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TITLE: PREDICTION INTERVALS FOR SCALED SHRINKAGE ESTIMATORS

MAJOR PROFESSOR: Dr. David J. Olive

Consider the multiple linear regression model Y = β1 + β2x2 + · · ·+ βpxp + e = xTβ+ e with

sample size n. Let β̂ be a shrinkage estimator of β such as elastic net, lasso, or ridge regression.

These estimators often shrink the slope estimators β̂i too much. Then the intercept estimator β̂1

is also poor. As a remedy, do a simple linear regression of Y on xT β̂ to get the scaled shrinkage

estimator β̂SA where β̂iSA = b̂β̂i for i = 2, ..., p and β̂1SA = â + b̂β̂1. Two prediction intervals are

used to compare the shrinkage estimators with the scaled shrinkage estimators.

KEY WORDS: Elastic Net, Lasso, Ridge Regression, Prediction Interval.
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1
CHAPTER 1

INTRODUCTION

Suppose that the response variable Yi and at least one predictor variable xi,j are quantitative

with xi,1 ≡ 1. Let xTi = (xi,1, ..., xi,p) = (1 uTi ) and β = (β1, ..., βp)
T where β1 corresponds to the

intercept. Then the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xTi β + ei (1.1)

for i = 1, ..., n. This model is also called the full model. Here n is the sample size, and assume that

the zero mean random variables ei are independent and identically distributed (iid) with variance

V (ei) = σ2. In matrix notation, these n equations become

Y = Xβ + e (1.2)

where Y is an n× 1 vector of response variables, X is an n× p matrix of predictors, β is a p× 1

vector of unknown coefficients, and e is an n × 1 vector of unknown errors. The ith fitted value

Ŷi = xTi β̂ and the ith residual ri = Yi − Ŷi where β̂ is an estimator of β. Ordinary least squares

(OLS) is often used for inference if n/p is large.

For some shrinkage estimators, such as lasso, Ŷi depends on the scale of the predictors.

Algorithms for such estimators often use the centered response Z = Y − Y where Y = Y 1, and

the n × (p − 1) matrix of standardized nontrivial predictors W = (Wij) where
∑n

i=1Wij = 0

and
∑n

i=1W
2
ij = n. Note that the sample correlation matrix of the nontrivial predictors ui is

Ru = W TW /n. Then regression through the origin is used for the model

Z = Wη + e (1.3)

where the vector of fitted values Ŷ = Y + Ẑ.

Three important shrinkage estimators of β are the elastic net due to Zou and Hastie [27]

, lasso due to Tibshirani [26], and ridge regression (RR): see Hoerl and Kennard [8]. Consider

choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z −Wη)T (Z −Wη) +

λ1,n
a

p−1∑
i=1

|ηi|j (1.4)



2
where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2 corresponds to ridge regression,

j = 1 corresponds to lasso, and a = 1, 2, n, and 2n are common. A fourth estimator, relaxed lasso,

applies OLS to a constant and the predictors that had nonzero lasso coefficients. See Efron et

al. [3] and Meinshausen [13]. The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη),

and λ1,n = 0 corresponds to the OLS estimator η̂OLS = (W TW )−1W TZ. Following Hastie,

Tibshirani, and Wainwright [7], the elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖22 + λ2‖η‖1 (1.5)

where λ1 = (1− α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.

The elastic net, lasso, relaxed lasso, and ridge regression estimators produce M models and

use a criterion to select the final model (e.g., 10-fold cross validation (CV)). The number of models

M depends on the method. Lasso and ridge regression have a parameter λ. When λ = 0, the OLS

full model is used. These methods also use a maximum value λM of λ and a grid of M λ values

0 ≤ λ1 < λ2 < · · · < λM−1 < λM . For lasso, λM is the smallest value of λ such that η̂λM = 0.

Hence η̂λi 6= 0 for i < M . See James et al. [9] and Hastie, Tibshirani, and Wainwright [7].

Variable selection is the search for a subset of predictor variables that can be deleted with

little loss of information if n/p is large, and so that the model with the remaining predictors is

useful for prediction. Following Olive and Hawkins [20], a model for variable selection can be

described by

xTβ = xTSβS + xTEβE = xTSβS (1.6)

where x = (xTS ,x
T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Given that xS is

in the model, βE = 0 and E denotes the subset of terms that can be eliminated given that the

subset S is in the model. Let xI be the vector of a terms from a candidate subset indexed by I,

and let xO be the vector of the remaining predictors (out of the candidate submodel). Suppose

that S is a subset of I and that model (1.6) holds. Then

xTβ = xTSβS = xTSβS + xTI/Sβ(I/S) + xTO0 = xTI βI (1.7)

where xI/S denotes the predictors in I that are not in S. Since this is true regardless of the values

of the predictors, βO = 0 if S ⊆ I.
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Consider regressing Y on xT β̂ to get Ỹ = â + b̂xT β̂. Let β̂ = β̂A be a shrinkage estimator.

The Olive [19] and Pelawa Watagoda and Olive [21] scaled shrinkage estimator β̂SA has β̂iSA = b̂β̂i

for i = 2, ..., p and β̂1SA = â + b̂β̂1. Shrinkage estimators often shrink the slope estimators β̂i too

much. Relaxed lasso is a remedy if the model is sparse: aS is small. A fitted model is sparse if

the number d of nonzero coefficients in β̂ is small. We want n ≥ 10d to avoid overfitting. Relaxed

lasso is useful if the population model and fitted model are both sparse. The scaled shrinkage

estimator may be useful if the population model or fitted model is not sparse. Ridge regression

has d = p, and hence is not a sparse fitted model. For ridge regression, we could let d be a plug in

degrees of freedom: compute the degrees of freedom as if the model was selected in advance rather

than after model selection with 10-fold CV. Thus a plug in degrees of freedom is not the actual

degrees of freedom, which tends to be hard to compute when model or variable selection is used.

