PCGF5 

are for PRC1.3 and PRC1.5, while PCGF1 is for PRC1.1 and PCGF6, is for PRC1.6. Reprinted with 

permission from AAAS (Aranda, Mas et al. 2015).  

 

The classical model of polycomb mediated repression is: PRC2 firstly introduces 

H3K27me3 at the target promoter region. CBX recognizes H3K27me3 to recruit PRC1 

that subsequently catalyze H2AK119ub. Moreover, methylation on H3K27 prohibits 

the acetylation in the same loci. In mammalian cells, the RNA of Xist in X chromosome 

initiates the recruitment of PRC2 and finalize the X chromosome inactivation. 

Chromatin enriched of PRC1 and PRC2 is scattered in the euchromatin but not 

heterochromatin in an overlapped or non-overlapped way (Sugiyama, Cam et al. 2005, 

Vidal and Starowicz 2017). The ncPRC regulates gene transcription more in an 

H3K27me3 independent way. For instance, histone demethylase KDM2B in PRC1.1, 

containing a DNA binding CxxC domain, can recognize the unmethylated CpG islands 

of active genes and consequently guides the recruitment of PRC1.1 (van den Boom, 
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Maat et al. 2016). A recent study showed that cPRC1 but not ncPRC1 potentially control 

the repression inheritance through genome replication and cell division(Moussa, Bsteh 

et al. 2019). 

 

The PRC complexes repress homeotic genes and play crucial roles in embryonic 

development, stem cell differentiation, as well as hematopoiesis. ncPRC1 has been 

shown to dynamically accumulate during neural cell development. For instance, 

PRC1.6 is most abundant in the embryonic stem cells (EMCs), and decreases following 

the differentiation to neural progenitor cells (NPCs). PRC1.5 exhibits the opposite 

abundancy trend. In humans, the misregulation of the PRC complex occurs in many 

cancers (Loubiere, Martinez et al. 2019).  

 

 

1.1.3 ATP dependent chromatin remodelers  

 

The chromatin remodelers are enzymes that can hydrolyze ATP to regulate 

chromatin structure through several mechanisms: Nucleosome unwrapping, 

nucleosome repositioning/spacing, nucleosome ejection, histone eviction or exchange 

of histone variants (Lorch, Maier-Davis et al. 2010). Most chromatin remodelers share 

a conserved ATPase domain harbored by RNA/DNA helicase superfamily 2. According 

to the non-catalytic domains and functional analysis, chromatin remodelers have been 

categorized as four subfamilies: imitation switch (ISWI), chromodomain helicase 

DNA-binding (CHD), switch/sucrose non-fermentable (SWI/SNF) and INO80 (Figure 

6) (Clapier, Iwasa et al. 2017). Remodelers in SWI/SNF family contain a HSA 

(Helicase-SANT) domain located at N-terminal and a pair of bromodomain at the C -

terminal. The HAS domain is predicted to bind DNA, and the bromodomain, as 

mentioned, recognizes acetylated histone tails. ISWI protein contains a HAND-SANT- 

SLIDE (HSS) domain located at C-terminal, which binds to unmodified H3 and linker 

DNA. CHD family is characterized by the two tandem chromodomains presenting at N 

terminal of protein. A regulatory coupling region that can negatively regulate 

remodeling function of enzyme, resides adjacent ATPase domain. Similar to the 

SWI/SNF family, Ino80 also owns an HSA domain at N-terminal, while the large 

insertion between the two sub-domains of ATPase is various at length through species. 

INO80 promotes the exchange of H2A-H2B canonical dimers by variant H2A.Z-H2B, 

mediated by SWI2/SNF2-related protein p400, SWR1 chromatin remodeling complex, 

and Snf2-related CBP activator protein (SRCAP) complex (Clapier and Cairns 2009, 

Clapier, Iwasa et al. 2017).  
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Figure 6. Domain components of four chromatin remodeler families. All four families shared 

catalytic ATPase-Translocase domain (Tr) contains two-lobe subdomains with small or large insertions. 

Remodelers can be classified into four subfamilies based on their domain organization. Domains marked 

here are as explained in the above text section. NegC* in CHD family is structurally similar to the ISWI 

negative regulator of coupling (NegC) in ISWI (Clapier, Iwasa et al. 2017). Reprinted by permission 

from Springer Nature Customer Service Centre GmbH. 

 

 

1.1.3.1 CHD chromatin remodeling family 

The CHD remodelers, existing in all eukaryotic species, facilitate chromatin 

compaction and positive or negative gene transcription. Hence the remodelers are 

essential for many fundamental cellular processes, such as DNA repair, cell 

proliferation, and cell development. The loss or misfunction of CHD remodelers 

presents in many developmental diseases and cancers (Riedmann 2012).  

 

Members of CHD family can be further categorized into three classes, including 

CHD1-2 for class I, Mi2/NURD (CHD3-5) for class II and CHD6-9 for class III 

(Murawska and Brehm 2011, Mills 2017). ScCHD1 (S.cerevisiae CHD1) is the only 

CHD remodeler in the budding yeast, while fission yeast has three: Mit1, Helicase-

Related protein 1 and 3(Hrp1 and Hrp3) (Längst 2013). CHD1 remodeler is featured by 

an extra DNA binding domain at C-terminal to interact with AT-rich DNA sequences 

CHD3-5 belongs to the Mi2/NURD subfamily and contain two particular PHD (plant 

homeodomain) zinc finger located at N-terminal side of chromodomain, which can bind 

to methylated histones as mentioned before. Class II CHD remodelers are also featured 
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by domains at C-terminal for unknown function (DUF). Class III subfamily member 

contains a SANT motif for DNA binding and a tandem BRK (Braham and Kismet) 

domain at the C-terminal (Clapier, Iwasa et al. 2017). 

 

 

1.1.3.1.1 CHD1 and CHD2 

Human CHD1 is recruited to the active chromatin via interacting H3K4me2/3 with 

its chromodomain. H3K4me2/3 abounds in the transcriptional start site (TSS) of the 

active gene, as well in the coding region. The CHD1 binds to H3K4me3 enriched region 

to attach SNF2H, the FACT complex, the transcriptional elongation associated PAF 

complex as well as the U2 snRNP complex, and hence enhance the pre-mRNA splicing 

and transcriptional elongation (Sims III, Millhouse et al. 2007). The function of CHD2 

is highly correlated to CHD1. The coupled recruitment of CHD1 and CHD2 regulates 

the chromatin accessibility and histone H3/H3.3 occupancy at active chromatin regions 

(Siggens, Cordeddu et al. 2015). CHD1 is required for embryonic stem cell ECS 

differentiation, while CHD2 determines myogenic cell fate via deposition of H3.3. It 

has been shown that inactivation of CHD1 and CHD2 occurs in prostate cancer and 

leukemia, respectively (Mills 2017). 

