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Abstract

This thesis investigates diagnosis strategies for k-out-of-n systems under the general type
precedence constraints. Given the testing costs and the prior working probabilities, the prob-
lem is to devise strategies that minimizes the total expected cost of finding the correct state
of the system. The true state of the system is determined by sequential inspection of these n
components. We try to find good strategies for the problem under general type precedence
constraints by adapting an optimal algorithm that works when there are no precedence con-
straints. We refer to this algorithm Intersection-Precedence and represent the strategy that we
obtain efficiently by a Block-Walking Diagram structure. Since no computational results are
reported in the literature for this particular problem, in order to benchmark the performance
of the Intersection-Precedence algorithm, we develop Tabu Search and Simulated Annealing
algorithms that find permutation strategies.We conduct an extensive computational study to
compare the results obtained by the alternative algorithms and we observe that Intersection-
Precedence algorithm, in general, outperforms the other algorithms.
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Anahtar Kelimeler: n’nin k’lis1 sistemler, tabu arama, benzetilmis tavlama, genel tipte

oncelik kisitlari, sirali test etme

Ozet

Bu tez nin klis1 (k-out-of-n) sistemlerde genel tipte 6ncelik kisitlar1 odugu zaman, tanilama
stratejilerini arastirmaktadir. Basarili ¢calisma olasiliklar1 ve test etme maliyetleri dnceden
belli n tane bagimsiz bilesenden olusan bu problem sistemin dogru durumunu olurlu bir
strateji ile belirlemenin beklenen maliyetini en aza indirmeyi hedeflemektedir. Sistemin
gercek durumu bilesenlerinin sirayla test edilmesiyle tespit edilir. Oncelik kisitlarinin ol-
madig1 durumda en iyi calisan bir algoritma, genel tipte Oncelik kisitlarinin oldugu du-
ruma uyarlanmugtir. Bu algoritma Kesisim-Oncelik olarak isimlendirilmis ve elde edilen
strateji etkili bir bicimde Block-Walking Diyagram yapisi ile gosterilmistir. Literatiirde bu
problem i¢in sayisal calismalar bulunmadi81 i¢in algoritmanin performansini kiyaslamak
adina, permiitasyon stratejileri bulmak i¢in Tabu Arama ve Benzetilmis Tavlama algorit-
malar1 olusturulmustur. Onerilen alternatif algoritmalar1 analiz etmek ve onerilen ¢oziim
yontemlerinin hesaplama etkinligini gdstermek amaciyla kapsamli bir sayisal ¢calisma yapilmustir.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

We deal with very complex structures in almost all service and production systems and our
daily lives. Typical examples are telecommunication systems, manufacturing systems, me-
chanical and/or electronic products etc. These systems typically consist of subsystems or
components. The state of the whole system is described by a function of the states of these
subsystems. For instance, the state of a telecommunications system can be defined by the
existence of a functional path between two specific nodes of the network. In this particular
example, the state of the system is working if there exists a path that consists of working
components and failure, otherwise. Often, it is necessary to diagnose these systems and find
out the correct state of the system with the minimum cost. In order to do this, we need to
learn the states of the subsystems. We assume that in order to learn the correct state of the
subsystems, we need to conduct costly tests. In most cases, it is not necessary to learn the
correct state of all the components or subsystems. For instance, in the above example, once
we detect a path that consists of functioning components, we do not need to learn the states of
the remaining components. So it is important to develop a strategy to carry out the diagnosis
procedure with a minimum total expected cost.

The variations of the general testing problem have many application areas such as clas-
sification of pattern vectors [8], file screening/searching applications [18], maintenance op-
erations [4], plant pathology, medical diagnosis, decision table programming, computerized
banking, pattern recognition, nuclear power plant control [12,21,22], testing incoming pa-
tients against some rare but dangerous disease [9], discriminant analysis of test data, reli-
ability analysis of coherent systems, research and development planning, communication
networks, speech/voice recognition, distributed computing, and in the design of interactive

expert systems [11],wafer probe testing in electrical engineering [6], best value, or satisfying
1



search algorithms in artificial intelligence [17], organization and criterion of an applied re-
search project [19]. As an example for application areas of testing problem, Bert and Roel [3]
examined to maximize the net present value in project scheduling when the activities have
failure probabilities. They determined the overall project termination criteria depended on
the failure probabilities of activities. They showed that the problem is NP-hard.

In this study, we work on a related problem, namely, the sequential testing problem of
k-out-of-n systems under general precedence constraints. A variation of this problem in
electronic and electro mechanic systems is shown to be NP-complete [21]. A k-out-of-
n system consists of n components which are either faulty or fault-free. This system is
functional when at least &£ of the components are fault-free and it is not functional when
at least (n — k + 1) components are faulty. The system functionality depends only on the
number of working and faulty components. Given the cost of testing each component and the
prior probability of being fault-free for each component, the problem is to devise an optimal
strategy that minimizes the total expected cost of finding the correct state of the system.

Variations of optimal test sequencing problem without precedence constraints have been
extensively studied under various assumptions [2,6]. On the other hand, in the existence
of precedence constraints, there are only a few analytical results for the sequential testing
problem. In [7], parallel chain precedence constraints was studied. In [13], an optimal
algorithm was developed when precedence constraints satisfy some certain conditions. These

conditions are given below:
e The precedence graph is a forest type precedence graph.
e Each tree in the forest is either an out-tree or in-tree.

As a special case of the result given by Garey in [13], an algorithm was developed for the
series system when the precedence graph is a special forest in [7]. In these studies, there are
not any computational results. The proposed algorithm in [7] can also be adapted for general

k-out-of-n systems.

1.1 Contributions

The main purpose of this study is to minimize the expected cost of k-out-of-n sequential

testing problem under general precedence conftraints. The contributions of this study can be



summarized as follows:

e We adapt the intersection algorithm (which is optimal for k-out-of-n systems when
there are no precedence constraints) for the case of precedence constraints so that it is

still possible to store the resulting strategy efficiently.

e We propose tabu search and simulated annealing algorithms to solve proposed prob-

lem.

e We conduct an extensive computational study to investigate the performances of the

proposed methods.

1.2 Outline

The problem description and the literature review are presented in Chapter 2l We apply and
improve intersection algorithm proposed by Ben-Dov [2] for our problem under precedence
constraints in Chapter [3] Chapter [ presents the proposed test sequencing problem with
precedence constraints. We develop tabu search and simulated annealing algorithms for this
test sequencing problem. We present numerical results in Chapter [5|to demonstrate the com-
putational efficiency of the implemented heuristics and developed Intersection-Precedence
Algorithm and to comparatively analyze all methods according to cost and time efficiency

measures. Finally, in Chapter[6| we conclude and discuss future research directions.



CHAPTER 2

PROBLEM DESCRIPTION AND LITERATURE REVIEW

2.1 Problem Description

We consider a system that consists of n components whose functionalities are not known yet.
The set of the individual components is denoted by N = {us, us, ..., u, }. Each component
of this set is functional or not and x; describes the functionality of component 7. x; is 1 if the
component ¢ is functional, O if it is not functional.

x = (X1,Xa2,...,Xp) is a boolean vector describing the states of individual components
where the i*" element of that vector shows the functionality of component i. The states of
the components are not known by the decision maker, but the prior working probabilities of
the components are known. We denote by p;, the probability that component ¢ functions.
In order to determine the correct the state of the whole system, we need to test some of
the components. The testing procedure terminates when the actual state of the system is
determined. It is assumed that the individual components function or fail independent of each
other. It is costly to test individual components (i.e. to learn the correct state of individual
components). We denote by c; the cost of testing component 7. This could also correspond
to the time required to test component <.