Response plots of the fitted values Ŷ versus the response Y are useful for checking linearity

of the MLR model and for detecting outliers. If the error distribution is unimodal and not highly

skewed, if n ≥ 10d, and if the MLR model (1.1) is good, then the plotted points in the response

plot should scatter in a roughly even band about the identity line with zero intercept and unit

slope. Residual plots should also be made. We call xTβ a sufficient predictor and Ŷ = xT β̂ an

estimated sufficient predictor (ESP).

Example 1. Suppose Y = β1 + β2x2 + · · ·+ β101x101 + e = x2 + e with n = 100 and p = 101.

This model is sparse and lasso performs well. Ridge regression shrinks too much and β̂1 is poor,

but the correlation cor(Ŷ RR,Y ) = 0.91. See the response plots in Figure 1.1 which has the 90%

pointwise prediction interval (PI) (2.8) bands added to the plot as two lines parallel to the identity

line. See Section 2. The response plot in Figure 1.2 shows the scaled ridge regression estimator

fits the data much better than the ridge regression estimator in Figure 1.1. Some R code is below.

library(glmnet)

set.seed(13)

par(mfrow=c(2,1))

x <- matrix(rnorm(10000),nrow=100,ncol=100)
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Y <- x[,1] + rnorm(100,sd=0.1)

#sparse model, iid predictors

out <- cv.glmnet(x,Y,alpha=1) #lasso

lam <- out$lambda.min

fit <- predict(out,s=lam,newx=x)

res<- Y-fit

#PI bands used d = 1

AERplot2(yhat=fit,y=Y,res=res)

title("lasso")

cor(fit,Y) #about 0.997

tem <- lsfit(fit,Y)

tem$coef #changes even if set.seed is used

# Intercept 1

#0.0009741988 1.0132965955

out <- cv.glmnet(x,Y,alpha=0) #ridge regression

lam <- out$lambda.min

fit <- predict(out,s=lam,newx=x)

res<- Y-fit

#PI bands used d = 1

AERplot2(yhat=fit,y=Y,res=res)

#$respi

#[1] -1.276461 1.693856 #PI length about 2.97

title("ridge regression")

par(mfrow=c(1,1))

#ridge regression shrank betahat and ESP too much

cor(fit,Y) #about 0.91

tem <- lsfit(fit,Y)

tem$coef
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# Intercept 1

#0.3523725 5.8094443 #Fig. 1.1 has -0.7008187 5.7954084

fit2 <- Y-tem$resid #Y = yhat + r, fit2 = yhat for scaled RR estimator

plot(fit2,Y) #response plot is much better

abline(0,1)

rrcoef <- predict(out,type="coefficients",s=lam)

plot(rrcoef)

bhat <- tem$coef[2]*rrcoef

bhat[1] <- bhat[1] + tem$coef[1]

#bhat is the betahat for the new ESP fit2

fit3 <- x%*%bhat[-1] + bhat[1]

plot(fit2,fit3)

max(abs(fit2-fit3))

#[1] 1.110223e-15

plot(rrcoef)

plot(bhat)

res2 <- Y - fit2

AERplot2(yhat=fit2,y=Y,res=res2)

$respi

[1] -0.7857706 0.6794579 #PI length about 1.47

title("Response Plot for Scaled Ridge Regression Estimator")

Section 2 gives the two prediction intervals used in the simulation study, and Section 3 gives

some large sample theory for shrinkage estimators. Section 4 gives a simulation for the prediction

intervals to compare lasso and ridge regression with scaled lasso and scaled ridge regression.

Sections 2 and 3 follow Pelawa Watagoda and Olive [21] closely.
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CHAPTER 2

PREDICTION INTERVALS AFTER MODEL SELECTION

Consider predicting a future test response variable Yf given a p × 1 vector of predictors xf

and training data (x1, Y1), ..., (xn, Yn). A large sample 100(1 − δ)% prediction interval (PI) for

Yf has the form [L̂n, Ûn] where P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as the sample size n → ∞. A PI is

asymptotically optimal if [L̂n, Ûn] → [Ls, Us] as n → ∞ where [Ls, Us] is the population shorth:

the shortest interval covering 100(1− δ)% of the mass.

The shorth(c) estimator of the population shorth is useful for making asymptotically optimal

prediction intervals if the data are iid. Let Z(1), ..., Z(n) be the order statistics of Z1, ..., Zn. Then

let the shortest closed interval containing at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (2.1)

Let

kn = dn(1− δ)e. (2.2)

Frey [5] showed that for large nδ and iid data, the shorth(kn) PI has maximum undercoverage

≈ 1.12
√
δ/n, and used the shorth(c) estimator as the large sample 100(1− δ)% PI where

c = min(n, dn[1− δ + 1.12
√
δ/n ] e). (2.3)

Example 2. Given below were votes for preseason 1A basketball poll from Nov. 22, 2011 WSIL

News where the 778 was a typo: the actual value was 78. As shown below, finding shorth(3) from

the ordered data is simple. If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89

shorth(3) = [76,89]
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The additive error regression model is Y = m(x) + e where m(x) is a real valued function

and the ei are iid, often with zero mean and constant variance V (e) = σ2. Model (1.1) is a special

case with m(x) = xTβ. The large sample theory for prediction intervals is simple for this model.