 

CHD1, together with ISW1, is required to maintain the regular nucleosome 

spacing around promoters in budding yeast. ScCHD1 lacks several conserved residues 

in chromodomain and hence cannot bind H3K4me3. It recruits to transcriptionally 

active genes via interacting with elongation factors Spt4-Spt5 proteins, Paf1, and FACT 

(Mills 2017, Lin, Du et al. 2020). Both human CHD1 and ScCHD1 regulate cohesion 

and hence affect the chromatin compaction (Boginya, Detroja et al. 2019). Some studies 

showed that CHD1 is a component of conserved HAT complex SAGA-SLIK that favors 

H3 acetylation and H2B de-ubiquitination (Pray-Grant, Daniel et al. 2005). The 

chromodomains in ScCHD1 block their ability to use DNA as substrate in order to 

maintain the targeting preference of nucleosome (Hauk, McKnight et al. 2010). A small 

region (named coupling region) between ATPase and the DNA binding domain affect 

the nucleosome spacing function of ScCHD1 but not nucleosome assembly. This 

observation offers the hypothesis that the remodeling process of ScCHD1 is divided 

into two sequential steps, promoting nucleosome assembly and exerting nucleosome 

spacing, both of which are ATP dependent (Torigoe, Patel et al. 2013). In the fission 

yeast, human CHD class I has two orthologues Hrp1 and Hrp3, and both of them 

promote the nucleosome positioning in the coding region and inhibit the cryptic 

transcription (Pointner, Persson et al. 2012, Touat‐Todeschini, Hiriart et al. 2012).  
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1.1.4 Mechanisms of nucleosome assembly and remodeling 

In vitro, nucleosomes can be spontaneously assembled onto a DNA molecule with 

supplied histone octamers. This process is based on the contract charge properties of 

DNA and protein. In vivo, two significant factors are involved in the nucleosome 

assembly/disassembly in eukaryotic cells:  

1) Histone chaperone, such as nucleosome assembly protein 1 (Nap1) in S.pombe 

(Andrews, Chen et al. 2010)  

2) ATP dependent motor proteins, which do not only promote nucleosome 

assembly via wrapping DNA around the histones but also remodel chromatin by altering 

the positions of nucleosomes along with the DNA, such as CHD1(Torigoe, Patel et al. 

2013).  

 

   Although the remodelers variously affect the nucleosome/chromatin, they still share 

some standard features related to their conserved snf2-like ATPase domain that contains 

two RecA-like lobes (DExx, lobe 1; HELICc, lobe 2). They all prefer to use 

nucleosomes as substrates rather than DNA. Based on the conserved catalytic domain, 

one shared DNA translocation mechanism was discovered: Both RecA-like lobes 

(translocase domain) in ATPase domain bind superhelical location 2 (SHL2) of DNA 

in a nucleosome (two DNA helical turns away from the nucleosome dyad). Once bound 

to the SHL2, the translocase domain performs a DNA translocation with direction 3’ to 

5’ by dragging in DNA from the proximal side of the nucleosome (the DNA entry site, 

∼50 bp from the translocase) and pushing it towards the distal side (the DNA exit 

site,∼97 bp from the translocase). DNA translocation exerts this process via creating 

loops on the naked DNA strands with superhelical torsion at both sides of the 

translocase domain. The translocase domain keeps on attaching to the octamer during 

DNA translocation, probably through a histone-binding domain (HBD). In SWI/SNF, 

the HBD domain is known as Snf2 ATP coupling (SnAC). In ISWI and CHD, the HBD 

domain resides within the ATPase domain (Deindl, Hwang et al. 2013, Clapier, Iwasa 

et al. 2017). 

 

   The shared DNA translocation mechanism is regulated by alternative non-catalytic 

domains in remodelers and associated proteins to achieve different outcomes. For 

instance, the actin-related protein (ARP) module, as HAS and post HAS domains in 

SWI/SNF, facilitates nucleosome ejection. The position of the neighbor nucleosome is 

important for nucleosome spacing in the ISWI family that determines the length of the 

linker DNA by HSS domain (Struhl and Segal 2013, Clapier, Iwasa et al. 2017). Recent 

electron microscope (EM) studies revealed the architecture of the nucleosome-bound 

CHD1 structure, suggesting that CHD1 binds to nucleosomes through the DBD domain 

on linker DNA and ATPase domain on SHL2 (Lin, Du et al. 2020). It creates a twisted 
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DNA translocation in ATP-bound states. These studies explain the previous observation 

of nucleosome sliding towards the center position by CHD remodelers in vitro assays. 

This property finally generates the nucleosome array on chromatin (McKnight, Jenkins 

et al. 2011). 

 

 

1.2 Fission yeast Schizosaccharomyces pombe 

Fission yeast has been utilized in the lab since the 1950s as a model organism for 

investigating various eukaryotic cellular and molecular functions. The studies based on 

S.pombe are driven by its conserved biological processes, some of which have been lost 

in budding yeast Saccharomyces cerevisiae. Fission yeast is a unicellular eukaryotic 

organism that is ~7–14 µm long and ~4 µm wide. It proliferates via medial cell fission. 

The cell cycle of wild type fission yeast is rapid with generation time in vegetative 

growth around 2 hours at normal culturing temperature 30°C in complex and minimal 

media. Fission yeast cells produce mating types with relevant genotypes: h+ and h- cells, 

which produce P factor and M factor respectively. Both of P and M factors are mating 

pheromone that can stimulate associated downstream pathways in order to induce 

the sexual agglutination and crossing (Seike, Nakamura et al. 2013). When there is 

limited nutrition in the environment, yeast cells will arrest in the G1 phase of the mitotic 

cell cycle. h+ and h- cells conjugate to form a diploid zygote. If the nutrition/nitrogen 

is re-supplied in this step, the diploid zygote will go back to the mitotic cell cycle. 

Otherwise, it will continue with the meiotic cell cycle (Hayles and Nurse 1989, Hayles 

and Nurse 2018). 

 

S.pombe has a small genome around 14MB, consisting of three chromosomes that 

harbor a total of 2510 protein-coding genes with 5300 introns (Chikashige and Hiraoka 

2002). Genome organization of S.pombe shares several conserved features with higher 

eukaryotes compare to budding yeast, such as regional centromere, and similar telomere. 

Subtelomeric regions reside at both ends side of Chromosome I and II, but not 

chromosome III (rDNA). As we discussed above, heterochromatin in S.pombe is 

assembled and maintained via RNAi dependent and independent machinery, which is 

also similar to human. RNA splicing complex and process is also more similar to human 

compared to budding yeast. Because of the small genome, the mating phenomenon, and 

rapid growth, fission yeast cells are easy to genetically manipulate for required methods 

and studies (Muers 2011, Fair and Pleiss 2017, Hayles and Nurse 2018).  
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1.3   Hematopoietic development 

  

1.3.1 Hematopoiesis 
    Hematopoiesis is the developmental process of continually producing 
differentiated blood cells from hematopoietic stem cells (HSCs) with various functions, 
such as oxygen transferring and immune defense. In adults, HSCs are found in the bone 
marrow (BM), and are characterized by self-renewal capacity. It generates all lineages 
of blood cells. The differentiation of HSCs follows two major lineages—Myeloid and 
lymphoid. HSCs produce common myeloid progenitors (CMP) and common lymphoid 
progenitors (CLP). Myelopoiesis initiates from CMP and produces megakaryocytes, 
erythrocytes, mast cells, and myeloblasts that latter differentiate into 
monocytes/macrophages and granulocytes- basophil, neutrophil, and eosinophils. 
Granulocytes are a group of white blood cells in the immune system and characterized 
by the presence of granules in their cytoplasm and polymorphic nuclear. Lymphopoesis 
initiates from CLP and finally differentiates into matured lymphocytes that mainly 
locate in lymph, including natural killer cells, T cells, and B cells (Figure 7). However 
recent single-cell omics profiling reveals heterogeneity of HSCs and progenitors 
(Ceredig, Rolink et al. 2009, Zhang, Gao et al. 2018). 