The whole system can be in either working state or failure state. In this particular study,
we consider k-out-of-n systems, where the system is in working state if and only if at least
k components are functioning. In other words, the testing procedure is terminated once we
find k& functioning components or n — k + 1 failing components. The k-out-of-n systems
are the generalization of the 1-out-of-n (parallel) systems and n-out-of-n (serial) systems.In
certain applications, it is not possible to test the components in any order. Due to physical or

technological constraints, there can be precedence constraints among the components. This
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precedence relationship can naturally be described by an acyclic directed graph. The nodes
of the graph correspond to the components of the system. An arc from node ¢ to node j
means that one can test component j only if component ¢ is already tested.

A testing strategy S is a rule that specifies which component will be tested next, given
the states of the inspected components. Each strategy will have a certain expected cost. An
optimal inspection strategy is the one that has minimum total expected time or cost among
all strategies.

The notation is summarized below:

N: set of nodes, N = {uy, ug, ..., Uy, }

p;: priori probability that u; is working

@;: priori probability that u; is not working, ¢; = (1-p;)
c;: testing cost of node wu;

While, testing strategies for the simple parallel and simple series systems are represented
by permutations of components, in general, the strategies for k-out-of-n systems can be
represented by a binary decision tree. An example binary decision tree of 3-out-of-5 system
diagnosis procedure is given in figure [3.1] The nodes of the binary decision tree corresponds
to the components to be tested. If the component is faulty, then the next component to be
tested is the component corresponding to left child of the previously tested node. If the
component is fault-free, then the next component to test is the right child. The leaf nodes are
”success” or “’fail” nodes that show the state of the system.

For instance, in the example in Figure the first component to be tested is component
3. If component 3 functions then the next component to be tested is 2, otherwise the next
component to be tested is 4. There is a unique path from the root to each leaf node. If
the leaf node is success node, then there are k right arcs and less than (n — k + 1) left
arcs and for the fail nodes there are (n — k + 1) left arcs and less than & right arcs on the
path from the root to that leaf node. On each path from root to a leaf node we can observe
the state of each component on this path and we can find the cost and probability of the
path. The cost of a path can be calculated by summing up all the costs associated to the

nodes on this path and the probability of a pa§h can be calculated by product of p;’s for the



working state components multiplied by the product of 1 — p;’s for the faulty components.
In this framework, we can calculate the expected cost of a path by multiplying path cost
with the path probability. By summing up all paths’ expected cost, we will find the expected
cost of decision tree or expected cost of testing strategy S. If we describe a strategy by an
explicit binary decision tree, the size of this binary decision tree can be exponentially large
in terms of the problem size, which is described by k, n, C and P. So it would not be
possible to store the solution strategy in a compact way. One can overcome this difficulty by
describing an algorithm that outputs the next component to be tested given the results of the
tests conducted so far. In this way, it is possible to use this algorithm to diagnose a system
by running it until £ functioning or n — k + 1 failing components have been determined. On
the other hand, we will not be able to compute the expected cost of the strategy in this way
in polynomial time. It turns out that, when there are no precedence constraints, it is possible
to describe an optimal strategy in a compact way by using a data structure called Block-
Walking Diagram. We explain the details of this data structure in Chapter [3] Unfortunately,
when there are precedence constraints, to describe an optimal strategy in this manner is no
longer possible. Since this method is optimal when there are no precedence case, we try to
adapt the same logic of choosing the next component to inspect and using Block-Walking
Diagram by hoping that this will produce satisfactory results.

Since it is very difficult to store a solution strategy as an explicit binary decision tree,
due to the exponential growth in the size of the tree, it could be of interest to consider a
subset of the strategies that are easy to represent and try to find a good solution among these
strategies. An alternative is to consider permutation strategies, where the next component to
test is the next component in the permutation. In this case, a strategy is just described by
a permutation, but we still need to be able to compute the expected cost of such a strategy
efficiently. It turns out that this is possible. We show how to compute the expected cost
of a permutation strategy in Chapter 4] and propose tabu search and simulating annealing

algorithms that find good permutation strategies.

2.1.1 An Example k-out-of-n System Under Precedence Constraints

A 3-out-of-5 system example is given below with data in Table 3.1] The precedence con-

straints are given in Table 2.2 by using P(i,j)’s and in Figure 2.5| by using arcs between
6



components which has precedence relationship. P(7, j) = 1 means there is an arc from node
1 to j. We calculate the total expected testing cost of some strategies by using given data

under precedence constraints.

i U Uy us Uy Us
pi | 095109 (0.7 ]0.82]0.6
G 2 251 2 4 3

Table 2.1: Data for an Example of 3-out-of-5 System

P@, j)

N B W =
(=l R N el Ne) Nao) N
OO = O | N
OO OO Ol W
OO = OO
OO O~ | | W

Table 2.2: Precedence Constraints Data for an Example of 3-out-of-5 System

Figure 2.1: Precedence Constraints for Example of 3-out-of-5 System

In the first strategy, we consider a feasible permutation strategy according to precedence
constraints which is (3-2-4-5-1). We start to test components according to this given order to
determine the state of the whole system. 3-out-of-5 system is functional if at least 3 of the
components are fault-free or the system is not functional if 3 of the components are faulty.
In Figure 2.2] binary decision tree of this procedure is given. As can be seen in Figure [2.2]
no matter what the state of already inspected components are, as long as we need to inspect
a component, it is the next component in the permutation. The expected cost of given order

can be calculated as: 7



TC = l.cz+ (g3 +p3)-c2 +[g3.(p2 + G2) +p3.(P2 + @2)]-ca + [g3-(q2-Pa + P2-qa + p2.pa) +
P3-(q2-Pa + G2.4 + P2.q4)]-¢5 + [¢3.(q2-P4-D5 + P2-9a-P5 + D2.P4-G5) + P3-(¢2-q4-P5 + G2-Pa-G5 +
P2.G4-q5)).C1

For this example total cost is calculated 10.35072.
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When we have a permutation strategy, we can calculate total expected cost for given
testing order computationally easily. The calculation steps can be represented by using a

matrix which is given below:

Ca ) Ca, . Cum
Con-k+1,0) Cint+1,1) - Claitih)

Then we can calculate the expected testing cost by using the following recursion in a

bottom-up fashion:
o C.j)= Clairj+r) + plaivj1).Cli, 5+ 1) + [(1 = p(@i+j1))-Cli+1,5) if j < k and
i<(n—k+1)
e CGi,j)=0ifj=kandi=(n—k+1)
where

e a;; i component in the given permutation a = a,, as, ..., a,

e ((a;): Cost of testing a;
e p(a;): Prior success probability of a;