Cai et al. [1] proved that the shorth PI works for multiple linear regression. Let the residuals

ri = Yi−m̂(xi) = Yi− Ŷi for i = 1, ..., n. Assume m̂(x) is a consistent estimator of m(x) such that

the sample percentiles [L̂n(r), Ûn(r)] of the residuals are consistent estimators of the population

percentiles [L,U ] of the error distribution where P (e ∈ [L,U ]) = 1 − δ. Let Ŷf = m̂(xf ). Then

P (Yf ∈ [Ŷf + L̂n(r), Ŷf + Ûn(r)] → P (Yf ∈ [m(xf ) + L,m(xf ) + U ]) = P (e ∈ [L,U ]) = 1 − δ

as n → ∞. Three common choices are a) P (e ≤ U) = 1 − δ/2 and P (e ≤ L) = δ/2, b)

P (e2 ≤ U2) = P (|e| ≤ U) = P (−U ≤ e ≤ U) = 1− δ with L = −U , and c) the population shorth

is the shortest interval U −L such that P [e ∈ [L,U ]) = 1− δ. The PI c) is asymptotically optimal

while a) and b) are asymptotically optimal on the class of symmetric zero mean unimodal error

distributions.

Prediction intervals based on the shorth of the residuals need a correction factor for good

coverage since the residuals tend to underestimate the errors in magnitude. For lasso, let d be the

number of variables used by the method: the number of nonzero β̂i, including β̂1. We could also

let d be equal to a plug in estimate of model degrees of freedom.

For n/p large and d = p, Olive [15] developed prediction intervals for models of the form

Yi = m(xi) + ei. The first Pelawa Watagoda and Olive [21] PI, that can be useful even if n/p is

not large, is defined below. This PI modifies the Olive [15] PI that can only be computed if n > p.

Olive [14][16][17][18] used similar correction factors for several prediction intervals and prediction

regions with d = p. We want n ≥ 10d so that the model does not overfit.

If the OLS model I has d predictors, and S ⊆ I, then

E(MSE(I)) = E

(
n∑
i=1

r2i
n− d

)
= σ2 = E

(
n∑
i=1

e2i
n

)

and MSE(I) is a
√
n consistent estimator of σ2 for many error distributions by Su and Cook [25].

For a wide range of regression models, extrapolation occurs if the leverage hf = xTf (XT
IXI)

−1xf >

2d/n: if xI,f is too far from the data xI,1, ...,xI,n, then the model may not hold and prediction
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can be arbitrarily bad. These results suggests that√

n

n− d

√
(1 + hf ) ri ≈

√
n+ 2d

n− d
ri ≈ ei.

In simulations for prediction intervals and prediction regions with n = 20d, the maximum simu-

lated undercoverage was near 5% if qn in (2.5) is changed to qn = 1− δ.

Next we give the correction factor and the first prediction interval. Let qn =

min(1− δ + 0.05, 1− δ + d/n) for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δd/n), otherwise. (2.4)

If 1− δ < 0.999 and qn < 1− δ + 0.001, set qn = 1− δ. Let

c = dnqne, (2.5)

and let

bn =

(
1 +

15

n

)√
n+ 2d

n− d
(2.6)

if d ≤ 8n/9, and

bn = 5

(
1 +

15

n

)
,

otherwise. As d gets close to n, the model overfits and the coverage will be less than the nominal.

The piecewise formula for bn allows the prediction interval to be computed even if d ≥ n. Compute

the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1 , ξ̃1−δ2 ]. Then the first 100 (1−δ)% large sample

PI for Yf is

[m̂(xf ) + bnξ̃δ1 , m̂(xf ) + bnξ̃1−δ2 ]. (2.7)

The second PI randomly divides the data into two half sets H and V where H has nH = dn/2e

of the cases and V has the remaining nV = n − nH cases i1, ..., inV
. The estimator m̂H(x) is

computed using the training data set H. Then the validation residuals vj = Yij − m̂H(xij) are

computed for the j = 1, ..., nV cases in the validation set V . Find the Frey PI [v(s), v(s+c−1)] of

the validation residuals (replacing n in (2.3) by nV = n− nH). Then the second new 100(1− δ)%

large sample PI for Yf is

[m̂H(xf ) + v(s), m̂H(xf ) + v(s+c−1)]. (2.8)
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We can also motivate PI (2.8) by modifying the justification for the Lei et al. [12] split

conformal prediction interval [m̂H(xf ) − aq, m̂H(xf ) + aq] where aq is an appropriate quantile

of the absolute validation residuals. PI (2.8) is a modification of the split conformal PI that is

asymptotically optimal. Suppose (Yi,xi) are iid for i = 1, ..., n, n+1 where (Yf ,xf ) = (Yn+1,xn+1).

Compute m̂H(x) from the cases in H. For example, get β̂H from the cases in H. Consider the

validation residuals vi for i = 1, ..., nV and the validation residual vnV +1 for case (Yf ,xf ). Since

these nV + 1 cases are iid, the probability that vt has rank j for j = 1, ..., nV + 1 is 1/(nV + 1) for

each t, i.e., the ranks follow the discrete uniform distribution. Let t = nV +1 and let the v(j) be the

ordered residuals using j = 1, ..., nV . That is, get the order statistics without using the unknown

validation residual vnV +1. Then v(i) has rank i if v(i) < vnV +1 but rank i+ 1 if v(i) > vnV +1. Thus

P (Yf ∈ [m̂H(xf ) + v(k), m̂H(xf ) + v(k+b−1)]) = P (v(k) ≤ vnV +1 ≤ v(k+b−1)) ≥

P (vnV +1 has rank between k+1 and k+b−1 and there are no tied ranks) ≥ (b−1)/(nV +1) ≈ 1−δ

if b = d(nV + 1)(1 − δ)e + 1 and k + b − 1 ≤ nV . This probability statement holds for a fixed k

such as k = dnV δ/2e. The statement is not true when the shorth(b) estimator is used since the

shortest interval using k = s can have s change with the data set. That is, s is not fixed. Hence

if PI’s were made from J independent data sets, the PI’s with fixed k would contain Yf about

J(1− δ) times, but this value would be smaller for the shorth(b) prediction intervals where s can

change with the data set. The above argument works if the estimator m̂(x) is “symmetric in the

data,” which is satisfied for multiple linear regression estimators.