    
The developmental fate and lineage choice in hematopoiesis are influenced by 

diverse sets of cytokines, chemokines, receptors, and intracellular signaling molecules. 

Some transcriptional factors can regulate the development of hematopoietic cells, such 

as GATA-1 for erythropoiesis and PU.1 for myelopoiesis (Burda, Laslo et al. 2010). 

Transcriptional factors BACH 1/2 are associated with the lineage direction of erythroid-

myeloid progenitors and lymphoid-myeloid progenitors as a response to the 

environmental changes (Kato and Igarashi 2019). Presence of different CD (cluster of 

differentiation) markers on the cell surface are used to characterize the cell fates. Taking 

myeloid lineage as an example: CD34+/38- for HSCs, CD34+/127+ for CMPs, 

CD41+/42+ for megakaryocytes, and CD11B+/13+/16+/18+ for matured granulocytes 

(Altiındağ and Baykan 2017).   
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Figure 7. Classical hematopoietic hierarchy. Blood cell differentiation initiates from multi-potential 

hematopoietic stem cells and evolves into two major lineages-myeloid and lymphoid. Hematopoietic 

stem cell generates common myeloid progenitors, which differentiate into mature megakaryocytes, 

erythrocytes, basophils, neutrophils, eosinophils, monocytes /macrophages, and common lymphoid 

progenitors, which differentiate into mature nature killer cells, T cells and B cells. Reuse permission from 

A. Rad and M. Häggström. CC-BY-SA 3.0 license. 

 
 
1.3.2 Epigenetics of hematopoietic development 

Epigenetics are changes that can switch on/off gene transcription without altering 

the DNA sequences. Several epigenetic mechanisms have been described, including 

DNA methylation, histone modification, chromatin remodeling by remodeling enzymes, 

and RNA interference (Weinhold 2006).  
 

In general, global DNA methylation changes dynamically during hematopoietic cell 

development. Overall, the methylation level increase during lymphoid differentiation, 

while erythroid development is more associated with reduced global methylation (Ji, 

Ehrlich et al. 2010, Farlik, Halbritter et al. 2016). CpG methylation at developmental 

regulatory genes’ promoters is the critical epigenetic regulation in both lineage-choice 

and differentiation within hematopoiesis. For instance, DNA 

methylation/demethylation patterns present for activating lineage-specific genes also 

exists to suppress transcription of other lineages (Hodges, Molaro et al. 2011). DNA 
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methylation also involves in regulating the sensitivity to differentiation factor through 

methylation in the downstream regulatory sites of crucial transcriptional factors, such 

as the binding site of GATA-1, RUNX1 (Suzuki, Shimizu et al. 2017). DNA methylation 

in human is carried out by sets of DNA methyltransferases: DNMT1, DNMT3A, and 

DNMT3B. DNMT3A and DNMT3B are responsible for methylated CpG while Dnmt1 

is responsible for maintaining the existing DNA methylation (Okano, Bell et al. 1999). 

DNMT3A is ubiquitously expressed throughout the differentiation. Loss of DNMT3A 

in HSC results in increased self-renewal capacity and decreased differentiation capacity, 

but fewer changes are caused by loss of DNMT3B. The loss of DNMT1 disrupts the 

self-renewal and multiple differentiation potency in long term HSC that has extensive 

self-renewal capacity (Trowbridge, Snow et al. 2009, Sashida and Iwama 2012). 

   

     The DNA oxidation also regulates global DNA methylation patterns via TET 

enzymes.TET1/2/3 catalyze 5-methyl-cytosine (5mC) conversion to 5-hydroxymethyl-

cytosine (5hmC), and to further oxidation products. This process finally leads to DNA 

demethylation through the thymine DNA glycosylase (TDG) - base excision repair 

(BER) pathways. Normally, TET1 and 3 promote 5hmC at promoters and prohibit 

DNMT activity (Rasmussen and Helin 2016). TET1 is highly expressed in ESCs, TET2 

and TET3 are more expressed in differentiated myeloid cells. In mice, disruption of 

TET2 results in enhanced self-renewal and proliferation ability. The differentiation 

without TET2 in HSCs is also towards myeloid lineage. TET2 and DNMT3A may co-

function to limit the expression of HSC genes but to activate the expression of the 

lineage-specific gene, such as KLF4 for erythroid differentiation (Sashida and Iwama 

2012, Goyama and Kitamura 2017). 

 

Histone modifications regulate transcription of lineage-specific genes. For 

instance, differentiation from CMP is found coupled with HDAC1 repression by 

CCAAT/enhancer-binding proteins during myeloid differentiation and HDAC1 

activation by GATA binding protein GATA-1 during erythro-megakaryocytic 

differentiation (Wada, Kikuchi et al. 2009). Double deletion of H3K9 methyltransferase 

SUV39H1 and SUV39H2 in HSC results in reduced stem cell function and drives the 

differentiation towards myeloid development with reduced lymphoid output (Keenan, 

Iannarella et al. 2020). PRC1 and PRC2 facilitate hematopoiesis and self-renewal for 

HSCs (Sashida and Iwama 2012).  

 

Chromatin remodelers are also involved in hematopoiesis regulation. For example, 

the chromatin remodeling subunit Baf200 facilitates normal hematopoiesis and 

suppresses leukemogenesis, through regulation erythropoiesis- and hematopoiesis-

associated genes (Liu, Wan et al. 2018).  
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1.3.3 Disorders of hematopoietic development  

Hematologic malignancies can occur at any stage of hematopoiesis and can 

produce dysfunctional blood cells and defects of the immune system or susceptibility 

to uncontrolled bleeding. Disruption of hematopoietic differentiation can produce three 

main types of blood cancer: leukemia, lymphoma, and myeloma. For leukemia, 

abnormal white blood cells or poorly differentiated cells are massively produced in the 

bone marrow, resulting in the accumulation of immature dysfunctional leukemic cells 

in the blood. According to the lineages of the neoplastic cells, leukemia is categorized 

as acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute 

lymphocytic leukemia (ALL) and chronic lymphoid leukemia (CLL) (Hu and 

Shilatifard 2016). 

      

1.3.3.1 Epigenetic changes in AML 

    Acute myeloid leukemia (AML) is a common blood malignant disease of the 

myeloid lineage of hematopoietic cells. It is distinguished by the block of myeloid 

lineage differentiation and abnormal accumulation of immature cells. Genetic 

mutations of epigenetic modifiers that can affect myeloid differentiation is one of the 

core aberrances leading to the disease. These epigenetic factors are involved in the 

mechanisms of DNA methylation, histone modification, chromatin remodeling enzyme 

or associated factors, and chromatin structure factor such as cohesion (DiNardo and 

Cortes 2016).  