When we have a permutation strategy, we can compute the total expected testing cost in
polynomial time. For k-out-of-n problems, the optimal testing strategy is not always a per-
mutation strategy. We mention about binary tree representation. We calculate the objective
function value by using a permutation testing strategy for the example of 3-out-of-5 system
under precedence constraints. An example binary decision tree strategy is given in Figure

[2.3]for this problem whose data is given in Table[3.1]

10
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The expected cost of the binary tree example given in Figure [2.3]is calculated as follows:

TC= l.cz + [ps + (g3-p2) + (@3-@2)]-ca + g5 + (P3.q4) + (P3.pa)].c2 + [(43-G2-pa) +
(g3-p2-qa) + (P3-94-G2) + (q3.P2-Pa-05) + (P3.4-p2-5) + (P3.P1-G2.G5)]-c1 + [(g3.p2-pa) +
(P3-qa-p2) + (P3-P2-04) + (q3.q4-P2.P1) + (¢3-P2-G2.01) + (P3-92.04.D1)].C5

For this example total cost is calculated as 10.57449. For small size problems, it is
computationally easy to calculate the total expected cost, when the testing strategy is not a
permutation strategy. Unfortunately, when n and k get larger, it is not possible to represent
binary decision tree and to calculate the expected cost of the tree. In Chapter [3| we propose
an algorithm to find testing procedure and a matrix representation to calculate the total ex-
pected testing cost. To compare these results, then in Chapter ] we start with a good feasible
solution and apply a search procedure based on some well-known heuristics and find better

permutation solutions.

2.2 Literature Review

Chiu et al. [7] study k-out-of-n sequential testing problem with special precedence con-
straints referred to parallel chain type precedence constraints. This precedence type consists
disjoint subsets of components set. These disjoint subsets have the precedence constraints
only within each of themselves. This precedence type constraints means that all items can
be partitioned into subsets and each block has a precedence constraints which is defined by
unique inspection order. Chui et al give an example of this type of precedence constraints for
a series system (inspecting the components until a failure is found or all of the components

have been inspected) which is given in Figure 2.4}

i ui uz u3 ud us M

o

pi o6 oz o1 o7 L8]

Figure 2.4: A series system with parallel chain precedence constraint

{51)
o
ra
=

i

They determined testing cost, testing priori probability, testing states by using the Block
Walking Algorithm which is developed by Chang, Chi and Fuchs [6]. The following notation

is used in their algorithms, also, they determined the working probability, testing cost and
12



some ratios which will be used in solution methodology, of a set I = (i1, 42, ..., ¢;) such as:
e Working probability of the set I: P(I) = p;, .pi,....1;,

e Testing cost of the set I with respect to series structure: C'(I) = ¢;, + p;,.Ciy + ... +
Diy--- .pij71 -Cij

e Failure probability of the set I: Q(1) = g;, -qi,----;,

e Testing cost of the set I with respect to parallel structure (inspecting the components

until a success is found or all of the components have been inspected): D(I) = ¢;; +

Qiy -Ciy + ... + iy ----Qi;_q-Ci;

e R-ratio: R(I) = %

e S-ratio: (1) = 20

They proved theorems that give an optimal testing strategy for series and parallel systems

by using R-ratio and S-ratio which are given below:

e For a series system problem with a parallel-chain precedence constraints, if the blocks
are arranged in order of increasing R-ratio according to the precedence constraints;

then the resulting sequence is optimal.

e For a parallel system problem with a parallel-chain precedence constraints, if the
blocks are arranged in order of increasing S-ratio according to the precedence con-

straints; then the resulting sequence is optimal.

Using the results for series and parallel systems they developed the optimal testing strat-
egy for k — out — of — n systems. If an inspection procedure satisfies two conditions which

are given below, then it is optimal:

e Condition 1: All of the blocks in the sequence has a S-ratio which is less than the

blocks before them comes from a different chain.

e All of the blocks in the sequence has a R-ratio which is less than the blocks before

them comes from a different chain.
13



In summary, Chui et al. developed more general results by using the study of Ben-
Dov [2]. Also, they pointed out that the optimal inspection rule for the general k-out-of-n
systems under parallel-chain precedence constraints is not yet known.

Also, Garey in [13] studied simple series (parallel) systems sequential testing problem
with forest type precedence constraints where in each precedence graph either no component
has more than one immediate predecessor, or no task in that component has more than one

immediate successor. An example of forest type precedence constraints is given in Figure

Figure 2.5: An example of forest type precedence constraints

Garey [13] provided some reduction rules like Chui et al. [7] that turn the precedence
graph into a graph without any arcs. Essentially, the reduction rules combine certain nodes
or delete some arcs in the precedence graph. Then they used their reduction rules to find a
series and parallel systems under forest type precedence constraints.

Unliiyurt [24] described and analyzed a framework for sequential testing problem. In this
review paper, different related applications are described such as distributed computing, ar-
tificial intelligence, manufacturing and telecommunications. The mathematical framework,
variations and extensions of this problem are given. Series, parallel, k-out-of-n, Series-
Parallel systems are mentioned and strategies, binary decision trees, solution methodologies
about these problem types are reviewed. Catay et al [5] develop an ant colony based algo-
rithm for testing series (parallel) systems under precedence constraints.

Tanriverdi [23] studied k-out-ofn testing problem under forest type precedence con-
straints. In this study, optimal inspection strategies are obtained for series and parallel sys-

tems. Then these strategies are adapted for k-out-of-n systems.

14



CHAPTER 3

SOLUTION METHODOLOGY UNDER PRECEDENCE CONSTRAINTS

In the Chapter 2] we mentioned some strategies that are optimal for the sequential testing
problem of k-out-of-n system without precedence constraints, namely the Intersection Al-
gorithm. In this section, we develop algorithms for the general k-out-of-n system problem
by using Intersection Algorithm. We adapt the Intersection Algorithm proposed by [2] for
the case of precedence constraints. Also, we describe how to store this strategy by using
Block-Walking representation. In this chapter, first we describe the Intersection Algorithm
and Block-Walking representation in detail. Then we describe how we adapt this algorithm

when general precedence constraints exist.

3.1 Intersection Algorithm and Block Walking Representation without Precedence

Constraints

For k-out-of-n structures without any precedence constraints, an optimal diagnosis procedure
is proposed by Ben-Dov [2]. This diagnosis procedure can also be described by a binary
decision tree. Each leaf node of this binary decision tree shows testing result. If a node is
tested and its result is success, then the right subtree is taken else its result is failure, then
the left subtree is taken. The objective is to find the diagnosis procedure which gives the
minimum expected testing cost.

Firstly, two sets are defined as U and V. The set U; = {7(j)|1 < j < i} is utilized by the

permutation which is labeled as,

c c c
A<cZc <
p1 P2 Dn

The set V; = {n(j)|1 < j < i} consists an order of nodes which is utilized by a
15



permutation so that,

cr (1) < cr(2) <. cr(n)

pw(l) pﬂ(2) pw(n)

Firstly, intersection algorithm that is proposed by Ben-Dov [2], takes the intersection of

IA

the sets Uy and V,,_. 1. To obtain an optimal strategy for & — out — of — n structure without
any precedence constraint, the tested unit is any of the elements of this intersection. If the
first item is faulty, then the problem becomes a k — out — of — (n — 1) system and if the
first item is fault-free the problem becomes (k — 1) — out — of — (n — 1) system. And
the intersection procedure is implemented for these new systems. This procedure is stopped
when the correct state for the whole system is found.