The PIs (2.7) and (2.8) can be used with m̂(x) = Ŷf = xTIdβ̂Id where Id denotes the index

of predictors selected from the model or variable selection method. If β̂ is a consistent estimator

of β, the Pelawa and Watagoda and Olive [21] PIs (2.7) and (2.8) are asymptotically optimal for

a large class of error distributions while the split conformal PI needs the error distribution to be

unimodal and symmetric for asymptotic optimality. Since m̂H uses n/2 cases, m̂H has about half

the efficiency of m̂. When p ≥ n, the regularity conditions for consistent estimators are strong. See

the last paragraph of Section 3 for references. If the estimator is not consistent, the split conformal

PI and PI (2.8) can have coverage closer to the nominal coverage than PI (2.7). For example,

if m̂ interpolates the data and m̂H interpolates the training data from H, then the validation
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residuals will be huge. Hence PI (2.8) will be long compared to PI (2.7). For a good fitting model,

residuals ri tend to be smaller in magnitude than errors ei. Hence complicated correction factors

are needed. The validation residuals vj tend to be larger in magnitude than the ei, and thus the

Frey correction factor can be used.
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CHAPTER 3

LARGE SAMPLE THEORY

The estimators elastic net, lasso, and ridge regression have R programs and large sample

theory related to that of OLS. First we will let p be fixed.

Assume that the sample correlation matrix

Ru =
W TW

n

P→ V −1 (3.1)

where V −1 = ρu, the population correlation matrix of the nontrivial predictors ui, if the ui are

a random sample from a population. Under (3.1), if λ1,n/n→ 0 then

W TW + λ1,nIp−1

n

P→ V −1, and n(W TW + λ1,nIp−1)
−1 P→ V .

Let H = W (W TW )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞. Then from

Sen and Singer [23], the OLS estimator satisfies

√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (3.2)

The following identity from Gunst and Mason [6] is useful for ridge regression inference: η̂R =

(W TW + λ1,nIp−1)
−1W TZ = (W TW + λ1,nIp−1)

−1W TW (W TW )−1W TZ

= (W TW + λ1,nIp−1)
−1W TWη̂OLS = Anη̂OLS =

[Ip−1 − λ1,n(W TW + λ1,nIp−1)
−1]η̂OLS = Bnη̂OLS =

η̂OLS −
λ1n
n
n(W TW + λ1,nIp−1)

−1η̂OLS

since An −Bn = 0.

The following identity from Efron and Hastie [2], for example, is useful for inference for the

lasso estimator η̂L:

−1

n
W T (Z −Wη̂L) +

λ1,n
2n
sn = 0 or −W T(Z −Wη̂L) +

λ1,n
2
sn = 0
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where sin ∈ [−1, 1] and sin = sign(η̂i,L) if η̂i,L 6= 0. Here sign(ηi) = 1 if ηi > 1 and sign(ηi) = −1

if ηi < 1. Note that sn = sn,η̂L
depends on η̂L. Thus η̂L

= (W TW )−1W TZ − λ1,n
2n

n(W TW )−1 sn = η̂OLS −
λ1,n
2n

n(W TW )−1 sn.

Following Jia and Yu [10], by standard Karush-Kuhn-Tucker (KKT) conditions for convex

optimality for Equation (1.5), η̂EN is optimal if

2W TWη̂EN − 2W TZ + 2λ1η̂EN + λ2sn = 0, or

(W TW + λ1Ip−1)η̂EN = W TZ − λ2
2
sn, or

η̂EN = η̂R − n(W TW + λ1Ip−1)
−1 λ2

2n
sn. (3.3)

Hence

η̂EN = η̂OLS −
λ1
n
n(W TW + λ1Ip−1)

−1 η̂OLS −
λ2
2n

n(W TW + λ1Ip−1)
−1 sn

= η̂OLS − n(W TW + λ1Ip−1)
−1 [

λ1
n
η̂OLS +

λ2
2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1 − ψ)τ and λ̂2/
√
n

P→ 2ψτ. Under these

conditions,

√
n(η̂EN − η) =

√
n(η̂OLS − η)− n(W TW + λ̂1Ip−1)

−1 [
λ̂1√
n
η̂OLS +

λ̂2
2
√
n
sn].

The following theorem shows the elastic net, lasso, and ridge regression are asymptotically

equivalent to the OLS full model if λ̂1,n/
√
n

P→ 0. The theorem follows from results in Knight

and Fu [11] and Slawski, zu Castell, and Tutz [24]. Knight and Fu [11] proved that lasso and

ridge regression are consistent estimators of β if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, and
√
n

consistent if λ1,n = O(
√
n) so λ1,n/

√
n is bounded. Let η̂A be η̂EN , η̂L, or η̂R. Note that c) follows

from b) if ψ = 0, and d) follows from b) (using 2λ̂1,n/
√
n

P→ 2τ) if ψ = 1. Recall that we are

assuming that p is fixed.