 

DNMT3A is frequently mutated in many different types of hematopoietic diseases. 

Over 20% de novo AML harbor this mutation. Most frequent DNMT3A mutation in 

AML is R882H or R882C, which abolishes enzyme activity and DNA binding. It results 

in a particular pattern of abnormal DNA methylation, which consequently damages the 

function of HSCs, enhances self-renewal, and blocks differentiation (Huang, Ma et al. 

2013). DNMT3A dysfunction co-appears with a mutation on nucleophosmin (NPM1), 

FLT3-ITD or isocitrate dehydrogenase 1 (IDH1). Inactivation of TET2, resulting in 

increased 5mC levels but low levels of 5hmC, is present in 10~20% AML, but in over 

50% in CML (Pratcorona, Abbas et al. 2012, DiNardo and Cortes 2016, Goyama and 

Kitamura 2017, Koya and Kurokawa 2018).  

 

The mutations of IDH1-R132, IDH2-R140, and IDH2-R172 occur in ∼20% of 

AML with increased occurrence with age. Isocitrate dehydrogenase 1 and 2 (IDH1/2) 

proteins exert the oxidative decarboxylation of isocitrate to α-ketoglutarate. Mutant 

IDH proteins convert α-ketoglutarate into the oncometabolite 2-hydroxyglutarate, 

which limits α-ketoglutarate dependent enzymes, including TET2 for DNA 

hydroxymethylation, histone demethylase such as H3K9 demethylase 
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KDM4C (Geisbrecht and Gould 1999, Ward, Patel et al. 2010, Hu and Shilatifard 2016, 

Goyama and Kitamura 2017).  

 

EZH2 facilitates in leukemogenesis. Mutation of EZH2, as well as mutations on 

other PRC2 members, caused lack of H3K27me3 and repression defect on the target 

genes, EZH2 mutations have been frequently reported in Myelodysplastic syndrome 

(MDS) and T cell acute lymphoid leukemia (T-ALL). Last year, EZH2 mutations were 

reported as a new prognosis marker together with FLT3 and IDH2 mutations in AML 

patients (Mechaal, Menif et al. 2019). Gain-function-mutation or overexpression of 

EZH2, causing hypermethylation on H3K27, has been reported in natural killer/T cell 

(NKT) or B cell lymphoma(Lund, Adams et al. 2014). Epigenetic factor ASXL1 is 

associated with PRC mediated gene repression via recruiting PRC2 to the target locus. 

Mutation of ASXL1 in AML, usually occurred as C-terminal truncation, promotes 

myeloid transformation through disrupting PRC2 mediated gene repression (Eriksson, 

Lennartsson et al. 2015, DiNardo and Cortes 2016) 

 

    In AML, mutations are also found in genes of chromatin remodelers and structure 

factors that regulate downstream gene transcription through altering 

nucleosome/chromatin structures. BAF250A is one of the central members of the 

chromatin remodeling BAF complex. Mutant BAF250A has been reported in ~0.5% 

AML (Network 2013). Another chromatin structure modifier is cohesin, which is the 

protein complex facilitating sister chromatid cohesion, homologs recombination. It can 

form the chromatin loop together with CTCF and regulate associated gene expression 

(Wutz, Várnai et al. 2017). Mutation of cohesion has been reported in 5%-13% AML 

(Eriksson, Lennartsson et al. 2015). 

. 

Cytogenetic abnormality (chromosomal rearrangement), such as RUNX1-

RUNX1T1, MLLT3-MLL, MLL-AF9, is observed in over 50% the AML patients. The 

fused histone methyltransferases MLL proteins catalyze on wrong target genes and 

consequently cause aberrant gene transcription (Wang, Lin et al. 2009, Yang and Ernst 

2017).  
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2. Aim of The Thesis 

The thesis aims to explore the chromatin organization and related transcription in 

models of the fission yeast and human hematopoietic development. 

 

Study I: Investigate the novel role of Abo1 in the silencing of different types of 

heterochromatin in S.pombe and understanding the mechanism of H3K9me2/3 

establishment in heterochromatin regions 

 

Study II: Identify functional role of non-catalytic domain of chromatin remodeler in 

chromatin remodeling process via in vitro assays. 

 

Study III: Study the usage of alternative TSS causing protein domain exclusion and 

the functional consequences in hematopoietic cells. 

 

Study IV: Identify novel roles of epigenetic regulators in hematopoietic differentiation.         
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3. Methods 

In this thesis, multiple approaches were applied to explore the chromatin structure 

and functional consequences in the models fission yeast and human hematopoietic cell 

lines. Here we discuss some of the used methodologies. The specific conditions used in 

each method and experiment are shown in manuscripts. 

 

 

3.1 Cell culture  

Two models were applied for culturing in the studies for this thesis: fission yeast 

Schizosaccharomyces pombe and human hematopoietic cell lines. 

 

The fission yeast has been established and utilized as a great laboratory model to 

study chromatin structures. The yeast cells were cultured in the full nutrition medium 

(YES medium) with the components of yeast extract (5 g/l), glucose (20 g/l), and 

supplements: 225 mg/l adenine, histidine, leucine, uracil, and lysine hydrochloride. 

Special conditions were introduced according to required experiments, such as 

antibiotics/chemicals for strain selection with particular genotypes, limited nitrogen 

media for inducing crossing to generate the target genotype. The typical growing 

temperature for yeast culture is 30°C, while the heat and cold induction to examine the 

environmental stress response are performed at 37°C and 25°C. Fission yeasts with 

various genotypes were applied in study I and II 

 

Hematopoietic human cell lines used in the studies include the Jurkat cell line 

(ATCC® TIB-152™) and the K-562 cell line (ATCC® CCL-243™), which were 

applied in study III and IV. K562 cell line is derived from the bone marrow of a 53-

year-old female chronic myelogenous leukemia (CML) patient in blast crisis. It is a 

suspension cell line cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) with 

10% fetal bovine serum. The K-562 cells were characterized as a multi potential 

leukemia cell line similar to the early-stage of erythrocytes, granulocytes, and 

monocytes. K-562 cells can be induced to megakaryocytic differentiation by phorbol 

12-myristate 13-acetate PMA treatment (Huang, Zhao et al. 2014). Jurkat cell line is 

derived from the peripheral blood of a 14-year-old boy with T-cell leukemia. It is a 

suspension cell line cultured in RPMI-1640 medium with 10% fetal bovine serum. 

 

 

3.2 Chromatin immunoprecipitation 

Chromatin immunoprecipitation (ChIP) is a method widely used for the 

identification of genome-wide locations of binding of various transcriptional factors, 



28 
 

histones, and other chromatin interacted proteins in vivo. Generally, DNA and 

interacting protein are cross-linked by a cross-linking agent such as formaldehyde. The 

cross-linked chromatin is then sonicated into segments approximately 300-500bp. The 

fragments bound the target protein are captured by a specific antibody that is then pulled 

down with protein A/G coated beads. Unspecific binding is washed away using 

different washing buffers. The cross-link of the antibody-protein-DNA complex is then 

reversed by incubation at 65°C together with a proteinase. With additional clean-up 

steps, the ChIP DNA is eluted and analyzed by different methods, such as qPCR or 

Next-generation sequencing.  