Chang, Chi and Fuchs [6] recompute and save the optimal diagnosis procedure by a com-
pact representation by using Block-Walking Algorithm. They represent the binary decision
tree by this block-walking representation in O(n?) space.

Notations and definitions for this representation are given below:

TU (v): Tested unit set, for any vertex v4 in a binary decision tree, it is the set of units tested

along the path from the root to v, including v.

T'S(v): Test state, for any vertex v in a binary decision tree, it is defined to be an ordered
pair (1,j), where 1 and j are the number of fault-free and faulty units tested along the

path from root to v, excluding v.
G: Set of intermediate states, G = {(7,/)|0 <i <k —1,0<j <n—k}.
S: Set of success states, S = {(k,7)|0 < j <n—k}.
F: Set of failure states, ' = {(i,n —k+ 1)[0 <i <k —1}.
d.: G — N it indicates which unit to test if the last test has succeeded.

) ¢ G — N it indicates which unit to test if the last test has failed.

d5(7,j) = w; and 64(i,j) = wu,, mean that, in state (i,j), it u; will be tested if last test
succeeded and u,, will be tested if last test failed. They have assumed that the test before

state (0,0) as succeeded. Also, they have proven that block-walking representation can be
16



represented if the unit which has the smallest subscript (SS) from the intersection set is

chosen.

3.2 Intersection Algorithm without Precedence Constraints

A k-out-of-n structure with the yield probability pq, po,, p, and the testing cost ¢y, co, , ;.

G,S and F can be constructed easily and ¢, and 07 can be constructed by the following steps.

Algorithm 3.1: Intersection Algorithm
Step 1:
tmp :=UNVe —k+1;
95(0,0) := SS(tmp);

Step 2:

fori=1tok —1do
tmp = tmp U{UW(n—k-‘rl-i-i)} - {5S<Z -1 0)}’
d5(i,0) := SS(tmp);

end for

Step 3:
fori =0tok —1do
tmp = Vi_parss — {0:(7,0)[0 < j < s
Sort tmp into ascending subscript order;
forj=1ton —kdo
d¢ (7, j):= the jth unit of tmp;
end for
end for

Step 4:
for: =1ton — kdo
forj=1tok —1do
if(Sf(Z,j) = (5f(Z - 1,]) then
55(7'7]> = 55(7'7] - 1),
else
6:(i,5) = 67(i.);
end if
end for
end for

End of Algorithm

The implementation steps of this algorithm is given by using a numerical example. In

Table [3.1], success probability and testing coslt 7of a 3-out-of-5 example is given below. Also,



in Figure 3.1 and Figure [3.2] the binary decision tree and block-walking representation of

this example are given.

i Uy Uz | U3 Uy Us
p; 109510907082 0.6
C; 2 25| 2 4 3

Table 3.1: Example of 3-out-of-5 System

By using the information which is given on the Table 1, U and V sets are defined as U =

{1,2,3,4,5} and V' = {3,5,4,2,1}. The implementation steps of intersection algorithm is

given below:

o

o o
1 §

foalty

~nF

6 6 0 0
f = 1 *

o

_ Fault-free

ot

u ‘ u, 0 D

uy

Uy J

i PR = i A

66606 0 0
l\_,\r-.

Figure 3.1: Example diagnosis procedure for 3-out-of-5 System
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{2,3) (3,2)

Figure 3.2: A diagnosis procedure defined by the block-walking representation

The total expected cost can be calculated by using this block-walking representation.
Calculating the whole expected cost, all of the grid points are considered. A matrix repre-

sentation by using this block-walking representation is given below.
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Algorithm 3.2: Intersection Algorithm - Example
Step 1:
tmp = U3 = {1, 2, 3} ﬂ ‘/%_3+1 = {3, 5, 4} = {3} SO (55(07 0) = 3,
Step 2:
fori=1to3 —1do

d5(1,0) := 2;
i=2—tmp:= {2} U{1} — {6:(1,0)} = {1}
95(2,0) := 1,

end for

Step 3:

fori=0to3 —1do
i=0—tmp:={3,5,4} — {0:(0,0)} = {5,4};
Sort tmp into ascending subscript order, so tmp := {4,5};
forj=1to5—3do
j=1—64(0,1) =4;
Jj=2—67(0,2) =5;
end for
i=1—tmp:={3,5,4,2} — {65(0,0)andos(1,0)} = {5,4};
Sort tmp into ascending subscript order, so tmp := {4,5};
forj=1to5—3do
J=1—=04(1,1) =4;
J=2—04(1,2) =5;
end for
i=2—tmp:={3,5,4,2,1} — {65(0,0), 5(1,0)andds(2,0)} = {4,5};
Sort tmp into ascending subscript order, so tmp := {4,5};
forj=1to5—3do
J=1—0(2,1) =4;
J=2—0s2,2) =5;
end for
end for
Step 4:
fori=1to5—3do
1=1—
forj=1to3 —1do
=1 —(65(1,1) = 64(0,1))
ds(1,1) := d4(1,0) = 2;
J =2 (5,(1,2) = 5,(0,2)
05(1,2) := d4(1,1) = 2;
end for
1=2—
forj=1to3 —1do
J=1— (5;(2.1) = 6;(1,1))
05(2,1) := 04(2,0) = 1;
j =2 (05(2,2) = 6,(1,2))
53(27 2) = 55(2’ 1) =1
end for 20
end for
End of Algorithm
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Representing the matrix form, for all states (i,j) there are four columns:

e For state (i,j), first column represents that the probability when you reached this state

after you test a node and it was fault-free in state (i-1,j).
e Second column represents that d,(i,j).

e For state (i,j), third column represents that the probability when you reached this state

after you test a node and it was faulty in state (i,j-1).
e Fourth column represents that d4(i,j).

By using this information, it is easy to calculate the root probability for each state. For
example, for state (2,2), it is possible to reach this state after testing a node in state (1,2)
and test result is success or after testing a node in state (2,1) and test result is fail. So, by
using the root from (1,2), we can reach the column 1 (because the result is success), and the
root probability is ¢3.q4.ps.p2 + [(¢3-P4-G2 + P3-G2.q4).ps). Because we test ug and us in (1,2)
state and we know the result is success, so the success probability of those nodes multiplied
the probability which is found from state (0,0) to the current state. By using the root from
(2,1) [(¢3-pa-p2 + P3-G2-P4)-q1] + P3-p2.q1.qs. Because in state (2,1), we test u; and uy and
the result is failure, and we use the failure probability of those nodes. After completing the
whole representation, we obtain the expected cost by multiplying the probabilities by testing
units.

The expected cost of above example:

TC= l.c3 + q3.C4 + ¢3.4-C5 + P3.C2 + q3.Pa-Co + P3.G2-Ca + ¢3.q4-P5-C2 + [(g3.P1.G2 +
P3-42.q1)-C5] + p3.pa-c1 +[(g3-pa-p2 + P3.q2.pa)-c1] + ps.pa.qi.ca+ [(g3-4-p5.p2 + (g3.p1.q2 +
P3-q2-94)-5)]-c1 + [((g3-Pa-P2 + P3-G2.p1)-q1) + P3.P2-q1-q4]-C5

For this example total cost is calculated 8.30499.