Theorem 1. Assume that the conditions of the OLS theory (3.2) hold for the model Z =

Wη + e.
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a) If λ̂1,n/

√
n

P→ 0, then
√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

c) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

d) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(
−τ
2
V s, σ2V

)
.

We can make the three estimators asymptotically equivalent to the OLS full model: take, for

example, λ1n =
√
n/ log(n). If λ̂1n/

√
n → τ > 0, then lasso tends to have at least one β̂j = 0 for

large n by Ewald and Schneider [4]. Lasso may not be
√
n consistent if lasso selects S with high

probability.

Usually λ̂1,n is selected using a criterion such as k–fold CV. It is not clear whether λ̂1,n = o(n).

For the elastic net and lasso, λM/n does not go to zero as n→∞ since η̂ = 0 is not a consistent

estimator. Hence λM is likely proportional to n, and using λi = iλM/M for i = 1, ...,M will not

produce a consistent estimator.

Consider regressing Y on xT β̂ to get Ỹ = â + b̂xT β̂. If β̂ is a consistent estimator of β,

then â
P→ 0 and b̂

P→ 1 as n→∞. Hence the scaled shrinkage estimator is a consistent estimator

of β if the shrinkage estimator β̂ is consistent. Note that if β̂ = β̂OLS, then â = 0 and b̂ = 1,

since otherwise the scaled shrinkage estimator would have a smaller residual sum of squares than

the OLS estimator, which is impossible since OLS minimizes the residual sum of squares. Thus

scaling has no effect on relaxed lasso or OLS variable selection.

If p > n, the regularity conditions for β̂ to be a consistent estimator of β are much stronger,

but results from Hastie, Tibshirani, and Wainwright [7] suggest that lasso can perform well for

sparse models: the subset S in (1.6) has aS small.
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CHAPTER 4

SIMULATIONS

For the simulation, ridge regression (RR) and lasso were computed with the cv.glmnet

function from the glmnet library with the R software. Let x = (1 uT )T where u is the (p− 1)× 1

vector of nontrivial predictors. In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I)

where the m = p − 1 elements of the vector wi are iid N(0,1). Let the m ×m matrix A = (aij)

with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the vector ui = Awi so that Cov(ui) =

Σu = AAT = (σij) where the diagonal entries σii = [1 + (m− 1)ψ2] and the off diagonal entries

σij = [2ψ+(m−2)ψ2]. Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2)

for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/
√
cp, then ρ → 1/(c + 1) as p →∞

where c > 0. As ψ gets close to 1, the predictor vectors cluster about the line in the direction of

(1, ..., 1)T . Let Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with

k+1 ones and p−k−1 zeros. The zero mean errors ei were iid from five distributions: i) N(0,1), ii)

t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100). The uniform distribution

is the distribution where the shorth undercoverage is maximized by Frey (2013). Distributions ii)

and v) have heavy tails, and distribution iii) is not symmetric.

The lengths of the asymptotically optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996,

iv) 1.90 = 2(0.95), and v) 13.490. The simulation used 5000 runs, so an observed coverage in

[0.94, 0.96] gives no reason to doubt that the PI has the nominal coverage of 0.95. The simulation

used p = 20, 40, 50, n, or 2n; ψ = 0, 1/
√
p, or 0.9; and k = 1, 19, or p − 1. The OLS full model

fails when p = n and p = 2n and regularity conditions for consistent estimators are strong. The

values k = 1 and k = 19 are sparse models where lasso can perform well when n/p is not large. If

k = p− 1 and p ≥ n, then the model is dense. When ψ = 0, the predictors are uncorrelated, when

ψ = 1/
√
p, the correlation goes to 0.5 as p increases and the predictors are moderately correlated.

For ψ = 0.9, the predictors are highly correlated with 1 dominant principal component.

The simulations were done in R. See R Core Team (2016). The results were similar for all

five error distributions. Tables 4.1 - 8.1 show some simulation results for PI (2.7) and (2.8) where
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lasso and ridge regression minimized 10-fold CV. Ridge regression used the same d that was used

for lasso. Table headers lasso is for PI (2.7), vlasso is for PI (2.8), SL is for scaled lasso with PI

(2.7), VSL is for scaled lasso with PI (2.8), RR is ridge regression for PI (2.7), VRR is RR for PI

(2.8), SRR is for scaled RR with PI (2.7), VSRR is for scaled RR with PI (2.8).

Table 4.1. Simulated Large Sample 95% PI Coverages and Lengths for error
type 1 (nruns=5000), ei ∼ N(0, 1)