  

ChIP-sequencing (ChIP-seq) is a well-established and popular method to analyze 

the genome-wide enrichment of a chromatin-binding protein. Briefly, after the ChIP 

experiment, adaptors with index sequences are ligated to both ends of the eluted DNA 

fragments. Adaptor ligated fragments are subsequent amplified to prepare the ChIP 

DNA library. Hybridization happens in a flowcell between the library fragments and 

immobilized oligos with complementary sequences to adaptor regions. It triggers the 

bridge amplification and cluster generation. Next, fragments are sequenced by DNA 

synthesis with fluorescent-tagged nucleotides. Distinct fluorescent signals represent the 

read sequences. Mapped sequences to the reference genome reflect locations for the 

target protein. Together comparison with the enrichment of other factors, such as 

epigenetic marks, it makes ChIP-seq an excellent method to understand potential 

function and mechanism of the target protein (Buermans and Den Dunnen 2014). In our 

studies, eluted ChIP DNA was sent to our core facility BEA (http://www.bea.ki.se/), for 

library preparation and sequencing. 

 

 

3.3 Overall gene expression analysis 

In our studies, different methods were used to explore the overall gene expression, 

including RNA-microarray, RNA-sequencing, and cap analysis of gene expression 

(CAGE).   

 

RNA-microarray 

A microarray is a laboratory tool containing a slide with a fixed microscopy DNA 

probe that can hybridize with nucleotide sequences of the target. Total RNA molecules 

are extracted, reverse-transcribed, and labeled with a fluorescent dye. The 

complementary hybridization between cDNA fragment and the fixed probe can produce 

colored signals on the microarray slide. After hybridization, the microarray is scanned 

to measure the signals reflecting the expression of each gene printed on the slide. These 

slides, referred as gene chips or DNA chips, are utilized to detect gene expressions -- 
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transcriptome or the set of messenger RNA (mRNA) transcripts expressed by a group 

of genes (Sealfon and Chu 2011). Each chip allows measuring more than one sample 

by labeling the cDNA with distinct dyes, which make it valuable for comparing the 

expression of the same gene in different cells/conditions. In study I, for S.pombe, we 

applied RNA microarray in the multiple samples (different genotypes with alternative 

culturing conditions) by using the GeneChip 1.0FR array from Affymetrix. It is a tilling 

array, which means the probes cover the whole fission yeast genome, even the silent 

centromere region. The length of the probe is 25bp, with an overlap of 5bp. 

 

RNA-sequencing 

RNA sequencing (RNA-seq) is a high-throughput technique to examine the 

quantity and sequences of extracted RNA molecules by using next-generation 

sequencing (NGS). It is now another common method in the lab to analyze the overall 

transcriptome (Wang, Gerstein et al. 2009). In study III and V, after purification of total 

RNA from cells. Illumina TruSeq Stranded RNA assays were applied, which includes 

mRNA isolation, cDNA synthesis, ligations of adapters, and amplification of index 

libraries. The libraries were sequenced using Illumina Nextseq 550, generating 75bp 

single-end reads. Furthermore, the output reads were aligned to the human genome 

Refseq (hg38/GRCH38). After removing the repetitive and fuzzy regions, mapped 

reads offered the informative over-all gene expression. RNA sequencing is favored for 

its high dynamic range, detectability of RNA splicing, and single nucleotide 

polymorphism identification. However, the disadvantages are also very obvious for its 

high cost, the complexity of analysis (Altiındağ and Baykan 2017). 

 

CAGE 

     In study III, we aim to study the distribution of alternative TSS usage over a wide 

range of primary cells. Therefore, data obtained with Cap Analysis of Gene Expression 

(CAGE) that only measure a small fragment from the 5’-end of mRNA is perfect for 

this study. 

  

     Cap Analysis of Gene Expression (CAGE), developed by RIKEN in Japan, is a 

high throughput method to analyze transcriptome via measuring the sequence tags 5’ 

ends of mRNA at the cap sites and thereby identifying the transcriptional starting site. 

Briefly, RNA is extracted from cells and then reversed transcribed into first-strand 

cDNA with an oligo dT and random primer mix. The full-length cDNA is then picked 

out by biotinylated cap-trapper. The linker sequence contains restriction enzyme 

digestion sites of XhoI or I-CeuI or XmaJI, and MmeI. Additional upper single-stranded 

overhang oligonucleotide GN5 (GNNNNN) is also designed in the linker sequence. 

GN5 can subsequently be ligated to the single-strand full-length cDNA and is used to 
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synthesis of the second strand. The double-stranded cDNA is cleaved by enzyme MmeI, 

which creates a 2bp overhang at the cleavage site. The second linker sequence, which 

contains the XbaI site, ligates to the 2bp overhang. Streptavidin beads separate the 

ligation product via linking to the biotin at the 5’end of the fragment. PCR amplifies 

the purified 5’end tag. The tags are then sequenced and matched to the reference 

genome (Figure 8) (Shiraki, Kondo et al. 2003). CAGE shows accurate gene expression 

through detecting TSS but not gene body, and consequently offer information for 

prediction of transcriptional factor binding motifs. It is also can be used for detection 

of short enhancer RNA (eRNA) that usually expresses at every low level. 

 

In the FANTOM 5 project (https://fantom.gsc.riken.jp/5/), researchers have 

systemically investigated the TSSs using the CAGE method in ~400 distinct cell types. 

In study III, we used the CAGE data from FANTOM 5 project to study the alternative 

TSS usage in different cell types.  
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Figure 8. Schematic procedure of the CAGE protocol as detailed in Methods (Shiraki, Kondo et al. 

2003). Copyright (2020) National Academy of Sciences 

 

 

3.4 Biochemical assays in vitro 

In study II, a series of in vitro biochemical assays were performed in fission yeast 

to identify the functional roles of specific domains in our protein of interest. The in vitro 

assays include histone protein expression and purification, histone octamer 

reconstitution, nucleosome reconstitution, affinity purification and in vitro ATPase 

hydrolyzing activity. Methods performed for these in vitro assays such as plasmid 

construction, inclusion body extraction, gel filtration, DNA amplification, and High-

performance liquid chromatography (HPLC). HPLC is a technique for separating a 
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mixture of compounds (proteins in our study) by pumping the mixture-dissolved 

resolvent (mobile phase) at a high-pressure condition through a column filled with solid 

packing materials (stationary phase). Different components in the mixture interact 

differently with the stationary phase, which results in distinct flow rates and consequent 

components separation. The ATPase activity assay was performed with isotope Pi 

labeled ATP. The percentage of released labeled Pi represented the capacity of ATP 

hydrolysis with various substrates. Details of these biochemical assays were described 

in the manuscript. 