3.3 Intersection-Precedence Algorithm

Intersection algorithm is applied for k-out-of-n structure without precedence constraints in
the previous section. In this section, to find the better solutions for this problem, Intersection-
Precedence Algorithm (INT-PREC) is developed by using some rules of Intersection Algo-

rithm. Intersection Algorithm gives an optimeil 2strategy if there is no precedence relationship.



Under precedence constraints, it is more difficult to select which following node is tested.
Every success and failure states, it is needed to control which nodes can be tested because of
previous success and failure states and precedence relationship.

Notations and definitions for Intersection Algorithm are used for this algorithm. Also,

there are some other notations and definitions which are given below:

tmp: Temporary set defined by the algorithm.

ind: Item has a highest number of successors of a set.

Al Available item set according to precedence constraints in this stage.
tmp — AI: Intersection set of tmp and Al

t: Tested units before reaching that state.

SS: Smallest subscript.

A k-out-of-n structure with precedence constraint the yield probability py, ps, , p,, and the
testing cost ¢y, ¢3,, ¢,. G,S and F can be constructed easily and d, and 6 can be constructed
by the following steps.

This algorithm gives always feasible results, because in all of the steps, it controls
whether there are available items. If a testing strategy is shown by a binary decision tree,
we check the available items by following the previous failure and success states. It is time
consuming to decide which nodes are available to test in the present state. If a strategy is
obtained by Intersection Algorithm, after some iterations, all of the available items are used
and any feasible solution is not found. So, in this algorithm, to select following node, the
number of successors of the item is another criteria. Also, this algorithm gives us a chance
to select following component according to existing state of the system. So, this algorithm
gives not only a testing sequence but also a binary tree of the testing components in all of
the states. We will comparatively analyze the results of this algorithm and applied heuristics
based on objective function value and run time. When we solve a small size of problem, we
use the same data which is given in Table[3.1] So, U = {1,2,3,4,5} and V = {3,5,4,2,1}.
But we add new precedence relationship between {(2,4), (3,4), (4,5), (4,1)}. (i,j) means j can

be tested if and only if i is tested before. For this particular example, we generate all of the



possible policies in Excel, then check if they are feasible, calculate their objective function
values and find the minimum one. The value is 9.704 is same as the value which we find by

this algorithm.
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Algorithm 3.3: Intersection-Precedence Algorithm
Step 1:
tmp :=UpN\Ve — k+1;
Al:= Find the available items according to precedence constraint;
tmp — Al :=tmp () Al
if tmp-Al is not an empty set and ind(tmp — AI) # () then

35(0,0) :=1;
else

Sort Al into order of ind values, d5(0,0) := SS(AI);
end if
Step 2:

fori=1tok —1do
tmp = tmp U{uw(n—k+1+i)};
Al == N — {0,(i — 1,0)}
tmp — Al :=tmp () Al
if tmp-Al is not an empty set and ind(tmp — Al) # O then
0s(7,0) :== 13
else
Sort Al into order of ind values, d5(7,0) := SS(AI);
end if
end for
Step 3:
fori =0tok—1do
forj=1ton —kdo
Al := N — {05(m,0)|0 <m < i} — {07(m,1)|0 <t < jand0 < m < i};
ifi > 1land d;(i — 1,j)cAl then
5f(27j) = 5f(Z o 17])
else
tmp = tmpJ Va—rr144s
tmp — Al :=tmp() Al
if tmp-Al is not an empty set and ind(tmp — AI) # O then
05(i.5) =
else
Sort Al into order of ind values, then 6,(, j) := SS(AI);
end if
end if
end for
end for
Step 4:
fori=1ton — kdo
forj=1tok—1do
lf5f(2,]) = (5f(2 - 1,j) then
5s<l7]> = 53(%] - 1),
else
5,(i, ) = 8, J):
end if
end for 25
end for
End of Algorithm



CHAPTER 4

HEURISTICS

In this chapter, we propose a tabu search (TS) and simulated annealing (SA) algorithm to
find good permutation strategies for the sequential testing problem for k-out-ofn systems
under general precedence constraints. As mentioned before, we focus on the permutation
strategies since we can compute their expected costs efficiently. Both TS and SA require
an initial solution to start with. First, we describe how we find a good initial solution, that
we will use as a starting solution for both algorithms. Then we describe the TS and SA

algorithms in detail, in terms of implementation details and parameters.

4.1 Initial Solution

We are interested in finding permutation strategies that respect the precedence constraints.
We order the nodes as a sequence such that for every arc (7, j) € precedencelist, order(i);
order(j). We construct feasible permutations by using different merit values and compare the
results in order to find out which merit values perform the best. We implement the generic
algorithm performed on At each step, the available nodes are those nodes with indegree
0 or the nodes that can be tested immediately, i.e. the nodes for which all predecessors are

already tested.

Selection Merit Value

Random Selection: While there are available nodes to use for order, the next node is chosen

randomly among available nodes.

Increasing Order of Cost/Priori Success Probability: At each step we choose the next com-

ponent as the component that has the minimum cost/probability of functioning. Let us
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Algorithm 4.1: Initial Solution Algorithm
for all - € N do
in degree(1):=0;
end for
for all (i,7) € Ado
in degree(j):=indegree(j)+1;

end for
List := @,
next := 0;

for all : € N do
if indegree(i) = 0 then
List := List\J{i};
end if
end for
while List # & do
rank order nodes in List according to chosen merit value;
select first node ¢ of List and delete it;
next := next + 1;
order(i) := next;
for all (i,7) € A7) do
indegree(j) := indegree(j) — 1;
if in degree(j)=0 then
List :== List\J{j};
end if
end for
end while
if next;n then
the precedence constraints give a directed cycle;
else
the network is acyclic and the array order gives a suitable order of nodes;
end if
End of Algorithm

note that this sequence is optimal for 1-out-of-n (parallel) systems without any prece-

dence constraints.

Increasing Order of Cost/Priori Failure Probability: At each step we choose the next com-
ponent as the component that has the minimum cost/probability of failing. Let us note
that this sequence is optimal for n-out-of-n (parallel) systems without any precedence

constraints.

Increasing Order of Cost/[(Priori Failure Probability)(Priori Success Probability)]: At

each step we choose the next compo%nt as the component that has the minimum



cost/(probability of failing*probability of functioning). One may consider this as a

trade-off between the two latter merit values

We try all of these criteria to find out which one gives better initial solution. Different

selection methodologies are used for different values of k. These results are given in Chapter

&l

4.2 Tabu Search Algorithm

Tabu search is a meta-heuristic method developed by Glover [14, 15] and has since been
widely used to solve combinatorial optimization problems in the field of scheduling, routing,
facility design, and so on. We refer the interested reader to the book by Glover and Laguna
[16] and the references therein.

The main motivation of TS heuristic is to enable the search process to escape the trap
of the local optimal solutions. In order to achieve this, it allows climbing moves when
no neighboring solution improves the previous best solution. Besides, unlike other search
techniques, TS avoids examining previously explored regions recurrently by keeping a tabu
list. Tabu list includes the solutions that have been considered in the short run. This list
forbids some moves to avoid returning to the previous solution unless they satisfy some
aspiration criterion.