n p ψ k lasso SL vlasso VSL RR SRR VRR VSRR

100 20 0 1 cov 0.9750 0.9730 0.9632 0.9634 0.9564 0.9512 0.9606 0.9594

len 4.8245 4.7603 4.7831 4.7423 4.5741 4.4758 5.3277 6.2438

100 40 0 1 cov 0.9774 0.9750 0.9624 0.9596 0.9276 0.8632 0.9614 0.9618

len 4.8889 4.7876 4.8416 4.7905 4.4260 4.1104 5.7438 9.6068

100 200 0 1 cov 0.9764 0.9722 0.9644 0.9678 0.9578 0.7532 0.9588 0.9592

len 4.9762 4.7555 4.9884 4.8867 6.1622 3.4142 6.2541 13.9480

100 50 0 49 cov 0.9714 0.9708 0.9606 0.9612 0.9822 0.9770 0.9618 0.9564

len 6.8345 6.8227 22.3265 22.6899 7.7229 7.2399 27.7275 66.7933

200 20 0 19 cov 0.9766 0.9786 0.9572 0.9574 0.9790 0.9766 0.9548 0.9570

len 4.9636 4.9612 4.6446 4.6486 5.0454 4.9683 4.7066 4.6495

200 40 0 19 cov 0.9762 0.9780 0.9488 0.9454 0.9742 0.9732 0.9478 0.9516

len 5.2205 5.1611 5.1065 5.0654 5.2097 5.1209 5.3689 5.3300

200 200 0 19 cov 0.9778 0.9728 0.9534 0.9530 0.9960 0.5440 0.9614 0.9562

len 5.7714 5.3180 7.0898 6.8564 22.3516 11.8611 16.5520 15.0981

400 20 0.9 19 cov 0.9748 0.9692 0.9584 0.9554 0.9726 0.9646 0.9590 0.9572

len 10.6086 6.1460 10.1626 5.8390 10.6631 4.3647 9.9861 4.1160

400 40 0.9 19 cov 0.9608 0.9596 0.9530 0.9534 0.9578 0.9640 0.9538 0.9570

len 14.6702 8.3137 14.5228 7.9291 14.4812 4.4158 14.1356 4.3511

400 400 0.9 19 cov 0.9636 0.9636 0.9546 0.9548 0.9632 0.8786 0.9556 0.9550

len 47.3608 8.9214 45.4396 8.5698 48.0207 4.6275 44.5228 5.2317

400 400 0 399 cov 0.8508 0.8166 0.9518 0.9536 1.000 0.9988 0.9548 0.9606

len 37.5418 34.5665 78.0652 81.6053 244.1004 131.3563 69.5812 62.9434

400 800 0.9 19 cov 0.9652 0.9698 0.9584 0.9564 0.9672 0.9274 0.9588 0.9580

len 67.2939 9.0407 63.7856 8.5959 66.5770 4.6898 63.1034 4.9308

Some R code is below.

srrpisim(n=100,p=20,k=1,nruns=5000,psi=0.0,type=1)

$dlas

[1] 4.947
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$dvlas

[1] 5.163

$laspicov

[1] 0.975

$laspimenlen

[1] 4.824475

$slaspicov

[1] 0.973

$slaspimenlen

[1] 4.760299

$vlaspicov

[1] 0.9632

$vlaspimenlen

[1] 4.783059

$vslaspicov

[1] 0.9634

$vslaspimenlen

[1] 4.742325

$rrpicov

[1] 0.9564

$rrpimenlen

[1] 4.57409

$srrpicov

[1] 0.9512

$srrpimenlen

[1] 4.475827

$vrrpicov

[1] 0.9606
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$vrrpimenlen

[1] 5.327717

$vsrrpicov

[1] 0.9594

$vsrrpimenlen

[1] 6.243801
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CHAPTER 5

ERROR TYPE 2 EXAMPLES

Table 5.1. Simulated Large Sample 95% PI Coverages and Lengths for error
type 2 (nruns=5000), ei ∼ t3

n p ψ k lasso SL vlasso VSL RR SRR VRR VSRR

100 20 0 1 cov 0.9632 0.9614 0.9578 0.9576 0.9540 0.9148 0.9574 0.9596

len 8.3460 8.2156 10.0936 10.1526 7.9940 7.6514 10.3417 30.5300

100 40 0 1 cov 0.9658 0.9628 0.9618 0.9652 0.9506 0.7776 0.9620 0.9640

len 8.4640 8.2446 10.0878 10.2011 7.9295 7.0406 10.4545 38.0839

100 200 0 1 cov 0.9620 0.9566 0.9552 0.9560 0.9572 0.6936 0.9570 0.9576

len 8.6988 8.1331 10.3071 10.4749 8.9997 5.3480 10.6292 23.1341

100 50 0 49 cov 0.9696 0.9694 0.9560 0.9572 0.9768 0.9744 0.9596 0.9602

len 11.5426 11.5344 24.8382 25.3699 12.2149 11.8410 28.6124 73.1487

200 20 0 19 cov 0.9720 0.9712 0.9572 0.9578 0.9740 0.9718 0.9548 0.9584

len 8.7377 8.7347 8.1649 8.1750 8.7863 8.7404 8.1421 8.1812

200 40 0 19 cov 0.9768 0.9752 0.9554 0.9556 0.9732 0.9734 0.9560 0.9548

len 9.0936 8.9944 8.8251 8.8504 8.9376 8.8697 9.0151 9.2021

200 200 0 19 cov 0.9758 0.9688 0.9598 0.9586 0.9936 0.5230 0.9554 0.9572

len 9.8875 9.1091 11.7832 11.7247 23.6466 13.4114 17.5470 16.4468

400 20 0.9 19 cov 0.9624 0.9616 0.9522 0.9516 0.9668 0.9596 0.9524 0.9552

len 10.7252 8.2400 10.4784 8.0216 10.7629 7.3461 10.3135 7.1320

400 40 0.9 19 cov 0.9616 0.9616 0.9540 0.9570 0.9604 0.9590 0.9540 0.9546

len 14.8075 9.7732 14.5875 9.4978 14.9966 7.0746 14.6606 7.1897

400 400 0.9 19 cov 0.9594 0.9630 0.9534 0.9574 0.9634 0.9386 0.9548 0.9560

len 47.8514 10.4872 45.7736 10.1547 48.5160 7.3242 44.9570 7.7311

400 400 0 399 cov 0.8520 0.8154 0.9532 0.9516 1.000 0.9980 0.9524 0.9524

len 38.1747 35.2417 78.2062 81.7967 243.5236 132.0560 69.8679 63.2659

400 800 0.9 19 cov 0.9654 0.9634 0.9514 0.9536 0.9652 0.9478 0.9536 0.9514

len 67.7355 10.6404 64.0052 10.1836 66.9951 7.4740 63.3265 7.5353
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CHAPTER 6