  

3.5 siRNA knocking down 

Gene knockdown is a common technique that decreases the expression of one gene 

(or several genes) via modifications on DNA or RNA level. RNA interference knocking 

down is the method of reducing gene transcription by introducing the small double-

stranded siRNA. Once this exogenous siRNA is transfected into cells, it will 

complementarily bind to the target mRNA and trigger the recruitment of RNA-induced 

silencing complex. Consequently, it leads to the degradation of mRNA. This method is 

widely utilized in the lab to study gene function. In our study III, we used siRNA was 

transfected by using NeonTM Transfection system to knockdown different potential 

transcripts to study the functional consequences caused by potential alternative 

transcripts from alternative TSS usage. 
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4. Results and Discussion 

 

4.1 Study I: Abo1 is required for the H3K9me2 to H3K9me3 transition in 

heterochromatin   

Constitutive heterochromatin and facultative heterochromatin, which are featured by 

di-/tri- methylated H3K9 and associated heterochromatin protein HP1, are relied on 

different silencing machinery. In study I, we investigated the role of the conserved 

bromodomain AAA-ATPase Abo1 in the heterochromatin regions of the fission yeast 

model, Shizosaccharomyces pombe.  

 

In this study, we first investigated the involvement of Abo1 in different aspects of 

heterochromatin assembly through performing Synthetic Genetic Array (SGA) assay, 

in which a small library containing 711 single gene deletion strains crossed with abo1∆ 

strain. The strongest negatively genetic interactions were observed between Abo1 and 

heterochromatin factors, including Clr3, Clr4, and Swi6. Interestingly, transcriptomic 

analysis reveals significant changes at heterochromatin regions between wild type and 

abo1-depleted mutant. Deletion of abo1 caused transcription silencing defect at both 

pericentromeric and subtelomeric heterochromatin regions. We subsequently examined 

the H3K9me2 and H3K9me3 heterochromatin marks in abo1∆ cells compared with 

wild type. Deletion of abo1 caused an increased H3K9me2 and reduced H3K9me3 at 

pericentromeric heterochromatin region. Meanwhile, in the subtelomeric region, Abo1 

deletion results in decreased H3K9me2 and H3K9me3 marks. RT-qPCR and ChIP-

qPCR validated these observations on different heterochromatin regions. Facultative 

heterochromatin regions, known as “determinant of selective removal” (DSR) islands 

and containing meiotic genes, were also investigated. We found that abo1∆ mutant 

compared to wild type, displayed a reduced enrichment of H3K9me2 and H3K9me3 

marks in DSR islands without any effect on gene expression indicating that Abo1 is 

required for the establishment of heterochromatin and contributes to the transition of 

H3K9me2 to me3 at DSR islands. To search for the heterochromatin assembly 

mechanism involving Abo1, we analyzed published H3K9me2 ChIP-seq data from 

several different mutant strains. Interestingly, abo1 deletion shows similar H3K9me2 

regulation patter in different heterochromatin regions to the H3K9 methyltransferase 

Clr4 point mutation Clr4W31G that inhibits the transition from H3K9me2 to H3K9me3 

through disturbing the Clr4 self-recruitment by the chromodomain.   

 

ChIP-qPCR at exampled genes for each heterochromatin regions revealed that the Clr4 

occupancy decreased in abo1∆ at subtelomeric region and pericentromeric region, 

which is consistent to the reduced H3K9me3 and the silencing defect in the same loci. 
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Clr4 enrichment in DSR islands was also significantly decreased with deletion of abo1. 

These result supported the role of Abo1 to stabilize Clr4 recruitment to allow the 

H3K9me2-H3K9me3 transition at different heterochromatin regions. By examine 

histone occupancy by H3 ChIP as well as nucleosome positioning data from previous 

published paper, we did not find significant changes in subtelomeric, pericentromeric 

and DSR heterochromatin regions, suggesting that H3K9me2 and H3K9me3 changes 

in abo1∆ cells is not induced by nucleosome dynamics or occupancy defects(Gal, 

Murton et al. 2016).  

 

Based on these findings, this work has identified Abo1 as a new factor involved in the 

H3K9 methylation process in fission yeast that we summarizes in a simplified mode 

 

In the constitutive pericentromeric region or cen-like region, silencing machinery is 

divided into two steps: 1) RNAi co-transcriptional gene silencing (RNAi-CTGS) 

followed by transcriptional gene silencing (RNAi-TGS). siRNA from the RNAi-CTGS 

activate RITE complex and help to recruit Clr4 to establish H3K9me2. In this step, 

H3K9me2 and H3ac present at the same time and still allow the transcription of dg-dh 

repeats. 2) In the RNAi-TGS step, H3K9 is tri-methylated. Swi6 is recruited to the 

H3K9me3 to establish the real transcriptional silencing (Jih, Iglesias et al. 2017). 

Deacetylase Clr3 may also involve in this process. In the facultative heterochromatin 

region, without RNAi-CTGS, Abo1 may help to recruit Clr4 promoting both H3K9me2 

and H3K9me3, leading to TGS 

 

In this study, we uncovers a role for Abo1 in stabilizing directly or indirectly Clr4 

recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin in S. 

pombe. However, many questions about Abo1 in S.pombe still need to be answered in 

the future study. The recruitment of Abo1 to heterochromatin and Clr4 and the 

functional role of its non-canonical bromodomain are still unclear. The ATPase domain 

in Abo1 indicates its capacity of ATP hydrolysis. The functional role of ATPase domain 

in heterochromatin assembly, even in regulating genome-wide histone occupancy as a 

histone chaperone, are still not clear. Its human homolog ATAD2 has been found to 

overexpress in several types of cancer and regulates transcription of several key factors 

including Myc, and EZH2, as well as crosstalk with P53/P21 pathways (Altintas, 

Shukla et al. 2012, Lu, Chua et al. 2015, Morozumi, Boussouar et al. 2016). Since the 

exact function of the human Abo1 homolog ATAD2 in both cancer and normal cells 

remains unclear, this work open new understanding of the role of the conserved 

bromodomain AAA-ATPase heterochromatin assembly 
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4.2 Study II: The role of non-catalytic domains of Hrp3 in chromatin remodeling 

 

Chromatin is the fundamental molecular structure for packing DNA in chromosomes. 

The basic unit forming chromatin structure is a nucleosome that is consisted of ~147bp 

linear DNA wrapped around a histone octamer. ATPase dependent chromatin 

remodelers regulate chromatin structure through nucleosome sliding, nucleosome 

assembly, nucleosome unwrapping, histone eviction, and histone variants exchange 

(Cooper 2000). CHD1 is a conserved ATP dependent chromatin remodeling enzyme 

regulating H3.3 turnover and maintaining an open chromatin state in the active gene 

(Siggens, Cordeddu et al. 2015). A study in CHD1 in S.cerevisae revealed a small 

region between the ATPase catalytic domain and DNA binding domain, coupling the 

processes of nucleosome assembly and nucleosome spacing (Torigoe, Patel et al. 2013). 

SWI/SNF remodelers share a feature of specific taking nucleosome as substrate but not 

DNA. Hrp3, as one of the two the homologs of CHD1/2 remodeler in S.pombe, has 

been previously reported to act more significate role in maintaining nucleosome 

occupancy (Pointner, Persson et al. 2012). In this study, we aim to explore the functional 

roles in chromatin remodeling for the non-catalytic domains of CHD1/2 remodeler 

homolog Hrp3 in S.pombe. 