The general flow of a TS heuristic can be described as follows: The algorithm starts
with an initial solution. At each iteration, we evaluate neighbor solutions and select the best
solution in the neighborhood of the current solution until a termination criterion is met. Note
that if this best solution is obtained as a result of a tabu move, we check whether or not the
aspiration condition is satisfied. The aspiration condition describes a favorable circumstance
under which even a tabu move is allowed. After selecting the new solution, we set the
selected solution as the current solution and update the tabu list. If the selected solution
improves the best solution so far we also update the best solution.

We have already discussed the process of finding an initial feasible solution. Next we
describe how we implement other components of the TS algorithm, including neighborhood

strategy, solution evaluation, tabu list and aspiration condition and termination criteria.
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4.2.1 Neighborhood Strategy

We use a neighborhood move that is widely used in the literature, described as follows:
e Swap(i,7): Change the orders that node 7 and j in the permutation strategy

The swap function is used to evaluate all neighbor solutions obtained by the swap moves
and select the best neighbor solution. In our TS implementation, at each iteration we apply
the swap function. Then, we calculate the objection function value of that neighbor solution.
We also check the number of successive iterations without any improvement in the overall

best solution. If this number exceeds 50, we terminate the algorithm.

4.2.2 Solution Evaluation

To force the search, we allow infeasible moves with respect to “precedence constraints”. If
the precedence constraints are violated, the objective function is modified. To make this
modification, we add a penalty function SP(x). Here P(x) is the total number of violated
precedence relations calculated according to the ordered sequence for a decision vector x
and [ is the penalty coefficient with an initial value of 1. If the assignment is feasible for the
sequence then P(x) is equal to zero. Every 5 iterations the penalty coefficient [ is divided

by 2 if all 5 previous solutions were feasible or multiplied by 2 if all were infeasible.

4.2.3 Tabu List and Aspiration Condition

TS algorithm determines a tabu list to have a short term memory. The tabu list includes some
tabu moves that means these moves are forbidden to apply. We cannot consider these moves
unless they satisfy some aspiration condition.

It is also an important decision to determine the tabu list size. As the list size increases
we may not identify the local optimal solutions, also if it is smaller, it may cause to reach to
the previously discovered local optimal solutions. In our implementation, we define the tabu
list size based on the number of k values.

If the selected move is in the tabu list, then in order to accept this move we should check
whether the aspiration condition is satisfied. If this tabu move leads to a solution that has
an objective function value strictly better than the best solution so far, then the aspiration

condition is satisfied and this tabu move is aczcgpted.



4.2.4 Termination Criteria

We terminate the search algorithm if the maximum computation time criteria is met. In our
implementation, the maximum computation time (timelim) is defined as 500 seconds. We
select a time limit as larger as our computed time for all data set. For larger n values, the
algorithm is typically terminated because of time limit.

We conduct a computational study to test the efficiency and effectiveness of the proposed

tabu search algorithms and present the corresponding numerical results in the related chapter.

4.3 Simulated Annealing Algorithm Heuristic

Simulated Annealing is a widely used meta-heuristic methodology that compose a search
process to escape from a local optimum [20]. The approach used in this methodology is
to focus on searching the global optimum. This can be found in anywhere in the feasible
region, the early emphasis is to take steps in random directions.

The general flow of SA heuristic, at each iteration search process moves from the current
trial solution to an immediate neighbor in the local neighborhood of this solution. To define
how an immediate neighbor is selected to be the next trial solution is different from TS.

Selection rule and notations are given below:
e /.= objective function value for the current trial solution,
e /,= objective function value for the current candidate to be the next trial solution,

e ['=a parameter that measures the tendency to accept the current candidate to be the

next trial solution if this candidate is not an improvement on the current trial solution.

Since our problem is a minimization problem, selecting the next trial solution from
among all candidate alternatives is performed according to move selection rule for mini-

mization problems of the simulated annealing algorithm . This rule is given below:
o If 7, < Z. = This candidate is always accepted.

e If Z, > Z. = This candidate is accepted with probability: Probability{acceptance} =

e® where r = %

Basic simulated annealing algorithm oggine can be described as follows:



— Initialization: It is started with an initial feasible solution.

— Iteration: Next trial solution is selected and if there is no suitable next trial

solution, the algorithm is terminated.

— Temperature Schedule Check: Simulated Annealing Algorithm is started with
an initial temperature (T) value. When the desired number of iterations have been
performed at the current temperature value, temperature is decreased to any other
temperature value by using the schedule. Then solution methodology is resumed

performing iterations by using this new temperature value.

— Stopping Rule: When the desired number of iterations have been performed
according to every determined T values in schedule or when none of the current

trial solution improves the best trial solution.

4.3.1 Neighborhood Strategy

We used the move selection rule to select the next trial solution. Select two nodes
from feasible trial order and swap them by considering the precedence constraints

(Enumeration).

4.3.2 Checking the Temperature Schedule

When the possible number of iterations have been reached at the initial value of T
(0.2 times objective function value of initial feasible solution), decrease T (0.2 times
previous temperature value) to the next value in the temperature schedule and perform
iterations by using this new value. The computational results of different T values is

given in Chapter[5]

4.3.3 Termination Criteria

When possible number of iterations has been performed at the smallest value of T
(T[O]) in the temperature schedule, stop. However, if reasonable numbers (all iterations
for any of the T values) of last iterations have the same objective function values (no

improvement), we terminate the algorit%‘llm.



We conduct a computational study to test the efficiency and effectiveness of the pro-
posed simulated annealing algorithms and present the corresponding numerical results

in the related chapter.
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CHAPTER 5

COMPUTATIONAL STUDY

We conduct an extensive computational study to test the performance of the proposed
algorithms. In this chapter, we first explain the problem instance generation proce-
dure in detail. Then we discuss the implementation details of the algorithm and the

performance of the algorithms.

5.1 Problem Instances Generation

In order to test the computational performance of our solution methods, we generated
random problem instances with different properties, in terms of problem size, prece-

dence graph structure, the success probabilities and testing costs.

— Problem size: We let the number of components n to assume 4 different values

namely, 20, 50,100, 200.

— Testing cost and priori testing success probability: We generated the testing costs
and success probabilities by using uniform distribution. The testing costs are
generated with parameters 1.0 and 10.0. The success probabilities ware generated

with different parameters such as (0.0-1.0), (0.5-1.0) and (0.75-1.0).

— Precedence relationship: We generated precedence graphs by inserting 1%, 5%,

10%, 20%, 40%, 50%, 75% of all possible arcs in the precedence graph.

Then we named our problem instances according to generating strategy of success
probability. If we use the parameters (0.0-1.0) for success probability, we name this

group of data set as A. Likely, when we use parameters (0.5-1.0) and (0.75-1.0), we
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name data set B and C, respectively. Then, we separate the data into eight subgroups
according to strictness of precedence relationship. When we use 1%, 5%, 10%, 20%,
40%, 50%, 75% precedence relationship for data set A, these subgroups were named
as AA, AB, .., AH, respectively. Data set B and C are named in this same strategy. We
generated 10 data for all subgroup of data set. So, for different n values, we solved the
problem for 240 different data. In total we have 960 problem instances and we solved

these instances for 3 times with parameters k=n/2, k=n/3 and k=n/4.