ERROR TYPE 3 EXAMPLES

Table 6.1. Simulated Large Sample 95% PI Coverages and Lengths for error
type 3 (nruns=5000), ei ∼ EXP (1)− 1

n p ψ k lasso SL vlasso VSL RR SRR VRR VSRR

100 20 0 1 cov 0.9728 0.9706 0.9582 0.9596 0.9546 0.9444 0.9612 0.9550

len 4.4345 4.3082 5.0089 4.9130 4.4384 4.3619 5.6692 6.9304

100 40 0 1 cov 0.9750 0.9750 0.9586 0.9580 0.9374 0.8664 0.9598 0.9622

len 4.5535 4.3831 5.0908 4.9986 4.4035 4.1185 6.1098 11.6162

100 200 0 1 cov 0.9736 0.9740 0.9560 0.9582 0.9574 0.7684 0.9594 0.9584

len 4.7104 4.4060 5.2616 5.1164 6.2218 3.4469 6.6069 13.8421

100 50 0 49 cov 0.9716 0.9706 0.9618 0.9616 0.9814 0.9722 0.9608 0.9646

len 6.9460 6.9326 22.4097 22.7736 7.8316 7.3600 27.8306 67.1252

200 20 0 19 cov 0.9780 0.9776 0.9592 0.9600 0.9786 0.9776 0.9598 0.9610

len 4.7186 4.7174 4.6171 4.6211 4.8407 4.7255 4.7052 4.6243

200 40 0 19 cov 0.9784 0.9776 0.9560 0.9560 0.9744 0.9738 0.9582 0.9588

len 5.0942 5.0210 5.1472 5.1013 5.1455 5.0467 5.4365 5.3922

200 200 0 19 cov 0.9734 0.9726 0.9510 0.9522 0.9930 0.5450 0.9550 0.9574

len 5.7836 5.2834 7.1394 6.9027 22.3106 11.8392 16.5806 15.0300

400 20 0.9 19 cov 0.9704 0.9658 0.9572 0.9560 0.9694 0.9372 0.9548 0.9606

len 10.7134 6.1668 10.2824 5.8881 10.7144 3.6054 10.1098 3.5926

400 40 0.9 19 cov 0.9654 0.9630 0.9538 0.9568 0.9622 0.9418 0.9522 0.9540

len 14.7387 8.3503 14.6056 7.9963 14.6616 4.0356 14.3988 4.1625

400 400 0.9 19 cov 0.9660 0.9632 0.9588 0.9556 0.9658 0.8572 0.9576 0.9592

len 47.3841 8.9392 45.5246 8.6300 48.0632 4.3641 44.5903 5.1930

400 400 0 399 cov 0.8446 0.8062 0.9586 0.9570 1.000 0.9996 0.9558 0.9560

len 37.5185 34.5573 78.0564 81.6033 243.7929 131.4923 69.5474 62.8434

400 800 0.9 19 cov 0.9682 0.9674 0.9582 0.9544 0.9656 0.9162 0.9548 0.9580

len 67.2399 9.0631 63.7545 8.6423 66.4799 4.4452 63.0266 4.8751
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CHAPTER 7

ERROR TYPE 4 EXAMPLES

Table 7.1. Simulated Large Sample 95% PI Coverages and Lengths for error
type 4 (nruns=5000), ei ∼ uniform(−1, 1)