 

In this study, we generated a series of mutant strains lacking different non-catalytic 

domain of Hrp3 that is TAP tagged at its C-terminus. Affinity purification of wild type 

and mutant Hrp3_TAP was performed and found that loss of non-catalytic domains 

significantly affect the co-purification of histones. To perform in vitro studies, we 

expressed four canonical S. pombe histone proteins H3, H4 H2A, and H2B from 

optimally plasmids and E.coli strains. Overexpression of proteins in E.coli cells formed 

inclusion bodies. We extracted inclusion bodies and purified histone proteins from the 

extracts through high-performance liquid chromatography. The almost equal ratios of 

histone proteins were mixed and dialyzed to refold histone octamer. The dialyzed 

histone mix was applied to gel filtration colomun to purify the histone octamer complex. 

210 bp DNA containing ‘601’ nucleosome positioning sequence along with 70 bp of 

extra-nucleosomal DNA was amplified. It further constituted with histone octamer into 

a sp70N0 nucleosome. With affinity purification, we determined the compromised 

histone association of mutant Hrp3 in vivo compared to wild type Hrp3, through anti-

H3 western blot. With this observation, in vitro assay was applied to analyze the ATP 

hydrolyzing capacity of mutant Hrp3 compared to wild type. Using DNA and sp70N0 

nucleosome as substrate, we aimed to identify the domains that effect on catalytic 

activity. Most of the mutant Hrp3 exhibited different degrees of compromised ATPase 

activity. SANT and SLIDE sub-domains are composed of DNA binding domain in Hrp3. 

They may exert distinct functional roles, proposed from their distinct effects from 
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domain deletions on in vivo nucleosome association and ATP hydrolysis capacity. We 

also observed that Hrp3 with SANT domain and coupling region deletions exhibited 

the similar ATPase activity level by using DNA and nucleosome as substrate. It 

indicated that Hrp3 enzyme loose the preference of taking nucleosome without SANT 

domain and the coupling region. Taken together, all our data revealed that the non-

catalytic domain of Hrp3 can affect the enzymatic activity and could further affect the 

chromatin remodeling process. However, future experiments, such as the in vitro 

nucleosome binding assay, nucleosome sliding assay, still need to be done to figure out 

how these non-catalytic domain effect in remodeling process.  

 

In this study, we have down lots of works to generate the in vitro assays and established 

a platform for further exploration. 

 

 

4.3 Study III: Investigation of protein coding sequence exclusion by alternative 

transcription start site usage across the human body 

In mammalian cells, multiple protein isoforms or protein variants are transcribed from 

the same gene. This is a widespread phenomenon. Protein isoforms are produced by 

several different mechanisms, including alternative transcription initiation, alternative 

translational initiation, alternative splicing, and alternative poly A-tail. Multi-

mechanisms can also co-functionalize to produce various protein isoforms. In this study, 

we used CAGE data from the FANTOM 5 project to analyze 890 CAGE libraries in 

176 different primary cell types, aiming to explore the distribution of alternative TSSs. 

Furthermore we investigated whether their usage causes exclusion of coding sequences, 

and consequently potentially functional consequences in regulating biological 

processes. 

 

Firstly, we merged the detected TSSs located around the same loci of the same strand 

as Tag cluster (TC) to categorize detected tag clusters (TC) and their expression. All 

TCs with an expression range of at least 1 or 10 tags per million (TPM) in any of CAGE 

library were hierarchical classified. Analysis of. TCs were defined into subtypes, 

including final regions from 5’UTR, 500bp upstream region of TSS to 3’UTR. In one 

primary cell as an example, most TCs could be mapped to RefSeq genes. Within this 

group, most TCs could be mapped to the same strand of genes, of which most (over 

70%) were characterized as unknown novel TSS. Within TC group of unknown TSSs, 

most TCs (96%) could be mapped to the coding genes but not to the annotated TSS of 

the gene, which may induce potentially exclusively protein-coding. Combining the 

hierarchical classification in all CAGE-libraries, we further identified that annotated 

TSSs of protein-coding gene and ncRNA are ubiquitously expressed, while the 
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expression of TSS located in intergenic regions, antisense strand and within coding 

region turns out more cell-specific.   

     

We then re-examined this hierarchical classification analysis of all TCs expressed in 

each CAGE-library and clustered the analysis for each specific primary cell type, 

aiming to identify whether the distribution patterns across the classification tree were 

different between cell types. Surprisingly, the analysis revealed a stable fraction of each 

TCs category throughout cell types. Hematopoietic cells, especially monocytes with 

different inductions were outliers with less annotated TSS usage of transcript genes and 

more intragenic TSS usage. Then we narrowed down the analysis in hematopoietic cells 

with percentages of usage of various types of TCs. The hematopoietic cells include 

progenitors, myeloid and lymphoid cells. Interestingly, TCs in annotated TSS of 

protein-coding gene and TCs within 5’UTR were more preferred in hematopoietic 

progenitor cells, while TCs within the protein-coding region was more favored in 

matured myeloid cells. Lymphoid cells exhibited preference of TCs between 

progenitors and myeloid cells. 

 

TCs within the protein-coding region represents the TSSs that potentially generate 

coding sequences truncated protein and may change the functions of the expressed 

protein. In our analysis, 7.8% of total TCs mapped to the Refseq protein-coding 

transcripts belong to this kind of TSS. Over half of the genes have this kind of TSS that 

has been previously annotated and further supported by CAGE data in our study. We 

also analyzed the expression pattern (with a cutoff 10TPM) of these TCs potentially 

leading truncated proteins. The TCs mapped to annotated TSS leading truncated protein 

were more cell-specific compared to the TCs mapped to annotated TSS leading to no 

truncations. However, no significant functional clustering of genes mapped by the TCs 

of coding sequence exclusion was found. However, considering cell type, we observed 

a subgroup of immune cells, including blood cells. 

 

In the next step, we aimed to define the main and alternative TSSs. Usually, the most 

upstream TSS is commonly viewed as the main TSS. Nevertheless, this definition is 

not based on expression level. Only 33% of genes exhibited the most upstream TSS, 

and most expression at the same time. Over half of the genes, harboring annotated or 

all coding sequence exclusive TSS, showed the higher expression of coding sequence 

exclusive TSS than other TSSs. Our analysis suggested that the most upstream TSSs of 

coding genes are not always the most expressed TSSs, but are more universal used in 

different cell types. Therefore, we still kept the common view of main and alternative 

TSS in the following analysis.   

 



38 
 

Furthermore, we set out filters of TCs to explore the cell-specific expression of 

alternative TSS leading protein domain loss. Within TCs mapped to annotated coding 

TSS, 78 protein domains from 36 genes could be excluded in a cell-specific manner. 