5.2 Computational Results

5.2.1 Initial Solution

In Chapter 4] we discuss various methods to find an initial solution methodology. We
try to select the next node according to a merit value which is obtained by increasing
value of testing cost/priori success probability, testing cost/priori failure probability,

testing cost/[(priori success probability)(priori failure probability)], random selection.

We perform all these criteria using a subset of our data set generated before, according
to different k£ values. Our main goal is, to decide which selection criteria gives us
a better initial solution. If we start with a better initial solution, we expect to have
better solutions at the end.. When k = n/2, k = n/3 and k = n/4 the tables below
give a comparative analysis among all mentioned selection criteria. For the parameter
k, we just choose values less than or equal to n/2. This is due to the fact that the
state of a k-out-of-n systems depends only on the number of functioning components.
For instance, let us consider a 3-out-of-7 system. This system functions if at least 3
components function and fails if at least 5 components fail. On the other hand, if we
consider a 5-out-of-7 system, the system functions if at least 5 components function
and fails if at least 3 components fail. If we just interchange the labels of states, i.e.
working state becomes failing state and vice versa, we essentially get the same system.
In fact, these system functions are dual of each other in Boolean function context.
Essentially, it suffices to investigate only & values that are less than or equal to n/2.
Let us recall that a 1-out-of-n system is a parallel system and there are some optimality

results for these systems under special 3ci)nditions. When £ is small, in some way, one



can argue that the system behaves somehow similar to the parallel system. Thinking
in this way, one can also argue that the most difficult instances are when k = n/2,
since in this case it is difficult to prove that the system is functioning (we need n/2
functioning components) and it is also difficult to prove that the system is failing since

we need n/2 + 1 failing components.

As it is seen in tables and [5.3| to select the available items changes according
to different k values. For k = n/2 to use c/p is the best choice to start a good initial
feasible solution, whereas for k = n/3 and k = n/4 to use c/q is the best choice to
find the best initial feasible solution. So, c/q is the best choice to obtain a good initial

feasible solution.

k=n/2 c/p c/pq c/q random | Best Selection Methodology
n=20 | 79.47 | 82.76 | 78.09 84.81 c/q
n=50 | 189.80 | 204.19 | 202.66 | 207.43 c/p
n=100 | 381.54 | 399.85 | 393.57 | 401.63 c/p
n=200 | 793.65 | 821.63 | 820.25 | 825.08 c/p

Table 5.1: Objective function values for initial solution when k=n/2

k=n/3 c/p c/pq c¢/q | random | Best Selection Methodology
n=20 | 81.56 | 81.56 | 75.58 85.60 c/q
n=50 | 213.20 | 213.20 | 206.28 | 218.45 c/q
n=100 | 41593 | 415.93 | 402.17 | 422.38 c/q
n=200 | 860.10 | 860.10 | 842.89 | 862.91 c/q

Table 5.2: Objective function values for initial solution when k=n/3

k=n/4 c/p c/pq c¢/q | random | Best Selection Methodology
n=20 | 20.00 | 20.00 | 20.00 | 20.00 c/q
n=50 | 50.00 | 50.00 | 50.00 | 50.00 c/q
n=100 | 100.00 | 100.00 | 100.00 | 100.00 c/q
n=200 | 200.00 | 200.00 | 200.00 | 200.00 c/q

Table 5.3: Objective function values for initial solution when k=n/4

5.2.2 Tabu Search Algorithm

In this section, the computational results for different n, £ values and the parameters of

Tabu Search Algorithm are presented. Our algorithm is developed under precedence
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constraints. If the precedence constraints are violated, the objective function is modi-
fied as explained in Chapter ] To make this modification, we add a penalty function
BP(x). Every 5 iterations the penalty coefficient /3 is divided by 2 if all 5 previous
solutions were feasible or multiplied by 2 if all were infeasible. Also, our algorithm
is terminated if the maximum computation time is met. We define this value as 500

seconds in Chapter 4]

Average improvement values between the initial solution and the solutions stated by
the Tabu Search Algorithm are given below k& = n/2, k = n/3, k = n/4. Firstly, in
tables 5.5] [5.6] the improvement values between initial solution and Tabu search
Algorithm of £ = n/2 for data type A, B and C, respectively. As it is seen from
tables, the improvement values of the algorithm for data type A is the least. A is
generated with a success probability with the parameters (0.0-1.0). For data type B
and C parameters are (0.5-1.0) and (0.75-1.0) respectively. So, B and C it is easier to
select nodes according to their success probabilities. Also, the average improvement
values are lower when the precedence relationship is strict. We have divided to data
set into eight subgroups for A, B and C. However average improvement values for
data set AA is 1.57%, it gets lower and it becomes 0.62% for AH. Because from A to
H, instances are generated with more strict precedence constraints. If an instance is
relaxed, than we can find so many strategy to try and hit a better one to minimize the

total expected cost.

Secondly, in tables the improvement values of k = n/3 for data type A, B
and C, respectively. As it is seen from tables, the improvement values of the algorithm
for data type A is still the least. Also, the average improvement values are lower when
the precedence relationship is strict. We have divided to data set into eight subgroups
for A, B and C. However average improvement values for data set AA is 6.70%, it gets
lower and it becomes 2.39% for AH. Because from A to H, instances are generated
with more strict precedence constraints. If an instance is relax, than we can find so

many strategy to try and hit a better one to minimize the total expected cost.

Lastly, in tables [5.10L [5.11] 5.12] improvement values of k = n/4 for data type A, B

and C, respectively. As seen from the tables, the improvement values of the algorithm

for data type A is the least as same as 3fé)r k = n/2 and k = n/3. Also, the average



improvement values are still lower when the precedence relationship is strict.

5.2.3 Simulated Annealing Algorithm

In this section, the computational results and parameters of Simulated Annealing Algo-
rithm are given. Before giving the computational results, we provide improvement val-
ues for Temperature parameter of Simulated Annealing algorithm. 7" = 2%, T' = 5%,
T = 10%, T = 20% are tried to select the best value. Below table, for the same sub-
set which is used for selection criteria for initial solution, improvement of objective
function values are given for all different T values. And T' = 20% gives more efficient

results if we take average of the whole data that is used for this selection.

Below, we analyze the improvement of Simulated Annealing Algorithm based on de-
fined initial solution. Best numerical results are studied by trying different temperature
values. Generally the initial temperature value gives the best results, nearly 44% of the
number of best solutions of data set. When possible number of iterations has been per-
formed at the smallest value of T in the temperature schedule, the algorithm is stopped.
However, for any of the T values if all possible iterations are performed and there is

no improvement in the objective function value, then our algorithm is stopped.

Average improvement values between initial solution and Tabu Search Algorithm re-

sults are given below k = n/2, k = n/3, k = n/4. Firstly, in tables [5.14}, [5.15] |5.16|

improvement values of k& = n/2 for data type A, B and C, respectively. Likewise in
Tabu Search Algorithm results, improvement values of the algorithm for data type A
is the least. A is generated with a success probability with the parameters (0.0-1.0).
For data type B and C parameters are (0.5-1.0) and (0.75-1.0) respectively. Also, aver-
age improvement values are lower when the precedence relationship is strict. As it is
given for Tabu Search results, improvement values get lower from A to H because of

strictness of the precedence relationship.