n p ψ k lasso SL vlasso VSL RR SRR VRR VSRR

100 20 0 1 cov 0.9916 0.9944 0.9598 0.9616 0.9472 0.9446 0.9610 0.9612

len 2.3751 2.3152 2.2886 2.1934 2.3774 2.3502 2.9692 3.0508

100 40 0 1 cov 0.9904 0.9926 0.9610 0.9640 0.8934 0.8712 0.9592 0.9578

len 2.4176 2.3387 2.3673 2.2456 2.3064 2.2337 3.6998 3.9876

100 200 0 1 cov 0.9864 0.9874 0.9604 0.9566 0.9650 0.7702 0.9588 0.9570

len 2.4945 2.3506 2.5004 2.3102 5.0174 2.5686 4.9370 6.8526

100 50 0 49 cov 0.9786 0.9790 0.9556 0.9574 0.9824 0.9796 0.9536 0.9582

len 3.8554 3.8403 21.2821 21.6118 5.2428 4.5342 27.3574 64.3802

200 20 0 19 cov 0.9856 0.9870 0.9550 0.9544 0.9832 0.9858 0.9570 0.9544

len 2.4703 2.4643 2.4170 2.4162 2.6855 2.4826 2.6499 2.4460

200 40 0 19 cov 0.9870 0.9812 0.9528 0.9496 0.9814 0.9798 0.9532 0.9566

len 2.6805 2.6324 2.7691 2.7224 2.8913 2.6985 3.2480 3.0434

200 200 0 19 cov 0.9806 0.9754 0.9562 0.9530 0.9942 0.5700 0.9548 0.9560

len 3.1177 2.8209 4.0109 3.8002 21.8417 11.2607 16.1584 14.4926

400 20 0.9 19 cov 0.9668 0.9660 0.9486 0.9538 0.9668 0.9308 0.9490 0.9498

len 10.8020 5.0925 10.0931 4.8031 10.9788 2.0595 10.2298 1.9778

400 40 0.9 19 cov 0.9672 0.9600 0.9572 0.9522 0.9642 0.9308 0.9532 0.9532

len 15.1260 7.6269 14.5715 7.2321 15.3211 2.5657 14.8317 2.5335

400 400 0.9 19 cov 0.9616 0.9636 0.9524 0.9540 0.9622 0.7530 0.9512 0.9532

len 47.1768 8.2101 45.3406 7.9058 47.8504 2.9071 44.4210 3.9334

400 400 0 399 cov 0.8478 0.8114 0.9502 0.9498 1.000 0.9984 0.9532 0.9522

len 37.2128 34.2539 78.0147 81.4731 244.8390 131.6709 69.6196 62.8650

400 800 0.9 19 cov 0.9608 0.9664 0.9500 0.9554 0.9630 0.8516 0.9480 0.9540

len 67.0137 8.3055 63.7723 7.9172 66.2645 2.9511 63.0501 3.5062

—
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CHAPTER 8

ERROR TYPE 5 EXAMPLES

Table 8.1. Simulated Large Sample 95% PI Coverages and Lengths for error
type 5(nruns=5000), ei ∼ 0.9N(0, 1) + 0.1N(0, 100)

n p ψ k lasso SL vlasso VSL RR SRR VRR VSRR

100 20 0 1 cov 0.9560 0.9572 0.9620 0.9612 0.9562 0.7412 0.9592 0.9616

len 17.3998 16.9038 23.0477 23.2749 17.1965 15.7771 23.0808 70.5580

100 40 0 1 cov 0.9482 0.9482 0.9586 0.9600 0.9478 0.5964 0.9584 0.9608

len 17.7428 16.8885 23.0184 23.3237 17.4268 14.5801 23.0644 61.8767

100 200 0 1 cov 0.9524 0.9444 0.9562 0.9590 0.9490 0.6018 0.9572 0.9574

len 17.7586 15.9205 23.2490 23.6644 17.7365 10.9210 23.1955 35.8158

100 50 0 49 cov 0.9658 0.9654 0.9614 0.9604 0.9732 0.9678 0.9622 0.9592

len 24.3794 23.8435 33.3387 34.3426 26.6367 24.9746 33.7416 79.8000

200 20 0 19 cov 0.9620 0.9622 0.9498 0.9500 0.9612 0.9620 0.9516 0.9496

len 20.6508 20.6380 18.7335 18.7802 20.7582 20.6607 18.6119 18.8466

200 40 0 19 cov 0.9654 0.9660 0.9570 0.9598 0.9644 0.9622 0.9576 0.9576

len 21.2357 20.8590 19.6860 19.9495 21.0476 20.6025 19.4958 20.5310

200 200 0 19 cov 0.9694 0.9600 0.9580 0.9582 0.9826 0.5510 0.9556 0.9582

len 21.9094 19.2936 22.0987 22.7933 30.0395 19.0683 22.9558 25.5007

400 20 0.9 19 cov 0.9556 0.9574 0.9552 0.9540 0.9570 0.9568 0.9550 0.9552

len 16.3836 16.2787 16.7407 16.5939 16.4058 16.3116 16.4657 16.3143

400 40 0.9 19 cov 0.9532 0.9538 0.9568 0.9546 0.9574 0.9520 0.9570 0.9560

len 16.4705 15.8309 17.7666 17.0164 16.3447 15.0483 17.5700 16.4268

400 400 0.9 19 cov 0.9638 0.9632 0.9522 0.9588 0.9648 0.9542 0.9520 0.9580

len 49.4316 16.7885 45.6336 17.3154 48.2310 15.7169 45.7570 16.4345

400 400 0 399 cov 0.8502 0.8140 0.9482 0.9472 1.000 0.9966 0.9554 0.9520

len 41.2273 38.1620 79.5473 83.3671 238.8424 132.2243 70.9232 64.6938

400 800 0.9 19 cov 0.9646 0.9604 0.9522 0.9604 0.9648 0.9596 0.9510 0.9584

len 68.5556 17.3883 64.7917 17.4152 68.2060 16.3547 64.4588 16.4773

—
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CHAPTER 9

CONCLUSIONS

Sometimes scaling resulted in PIs that were too short so there was undercoverage. Scaling

with validation residuals was a useful technique.

The simulations were done in R. See R Core Team [22]. The collection of Olive [19] R

functions slpack, available from http://lagrange.math.siu.edu/Olive/slpack.txt, has some

useful functions for the inference. The tables were made with the function srrpisim.

For lasso and ridge regression, 10-fold CV produced good PIs if ψ = 0 or if k was small, but

if both k ≥ 19 and ψ ≥ 0.5, then 10-fold CV tended to shrink too much and the PI lengths were

often too long. Pelawa Watagoda and Olive (2019) noted that lasso did appear to select S ⊆ Imin

for sparse models since relaxed lasso was good in their simulation.

For n/p not large, good performance needed stronger regularity conditions. If there was k = 1

active population predictor, then lasso often performed well. For k = 19, lasso often performed

well for ψ = 0. For dense models with k = p−1 and n/p not large, there was often undercoverage.

Let d− 1 be the number of active predictors in the selected model. For N(0, 1) errors, ψ = 0, and

d < k, an asymptotic population 95% PI has length 3.92
√
k − d+ 1. Note that when the (Yi,u

T
i )T

follow a multivariate normal distribution, every subset follows a multiple linear regression model.

PI (2.8) often had good coverage.

From the 5 simulation tables, the results are similar. For the first 7 lines in every table,

Scaling did not have much effect. And the lasso often did better than RR.

For the rest data of every table, when n=400, the scaled lasso and scaled RR lengths are

much better than lasso and RR, respectively, but the coverage is often too low. PI (2.8) has good

coverage, but the PI length was too long if 1.5k ≤ n ≤ 3k. PI (2.8) was better for ridge regression

than PI (2.7) for k = 399 and n = 400.

http://lagrange.math.siu.edu/Olive/slpack.txt
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