Within all TCs, this number of genes increased to 286, with 715 protein domains. In 

hematopoietic cells, we identified a total of 60 genes that have potential alternative TSS 

leading to domain exclusion according to specific cell type or specific differentiation 

lineage. This observation was further validated by RT-qPCR of examples PRDM1, 

KDM2B, RERE in different sorted hematopoietic cells, suggesting the different usage 

of alternative TSS of genes may result in distinct functional consequences in 

hematopoiesis. 

 

To explore the functional changes caused by alternative TSS usage in different 

hematopoietic cells, we took the H3K4 and H3K36 demethylase KDM2B as an 

example for further studies. KDM2B can regulate lineage commitment in normal and 

malignant hematopoiesis in mice (Andricovich, Kai et al. 2016). Studies in mice also 

showed the presence of two isoform proteins of KDM2B: the full-length one and the 

short one that lacks JmjC catalytic domain (He, Shen et al. 2013). The CAGE analysis 

revealed three TSS in KDM2B. The most expressed TSS1 and TSS3 matched the 

reported isoforms in mice. They showed different expression levels in lymphoid and 

myeloid cells. We speculated that the short isoform might participate more specifically 

in the PRC1.1 complex to locate unmethylated CpG islands. To investigate consequent 

functional changes with the usage of alternative TSS of KDM2B, we knocked down 

the TSS1 and alternative TSS3 in Jurkat cells and performed analysis on RNA-seq and 

the PRC1.1 target H2AK119ub, with ChIP-seq. Our analysis showed the differences 

between knocking down these two TSS. The more significant changed in both RNA-

seq and ChIP-seq were present in TSS1 knockdown cells, while no significant changes 

were observed for knocking down both TSS1 and TSS3 compared to the control, which 

contradict our hypothesizes. 

 

We performed CAGE analysis with 16 human time course to identify protein domain 

loss during differentiation. A total 76 genes were identified harboring different TSS 

usage to express different isoforms, which some of them were unknown before. 

 

In this study, we characterized alternative TSS usage of genes, especially in 

hematopoietic cells. We further explored how the isoform regulation is associated with 

differentiation or cell type. We discovered two kinds of domain loss according to usage 

of TSS within coding region: varying numbers repeated domains such as NFLX1, or 

functional domain loss such as MYO10. The whole analysis and methods were based 

on RNA level. We still lack the evidence of whether these unannotated alternative TSS 
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usage leading to potential domain exclusion can be transcribed into real proteins. We 

could not confirm our functional hypothesis of KDM2B alternative TSS expression due 

to technical problems.     

 

 

4.4 Study IV: A regulatory role for CHD2 in myelopoiesis 

 

Epigenetic regulators play a crucial role in regulating hematopoiesis via different 

biological processes as cell proliferation, differentiation, and self-renewal. In this study, 

we aimed to study the role of chromatin factors in hematopoietic development. Stable 

K-562-Cas9 cells were generated and transduced with a unique CRISPR guide library 

that targets 1092 epigenetic regulators and 320 control genes with four sgRNAs for 

each. The transduced cells were 72 hours treated by phorbol 12-myristate 13-acetate 

PMA for megakaryocytic differentiation, or DMSO for control.  

 

After the PMA treatment, megakaryocyte differentiation was observed by morphology 

changes. Furthermore, treated cells were grouped and examined through the expression 

of surface marker for megakaryocyte differentiation (CD41 and CD61) with flow 

cytometry. With the set gating, we collected undifferentiated population harboring both 

negative CD61-/CD41- (P1), differentiated population harboring both positive 

CD61+/CD41+ (P2), and differentiated population only positive for CD61+ (P3). For 

each population, cells are sequenced to identify the guide sequences in each population. 

The top 10% overlapped genes for two biological-replicates for enriched sgRNA, 

and >0.2 mean log fold change (average of all four guides) were chosen for further 

analysis. In P1, 14 candidate genes were suggested a role of driving the myeloid 

differentiation. In P2 and P3, 13 and 30 candidate genes were suggested to inhibit the 

differentiation, respectively. Several members of the CHD chromatin remodeler family 

have been found to be involved in pluripotency and myeloid leukemia (Gaspar-Maia, 

Alajem et al. 2009, Heshmati, Türköz et al. 2018). Therefore, CHD2 from the P3 group 

was selected for further validation and characterization. 

 

To validate the observation of CHD2 from CRISPR screening, we used CRISPR-Cpf1 

to knockout CHD2 in K-562 cells with four sgRNA located in exons 3, 7, 14, and 28 of 

CHD2. Empty Py095 vector was transduced as control. Cells were sorted and collected 

by GFP expression. The single sorted cells were expanded as mono clones. We 

confirmed the CHD2 KO via western blot and Sanger sequencing of the sgRNA sites 

for indel formation. Instead of 72 hours, 24 hours of PMA/DMSO treatments were 

applied to mono clones to observe the early effect of differentiation. Significantly 

increased enrichment in the P2 population for DMSO control was observed without 
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PMA induction, suggesting spontaneous differentiation in CHD2 KO cells. PMA 

induction further enhanced the differentiation, suggested a consistent role of CHD2 in 

inhibiting myeloid differentiation. To identify if the effect for CHD2 KO in 

differentiation was coupled with cell proliferation, proliferation analysis of both control 

cells and CHD2 KO cells was performed for four days. The results showed that CHD2 

KO cells had a low proliferation rate at low cell density. In addition, colony-forming 

assay showed a reduced colony-forming capacity of CHD2 KO cells. CHD2 has been 

shown to be recruited at the TSS region by RNA PolII, and to regulate nucleosome 

disassembly (Siggens, Cordeddu et al. 2015). Through analyzing CHD2 enriched genes 

in K-562 cells from ENCODE project and overall transcriptome in K-562 cells from 

FANTOM 5 CAGE data, we revealed that CHD2 target genes participated in multiple 

cellular processes and were highly transcribed. This suggests that CHD2 is associated 

with active transcription. This conclusion was subsequentially validated by RNA-seq 

in CHD2 KO clones, where CHD2 target genes were significantly down-regulated in 

comparison with CHD2 non-target genes. We also found that the CHD2 co-expressed 

genes in AML patients overlapped with CHD2 target genes in K-562 cells. Together, 

the results suggested that CHD2 also positively regulates transcription in AML patients.   

   

In conclusion, we utilized a CRISPR-cas9 screen as an efficient method to study 

the role of epigenetic regulators (1092 factors in the library for this study) in 

hematopoiesis. Of those factors 5% exhibited potential regulation in megakaryocyte 

differentiation. CHD2, a chromatin remodeler, has been reported to regulate muscle 

differentiation. This regulation may depend on its promotion of H3.3 deposition at 

myogenic loci together with interaction with MyoD (Harada, Okada et al. 2012). 

Previous study in our group revealed that CHD2 is involved H3.3 deposition in myeloid 

cells (Siggens, Cordeddu et al. 2015). CHD2 has been shown to be ubiquitously 

expressed in hematopoiesis (Prasad, Rönnerblad et al. 2014). Thus, suggesting a general 

regulation of CHD2 in all hematopoietic cells. Our finding of CHD2 for prohibition of 

differentiation and promotion of cell growth confirms its importance of CHD2 in 

myeloid hematopoiesis, especially megakaryocytic differentiation. 
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