Secondly, in tables [5.17} [5.18} [5.19| improvement values of k = n/3 for data type A,

B and C, respectively. As it is seen from tables, improvement values of the algorithm
for data type A is still the least. Also, the average improvement values are lower when

the precedence relationship is strict.
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Lastly, in tables |5.20} |5.21} [5.22| improvement values of k = n/4 for data type A, B

and C, respectively. As it is seen from tables, improvement values of the algorithm
for data type A is the least as same as for ¥ = n/2 and k = n/3. Also, average

improvement values are still lower when the precedence relationship is strict.

5.3 Comparison of Algorithms

In this section, Intersection-Precedence Algorithm and our heuristics algorithms are
compared and analyzed. In general, we observe that Intersection-Precedence Algo-
rithm generally improves the objective function value. For some instances, determin-
ing the next component to inspect according to the current testing state can lead to
worse results. As it is seen below, in some cases our proposed algorithm does not im-
prove our objective function value. It runs faster than the heuristics for small n values,

the comparative analysis for the running time will be given.

Firstly, comparison of algorithms is given for & = n/2. As it is seen from the tables
Simulated Annealing and Tabu Search heuristics give good results from
initial solution. They give a testing sequence and the next component to test is not
depended on the states of already tested. Our Intersection-Precedence Algorithm gives
results for strategies described by a binary tree, and also, it gives generally better
results than the heuristics. Generally, for smaller values of n average improvement
values of Intersection-Precedence Algorithm than heuristics are higher with respect
to higher values of n. When there are a few nodes to order, to decide which node
to test according to present state can make a sharp decrease in the objective function
value that obtained by using a permutation strategy. For example, when there are 100
nodes to test, to make a change in the order according to previous states cannot make
a reasonable numerical effect in the objective function value. If the problem has a
strict precedence relationship, there are a few possible orders and heuristics can not
improve the objective function so much. But Intersection-Precedence Algorithm can
choose the available items by looking at every state and it can improve the objective
function value higher than the heuristics. As it is seen in tables for n = 100

and n = 200 heuristics give more faster results because available items are searched
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at every states of INTER-PREC. Also, average improvement values are getting higher
from data set A to C. For example, when k£ = n/2, n = 50 average improvement value
of Intersection-Precedence Algorithm with respect to Simulated Annealing is 0.74%
for A, 7.24% for B, 7.48% for C. The prior success probabilities are higher and the
failure probabilities are lower for C. As it is stated before, Intersection-Precedence
Algorithm decides which item to test according to present state. Our next item to test
can be changed according to result of our previous state is success or failure. When the
items have a high success probability, it is easy to decide the next node by using the
information of previous states. As a summary, for & = n/2 our developed algorithm

give better results from heuristics according to objective function value.

After making a comparison between Intersection-Precedence Algorithm and Heuris-
tics Algorithms, in Table [5.27] a comparison of Simulated Annealing Algorithm and
Intersection Algorithm when there are no precedence constraints is given. To get
benchmark results we used some well-known heuristics. To know that our algorithm
really performs better, it is needed to to know performance of our benchmark results.
Simulated Annealing and Tabu Search Algorithms gave similar results, so we made
a comparison by using one of them, Simulated Annealing. We know that when there
are no precedence constraints, Intersection Algorithm gives optimal results. So, we
used same data without precedence constraints and solved by using Intersection Algo-
rithm. We found optimal results for this data set. Then, we used Simulated Annealing
for same data set and made a comparison. For k& = n/2 Simulated Annealing Al-
gorithm has 4.7% bigger objective function value than Intersection Algorithm. This
result shows us our heuristics are good benchmark results. This analysis is not taken

foralso k =n/3 and k = n/4.

Likewise k = n/2 it is given below computational results for £k = n/3. As it is seen
from the tables [5.28] [5.29] our Intersection-Precedence Algorithm gives more effi-
cient results from heuristics. INTER-PREC improves the objective function value 30%
higher than the SA and TS. Generally, for smaller values of n average improvement
values of Intersection-Precedence Algorithm than heuristics are higher with respect to
higher values of n. Also, average improvement values are getting higher from data set

A to C. Likewise for £ = n/2, as it is seen in tables|5.30} for n = 100 and n = 200
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Simulated Annealing Algorithm gives more faster results because available items are
searches at every states of INTER-PREC. Also, Tabu Search Algorithm gives more
time consuming results for only n = 20 than INTER-PREC that is shown in Table

Lastly, comparison of algorithms are given for & = n/4. Again, as it is seen from
the tables Intersection-Precedence Algorithm gives more efficient results
from heuristics. INTER-PREC improves the objective function value 30% higher than
the SA and TS. Generally, for smaller values of n average improvement values of
Intersection-Precedence Algorithm than heuristics are higher with respect to higher
values of n. Likewise for k& = n/3, as it is seen in Table for n = 100 and
n = 200 Simulated Annealing Algorithm gives more faster results because INTER-
PREC searches for available items at every states. Also, Tabu Search Algorithm gives

more time consuming results for only n = 20 that is shown in Table
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Comparative results for different T values | n=20 | n=50 | n=100 | n=200
T=2% 3.24% | 1.35% | 0.92% | 0.54%

T=5% 3.05% | 1.20% | 0.86% | 0.88%

T=10% 321% | 1.23% | 0.82% | 0.81%

T=20% 3.06% | 1.17% | 0.94% | 0.94%
Selected Methodology T=2% | T=2% | T=20% | T=20%

Table 5.13: Computational results of different Temperature results
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this study, the sequential testing problem for k-out-of-n systems under general type
precedence constraints is investigated. We use the results from the literature for the
sequential testing problem for k-out-of-n systems without any precedence constraints,
to come up with an algorithm, “Intersection-Precedence” that finds feasible strategies
that can be efficiently represented by a Block-Walking Diagram. We also consider
permutation strategies that can also be represented in an efficient manner and try to find
good permutation strategies by implementing a Tabu Search and Simulated Annealing
algorithm. We compare the performances of all these algorithms and we observe that

on the average, Intersection-Precedence outperforms the others.

For the experimental analysis, one major difficulty that we deal with, is the represen-
tation of feasible solutions. The natural way to represent feasible solutions is to use
Binary Decision Trees. On the other hand, even for moderate values of k and n, the
size of the binary decision tree becomes exponential and it is not possible to work with
these binary decision trees. That is why, in this work, we concentrate on strategies that
can be efficiently represented. From a computational point of view we have to do it,

on the other hand, in this way we only consider a subset of the feasible solutions.

As of now, there is no formal proof that the problem is NP-complete even for the
series(parallel) systems. We are aware of some efforts towards this end. For the se-
ries(parallel) systems the problem resembles very much to the scheduling problem
where one tries to minimize the total completion times on a single machine with gen-
eral precedence constraints. This problem is NP-complete but there is no direct way to

use this result to prove the NP-completeness of the sequential testing problem.
55



We mention some results from the literature where they claim to obtain an optimal
algorithm under special conditions related to the data. One could also look for some
special classes of precedence graphs where the optimal solution can be found. This
has been done for the series(parallel) systems. Again, these do not extend easily to

k-out-of-n systems.
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